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OBJECTIVES 

 
The present doctorate thesis aims at studying in detail the behaviour and properties of a 

naturally derived semi-synthetic origin polymer, chitosan and its combination with a 

synthetic polymer belonging to the class of poly(acrylamides). To accomplish the above 

objective, micro/ nano particles as well as semi-interpenetrating hydrogel networks were 

prepared for biomedical applications. Various physico-chemical characterizations of the 

prepared materials have been performed and evaluated in detail.  

 Chitosan is a biodegradable polymer with great potential for various applications 

due to its biocompatibility, high charge density, non-toxicity and mucoadhesivity. It is a 

semi-crystalline polymer and most of its properties are known to be a function of the degree 

of acetylated monomeric units. Much of the potential of chitosan as a biomaterial stems from 

its cationic nature and high charge density in solution. The charge density allows chitosan to 

form insoluble ionic complexes or complex coacervates with a wide variety of water-soluble 

anionic polymers. Different strategies are adopted in this thesis to develop systems based on 

chitosan which would offer better application for Regenerative Medicine applications.  

 As mentioned above, the degree of deacetylation (DD) that represents indeed the 

number of acetylated amino glucosidic units and is one of the most important properties of 

chitosan. A simple, rapid and reliable method for the determination of DD of chitosan is 

essential. An economical and accurate determination of DD for highly acetylated amino 

polysaccharides has always been a challenge for researchers dealing with chitin and chitosan. 

Our aim was to prepare chitosan from its parent polymer chitin and to determine the DD 

values using spectroscopic and thermal techniques. Different reaction parameters were 

varied and using these data a statistical model was designed to define the best preparative 

condition for such reactions.  

 The use of microsphere or bead-based therapies allow drug release to be carefully 

tailored to the specific treatment sites through the choice and formulation of various drug–

polymer combinations. Chitosan beads are used to provide controlled release of many drugs 

and to improve the bioavailability of degradable substances such as protein or enhance the 

uptake of hydrophilic substances across the epithelial compartments. Chitosan possess a 

unique capability of forming beads in the presence of non-toxic polyanion. We tried to 

exploit this ability of chitosan for the loading of two model proteins Human Serum Albumin 

(HSA) and Porcine Trypsin (PT). Both the proteins were successfully loaded into the beads 

and their release behaviour was studied.  

 A number of studies have been conducted with the aim of using chitosan-based 

nanoparticles as the carriers of drugs, vaccines and even DNA. Chitosan-based nanoparticles 



 xvi

have provided the opportunities for the site-specific delivery of drugs because they can 

solubilize various hydrophobic drugs, increase bioavailabilty and possess a long residence 

time in blood circulation system. With this objective in mind, chitosan nanoparticles were 

prepared by interaction with poly(methacryloylglycylglycine) (MAGlyGly). 

Poly(MAGlyGly) is an poly(acrylamide) based polymer with wide application in the 

delivery of anti-cancer drugs. Our main focus in this work has been in understanding the 

physico-chemical characteristics of the prepared nanoparticles as suited to be used in drug 

delivery practice. 

 The same underlying concept has been explored again to prepare hydrogels with 

semi- interpenetrating hydrogel networks (semi-IPN’s) composed of chitosan and 

Poly(MAGlyGly). Hydrogels are of special interest in controlled release applications 

because of their tissue biocompatibility, the ease with which drugs are dispersed in the 

matrix and the high degree of control achieved by the design of the physical and chemical 

properties of the polymer network. A major disadvantage of the hydrogels is represented by 

their relatively low mechanical strength that can be mitigated and even overcome either by 

crosslinking, or by formation of interpenetrating networks (IPNs). We used the later 

approach to prepare semi-IPN’s by varying different compositions of the polymer and 

crosslinker with a aim of allowing it to be used for tissue engineering purposes. The selected 

strategy was dictated and tailored to the ultimate expected application of the prepared IPN’s 

in tissue engineering. 

 

 

 

. 



 

1 

1. CHITOSAN- A VERSATILE MATERIAL FOR REGENERATIVE 

MEDICINE APPLICATIONS  

 

1.1. Abstract  

 
Regenerative medicine, one of the upcoming fields in present and future life science, finally 

aims at the restoration or replacement of lost or damaged organ or body part with 

transplantation of new tissues in combination with supportive scaffolds and biomolecules. 

Regenerative medicine is usually defined by connecting the fields of tissue engineering, stem 

cell research, gene therapy and therapeutic cloning [1, 2]. Recently, functional biomaterial 

research has been directed toward the development of new drug delivery systems and 

improved scaffolds for regenerative medicine. In this regard, increasing attention has been 

given to chitosan and its derivatives. Chitosan is becoming an undisputed biomolecule of 

great potential because of its polyelectrolyte properties, including the presence of reactive 

functional groups, gel-forming ability, high adsorption capacity, complete biodegradability, 

bacteriostatic, and fungistatic, even anti-tumor influence [3]. Chitosan is also bio-compatible 

and non-toxic for living tissues [4,5]. These investigations confirm the suitability and 

extensive applications of chitosan in regenerative medicine. The present chapter outlines the 

major new findings on the most common chitosan-based materials. Micro/nanoparticulate 

and hydrogels are widely used forms of chitosan, a survey of the publications related to them 

over the past decade has been done. Methods of their preparation, drug loading, release 

characteristics, and applications are covered. Herein, the potential value of chitosan in tissue 

engineering, wound healing and gene therapy have been mainly focused. The chemical 

structure and relevant biological properties of chitosan for regenerative medicine have also 

been summarized. 

 

1.2. Introduction 

 
The history of chitosan dates back to the last century, when Rouget [6] discussed the 

deacetylated forms of the parent chitin natural polymer in 1859. During the past 20 years, a 

substantial amount of work has been published on this polymer and its potential use in 

various applications. Recently, chitosan has been considered for pharmaceutical formulation 

and drug delivery applications in which attention has been focused on its absorption-
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enhancing, controlled release and bioadhesive properties. Synthesized from a naturally 

occurring source, this polymer has been shown to be both biocompatible and biodegradable 

[7]. Chitosan is a linear copolymer of β-(1-4) linked 2-acetamido- 2-deoxy- β -D-

glucopyranose and 2-amino-2- deoxy- β -D-glycopyranose (figure. 1(a)). It is easily obtained 

by deacetylation of chitin, a polysaccharide widely distributed in nature (e.g. crustaceans, 

insects and certain fungi) [8,9]. Due to the limited solubility of chitin in aqueous solutions, 

chitosan is more suitable for industrial applications [10]. Chitin and chitosan polymers are a 

natural and a semi-synthetic desired aminopolysaccharides respectively having unique 

structures, multidimensional properties, highly sophisticated functions and wide ranging 

applications in biomedical and other industrial areas [11–13]. The positive attributes of 

excellent biocompatibility and admirable biodegradability with ecological safety and low 

toxicity with versatile biological activities such as antimicrobial activity and low 

immunogenicity have provided ample opportunities for further development [14-19]. It has 

become of great interest not only as a cheap and easily available resource but also as a new 

functional biomaterial of high potential in various fields [20-22]. 

 

1.3. General Aspects of Chitosan  

1.3.1 Structure of Chitosan  
 

 Chitosan [poly(1,4-β-D-glucopyranosamine)], is produced generally by partial 

deacetylation of chitin obtained from the shells of crustaceans. Chitosan molecule is a 

copolymer of N-acetyl-D-glucosamine and D-glucosamine available in different grades 

depending upon the degree of deacetylated moieties (figure 1(a)) [23]. It is a polycationic 

polymer that has one amino group and two hydroxyl groups in the repeating hexosaminide 

residue (figure 1(b)). The sugar backbone consists of β-1,4-linked D-glucosamine with a 

high degree of N-acetylation, a structure very similar to that of cellulose, except that the 

acetylamino group replaces the hydroxyl group on the C2 position. Thus, chitosan is poly( 

N-acetyl-2-amino-2-deoxy-D-glucopyranose), where the N-acetyl-2-amino-2-deoxy-D-

glucopyranose (or Glu-NH2) units are linked by (1→4)-β-glycosidic bonds[24]. Chitosan has 

a rigid crystalline structure through inter- and intra-molecular hydrogen bonding. 
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(a) (b) 

Figure 1. (a) Structure of chitosan ; (b) Chemical structure of chitosan. Individual atoms are 

numbered. Dashed lines  denote O3―O5 hydrogen bonds. Two dihedral angles (φ, ψ) defining the 

main chain conformation and one dihedral angle χ defining the O6 orientation are indicated. 

 

1.3.2 Source & Availability of Chitosan  

 
 Chitin is the second most abundant polysaccharides in nature, cellulose being the 

most abundant. Chitin is found in the exoskeleton of crustacea, insects, and some fungi. The 

main commercial sources of chitin are the shell wastes of shrimp, lobster, krill and crab. In 

the world several millions tons of chitin are harvested annually [24-26]. Chitosan is obtained 

by the deacetylation of chitin. Treatment of chitin with an aqueous 40-45%(w/v) NaOH 

solution at 90-120°C for 4-5 h results in N-deacetylation of chitin. The insoluble precipitate 

is washed with water to give a crude sample of chitosan. The conditions used for 

deacetylation determines the polymer molecular weight and the degree of deacetylation 

(DD). Generally, further purification is  necessary to prepare medical and pharmaceutical 

grade chitosan. 

 

1.3.3 Physicochemical Properties of Chitosan 
 

 Chitosan is insoluble at neutral and alkaline pH, but forms water-soluble salts with 

inorganic and organic acids including glutamic, hydrochloric, lactic and acetic acids. Upon 
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dissolution in acidic media, the amino groups of the polymer become protonated rendering 

the molecule positively charged. The DD represents the proportion of D-glucosamine units 

with respect to the total number of units. The properties of chitosan (e.g. pKa and solubility) 

can be modified by changing the DD and formulation properties such as the pH and ionic 

strength. At neutral pH, most chitosan molecules lose their charge and precipitate from 

solution. 

 The primary amino groups on the molecule are reactive and provide sites for side 

group attachment using a variety of mild reaction conditions, this property renders it to be an 

easy molecule for side chain reactions and derivatization. In addition, the characteristic 

features of chitosan such as being cationic, hemostatic and insoluble at high pH, can be 

completely reversed by a sulfation process which can render the molecule anionic and water-

soluble, and also introduce anticoagulant properties [27]. 

 
Figure 2. Schematic illustration chitosan’s versatility for fabrication. At low pH (less than about 6), 

chitosan’s amine groups are protonated conferring polycationic behavior to chitosan. At higher pH 

(above about 6.5), chitosan’s amines are deprontonated and reactive. Also at higher pH, chitosan can 

undergo interpolymer associations that can lead to fiber and network (i.e., film and gel) formation. 

 

 The variety of groups that can be attached to chitosan is almost unlimited, and side 

groups can be chosen to provide specific functionality, alter biological properties or modify 

physical properties. Due to its high molecular weight and a linear unbranched structure, 

chitosan is an excellent viscosity- enhancing agent in acidic environments. It behaves as a 

pseudoplastic material exhibiting a decrease in viscosity with increasing rates of shear. The 

viscosity of chitosan solution increases with an increase in chitosan concentrations, decrease 

in temperature and with increasing DD, which is a structural parameter also influencing 

physiochemical properties such as the molecular weight, the elongation at break and the 

tensile strength [28]. Viscosity also influences biological properties such as wound-healing 
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properties and osteogenesis enhancement as well as biodegradation by lysozyme [29]. 

Chitosan, which is polycationic in acidic environments, possesses an ability to form gels at 

acidic pH values because it is hydrophilic and can retain water in its structure. Exposure to 

high temperatures can change the physical properties of chitosan, affecting its aqueous 

solubility, rheology, and appearance. 

 

1.3.4 Biological Properties of Chitosan  
 

 Chitosan has been used as a safe excipient in drug formulations over the last two 

decades [30]. This polymer also attracted the attention of pharmaceutical scientists as a 

mucoadhesive polymer. Chitosan in the swollen state has been shown to be an excellent 

mucoadhesive and a natural bioadhesive polymer that can adhere to hard and soft tissues; it 

has been used in dentistry, orthopaedics, ophthalmology and in surgical procedures. It 

adheres to epithelial tissues and to the mucus coat present on the surface of the tissues. A 

variety of chitosan-based colloidal delivery systems have been described in the literature for 

the mucosal delivery of polar drugs, peptides, proteins, vaccines and DNA. Clinical tests 

carried out in order to promote chitosan-based biomaterials do not report any inflammatory 

or allergic reactions following implantation, injection, topical application or ingestion in the 

human body [31]. It has been demonstrated that degree of deacetylation has no significant 

influence on the in vitro and in vivo cytocompatibility of chitosan films with keratinocytes 

and fibroblasts. The chitosan films with a low degree of deacetylation are very good 

biomaterials for superficial wound-healing [31]. Once placed on the wound, they adhere to 

fibroblasts and favor the proliferation of keratinocytes and thereby epidermal regeneration. 

 

1.3.5 Biodegradability of Chitosan 

 

 An important aspect in the use of polymers as drug delivery systems is their 

metabolic fate in the body or biodegradation. In the case of the systemic absorption of 

hydrophilic polymers such as chitosan, they should have a suitable molecular weight for 

renal clearance. If the administered polymer's size is larger than this, then the polymer should 

undergo degradation. Biodegradation (chemical or enzymatic) would provide fragments 

suitable for renal clearance. Chemical degradation in this case refers to acid catalysed 

degradation i.e. in the stomach. Although oxidation–reduction depolymerisation and free 

radical degradation [32] have been reported [33] these are unlikely to be a significant source 

or degradation in vivo. Chitosan can be degraded by enzymes which hydrolyse glucosamine–
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glucosamine, glucosamine–N-acetyl-glucosamine and N-acetyl-glucosamine–N-acetyl- 

glucosamine linkages [34]. 

 Chitosan is thought to be degraded in vertebrates predominantly by lysozyme and 

by bacterial enzymes in the colon [35]. However, eight human chitinases (in the glycoside 

hydrolase 18 family) have been identified, three of which have shown enzymatic activity 

[36]. A variety of microorganisms synthesises and/or degrades chitin, the biological 

precursor of chitosan. In general, chitinases in microorganisms hydrolyze N-acetyl-β-1,4-

glucosaminide linkages randomly i.e. they are endo-chitinases (EC 3.2.1.14). Chitinases are 

also present in higher plants, even though they do not have chitin structural components. In 

general, both rate and extent of chitosan biodegradability in living organisms are dependent 

on the DD [37,38]. Increasing DD decreases the degradation rate. The extent of degradation 

is related to the rate, as all the studies are conducted over a finite lifetime. It is likely that, 

given adequate time and appropriate conditions, the chitosans would degrade sufficiently for 

consequent excretion.  

 

1.3.5.1 Biodegradation- In-vitro  

 

 Chemical characterisation assays determining the degradation of chitosan 

commonly use viscometry and/or gel permeation chromatography to evaluate a decrease in 

molecular weight [39]. Lysozyme has been found to efficiently degrade chitosan; 50% 

acetylated chitosan had 66% loss in viscosity after a 4 h incubation in vitro at pH 5.5 (0.1 M 

phosphate buffer, 0.2 M NaCl, 37 °C) [39]. This degradation appears to be dependent on the 

degree of acetylation with degradation of acetylated chitosan (more chitin like) showing the 

faster rate [40,41]. Surprisingly, a range of proteases were found to degrade chitosan films to 

varying degrees, with leucine amino-peptidase being the most effective, degrading the film 

by 38% over 30 days [42]. Pectinase isozyme from Aspergilus niger has also been shown to 

digest chitosan at low pH providing lower molecular weight chitosans [43,44]. More 

therapeutically relevant, is the digestion of chitosan with rat cecal and colonic bacterial 

enzymes. It was found that degradation was caused predominantly by extracellular enzymes 

and that degradation was related to both DD and molecular weight. Compounds of lower 

molecular weight and lower DD are more susceptible [41]. In a similar experiment, 

McConnell et al. used human faecal preparations and showed significant degradation of 

chitosan films, glutaraldehyde crosslinked films and tripolyphosphate crosslinked films [45]. 

Porcine pancreatic enzymes were shown to degrade films over the time periods investigated 

(4 h and 18 h). The type of crosslinker used for the film formation influenced the degradation 
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rate; glutaraldehyde to a greater degree than tripolyphosphate, an effect that was more 

pronounced with the high (310–600 kDa) and medium (190–310 kDa) molecular weight 

chitosans. 

 

1.3.5.2 Biodegradation- In-vivo  

 

 Chitosan degradation after intravenous administration has been reported scarcely. It 

is somewhat unclear what the mechanism of degradation is when chitosan is injected 

intravenously. Some authors are of the view that distribution degradation and elimination 

processes are strongly dependent on molecular weight. Possible sites of degradation, inferred 

due to the localisation of chitosan, may be the liver and kidney. In one of the few studies 

reported, chitosan oligosaccharides were found to upregulate lysozyme activity in the blood 

of rabbits injected intravenously with 7.1–8.6 mg/kg [46]. Chitosan has also been 

administered subcutaneously, in most cases as an implant. A proposed skin substitute of 

glutaraldehyde crosslinked chitosan/collagen was relatively stable over time compared to 

collagen alone when implanted subcutaneously in rabbits [47]. Oral administration of 

chitosan has shown some degradation in the gastrointestinal tract. The digestion of chitosan, 

occurring predominantly in the gut, was found to be species dependent with hens and 

broilers being more efficient digesters (67–98% degradation after oral ingestion) than rabbits 

(39–83% degradation) [48].  

 

1.3.6 Biodistribution of Chitosan 

 

 One of the most studied aspects of chitosan is its biodistribution, especially using 

methods other than intravenous administration. This distribution is related to all aspects of 

the chitosan formulation from the molecular weight and DD to the size of the delivery 

vehicle. In the case of a nanoparticulate formulation, the kinetics and biodistribution will 

initially be controlled by the size and charge of the nanoparticles and not by chitosan. 

However, after particle decomposition to chitosan and free drug, inside the cells or target 

tissue, free chitosan will distribute in the body and eliminate accordingly. Elimination 

processes may be preceded by biodegradation. To understand chitosan biodistribution the 

kinetics of its labeled (radio or fluorescent) modifications should be followed, assuming that 

the label is neither labile nor affecting the physicochemical properties of the chitosan.  
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1.3.6.1 Distribution after Intravenous Administration 
 

 In an attempt to prepare Holmium-166 based radiopharmaceuticals for tumours, 

Suzuki et al. [49] administered chitosan (700 kDa) with Holmium-166 in a chelate complex 

form and studied its distribution in rats and mice. They found that 72 h after intravenous 

administration, 4.2% and 4.8% of the radioactivity was recovered in the urine and feces 

respectively, whereas 90.6% was found in the carcass [49]. Banerjee et al. describe the 

distribution of intravenously injected 99mTc labeled nanoparticles (<100 nm) in Swiss 

albino mice. Nanoparticles were tested for radiolabel stability and 80% of the radioactivity 

was associated with the particles after 3 h. Nanoparticles were administered in mice and an 

apparent evasion of the reticuloendothelial system (RES) was suggested as radioactivity 

decreased in organs of this system but remained stable in the blood after 1 h [50]. 

Unfortunately, the nanoparticles were not sufficiently stable to look at long term 

distributions. However accumulation in the liver was detected. 

Richardson et al. reported on radio-labeled chitosan (125I) of three different molecular 

weight fractions (<5 kDa, 5–10 kDa and >10 kDa) and biodistribution was assessed at 5 min 

and 1 h in male Wistar rats [51]. The authors found ~45% of the recovered dose of the <5 

kDa chitosan in the blood at 5 min and ~30% remaining in the blood at 1 h. This was not the 

case for the 5–10 kDa and >10 kDa chitosans where the 5 min blood recovery was ~15% and 

~12% and the 1h ~8% and ~4% respectively. The main organ of uptake appears to be the 

liver, where accumulation was found to increase with increasing molecular weight. However, 

there was a recovery of less than 60% of the total administered dose (in harvested tissue) in 

all cases and it was not normalized to the tissue weight [51]. All three studies found the liver 

to be a significant site of accumulation; this could be due to this organ being a primary site of 

metabolism as seen with radio-labeled dextran [52]. 

A potential method to study native chitosan without significant modification would 

be to use 14C as a label e.g. in the food source for the animal/fungi producing the chitin so 

that the saccharide backbone is labeled, as detection of native chitosan is somewhat of a 

challenge [53]. 

 

1.3.6.2 Distribution after intraperitoneal administration 
 

 FITC-labeled chitosan (50% DD, 100 kDa) was prepared by FITC coupling and 

chromatographed for purification. This labeled chitosan was administered intraperitoneally 

and it was completely absorbed form the peritoneal cavity (no evidence in abdominal fluid 
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after 14 h). FITC-chitosan was found to be predominantly localised in the kidney at 1 h in a 

mouse model. There was a rapid renal excretion rate (25% at 1 h, 100% in 14 h) with 

evidence of degradation due to a decrease in the molecular weight [54].  

 

1.3.6.3 Tissue distribution after oral administration 

 
 Oral dosage forms use chitosan as an excipient, although chitosan does not strictly 

fit the definition of excipient as it has many biological effects. It has been suggested that 

chitosan chelates fat and reduces cholesterol but this, and its mechanism, is somewhat 

debatable [55,56]. Apart from the effect that chitosan may have on bile salts and 

gastrointestinal milieu, the uptake of chitosan into the bloodstream is generally not 

investigated in oral administration studies. Chitosan's systemic absorption and distribution 

from this route of delivery has been observed to be largely dependent on the molecular 

weight. It has been seen in some cases that oligomers showed some absorption whereas 

larger molecular weight chitosans were excreted without being absorbed. This effect was 

seen with FITC-labeled chitosans with 3.8 kDa (88.4% DD) chitosan having the greatest 

plasma concentration after oral administration vs 230 kDa (84.9% DD) having almost no 

uptake. Increasing molecular weight was seen to decrease the plasma concentration in this, 

one of the only studies investigating plasma concentration after oral administration [57]. 

 

2.1.6.4 Intracellular chitosan distribution  

 
 Although native chitosan has not been investigated, the intracellular uptake and 

distribution of chitosan/DNA complexes have been studied in vitro [58-60]. Chitosan 

polyplex uptake at 37 °C was 3-fold higher than at 4 °C [58] but this could be due to 

increased interaction and not an ATP dependent endocytic mechanism. The authors 

suggested nuclear localization and they also stated little dissociation of the DNA from the 

chitosan. In a more comprehensive study, Leong et al. stained for lysosomes and found some 

co-localization with chitosan DNA nanoparticles. However, the majority of the polyplexes 

were found in the cytosol [59]. A complex of doxorubicin with chitosan has also been 

studied; complexes enter cells through an endocytic mechanisms which was not further 

elucidated [61]. 
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1.3.7 Toxicity of Chitosan  

 
 Chitosan is widely regarded as being a non-toxic, biologically compatible polymer 

[62]. It is approved for dietary applications in Japan, Italy and Finland [63] and it has been 

approved by the FDA for use in wound dressings [64]. The modifications perfomed on 

chitosan could make it more or less toxic and any residual reactants should be carefully 

removed. 

 

1.3.7.1 In-vitro toxicity 

 
 In a series of articles Schipper et al. described the effects of chitosans with differing 

molecular weights and DD on CaCo-2 cells, HT29-H and in situ rat jejunum. Toxicity was 

found to be DD and molecular weight dependent. At high DD the toxicity is related to the 

molecular weight and the concentration, at lower DD toxicity is less pronounced and less 

related to the molecular weight. However most of the chitosans tested did not increase 

dehydrogenase activity significantly in the concentration range tested (1–500 µg/ml) on 

Caco-2 cells. The in situ rat jejunum study showed no increase in LDH activity with any of 

the chitosans tested (50 µg/ml) [65,66]. A study that reveals safety of materials is the red cell 

haemolysis assay. Haemolysis was not observed (<10%) over 1 h and 5 h with chitosans of 

<5 kDa, 5–10 kDa and >10 kDa at concentrations of up to 5 mg/ml [51]. As well, no red 

blood cell lysis was observed with paclitaxel chitosan micelles at 0.025 mg/ml [67].  

 Interestingly, chitosan and its derivatives seem to be toxic to several bacteria [68], 

fungi [69] and parasites [70]. This pathogen related toxicity is an effect which could aid in 

infectious disease control. When emulsions containing chitosans were tested, bacterial 

inhibition took place in acidic solutions pH 5–5.3, and a 87 kDa 92% DD chitosan was more 

effective than a 532 kDa 73% DD chitosan against both Pseudomonas aeruginosa and 

Staphylococcus aureus. A lipid emulsion of the same chitosans was found to have 

antimycotic effect against Candida albicans and Aspergillus niger [68]. In tests of 

meglumine antimoniate against Leishmania infantum it was found that the chitosan excipient 

had anti-parasitic properties (IC50 112.64± 0.53 mg/ml for promastigotes and 100.81±26.45 

mg/ml for amastigotes) [70]. None of these studies hypothesized a mechanism of action for 

the inhibitory effect observed. 
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1.3.7.2 In-vivo toxicity  
 

 In vivo toxicity particularly after long term administration is of high importance for 

the design of drug delivery forms based on chitosan. In a relatively long study (65 days), no 

detrimental effect on body weight was found when chitosan oligosaccharides were injected 

(7.1–8.6 mg/kg over 5 days). An increase in lysozyme activity was apparent on the first day 

post injections [71]. 

 Rao et al. stated no “significant toxic effects” of chitosan in acute toxicity tests in 

mice, no eye or skin irritation in rabbits and guinea pigs respectively. In the same study it 

was also concluded that chitosan was not pyrogenic. However, no concentration or DD of the 

chitosan used was noted [72]. Even though no dose is stated in his work , no detrimental 

effects were noted by Richardson et al. [51]. The LD50 of paclitaxel chitosan micelles in 

mice was 72.16 mg/kg, no anaphylaxis was observed in guinea pigs and no intravenous 

irritation was observed histopathologically in rabbits at 6 mg/kg [67]. No adverse effects at 

3.3–4 mg/kg were reported by Banerjee et al. [50]. In a study on fat chelation, 4.5 g/day 

chitosan (molecular weight and DD not noted) in humans was not reported toxic, although 

no significant reduction in fat was found [73]. Arai et al. found that chitosan has an LD50 

comparable to sucrose of >16 g/kg in oral administration to mice [74]. No oral toxicity was 

found in mice treated with 100 mg/kg chitosan nanoparticles (80 kDa, 80% DD) [75]. 

Exposure of rat nasal mucosa to chitosan solutions at 0.5% (w/v) over 1 h caused no 

significant changes in mucosal cell morphology compared to control [76]. From most studies 

reported it appears that chitosan shows minimal toxic effects and this justifies its selection as 

a safe material in drug delivery.  

 

1.4. Chitosan Based Systems for Regenerative Medicine Applications 

1.4.1 Chitosan Micro/nano Particles 
 

 If DD and molecular weight of chitosan can be controlled, then it would be a 

material of choice for developing micro/nanoparticles. Chitosan has many advantages, and 

these include its ability to control the release of active agents and the avoid use of hazardous 

organic solvents while fabricating particles since it is soluble in aqueous acidic solution. In 

view of the above-mentioned properties, chitosan is extensively used in developing drug 

delivery systems [77–84]. Particularly, chitosan has been used in the preparation of 

mucoadhesive formulations [85,86,76,87], improving the dissolution rate of the poorly 
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soluble drugs [80,88,89], drug targeting [90,91] and enhancement of peptide absorption 

[86,76,92]. Different types of chitosan based drug delivery systems are summarized in Table 

1. The micro/nanoparticulate drug delivery systems offer numerous advantages over the 

conventional dosage forms. These include improved efficacy, reduced toxicity and improved 

patient compliance [93,94-96]. In the present section we have addressed the trends in the 

area of micro/nanoparticulate chitosan-based drug delivery systems. Literature of the past 

decade has been covered and results are evaluated.  

 

Table 1 Chitosan based drug delivery systems prepared by different methods. 

 

Type of system  Method of preparation 

Tablets  Matrix coating 

Capsules  Capsule shell 

Microspheres 

 Emulsion cross-linking 

Coacervation/Precipitation 

Spray drying 

Ionic gelation 

Sieving method 

Nanoparticles 
 Emulsion-droplet coalescence 

Coacervation/Precipitation 

Beads  Coacervation/Precipitation 

Films  Solution casting 

Gel  Crosslinking 

 

1.4.1.1 Methods for the preparation of Chitosan micro/nanoparticles  

 
 Different methods have been used to prepare chitosan particulate systems. Selection 

of any of the methods depends upon factors such as particle size requirement, thermal and 

chemical stability of the active agent, reproducibility of the release kinetic profiles, stability 

of the final product and residual toxicity associated with the final product. However, 

selection of any of these methods depends upon the nature of the active molecule as well as 

the type of the delivery device. 
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1.4.1.1.1 Emulsion crosslinking  

 

 This method utilizes the reactive functional amine group of chitosan to cross-link 

with the possible reactive groups of the cross-linking agent. In this method, a water-in-oil 

(w/o) emulsion is prepared by emulsifying the chitosan aqueous solution in the oil phase. 

Aqueous droplets are stabilized using a suitable surfactant. The stable emulsion is cross-

linked by using an appropriate cross-linking agent to harden the droplets. Microspheres are 

filtered and washed repeatedly with alcohol and then dried [97]. By this method, size of the 

particles can be controlled by controlling the size of aqueous droplets. However, the particle 

size of final product depends upon the extent of cross-linking agent used while hardening in 

addition to speed of stirring during the formation of emulsion. This method is schematically 

represented in figure 3. The emulsion cross-linking method has few drawbacks since it 

involves tedious procedures as well as use of harsh cross-linking agents, which might 

possibly induce chemical reactions with the active agent. Also, complete removal of the un-

reacted crosslinking agent may be difficult in this process. 

