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A tutti coloro da cui ho appreso



All’alba del primo sole, quando uomini e bestie vivevano da pari e la

terra e il cielo non avevano nome, gli dei crearono Sogno e Conoscenza e

li inviarono sulla terra. Sogno per ispirare e Conoscenza per istruire. Per

secoli vagarono tra gli uomini ma nessuno fu in grado di accoglierli: alcuni

si perdevano nel sonno, altri perdevano il senno.

Delusi, Sogno e Conoscenza abbandonarono questo universo, decisi a non

farvi mai più ritorno. Sulla terra avevano concepito due gemelli, Arte e

Scienza, e a loro cedettero il compito di elevare il genere umano dal suo stato

bestiale. Essi riuscirono a toccare tutte le genti e l’era dell’Uomo ebbe inizio.

Michele Sottile
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Università di Pisa

Abstract

The thesis proposes a new methodology to the alignment of photographic

images to 3D models. It is based on a semi-automatic technique. The ap-

proach needs user defined correspondences between images and the 3D model

and the similarity between a rendering of the model and the original photo,

measured through mutual information techniques.

A deep analysis of the existing methodologies led to the choice and the combi-

nation of these two approaches. It solves their flaws, keeping their strengths.

The thesis presents a tool, called TexAlign Suit, developed for Windows and

Unix platforms. It implements the proposed methodology along with other

existing approaches.

Specific tests have been prepared in order to prove the efficacy of the MC

approach in a wide set of use cases. They show great flexibility and user-

friendliness.



Image-to-geometry registration using mutual

correspondence

Michele Sottile

Dipartimento di Informatica

Università di Pisa

Sommario

La tesi propone un metodo innovativo per l’allineamento di immagini fo-

tografiche su modelli 3D basato su una tecnica semi automatica. L’approccio

proposto sfrutta sia corrispondenze tra immagine e modello scelte da un

utente che la similarità tra la vista del modello renderizzato e la foto origi-

nale misurata mediante tecniche di mutua informazione.

Una approfondita analisi delle tecniche esistenti ha portato alla scelta e alla

combinazione di questi due approcci. Essa permette di risolvere i loro difetti,

mantenendone i pregi. La tesi presenta un tool, chiamato TexAlign Suit,

sviluppato per piattaforme Windows e Unix. Esso implementa il nuovo ap-

proccio, affiancandolo a quelli già esistenti.

Test sviluppati ad hoc mostrano la validità della metodologia proposta. Essi

fanno riferimento a casi d’uso diversi tra loro evidenziando la flessibilità e

facilità di utilizzo della Mutual Correspondences.
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Chapter 1

Introduction

In Computer Graphics, great efforts have always been made to generate a

believable rendering of a 3D model. Several methods have been proposed,

but the ones that assure the best resemblance with an existing object require

accurate 3D surface data and surface textures. Nevertheless, the acquisition

of the appearance of an object presents problems of different nature.

3D geometry of existing objects is usually acquired through 3D scanning,

a highly diffused and relatively inexpensive technology. 3D scanners are es-

sentially measurement devices: they allow to obtain accurate measurements

of the geometry of a scene or an object in a very short time. Through the

years costs decreased while to performances improved a lot. Hardware and

software developments shortened the time needed to complete a scanning

campaign (from the acquisition of the range maps to the production of the

final model) from months to a few days.

Unfortunately 3D scanning can’t provide information about surface proper-

ties (color and material). The best way to obtain a complete acquisition of

the visual appearance of an object is taking pictures of the object.

Digital photos provide detailed 2D textures. Nowadays, even cheap digital

cameras can take high definition images including additional information as

focal length or sensor size. Exif file became a standard for the description

and organization of these data.
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Once 3D model and textures are available, a mapping between the two

data sources is necessary. Images need to be registered to the 3D model.

This means that the virtual camera should be disposed according to the

parameters of the digital cameras. Estimation of the (extrinsic and intrinsic)

camera parameters associated to each image is the real problem to solve.