 Agnihotri et al. [98] have used the emulsion crosslinking  method to prepare 

chitosan microspheres to encapsulate diclofenac sodium using three crosslinking agents viz, 

glutaraldehyde, sulfuric acid and heat treatment. Microspheres were spherical with smooth 

surfaces. The size of the microparticles ranged between 40 and 230 µm. Among the three 

cross-linking agents used, glutaraldehyde cross-linked microspheres showed the slowest 

release rates while a quick release of diclofenac sodium was observed by the heat cross-

linked microspheres. Sankar et al. [99] prepared the chitosan-based pentazocine 

microspheres for intranasal delivery. Formulation parameters such as drug loading, polymer 

concentration, stirring speed during cross-linking and oil phase were altered to develop 

microspheres having good in vivo performance. In vivo studies indicated a significantly 

improved bioavailability of pentazocine. Application of in vitro data to various kinetic 

models indicated that these systems followed the diffusion controlled release kinetics. 
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Figure 3. Schematic representation of preparation of chitosan particulate systems by emulsion cross-

linking method 

1.4.1.1.2 Coacervation/ Precipitation 

 

 This method utilizes the physicochemical property of chitosan since it is insoluble 

in alkaline pH medium, but precipitates/coacervates when it comes in contact with alkaline 

solution. Particles are produced by blowing chitosan solution into an alkali solution like 

sodium hydroxide, NaOH-methanol or ethanediamine using a compressed air nozzle to form 

coacervate droplets. Separation and purification of particles are done by 

filtration/centrifugation followed by successive washing with hot and cold water. The 

method is schematically represented in figure 4. Varying compressed air pressure or spray-

nozzle diameter controlled the size of the particles and then using a crosslinking agent to 

harden particles can control the drug release. Chitosan microspheres loaded with 

recombinant human interleukin-2 (rIL-2) have been prepared by dropping of rIL-2 with 

sodium sulfate solution in acidic chitosan solution [100]. When protein and sodium sulfate 

solutions were added to chitosan solution and during the precipitation of chitosan, the protein 

was incorporated into microspheres. This method is devoid of cross-linking agent. The rIL-2 

was released from microspheres in a sustained manner for up to 3 months. Efficacy of the 

systems developed was studied by using two model cells viz., HeLa and Lstrain cell lines. 
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Microspheres were taken up by the cells and rIL-2 was released from the microspheres. 

Chitosan–DNA nanoparticles have been prepared using the complex coacervation technique 

[101]. Important parameters such as concentrations of DNA, chitosan, sodium sulfate, 

temperature, pH of the buffer and molecular weights of chitosan and DNA have been 

investigated. At the amino to phosphate group ratio between 3 and 8 and chitosan 

concentration of 100 ng/ mL, the particle size was optimized to 100–250 nm with a narrow 

distribution. Surface charge of these particles was slightly positive with a zeta potential of 

112 to 118 mV at pH lower than 6.0, and became nearly neutral at pH 7.2. The chitosan–

DNA nanoparticles could partially protect the encapsulated plasmid DNA from nuclease 

degradation. 

 

 

 

Figure 4. Schematic representation of preparation of chitosan particulate systems by 

coacervation/precipitation  method 

1.4.1.1.3 Spray-drying  

 
 Spray-drying is a well-known technique to produce powders, granules or 

agglomerates from the mixture of drug and excipient solutions as well as suspensions. The 

method is based on drying of atomized droplets in a stream of hot air. In this method, 

chitosan is first dissolved in aqueous acetic acid solution, drug is then dissolved or dispersed 

in the solution and then, a suitable cross-linking agent is added. This solution or dispersion is 
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then atomized in a stream of hot air. Atomization leads to the formation of small droplets, 

from which solvent evaporates instantaneously leading to the formation of free flowing 

particles [102]. Various process parameters are to be controlled to get the desired size of 

particles. Particle size depends upon the size of nozzle, spray flow rate, atomization pressure, 

inlet air temperature and extent of crosslinking. This method is however more commonly 

used for the preparation of microparticles than for nanoparticles. Huang et al. [103] prepared 

chitosan microspheres by the spray-drying method using type-A gelatin and ethylene oxide– 

propylene oxide block copolymer as modifiers. Surface morphology and surface charges of 

the prepared microspheres were investigated using SEM and microelectrophoresis. Shape, 

size and surface morphology of the microspheres were significantly influenced by the 

concentration of gelatin. Betamethasone disodium phosphate-loaded microspheres 

demonstrated a good drug stability (less 1% hydrolysis product), high entrapment efficiency 

(95%) and positive surface charge (37.5 mV). In vitro drug release from the microspheres 

was related to gelatin content. Microspheres containing gelatin/chitosan ratio of 0.4–0.6 

(w/w) showed a prolonged release up to 12 h. In another study [104], vitamin D2 (VD2), 

also called as ergocalciferol, was efficiently encapsulated into chitosan microspheres 

prepared by spray-drying method. The microencapsulated product was coated with ethyl 

cellulose. The sustained release property of VD2 microspheres was used for the treatment of 

prostatic disease [105]. 

1.4.1.1.4 Emulsion-droplet coalescence method 

 

 The novel emulsion-droplet coalescence method was developed by Tokumitsu et al. 

[106], which utilizes the principles of both emulsion cross-linking and precipitation. 

However, in this method, instead of cross-linking the stable droplets, precipitation is induced 

by allowing coalescence of chitosan droplets with NaOH droplets. First, a stable emulsion 

containing aqueous solution of chitosan along with drug is produced in liquid paraffin oil and 

then, another stable emulsion containing chitosan aqueous solution of NaOH is produced in 

the same manner. When both emulsions are mixed under high-speed stirring, droplets of 

each emulsion would collide at random and coalesce, thereby precipitating chitosan droplets 

to give small size particles. The method is schematically shown in figure 5. Gadopentetic 

acid-loaded chitosan nanoparticles have been prepared by this method for gadolinium 

neutroncapture therapy. Particle size depends upon the type of chitosan, i.e., as the % 

deacetylation degree of chitosan decreased, particle size increased, but drug content 

decreased. Particles produced using 100% deacetylated chitosan had the mean particle size 
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of 452 nm with 45% drug loading. Nanoparticles were obtained within the emulsion-droplet. 

Size of the nanoparticle did not reflect the droplet size. Since gadopentetic acid is a bivalent 

anionic compound, it interacts electrostatically with the amino groups of chitosan, which 

would not have occurred if a cross-linking agent is used that blocks the free amino groups of 

chitosan. Thus, it was possible to achieve higher gadopentetic acid loading by using the 

emulsion-droplet coalescence method compared to the simple emulsion crosslinking method. 

 

 

 
Figure 5. Schematic representation of preparation of chitosan particulate systems by emulsion –

droplet coalescence  method 

1.4.1.1.5 Ionic gelation 

 

 The use of complexation between oppositely charged macromolecules to prepare 

chitosan microspheres has attracted much attention because the process is very simple and 

mild [107,108]. In addition, reversible physical cross-linking by electrostatic interaction, 

instead of chemical cross-linking, has been applied to avoid the possible toxicity of reagents 

and other undesirable effects. Tripolyphosphate (TPP) is a polyanion, which can interact 

with the cationic chitosan by electrostatic forces [109,110]. Bodmeier et al. [111] reported 

the preparation of TPP–chitosan complex by dropping chitosan droplets into a TPP solution, 

many researchers have explored its potential pharmaceutical usage [112-117]. In the ionic 

gelation method, chitosan is dissolved in aqueous acidic solution to obtain the cation of 
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chitosan. This solution is then added dropwise under constant stirring to polyanionic TPP 

solution.  Due to the complexation between oppositely charged species, chitosan undergoes 

ionic gelation and precipitates to form spherical particles. The method is schematically 

represented in figure 6. 

 Ko et al. [118] prepared chitosan microparticles with TPP by the ionic cross-linking 

method. Particle sizes of TPP-chitosan microparticles varied from 500 to 710 nm with drug 

encapsulation efficiencies more than 90%. Morphologies of TPP-chitosan microparticles 

have been examined by SEM. As the pH of TPP solution decreased and molecular weight of 

chitosan increased, microparticles acquired better spherical shape having smooth surface. 

Release of felodipine as a model drug was affected by the preparation method. Chitosan 

microparticles prepared at lower pH or higher concentration of TPP solution resulted in a 

slower release of felodipine. With a decreasing molecular weight and concentration of 

chitosan solution, the drug release increased. The release of drug from TPP-chitosan 

microparticles decreased when the cross-linking time was increased. Xu and Du [119] have 

studied different formulations of chitosan nanoparticles produced by the ionic gelation of 

TPP and chitosan. TEM indicated their diameter ranging between 20 and 200 nm with 

spherical shape. FTIR confirmed tripolyphosphoric groups of TPP linked with ammonium 

groups of chitosan in the nanoparticles. Factors that affect the delivery of bovine serum 

albumin (BSA) as a model protein have been studied. These include molecular weight and 

deacetylation degree of chitosan, concentrations of chitosan and BSA, as well as the 

presence of polyethylene glycol (PEG) in the encapsulation medium. 

 

 

 
Figure 6. Schematic representation of preparation of chitosan particulate systems by ionic gelation 

method 
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1.4.1.1.6 Reverse micellar method 

 
 Reverse micelles are thermodynamically stable liquid mixtures of water, oil and 

surfactant. Macroscopically, they are homogeneous and isotropic, structured on a 

microscopic scale into aqueous and oil microdomains separated by surfactant-rich films. One 

of the most important aspects of reverse micelle hosted systems is their dynamic behavior. 

Nanoparticles prepared by  conventional emulsion polymerization methods are not only large 

(>200 nm), but also have a broad size range. Preparation of ultrafine polymeric nanoparticles 

with narrow size distribution could be achieved by using reverse micellar medium [120]. 

Since micellar droplets are in Brownian motion, they undergo continuous coalescence 

followed by re-separation on a time scale that varies between millisecond and microsecond 

[121]. The size, polydispersity and thermodynamic stability of these droplets are maintained 

in the system by a rapid dynamic equilibrium. In this method, the surfactant is dissolved in a 

organic solvent to prepare reverse micelles. To this, aqueous solutions of chitosan and drug 

are added with constant vortexing to avoid any turbidity. The aqueous phase is regulated in 

such a way as to keep the entire mixture in an optically transparent microemulsion phase. 

Additional amount of water may be added to obtain nanoparticles of larger size. To this 

transparent solution, a cross-linking agent is added with constant stirring, and cross-linking is 

achieved by stirring overnight. The maximum amount of drug that can be dissolved in 

reverse micelles varies from drug to drug and has to be determined by gradually increasing 

the amount of drug until the clear microemulsion is transformed into a translucent solution. 

The method is schematically represented in figure 7. Mitra et al. [122] have encapsulated 

doxorubicin– dextran conjugate in chitosan nanoparticles prepared by reverse micellar 

method. The surfactant sodium bis(ethyl hexyl) sulfosuccinate (AOT), was dissolved in n-

hexane. This procedure produced chitosan nanoparticles encapsulating doxorubicin–dextran 

conjugate. 

 

 

Figure 7. Schematic representation of preparation of chitosan particulate systems by reverse micellar 

method 
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1.4.1.1.7 Seiving method 

 

 Recently, Agnihotri and Aminabhavi [123] have developed a simple, yet novel 

method to produce chitosan microparticles. In this method, microparticles were prepared by 

cross-linking chitosan to obtain a non-sticky glassy hydrogel followed by passing through a 

sieve as shown in figure 8.  In the work by Agnihotri et al., a suitable quantity of chitosan 

was dissolved in 4% acetic acid solution to form a thick jelly mass that was cross-linked by 

adding glutaraldehyde. The non-sticky cross-linked mass was passed through a sieve with a 

suitable mesh size to get microparticles. The microparticles were washed with 0.1 N NaOH 

solution to remove the un-reacted excess glutaraldehyde and dried overnight in an oven at 40 

8C. Clozapine was incorporated into chitosan before crosslinking with an entrapment 

efficiency up to 98.9%. This method is devoid of tedious procedures, and can be scaled up 

easily. Microparticles were irregular in shape, with the average particle sizes in the range 

543–698 nm. The in vitro release was extended up to 12 h, while the in vivo studies 

indicated a slow release of clozapine. 

 

 

 

Figure 8. Schematic representation of preparation of chitosan particulate systems by seiving method 

 

1.4.1.2 Drug loading into Chitosan micro/nanoparticles  

 

 Drug loading in micro/nanoparticulate systems can be done by two methods, i.e., 

during the preparation of particles (incorporation) and after the formation of particles 

(incubation). In these systems, drug is physically embedded into the matrix or adsorbed onto 

the surface. Various methods of loading have been developed to improve the efficiency of 

loading, which largely depends upon the method of preparation as well as physicochemical 

properties of the drug. Maximum drug loading can be achieved by incorporating the drug 

during the formation of particles, but it may get affected by the process parameters such as 
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method of preparation, presence of additives, etc. Both water-soluble and water-insoluble 

drugs can be loaded into chitosan-based particulate systems. Water soluble drugs are mixed 

with chitosan solution to form a homogeneous mixture, and then, particles can be produced 

by any of the methods discussed before. 

 Water-insoluble drugs and drugs that can precipitate in acidic pH solutions can be 

loaded after the formation of particles by soaking the preformed particles with the saturated 

solution of drug. Diclofenac sodium, which precipitates in acidic pH conditions, has been 

loaded by the soaking method [98]. In this method, loading depends upon the swelling of 

particles in water. Percentage loading of drug decreased with increasing cross-linking due to 

decreased swelling. Water-insoluble drugs can also be loaded using the multiple emulsion 

technique. In this method, drug is dissolved in a suitable solvent and then emulsified in 

chitosan solution to form an oil-in-water (o/w) type emulsion. Sometimes, drug can be 

dispersed into chitosan solution by using a surfactant to get the suspension. Thus, prepared 

o/w emulsion or suspension can be further emulsified into liquid paraffin to get the oil-water-

oil (o/w/o) multiple emulsion. The resulting droplets can be hardened by using a suitable 

cross-linking agent. Hejazi and Amiji [124] have prepared chitosan microspheres by ionic 

cross-linking and precipitation with sodium sulfate. Two different methods were used for 

drug loading. In method I, tetracycline was mixed with chitosan solution before simultaneous 

cross– linking and precipitation. In method II, drug was incubated with the pre-formed 

microspheres for 48h.  Cumulative amount of tetracycline that was released from chitosan 

microspheres and stability of drug was examined in different pH media at 37 °C. 

Microspheres with a spherical shape having an average diameter of 2– 3 nm were formed. 

When drug was added to chitosan solution before cross-linking and precipitation, only 8% 

(w/w) was optimally incorporated in the final microsphere formulation. When drug was 

incubated with the pre-formed microspheres, a maximum of 69% (w/w) could be loaded. 

About 30% of tetracycline either in solution or when released from the microspheres was 

found to degrade at pH 1.2 in 12 h. Preliminary results of this study suggested that chitosan 

microspheres can be used to incorporate antibiotic drugs, which may be effective when 

administered locally in the stomach against H. pylori. 

 

1.4.1.3 Drug release & release kinetics 

 

 Drug release from chitosan-based particulate systems depends upon the extent of 

cross– linking, morphology, size and density of the particulate system, physicochemical 

properties of the drug as well as the presence of adjuvants. In vitro release also depends upon 
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pH, polarity and presence of enzymes in the dissolution media. The release of drug from 

chitosan particulate systems involves three different mechanisms: (a) release from the 

surface of particles, (b) diffusion through the swollen rubbery matrix and (c) release due to 

polymer erosion. In majority of cases, drug release follows more than one type of 

mechanism. In case of release from the surface, adsorbed drug instantaneously dissolves 

when it comes in contact with the release medium. Drug entrapped in the surface layer of 

particles also follows this mechanism. This type of drug release leads to burst effect. He et 

al. [102] observed that cemetidine-loaded chitosan microspheres have shown burst effect in 

the early stages of dissolution. Most of the drug was released within few minutes when 

particles were prepared by spray drying technique. Increasing the cross-linking density can 

prevent the burst release. This effect can also be avoided by washing microparticles with a 

proper solvent, but it may lead to low encapsulation efficiency.  

 Drug release by diffusion involves three steps. First, water penetrates into 

particulate system, which causes swelling of the matrix; secondly, the conversion of glassy 

polymer into rubbery matrix takes place, while the third step is the diffusion of drug from the 

swollen rubbery matrix. Hence, the release is slow initially and later, it becomes fast. This 

type of release is more prominent in case of hydrogels. Al-Helw et al. [125] observed a high 

initial release of the drug in all the prepared formulations. Nearly, 20– 30% of the 

incorporated drug was released in the first hour. Release was dependent on the molecular 

weight of chitosan and particle size of the microspheres. The release rate from microspheres 

prepared from high molecular weight chitosan was slow compared to those prepared from 

medium and low molecular weight chitosan. This could be attributed to both lower solubility 

of high molecular weight chitosan and higher viscosity of the gel layer formed around the 

drug particles upon contact with the dissolution medium. The release within the first 3 h was 

fast (75– 95%) from microspheres within the size range of 250– 500 µm, but for particles in 

the size range of 500– 1,000 µm, drug release was 56– 90% in 5 h. This was attributed to 

large surface area available for dissolution with a small particle size, thus favoring rapid 

release of the drug compared to larger microspheres.  

 Analysis of drug release data has several approaches. Ganza-Gonzalez et al. [126] 

analyzed the drug release data using the classic Higuchi equation [127]. Higuchi equation 

was used to describe the release of a solute from a flat surface, but not from a sphere [128], 

but the good fit obtained suggested that the release rate depends upon the rate of diffusion 

through the cross-linked matrix. Authors have also fitted the release data to equations 

developed by Guy et al. [129] to describe the diffusion from a sphere. The most commonly 

used equation for diffusion controlled matrix system is an empirical equation used by Ritger 
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and Peppas [130], in which the early time release data can be fitted to obtain the diffusion 

parameters, 

ktn
M

Mt =
∞

 (1) 

Here, Mt/M∞ is the fractional drug release at time t, k is a constant characteristic of the drug-

polymer interaction and n is an empirical parameter characterizing the release mechanism. 

Based on the diffusional exponent [131], drug transport is classified as Fickian (n=0.5), Case 

II transport (n=1), non-Fickian or anomalous (0.5< n< 1) and super Case II (n>1). 

 Agnihotri and Aminabhavi [123] have analyzed the dynamic swelling data of 

chitosan microparticles using Eq. (1) to predict drug release from the water uptake data of 

the microparticles cross-linked with (5.0, 7.5 and 10.0)*10– 4 mL of glutaraldehyde/mg of 

chitosan. It was observed that as the cross-linking increases, swelling of chitosan 

microparticles decreases. Values of n obtained in the range of 0.160 to 0.249 indicating that 

the release mechanism deviates from the Fickian trend. The values of n are < 0.5 due to the 

irregular shaped particles and these decrease systematically with increasing cross-linking. In 

the swelling controlled release systems, drug is dispersed within a glassy polymer. Upon 

contact with biological fluid, the polymer swells, but no drug diffusion occurs through the 

polymer phase. As the penetrant enters the glassy polymer, glass transition temperature of 

the polymer is lowered due to relaxation of the polymer chains. Drug could diffuse out of the 

swollen rubbery polymer. This type of system is characterized by two moving boundaries: 

the front separating the swollen rubbery portion and the glassy region, which moves with a 

front velocity and the polymer fluid interface. The rate of drug release is controlled by the 

velocity and position of the front dividing the glassy and rubbery portions of the polymer. 

Jameela et al. [132] have obtained a good correlation fit for the cumulative drug released vs. 

square root of time, demonstrating that the release from the microsphere matrix is diffusion-

controlled and obeys Higuchi equation [127]. It was demonstrated that the rate of release 

depends upon the size of microspheres. Release from smaller size microspheres was faster 

than those from the large size microspheres due to smaller diffusional path length for the 

drug and the larger surface area of contact of smaller particles with the dissolution medium.  

 

1.4.2 Chitosan hydrogels  

 

 Chitosan hydrogels have been prepared with a variety of approaches.  In each 

preparation chitosan is either physically associated or chemically cross-linked to form the 
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hydrogel. Our discussion below will focus on these two distinct hydrogel engineering 

approaches. 

 

1.4.2.1 Physical association networks 

 

 In order to satisfy the requisite features of a hydrogel, the chitosan polymer network 

must satisfy two conditions: (1) inter-chain interactions must be strong enough to form semi-

permanent junction points in the molecular network, and (2) the network should promote the 

access and residence of water molecules inside the polymer network. Gels that meet these 

demands may be prepared by non-covalent strategies that capitalize on electrostatic, 

hydrophobic, and hydrogen bonding forces between polymer chains [133,134]. Figure 9 

shows the schematics of four major physical interactions (i.e. ionic, polyelectrolyte, 

interpolymer complex, and hydrophobic associations) that lead to the gelation of a chitosan 

solution.  

 

 

Figure 9. Schematic representation of chitosan based hydrogel networks derived from different 

physical associations: (a) networks of chitosan formed with ionic molecules, polyelectrolyte polymer 

and neutral polymers  

 

Because the network formation by all of these interactions is purely physical, gel formation 

can be reversed. Tunable gel swelling behavior can be readily achieved in a physical gel by 

adjusting the concentration and nature of the second component used during the fabrication 

process. A chitosan-based physical gel can often be obtained by simply mixing the 

components that make up the gel under the appropriate conditions. These gels have a short 
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life time in physiological media, ranging from a few days to a month. Therefore, physical 

gels are good for short-term drug release applications. Because the gelation does not require 

any toxic covalent linker molecules, it is always safe for clinical applications. However, their 

widespread application is limited due to the weak mechanical strength and uncontrolled 

dissolution [135]. 

 

1.4.2.1.1 Ionic complexes  

 

 Thanks to the cationic amino groups of chitosan, ionic interactions can occur 

between chitosan and negatively charged molecules and anions. Ionic complexation of mixed 

charge systems can be formed between chitosan and small anionic molecules, such as 

sulfates, citrates, and phosphates [136,137] or anions of metals like Pt (II), Pd (II), and Mo 

(VI) [138,139]. These interactions can yield hydrogels with varying material properties that 

depend upon the charge density and size of the anionic agents, as well as the degree of 

deacetylation and concentration of the chitosan polymer. 

 Both anions and small molecules bind chitosan via its protonated amino groups, but 

metal ions form coordinate–covalent bonds with the polymer instead of electrostatic 

interactions [138,139]. Ionic complexation can be accompanied by other secondary 

interchain interactions including hydrogen bonding between chitosan's hydroxyl groups and 

the ionic molecules, or interactions between deacetylated chitosan chains after neutralization 

of their cationic charge [138,140]. These interactions can enhance the physical properties of 

the hydrogel, and can be modulated to express unique material properties, such as pH 

sensitivity. 

 

1.4.2.1.2 Polyelectrolyte complexes (PEC’s) 

 

 While polyelectrolytes form electrostatic interactions with chitosan, they are 

different from the ions or ionic molecules used in ionic complexation in that they are larger 

molecules with a broad molecular weight range, such as polysaccharides, proteins and 

synthetic polymers. The associations between the chitosan polymer and polyelectrolytes are 

stronger than other secondary binding interactions like hydrogen bonding or van der Waals 

interactions. The advantages of this type of complex are significant. They are complexed 

without the use of organic precursors, catalysts, or reactive agents, alleviating the concern 
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about safety in the body or cross-reactions with a therapeutic payload. In addition, because 

PEC’s consist of only chitosan and the polyelectrolyte, their complexation is straightforward 

and reversible. Chitosan-based PEC networks have been produced by anionic 

macromolecules like DNA, anionic polysaccharides (e.g. alginate, GAGs (chondroitin 

sulfate, hyaluronic acid, or heparin), carboxymethyl cellulose, pectin, dextran sulfate, 

xanthan, etc.), proteins (e.g. gelatin, albumin, fibroin, keratin, and collagen) and anionic 

synthetic polymers (e.g. polyacrylic acid). The stability of these compounds is dependent on 

charge density, solvent, ionic strength, pH, and temperature [141,142]. The choice of the 

anionic molecule for PEC formation is highly dependent upon its charge under physiological 

conditions because the pH of the hydrogel environment modulates ionic interactions and, 

subsequently, PEC hydrogel properties. If the electrostatic interactions of the polymer are 

strong enough, the physical associations between the polymers at physiological pH can be 

maintained. 

1.4.2.1.3 Physical mixtures and secondary bonding 

 

 In addition to the specific physical interactions described, hydrogels can be formed 

by polymer blends between chitosan and other water-soluble nonionic polymers, such as 

Poly(vinly alcohol) (PVA). These polymer mixtures form junction points in the form of 

crystallites and interpolymer complexation after lyophilization or after a series of freeze–

thaw cycles [133,143]. The chain–chain interactions act as crosslinking sites of the hydrogel. 

In the case of chitosan–PVA polymer blends, increasing the chitosan content negatively 

affects the formation of PVA crystallites, leading to the formation of hydrogels with less 

ordered structures. Recently, a new hydrogel consisting of a polymer blend of chitosan and 

polyethylenimine (PEI) was prepared [144]. PEI is a polycationic material that has been 

extensively used as a gene transfection agent [145]. By mixing the polymer with chitosan, a 

3D hydrogel was formed within 5 min that was stable under cell culture conditions and could 

support the growth of primary human fetal skeletal cells. Ladet et al. demonstrated the 

preparation of a hydrogel using a hydro-alcohol method of gel formation that relied upon the 

neutralization of chitosan's amino groups using a sodium hydroxide solution [146]. This 

prevented ionic repulsion between the polymer chains, allowing for the formation of 

hydrogen bonds, hydrophobic interactions, and chitosan crystallites. Using this technique, 

hydrogels on the order of cubic centimeters could be prepared. Macroscopic shrinkage of the 

hydrogel during neutralization and gel depletion with the increase in the concentration of 

neutralizing agent was observed (figure 10). Interestingly, an interrupted gelation method 
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was used that led to the preparation of multilayered, “onion-like” hydrogels (figure 10), 

which could be used to encapsulate drugs for the co-delivery of multiple therapeutics or 

pulse-like delivery of a given payload [147,148]. 

 

  

 

 

Figure 10. (a) multimembrane biomaterial with ‘onion-like’ structure based on chitosan hydrogel. (b) 

Schematic diagram of the multi-membrane onion-like structures; (c) Variation of hydrogel shrinkage 

during neutralization as a function of the concentration of sodium hydroxide. The initial polymer 

concentration in the non-neutralized alcohol gel is constant and close to 4.5wt.% in each case. (d) 

Evolution of the chitosan mass fraction in the gel (WCH) at different steps of the hydrogel 

neutralization as a function of the NaOH concentration in the neutralization bath. [146]. 

 

1.4.2.1.4 Thermoreversible hydrogels and hydrophobic associations 

 

 Researchers have engineered a class of hydrogel systems called thermoreversible 

gels that form transient gel or liquid states depending upon the environmental temperature. 

These polymers take advantage of hydrophobic interactions or secondary bonding to form 

junctions between chains that yield a semi-rigid gel from a flowable liquid solution. 

Specifically, when system temperatures pass a lower critical solution temperature (LCST), 

the material undergoes a hydrophilic– hydrophobic transition. The importance of a polymer 
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solution that has a low viscosity at room  temperature, but forms a gel above a LCST is 

significant for its use in biomedical applications. These materials can be injected into the 

body as a liquid, forming a gel in situ where the body temperature is above the LCST, 

offering the potential to serve as carrier matrices for a wide range of biomedical and 

pharmaceutical applications [149,150]. These injectable, gelling systems can be introduced 

into the body without the need for invasive surgeries, and deliver the bioactive agents to a 

defect site without significant negative effects (local heating, use of organic solvents, 

formation of toxic byproducts, etc.). Hydrogels prepared by aggregation of chitosan-based 

co-polymers or by neutralization with polyol salts show promising thermoreversible gelation 

properties in aqueous media [151–155]. One such engineering strategy used the temperature-

sensitive behavior of a physical mixture of glycerol phosphate disodium salt (GP) and 

chitosan. The phosphates of the GP salt are believed to neutralize the ammonium groups of 

chitosan, allowing increased hydrophobic and hydrogen bonding between the chitosan chains 

at elevated temperatures. The mixture remains a clear liquid at room temperature and gels at 

37 °C [155]. The chitosan/GP gel showed promise as a biotherapeutic system capable of 

delivering a bioactive bone protein (an osteogenic mixture of TGF β family members), and 

as a cell matrix whereby chondrocytes were implanted in vivo and showed normal cartilage 

formation over 3 weeks.  

 

1.4.2.2 Crosslinked networks 

 

 While physically bonded hydrogels have the advantage of gel formation without the 

use of cross-linking entities, they have limitations. It is also difficult to precisely control the 

physical gel pore size, chemical functionalization, and degradation or dissolution, leading to 

inconsistent performance in vivo. Alternatively, robust chitosan hydrogels can be produced 

using irreversible networks. Polymeric chains of these hydrogels are covalently bonded 

together either by using small cross-linker molecules, secondary polymerizations, or 

irradiation chemistry. Most of these linker molecules react with the primary amines of 

chitosan and form irreversible inter- or intramolecular bridges among the chitosan chains. 

Covalently cross-linked hydrogels are also obtained by attaching photo-reactive or enzyme-

sensitive molecules on the chitosan, followed by their subsequent exposure to UV or 

sensitive enzymes, respectively. The properties of cross-linked hydrogels depend mainly on 

their crosslinking density and the ratio of moles of cross-linker molecules to the moles of 

polymer repeating units [156]. The following sections describe the different ways of making 

irreversible chitosan hydrogels.  
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1.4.2.2.1 Chemical crosslinking 

 

 Chemical cross-linking is a straight forward method to produce permanent hydrogel 

networks using covalent bonding between polymer chains. Cross-linked chitosan networks 

can be prepared using the available –NH2 and –OH chemical handles and cross-linkers that 

can form a number of linkage chemistries, including amine carboxylic acid bonding and 

Schiff base formation [157-159].  Specifically, these networks can be formed by using small 

molecule cross-linkers, polymer–polymer reactions between activated functional groups, as 

well as photosensitive agents or enzyme-catalyzed reactions.  

 The new cross-linking agent, genipin, is a naturally derived chemical from the 

gardenia that has been shown to be one such biocompatible cross-linking agent [160]. 

Genipin has been reported to bind biological tissues [161] and biopolymers, such as chitosan 

and gelatin, leading to covalent coupling. It works as an effective cross-linking agent for 

polymers containing amino groups and is much less cytotoxic than glutaraldehyde [162]. In 

addition, genipin cross-linked chitosan membranes exhibit a slower degradation rate than 

their glutaraldehyde crosslinked counterpart [163]. Use of genipin also showed extended 

drug release by chitosan hydrogels cross-linked in situ [152,164]. Even though genipin 

shows good biocompatibility, it is still liable to negatively interact with encapsulated drugs, 

an unavoidable problem for gelation in the presence of a therapeutic [165]. A thermo-

sensitive, chitosan-pluronic hydrogel was also produced by UV photo-cross-linking [166]. 

The chitosan and pluronic groups were functionalized with photosensitive acrylate groups 

that were cross-linked by UV exposure. The resultant polymers could then form a physical 

network at temperatures above the LCST. The hydrogel showed the sustained release of 

encapsulated human growth hormone (hGH) and plasmid DNA, demonstrating its potential 

application for different types of drugs [166,167]. 

 

1.4.2.2.2 Interpenetrating networks (IPN’s) 

 

 Entangled polymer networks can be further strengthened by interlacing secondary 

polymers within the cross-linked networks. Here, a cross-linked chitosan network is allowed 

to swell in an aqueous solution of polymer monomers. These monomers are then 

polymerized, forming a physically entangled polymer mesh called an interpenetrating 

network. There are also semi-IPNs where only one of the polymer networks is cross-linked, 

while the second polymer remains in its linear state. If the second polymer is also cross-
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linked, a full-IPN is formed. There are several chitosan-based semi-IPNs (prepared with 

polyether [168,169], silk [170], PEO[171], and PVP [172] and full-IPNs (prepared with 

PNIPAM [173]). This technique allows for the specific selection of polymers that can 

complement the deficiencies of one another. For instance, a hydrophilic polymer can be 

chosen to enhance the structural characteristics of the hydrogel, while a biocompatible 

polymer may limit the immunological response. Although the cross-linking density, hydrogel 

porosity, and gel stiffness can be adjusted in IPN-based hydrogels according to the target 

application, they have difficulty encapsulating a wide variety of therapeutic agents, 

especially sensitive biomolecules. In addition, IPN preparation requires the use of toxic 

agents to initiate or catalyze the polymerization or to catalyze the cross-linking. Complete 

removal of these materials from the hydrogel is challenging, making the clinical application 

problematic. 

 

1.4.2.3 Drug loading in chitosan hydrogels 

 

 The drug loading in a hydrogel depends upon both the physical and chemical 

properties of the gel as well as the therapeutic itself. In fact, the choice of hydrogel materials, 

network conformation, and drug loading mechanism must be made to complement the 

properties of the drug (e.g. hydrophobilicity, charge) and its mechanism of action (sustained 

drug release versus rapid, high exposure). Three major approaches to drug loading can be 

summarized as : diffusion, entrapment, and tethering [174-178]. Each method bears specific 

advantages and disadvantages and should be selected after taking into consideration the 

hydrogel network used as well as the nature of the drug. The easiest drug loading method is 

to place the fully formed hydrogel into medium saturated with the therapeutic [179,180]. 

Depending upon the porosity of the hydrogel, the size of the drug, and the chemical 

properties of each, the drug will slowly diffuse into the gel. When placed in vivo, the drug 

will then freely diffuse back out of the hydrogel into the neighboring tissue. This approach is 

effective for loading small molecules, but larger therapeutics  peptides and proteins in 

particular  are not readily able to migrate through the small pores of the hydrogel [165]. In 

addition, this drug loading process can take long time. In the case of larger drugs and 

bioligands, the payload must be entrapped during the gelation process. Here, the drug is 

mixed with the polymer solution, and the cross-linking or complexation agent is added. It is 

important to consider the chemistry of the drug molecule to prevent unwanted cross-linking 

or deactivation of the therapeutic during gelation. Both diffusion and entrapment allow for 

free movement of the therapeutic out of the hydrogel network. This can lead to an initial 
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burst release after implantation of the hydrogel in vivo due to the concentration gradient 

formed between the gel and the surrounding environment. In order to limit the loss of the 

therapeutic reserve (and the risk of toxic exposure), drugs can be covalently or physically 

linked to the polymer chains prior to gelation. This tethering method limits tissue exposure to 

the agent to only when the hydrogel breaks down or the molecular tether is broken [181]. 

Linkages between the drug and polymer that are susceptible to environmental enzymes have 

been used to control the speed and timing of release. Drug loading is also complicated by 

molecules that have the opposite hydrophilicity or the same charge as the constituent 

polymer. For instance, hydrophobic molecules like paclitaxel must be complexed with 

amphiphilic additives before the hydrogel and payload will blend in solution [183, 184]. This 

has been accomplished by binding the drug to albumin (Abraxane) or by mixing it in an 

aqueous citric acid/glyceryl monooleate solution prior to hydrogel loading [184]. 

Therapeutics have also been loaded into small secondary release vehicles (e.g. 

microparticles, microgels, liposomes, and micelles) prior to hydrogel encapsulation [185, 

186].  

 

1.4.2.4 Drug release from chitosan hydrogels 

 

 Release of loaded therapeutics from a hydrogel can occur by one of three different 

modes: diffusion, chemical/environmental stimulation, and enzyme-specific stimulation 

[187]. Diffusion is regulated by movement through the polymer matrix or by bulk erosion of 

the hydrogel as it breaks down in vivo. Environmentally responsive hydrogels are gels that 

swell in response to external cues like pH and temperature and effectively open their pores 

for enhanced diffusion of the entrapped therapeutic under predetermined conditions[165]. 

This type of controlled release can be used to limit drug release outside of the effective range 

of the diseased tissue. Environmental cues are specific to limited regions within the body, but 

better specificity has also been widely investigated with new release mechanisms that release 

a drug payload only when triggered by local enzymatic cues. These biochemically stimulated 

responses occur by tethering drugs to the hydrogel via labile domains that are susceptible to  

matrix remodeling enzymes or using polymers that are targeted by enzymes [188]. This 

method has received the least amount of attention, but offers selective, sustained release 

mechanisms that are beginning to receive attention from chitosan hydrogel engineers.  
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1.5. Applications 

 
1.5.1 Chitosan for Tissue Engineering Applications 

 

 Tissue engineering is an interdisciplinary field that applies the principles and 

methods of engineering and the life sciences toward the fundamental understanding of 

structural and functional relationships in normal and pathological tissue and the development 

of biological substitutes to restore, maintain, or improve function [189]. It involves the in 

vitro seeding and growing of relevant cells onto a scaffold. The scaffold therefore is a very 

important component for tissue engineering. Several requirements have been identified as 

crucial for the production of tissue engineering scaffolds: 1) the scaffold should possess 

interconnecting pores of appropriate scale to favor tissue integration and vascularization, 2) 

be made from material with controlled biodegradability or bioresorbability so that tissue will 

eventually replace the scaffold, 3) have appropriate surface chemistry to favor cellular 

attachment, differentiation and proliferation, 4) possess adequate mechanical properties to 

match the intended site of implantation and handling, 5) should not induce any adverse 

response and, 6) be easily fabricated into a variety of shapes and sizes [190]. The versatility 

of chitosan offer a wide range of applications since they are biodegradable, non-toxic and 

can be formulated in a variety of forms including powders, gels and films for applications. 

They can also provide controlled release of growth factors and extracellular matrix 

components. To improve the adherent ability for seeding cells, chitosan allow for a wide 

range of molecules to be modified. With these promising features, they are considered as a 

very interesting biomaterial for use in cell transplantation and tissue regeneration. This 

technology has been used to create various tissue analogs including cartilage, bone, liver, and 

nerve in the past decades. 

 

1.5.1.1 Chitosan in bone tissue engineering 

 

 Chitosan has been extensively used in bone tissue engineering since it was shown to 

promote growth and mineral rich matrix deposition by osteoblasts in culture [191]. Also 

chitosan is biocompatible (minimizes additional local inflammation), biodegradable, and can 

be molded into porous structures (allows osteoconduction) [192]. Several studies have 

focused on the use of chitosan–calcium phosphate (CP) composites for this purpose 

[193,194]. A 3D macroporous CP bioceramic embedded with porous chitosan sponges is 

developed by Zang et al. [195]. In this scaffold, a nested chitosan sponge enhanced the 
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mechanical strength of the ceramic phase via matrix reinforcement and preserved the 

osteoblast phenotype [196]. Macroporous chitosan scaffolds incorporating hydroxyapatite 

(HA) or CP glass with an interconnected porosity of approximately 100 mm have been 

synthesized [196]. Overall composites of chitosan–CP appear to have a promising clinical 

application in the future [197]. The issue of mechanical resistance of chitosan-based 

composites was addressed by Hu et al. [198], who reported a chitosan–HA multilayer 

nanocomposite with high strength and bending modulus rendering the material suitable for 

possible application for internal fixation of long bone fractures. A macroporous chitosan-

gel/b-TCP composite scaffold for bone tissue engineering using freeze-drying  process was 

developed [199]. This study investigated the effects of concentration of composite 

suspension and the freezing temperature on the ability to resist compression by the scaffold 

[200]. Chitosan was used as an adjuvant with bone cements to increase their injectability 

while keeping the chemico-physical properties suitable for surgical use (e.g. setting time and 

mechanical properties). The rationale of using chitosan for this purpose is based on the 

property that chitosan solutions gel in response to a pH change from slightly acidic to 

physiological; in fact, the chitosan–CP composites address the need to develop bone fillers 

that set in response to physiological conditions, but not while mixing the components in 

vitro. Likewise, when chitosan is added to calcium phosphate cements (CPC), octocalcium 

phosphate is obtained; a material that is shown to improve injectability and strength [200]. 

Many of these chitosan  gel composites are proposed mainly for non load bearing bony 

defects [201]. Xu et al. studied the feasibility of creating macropores in CPC using chitosan 

and/or absorbable mesh. A synergistic effect of adding chitosan and bioabsorbable mesh to 

CPC was seen. This injectable, bioabsorbable composite material possessed interconnected 

macropores (osteoconductive) and provided strength to the implant during tissue 

regeneration [202]. The intramolecular hydrogen bonds of chitosan provide interacting 

macromolecules with a good resistance to heat. Zhao et al. used phase separation technique 

to fabricate biomimetic HA/chitosan–gelatin network composites in the form of 3D-porous 

scaffolds and they showed improved adhesion, proliferation and expression of rat calvaria 

osteoblasts on these highly porous scaffolds [203]. Kim et al. showed the application of this 

property through composites of chitosan with poly methyl-methacrylate (PMMA). This 

specially developed composite material exhibited lower exothermic curing temperatures and 

possessed higher inter-connected porosity with a pore size suitable for osteoconduction with 

better anchorage to the surrounding bone. It was observed that the pore size of this composite 

material increased with time due to biodegradation of the chitosan [204]. Also, chitosan has 
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been used to modify the surface properties of prosthetic materials for the attachment of 

osteoblasts [205, 206]. 

 In another recent work by Zhao et al., scaffold with calcium phosphate cement 

(CPC) and chitosan fibres were prepared and studies. It was found that human umbilical cord 

mesenchymal stem cells (hUCMSCs) can be harvested without an invasive procedure 

required for the commonly studied bone marrow mesenchymal cells (MSCs). The objectives 

of this study were to develop CPC scaffolds with improved resistance to fatigue and fracture, 

and to investigate hUCMSC delivery for bone tissue engineering. In fast fracture, CPC with 

15% chitosan and 20% polyglactin fibers (CPC–chitosan–fiber scaffold) had flexural 

strength of 26 MPa, higher than 10 MPa for CPC control (p < 0.05). In cyclic loading, CPC–

chitosan–fiber specimens that survived 2 * 106 cycles had the maximum stress of 10 MPa, 

compared to 5 MPa of CPC control. CPC–chitosan–fiber specimens that failed after multiple 

cycles had a mean stress-to-failure of 9 MPa, compared to 5.8 MPa for CPC control (p < 

0.05). 

 

1.5.1.2 Chitosan in cartilage tissue engineering 
 

 In cartilage repair, the choice of biomaterial is very critical for the success of tissue 

engineering approaches [208]. The ideal cell-carrier substance should mimic the natural 

environment in the articular cartilage matrix. It has been shown that cartilage-specific 

extracellular matrix (ECM) components such as type II collagen and GAGs play a critical 

role in regulating expression of the chondrocytic phenotype and in supporting 

chondrogenesis in vitro as well as in vivo [209,210]. Three-dimensional (3D) scaffolds are 

essential for the development of engineered articular cartilage. Ideal scaffolds are designed 

to be biocompatible, bioabsorbable and exhibit predictable porosity and degradation rate. 

They provide a framework that facilitates new tissue in growth; moreover, mechanical 

characteristics are matched to those of the native tissue increasing the chances that the 

reparative process will be compatible with the host’s tissue physiology [211,212]. Chitosan 

has been used as a scaffolding material in articular cartilage engineering [213,214], due to its 

structural similarity with various GAGs found in articular cartilage. This is of high 

importance because GAGs are considered to play a pivotal role in modulating chondrocyte 

morphology, differentiation, and function. Iwasaki et al. [215] reported an alginate-based 

chitosan hybrid polymer fibers which showed increased cell attachment and proliferation in 

vitro compared to alginate. These hybrid polymer fibers showed increased tensile strength, 

implying a possible use in developing a 3D load bearing scaffold for cartilage regeneration 
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[215]. Chondrocytes cultured on chitosan substrates in vitro maintained round morphology 

and preserved synthesis of cell -specific ECM molecules [216,214]. 

 

 

(1) (2) 

Figure 11. (1) hUCMSCs were cultured on CPC control and CPC–chitosan–fiber for 1, 4, and 8 days: 

(A) Percent of live cells, and (B) live cell attachment (mean _ sd; n ¼ 5). PLive reached 96–99%, not 

different from each other (p > 0.1). CAttach was less than 300 cells/mm2 at day 1; it more than doubled 

to 700 cells/mm2 at day 4, due to hUCMSC proliferation. In (B), dissimilar letters indicate values that 

are significantly different (p < 0.05).(2) SEM of hUCMSC attachment on: (A) CPC control, and (B) 

CPC–chitosan–fiber scaffold. Cells are designated as ‘‘C’’, which anchored to CPC in (A), and to the 

fibers in the scaffold in (B). Cells developed long, cytoplasmic extensions ‘‘E’’, shown in (C) at a 

higher magnification, attaching firmly to the fiber in the CPC–chitosan–fiber scaffold [207]. 

 
 Chitosan was used to improve chondrocyte attachment to PLLA films; the modified 

substrate showed increased cell adhesion, proliferation and biosynthetic activity [217]. 

chitosan was also conjugated with hyaluronan to obtain a biomimetic matrix for 

chondrocytes. Chondrocyte adhesion, proliferation, and the synthesis of aggrecan and type II 

collagen were significantly higher on the hybrid fiber than on chitosan [218]. Similarly, to 

increase the cellular adhesiveness of chitosan, Hsu et al. have developed chitosan–alginate–

hyaluronan complexes with or without covalent attachment with RGD containing protein. 

Cell-seeded scaffolds showed neocartilage formation in vitro. When chondrocyte seeded 

scaffolds were implanted into rabbit knee cartilage defects, partial repair was observed after 
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1 month both in presence or absence of RGD indicating potential of this composite material 

for cartilage regeneration [219].  

 Chitosan-based scaffolds can deliver growth factors in a controlled fashion to 

promote the in growth and biosynthetic ability of chondrocytes. Lee et al. [220] reported 

porous collagen/chitosan/GAG scaffolds loaded with TGF-b1. This scaffold exhibited 

controlled release of TG F-b1 and promoted cartilage regeneration. Moreover, addition of 

chitosan to the collagen scaffold was seen to improve mechanical properties [220] and 

stability of the collagen network by inhibiting the action of collagenases [221]. Kim et al. 

[222] used a porous freeze-dried chitosan scaffold incorporating TGF-b1-containing  

microspheres, for the treatment of cartilage defects. TGF-b1 was released in a sustained 

fashion, and promoted chondrocyte proliferation and matrix synthesis. In a similar trial, Lu et 

al. studied the effect of intraarticular injection of chitosan on regeneration of articular 

cartilage. An increase in epiphyseal cartilage in the tibial and femoral joints was seen with an 

activation of chondrocyte proliferation. Similarly, an intra-articular fibrous tissue was 

observed for the 6 weeks of the experiment, together with residual injected chitosan [223].  

 A noteworthy accomplishment was achieved by Buschmann et al. who showed that 

microfractured ovine defects are repaired with more hyaline cartilage when the defect is 

treated with in situ-solidified implants of chitosan–GP mixed with autologous whole blood, 

compared to microfracture alone in an ovine model at 6 months [224]. Since bleeding has 

been identified as an initiating event in post-surgical repair, they hypothesized that 

microfracture-based repair could be improved by stabilizing the clot formed in the lesion 

with chitosan that is thrombogenic and actively stimulates the wound repair process. 

Furthermore, these chitosan– GP/blood clots are adhesive and contract much less than whole 

blood clots, thereby maintaining a voluminous scaffold [224]. Chitosan–GP/blood implants 

were applied to marrow-stimulated chondral defects in rabbit cartilage repair models [225], 

where they induced greater fill of chondral defects with repair tissue compared to marrow-

stimulation alone [224] and, in addition, produced a more cellular and hyaline repair 

cartilage well integrated with a porous subchondral bone structure [224-226] 

 In a recent work by Haoya et al.[227] chitosan hydrogel in the form of a scaffold 

was prepared for chondrocytes that would act to reconstruct tissue-engineered cartilage and 

repair articular cartilage defects in the sheep model. In this study, temperature-responsive 

chitosan hydrogels were prepared by combining chitosan, b-sodium glycerophosphate (GP) 

and hydroxyethyl cellulose (HEC). Tissue-engineered cartilage reconstructions were made in 

vitro by mixing sheep chondrocytes with a chitosan hydrogel. Cell survival and matrix 

accumulation were analyzed after 3 weeks in culture (figure 12(a)). To collect data for in 
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vivo repair, reconstructions cultured for 1 day were transplanted to the freshly prepared 

defects of the articular cartilage of sheep. Then at both 12 and 24 weeks after transplantation, 

the grafts were extracted and analyzed histologically and immune-histochemically. The 

results showed that the chondrocytes in the reconstructed cartilage survived and retained 

their ability to secrete matrix when cultured in vitro. Transplanted in vivo, the 

reconstructions repaired cartilage defects completely within 24 weeks(figure 12(b)). The 

implantation of chitosan hydrogels without chondrocytes also helps to repair cartilage 

defects. The chitosan-based hydrogel could support matrix accumulation of chondrocytes 

and could repair sheep cartilage defects in 24 weeks. This study showcased the success of a 

new technique in its ability to repair articular cartilage defects. 

 

 

 (a) (b) 

Figure. 12.(a) Accumulation of matrix in the tissue-engineered cartilage. Histology and 

immunohistochemistry of chondrocytes cultured in chitosan hydrogels 3 weeks. The results showed that 

the chondrocytes in the chitosan hydrogels accumulated pericellular sulfated GAG-containing matrix. 

A, H.E. staining; B, Type II collagen immunohistochemical staining; C, Toluidine blue staining; D, 

Safranin O staining. Star: chitosan hydrogel; Arrowhead: cell nucleus; Arrow: matrix of the 

chondrocytes. Bar = 100 µm. (b) Gross observation of the articular cartilage repair at 24 weeks post-

operation. A, the defect part of the cartilage in the experimentalgroup was covered by the smooth, 

consistent, glistening white hyaline tissue nearly indistinguishable from the surrounding normal 

cartilage. No clear signs of margin with normal cartilage could be spotted on the surface of the 

regenerated areas; B, The defects in control group 1 were partially repaired with fiber-like tissue, 

leaving a small depression in the defect areas; C, The defects in control group 2 detected a thin and 

irregular surface tissue, with obvious defects and cracks surrounding the normal cartilage. Arrow: the 

defect; Bar =0.5 cm[227] 
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1.5.1.3 Chitosan in liver tissue engineering 

 

 Insufficient donor organs for orthotopic liver transplantation worldwide have 

urgently increased the requirement for new therapies for acute and chronic liver disease 

[228]. Bioartificial liver (BAL) is a promising application of tissue engineering for the 

treatment of fulminant hepatic failure (FHF). One of the important issues for BAL devices is 

the proper choice of cell sources, such as primary  hepatocytes, hepatic cell lines, and liver 

stem cells. The primary hepatocyte of these cells represents the most direct approach to BAL 

devices. BAL devices require a suitable ECM for hepatocyte culture because hepatocytes are 

anchorage dependent cells and are highly sensitive to the ECM milieu for the maintenance of 

their viability and differentiated functions [229-231]. Chitosan as a promising biomaterial 

can be applied in liver tissue engineering due to its various properties. One of the reasons for 

selecting chitosan as a scaffold for hepatocytes culture is that its structure is similar to 

GAGs, which are components of the liver ECM prepared chitosan/ collagen matrix (CCM) 

by cross-linking agent EDC in NHS buffer system[232-235]. The EDC cross-linked CCM 

showed moderate mechanical strength, good hepatocyte compatibility as well as excellent 

blood compatibility. On the other hand, implantable bioartificial liver (IBL) can restore, 

maintain or improve liver functions or offer the possibility of permanent liver replacement. 

Unlike the general approach for bioartificial skin, bone and cartilage, development of IBL 

has extreme difficulties. Appropriate design of the complex architecture, as well as the anti-

thrombogenic extracellular component, are necessary for developing this blood-contacting 

device, because thrombus formation can lead to occlusion and decrease membrane efficiency 

[236]. Wang et al. showed a superior blood compatibility through chitosan/collagen / heparin 

matrix in implantable bioartificial liver (IBL) applications [237].  

 Another strategy in liver tissue engineering focuses on the ability of highly 

concentrated, multivalent galactose residues to bind to the asialoglycoprotein receptor 

(ASGPR) expressed on the surface of hepatocytes. Typical cell–matrix interaction is 

mediated by adhesion receptor such as integrin which specifically binds RGD sequence 

[238]. The ASGPR was the first reported mammalian lectin, or carbohydrate-binding protein. 

It was discovered in the mid-1960s by Ashwell et al. in their studies of the metabolism of 

plasma glycoproteins in mammals [239-240]. Since then, hepatic ASGPR has been a 

classical system for studying receptor-mediated endocytosis. Chung et al. suggested a 

potential ability to improve hepatocyte attachment to alginate (AL)/GC scaffolds for short-

term culture[241]. In study by Kim & Seo, they further showed enhanced hepatocyte 

functions in AL/GC scaffolds for long periods. That is, hepatocyte cultured in AL/GC 
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scaffolds could enhance the functions through its spheroid formation (figure 13) in co-culture 

condition with fibroblast [228]. Li et al. conjugated fructose onto the porous chitosan 

scaffold by the reaction between amino and aldehyde group. Fructose is also known as a 

specific ligand of ASGPR in hepatocyte. They showed that the chitosan surface modified 

with fructose induced the formation of cellular aggregates with enhancing liver specific 

metabolic activities and cell density to a satisfactory level [233-234]. 

 

 

 

Figure 13. Phase-contrast micrographs of hepatocytes within the AL (A) and AL/GC (B) scaffold 

stained with MTT and comparisons of liver-specific albumin secretion function [228]. 

 

4.1.1.3 Chitosan in nerve tissue engineering 

 

 More than any other form of trauma, nerve injuries complicate successful 

rehabilitation since it is difficult for mature neurons (like many other cells in the body) to 

replicate, as  they do not undergo cell division. Once the nervous system is impaired, its 

recovery is difficult and malfunction of other parts of the body occurs [242]. The repair of 

nerve lesions has been attempted in many different ways, which have in common the goal of 

directing the regenerating nerve fibers into the proper endoneurial tubes. The strategies 

developed for nerve repair can be classified into two categories: (1) bridging, which includes 

grafting and tubulization techniques, (2) end-to-end suturing of the nerve stumps. The former 

technique has been shown to be more effective, as it avoids tension across the repair site 

[243]. A wide variety of materials have been suggested for the production of artificial tubes 

for nerve repair, including biocompatible, non-degradable and degradable materials. A 
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variety of artificial tubes have been used to repair nerve injuries, but the artificial tubes do 

not have enough internal surface area for nerve fibers and Schwann cells (SCs) to cohere 

[236]. Thus, artificial tubes to bridge large defects in nerve repair should contain a 

biodegradable matrix, which can provide an optimal structural, cellular, and molecular 

framework for SCs and neurite migration across a nerve gap. Chitosan has been studied as a 

candidate material for nerve regeneration due to its properties such as antitumor, 

antibacterial activity, biodegradability and biocompatibility. Jianchun et al. reported that 

neurons cultured on the chitosan membrane can grow well and that chitosan tube can greatly 

promote the repair of the peripheral nervous system [244]. Yuan et al.[245] also showed that 

chitosan fibers supported the adhesion, migration and proliferation of SCs, which provide a 

similar guide for regenerating axons to Büngner bands in the nervous system. Matsuda et al. 

developed a new biomaterial for nerve regeneration through immobilization of laminin 

peptide in molecularly aligned chitosan by covalent bonding [246]. Chávez-Delgado et al. 

showed that progesterone delivered from chitosan prostheses provides better facial nerve 

regenerative response of the rabbits than chitosan prostheses without progesterone [247]. 

Mingyu et al. showed an improved attachment, differentiation and growth on the chitosan/ 

poly(L-lysine) composite materials when compared to cells cultured on chitosan membranes. 

The improved nerve cell affinity on the chitosan/poly(L-lysine) composite materials had 

been attributed to the increased hydrophilicity by the abundant hydroxyl group and the 

positive surface charge of chitosan [248]. Cheng et al. added gelatin to chitosan for 

preparation of soft and elastic complex that has good nerve cell affinity. The chitosan/gelatin 

composite film showed a lower modulus and a higher percentage of elongation at break 

compared with chitosan film. Also, PC12 cells cultured on the composite films differentiated 

more rapidly and extended longer neutites than on chitosan films [249]. Frier et al. also 

developed chitin hydrogel tubes which were fabricated from chitosan solutions using 

acylation chemistry and mold casting techniques for the preservation of the natural chemical 

composition of chitin, and no toxic crosslinking agent was necessary for the hydrogel 

preparation (figure 14). Chitin and chitosan support nerve cell adhesion and neurite 

outgrowth, making these materials potential candidates for scaffolds in neural tissue 

engineering [250]. 
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Figure 14. Optical microscope longitudinal view of (a) a chitin hydrogel tube and (b) a chitin gel tube 

reinforced with a PLGA coils embeddedin the wall [250]. 

 

1.5.2 Drug Delivery Applications 
 

 Drug delivery has been a very active area, especially for chitosan as a carrier for 

various active agents including drugs and biologics. Chitosan films are very commonly used 

for this purpose, a novel inorganic–organic pH-sensitive membrane based on an 

interpenetrating network utilizing inorganic silicate and organic chitosan was proposed by 

Park et al. for drug delivery [251]. The membrane was evaluated for its response to pH 

changes; the intended method of application. Percolation of lidocaine-HCl, sodium salicylate 

and 4-acetomidophenol into this membrane was studied and found to be sensitive to the 

external pH as well as the drugs’ ionic interactions with chitosan. The membrane was 

proposed to also be sensitive to other stimuli such as temperature and light that may be 

alternative channels for drug loading. In a similar fashion, the in-situ light initiated 

polymerization of acrylic acid in the presence of chitosan was used to derive a novel 

mucoadhesive membrane [252]. The interactions between the two polymers were determined 

to be based on hydrogen bonding. The strong adhesive property of this membrane rendered it 

suitable for transmucosal drug delivery applications. The loading and release study of 

triamcinolone acetonide (TAA), a drug used to reduce inflammation in the treatment of 

mouth ulcers, was subsequently reported [252]. TAA was loaded into the chitosan–PAA 

membrane from solution. The drug loaded membrane was found to meet the requirements for 

a transmucosal drug delivery system with drug release a function of pH and the amount of 

drug loaded. Another method of generating membranes was the interaction of oxidized 

glucose dialdehyde with chitosan [254]. N-alkyl groups of varying chain lengths were used 
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to modify the hydrophobicity of these chitosan membranes. The longer the alkyl chain, the 

more hydrophobic the chitosan membrane becomes and that had bearing on the drug release 

rate. Using vitamin B2 as the drug model various parameters were studied, the permeation 

and diffusion of B2 decreased with increasing pH 8 and when the hydrophobicity of chitosan 

increased, i.e. as the alkyl chains increased in length. In vitro studies indicated no toxic 

effects for this membrane system. Another  example of membrane methodology is the 

chitosan–gelatin drug containing films incorporating danshen, an herbal extract, without the 

need for crosslinking, for delivery in the abdominal cavity [255]. Again, Hu et al. [256] 

utilised the same in situ polymerization of acrylic acid in the presence of chitosan, to form 

nanoparticles. The yield of nanoparticles was found to be a function of the molecular weight 

of chitosan; the lower molecular weight, the better the yield of around 70%. A silk peptide 

was incorporated into the nanoparticles. The release of the silk peptide occurred as an initial 

burst followed by continued release for up to 10 days. The dependence of the release on pH 

was noted and the authors suggested the nanospheres were useful for drug release 

applications in the gastric cavity.   

 Cisplatin loaded chitosan microspheres were prepared using a w/o emulsion system 

[257]. Variables such as chitosan concentration, cisplatin, glutaraldehyde concentration, type 

of chitosan and oil were studied and found to have a significant effect on cisplatin 

entrapment in chitosan microspheres. Incorporation efficiency was found to be between 28 

and 29%. The type of oil used was found to affect release properties of cisplatin, which 

showed an initial burst effect. Pharmacokinetics, targeting, embolization effects and 

alteration of liver function using cisplatin chitosan microspheres were studied after hepatic 

arterial embolization in dogs. Results showed a remarkable decrease in the number of 

arterioles in liver, necrosis of nodules and hepatic cell degeneration in the embolized region. 