Many approaches have been proposed. They differentiate for the technology

used (cheap labs versus expensive equipment), the level of user control in

the registration process or the formalization of the problem itself. These

methods have found a lot of practical applications, in very different fields

such as Cultural Heritage, Medical technology, environments testing.

In this thesis, a new methodology to image-to-geometry registration is

proposed. It is called Mutual Correspondences and originates as a refinement

and improvement of the Mutual Information based alignment proposed by

Corsini et al. in [MCS09]. This one is combined with the correspondences

error based alignment that uses some correspondences between points on the

image and on the geometry. The joint usage of these approaches allows to

overcome their individual limits.

The thesis presents an open source tool called TexAlign Suite, which al-

lows to align images on 3D models. It implements different approaches to

the problem, giving the user the possibility to choose which one best suits to

its task. Each approach deals with the minimization of a quantity.

The main strong-points of this tool are: a simple and user friendly interface,

the possibility to handle very different cases (from very small to architectural

size models), the opportunity to use different methodologies, the implemen-

tation of the Mutual Correspondences based alignment that shows the best

results on a wide set of samples.

The structure of the thesis is organized as follows: Chapter 2 will give a

general overview about the state of the art in the image to geometry registra-

tion. The first section will be devoted to the description of the camera model
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and the mathematic process that transforms 3D coordinates in 2D images

according to specific camera parameters. The following section will present

the main approaches to the problem divided into three main classes: corre-

spondences based alignment (that includes the Tsai method and the error

evaluation methods), feature based alignment and Mutual Information based

alignment. The last section will show some practical applications of registra-

tion algorithms in three areas: color projection, 3D geometry deformation

and 3D geometry completion.

Chapter 3 will present the new approach. The first section will compare

the features of the different techniques together with the description of some

tools that use them. The next section will describe in detail the Mutual

Correspondences function.

Chapter 4 will present the TextAlign Suite tool developed on purpose.

The first section will cover the user interface, after an overview on the used

libraries. The second section will describe the project structure while the

third will introduce the three calibration modes (correspondences error based,

Mutual Information based and Mutual Correspondences based). The last

section will supply a simple user guide.

Chapter 5 will present the tests results. They will show the effectiveness

of the new approach with the use of graphics and screen-shots. Several test

cases will be carefully analyzed in terms of visual feedbacks and convergence

to the best alignment.

Finally, Chapter 6 will present the conclusion and an overview of the

possible future improvements of the Mutual Correspondences approach and

the TextAlign Suite.



Chapter 2

Related Work

In this chapter several known 2D-3D registration approaches will be dis-

cussed. They are arranged in three classes: correspondences based methods

(Section 2.2), feature based methods (Section 2.3) and Mutual Information

based methods (Section 2.4). They essentially differ in the choice of what

drives the registration: user defined correspondences, object features, Mu-

tual Information (MI) value.

All these methods face the problem of finding the camera parameters that

generate a rendering of a 3D model of an object which is aligned to a 2D

image of the corresponding object(Section 2.1).

Some practical applications of camera calibration and some uses of calibrated

sets of image will be shown in Section 2.5.

2.1 Camera calibration

The problem of the alignment of a single image to a 3D model is closely

related to the problem of camera calibration, that deals with the computing

of all the parameters of the virtual camera in order to find an optimal inverse

projection of the image on the 3D model.
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2.1.1 The camera model

Camera parameters can be categorized into two groups [Tsa87] :

• Extrinsic (or external) parameters : these values are related to the po-

sition and the orientation in the space of the camera. They can be

described with:

– nine components for the rotation matrix R;

– three components for the translation vector T;

• Intrinsic (or internal) parameters : these values are related to the in-

ternal characteristics of the camera. Some of them are:

– f : the effective focal length, or image plane to projective center

distance;

– κi: lens distortion coefficients;

– sx: uncertainty scale factor for x, due to TV camera scanning and

acquisition timing error;

– (Cx, Cy): computer image origin coordinates in the image plane.