Shiraishi et al. also prepared indomethacin loaded chitosan microspheres but by 

polyelectrolyte complexation of sodium tripolyphosphate and chitosan. A pH-dependent 

disintegration of the beads was observed in the in vitro study [258]. The plasma 

concentrations of indomethacin after oral administration of chitosan gel beads to beagle dogs 

exhibited a sustained-release pattern. Good correlation was observed between the molecular 

weight of chitosan and dissolution rate constant or the mean absorption time or area under 

the plasma concentration–time curve. Another study reported, the preparation of inomethacin 

loaded chitosan microspheres using only aqueous solvents [259]. The influence of 

formulation variables on indomethacin content in the microspheres and time for release of 

indomethacin from the microspheres was also investigated. 
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 Hejazi and Amiji examined the gastric residence time of tetracycline loaded 

chitosan microspheres (prepared by ionic crosslinking and precipitation method) following 

their oral administration in gerbils [260]. Gastric retention studies were performed by 

administering radioiodinated [125I] chitosan microsphere suspension in the nonacid-

suppressed and acid-suppressed states. At different time points, animals were sacrificed and 

the radioactivity in tissues and fluids was measured with a gamma counter. The results 

indicated that chitosan microspheres did not provide a longer residence time in the fasted 

gerbil stomach. The tetracycline concentration profile in the stomach following 

administration of microsphere formulation was similar to that of aqueous solution. Huang et 

al. [261] observed that betamethasone disodium phosphate-loaded microspheres 

demonstrated good drug stability (<1% hydrolysis product), high entrapment efficiency 

(95%) and positive surface charge (37.5 mV). The results also indicated that yield and size of 

particle was increased with increasing betamethasone amount but both zeta potential and tap 

density of the particles decreased with increasing betamethasone loaded amount. The in vitro 

release of betamethasone showed a dose-dependent burst followed by a slower release phase 

that was proportional to the drug concentration in the concentration range between 5 and 

30% (w/w) [262]. 

 Chitosan hydrogels coupled with BMP-7 have shown the ability to enhance lesion 

repair [263]. For instance, to enhance cartilage formation, chondroitin sulfate, a GAG 

molecule found in cartilage, has been immobilized in chitosan hydrogels [264]. Platelet 

derived growth factor has also been loaded into chitosan gels to enhance osteoinduction by 

release of the growth factor as the hydrogel degraded at the defect site [265,266]. Chitosan–

alginate hydrogels loaded with BMP-2 and mesenchymal stem cells (MSCs) were shown to 

induce subcutaneous bone formation [267]. Chitosan– laminin nerve guides loaded with glial 

cell line-derived nerve growth factor (GDNF) enhanced both the functional and sensory 

nerve recovery by releasing GDNF in the early stage of implantation [268]. Treatment with 

some growth factors that have short therapeutic half-lives, such as endothelial growth factor, 

require frequent administration to maintain an effective concentration. Chitosan–albumin 

hydrogel microspheres have shown continuous release for over 3 weeks after subcutaneous 

implantation in rats, indicating possible success in vivo [269]. Azab et al. developed a 

chitosan-based hydrogel cross-linked with glutaraldehyde [270,271] and loaded with 

131Inorcholesterol (131I-NC), and tested the hydrogel in a breast cancer xenograft mouse 

model. This hydrogel showed a reduction in the progression rate of the tumor, and prevented 

69% of tumor recurrence and metastatic spread. Importantly, there was little or no systemic 

distribution of the radioisotope after hydrogel implantation. 
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Zeng et al. prepared chitosan-based nanocomplexes with various forms were prepared by 

ionically  crosslinking with tripolyphosphate (TPP) in different acidic media under mild 

conditions. It was  found that the self-assembly and ionic interactions of chitosan and TPP 

were greatly affected by reaction media, and chitosan-based nanofibers could be obtained in 

adipic acid medium while nanoparticles were formed in acetic acid medium (figure 15(A)). 

Using bovine serum albumin (BSA) as a macromolecular model-drug, in vitro drug release 

studies indicated that chitosan-based nanofibers and nanoparticles exhibited a similar 

prolonged release profile. In addition, the bioinspired mineralization of both chitosan-based 

nanofibers and nanoparticles was carried out by soaking them in synthetic body fluids (SBF). 

Transmission electron microscopy (TEM) (figure 15(B)) and X-ray Diffraction (XRD) 

results indicated that chitosan-based nanofibers have better inductivity for 

nanohydroxyapatite formation than chitosan-based nanoparticles. The results suggested that 

biomimetic chitosan-based systems with controlled release capacity of bioactive factors may 

be of use in bone tissue engineering for enhancing the bioactivity and bone inductivity [272]. 

Recently, novel asymmetric chitosan membranes were developed for the guided tissue 

regeneration (GTR) by using the two-step phase separation in this study [273]. The 

bicontinuous structure on the top layer was formed due to the liquid–liquid demixing by non-

solvent induction and the pore size was ranged from 0.5 to 2 µm. The interconnected cellular 

pores ranged from 80 to 120 µm on the bottom layer would be created by the formation of 

ice crystals. The membrane developed in this research possessed good biocompatibility, 

tissue integration, cell occlusivity and osteoconduction, which lasted for at least 3 months. 

The chitosan membrane also successfully prevented the proliferation of bacterial, which was 

significantly superior to all the commercial GTR products for now. The asymmetric structure 

would be appropriate for the release of complex drugs with different effective periods. The 

results showed that the asymmetric chitosan GTR membranes prepared in this study are 

promising for the treatment of periodontal diseases. 

 In another study by Saber et al. [274] was investigated the feasibility of using 

chitosan to deliver drugs to the inner ear across the round window membrane (RWM). Three 

structurally different chitosans loaded with a tracer drug, neomycin, were injected into the 

middle ear cavity of albino guinea pigs (n = 35). After 7 days the effect of chitosans and 

neomycin was compared among the treatment groups. The hearing organ was analysed for 

hair cell loss and the RWM evaluated in term of thickness. All tested chitosan formulations 

successfully released the loaded neomycin, which then diffused across the RWM, and 

exerted ototoxic effect on the cochlear hair cells in a degree depending on the concentrations 
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used. Chitosans had no noxious effect on the cochlear hair cells. It is concluded that chitosan, 

is safe and effective carriers for inner ear therapy. 

 

 

 

Figure 15.(A) TEM images of Chitosan-TPP nanocomplexes formed by ionically crosslinking in (a) 

adipic acid medium and (b) acetic acid medium.(B) TEM photos of (a) chitosan-TPP nanoparticles and 

(b) chitosan-TPP nanofibers after soaking in SBF at 37.0 ± 0.5_C for 7 days[272]. 

 

 Several studies of chitosan particles or polyelectrolytes complexes for nasal 

delivery of therapeutic proteins have been done [275-278]. It has been shown that insulin-

loaded chitosan nanoparticles enhanced nasal absorption of proteins to a greater extent than 

chitosan solutions [275, 278]. Powder formulations of protein-loaded chitosan nanoparticles 

suitable for pulmonary delivery were prepared by spray drying [279-281]. Insulin-loaded 

nanoparticles were obtained by ionic gelation of a chitosan solution with a TPP solution also 

containing insulin. The nanoparticles were suspended in a solution of mannitol and lactose. 

Spray-drying yielded microparticle powders with a suitable aerodynamic diameter (1-3 mm) 

for alveolar deposition. The insulin-loaded chitosan nanoparticles had a good loading 

capacity (65–80%) and were fully recovered from the powder formulations after contact with 

an aqueous medium, and showed a fast release of insulin [281]. Yang et al. prepared an 

inhalable chitosan-based powder formulation of salmon calcitonin containing mannitol (as a 

cryoprotecting agent) using a spray drying process. The effect of chitosan on the 

physicochemical stability of the protein was investigated with chromatographic and 
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spectrometric techniques. The dissolution rate of the protein decreased when formulated with 

chitosan, which might be due to irreversible complex formation between the (aggregated) 

protein and chitosan during the drying process [282]. In a recent study, Ma et al. prepared 

protein-loaded chitosan microspheres using a modified ionotropic gelation method combined 

with a high voltage electrostatic field BSA was chosen as a model protein. The preparation 

process and major parameters were discussed and optimized. The morphology, particle size, 

encapsulation efficiency and in vitro release behavior of the prepared microspheres were 

investigated. The results revealed that the microspheres exhibited good sphericity and 

dispersity when the mixture of sodium tripolyphosphate (TPP) and ethanol was applied as 

coagulation solution. Higher encapsulation efficiency (>90%) was achieved for the weight 

ratio of BSA to chitosan below 5%. 35% of BSA was released from the microspheres cured 

in 3% coagulation solution, and more than 50% of BSA was released from the microspheres 

cured in 1% coagulation solution at pH 8.8. However, only 15% of BSA was released from 

the microspheres cured in 1% coagulation solution at pH 4. The results suggested that 

ionotropic gelation method combined with a high voltage electrostatic field will be an 

effective method for fabricating chitosan microspheres for sustained delivery of 

protein.[283] 

 Chitosan-based carriers have been extensively studied for parenteral and mucosal 

delivery of antigens [284-302]. In these studies mucosal and parenteral immunizations with 

various antigen co-administered with soluble chitosan, antigen-loaded chitosan powders/ 

micro/nanoparticles  demonstrated various levels of both systemic and local immune 

responses. Moreover, in a phase I clinical study, intranasal immunization with influenza 

vaccine formulated with soluble chitosan glutamate showed positive effects of the polymer 

on the immune responses raised in the vaccinees [303]. The adjuvant activities of chitosan 

and its precursor chitin with DD of 30 and 70%, after intraperitoneal administration in mice 

and guinea pigs, were studies in terms of induction of cytokines, long-lasting circulating 

antibodies and cell-based immunity against bacterial alpha-amylase and an Escherichia coli 

infection [304,305]. In another study, chitosan (DD 70%) showed induction of cytokines, 

interleukin (IL)-1 and colony-stimulating factor (CSF) in macrophages in vitro [306]. 

Zaharoff et al. showed that chitosan dissolved in buffer pH 6.2 enhanced the 

immunoadjuvant properties of cytokines such as granulocyte-macrophage colony-stimulating 

factor (GM-CSF), when co-administered subcutaneously. Likely, chitosan prolonged 

dissemination of GM-CSF at the site of injection resulting in prolonged exposure of immune 

cells to this cytokine and enhancing the immunoadjuvant properties of GM-CSF. After single 

subcutaneous injection of GM-CSF/chitosan solution, the cytokine expanded lymph nodes 
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about 5-fold higher than GM-CSF alone, which was injected four times. It was also 

suggested that chitosan could enhance the antigen presenting capability of DCs and induced 

greater allogeneic T-cell proliferation [307]. In a subsequent paper, the same authors 

demonstrated that chitosan substantially increased antigen-specific antibody titers and 

antigen-specific CD4+ proliferation upon subcutenous administration of an aqueous solution 

of β-galactosidase, as a mode antigen and chitosan. The authors suggested that the ability of 

soluble chitosan to enhance humoral and cell-mediated immunity is related to its 

physicochemical characteristics such as viscosity, which increases the retention of 

formulations at the injection sites and also its ability to induce transient cellular expansion in 

draining lymph nodes [308]. Ghendon et al. showed that intramuscular administration of 

soluble chitosan with monovalent and trivalent split inactivated influenza vaccine resulted in 

strong humoral and cell-immunity responses against drift variants of A- and B-type human 

influenza viruses [309,310]. They showed that soluble chitosan admixed with inactivated 

influenza vaccine increased cytotoxic activity of splenic NK T-lymphocytes and enhanced 

the proliferative activity of mononuclear lymphocytes in the spleen. Moreover, it was shown 

that the number of CD3, C3/NK and CD25 T-cells also increased. The authors suggested that 

chitosan activates cell immunity because of its proliferation activity, which is initiated 

through receptor complex TCR-CD3 as well as activation signals linked with lectin receptors 

[310]. 

 

1.5.3 Chitosan in Gene Therapy 

 

 The transfection efficiency of chitosan as a gene delivery vehicle has been studied 

by Sato et al. [311]. The molecular weight of chitosan, the charge ratio between the 

luciferase plasmid to chitosan and the pH of the culture media were found to be determinants 

of the transfection efficiency in vitro. Nakao et al. reports on the use of chitosan for 

enhancing adenovirus infectivity to mammalian cells in gene therapy [312]. Lower 

concentrations of chitosan and lower molecular weight chitosans were better at enhancing 

adenovirus activity [313]. Chitosan-based gene delivery systems are promising candidates 

for non-viral gene therapy [314]. The chitosan- DNA complexes are very easy to synthesize 

and were superior to polygalactosamine-DNA complexes, but their use is limited because of 

the lower transfection efficiency [315]. The stability of the DNA-chitosan complexes is an 

important parameter and depends on both the chitosan chain length and the amount of 

chitosan, increasing the chitosan chain length and chitosan concentration could yield more 

stable complexes, indicating that varying the chitosan chain length may provide a tool for 
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controlling the ability of the polyplex to deliver therapeutic gene vectors to cells [316,317]. 

The preparation of chitosan and chitosan/ DNA nanospheres by using a novel and simple 

osmosis-based method has been recently patented [318]. With this method, they were able to 

prepare chitosan/DNA particles of spherical morphology with an average diameter 38 ± 4 

nm. Also, the DNA incorporation was pretty high (up to 30%) and the release process is 

gradual and prolonged in time. Another advantage of this method is that, varying the solvent/ 

non-solvent couple, temperature and membrane cut-off, affording useful nanostructured 

systems of different size and shape to employ in several biomedical and biotechnological 

applications, may easily modify the process. As a novel technique, Hui et al. studied the 

gene delivery by chitosan–DNA nanoparticles through retrograde intrabiliary infusion (RII) 

and examined the efficacy of liver specific targeting [319]. The transfection efficiency of 

chitosan–DNA nanoparticles, as compared with PEI–DNA nanoparticles, was evaluated in 

Wistar rats by infusion into the common bile duct, portal vein, or tail vein. Chitosan–DNA 

nanoparticles administrated through the portal vein or tail vein did not produce detectable 

luciferase expression. In contrast, rats that received chitosan– DNA nanoparticles showed 

more than 500 times higher luciferase expression in the liver 3 days after RII; and transgene 

expression levels decreased gradually over 14 days. Luciferase expression in the kidney, 

lung, spleen, and heart was negligible compared with that in the liver. RII of chitosan–DNA 

nanoparticles did not yield significant toxicity and damage to the liver and biliary tree as 

evidenced by liver function analysis and histopathological examination. Luciferase 

expression by RII of PEI–DNA nanoparticles was 17-fold lower than that of chitosan–DNA 

nanoparticles on day 3, but it increased slightly over time. These results suggest that gene 

delivery by chitosan–DNA nanoparticles through RII is a promising routine to achieve liver-

targeted gene delivery and both gene carrier characteristichitosan and mode of administration 

significantly influence gene delivery efficiency.  

 Probing for a solution to track the efficiency of DNA delivery, Lee et al. [320] 

employed fluorescence resonance energy transfer (FRET) to monitor the molecular 

dissociation of a chitosan/ DNA complex with different molecular weights of chitosan. 

Chitosan with different molecular weights was complexed with plasmid DNA and the 

complex formation was monitored using dynamic light scattering and a gel retardation assay. 

Plasmid DNA and chitosan were separately labeled with quantum dots and Texas Red, 

respectively, and the dissociation of the complex was subsequently monitored using confocal 

microscopy and fluorescence spectroscopy. As the chitosan molecular weight in the chitosan/ 

DNA complex increased the Texas Red-labeled chitosan gradually lost FRET-induced 

fluorescence light. This observation was noticed when HEK293 cells incubated with 
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chitosan/DNA complex and were examined with confocal microscopy. This suggested that 

the dissociation of the chitosan/DNA complex was more significant in the high molecular 

weight chitosan/DNA complex. Fluorescence spectroscopy also determined the molecular 

dissociation of the chitosan/DNA complex at pH 7.4 and pH 5.0 and confirmed that the 

dissociation occurred in acidic environments. This finding suggested that the high molecular 

weight chitosan/DNA complex could easily be dissociated in lysosomes compared to a low 

molecular weight complex. Furthermore, the high molecular weight chitosan/DNA complex 

showed superior transfection efficiency in relation to the low molecular weight complex. 

Therefore, it could be concluded that the dissociation of the chitosan/DNA complex is a 

critical event in obtaining the high transfection efficiency of the gene carrier/DNA complex 

[320]. Lee, Kim, and Yoo prepared chitosan/pluronic hydrogels as injectable depot systems 

for gene therapy to enhance local transgene expression at injection sites. Transfection studies 

employing HEK293 cells showed that released fractions from chitosan/pluronic hydrogels 

showed better transfection efficiency than those from pluronic hydrogels [321]. 

 In another study, Khatri et al. investigated the preparation and vivo efficacy of 

plasmid DNA(pDNA)  loaded chitosan nanoparticles for nasal mucosal immunization 

against hepatitis B. Chitosan pDNA nanoparticles were prepared using a complex 

coacervation process [322]. Prepared nanoparticles were characterized for size, shape, 

surface charge, plasmid loading and ability of nanoparticles to protect DNA against nuclease 

digestion and for their transfection efficacy. In this study, chitosan nanoparticles produced 

humoral (both systemic and mucosal) and cellular immune responses upon nasal 

administration. The study signified the potential of chitosan nanoparticles as DNA vaccine 

carrier and adjuvant for effective immunization through non-invasive nasal route. Albeit, the 

conventional high molecular chitosans have a few drawbacks such as aggregated shapes, low 

solubility at neutral pH, and high viscosity at concentrations used for in vivo delivery and a 

slow onset of action [323], the non-viral gene delivery systems based on chitosan are still 

regarded as one of the most efficient system for DNA vaccine delivery.  

 In an approach to develop chitosan nanoparticles for siRNA delivery, Katas & 

Alpar, prepared chitosan nanoparticles by two methods of ionic cross-linking, simple 

complexation and ionic gelatin using sodium tripolyphosphate (TPP). Both methods 

produced nanosize particles, less than 500 nm depending on type, molecular weight as well 

as concentration of chitosan. In the case of ionic gelation, two further factors, namely 

chitosan to TPP weight ratio and pH, affected the particle size. In vitro studies in two types 

of cells lines, CHO K1 and HEK 293, revealed that preparation method of siRNA association 

to the chitosan plays an important role on the silencing effect. Chitosan–TPP nanoparticles 
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with entrapped siRNA are shown to be better vectors as siRNA delivery vehicles compared 

to chitosan–siRNA complexes possibly due to their high binding capacity and loading 

efficiency. This report suggested that, chitosan–TPP nanoparticles show much potential as 

viable vector candidates for safer and cost-effective siRNA delivery [324]. Exploring the 

efficiency of chitosan/siRNA nanoparticles as a therapeutic agent, Liu et al. reported that the 

physicochemical properties (size, zeta potential, morphology and complex stability) and in 

vitro gene silencing of chitosan/siRNA nanoparticles are strongly dependent on chitosan 

molecular weight and DD [325]. High molecular weight and DD chitosan resulted in the 

formation of discrete stable nanoparticles of 200 nm in size. Chitosan/siRNA formulations 

(N/P: 50) prepared with low molecular weight (10 kDa) showed almost no knockdown of 

endogenous enhanced green fluorescent protein (EGFP) in H1299 human lung carcinoma 

cells, whereas those prepared from higher moleculr weight (64.8– 170 kDa) and DD (80%) 

showed greater gene silencing ranging between 45% and 65%. The highest gene silencing 

efficiency (80%) was achieved using chitosan/siRNA nanoparticles at N:P 150 using higher 

molecular weight (114 and 170 kDa) and DD (84%) that correlated with formation of stable 

nanoparticles of 200 nm. From their conclusions it is evident that there is still room for 

improvement and for the optimization of gene silencing using chitosan/siRNA  nanoparticles 

and the fine-tuning of the polymeric properties would make lots of difference. 

 

1.5.4 Chitosan in Bioimaging Applications 

 

 Chitosan is an exemplary polymer in biological applications owing to its 

biocompatible properties, in this context, its use in bioimaging applications is also gaining 

rapid attention. The incorporation of imaging agents such as Fe3O4 for Magnetic Resonance 

Imaging(MRI) into the self-assembled nanoparticles could enhance hepatocyte-targeted 

imaging [326] and the particle could serve as MR molecular imaging agent. Various 

inorganic materials including metals can be incorporated in the chitosan composite 

preparations and their combined characteristics have proven beneficial for several 

biomedical applications. Chitosan polyion complex composites can be prepared by 

interactions of chitosan with natural and synthetic polyanion molecules [327]. Preparing 

fluorescent chitosan quantum dot composites enables the combination of targeted drug and 

gene delivery with optical imaging [328, 329]. Polyacrylic acid (Carbopol), an anionic 

synthetic polymer having mucoadhesive properties, is extensively used with chitosan to form 

polymer composites, which have longer circulation times in vivo, resulting in higher 

bioavailability of incorporated therapeutic agents [327,330-332]. The latter composites can 
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also be made to contain contrast agents for imaging purposes. Lee et al. have developed 

novel self-assembling nanoparticles composed of amphipathic water-soluble chitosan–

linoleic acid (WSC–LA) conjugates for encapsulation of  super paramagnetic iron oxide 

(SPIOs) as a contrast agent to target hepatocytes [333]. The WSC–LA conjugates self-

assembled into core–shell structures in aqueous solution. Since its incorporation in 

nanoparticles, its potential for in vivo molecular imaging applications has increased 

tremendously (figure 16). In a similar fashion, chitosan-based Gd-nanoparticles have been 

prepared by incorporating Gd-DTPA using the emulsion-droplet coalescence technique 

[334]. DTPA is diethyl triamine penta acetic acid, which is a chelating group that binds 

tightly with Gd(III) ion and are widely used as contrast agents for clinical MRI. Their release 

properties and their ability for long-term retention of Gd-DTPA in the tumor indicated that 

these Gd nanoparticles might be useful as an intratracheal injectable device for gadolinium 

neutron-capture therapy (Gd-NCT) [335]. The extent of Gd loading was different for 

different types of chitosans used in the preparation. The highest Gd load was achieved with 

100% deacetylated chitosan in 15% Gd-DTPA aqueous solution, and the particle size was 

452 nm, whereas chitosan with lower deacetylation level produced much larger particles 

with decreased Gd-DTPA content. Gadolinium-loaded chitosan nanoparticles displayed 

prolonged retention in tumor tissue after in vivo intratumoral injection [336,337]. Kumar et 

al. also described the chemistry and preparations of Holmium-166 and Samarium-153 

chitosan complexes, which are mainly suited for radiopharmaceutical applications [334]. 

 

 

 

 

Figure 16. MR images of the central region of mouse liver before (A) and after (B–C) injection of 

SPION-loaded WSC–LA nanoparticles. Images were obtained at (B) 30 min and (C) 1 h after injection 

of the nanoparticles. L = left[333]. 
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1.5.5 Chitosan in wound healing applications 

 

 In the area of wound healing, an ideal dressing should protect the wound from 

bacterial infection, provide a moist and healing environment, and be biocompatible [338]. 

Chitosan-based materials, produced in varying formulations, have been used in a number of 

wound healing applications. Chitosan itself can induce faster wound healing and produce 

smoother scarring, possibly due to enhanced vascularization and the supply of chito-

oligomers at the lesion site, which have been implicated in better collagen fibril 

incorporation into the extracellular matrix [339,340]. While different material dressings have 

been used to enhance endothelial cell proliferation, the delivery of growth factors involved in 

the wound-healing process can improve that process [341]. Chitosan hydrogels take 

advantage of the reparative nature of the polymer and simultaneously deliver a therapeutic 

payload to the local wound. For instance, fibroblast growth factor-2 (FGF-2) stimulates 

angiogenesis by activating capillary endothelial cells and fibroblasts [342,343]. In order to 

sustain its residence at the wound site, the factor was incorporated into a high molecular 

weight chitosan hydrogel, formed by UV-initiated cross-linking. The growth factor remained 

bound tightly within the hydrogel until exposed to chitinase, after which it showed 

bioactivity, indicating that there was no loss of functionality during the material preparation 

[344]. Park et al. developed a chitosan hydrogel scaffold impregnated with bFGF-loaded 

microspheres that can accelerate wound closure in the treatment of chronic ulcers [342]. 

 

1.6. Conclusions 

 
 Regenerative medicine has entered a new era with the development of modern 

science and technology. The novel properties of chitosan make it one of the most promising 

bio-based polymers for drug delivery, tissue engineering and gene therapy. Chitosan, a 

native chitin derived polymer represents a vast resource with great medical potential. Current 

studies show that, in general, chitosan is a relatively non-toxic, biocompatible material. 

However, care must be taken to ensure that it is pure, as protein, metal or other contaminants 

could potentially cause many deleterious effects both in crosslinking approaches and in 

dosage forms. In this review we have seen how the unique cationic properties of chitosan 

offer it to be an excellent biomaterial. We presented the various forms of chitosan, its 

preparative procedures and its applications in drug delivery, tissue engineering, gene therapy 

and bioimaging field. The various approaches on the preparation techniques presented herein 

can be helpful to decide its use in the context of localized drug delivery to selectively capture 
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a therapeutic payload and control its release in local proximity to its target or to use it for 

tissue engineering purposes. The study demonstrates that for encapsulation and controlled 

release using chitosan particle/hydrogel as carriers, there is a window of preparative 

conditions for systematically manipulating the process of incorporation and for controlling 

some properties, especially size and surface charge density etc. After crosslinking or any 

such changes, unreacted reagents have to  be thoroughly removed to prevent confounding 

results as many reagents are cytotoxic if uncoupled. The biodistribution is both molecular 

weight and formulation dependent, with relatively long circulation times  achievable. The 

liver appears to be a primary site of localization for chitosan. It should be appreciated that 

many characteristics of chitosan affect its biological activity, including but not limited to: the 

molecular weight, the DD, the salt form, and the superstructural form  should be performed. 

Chitosan has been shown to improve the dissolution rate of poorly soluble drugs and thus 

can be exploited for bioavailability enhancement of such drugs making it an interesting 

candidate for delivery applications. Various therapeutic agents such as anticancer, anti-

inflammatory, antibiotics, antithrombotic, steroids, proteins, amino acids, antidiabetic and 

diuretics have been incorporated in chitosan based systems to achieve controlled release.  

Recalling chitosan’s promise as a biopolymer for tissue engineering purposes, the possibility 

to generate structures with predictable pore sizes and degradation rates makes it a suitable 

material for bone and cartilage regeneration. However, efforts to improve the mechanical 

properties of chitosan-based composite biomaterials are essential for this type of application. 

One of a great ability of chitosan is its capability to bind anionic molecules such as growth 

factors , glucosamine glycans and DNA. In fact, the combination of good biocompatibility, 

intrinsic antibacterial activity, ability to bind to growth factors and to be processed in a 

variety of different shapes makes chitosan an appropriate candidate as scaffold material for 

cartilage, and bone tissue engineering in clinical practice. Moreover, the ability to link 

chitosan to DNA molecules renders this material a good candidate as a substrate for gene 

activated matrices in gene therapy applications. Another upcoming application related to 

chitosan is in bioimaging, a survey about the recent advances has also been done, and it was 

found that chitosan based particles provide an excellent template for this imaging 

application. Although some of the parameters such as molecular weight, DD, viscosity have 

to be considered to use chitosan at its full potential, the benefits are significant enough to 

make the effort worthwhile. 
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2. STATISTICAL APPROACH OF CHITIN DEACETYLATION  

 

2.1. Abstract 

 

 Chitosan was produced by thermo-chemical deacetylation of chitin. Reaction 

parameters were varied to obtain different grade of degree of N-acetylation (DA) of chitin 

following a statistical design. Two different analytical methods namely 1st derivative UV and 

FTIR spectroscopies have been adopted to determine the values of DA of the prepared 

chitosan. The values of DA assessed from the 1st derivative UV is in accordance with that 

using FTIR. Thermogravimetric analysis was also performed to characterize chitin and its 

derivatives in terms of thermal stability in air and nitrogen. 

 

2.2. Introduction 

 
 Chitosan finds numerous applications in agriculture, biomedicine (for example, as 

drug delivery system), papermaking, water treatment and food industry [1]. The properties of 

chitosan strongly depend on the degree of N-acetylation (DA), which not only influences its 

physical-chemical characteristics [2-7] but also its biodegradability [8-10] and 

immunological activity [11]. 

 Chitosan is derived from chitin and the percentage of N-acetyl group within the 

polymer chain is a distinguishing factor between the different grades of these biopolymers 

(Scheme 1). The macromolecule containing 100 % or more than 50 % of amine groups is 

named chitosan. Conversely, the material will be considered chitin if in its structure there is 

100 % or more than 50 % of N-acetyl group. 

 Various properties of these two biopolymers are closely related to the DA, which is 

the most fundamental parameter. In other words, if the DA is known, many properties can be 

predicted and different analytical methods have been employed for its assessment. These 

methods included ninhydrin test [12], linear potentiometric titration [13], near-infrared 

spectroscopy [14], nuclear magnetic resonance spectroscopy [15], hydrogen bromide 

titrimetry [16, 17], infrared spectroscopy [17, 18], and UV-spectrophotometry [19, 20]. 

Some of these methods are either too tedious (titrimetry), or costly for routine analysis 

(nuclear magnetic resonance spectroscopy), or destructive to the sample (ninhydrin test). 
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Scheme 1: Structure of chitin and chitosan and corresponding copolymers 

 

 There are several steps on the manufacturing process of chitosan that depend on the 

starting material used to extract chitin, which is its precursor. Shrimp, prawn and crab wastes 

are the principal sources of chitin [21]. However, chitin can be supplied from 

microorganisms like cultured fungi, Antarctic krill, and insects, too. Scheme 2 illustrates the 

general steps that are performed traditionally to produce chitosan. 

 Pre-treatment (PT) is an alternative process, which is required only in some cases 

where the source of chitin contains others organic substances in considerable quantity [22]. 

In this step, the material is treated with sodium hydroxide solution (NaOH) at low 

concentration. 

 

 

Scheme 2: Flowsheet of typical chitosan manufacturing process from materials containing chitin 

 
 The process of demineralization (DM) is basically the removing of calcium 

carbonate (CaCO3) that represents 20-50 % in the shells of marine crustaceans [1]. The 

condition of this step is bland where a dilute hydrochloric acid (HCl) solution is used at 

ambient temperature. Following, demineralised material is treated with NaOH solution at 1-2 
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M and at temperatures higher than that of ambient. In this condition deproteination (DP) will 

take place. The last step related to the chitin deacetylation (DAc) is the focus of the present 

work. This step can follow a homogeneous or heterogeneous alkali method. In the first one, 

temperatures are lower than that of heterogeneous DAc but with long times as for example 

days. However, the conditions for an heterogeneous DAc of chitin generally uses aqueous 

NaOH solution at concentration range of 40-50 wt-%, temperature range between 100-150 

°C and short times [1, 21]. 

 The aim of the present study is a statistical approach for the optimization of the 

chitin deacetylation reaction variables using heterogeneous method. 

 

2.3. Materials and Methods 

2.3.1 Materials  

 Chitin from shrimp shells, practical grade powder, was purchased from Sigma (C-

7170) [1398-61-4]. Chitosan low molecular weight and DA=75-85%, was purchased from 

Aldrich (448869) [9012-76-4]. D-(+)-glucosamine hydrochloride (GluN), purity 99%, 

crystalline (G4875) [66-84-2], N-acetyl-D-glucosamine (GluNAc), purity 99%, (A8625) 

[7512-17-6], and Potassium bromide (KBr), FTIR grade (221864) [7758-02-3], were 

purchased from Sigma. Sodium hydroxide pellets and acetic acid were obtained from Carlo 

Erba and were analytical grades. 

 

2.3.2 Methods  

2.3.2.1 Chitin Deacetylation 

 A screening design of experimente (DEX) for chitin deacetylation process was 

carried out following a factorial 22 with center point [23]. Tables 1 and 2 present levels of 

variables reaction time and temperature and sample codes for the corresponding processing 

conditions, respectively.  

Table 1: Settings for the 22 design with center point 

 

Variable Levelsa) 

 -1 0 +1 

Time (h) 1 2 3 

Temperature (°C) 90 110 130 

a) -1 and +1 are low and high levels and 0 is center point. 
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Table 2: Sample codes and processing conditions 

 

Sample code Temperature (°C) Time (h) 

CS9-1 90 1 

CS13-1 130 1 

CS9-3 90 3 

CS13-3 130 3 

CS11-2 110 2 

 
 Alkali concentration and liquor rate were maintained constant at 50 % w/v and 50 

mL of NaOH solution to 1g of chitin, respectively. The reaction was performed under 

nitrogen atmosphere and at constant magnetic stirring. 

 Completed the DA time, the suspension was filtered off, washed with water to 

neutral pH and oven dried at 60 °C overnight. 

The obtained chitosan was dissolved at 1% w/v in 0.174 M aqueous acetic acid 

solution. This solution was added into NaOH solution forming a precipitate. The insoluble 

material was removed by filtration. To the clear filtrate was added again NaOH solution up 

to pH around 8. The formed white gel was filtered and thoroughly rinsed with distilled water, 

until neutral pH. Purified chitosan was then freeze-dried, grounded to powder and oven dried 

at 60 °C overnight. 

 

2.3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 FTIR measurements were carried out in a Perkin-Elmer Spectrum One 

spectrophotometer. Sample absorbance spectrum was taken as an average of 32 scans with 2 

cm-1 of resolution in the frequency range 4000-400 cm-1. Prior analysis, sample and KBr 

were dried at 60 °C for 2 h under reduced pressure. Sample:KBr disc was prepared with 3 

mg:200 mg ratio. 

 
2.3.2.3 Thermogravimetric Analysis (TGA) 

 TGA evaluations were performed using a Mettler TA 4000 System instrument 

consisting of TGA-50 furnace with a M3 microbalance, and Star software. Samples of ca. 7 

mg were scanned at 10 °C/min from 25 to 900 °C, under 300 mL/min flow rate of both 

nitrogen and air. 
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2.3.2.3 Ultraviolet Spectrophotometry (UV) 

 Ultraviolet spectra were recorded in the range 200-240 nm using a Jasco V-530 

UV/V spectrophotometer. A calibration curve was performed by means of standard solutions 

of GluN and GluNAc. A solution of acetic acid (AcOH) 0.01 M was used as blank. GluN 

and GluNAc were dissolved in AcOH 0.01 M in the range of 0.08 mM to 0.2 M and 0.01 

mM to 0.2 mM, respectively. Accurately weighed (10 mg) chitosan samples were dissolved 

in 2 mL of AcOH 0.1 M and diluted 10-fold with distilled water to obtain a final AcOH 

concentration of 0.01M. Chitosan was not dissolved directly in AcOH 0.01M since it would 

be difficult and time consuming. 

 

2.4. Results and Discussion 

 

 The obtained deacetilated chitin was a white powder and the yield was 49.7 ± 2.2 

%. The methods to assess the degree of N-acetylation (DA) can be distributed in three 

groups: 1) spectroscopic; 2) conventional; and 3) destructive [24] In the present study will be 

compared the values of DA obtained by two spectroscopic (FTIR and UV) and one 

destructive (TGA) methods using statistical analysis. 

 
2.4.1 FTIR Spectroscopy 

 FTIR is attractive due to its non-destructive character, be fast, sensitive, user-

friendly and low-priced, and suitable for both soluble and non-soluble samples. Hence, this 

technique is specifically useful for the analysis of insoluble chitin. Nevertheless, FTIR needs 

a calibration versus an absolute technique like nuclear magnetic resonance (NMR), which 

permit a direct determination of chitin DA. A big effort has been devoted to identify the right 

combination of bands and respective baselines, which led to a large number of proposed 

methods found in the literature. In fact, several methods were attempted to determine the DA 

by FTIR [16, 17, 24-28]. 

 Sample analysis was in random way as well as the preparation of the three replica 

performed for each one. This strategy was used to obtain a better estimation of the error of 

analysis. 
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 As previously described, the method to determine DA using FTIR needs the 

construction of a calibration curve. However, it was decided to use calibration curve 

described in literature considering that the statistical analysis of the chitin deacetylation 

reaction is the focus of the work. Table 3 presents some calibration curves with the 

respective absorption ratios in literature. 

 

Table 3: Calibration Curves from absorption ratios versus standard DA values 

 

DA Calibration Curve Method for DA standard Ref. 

1) DA = (A1655/A3450) x 155 titration [16] 

2) (A1320/A1420) = 0.3822 + 0.03133 x DA 1H NMR, 13C NMR [28] 

3) (A1320/A3450) = 0.03146 + 0.00226 x DA 1H NMR, 13C NMR [28] 

4) (A1560/A2875) = 0.2 + 0.0125 x DA elemental analysis [25] 

 

 Figure 1 shows FTIR spectra in transmittance of chitin, its derivatives at the lower 

and higher levels (see Table 2) and chitosan. The band at around 1320 cm-1 is similar for 

chitin and its derivatives CS9-1 and CS13-3. This band is assigned to the C-N stretching of 

the N-acetylglucosamine. This result suggests that the process variables ranges do not 

deacetilated chitin in a significant way. Based on this observation, the calibration curve (2) in 

the Table 3 was selected to evaluate the extension of chitin deacetylation as a function of 

process variables. Figure 2 shows FTIR spectrum of chitin with the insert indicating the 

baselines for the probe (BL1) and internal reference (BL2) absorptions that are in the ranges 

1348-1280 cm-1 and 1500-1404 cm-1, respectively. The internal reference absorption 

centered at 1420 cm-1 corresponds to –CH2 bending. Using this equation the values of DA 

for commercial chitin and chitosan were 101 ± 5.2 % and 10 %, respectively. The 

experiment with commercial chitosan was not replicated. However, considering that the 

errors of the FTIR measurements were around 5 % (see Tab. 4), it can be confirmed that the 

equation proposed by Brugnerotto et al [28] is a reasonable approach to assess the 

deacetylation reaction of chitin. 
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Figure 1: FTIR spectra of chitin and its derivatives 

 

 

Figure 2: FTIR spectra of chitin 

 

 Table 4 records the mean values of DA of chitin as a function of process variables 

(Tab. 2). The error was calculated using Student’s t-test at 95% of confidence (t2; 0.05 = 4.303) 

as indicated by Equation 2.1. 

 

    
error = ν ;α / 2t × s

n
  Eq. 2.1 

 

were tν,α/2 is Student’s t at ν freedom degree and α/2 significance level. 
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Table 4: Degree of acetylation as a function of process variables using FTIR 

 

Sample DA (%) Error (%) 

CS9-1 84.0 4.1 

CS9-3 80.2 4.3 

CS11-2 75.5 5.8 

CS13-1 77.3 3.9 

CS13-3 65.5 6.8 

 

 Factorial designed experiment can be appropriately analysed using the DEX 

interaction effect plot (Fig. 3). This plot showing mean values for the levels of each factor 

and that of interaction between them will indicate the significance on changing from one 

level to another as well as the interdependence of the factors. This plot shows that the most 

significant variable is the temperature followed by the time. The interaction between 

temperature and time was apparently not significant in the range studied. All factors indicate 

that higher chitin deacetylation, using 50% aqueous NaOH, can be obtained for temperatures 

higher than 130 °C and/or at reaction times higher than 3 h. 

 

 

Figure 3: DEX interaction effect plot for DA values 
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 The analysis of variance (ANOVA) is summarized in Table 5 including as source of 

variation the “pure quadratic” to check for pure quadratic curvature effect. This check was 

performed with the center points of the 22 factorial design. The cut-off value of F-test at 95 

% of confidence with 1 and 10 freedom degrees (F0.05; 1;10) is 4.96. The F0 values for the main 

effects and interaction are higher than that of cut-off and it can be concluded that they are 

statistically significant. On the other hand, pure quadratic effect is not significant and a first 

order model can be used adequately to fit results. The ANOVA confirmed the observations 

of DEX plot including that there is some interdependence between temperature and time 

although small for the range of variables studied. 

 

Table 5: ANOVA for factorial model 

 

Source of Sum of Degrees of Mean F0 

Variation Squares Freedom Square 

A (Temperature) 343.68 1 343.68 79.74 

B (Time) 184.55 1 184.55 42.82 

AB 48.24 1 48.24 11.19 

Pure quadratic 3.20 1 3.20 0.74 

Error 43.12 10 4.31 

Total 622.79 14 

Model 576.47 3 192.16 44.58 

R2=0.926 

 

Considering the above remarks, the regression model for the chitin deacetylation 

process is 

 
ˆ y = 76.8− 5.3x1 − 3.9x2 − 2x1x2  Eq. 2.2 
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 The relationship between coded and natural variables is 

 

x1 =
Temp− (Templow + Temphigh) /2

(Temphigh − Templow) /2
  Eq. 2.3 

 

x2 =
Tempo− (Tempolow + Tempohigh) /2

(Tempohigh − Tempolow) /2
  Eq. 2.4 

  

 Consequently, the fitted model of Eq. 2.2 with the natural variables is 

 

D ˆ A =118.64− 0.22T − 6.34t − 0.02Tt   Eq. 2.5 

 where, T and t are Temperature and time variables. 

 

 The ANOVA for the model is included in Table 5. The cut-off value of F0.05; 3;10 is 

3.71 that is lower than that found for the model. This means that at least one coefficient of 

the model is different of zero. Beside, below the ANOVA of model, are reported a statistic to 

check adequacy of fit of the model. This statistic represents the fraction of the variation 

about the mean that is explained by the fitted model. So, R2 value suggests that the model 

can be explain about 93% of DA variability. 

 Using the model represented by Eq. 2.5 it can be said that to obtain chitosan with 

20% of DA using NaOH at 50% and a reaction temperature of 100°C it is needed about 9 

hours. 

 
2.4.2 TGA 

 The TGA method for chitin and chitosan derivates has been used principally on 

thermodegradation kinetic studies [29,30]. However, a simple way to determine chitin DA 

was proposed by Alonso et al. [31] They take the weight loss in air atmosphere that 

corresponded to the maximum of DTG peak of chitin and chitosan degradation traces and 

correlated with DA of chitin standards. They demonstrated that the empirical correlation 

obtained could be a fast way to control DA. 
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 Figure 4 shows typical TG and DTG traces for chitin and its derivates in air 

atmosphere and TG data are reported in Table 6. 

 

  

 a) b) 

Figure 4: Typical (a) TG and (b) DTG traces of chitin and its derivatives in air atmosphere. 

 

 As the time for a TG analysis is long, only the center point of the 22 factorial design 

was replicated to allow the evaluation of the error other than to check the presence of 

curvature in the fitting model. 

 The first step in the temperature range of 30-150 °C corresponds to the equilibrium 

moisture of samples with that of ambient, which appears in the Table 6 as volatile. The 

second thermo-oxidation step appeared as an overlapped peak only for the sample CS13-3 

(DA = 65.5 from FTIR – see Tab. 4) with maximum at 296 °C and which is slightly higher 

than that measured for commercial chitosan (see insert inside Fig. 4 b). For other chitin 

derivates, this step appeared as a shoulder. So, the maximum rate peak of second step around 

325 °C is associated to chitin, which is in accordance with literature [31]. The last step of 

thermo-oxidation in the range 350-600 °C seems to have some correlation with the capacity 

of the molecule to uptake moisture as indicated by the same tendency presented by the 

volatile value in Table .6. Peniche-Covas et al. observed that up to 430 °C both pyrolysis and 

thermo-oxidation TGA traces of chitosan overlap. They considered that up this temperature 

the decomposition is independent of atmosphere [29]. Consequently, as this step is related to 

oxidation reaction of the residue it can be supposed that depends on DA. 

 Commercial chitosan that has a DA around 80 % contain ca. 9 % of adsorbed 

moisture that is only ca. 2.5 % higher than that of chitin. However, the behaviour of chitin 

derivatives does not follow the DA values presented in the Table 4. The first approach to 
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explain this result can be related to the formation of some kind of intermolecular interaction 

that turn less accessible the hydrophilic groups for moisture adsorption. The thermo-

oxidation temperature defined at 2 wt-% of weight loss after that of volatile (Td) for chitin 

was 243 °C suggesting be 2 °C less stable than chitosan (DA=80%). However, considering 

the replication of the experiment with the center point sample (CS11-2) and using Student’s 

t-test at 95% of confidence (Eq. 2.1), it can be said that the error of the experiment is around 

3.8 °C. In conclusion, the difference observed on Td value between chitin and chitosan is not 

significant. The same statement can be formulated for chitin derivates. 

 

Table 6. TGA data of chitin and its derivatives in air atmosphere a) 

Sampleb) Volatile Td ∆M1 Tp1 ∆M2 Tp2 R600 

 (%) (°C) (%) (°C) (%) (°C) (%) 

Chitin 6.3 243 61.8 313 28.0 519 3.9 

CS9-1 8.1 248 63.6 330 27.0 479 1.3 

CS13-1 6.7 244 61.4 324 29.7 475 2.2 

CS9-3 7.1 244 65.7 324 25.5 479 1.7 

CS13-3 3.4 245 64.7 329 29.5 481 2.4 

CS11-2 3.9 240 65.0 324 29.8 477 1.3 

CS11-2 3.9 243 64.0 325 30.6 485 1.5 

CS11-2 3.3 241 64.2 325 30.0 487 2.5 

Chitosan 8.8 245 54.0 292 34.2 493 3.0 

a) Volatile means the weight loss up to 150 °C. Td is the decomposition temperature defined at 2 wt-% 

of weight loss from 150 °C; Tp is the first derivative peak; and R600 is the residual weight at 600°C. b) 

See Table 2.2 for code definition. 

 

The residue at 600 °C (R600) was a white powder that characterize the inorganic 

molecules present in the crustaceous shell. Pristine chitin left ca. 4% and the commercial 

chitosan 3%. The R600 values of the chitin derivatives were lower than the two limits of kind 

of 2-deoxy-β-D-glucopyranose materials. This is one indication that the presence of 

inorganic impurities depends on the purification method used. Although the results suggest 
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that the time and temperature in NaOH concentrated solution could be factors on materials 

inorganic impurities, the error observed from CS11-2 of 1.6 % weaken this possibility. 

Typical traces of TG and DTG of chitin and its derivates under nitrogen atmosphere 

are presented in Figure 5. DTG traces (Fig. 5 b) show clearly that pyrolysis occur in two 

steps in the range 200-600 °C. The first weight loss up to 150 °C takes place moisture 

volatilization as previously verified for samples decomposed in air atmosphere. Unlike the 

DTG profile in air atmosphere, the second step of chitin derivates in the range 200-330 °C 

overlap the third step assigned to chitin but it is possible to take both maximum peak 

temperatures (Tp). Table 7 reports pyrolysis data. 

 

  

 a) b) 

Figure 5. Typical TG (a) and DTG (b) traces of chitin and its derivates in nitrogen 

atmosphere. 

 
2.4.3 UV Spectrophotometry 

 The method of the first derivative UV spectrophotometry is one of the most used for 

determination of the DA [19, 20]. It is the simplest and the most convenient among all the 

presently available methods. Besides, provides accurate and precise results in a simple and 

fast way for highly deacetylated chitin. This method requires only very small amounts of 

sample and relies on simple reagents and instrumentation. In addition, the results obtained 

from method are reasonably independent of protein contamination. The main disadvantages 

of this method are the requirement of an accurate determination of the weight, particularly 

difficult for the highly hygroscopic chitosan samples. 
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Table 7. TGA data of chitin and its derivates in air atmosphere.a) 

 

Sampleb) Volatile Td ∆M1 Tp1 ∆M2 Tp2 ∆M3 R600 

 (%) (°C) (%) (°C) (%) (°C) (%) (%) 

Chitin 6.0 257 — — 73.0 371 4.8 16.2 

CS9-1 7.7 271 15.7 296 50.7 389 5.5 20.4 

CS13-1 5.8 268 19.1 297 49.5 391 5.4 20.2 

CS9-3 6.4 270 16.5 297 53.6 390 4.4 19.1 

CS13-3 5.1 270 18.5 298 42.7 395 6.4 24.3 

CS11-2 5.5 275 17.9 299 50.9 393 5.4 20.3 

Chitosan 10.3 270 57.7 302 — — — 32.0 
a) 

Volatile means the weight loss up to 150 °C. Td is the pyrolysis decomposition temperature defined at 

2 wt-% of weight loss from 150 °C; Tp is the first derivative peak; ∆M is the range of weight loss and 

R600 is the residual weight at 600°C. b) See Table 2.2 for code definition. 

 

 The two models substances, GluNAc and GluN, are UV chromophoric groups, 

which contribute in a simple addictive way to the total absorbance of the material at a 

particular wavelength. Based on this evidence Liu et al derived a linear relationship between 

absorbance and the total molar concentration of the monomers permitting DA determination 

[32]. 

 The high absorbance of the acetic acid at the working concentration disturbs the 

determination of both GluNAc and GluN residues when using the zero order UV spectra. 

The 1st derivative spectra of the AcOH solutions share a common point at around 202 nm for 

concentrations from 0.005 up to 0.03 M, designated as the zero crossing point by Muzzarelli 

and Rocchetti [19]. Consequently, the determination of the amine and N-acetyl containing 

concentration should be relatively insensitive to fluctuations in the acetic acid concentration. 

Individual calibration curves for both GluNAc and GluN were drawn through a linear 

regression between the concentration and the 1st derivative UV signal arising from each one 

(Fig. 6 and 7, respectively). This was deduced from the Beer’s lamberts law for diluted 
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solutions, which correlates the concentration (C) with the absorbance (A), for a given 

wavelength (λ) as shown in Equations 2.6-2.9. Each spectrum shown in Figures 6 a) and 7 a) 

represents the average of two independent data sets. 

 

    A(λ) = ε(λ)luvC   Eq. 2.6 

 

Where ε is the molar absorptivity and lUV is the optical length that in the present work is 1 

cm. Since both l and C are independent on the wavelength, 

 
dA

dλ
= dε

dλ
lC = ε'(λ)luvC   Eq. 2.7 

It should be noticed that the acetic acid (AcOH) gives also a signal at λ = 202 nm, thus Eq. 

2.7 should be corrected as shown below, 

 
A− AAcOH = εlUVC   Eq. 2.8 

 
dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

= ε' lUVC   Eq.2.9 

Denoting the 1st derivative of the GluNAc and GluN molar absorptivities as εa and εg 

respectively, the linear regression of the experimental data gives, 

 

εa'lUV= -459.5 M-1 and εg'lUV= -33.3 M-1 

 

 The method for the determination of DA by means of 1st derivative UV is based on 

the assumption that the molar absorptivities of both GluN (εg) and GluNAc (εa) 

chromophoric groups does change when they are covalently bound through β-(1→4) 

glycosidic linkages. Consequently, the monosaccharides contribute in an addictive way to 

the total absorbance, which in the presence of acetic acid can be expressed as, 
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A = εalUVCa + εglUVCg + εAcOHlUVCAcOH   Eq. 2.10 

where the concentrations (Ci) are in mol/L. 

 

 

 a) b) 

Figure 6: First Derivative UV spectra of GluNAc at 202 nm 

 

 

 a) b) 

Figure 7: First derivative UV spectra of (a) GluN at λ=202 nm and (b) respective calibration curve  

 

 Since the optical path length (l) and the concentration (Ci) are independent of the 

wavelength, differentiating Equation 2.10 gives, 

 

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

= ε'a lUVCa + ε'g lUVCg   Eq. 2.11 

 The degree of deacetylation (DD) is defined as the molar fraction of the GluN units 

and can be expressed as the ratio between the GluN and total monosaccharides 

concentrations (Ct), 
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DD =
Cg

Ca + Cg

=
Cg

Ct

  Eq. 2.12 

Combining Equations 2.11 and 2.12 and rearranging, it is obtained, 

 

1
Ct

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

 

 
 

 

 
 = ε'a lUV − ε'a lUV −ε'g lUV( )DD Eq. 2.13 

 The Equation 2.13 is the basis of the method proposed herein. It is interesting to 

notice that the method developed by Muzzareli and Rocchetti is a particular case of the last 

equation [19]. In fact, since εg >> εa, Equation 2.13 can be simplified as follow, 

 

1
Ct

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

 

 
 

 

 
 = ε'a lUV − ε'g lUV( )DD  Eq. 2.14 

 Ct within a chitosan sample cannot be achieved without knowing the DD. Thus, it is 

more convenient to express the copolymer concentration in terms of solute mass (C t ) in g/L, 

which is defined experimentally. These two concentration values are related by the next 

Equation, 

 

C t
Ct

= Ma − (Ma − Mg)DD Eq. 2.15 

 Where Ma and Mg are the molecular weights of the GluNAc and GluN units within 

the copolymer. Combining Equations 2.13 and 2.15, it is obtained, 

 

1

Ct

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

 

 
 

 

 
 =

ε'a lUV − ε'a lUV −ε'g lUV( )DD

Ma − (Ma − Mg)DD
  Eq. 2.16 

 

Following rearranging, the following results, 

 

DD =1−
ε'g lUV −

Mg

Ct

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

 

 
 

 

 
 

Ma − Mg

Ct

dA

dλ
− dA

dλ
 
 
 

 
 
 

AcOH

 

 
 

 

 
 − (ε'a lUV −ε'g lUV )

 

 

 
 
 
 

 

 

 
 
 
 

  Eq. 2.17 
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The molecular weight of N-acetyl and amino glucopyranoses comonomers are Ma=203 

g/mol and Mg=161 g/mol, respectively. Therefore, Equation 2.17 allows a straightforward 

determination of the DD. DD can also be expressed in terms of percentage. Consequently, 

the value of DA (%) can be obtained by the difference. 

DA(%)=100-DD(%) 

The results obtained for the different chitin derivate samples are reported in Table 8. 

 

Table 8: Degree of acetylation (DA%) as a function of process variables using UV 

 

Sample DA (%) Error (%) 

Chitin 99.7 1.4 

Chitosan 5.9 0.9 

CS9-1 81.5 4.8 

CS11-1 77.1 2.9 

CS13-1 66.9 2.7 

 

2.5. Conclusion 

 

Using a statistical approach, temperature and time as process variables of the chitin 

deacetylation reaction were analysed. Taking on FTIR as one of the most traditional method 

to determine chitin deacetylation degree, it was verified that the higher level of both variable 

studied (130 °C-3h) resulted a chitin derivative with ca. 65% of DA. The ANOVA indicated 

that the most important variable is the temperature and that there is a slight interdependence 

between both variables in the range studied. 

Thermo-oxidation data from TGA showed that the equilibrium moisture of the chitin 

derivates is equivalent to that of pristine chitin for samples that resulted a DA higher than 

75% which value was around 7%. 

The values of DA assessed from the 1st derivative UV is in accordance with that using 

FTIR. 
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3. CHITOSAN BASED BEADS FOR CONTROLLED RELEASE OF 

PROTEINS  

 

3.1. Abstract 

 
Chitosan is biocompatible polymer of natural origin widely investigated for applications in 

drug delivery and regenerative medicine. In this chapter, Chitosan’s capability of forming 

water gelling beads in the presence of non-toxic polyanion was exploited for the loading of 

two model proteins. Human Serum Albumin (HSA) and porcine trypsin were successfully 

loaded into chitosan-tripolyphosphate (TPP) beads. Both proteins were highly incorporated 

when the cross-linking process was allowed to occur for 24 h at room temperature (RT). The 

release profiles of the two proteins were compared and the faster diffusion of trypsin was 

associated to its smaller molecular weight. Moreover, in vitro degradation experiments, 

aimed to mimic physiological degradation pattern of the beads displayed a complete 

degradation of the material in almost 30 days. Certainly, the preliminary experimental data 

acquired in the present work represent a starting study for the promising application of 

chitosan-TPP beads for the controlled release of proteins of therapeutic interest. 

 

3.2. Introduction 

 
 Chitosan is a cationic polysaccharide composed of β-1,4 linked 2-amino-2-deoxy-

D-glucopyranose (D-glucosamine). In nature it is found in fungi, but it is conventionally 

produced by deproteinization, demineralization and deacetylation of chitinous material 

which is widely distributed in living organisms (arthropods, fungi, algae, mollusca, etc.) [1].  

Chitosan is biocompatible, it does not cause allergic reactions and rejection. Moreover, 

chitosan has antacid and antiulcer characteristics, which prevents or weakens drug irritation 

in the stomach [2]. Under the action of ferments, in vivo it degrades slowly to harmless 

products (amino sugars), which are completely absorbed by the human body. It is known to 

possess antimicrobial property and absorbs toxic metals such as mercury, cadmium, lead, etc. 

In addition, it has good adhesion properties [3], coagulation ability and immunostimulating 

activity [4]. 

 Chitosan is a widely investigated biopolymer, thanks to its gelling capability and 

the possibility of applying this natural polymer in regenerative medicine and drug delivery. 
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In particular, chitosan vehicles appear promising for the administration of therapeutic 

peptides and proteins  such as vaccines, cytokines, enzymes, hormones and growth factors, 

which are becoming a very important class of both therapeutics and agents for regenerative 

medicine. Despite the potential of many proteins and peptides, their application in medical 

treatments is hampered by difficulties in the in-vivo administration, related to their chemical 

and conformational instability, presence of denaturing agents, pH and changes in ionic 

strength. 

 Chitosan has been extensively studied as carriers for drugs [5, 6], protein carriers 

[7] and gels for the entrapment of cells or antigens [8] as a viable route of parenteral drug 

delivery. Through parenteral drug delivery, especially intravenous injection, one can gain 

easy access to the systemic circulation with rapid drug absorption and delivery to the site of 

drug action. Unfortunately, this rapid drug absorption is usually concomitant with a rapid 

decline in drug levels in the systemic circulation by the reticuloendothelial system. For 

effective treatment, it is often desirable to maintain systemic drug levels within a 

therapeutically effective concentration range for as long as treatment is needed [9]. 

Consequently, considerable effort has been invested in the development of parenteral 

controlled release formulations.  

 The depot form, as microspheres/ beads, was found to be the most favorable due to 

their facile fabrication, long acting controlled drug delivery to the systemic circulation and 

specific orientation of the drug carrier via active or passive targeting to the treatment site of 

the body. The carrier matrix should be biocompatible, biodegradable and easily shaped into 

microsphere/ beads forms, therefore, chitosan is a good matrix for this purpose.  

 Chitosan microspheres and beads have been prepared using several different 

methods. The most applied processing methods include internal or external iontropic 

gelation, which allows for the obtainment of a wide range of products, from micro beads to 

nanosized particles. Among these, the most popular one is the suspension-crosslinking 

technique. The following is a typical procedure; an aqueous acidic solution of chitosan is 

added in the form of small droplets via a syringe into a phase (water/mineral/ oil) as the 

suspension medium. To this suspension, a chemical/physical crosslinking agent, usually a 

bifunctional chemical reagent such as; glutaraldehyde, hexamethylene diisocyanate or 

ethylene glycol diglycidyl ether [8,10] is added. A schematic representation of the technique 

is given in figure 1. The chitosan microspheres obtained are washed with petroleum ether, 

sodium bisulfide and acetone, respectively, to remove excess crosslinking agent and oil 

[10,11]. Chitosan microspheres have been evaluated for delivery of different types of active 

agents such as drugs, proteins and antigens [12-21]. Entrapped drugs can be released via 
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diffusion from the microspheres; consequently, the swelling ratio significantly affects the 

release rate. 

 

 

Figure 1. Schematic representation of the suspension crosslinking technique. 