Sometimes it is referred as distorted center, because it’s related to

the distorted (or true) image coordinates, calculated with a radial

lens correction;

These values allow any point P in the space to be transformed in the corre-

sponding point on the image plane of the camera (and viceversa).

2.1.2 Mathematic radial alignment approach

Mathematically, transforming 3D world coordinates to 2D image coordinates

according to the camera parameters implies resolving a series of equations.

The main steps are [Tsa87] :
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Figure 2.1: A simple scheme of a camera perspective projection

1. Transformation of a point from its world coordinates (xw, yw, zw) to the

camera 3D coordinate system (x, y, z), using extrinsic parameters:
x

y

z

 = R


xw

yw

zw

 + T (2.1)

As shown in Figure 2.1 the camera is centered at point O, the opti-

cal center, and the z axis is the same as the optical axis. This is an

imaginary line that defines the path along which light propagates to

the system.
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2. Perspective projection with pinhole camera geometry : transformation

from 3D camera coordinate (x, y, z) to ideal (undistorted) image coor-

dinate (Xu,Yu) is obtained using f :

Xu = f
x

z
, Yu = f

y

z
(2.2)

In Figure 2.1 O1 is the center of projection in the image plane and f is

the segment OO1.

3. Radial lens distortion: assuming a radial distortion produced by the

lenses along the radial direction passing through the center of distor-

tion, the undistorted (or true) image coordinates are:

Xd +Dx = Xu , Yd +Dy = Yu (2.3)

where

Dx = Xd(k1r
2 + k2r

4 + ...) , Dy = Yd(k1r
2 + k2r

4 + ...) (2.4)

and

r =
√
X2

d + Y 2
d (2.5)

ki are the distortion parameters. Tests show that it is possible to obtain

a quite accurate model of distortion using only the first (k1) coefficient.

If the center of distortion doesn’t correspond to the center of projection,

the displacement p1 and p2 along the image axes can be estimated as

well.

4. Transformation to computer image coordinate (Xf , Yf):

Xf = sxd
′−1
x Xd + Cx , Yf = d

′−1
y Yd + Cy (2.6)

where
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(Xf , Yf ) row and column numbers of the image pixel in com-

puter frame memory

(Cx, Cy) row and column numbers of the center of computer

frame memory (distorted center)

dx center to center distance between adjacent CCD sen-

sor in the X (scan line) direction,

dy center to center distance between adjacent CCD sen-

sor in the Y direction,

Ncx number of sensor elements in the X direction,

Nfx number of pixels in a line as sampled by a computer,

sx image scale factor,

d
′
x = dx

Ncx

Nfx

sx is an additional uncertainty parameter introduced due to a variety

of factors (for example the slight hardware timing mismatch between

image acquisition hardware and camera scanning hardware, or the im-

precision of the timing). This step is necessary because the unit for

(Xf , Yf ) must be the number of pixels for the discrete image in the

frame memory. Generally, manufacturers of the digital camera supply

dx, dy, Ncx , Nfx.

In conclusion, in order to obtain a good registration of an image with a 3D

model, it’s necessary to estimate 12 extrinsic parameters (9 for rotation and

3 for translation), and from 1 (focal length) to 5 (focal, distortion coefficient,

image scale factor and center of distortion) intrinsic parameters (step 2-4).
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2.2 Correspondences based estimation of cam-

era parameters

The most generic and robust way to align a set of images on a 3D model is

to provide a set of 2D-3D points correspondences, and estimate the param-

eters by solving a non-linear equation system, or minimizing a pre-defined

function. Part of the intrinsic parameters can be provided by the camera

manufacturer or included in the Exif file of the digital photo, or it can be

estimated preliminary and assumed as constant for every acquired image.