 
 According to previous studies, drug release from chitosan microparticles could be 

controlled by crosslinking the matrix using chemical crosslinking agents such as 

glutaraldehyde [22, -25], NaOH [26-28] and ethylene glycol diglycidyl ether [8]. However, 

these chemical crosslinking agents have possibility of inducing undesirable effects and are 

toxic to living systems. Chemically synthesized glutaraldehyde can cause irritation to 

mucosal membranes due to its toxicity [27,6,29]. To overcome this disadvantage of chemical 

crosslinking agents, ionic crosslinking agents can be used such as tripolyphosphate (TPP), 

genipin and alginate [30-33]. For example, chitosan beads, micro or nanoparticles were 

produced by ionic crosslinking with tripolyphosphate (TPP) [34-36]. Shu and Zhu et al. 

reported the chitosan bead, which was prepared with TPP, increased the drug loading 

efficiency as well as prolonging the drug release period, and they also showed that citrate 

cross-linked chitosan film possessed pH sensitive swelling and drug controlled release 

properties[32,53]. Mi et al. reported that the chitosan microspheres prepared with genipin, a 

naturally occurring crosslinking reagent, affected the release behavior of the drugs in 

microspheres [6]. TPP is nontoxic and multivalent anions. It can form gel by ionic 

interaction between positively charged amino groups of chitosan and negatively charged 

counterion of TPP [29, 32, 37, 38]. This interaction could be controlled by the charge density 

of TPP and chitosan, which is dependent on the pH of solution. The chitosan matrix could be 

depended on molecular weight (MW) of chitosan. Puttipipatkhachorn et al. (2001) reported 
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that the higher the MW and degree of deacetylation of chitosan, the lower the release rate of 

chitosan film [39]. 

 The advantage of iontropic gelation stands in the safeness for the operator, since it 

avoids the use of hazardous organic solvents and it is based on the cationic nature of 

chitosan, able to crosslink with multivalent anions such as sulfate, citrate, and 

tripolyphosphate [40,41]. Tripolyphosphate (TPP) is a non-toxic polyanion which easily 

interacts with chitosan and has previously been used for the preparation of chitosan beads, 

microspheres and nanoparticles [38].  

In this chapter, two model proteins are applied for the preparation of protein loaded chitosan-

TPP beads. HSA has been chosen as middle-size protein model and applied for preliminary 

evaluation on loading and release kinetics. Porcine trypsin has been applied as model of 

active agent, due to its enzymatic activity it is generally applied for the assessment of activity 

maintenance after loading into a polymeric system [42, 43]. 

 
3.3. Materials and Methods 

 
3.3.1 Materials  

 

 Chitosan and sodium tripolyphosphate(TPP) were purchased from Sigma Aldrich. 

Molecular weight was in the range of 190,000 - 375,000 as indicated by the supplier, 

viscosity was about 200 cps . Degree of deacetylation (DD) was >85%. All other  reagents 

and solvents were of reagent grade purity. Human Serum Albumin used as a model protein 

and lysozyme (hen egg-white) were purchased from Sigma-Aldrich. 

 

3.3.2 Methods  

 

3.3.2.1 Preparation of crosslinked Chitosan beads  

 

 Chitosan powder(0.6 g) was dispersed in 20 mL of water containing 1 (v/v)% acetic 

acid. The mixture was stirred and left overnight to prepare dissolved chitosan solution. The 

TPP powder was dissolved in distilled water to prepare 1%(w/v) TPP aqueous solutions. The 

chitosan solution was dropped through a syringe needle into gently agitated TPP solution and 

the gelled spheres formed instantaneously. 
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3.3.2.2 Preparation of protein loaded Chitosan beads  

 

 The chitosan and TPP solutions of the same concentrations as above were made. 

The model protein HSA was dissolved directly into the TPP solution. The concentration of 

the protein in TPP solution is 0.1%. The pH of the TPP solution was maintained at 7. The 

solution of TPP and albumin was stirred for 10 min to attain homogeneity. The chitosan 

solution was dropped through a syringe needle into gently agitated TPP solution and the 

gelled spheres formed instantaneously. The chitosan droplets were stood in the solution for 2 

hrs and 24 hrs to cross-link the gel beads and examine the effect of time on crosslinking. To 

analyse the effect of temperature on cross linking and encapsulation of the protein the beads 

were allowed to crosslink at room temperature as well as at -4°C. After cross linking, the 

solidified gel beads were separated and the supernatant collected for further analysis. 

Porcine trypsin was loaded under the same conditions of albumin loading, by allowing the 

crosslinking at room temperature for 24hrs. 

 

3.3.2.3 Morphological characterization  

 

 The surface and cross-sectional morphologies of the dried beads were examined 

using scanning electron microscopy (SEM) and Field Emission Microscopy (FEM). 

 

3.3.2.4 Swelling of Chitosan-TPP beads  

 

 The water sorption capacity of the beads was determined by swelling the beads in 

three media: distilled water, phosphate buffer saline solution (PBS) pH 7.4, cell DMEM 

growth media. A known weight (16 mg) of the chitosan beads was placed in different media. 

The wet weight of the swollen beads was determined by first blotting the beads with filter 

paper to remove the adsorbed water and then weighed immediately on an electronic balance. 

The percentage swelling of chitosan beads in the media were calculated by the formula: 

 

 BSR% = [(We-Wo)/Wo]*100  (1) 

 

Where BSR is the beads swelling ratio percent at equilibrium. We denote the weight of the 

beads at equilibrium swelling and Wo is the initial weight of the beads. 
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3.3.2.5 Degradation of Chitosan-TPP beads  

 

 The in vitro degradation of chitosan TPP beads was followed in 1ml PBS pH 7.4 at 

37 °C containing 1.5 µg/ml lysozyme. The concentration of lysozyme was chosen to 

correspond to the concentration in human serum [44]. Briefly, beads of known dry weights 

were incubated in the lysozyme solution with gentle mechanical agitation for the period of 

study. The lysozyme solution was refreshed daily to ensure continuous enzyme activity [45]. 

After 7, 14, 21 and 28 days, samples were removed from the medium, rinsed with distilled 

water, dried under vacuum and weighed. The extent of in vitro degradation was expressed as 

percentage of weight loss of the beads after lysozyme treatment. 

 

3.3.2.6 Evaluation of protein encapsulation efficiency  

 

 The supernatants of the drug loaded beads were analysed both by U.V 

spectrophotometric method for preliminary protein evaluation and by BCA micro assay kit. 

The BCA Micro Assay Kit was used as per the guidelines mentioned on the kit and the 

reading was taken at 540nm. All the samples are analysed in triplicate. 

The Encapsulation Efficiency (EE%) was calculated from the following expression: 

EE%= [Loaded Protein(mg) / Protein Formulation (mg)] *100  (2) 

The experiment was performed in two sets: one for 2h cross linking and 24h cross linking 

and the other for temperature difference during cross linking process i.e. cross linked at room 

temperature and at -4°C. 

The Loading(%) was also calculated by using the formula: 

Loading (%)=[Loaded Protein(mg)/lyophilised beads (mg)]*100 (3) 

 

3.3.2.7 Protein release studies  

 
 Either albumin or trypsin loaded beads were suspended into 50 mL PBS pH 7.4 and 

incubated on a shaking water-bath at 37°C. A total of 2 ml supernatant were withdrawn, at 

appropriate intervals and protein content was determined by BCA micro assay kit. An equal 

volume of the same dissolution medium was added immediately to maintain a constant 

volume. 

 The activity of the released trypsin was also evaluated by a colorimetric assay using 

N-α-benzoyl-DL-arginine-4-nitroanilide (BApNA) as synthetic substrate for the enzyme. 
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3.4. Results and Discussion 

 
3.4.1 Preparation of Crosslinked Chitosan Beads  

 

 The chitosan gel beads were obtained by using ionotropic gelation method. This 

method employs the reinforcement of TPP as crosslinking agent. This results in the 

formation of insoluble chitosan beads, without involving addition of dialdehydes. The 

electrostatic interaction between TPP and chitosan has been reported and exploited in the 

pharmaceutical industry to prepare TPP cross linked beads for long time [46]. The TPP 

treatment of chitosan beads is expected to improve their stability and their applicability in 

controlled drug delivery [47]. 

 The interaction of a strong polycation chitosan, with tripolyphosphate (TPP) results 

in a polycation-multivalent anion complex. The nature and extent of ionic reactions have 

been found to be sensitive to some variable such as the molecular weight, the unit molar 

ratio, and the charge density of both electrolytes [38]. Depending on these parameters, 

different types of the chitosan-TPP complexes have been prepared in the recent years [38]. 

According to the intrinsic pK (pK0) of chitosan (6.3), chitosan dissolves in acid to present -

NH3+  site. Tripolyphosphoric acid (H5P3O10) is a weak polyprotic acid-like phosphoric acid. 

Due to this reason, sodium tripolyphosphate (Na5P3O10) dissolves in water to dissociate both 

OH- and tripolyphosphoric ions in the TPP solution. The dissociation constant  is about 

7.453* 10-4, this means that P3O10
5-, HP3O10

4-, and H2P3O10
3- could co-exist in the 

tripolyphosphate aq. solution in all pH ranges. In original TPP aq. solution (basic, pH not 

adjusted), the concentration of P3O10
5- and HP3O10

4- is high but the concentration of OH- is 

also present. The OH- or tripolyphosphoric ions (P3O10
5- and HP3O10

4-) in this medium could 

competitively react ionically with the bind site -NH3+ in chitosan by deprotonation or ionic 

crosslinking, respectively (figure. 2) which is, what expected in our case as well. This result 

has also been reported by Mi et al.[38], who proposed that at the pH value of 9.7 of TPP , the 

TPP ions (P3O10
5-) competed with OH- ions to bind with –NH3+ in chitosan,  resulting in the 

decrease of binding sites for OH- ions and increased pH. And hence, the precipitations of 

complexes in this state were formed both by deprotonation and ionic crosslinking. By 

adjusting the pH value of TPP solution from 9.7 (initial) to 4.0, only P3O10
5- anions existed 

and that the precipitations of complexes were formed only by ionic crosslinking between -

NH3+ and TPP ions.  
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Figure 2. Ionic reaction of chitosan in TPP aq. solution: (a) deprotonation; (b) ionic crosslinking. 

 
 Mi et al. [38] also suggested that, a reversible chitosan-TPP structural change 

occurs by varying the pH value of curing agent, TPP, as shown in figure 3. In the higher pH 

region, chitosan may take a randomly coiled conformation because of the decrease of ionized 

amino group and of a weak charge repulsion. However, in the lower pH region, chitosan 

used possibly takes a more extended form both by hydration of the protonated amino group 

and by strong positive charge repulsion between NH3
+ groups. Thus, in the higher pH range 

region, the chitosan-TPP complexes contain several times more chitosan repeating unit than 

tripolyphosphate expressed as mole ratio and may accept the looped shape (“loop” means, in 

this case, TPP combined with chitosan in a “slackened state”).  

 



CHAPTER 3 – CHITOSAN BASED BEADS FOR CONTROLLED RELEASE OF PROTEINS  

 109

 

Figure 3. Ladder-loop transition of chitosan-TPP complex structures: (a) ladder type  (b) loop type.  

 

 In this state, the ionic reaction of chitosan-TPP complex should be a pH-dependent 

coacervation accompanied with slightly ionic-crosslinking. Though according to the 

facilitation of ionizing chitosan in lower pH range region, the chains of chitosan accept a 

more extended conformation and they form a complex with TPP in a ladder shaped structure. 

In this state, chitosan forms complex with multivalent counterions, TPP, through the 

formation of intermolecular or intramolecular linkages by ionic interaction. Chitosan-TPP 

complexes were formed only by the ionic interaction between the positively charged amino 

group and negatively charged counterions, TPP ions. The gelation mechanism of chitosan–

TPP complexes in this state should be fully ionic crosslinking controlled.  
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3.4.2 Morphological Observation  

 
 The prepared beads were mostly spherical in their hydrated state (figure 4). SEM 

micrographs of the dry chitosan-TPP beads (figure 4(b)) display the formation of beads with 

drop-like shape of about 800µm diameter for the spherical portion, and a wrinkled surface 

with little cracks (figure 4(c)). The loading of the two model proteins, HSA and trypsin, did 

not affect the iontropic gelation process. Similarly to plain chitosan-TPP beads, the prepared 

protein loaded beads were macroscopically spherical in the hydrated form. The SEM 

micrographs of the dry state display a preserved spherical shape, with about 1-1.5 mm 

diameter and a more irregular surface with higher rugosity. (figure 5(a), 5(b)). 

 

   

 

 

 

Figure 4: (a)Macroscopic features of TPP crosslinked Chitosan beads(b) SEM micrographs of 

Chitosan beads shape ( c) SEM of the beads surface 



CHAPTER 3 – CHITOSAN BASED BEADS FOR CONTROLLED RELEASE OF PROTEINS  

 111

   

Figure 5: SEM micrographs of(a) HSA, and (b) trypsin loaded TPP cross linked Chitosan beads. 
 

 

3.4.3 Swelling Ratio  

 
 The swelling behaviour of plain chitosan-TPP beads was investigated in deionised 

water, PBS at pH7.4 and DMEM cell culturing medium (Table 1). The swelling equilibrium 

is reached in about 20h in all the media, leading to swelling ratios values of 120-130%.  

Table 1: Swelling ratios of the TPP cross linked Chitosan beads in water, DMEM and PBS. 

  

Medium Water PBS DMEM 

Swelling%±SD 119.4±3.5 121.2±1.1 131.0±1.9 

 

3.4.4 Degradation of Chitosan-TPP Beads  

 
 It is well known that, in human serum N-acetylated chitosan is mainly 

depolymerised enzymatically by lysozyme and not by any other enzymes or other 

depolymerisation mechanism [49]. The enzyme biodegrades the polysaccharide by 

hydrolysing the glycosidic bonds present in the macromolecular backbone. Lysozyme 

contains hexameric binding site [49] and hexasaccharide sequences, containing 3-4 or more 

acetylated units, contribute mainly to the initial degradation rate of N-acetylated chitosan 

[50]. The pattern of degradation of chitosan found in our studies can, in part, be explained by 

this mechanism of enzymatic degradation. As can be seen in figure 6, almost linear 

enzymatic degradation occurred within 15-17 days and complete degradation of the beads is 

expected in about 30 days. 
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Figure 6: Enzymatic degradation profile of TPP crosslinked Chitosan beads. 

 
3.4.5 Protein Encapsulation and Release Studies  

 

 The model protein HSA was successfully encapsulated into chitosan-TPP beads. 

The influence of the crosslinking time and temperature on encapsulation efficiency was 

evaluated. In particular as reported in Table 2, 2 h of crosslinking were not sufficient to 

achieve a high EE%, but 24 h were required. Moreover, when the process was performed at 

4°C, a lower value of EE% was recorded, probably due to kinetic limitations of the specific 

low temperature. 

 When trypsin was applied for the loading, no significant variation of beads 

formation was observed macroscopically. The loading was performed in this case at room 

temperature for 24hrs and the EE% was 55%. 

 The applied formulation parameters involve quite a small amount of protein which 

is highly incorporated in the beads, EE% up to 64%, and correspond to about 4.1% of beads 

dry weight.  

 

Table 2:.Encapsulation Efficiency (EE%) and Loading % of Albumin into the TPP cross linked 

Chitosan beads, related to cross-linking temperature and duration.  

 

Run Cross-Linking EE % Loading % 

 Temp (°C) Time (h)   

B-HSA1 RT 2 49 4.1 

B-HSA2 RT 24 64 4.1 

B-HSA2 4 2 27 3.6 
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 In-vitro drug release was monitored for 5 h. Both proteins easily diffused out of the 

chitosan-TPP beads under physiological conditions. Results of drug release versus time for 

albumin and trypsin are shown in figure 7(a),(b). As expected, in case of albumin the release 

of the protein was slower than for trypsin reaching around 17% of cumulative release in 5 h 

whereas under the same release conditions trypsin was released up to a level of 50%. The 

difference in molecular weight of the two protein is reflected in their inherent volume and 

certainly into their diffusion constant.  

 Anyway, the measurements of the activity of the trypsin released from the beads 

(figure 7(c)) highlight a loss of 15-20% of activity after 30 minutes. Actually, the enzyme 

released from the beads is accumulated in the releasing medium because only a small amount 

of volume (2 ml on total 50 ml) are replaced when sampling. It known that trypsin is 

extremely sensitive to auto-digestion under physiological conditions [51]. The correct 

evaluation of the activity of the released trypsin would be better performed with the complete 

withdrawn of the medium at each time, or after addition of calcium ions to the solution, to 

limit protein autolysis [52]. 

 

   

 

  

 
Figure 7: Drug release profiles of (a) HSA loaded (b) trypsin loaded TPP crosslinked Chitosan beads 

and (c) Retained activity of trypsin loaded into TPP crosslinked Chitosan beads in the releasing 

medium. 
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3.5. Conclusion  

 

 In this work, the conditions for the preparation of protein loaded TPP crosslinked 

chitosan beads were optimized for the achievement of high protein loading. The activity of 

the model enzyme was not significantly affected by the process and the observed reduction 

of activity of the released protein is mostly associated with trypsin autolysis. Under 

physiological conditions the release profiles of the loaded proteins seem related to their 

molecular weight and the complete degradation of the TPP crosslinked chitosan beads under 

lysozyme digestion occurs in 30 days. The present work represent a starting study for the 

promising application of chitosan-TPP beads for the controlled release of proteins of 

therauputic interest. Forthcoming studies will be focussed on the reduction of bead size to 

micro-nanostructures with the same properties of the prepared beads, but with the ability to 

reach all body areas after conventional administration. 
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4. HYBRID NANOPARTICLES BASED ON CHITOSAN AND 

POLY(METHACRYLOYLGLYCYLGLYCINE)  

  

4.1. Abstract 
 

A novel polyelectrolyte complex nanoparticles were prepared based on chitosan  and 

poly(methacryloylglycylglycine) [poly(MAGlyGly)]. The physical-chemical properties of 

the complexes were investigated by means of dynamic light scattering, scanning electron 

microscopy, zeta potential and X-ray photo electron spectroscopy (XPS). The results 

indicated that the addition of chitosan into MAGlyGly in DMSO and polymerized 

subsequently resulted in the formation of nanoparticles in the size range of 100-120 nm with 

proper chitosan and MAGlyGly weight ratios. Variation of the ratio of the different 

components revealed that the formation of the nanoparticles depended strongly on the ratio 

of chitosan and MAGlyGly. The particles also showed difference in size and morphology 

before and after polymerization. Zeta potential studies highlighted a positive surface charge 

and the results were well supported by XPS analysis.  

 

4.2. Introduction  

 
 Nanotechnology is of great interest in most fields, since it allows manipulating 

matter at the nanoscale level [1,2] and tailoring final product properties. Among the various 

tools used in nanotechnology, nanoparticles represent a widely studied area. Nanoparticle 

synthesis is currently intensely researched due to its wide variety of potential applications, 

including food processing [3,4] and biomedical [5], optical [6], and electronic devices [7]. 

The use of natural polysaccharides in the preparation of nanoparticles has attracted attention 

[8-11] due to their biocompatibility, biodegradability, and hydrophilicity, which are 

favorable characteristics in various applications. Chitosan nanoparticles [12,13] stand out 

due to their unique properties. Chitosan is a polysaccharide derived from chitin, which may 

be obtained from crustaceans, insects, fungi, etc. [14]. Several appealing properties have 

been reported, such as film-forming ability, gelatinous characteristics, bioadhesion, and skin 

penetration-enhancing effects, which may be explained by the opening of tight epithelial cell 

junctions. Due to its polymeric cationic characteristics, Chitosan may interact with 

negatively charged molecules and polymers [15]. In detail, chitosan is a weak base with a 

pKa value of the D-glucosamine residue of about 6.2-7 and therefore is insoluble at neutral 
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and alkaline pH values. Chitosan is readily soluble in dilute acidic solutions below pH 6.0. 

The presence of the amino groups indicates that pH substantially alters the charged state and 

properties of chitosan [16]. At low pH, these amines get protonated and become positively 

charged, making chitosan a water-soluble cationic polyelectrolyte. It is this cationic property 

that makes it easy for processing into various formulations. 

 In the specific field of biomedicine, natural and synthetic polymers that are 

biocompatible, biodegradable, capable of binding with proteins, genes, nucleic acids, acidic 

lipids as well as having the ability of absorption enhancing and mucosal adhesion without 

toxicity are required [17]. Chitosan, as a polymer best suits for the above said applications. 

On the basis of these considerations, many types of nanosized polymeric carriers were 

developed, including polymeric micelles [18], polymer modified liposome [19], and some 

other colloidal systems [20]. Among them, biocompatible polymeric nanoparticles have been 

extensively investigated for both therapeutic (e.g., drug delivery) and diagnostic (e.g., 

imaging) purposes [21-24]. As a successful drug delivery vehicle, polymeric nanoparticles 

should have the ability to deliver drug to desirable sites and to escape from the biological 

particulate filter known as the reticuloendothelial system (RES), resulting in long circulating 

in vivo [25]. To use them for the incorporation of bioactive macromolecules and vaccines 

such as monoclonal bodies, plasmids, antigens, oligonucleotides, enzymes, recombinant 

proteins, and peptides for therapeutic applications, the design/preparation of these systems 

must be monitored in terms of particle shape and morphology, size distribution, surface 

chemistry, and polymer nature [26]. Among the methods of development of polymer 

dispersions for biomedicine, the employment of polyelectrolyte complexes represents a very 

attractive approach, mainly due to the simplicity involved in the preparation [27]. 

 Nanoparticles made of polyelectrolytes complexation (PEC) have shown potential 

for use as drug delivery systems [28,29]. Polyelectrolyte complexes are formed by 

interactions between macromolecules that carry oppositely charged ionisable groups [30]. 

During the last years PECs on the base of natural and synthetic polymers evoked a particular 

interest. Chitosan, whose structure is shown in figure 1, is a well-known natural cationic 

polyelectrolyte that processes primary amine groups (–NH2) and as mentioned earlier also, 

can be protonated in acidic environments to become –NH3
+. Recently the use of 

complexation of oppositely charged macromolecules to prepare chitosan complexes and 

nanoparticulate structures as controlled drug release formulations has attracted much 

attention [31-35], because this process is simple, feasible, and can usually be performed 

under mild conditions. Moreover, it has attracted interest as a biocompatible, stimulus– 

responsive, mucoadhesive material for use in biomedical applications [36-38]. 



CHAPTER 4 – HYBRID NANOPARTICLES BASED ON CHITOSAN AND POLY(METHACRYLOYLGLYCYLGLYCINE ) 

 121

 

 

Figure1: Chitosan  
 

 These complexes made up of polymeric systems can be used to physically trap an 

antitumor agent and release it in a sustained form directly at the tumor site [39,40]. They also 

allow for controlling the release pattern of drug and sustaining drug levels for a long time by 

appropriately selecting the polymeric carrier [41].  

 Water-soluble polymers such as N-(2-hydroxypropyl)-methacrylamide (HPMA) co-

polymers are a class of synthetic polymers that are frequently employed as drug carriers 

because of their ability to improve the solubility of hydrophobic compounds, reduce non-

specific toxicity, and increase the therapeutic index of low molecular weight anticancer 

drugs [42]. Anticancer drugs chemically bound to water-soluble polymeric carriers such as 

HPMA co-polymers (polymeric prodrugs) have exhibited decreased systemic toxicity, as a 

result of the altered biodistribution of polymer-bound drugs as compared to free drugs [43]. 

Several drug-polymer conjugates based on HPMA co-polymers have been studied clinically. 

A doxorubicin-(HPMA co-polymer) conjugate, known as PK1, was the first drug-polymer 

conjugate to enter clinical trials [44]. Targeted HPMA co-polymer-bound doxorubicin 

conjugates have previously been shown to have a significant anti-tumor effect in vitro and in 

vivo [45,46] and have shown greater potency than free doxorubicin in the treatment of 

ovarian cancer in vivo and in vitro [47]. Recently authors have reported the first endocrine-

chemotherapy combination in the form of the model compound HPMA co-polymer-

aminoglutethimide doxorubicin [48]. In our laboratory, nanoparticles based on bioeliminable 

co-polymers poly(methacryloylglycylglycine-OHx-co-hydroxypropylmethacrylamidey)  were 

prepared and loaded with HSA as model drug [49]. 

 Based on this approach methacryloylglycylglycine (MAGlyGly) was prepared and 

used for preparing nanoparticles employing compelexation with chitosan. MAGlyGly is a 

biocompatible synthetic polyelectrolyte with polyanionic character, its wide applicability as 

a co-monomer in the field of drug delivery is impressive. It has carboxylic groups which 

ionize to become COO- groups that can effectively react with the NH3
+ groups of chitosan to 

form a polyelectrolyte complex. Various reaction parameters have been optimized to form 



PHD THESIS – MAMONI DASH 

 122 

nanoparticles with this PEC’s. When ionized, both polyelectrolytes have intrinsic biological 

properties. In parallel, the production of nanoparticles through in situ polymerization appears 

to be an interesting route as well. In the present work, the possibility to prepare chitosan 

based nanoparticles by the polymerization of the anionic monomer MAGlyGly was 

investigated and the effect of subsequent polymerization observed. Hence, the objective of 

the present study was to optimise the preparative conditions of chitosanx-poly(MAGlyGly) y 

nanoparticles and to establish the interaction between the two using various techniques.  

 
4.3. Materials and Methods 

 
4.3.1 Materials  

 

 Glycyl-glycine (GlyGly), methacryloyl chloride, ammonium persulphate 

[(NH4)2S2O8], sodium metabisulfite (Na2S2O5) and Chitosan (Mw = 71.3 kDa, degree of 

deacetylation 93%) were purchased from Sigma-Aldrich and used as received. 

 
4.3.2 Methods  

 
4.3.2.1 Synthesis of MAGlyGly  

 
 GlyGly (one equivalent) was added to a solution of sodium hydroxide (one 

equivalent) in water (19,8 w/v). Methacryloyl chloride was cooled to 0°C (one equivalent) 

and to it a solution of sodium hydroxide (one equivalent) in water (19,8 w/v) was added 

dropwise and simultaneously. The reaction mixture was stirred at room temperature for two 

hours than acidified with concentrated hydrochloric acid to pH 2. The crystal that 

precipitated from solution was isolated by recrystallization from 1:1 water/ethanol solution. 

The crystalline white monomer was dried in vacuum. The obtained yield was 50%. 

FT–IR (KBr): ν = 3380-3100 (ν OH, NH), 1740 (ν C=O carboxylic), 1647.4 (ν C=O amide I 

band), 1605.9 (ν C=C), 1540.4 (δ N-H and ν C-N amide II band), 1431 (ν C-O and O-H 

carboxylic) and 1337.9 cm-1 (δ CH3). 
1H NMR (200 MHz, DMSO-d6): δ (ppm) 1,8(s, 3H), 3,8(m, 4H,), 5,3 (s, 1H,), 5,7 (s, 1H,) 

and 8,2 ppm (m, 2H). 
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4.3.2.2 Preparation of Chitosan-MAGlyGly nanoparticles [CSx-(MAGlyGly)y] 

 

 Nanoparticles were prepared for 50:50 (w/w) and 25:75 (w/w) ratio of chitosan and 

MAGlyGly respectively. Data relevant to individual experiments are summarized in Table 1, 

whereas a typical experiment is described as follows. 

10 mg of chitosan was dissolved in a solution of 25,5 mg of MAGlyGly in 5 mL of 1:9 

dimethyl sulphoxide/water mixture for two hours under magnetic stirring. With the slow 

dissolution of chitosan in the solution mixture, opalescence was observed. After two hours 

under magnetic stirring the suspension was stored at 4°C and submitted to further 

investigations.  

After the dissolution of chitosan in the MAGlyGly solution, the suspension was stored at 

4°C. 

 

4.3.2.3 Preparation of Chitosan-polymerized(MAGlyGly) nanoparticles [CSx-

poly(MAGlyGly)y]  

 

 CSx-poly(MAGlyGly)y nanoparticles were obtained by polymerizing MAGlyGly in 

DMSO solution containing chitosan as described below. Nanoparticles were prepared for 

both the ratios of 50:50 (w/w) and 25:75 (w/w) of chitosan and MAGlyGly respectively also 

in this case. Data relevant to individual experiments are summarized in table 1, whereas a 

typical experiment is described as follows. 

 10 mg of chitosan was dissolved in a solution of 25,5 mg of MAGlyGly in 5 mL of 

1:9 dimethyl sulphoxide/water mixture for two hours under magnetic stirring. After the 

dissolution, 10 µL each of 1% w/v [(NH4)2S2O8] and 1% w/v (Na2S2O5) solutions were 

added to the chitosan-MAGlyGly formulation and the mixture was maintained under stirring 

at 70°C for an additional hour then cooled in an ice bath for 20 minutes. The nanoparticle 

suspension was stored at 4°C.  

 For purification, the nanoparticle suspension was placed in a polypropylene conical 

tube and centrifuged at 8000 g for 45 min at 25 °C by using an ALC PK121 R refrigerated 

centrifuge. The resulting pellet was suspended in distilled water. 

 

 

 

 



PHD THESIS – MAMONI DASH 

 124 

Table 1 Formulations of CSx-(MAGlyGly)y nanoparticles. 

 

Sample MAGlyGly 

(mg) 

Chitosan 

(mg) 

(NH4)2S2O8
a 

(µL) 

Na2S2O5
a  

(µL) 

CS50-poly(MAGlyGly)50 

(50/50 w/w) 

177,5 177,5 71 71 

CS50-(MAGlyGly) 50 

(50/50 w/w) 

177,5 177,5 - - 

CS25-poly(MAGlyGly)75 

(25/75 w/w) 

255 100 100 100 

CS25-(MAGlyGly) 75 

(25/75 w/w) 

255 100 - - 

a 1% aqueous solution 

 

4.3.2.4 Granulometry in suspension  

 
 Dimensional analyses were carried out using a Coulter LS230 Laser Diffraction 

Particle Size Analyzer, equipped with small volume module plus. Nanoparticle suspension 

were added into the cell unit until a 30-50% obscuration of polarization intensity differential 

scattering (PIDS) detector was reached. Deionised water was used as background and 

diameter distribution was processed using the Fraunhofer optical model. Three runs were 

performed on each sample. 

 

4.3.2.5 Morphological analysis  

 

 Nanoparticle morphology was investigated by means of scanning electron 

microscopy (SEM), using a JEOL LSM5600LV scanning electron microscope. The 

nanoparticle samples were purified by centrifugation and the resulting pellets were 

resuspended in deionised water and lyophilised. Gold sputtering was performed before SEM 

analysis. 
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4.3.2.6 Spectroscopic analysis  
 

 Infrared (FT-IR) spectra were recorded on liquid films and KBr pellets by using a 

Jasco FT–IR 410 spectrophotometer. 

 Nuclear Magnetic Resonance (NMR) spectra were recorded on 5–10% (w/v) 

solutions, in deuterated solvents, at 25 °C by using a Varian Gemini 200 spectrometer and 

tetramethylsilane (TMS) as internal standard. 1H–NMR spectra were recorded at 200 MHz, 

using the following spectral conditions: 3 KHz spectral width, 30 ° impulse, 2s acquisition 

time, 1–16 transients. Chemical shifts (δ) are reported in ppm and referred to 

tetramethylsilane as standard. Peak multiplicity is denoted by the following: s = singlet, d = 

doublet, dd = double doublet, t = triplet, m = multiplet. 

CSx-poly(MAGlyGly)y and CSx-(MAGlyGly) y nanoparticles were pressed into KBr pellets 

(1:100 copolymer/KBr ratio) and the FT-IR spectra were recorded by using the same, Jasco 

FT-IR 410 spectrophotometer 

 

4.3.2.7 Surface chemical characterization  

 

 X-ray Photoelectron Spectroscopy (XPS) was used to assess the surface chemical 

composition of CSx-(MAGlyGly) y and of CSx-poly(MAGlyGly)y nanoparticles. Surface 

chemical characterization of the nanomaterials was performed using a Thermo VG Theta 

probe spectrometer equipped with a microspot monochromatized Al Kα source and a flood 

gun combined with an argon gun for compensation of electrostatic charging of samples.  

 The Al Kα line (1486.6 eV) was used throughout the work and the base pressure of 

the instrument was 10-9 mbar. Survey and high-resolution spectra were acquired in fixed 

analyzer transmission mode with pass energies of 150 and 50 eV, respectively. Data analysis 

was performed using the Avantage software package, which consists of a non-linear least-

squares fitting program. The surface composition was determined by using the 

manufacturer's sensitivity factors.  

 The fractional concentration of a particular element X (% X) was computed using 

the following equation: 

% X = [ (Ix/fx)/ Σ(I i/f i) ]·100 

 

where Ii and fi are the integrated peak areas of each of the n detected elements and their 

sensitivity factors, respectively. The values of binding energies (BE–eV) were taken 

relatively to the binding energy of C1s-electrons of hydrocarbon contaminants on the sample 
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surface (from an adventitious carbon), which is accepted to be equal to 285.0 eV. The curve 

fitting process was done by imposing the same peak full width at half maximum (FWHM) to 

the all N1s peaks. 

 
4.3.2.8 Zeta potential analysis  

 

 Zeta potential analyses were performed on CSx-(MAGlyGly) y and CSx-

poly(MAGlyGly)y samples purified by centrifugation and resuspended in saline (NaCl 0.9%) 

so that the final concentration of nanoparticles was about 0.1 mg / ml and the pH around 3.5-

4. The tests were performed using Beckman Coulter DELSA 440SX at 25 ° C with a 

maximum deviation of 0.4 °C between the ends of the cell and setting constant values of 

current. Statistically significant results were obtained from the average of 3 replicates for 

each matrix used. 

 

4.3.2.9 Thermal analysis  

 

 Thermal Gravimetric Analysis (TGA) measurements of were carried out on 5-10 

mg nanoparticles samples in the 30–900°C temperature range in a nitrogen atmosphere at 10 

°C/min heated with a Thermogravimetric Analyzer TGA Q500. 

 

4.4. Results And Discussion 

 

4.4.1 Preparation & Characterization of MAGlyGly  
 

 A similar amidation reaction between methacryloyl chloride and glycylglycine, 

conducted in a basic aqueous media with NaOH, led to the formation of the monomer, 

methacryloylglycylglycine-OH (MAGlyGly). The system was obtained pure after 

recrystallization from methanol with yield of 50% (Scheme 1). 
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Scheme 1: Synthesis of MAGlyGly. 

 

The formation of the product was confirmed by spectroscopic characterizations (figure 2). 

 

  

 
Figure 2 Spectroscopic characterization of MAGlyGly: (a) 1H- NMR spectrum, (b) FT-IR spectrum. 

 

4.4.2 Synthesis & Characterization of [CSx-(MAGlyGly)y] and [CSx-

poly(MAGlyGly)y] nanoparticles 

 
 In this study, a novel nanoparticle system composed of chitosan and 

poly(MAGlyGly) was prepared with a simple and mild method under magnetic stirring. 

Briefly, chitosan was added to a solution of MAGlyGly in DMSO under stirring for two 

hours. This technique is promising because the nanoparticles can be prepared under mild 

conditions without using harmful solvents. It is well known that organic solvents may cause 

denaturation of peptide or protein drugs that are unstable and sensitive to their environments 

[50]. The prepared nanoparticles are intended to be used for drug delivery applications and 

hence such mild conditions are congenial. In our case, when chitosan is added to MAGlyGly 

solution, it goes into a polyelectrolyte form, which establishes electrostatic interactions with 

MAGlyGly and leads to the formation of CSx-MAGlyGly y nanoparticles. This phenomenon 

is observed immediately by the appearance of opalescence. It is important to point out that 
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opalescence has been used as an indication of nanoparticle formation in several other 

systems, whereas precipitation indicates the production of an unstable suspension due to a 

much larger particle size and/or the formation of agglomerates or unstable surface property 

balance [51]. This leaded us to investigate the particles at this stage of preparation. It was 

observed that the formed particles appeared in small clusters (figure 3). It is also significant 

to note here that the formation of chitosan nanoparticle is strongly correlated to the presence 

of MAGlyGly. In fact, experiments carried out in the same conditions but without 

MAGlyGly showed no nanoparticles formation. 

 

  

 
Figure 3 (a) SEM microphotographs of CS25-(MAGlyGly)75 nanoparticles; (b) Diameter distribution of 

CS25-(MAGlyGly)75 nanoparticles. 

 

 In particular, the fact that we are more interested in is in the formation of a 

polyelectrolyte complex, and by definition, a polyelectrolyte complex is formed by the 

reaction of two oppositely charged polymers. The electrostatic interaction between the 

positive charge of —NH3
+ group and the negative charge of carboxyl group is one of the 

most important factors. Even though this interaction was sufficient to lead to the formation 

of nanoparticles, it would be favourable to have MAGlyGly polymerized also for a toxicity 

point of view. Hence, in our experiments we polymerized MAGlyGly using [(NH4)2S2O8] 

and Na2S2O5 as radical initiators. When chitosan is dropped into this solution, inter- and 

intra- molecular electrostatic attractions occur between the anionic carboxyl group of 

poly(MAGlyGly) and the cationic amino groups of chitosan. A schematic representation of 

the complex is shown in scheme 2. The formation and properties of the polymer complex 

depends on the charge ratio of the anionic-to-cationic species [52]. This type of interaction is 

also in agreement with similar systems using acrylic acid reported in the literature [53,54]. 

Three type of ratios in terms of weight namely, 50:50, 25:75 and 60:40 of chitosan and 

MAGlyGly respectively were used to see if the change in composition had some effect in the 
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formation of the nanoparticles. Nanoparticle formation was observed only in case of 50:50 

and 25:75 of chitosan and MAGlyGly respectively, whereas the 60:40 ratio resulted in 

precipitation of chitosan in MAGlyGly solution. 

 

 

Scheme 2 A schematic representation of the proposed structure of the nanoparticles CSx-

poly(MAGlyGly)y obtained. 

 

4.4.3 SEM Analysis  

 
 SEM analysis showed a homogeneous morphology with a uniform particle size 

distribution and a good spherical shape. Nanoparticles size resulted in the range of 120-140 

nm.  

 Nanoparticles were formed for CS50-poly(MAGlyGly)50 and CS25-

poly(MAGlyGly)75 and no difference in morphology and size of nanoparticles was observed 

(figure 4(a),(b)). However, a significant difference was observed when the nanoparticles 

were prepared after polymerization. Subsequent in situ polymerization of MAGlyGly in the 

presence of chitosan led to a considerable increase in the number of nanoparticles and to an 

increase in their size as confirmed by SEM and granulometry in suspension analysis (figure 

3, 4). 
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 (a)  (b) 
Figure 4: SEM microphotographs of (a) CS25-poly(MAGlyGly)75 nanoparticles; (b) CS50-

poly(MAGlyGly)50 nanoparticles. 

 

4.4.4 FT-IR Analysis  

 
 The interaction of chitosan, MAGlyGly was investigated using FT-IR spectroscopy. 

The spectrum of chitosan (figure 5(a)) presents characteristics peaks at 3435 cm-1 assigned to 

stretching vibration of NH2 and OH groups and at 1651.7 cm-1 due to C=O of amide I. The 

MAGlyGly spectrum, also (figure 5(b)) shows peculiar peaks at 1740cm-1 due to C=O 

stretching, at 1540cm-1 related to N-H bending vibration of amide II, at 1647 cm-1 due to the 

stretching of amide I and at 1432 cm -1assigned to the OH of carboxylic group. 

 

    

 
Figure 5: Representative FT-IR transmittance spectra of (a) Chitosan  (b) MAGlyGly  

 

 On comparing the spectra of MAGlyGly, chitosan and CSx-poly(MAGlyGly)y 

nanoparticles, it was observed the absence of the band at 1740 cm-1 and the presence of two 

new bands at 1642 and 1393.8 cm−1 due to C=O asymmetric and symmetric stretching 

respectively of COO- and of a band at 1539.4 cm−1 related to symmetrical stretching of NH3
+ 

group (figure 6). The appearance of these new bands indicates the occurring of ionic 
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interaction between poly(MAGlyGly) and chitosan associated with the formation of 

nanoparticles (figure 6). This observation was valid for both CS50-poly(MAGlyGly)50 and 

CS25-poly(MAGlyGly)75 

 

   

 
Figure 6 Representative FT-IR transmittance spectra of (a) CS25-poly(MAGlyGly)75 

nanoparticles.(b)comparison of CS25-(MAGlyGly)75 and CS25-poly(MAGlyGly)75 nanoparticles. 

 

 As can be seen in figure 6(b),7(b), no significant difference between the spectrum 

of the polymerized and unpolymerised system of CSx-(MAGlyGly) y nanoparticles were 

observed. 

 Another important observation that was made on comparing the spectra’s was that 

the spectra of CS25-poly(MAGlyGly)75 showed a strong similarity with the spectrum of 

MAGlyGly in the region between 1260 and 1394 cm-1, while the spectra of nanoparticles of 

CS50-poly(MAGlyGly)50 had less resemblance with the spectrum of MAGlyGly, confirming 

the presence of a lower percentage of MAGlyGly in their composition. 

 

  

 
Figure 7 Representative FT-IR transmittance spectra of (a) CS50-poly(MAGlyGly)50 (b) comparison of 

CS50- (MAGlyGly)50  and CS50-poly(MAGlyGly)50 
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4.4.5 X-Ray Photoelectron spectroscopy  

 
 Additional information about the composition and structure of CSx-(MAGlyGly) y 

and CSx-poly(MAGlyGly)y nanoparticles in upper layers have been obtained by recording 

and examining XPS spectra. In order to discriminate the different chitosan and MAGlyGly 

contributions in the hybrid nanoparticles, pure materials have been also analyzed. 

The following CSx-(MAGlyGly) y formulations have been analyzed: 

1)  CS50-(MAGlyGly) 50, CS50-poly(MAGlyGly)50 

2)  CS25-(MAGlyGly) 75, CS25-poly(MAGlyGly)75 

 The most abundant elements detected on the surface of the nanomaterial are carbon, 

oxygen and nitrogen, while sulphur, silicon and chlorine are detected at lower 

concentrations. In particular, in figure 8 , the survey spectra of chitosan, MAGlyGly, CSx-

(MAGlyGly) y and CSx-p(MAGlyGly)y samples are reported. Atomic percentages of the 

relevant detected elements are reported in Table 2.  

 By these data an evaluation of the O1s/N1s corrected areas ratio was performed, 

giving the following results: 4/1 and 2.3/1 in chitosan and MAGlyGly, respectively (both as 

the expected stoichiometric value), 3/1 and 3.2/1 in CS50-(MAGlyGly) 50 and CS50-

poly(MAGlyGly)50, respectively and 3.4/1 and 3.3/1 in CS25-(MAGlyGly) 75 and CS25-

poly(MAGlyGly)75, respectively. These quantitative informations resulted in general 

agreement with the stoichiometry of the chemicals employed for the nanoparticles synthesis. 

 

Table 2: Atomic percentages relevant to Chitosan, MAGlyGly, CS50-(MAGlyGly)50,  CS50- 

poly(MAGlyGly)50, CS25-(MAGlyGly)75 and CS25-poly(MAGlyGly)75 samples 

 

Element Atomic percentage % 

CS MAGlyGly CS50-

(MAGlyGly)50 

CS50-

poly(MAGlyGly)50 

CS25-

(MAGlyGly)75 

CS25-

poly(MAGlyGly)75 

C1s 63 59 62 61 62 65 

O1s 29 23 25 24 24 26 

N1s 7 10 8 8 7 8 

Cl2p - 1 0.4 - - - 

Si2p 1 7 5 6 8 5 

S2p - - 0.4 0.6 - - 
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Figure 8 Survey spectra relevant to Chitosan, MAGlyGly, CS50-(MAGlyGly)50, CS50 poly(MAGlyGly)50, 

CS25-(MAGlyGly)75 and CS25-poly(MAGlyGly)75 samples 

 

 Contamination of polymer surfaces by adsorbed monolayers of hydrocarbons is 

common in XPS unless preparation of the samples for measurement is done in clean 

chambers [55]. Thus, examination of the C1s region spectra for chitosan derivatives supports 

the encapsulation of MAGlyGly moieties, but unfortunately quantitative evaluation could 

result very inexact. 

 In this respect, this information could be extracted by curve-fitting of N1s signals 

(figure 9-12). Results of the XPS characterization of the individual nitrogen-containing 

groups of all the analyzed samples are reported in the Table 3 for comparison. 

 As far as chitosan N1s signal is concerned (figure 9 b), two different types of N-

containing species, e.g. N in amine (–NH2) falling at 399.1 eV and amide form (–NHC(=O)-

), at 400.6 eV, can be estimated from the ratio of the corrected peak areas. Indeed, N 1s core-

level spectra of chitosan suitably predicted the degree of deacetylation of chitosan, the 

component of amide species being about 20% of the total N1s intensity. No appreciable 

presence of ammonium groups (at BE > 401 eV) attributable to -NH3
+ was detected on our 

pure chitosan specimen. 
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Table 3 Peak position and relative abundance of the N1s peak components relevant to Chitosan, 

MAGlyGly, CS50-(MAGlyGly)50, CS50-poly(MAGlyGly)50, CS25-(MAGlyGly)75 and CS25-

poly(MAGlyGly)75 nanoparticles. 

 

Peak 

B.E 

(eV) 

Attribution 

Atomic Percentage(%) 

Chitosan CS at 

pH 4.2 

MAGlyGly CS50- 

(MAGlyGly)50 

CS50- 

poly(MAGlyGly)50 

CS25- 

(MAGlyGly)75 

CS25- 

poly(MAGlyGly)75 

399.1 -C-NH2 78.6 69.3 - 75.3 55.6 74.2 62.3 

400.6 -C(=O)-NH 21.4 24.0 92.2 19.6 15.0 20.4 26.7 

>402.0 -NH3
+ - 6.6 7.8 5.1 29.4 5.3 11.0 

 

 Since in the formulation of composite nanoparticles, the pH of the solution was 4.2, 

XPS analysis of a sample of chitosan at this pH was also performed (figure 9 a). As 

expected, at pH 4.2 a peak at BE > 401 eV appeared, representing the 6.6 % of the total N1s 

signal. 

 

 
Figure 9 N1s spectra curve fitting of (a) Chitosan at pH 4.2 and (b)Chitosan. 

 

 In the case of MAGlyGly monomer N1s spectrum, a high contribution of amide 

form, the only one expected by its stoichiometric formula, is present. However, an 

appreciable presence of quaternary ammonium groups (401–402 eV) was detected.  
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 Chatterjee A. et al reported a systematic XPS study of glycine, glycyl-glycine, 

diglycyl-glycine, and polyglycine [56]. In the case of glycilglycine (GlyGly), the precursor 

of MAGlyGly monomer synthesised in this work, they observed two N1s features at 400.7 

and 402.2 eV, which they attributed, respectively, to the amide group and the protonated 

amino –NH3
+ group of the zwitterion -NH3

+CH2CONHCH2COO−.  

 In this study, a low but appreciable presence of a peak at higher binding energies 

could be ascribed to a low amount of unreacted MAGlyGly in the investigated specimen. 

This was also confirmed by presence of Cl2p signal with a corrected area comparable to the 

–NH3
+ group peak area (figure 10).  

 

 

Figure 10 N1s spectra curve fitting of MAGlyGly. 

 

 As far as CSx-(MAGlyGly) y nanoparticles are concerned, nanoparticles obtained by 

mixing chitosan with unpolymerized MAGlyGly and by mixing chitosan with polymerized 

MAGlyGly were investigated, in order to test if any difference between these two typologies 

of samples could be revealed in terms of surface distributions of elements and functional 

groups. In figure 11 the curve-fitting of N1s relevant to CS50-(MAGlyGly) 50 and CS25-

(MAGlyGly) 75 is shown.  

 The overall shape of the CSx–(MAGlyGly)y nanoparticles N1s spectrum resulted 

almost similar to that of pure chitosan at pH 4.2 (figure 9a), thus qualitatively indicating that 

the unpolymerized nanoparticles surface composition is mainly dominated by the 

contribution of the chitosan dispersing matrix, while the surface availability of MAGlyGly 

monomers as well as their interactions with chitosan seem to be very low. This observation is 

valid for both the formulations, irrespectively to the ratio used. 

 In the case of CSx-poly(MAGlyGly)y, N1s spectra relevant to CS50-

poly(MAGlyGly)50 and CS25-poly(MAGlyGly)75, reported in figure 12, resulted different. 
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Figure 11 N1s spectra curve fitting of (a) CS50-(MAGlyGly)50 (b) CS25-(MAGlyGly)75. 

 

 

Figure 12 N1s spectra curve fitting(a) CS50-poly(MAGlyGly)50 (b)CS25-poly(MAGlyGly)75. 

 

 In the case of CS50-poly(MAGlyGly)50, N1s spectrum contains a very  high amount 

of the ammonium groups signal (figure 12a). These ammonium groups could be ascribed to 
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interaction of chitosan with carboxylated MAGlyGly moieties present in the polymer, as 

represented in Scheme 2. 

 It is noteworthy that, calculating (–NH3
+ peak area) / (-C(=O)-NH peak area), this 

value resulted equal to 0.09 for MAGlyGly, 0.26 for CS50-(MAGlyGly) 50 and raised to 1.96 

for CS50-poly(MAGlyGly)50. The results clearly show that a significant ionization of amine 

groups of chitosan occurred, probably as a result of interaction of poly(MAGlyGly) present 

on the surface of the nanosized materials.  

 In the case of CS25-poly(MAGlyGly)75, a slightly higher ammonium groups signal 

than in unpolymerized ones was also observed (figure 12(b)). 

Calculating (–NH3
+ peak area) / (-C(=O)-NH peak area), this value resulted equal to 0.26 for 

CS25-(MAGlyGly) 75 and raised to 0.41 for CS25-poly(MAGlyGly)75. This can be attributed to 

the lower presence of chitosan, and consequently amine groups available to ionization, in the 

CS25-poly(MAGlyGly)75 sample than in the CS50-poly(MAGlyGly)50. 

However, for both the samples, the evidence of a difference between unpolymerized (figure 

11) and polymerized nanoparticles (figure 12) resulted quite evident. 

 

4.4.6 Zeta-potential Studies 
 

 The zeta-potential analysis indicated that the surface of the nanoparticles carried a 

positive charge. It is well assessed that there is a dependence of the zeta potential with the 

pH of the solution, hence the variations of zeta-potential measurements with pH results in 

changes of nanoparticles surface charge density [57]. For our experiments, the pH at which 

the zeta-potential measurements were performed were 3.46 and 3.95 for preparation with and 

without polymerization respectively. The difference in pH of the two types of preparations 

were not significantly different. The positively charged nanoparticles surface indicated by 

the positive zeta-potential could be attributed to the cationic characteristic of chitosan at this 

pH [58]. The CS25-MAGlyGly75 and CS25-poly(MAGlyGly)75 nanoparticles did not show 

appreciable difference in the zeta potential values. The values were very close to each other, 

being 35.3 and 33.5 respectively ( Table 3). However, when the concentration of chitosan in 

the formulation was changed, a difference in the zeta-potential values was observed. As can 

be seen from the table x, the zeta-potential value changes from 35.3 to 50.2 with the increase 

in the concentration of chitosan in the formulation. As the chitosan concentration increases, 

there is an excess of –NH3
+ groups relative to COO- groups from MAGlyGly, therefore 

resulting in an increased zeta-potential values. 
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Table 3: Zeta-potential values of the different nanoparticle formulations. 

 

Sample ζ  Values 

CS25 -MAGlyGly75 33.5 

CS25 –poly(MAGlyGly75) 35.3 

CS50 –MAGlyGly50 48.6 

CS50 –poly(MAGlyGly50) 50.2 

 

4.4.7 Thermal Analysis 
 

 TGA analyses were carried out in order to evaluate the thermal stability of the 

nanoparticles, in the perspective of their in vivo application. The TGA thermograms of raw 

Chitosan, CSx-(MAGlyGly) y and CSx-poly(MAGlyGly)y nanoparticles are shown in 

figure13.  

 

 

Figure 13 Traces of the integral and the first derivative of weight loss (% ∆W) of CS50-(MAGlyGly)50, 

CS50-poly(MAGlyGly)50, and CS25-poly(MAGlyGly)75 samples 

 

 The nanoparticles had three stages of degradation pattern in the range of 200°C to 

400°C. These results indicate that CSx-poly(MAGlyGly)y and CSx-(MAGlyGly) y 

nanopartices are thermally stable up to 150°C. Hence, it is clear that nanoparticles stability 

shall not be affected under the physiological conditions. 
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4.5. Conclusion 
 

 Chitosan and MAGlyGly were used to prepare nanoparticles with 120-140 nm 

diameter. The interaction between the NH3
+ groups from chitosan and COO- groups arising 

from MAGlyGly formed the basis of the formation of the CSx-MAGlyGly y particles. The 

nanoparticles were polymerized to form CSx-poly(MAGlyGly)y and the effect of 

polymerization on the formed particles was also studied. Various techniques like FTIR, XPS 

were used to confirm the interaction between the two. The ratio of the polymer/monomer 

was varied and two kind of ratios namely 50:50 and 25:75 of chitosan, MAGlyGly 

respectively were prepared. With the FTIR studies it was successfully confirmed that the 

formed nanoparticles exhibited characteristic bands with some bands arising from the native 

materials used. This was observed for both with both the ratios of CSx-MAGlyGlyy 

nanoparticles. Similarly, XPS analysis also confirmed the presence of the two constituents on 

the surface of the formed nanoparticles with their amounts varying according to the ratio 

used. The surface of the nanoparticles exhibited a positive charge due to the chitosan at the 

formulation pH of 4.2. The results obtained showed that the polymerization of MAGlyGly in 

the presence of chitosan appears to be a very promising approach in the preparation of 

nanoparticles for applications in drug delivery. 
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5. SYNTHESIS AND CHARACTERIZATION OF SEMI-

INTERPENETRATING POLYMER NETWORK HYDROGEL BASED 

ON CHITOSAN AND POLY(METHACRYLOYLGLYCYLGLYCINE) 

 

5.1. Abstract  

 
The objective of the present work was to develop a strategy for the synthesis of semi-

interpenetrating(semi-IPN) hydrogels using chitosan and poly(methacrylamides) under 

physiological conditions. Free radical polymerization of methacryloylglycylglycine was 

performed by using ethylene glycol dimethacrylate as the crosslinker and sodium 

metabisulphite and ammonium persulfate as the radical initiators. Chitosan and 

poly(methacryloylglycyl glycine) hydrogels were prepared with different composition of 

copolymers and amount of crosslinker . The hydrogels were evaluated for swelling studies 

under physiological conditions. Scanning electron microscopy led to understand the 

morphology of the semi-IPN’s. Fourier transformation infrared spectroscopy was employed 

to gain insight into the structure of the prepared semi-IPN hydrogels. Thermal studies were 

carried out to investigate and confirm the presence of the comonomers involved. The type of 

water was assessed by differential scanning calorimetric studies. Degradation behavior of the 

hydrogels was also studied. 

 

5.2. Introduction 

 
 Hydrogels are crosslinked macromolecular networks swollen in water or biological 

fluids. The term hydrogel is composed of ‘‘hydro’’ (¼water) and ‘‘gel,’’ and it refers to 

aqueous (water-containing) gels, or to be more precise, to polymer networks that are 

insoluble in water, where they swell to an equilibrium volume but retaining their shapes [1]. 

The hydrophilicity of the network is due to the presence of chemical residues such as 

hydroxylic (–OH), carboxylic (–COOH), amidic (–CONH–), primary amidic (–CONH2), 

sulfonic (–SO3H), and others that can be found within the polymer backbone or as lateral 

chains. Nevertheless, it is also possible to produce hydrogels containing a significant portion 

of hydrophobic polymers, by blending or co-polymerizing hydrophilic and hydrophobic 

polymers, or by producing interpenetrating or semi-interpenetrating polymer networks [2] 

(respectively, IPN and semi-IPN) of hydrophobic and hydrophilic polymers [3]. The 
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insolubility of the gel in water is due to the presence of a three-dimensional network, where 

an equilibrium between dispersing (acting on hydrated chains) and cohesive (preventing 

further penetration of water) forces exist [4-6]. These cohesive forces are generated by 

covalent bonds between the chains of the polymer network (permanent or chemical 

hydrogel) or by cooperative and associative forces such as: 

 (1) hydrophobic associations/Van der Waals forces [6-10]  

 (2) micellar packing [11-13]  

 (3) hydrogen bonding [14-17]  

 (4) ionic bonding [18-20]  

 (5) crystallizing segments [21] or  

 (6) combinations of the above (reversible or physical hydrogel).  

 As mentioned earlier, these structures expand when are placed in contact with 

water. However, these materials can be also designed to swell or shrink when they are 

exposed to particular signals such as temperature, pH, ionic strength, electrical field, 

particular aqueous solution composition, and light, as it was on command [22,23]. 

 Hydrogels can be formed either by crosslinking, by formation of interpenetrating 

networks (IPNs), or by crystallization that induces crystallite formation and drastic 

reinforcement of their structure [24,25]. IPNs are an important class of hydrogel materials, 

defined as two independent crosslinked synthetic and/or natural polymer components 

contained in a network form. A semi-IPN is an IPN where one of the components is a 

crosslinked polymer while the other component is a non-crosslinked polymer (scheme 1). 

Polymer complexes are formed by the association of two or more complementary polymers, 

and may arise from electrostatic forces, hydrophobic interactions, hydrogen bonding, Van 

der waals forces or combinations of these interactions. The formation of complexes may 

strongly affect some properties such as the mechanical properties, permeability, and 

electrical conductivity etc. of the polymeric systems. Particularly, polyelectrolyte complexes 

are formed by the reaction of a polyelectrolyte with an oppositely charged polyelectrolyte in 

an aqueous solution. Thus, electrostatic polyelectrolyte complexes exhibit unique physical 

and chemical properties with reasonable biocompatibility, hence special attention has been 

focused on their application in ecology, biotechnology, and medicine [26–28].  
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Scheme 1: Schematic representation of semi-IPN of Chitosan -poly(MAGlyGly). 
 

 Chitosan is a (1,4)-linked 2-amono-2-deoxy-b- D-glucan and can be presented by 

N-deacetylation of chitin. Chitosan, as a cationic polyelectrolyte, is able to form 

polyelectrolyte complexes by reaction with various natural and synthetic anionic 

polyelectrolytes. The electrostatic attraction between the cationic amino groups of chitosan 

and the anionic groups of the other polyelectrolyte is the main interaction leading to the 

formation of the polyelectrolyte complex. It is stronger than most secondary binding 

interactions [29]. These complexes are generally water insoluble and form hydrogels. 

Formation of chitosan hydrogels by polyelectrolyte complexation is an interesting alternative 

to covalently crosslinked hydrogels. The polyelectrolyte complex undergoes slow erosion, 

which gives a more biodegradable material than covalently crosslinked hydrogels [30,31]. 

Polyelectrolyte complexes of chitosan with other polysaccharides, DNA, proteins and 

different synthetic anionic polyelectrolytes have been extensively investigated in literature 

due to their wide variety of applications in medicine, pharmacy (especially as drug delivery 

systems), technology and other fields [32,33]. 

 In the present work, polymerized MAGlyGly[(poly(MAGlyGly)] has been used as a 

polyanionic polymer for complexation with chitosan. Poly(MAGlyGly) has anionically 

charged groups that forms polymer complexes with chitosan. The preparation of the 

investigated network was performed by free radical polymerization of MAGlyGly in the 

presence chitosan acid solution by using ethylene glycol dimethacrylate (EGDMA) as 

crosslinking agent and the couple sodium metabisulfite (Na2S2O5)  and ammonium persulfate 

[(NH4)2S2O8]  as radical initiator. The synthetic scheme is presented in figure 1.  

 The fundamental investigation of the prepared hydrogel involved the Fourier 

Transformation Infrared spectroscopy (FTIR) for the structure of the prepared hydrogel and 
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at the same time to confirm the presence of both chitosan and poly(MAGlyGly). Physical 

and chemical properties of hydrogels depend on their molecular and supramolecular 

structure, water content and the type of water. The nature of water in ionic hydrogel 

membranes is important in understanding their dynamic and equilibrium swelling behavior 

as well as in analyzing solute transport and other diffusive properties of such systems. For 

these reasons, the swelling behavior along with the thermal characterizations and state of 

water investigation of the hydrogels were performed. Degradability, another important 

feature in materials for Regenerative Medicine applications, was performed in the presence 

of lysozyme under physiological conditions. 