Several automatic and semi-automatic systems have been created to es-

timate intrinsics parameters. For example, the approach by Zhang [Zha00]

provides very good results using a very simple calibration pattern. Once that

intrinsics are known in advance, it is necessary to estimate only the position

in the space of the camera: this problem is known as pose estimation, and

one of the most comprehensive solutions was provided by Kumar [KH94].

2.2.1 The Tsai method

In the case of a more general problem, where all the parameters have to be

estimated, several possible mathematic approaches have been proposed, but

the most widely known and used is the Tsai method [Tsa87] that imple-

ments step by step the algorithm shown in Section 2.1.2. It uses a two-stage

technique to compute, at first, the position and orientation and, then, the

internal parameters of the camera.

The Tsai model describes the camera using 11 parameters: 6 for extrinsics (3

for translation components, 3 for rotation components) and 5 for intrinsics (1

for focal length and 4 for lens distortion, scale factor, and distorted center).

The rotation matrix R is expressed with the Euler angles yaw θ , pitch φ and

tilt ψ for rotation:
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
cosψ cos θ sinψ cos θ − sin θ

− sinψ cosφ+ cosψ sin θ cosφ cosψ cosφ+ sinψ sin θ sinφ cos θ sinφ

sinψ sinφ+ cosψ sin θ cosφ − cosψ sinφ+ sinψ sin θ cosφ cos θ cosφ


The method is implemented for both coplanar and non-coplanar points con-

stellation, and it proves to be very simple and robust. With 5 or 7 cor-

respondences respectively, an overdetermined system of linear equation can

be established and solved, though 12 correspondences give the most reliable

results. The best solution is found regardless of the initial position of the

model. Another strong point is that an implementation of the method is

freely available on the web [Ali04].

2.2.2 Error evaluation methods

Almost all the calibration procedures are led back to a minimization problem.

They differentiate mainly for the function chosen for the estimation. Among

these, error minimizing functions are very interesting. For example, the

error can be computed as the mean distance in pixel between the 2D image

point and the corresponding 3D point projected on the image plane for each

correspondence.

E(Corr, C) =

∑
∀correspi∈Corr

√
(xpi(C) − xi)2 + (ypi(C) − yi)2

N
(2.7)

C = (θ, φ, ψ, tx, ty, tz, f)

where:
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(xpi , ypi) projected 2D point of the original 3D point of the

correspondence

(xi, yi) original 2D point of the correspondences

N total number of correspondences

θ, φ, ψ Eulero angles

tx, ty, tz components of translation vector

f focal

Although such an error could not be considered a measure of the quality of

the alignment, tests demonstrate that minimizing this function gives good

results.

Another approach [DG97] uses a linear and non linear method to the si-

multaneous estimation of both the intrinsic and extrinsic camera parameters

using point or line correspondences.

Minimization problems are typically solved through algorithms involving it-

erative computations (Figure 2.2). Different software implementations to

minimize functions have been proposed. For example, packages like LevMar

[Lou04] and Newuoa [Pow04] are freely available on the web.

2.3 Feature based estimation of camera pa-

rameters

Many efforts have been made to automatically align a set of uncalibrated

images to a 3D model. An automatic planning of a number of images and of

the positions of the camera could lead to good results [MK99]. After choosing

a number of virtual camera position that covers the entire surface of the

3D model, the user takes photos that resemble the renderings of the model

from each camera positions (Figure 2.3). Though this approach reduces

the importance of the registration step, it cannot be considered as a general



2.3 Feature based estimation of camera parameters 12

Figure 2.2: A sketch of the Correspondences registration algorithm

solution, since it would be needed to put the object to acquire inside a specific

setup environment. This is usually impossible especially for the application

in the Cultural Heritage context, where frequently the objects must not even

be touched during acquisition.

Figure 2.3: A reference image from a selected virtual camera position (left) and

the relative digital camera (right)
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In order to achieve a more robust camera calibration, several methods

that exploit image features have been proposed. A feature can be defined as

any significant piece of information extracted from an image which provides

more detailed understanding of it. In other words, features are objects, which

should be distinct, salient and preferable frequently spread over the image

and easy to detect. Feature based image registration relies on extracting and

matching similar features from pairs of images, specifically, the rendering of

the 3D model of an object and a photo of the object itself.