 
5.3. Materials and Methods 

 
5.3.1 Materials 

 

 Chitosan  (Mw = 71.3 KDa, degree of deacetylation 93%), ammonium persulfate 

[(NH4)2S2O8], sodium metabisulfite (Na2S2O5) and ethylene glycol dimethacrylate(EGDMA) 

were purchased from Sigma-Aldrich and they were used without any preliminary 

purification. Lysozyme (hen egg-white) was also purchased from Sigma-Aldrich. All other 

chemicals were extra pure reagent grade and were used as received. 

 

5.3.2 Methods 

 
5.3.2.1 Preparation of the monomer 

 

 Methacryloylglycylglycine (MAGlyGly) was synthesized according to a described 

procedure in chapter 4 (§ 4.3.2.1). 

 

5.3.2.2 Silanization of glass 

 

 2 mm thick square plates (4x4 cm) were exposed to trimethylclorosilane vapours for 

24 hours at room temperature, then rinsed with distilled water and dried. 
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5.3.2.3 Synthesis of semi-IPN’s 

 

  Various compositions in terms of weight % of Chitosan/methacryloylglycylglycine 

based semi-IPN’s were prepared. Details of the various runs are reported in table 1. Chitosan 

dissolved in 2M acetic acid solution was well mixed with MAGlyGly solution in DMSO 

(Acetic acid solution/DMSO = 9/1) to form a homogeneous solution. Then, different wt % of 

EGDMA (refer to table 1) as crosslinker and subsequent amount of initiators were added to 

the mixture. After few pumping/degassing cycles, the mixture was injected with a syringe 

between two silanized glasses separated by a 1 mm thick silicon spacer. Clamps were 

applied onto the glasses in order to ensure a perfect sealing, and the mixture was cured at 

40°C for 4 hours. After 4 hrs, the hydrogels were washed with deionized water to remove 

any unreacted monomers and polymers that were not incorporated into the network. Then, 

the washed hydrogels were neutralized with phosphate buffer saline (PBS) solution. The 

neutralised hydrogels were again washed carefully with distilled water to remove salts 

followed by freeze drying. 

 

Table 1. Composition and designation of semi-IPN of Chitosan-poly(MAGlyGly). 
 

Run Ratio 
Chitosan/MAGlyGly 

(in wt%) 

Amount of crosslinker 
(in wt% to MAGlyGly) 

Hydrogel 
formation 

 

1 20/80 8 + 
2 20/80 4 + 
3 20/80 2 + 
4 50/50 8 - 
5 80/20 8 - 

+ indicates hydrogel formation  
- indicates no hydrogel was formed 

 

5.3.2.4 Determination of swelling degree  
 

 To measure the equilibrium water content, pre-weighed dry samples were immersed 

in distilled water and 0.01 M pH 7.2 phosphate buffer saline at 37°C until the equilibrium 

was reached. After, excessive surface water was removed with filter paper, the weight of 

swollen samples was measured at various time intervals. The procedure was repeated until 

there was no further weight increase. The swelling ratio (SR%) was determined according to 

the following equation: 
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SR%=[(Ws-Wd)/Ws]*100 

 

where WS and Wd represent the weight of swollen and dry samples, respectively. 

 

5.3.2.5 Morphological Analysis 
 

 The morphology of the prepared hydrogels were investigated by scanning electron 

microscopy (SEM), using a JEOL LSM5600LV scanning electron microscope. Lyophilized 

hydrogels were used and gold sputtering was done before SEM analysis. 

 

5.3.2.6 Fourier transform infrared (FTIR) spectroscopy measurements 
 

 FTIR spectra of chitosan, chitosan-poly(MAGlyGly) hydrogels, poly(MAGlyGly) 

in KBr disc form were recorded on Jasco FT–IR 410 spectrophotometer from 400 to 4000 

cm-1 with a resolution 4 cm-1 and 32 scans. 

 

5.3.2.7 Differential scanning calorimetry (DSC) measurements 
 

 A Mettler DSC-822 (Mettler Toledo, Milan, Italy) differential scanning calorimeter 

equipped with a liquid nitrogen cooling accessory was used. DSC was used to analyse the 

type of water in the semi-IPN hydrogels. Samples (about 4 mg) were weighed in an 

aluminum pan designed for volatile samples and sealed. The samples were cooled to -70°C 

at 10°C/min and then heated to 50°C/ at a heating rate of 10°C/min under 80mL/min of 

nitrogen flow. 

 

5.3.2.8 Thermogravimetric (TGA) studies 
 

 Thermogravimetric analyses were carried out by using Thermogravimetric Analyzer 

TGA Q500 (TA Instruments-Waters Division, Milan, Italy). All measurements were 

performed with approximately an equal amount (20mg) of samples in aluminum pans. The 

experiments were performed from 30°C to 900°C at a scanning rate of 10°C/min under a 

60ml/min nitrogen flow.  
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5.3.2.9 In-vitro degradation 
 

 The in vitro hydrogels degradation tests were carried out in 4 ml phosphate-buffered 

solution (PBS, pH 7.4) at 37 °C containing 1.5 mg/ml lysozyme. The concentration of 

lysozyme was chosen to correspond to the concentration in human serum [34,35]. Briefly, 

hydrogels of known weight were incubated in the lysozyme solution for the period of study. 

The lysozyme solution was refreshed daily to ensure continuous enzyme activity [36]. After 

7, 14, 21 and 28 days samples were removed from the medium, rinsed with distilled water 

carefully, dried under vacuum and weighed. The extent of in vitro degradation was expressed 

as percentage of weight loss of the dried films (n = 3 samples of each week) after lysozyme 

treatment. To separate between enzymatic degradation and dissolution, control samples were 

stored for 28 days under the same conditions as described above, but without the addition of 

lysozyme. 

 

5.4. Results and Discussion 

 

5.4.1 Preparation of Chitosan-poly(MAGlyGly) semi-IPN’s 
 

 Figure 1 represents the scheme of the synthesis of IPN composed of chitosan and 

poly(MAGlyGly). The preparation of the investigated network was performed by free radical 

polymerization of MAGlyGly in the presence chitosan acid solution by using ethylene glycol 

dimethacrylate as the crosslinking agent and the couple sodium metabisulfite and ammonium 

persulfate as the radical initiator. Briefly, chitosan in acetic acid solution was mixed well in 

MAGlyGly solution to form a homogeneous solution. Then the crosslinker EGDMA and the 

couple initiators were added to this solution and after a few pumping /degassing cycles, the 

resulting mixture were injected between two silanized glasses where it  was polymerized at 

40°C for 4 hours (figure 2 a). By this technique, homogeneous films with constant thickness 

and shape similar to that of the mould (figure 2 b) were obtained. The silanization of the 

glasses were done in order to facilitate the hydrogel removal at the end of the 

polymerization. The glass surface was silanized by exposure to trimethylchlorosilane 

vapours for 24 hours at room temperature and rinsed afterwards with distilled water. 
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 Silanization is a gas-solid reaction that modifies the wettability and adhesion 

features of glass by transforming the hydrophilic silica surface in hydrophobic 

trimethoxysiloxane groups. 

 It is expected that amino groups of linear chitosan chain form polyelectrolyte 

complex with carboxylic acid groups of the poly(MAGlyGly) network and this interaction 

leads to the formation of the semi-IPN’s. As shown in table 1, the concentration of 

chitosan/MAGlyGly and EGDMA are the two parameters that were varied to evaluate how 

the different composition affects the mechanical, chemical-physical and biological properties 

of the materials. 

  Hydrogels were not formed when the concentration of chitosan was increased more 

than 20 wt% irrespective of the concentration of the crosslinker EGDMA. In order to form a 

polyelectrolyte complex, both polymers have to be ionized and bear opposite charges. 

During complexation, polyelectrolytes can either coacervate, or form a more or less compact 

hydrogel. However, if ionic interactions are too strong, precipitation can occur, which is 

quite common [37] and hinders the formation of hydrogels. With the increase in 

concentration of chitosan, the complexion is enhanced and does not allow for the formation 

of the hydrogels. Whereas in case of the variation of EGDMA concentration, hydrogels were 

formed in all the three concentrations reported and they showed different properties.  

 All the described hydrogels were subjected to purification. Infact materials that are 

intended to be used for biomedical applications must be free from all components that may 

be harmful for the body. The compounds that could be possibly present in the synthesized 

hydrogels include initiator and their decomposition products, unreacted monomers, 

oligomers and impurities coming form the reagents.  

 Therefore, at the end of the polymerization, hydrogels were rinsed under running 

water for at least 24 hours. The prepared hydrogels were thereafter washed with PBS until 

the pH was neutral. 



CHAPTER 5 – SYNTHESIS AND CHARACTERIZATION OF SEMI-INTERPENETRATING POLYMER NETWORK 

HYDROGEL BASED ON CHITOSAN AND POLY(METHACRYLOYLGLYCYLGLYCINE ) 

 153

 

Figure 1: Mechanism of synthesis of semi-IPN of Chitosan -poly(MAGlyGly. 

 

  

(a) (b) 
Figure 2: (a) Preparation of semi-IPN of Chitosan -poly(MAGlyGly);(b) Semi-Interpenetrating 

network of-Chitosan poly(MAGlyGly). 
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5.4.2 Degree of Swelling and Swelling Kinetics of Semi-IPN Hydrogel in Different 

Solvents 
 

 In a crosslinked hydrogel, the solvent does not dissolve it but instead swells it. 

Thus, the total volume increases to that of the network and the solvent.  

 In a polymer that has been cross-linked into a network, the chains are in an 

entangled and relaxed conformation between two network junctions. However, when the 

solvent enters inside the polymer, the solvent molecules move the network junctions away 

from each other (as the polymer swells in the solvent). As the network junctions move away, 

the chains attached to these junctions experience a stress that is counteracted by the tendency 

of the polymer chain to return back to the relaxed state. At some stage, an equilibrium is 

reached wherein the polymer refuses to accept anymore of the solvent. Clearly, this 

equilibrium depends on how long the chains between network junctions are and the degree to 

which the polymer chains "like" (energetically) to have solvent molecules around them. 

Swelling property of hydrogels determines some important properties such as diffusion and 

transport of oxygen, essential nutrients and metabolic waste through the hydrogel network 

hence water absorption represents one of the main parameters that characterize hydrogels 

[4]. 

 Swelling kinetics demonstrated a very high swelling ratio of semi-IPN sample in 

both water and PBS and as it can be observed from the figure below both kinetics showed a 

similar trend with equilibrium being achieved within 20 minutes. It was observed that the 

swelling in case of water was higher than in PBS in all the three concentrations of crosslinker 

as depicted in figure 3. The swelling studies also indicated that with the increase in 

crosslinker concentration, the swelling ratios decreased. Swelling of the network is mainly 

governed by the intermolecular crosslinks [38]. The hydrogels with lower amount of 

crosslinker exhibited much faster swelling kinetics. The observed difference in swelling with 

the crosslinker amount could be attributed to the fact that with higher amount of cross-linker, 

the hydrogel material becomes denser, reinforcing the hydrogel and leading to a more 

physical restriction. So, water molecules could not easily diffuse into hydrogel network 

causing a lower swelling kinetics.  

 The water contents of the hydrogels were lower in PBS than in distilled water 

(figure 3). The effect of the media on the swelling behaviour could be attributed to the 

shielding of COO– repulsion. There occurs some kind of interactions between COO– groups 

in MAGlyGly and the ions present in the PBS. As discussed previously by the literature, in 

the presence of PBS, the hydrophilic –COO– groups hinder the dehydration of the polymer 
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chains, expanding the collapsed structure [39]. In PBS, the presence of ions produce an ionic 

shielding of the –COO– groups, this ionic shielding disrupts the swelling content of the 

hydrogels in PBS in comparison to distilled water. 

 

  

Figure 3: Swelling studies of Chitosan-poly(MAGlyGly) hydrogels in (a) PBS (b) water 
 

5.4.3 Morphological Analysis 
 

 The morphological characteristics of the chitosan-poly(MAGlyGly) hydrogels after 

exposure to washings with water and PBS and subsequent freeze drying have been examined 

by SEM. The microstructure of a scaffold has a prominent influence on cell proliferation, 

function, and migration, all of which are key issues in tissue engineering. Microstructures of 

the networks surface investigated by scanning electron microscopy are presented in figure 4. 

It could be seen that the semi-IPN hydrogels displayed interconnected porous surface. The 

porosity increased with the increase in the crosslinker concentration from 2 % to 8 %. 

 

5.4.4 FT-IR Analysis 

 

 Fourier transform infrared (FT-IR) spectroscopy was used to confirm the structure 

of chitosan -poly(MAGlyGly) semi-IPN hydrogels. Figure 5 shows FT-IR spectra of 

chitosan, semi-IPN of chitosan -poly(MAGlyGly) and the MAGlyGly network. 

 On analyzing the spectrum of chitosan, a characteristic broad band at 3431 cm-1 is 

observed due to the overlapping of the stretching vibrations of hydroxyl O-H and amine N-

H2 groups. C-O stretching vibrations of chitosan appear at around 1030 cm-1 . The 

characteristic bands of amide I, amide II and amide III appear at around 1651, 1606 and 1383 

cm-1respectively. Peaks observed at 2875 and 2919 cm-1 are typical of C-H stretching 
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vibrations. The peaks around 894 and 1155 cm-1 correspond to saccharide structure. The 

observed peak at 1424 cm-1 is assigned to CH3 symmetrical deformation mode [40]. 

 

 

 

 

Figure 4: SEM micrographs of Chitosan-poly(MAGlyGly) hydrogels with(a) 8% EGDMA(b)4% 

EGDMA (c )2% EGDMA 

 

 On observing the MAGlyGly hydrogel spectrum, carbonyl stretching vibration 

(amide I) at 1672 cm-1 and 1540 cm-1due to the N-H bending vibration (amide II) can be 

confirmed.  

 In the chitosan-poly(MAGlyGly) hydrogel , the overlapping of the stretching 

vibrations of hydroxyl O-H and amine N-H2 groups appeared at 3432 cm-1 is observed which 

is similar to chitosan spectrum. Another similarity to chitosan could be seen in the presence 

of the peaks at 2960 and 2919 cm-1 which are typical of C-H stretching vibrations.  Moreover 

it can be observed peaks at 1656.6 and 1387cm-1 that can be assigned to COO-1 stretching. 

Hence, it could be concluded that in the semi-IPN-Chitosan/(MAGlyGly), all the bands of 

both chitosan and MAGlyGly hydrogel are observed. 
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Figure 5: FT-IR spectra of Chitosan, semi-IPN of Chitosan-poly(MAGlyGly) and MAGlyGly network. 

 

5.4.5 Thermogravimetric (TGA) studies 
 

 The thermal properties of the systems were investigated using thermogravimetric 

analysis. The thermogravimetric curves of chitosan, MAGlyGly raw materials and the 

hydrogel is shown in figure 6. Thermogravimetric analysis curve of chitosan shows a single 

stage degradation. The 7.1% weight loss at around 150°C is due to loss of absorbed water. 

The second stage starts at 240 °C and reaches a maximum at 380 °C with a weight loss of 

56.66%. The residue was calculated to be 29.11% at 900°C. This result is similar to the ones 

of Nieto et al [41] and Neto et al. [42] The second stage corresponds to the decomposition 

(thermal and oxidative) of chitosan, vaporization and elimination of volatile products. 

According to the literature [41], pyrolysis of polysaccharides starts by a random split of the 

glycosidic bonds, followed by a further decomposition forming acetic and butyric acids and a 

series of lower fatty acids, where C2, C3 and C6 predominate.  

 The poly(MAGlyGly) hydrogel showed multiple stages of degradation. It could be 

observed four main steps. The first step of degradation appeared at 309.6°C with a weight 

loss of 10.4%, the second step is at 381.7°C with a 40.4% weight loss. The third step is 

observed at 770°C with 31.75% and the fourth step occurs at 809°C with 4.4% weight loss. 

The residue at 900°C was about 8%. 

 The TGA revealed that the hydrogel has three stages of degradation similar to 

poly(MAGlyGly). Being the onset temperature of chitosan and MAGlyGly close to each 

other, it was difficult to observe two different peaks of degradation for chitosan and 
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MAGlyGly, but the appearance of the peak was distinguishable, and it was possible to 

observe that the degradation curve of semi-IPN network contains both the peaks of 

degradation of chitosan and of MAGlyGly hydrogel as is highlighted in figure 6. In case of 

the hydrogel, the peak of degradation appeared to be broad and the onset of degradation 

started at a temperature closer to chitosan indicating clearly that both chitosan and 

MAGlyGly were present in the hydrogel matrix. On comparing the profiles of hydrogels 

with the three different EGDMA concentrations (figure 7), we observe that there is not much 

difference between the three types of hydrogels but in all cases it could be concluded that 

both chitosan and MAGlyGly are present in the hydrogel matrix.  

 

 

Figure 6:  Traces of the integral and the first derivative of weight loss (% ∆W) of Chitosan, MAGlyGly 

hydrogel and semi-IPN network of Chitosan -poly(MAGlyGly). 

 

 

Figure 7: Traces of the first derivative of weight loss (% ∆W) of semi-IPN of Chitosan-

poly(MAGlyGly) with 8%, 4% and 2% of EGDMA. 

 

5.4.6 Differential Scanning Calorimetric (DSC) studies 
 

 In the literature on hydrogels, it is well established that water exists in polymer 

networks in three different physical states: free water, intermediate water and bound water. 
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Biomedical or pharmaceutical activity depends significantly on how the water molecules 

associate with the polymer. There is a variety of techniques for the study of water binding in 

polymers. Differential scanning calorimetry (DSC) is in many ways the most convenient and 

informative method [43]. Much research on the water-swollen polymers by means of DSC, 

Nuclear Magnetic Resonance (NMR) spectrometry, FTIR spectroscopy and other techniques 

has demonstrated that the state of water in polymer/water systems is different from that of 

bulk water [44-47]. Three energetically distinct states of water have been identified in water-

swollen systems. The experimentally determined separate states of water within the polymer 

can be defined as follows [48-49] and depicted in figure 8:  

(i)  Free water, which undergoes similar thermal transitions to that of bulk water, it  has the 

same characteristics of pure water and does not interact with polymer chain. 

(ii) Interfacial water or freezable bound water, which undergoes a thermal phase transition 

at a temperature shifted with respect to that of bulk water and  

(iii) Bound water or non-freezable water, which is the tightly bound to the polymer and does 

not exhibit a first order transition over the range of temperatures normally associated with 

bulk water. 

 

 

Figure 8: Types of water present in hydrogel networks. 
 

 Even for our studies DSC analysis was employed to assess the type of water present 

in the prepared semi-IPN’s. This type of investigation of water structure in hydrogels is 

based on the hypothesis that on cooling free water freezes at the same temperature as pure 

water, whereas bound water does not freeze even at very low temperature, due to its strong 
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interaction with the polymer matrix [4]. According to this hypothesis the endotherm 

measured when warming the frozen gel represents the melting of free water and that value 

will yield the amount of free water in the hydrogel being tested. 

 The heat of crystallization of the freezing water (intermediate and free water) was 

determined from the area under the exothermic curve and was calibrated using pure distilled 

water as a standard (figure 9). In particular the amount of freezing water (Wf) was 

determined by comparing the ∆H of the crystallization peak of the hydrated sample with that 

of the pure water: 

w

w

f

Q
W

°∆
=

H
 

where Qw is the crystallization enthalpy measured in Joule (J) and ∆H°w is the solid-liquid 

transition enthalpy of hydration water in the hydrogel. By assuming that the crystallization 

enthalpy of hydration water is the same in pure water and in the hydrogel, the experimentally 

measured value of ∆H°w turned out to be 495.31 J·g-1. 

 

 

Figure 9 DSC trace of pure water. 

 

 The content of not-freezing water (Wnf) in the hydrogel was then evaluated as the 

total hydration water (Wt) minus the amount of freezing water (Wf): 

ftnf WWW −=  

 

 From the DSC analysis of the semi-IPN hydrogels, it was observed that most part of 

water is present as freezing water (figure 10). This result could be interpreted by considering 

the fact that with the formation of the polyelectrolyte complex between chitosan and 

poly(MAGlyGly) there are fewer hydrophilic groups available. When the amount of 

crosslinker is reduced to 4% and 2% , the amount of bound water in the system increases 

(figure 10). This could be explained on the basis that with lesser crosslinker amount, the pore 
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size is larger and hence more amount of water is able to enter the matrix and have some kind 

of interaction with the polymeric chains. 

 

 
 

Figure 10: Type of water in Chitosan-MAGlyGly semi-IPN hydrogels with (a) 2%(b)4%(c)8% 
EGDMA concentration 

 

5.4.7 In-vitro degradation studies 
 

 The degradation of chitosan based materials have already been tested in a number 

of in vitro studies [50-59]. Most of the studies were performed using physiological pH and 

enzyme concentrations as described herein. It is well known that, in human serum, N-

acetylated chitosan is mainly depolymerized enzymatically by lysozyme, and not by other 

enzymes or other depolymerization mechanisms [51]. The enzyme biodegrades the 

polysaccharide by hydrolyzing the glycosidic bonds present in the chemical structure. 

Lysozyme contains a hexameric binding site [53], and hexasaccharide sequences containing 

three or more acetylated units contribute mainly to the initial degradation rate of N-

acetylated chitosan [57].  

 To distinguish between enzymatic degradation and simple dissolution, we compared 

the mass loss after 28 days of samples that had been stored in PBS with lysozyme to those 

that had been stored in PBS without lysozyme. The semi-IPN network showed a progressive 

increase in mass loss over time (figure 11(a)). It was noticed that there was a 60%, 68% and 

76% of degradation of chitosan-poly(MAGlyGly) IPN-network with 8%, 4% and 2% of 

EGDMA respectively in 28 days. The degradation values of the semi-IPN’s were 
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significantly higher than the controls used which indicated enzymatic degradation of the 

semi-IPN’s. However a minimum of loss in weight is detected also in the control samples. 

The increase in the degradation rate with the decrease in crosslinker amount was hard to 

interpret. With the decrease in crosslinker the pore size as well as the swelling increased, this 

caused more dissolution of the samples and their removal during subsequent refreshments. A 

comparison of the degradation values of the three kind of the semi-IPN hydrogels with their 

respective controls are shown in figure 11(b). 

 For MAGlyGly hydrogels, a clear distinction between degradation and dissolution 

could not be made under the adopted investigation conditions since the MAGlyGly 

hydrogels had a highly porous strucuture where dissolution could not be controlled. 

 

  

 a) b) 

Figure 11: (a)Progressive mass loss of semi-IPN Chitosan- poly(MAGlyGly) after storage in PBS at 

37°C with 1.5 µg/mL of lysozyme. (b) Comparison of the mass loss % of semi-IPN of Chitosan-

poly(MAGlyGly) in lysozyme and their respective controls in PBS.  

 

5.5. Conclusion 
 

 The semi-IPN of chitosan-poly(MAGlyGly) were prepared. To gain insights on the 

influence of factors that could affect the formation of the hydrogels, the ratio of the 

concentration of the polymer/monomer were varied. The influence of the crosslinker on the 

type and properties of the hydrogels were also studied. Some important features of the 

hydrogels in terms of various applications like swelling, type of water etc. were studied in 

detail. It was observed that properties like swelling, morphology and type of water were 

inversely related to the amount of crosslinker. With the decrease in the amount of 

crosslinker, the semi-IPN’s had a larger pore size. The semi-IPN’s showed an increase in 
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swelling ratio and the percentage of bound water increased with the decrease in crosslinker 

amount.  Physico-chemical characterizations like FT-IR and TGA led us to confirm the 

presence of both the constituents in the matrix of the hydrogel. Lysozyme degraded the 

hydrogel matrix to a maximum of 76% for the hydrogel with 2% EGDMA concentration. 

However, even if some dissolution was observed along with degradation under physiological 

conditions still the difference between the two was noticeable. The prepared semi-IPN 

constructs appear to be a promising material for regenerative medicine applications.  
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OVERALL CONCLUSIVE REMARKS AND FUTURE 

PERSPECTIVES 
 

Materials for Tissue Engineering (TE) have significantly progressed over the years, 

from being initially viewed as biologically inert structural supports to platforms capable of 

providing signals to cells and tissues to orchestrating tissue regeneration. Current trends 

suggest that biomaterial development will continue to create more life-like multi-functional 

materials that are able to simultaneously provide complex biological signals (chemical, 

structural and mechanical), replace mechanical function and respond to environmental 

stimuli. A continuing challenge for this approach will be to find ways of exploiting these 

sophisticated tools without unduly complicating large-scale production for clinical research. 

We have summarized a wide range of materials that are frequently used to date, or will 

potentially be useful in TE in the future. Concluding remarks on individual section of the 

thesis have been listed below. 

 

(1) Chitosan- A Versatile Material for Regenerative Medicine Applications 

 A review on the current status of chitosan usage in Regenerative Medicine 

applications has been done. Chitosan appears to be one of the most promising biomaterials in 

TE because it offers a distinct set of advantageous physico-chemical and biological 

properties such as non-allergenicity, biocompatibility, biodegradability and cationic surface 

charges in acidic medium allowing for applications in a variety of conventional and 

pharmaceutical areas. In this review, various techniques used for preparing chitosan micro/ 

nanoparticles and hydrogels have been listed.  

An updated study of the various applications of chitosan in TE, Drug Delivery, Gene 

Therapy and the most emerging Boimaging areas has been done. In conclusion, the survey 

demonstrated that chitosan as a biopolymer holding valuable and immense promise. 

 

(2) Statistical Approach of Chitin Deacetylation 

 Chitosan was prepared from chitin by a heterogeneous deacetylation process using 

alkaline medium. Two reaction parameters, namely reaction time and temperature were 

varied in order to prepare various chitosan grades characterized by different acetylation 

degrees (DA). Based on this data, a statistical model was developed that can be used to 

define reaction conditions to obtain a specific value of DA. 
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(3) Chitosan-Based Beads for Controlled Release of Proteins 

 Extensive research is being carried out to exploit chitosan as a drug carrier to attain 

the desirable drug release profiles. The preparation of microspheres or beads are based on a 

therapy that offer numerous advantages over the conventional dosage forms. These include 

improved efficacy, reduced toxicity and improved patient compliance. Our approach was 

similar, in preparing beads of chitosan and loaded with proteins (HSA and PT). Chitosan 

beads of 700-800 µm were obtained with a satisfactory degree of encapsulation of the two 

types of proteins Encapsulation efficiency was dependent on the time and temperature to 

which the beads were allowed to crosslink. It was observed that when beads were allowed to 

remain in the crosslinking medium for 24 hrs at room temperature, there was recorded 

maximum encapsulation of about 64% . The release of the two proteins depended on the 

molecular weight of the respective proteins with trypsin being released faster than HSA. The 

degradation profile of the beads has been presented in a medium containing lysozyme. 

Although a lot of work is still included in our future perspective, we were able to optimise 

the basic conditions of preparation of the beads, encapsulation and release of the proteins. 

 

(4) Hybrid Nanoparticles Based on Chitosan and Poly(Methacryloylglycylglycine) 

 In this chapter, our approach was focused on the preparation and characterization of 

nanoparticles based on chitosan. The nanoparticulate systems have great potentials, being 

able to convert poorly soluble, poorly absorbed and labile bioactive agents into promising 

deliverable drugs. The core of this system can enclose a variety of drugs, enzymes, genes and 

is characterized by a long circulation time due to the hydrophilic shell which prevents 

recognition by the Reticular-Endothelial System (RES). In our work, we tried to achieve the 

above said properties by combining the benefits of chitosan with that of an anionic 

poly(acrylamide) of carboxyl end capped of the glycine dimer,[poly(MAGlyGly)]. In this 

regard, we synthesized the monomer MAGlyGly and with their respective group interactions 

formed nanoparticles by using chitosan and poly(MAGlyGly) polymerized in-situ. Using 

various ratios of chitosan and MAGlyGly, nanoparticles of 100-120 nm were successfully 

prepared with good morphology and shape. Their interaction was established using FT-IR 

and XPS wherein the presence of all constituents in the nanoparticle matrix was confirmed. 

Our next step is to load drugs for a sustained release from the prepared nanoparticles. 
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(5) Synthesis and Characterization of Semi Interpenetrating Polymer Network 

Hydrogel Composed of Chitosan and Poly(methacryloylglycyl glycine) 

 Hydrogels have become increasingly studied as matrices for tissue engineering. 

These devices are usually passive exchange systems, but more recently experimental  

systems may contain entrapped or encapsulated cells from other human or animal sources. 

We synthesized hydrogels based on the concept of semi-IPN’s wherein the monomers and/or 

polymers plus crosslinkers are mixed, followed by simultaneous polymerizations via non-

interfering reactions. EGDMA was used as a crosslinker with Na2S2O5 and (NH4)2S2O8 as the 

free radical initiator. Our prepared chitosan/poly(MAGlyGly) semi-IPN showed promising 

properties. The amount of the co-polymers and the crosslinking agent were varied to obtain 

semi-IPN’s and observe their various properties. Evaluation of the preparation conditions 

were stressed on, it was found that above 20 %wt of chitosan semi-IPN’s were not formed 

irrespective of the amount of crosslinker used. It was also observed that there was 

dependence of certain properties like swelling, morphology and type of water with the 

amount of crosslinker. The prepared semi-IPN’s showed a very high swelling percentage in 

both PBS and water with most of the water present as free water. The interconnected porous 

hydrogels proved to be thermally stable under physiological conditions. Degradation of the 

prepared semi-IPN’s were studied in the presence of  lysozyme under physiological 

conditions. The biological investigations of the semi-IPN’s will constitute the objective of 

further investigations.  

 The scientific and technology development are a never ended journey. Each closed 

research project opens a new range of questions and technological capabilities that can be 

explained and exploited in multiple directions. The worked developed in the scope of this 

thesis is not an exception. Herein, we intended to highlight some points that might be 

interesting and fruitful to exploit in forthcoming investigations. 
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