For example, Neugebauer et al [NK99] present an hybrid approach where the

estimation based on correspondences is combined with a registration based

on the analysis of the image features (Figure 2.4). This semi-automatic

approach needs a preliminary calibration of the intrinsics of the camera.

Moreover, one of the hypotheses is that the illumination must be the same

for all the images: this brings to lower quality color information, because

there will be no possibility to remove illumination artifacts during the color

projection phase.

Figure 2.4: Image analysis of an object from [NK99]: image features are explored

to enhance registration to 3D model.
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Ikeuchi [IOT+07] presents an automated 2D-to-3D registration method

that relies on the reflectance range image. However, also in this case the

algorithm requires an initial estimation of the image-to-range alignment in

order to converge.

Several other algorithms try to find the camera transformation by mini-

mizing the error between the contour found in the image and the contour of

the projected 3D model [BLS92, IY96, Low91, MK99]. The error is typically

computed as the sum of distances between a number of sample points on

one contour and the nearest points on the other [Low91]. Another approach

computes the sum of minimal distances of rays from the eye point through

the image contour to the model’s surface, which are computed using 3D

distance maps [BLS92]. Lensch [LHS00] proposes a robust implementation

of previous silhouette based techniques, introducing a similarity measure to

compare them. Moreover, the whole pipeline from registration to textur-

ing is covered with very robust and almost automatic solutions (Figure 2.5).

Unfortunately, the use of silhouette matching has two important limitations:

the first one is that it must be easy to distinguish the object with respect to

the background: this needs controlled setup acquisition, or a time-consuming

”block out” manual session. The second one is that the object must be en-

tirely present inside each image: this can be a very big drawback when a big

object must be acquired, and the aim is to preserve the detail of color. In

this case, it could be necessary to frame only portions of the object, and this

prevents silhouette methods to work properly.

A recent work for 3D-3D and 2D-3D automatic registration [LSY+06]

proposes an algorithm for a more general case, but under the assumption

that the 3D scene contains clusters of vertical and horizontal lines. Analo-

gously, other previous approaches like [LS05] need to exploit orthogonality

constraints. The main application for this group of works stand in the field

of architectural models (see Figure 2.6).
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Figure 2.5: Silhouette comparison from [LHS00]: the silhouette of image and

model are compared to calculate a similarity measure.

Figure 2.6: Two results for the approach presented in [LSY+06].
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2.4 Mutual Information based estimation of

camera parameters

While the above approaches try to extract geometric features (silhouette,

reflectance, etc..) from both the image and the 3d model, it is possible

to explore different directions, dealing with object features in another way.

For example the Mutual Information (MI) can be used. MI is a statistical

measure of non-linear correlation between two data sources. In this approach

it is used as a similarity measure between the image to be registered and a

rendering of the model geometry. It is inserted into an iterative optimization

framework in order to drive the registration.

Two of the first methods implementing MI are the one by Viola and Wells

[VWMW97] and the almost contemporary work by Maes et al. [MCV+97].

In particular, both papers showed a surprising correlation between the im-

ages and the normal field rendering of the corresponding 3D model. After

these, several registration methods based on MI have been proposed. A

comprehensive overview is presented in [PMV03].

In general, most of these works regard simple geometric transformations

like 2D roto-translation or affine transformation, so that some of the issues

related to the camera model registration are not present. In the use of MI,

the choice of the optimization strategy to achieve the maximization is critic;

the comparative evaluation in [MVS99] presents the pros and cons of several

methods.

Significant improvements in this field have been made by [MCS09].The

base idea is rendering the 3D model according to different illumination-

related geometric properties (normals, ambient occlusion and reflection di-

rection) or others (silhouette). Actually, due to the texture and the unknown

illumination conditions, the input image could appear very different from a

rendering of the geometry. Therefore, using several types of renderings such
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as ambient occlusion, normal map, reflection map, silhouette map, and a

combination of them gives more meaningful images for the registration pro-

cess. Since MI evaluates a generic dependency between two random variables

and the images are visually very different, MI represents a good similarity

tool. It could be shown that the MI strictly relates these maps and a grey-

scale version of the input image.

MI can also be seen as the amount of information about B that A contains.

Mathematically MI can be expressed as:

MI(IA,IB) = −
∑
a,b

p(a, b) lg
p(a, b)

p(a)p(b)
(2.8)

where

IA, IB images

p(a, b) joint probability of the event (a, b)

p(a) probability that a pixel of IA gets value a

p(b) probability that a pixel of IB gets value b

The joint probability distribution can be estimated easily by evaluating

the joint histogram (H) of the two images and then dividing the number

of occurrences of each entry by the total number of pixels NA × NB. A

joint histogram is a bi-dimensional histogram made up of NA × NB bins;

the occurrence (a, b) is associated with the bin (i, j) where i = ba/NAc and

j = bb/NBc (see Figure 2.7). Each entry (a, b) is the number of occurrences

an intensity a in one image corresponds to an intensity b in the other. The

higher is the dispersion of joint events distribution, the lower is the value of

MI. The more the images are similar the more the histogram is compact.

The registration algorithm is an iterative optimizing algorithm that tries

to maximize the MI between the grey-scale input image an the the renderings
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Figure 2.7: Joint histogram. (Top) Construction. (Bottom) An example. The

joint histogram of the image A with itself and the joint histogram of

the same image with a rotated version of it.

In the example I(A,A) = 6.307 and I(A,B) = 1.109.

of the model, estimating 7 camera parameters (6 for camera position and

orientation and 1 for focal length). The normalization of the parameters

plays a key role in the context of the minimization. The other intrinsic

camera parameters are assumed to be pre-determined.

The problem can be formalized as the optimization of a 7D space function:

C∗ = arg max
C∈R

MI(IA, IB(C)) (2.9)

C = (θ, φ, ψ, tx, ty, tz, f)
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where:

IA preprocessed image to align

IB the rendering of the 3D model that depends on the

camera parameters C

θ, φ, ψ Eulero angles

tx, ty, tz components of translation vector

f focal

The optimization problem (Figure 2.8) is divided into two sub-problems (the

paper proposes a solution only for the latter):

• finding an approximate solution, the rough alignment ;

• refining this solution into an optimal one, the fine alignment :

the input image is converted into a grey-scale version, and, according to

the actual camera parameters, a rendering of the 3D model is generated.

Then the MI is evaluated.

An iterative optimization algorithm updates the camera parameters

until the best registration is achieved, that is when the the maximum

value of the function MI is found.

Figure 2.8: A sketch of the MI registration algorithm
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The Illumination-related geometric chosen properties are:

• Background and Silhouette:

the joint histogram is evaluated using the whole rendering viewport,

not only the part of the image that corresponds to the 3D model ren-

dered pixels. In doing so, is it possible to implicitly infer information

about the silhouette of the object, especially when the statistics of the

image background is very different form the one of the object itself.

The explicit contribution of the silhouette could be considered as well,

though sometimes ineffective (Figure 2.9).

Figure 2.9: Silhouette map performances. The silhouette information fails to reg-

ister the model. The use of the internal visual information is decisive

in this case.

• Surface Normals :

in the computation of the Lambertian (diffuse) lighting of a surface,

normal maps achieve good results. Viola and Wells [VWMW97] demon-

strate a good correlation between surface normals and the variation of
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shading generated by directional light source, regardless of light direc-

tion (Figure 2.10).

Figure 2.10: Normal vs Ambient.(Top) Original image. (Middle)Normal and am-

bient occlusion maps of the aligned model. (Bottom) Corresponding

MI functions plots. Dealing with a stone bas-relief, ambient occlusion

doesn’t provide enough lighting information to get a fine alignment.

So the plot doesn’t exhibit a minimum at the aligned position.

• Ambient Occlusion:

occluded part of the model will receive little light independently by

the lighting environment of the scene. In case of uniform illumination
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or complex geometry, self-shadowing defines the object volume (Figure

2.11).

Figure 2.11: Normal vs Ambient . (Top) Original image. (Middle)Normal and

ambient occlusion maps of the aligned model. (Bottom) Correspond-

ing MI functions plots. Dealing with the complex geometry of the

stone capital and uniform illumination, the ambient occlusion let the

MI function have a strong minimum.

• Reflection Map:

the rendering stores the direction of the mirror reflection. This value is

simple to compute since the viewpoint, the orientation and position of

the model are known in advance. For a specular material, this rendering
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is statistically related to the highlights.(Figure 2.12).

Figure 2.12: Reflections vs Normals. (Top) Original image.(Middle) Normal and

reflection maps of the aligned model.(Bottom) Corresponding MI

functions plots. Dealing with an object made of specular material,

the reflection map and the original image share a clear minimum of

the MI plot around the aligned position.

M. Corsini et al. [MCS09] propose a combination of normal map and

ambient occlusion that ensures a robust fine alignment, regardless of the

color and material of the object and the lighting environment under which

the image was taken.

According to the material, the specularity, the illumination, the geometry and
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the color of the object, different renderings could achieve different results. In

order to compare test results, it could be helpful to graphically show the MI

plot and check if there is a minimum at the aligned position (obtained with a

careful semiautomatic alignment [FDG+05]). Since the MI function around

the aligned position is a function of seven camera parameters, the overall

shape is explored around the aligned position with some 1D sections, 30 in

our case, calculated in random directions in the 7D space; where the MI has

a global minimum every section should exhibit the same minimum.

Each camera parameter needs to be scaled so that the increment of 1 unit

produces an alignment error of 1 pixel.The X axis represents the distance

in the scaled parameter space, while the Y axis represents the values of the

mutual information. It is important to underline that these values are not

normalized, and they depend on the specific image and 3D model. The

quality of the MI function is defined by its shape: the important factors are

the existence of a well defined minimum and a smooth shape, which permits

wider range of convergence.

Figures 2.9, 2.10, 2.11, 2.12 show MI function comparisons between dif-

ferent illumination-related geometric properties renderings and the original

image.

Among the applications of the MI based methods, Viola and Wells [VWMW97]

apply their methodology to medical data (Figure 2.13), which are often quite

poor in quality.

Recently, two exploitations of MI have been proposed for non-medical

applications: 3D object tracking for simple template-based objects [PK08],

and image registration improvement [CS07].
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Figure 2.13: Registration via MI presented in [VWMW97]. This is a Skull Align-

ment Experiments.In order: Initial Alignment, Final Alignment, Ini-

tial Alignment with Occlusion, Final Alignment with Occlusion

2.5 Practical applications

Image registration is the preliminary step in different fields of application.

One of these is geometry enrichment. Its basic idea is to find ways to interpret

the information given by images to enrich the quality of 3D models. Given a

set of images of a scene and some kind of geometric representation of it, it is

possible to use geometric data to help the analysis of the content of images

and the extraction of information from them.

Dellepiane [Del09] presents some methodologies to enrich digital 3D in-

formation using a set of uncalibrated images. He analyzes three main fields

of application:

• projection of color data on 3D models (color mapping);

• 3D geometry deformation (morphing a starting geometry using the

information extracted from a small set of unregistered images) ;

• 3D geometry completion (hole filling).
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Practical applications (mainly in the field of Cultural Heritage) of the meth-

ods above mentioned are shown as well. All of them start from a set of

uncalibrated image and a 3D geometry. They show that it is possible to

enrich 3D geometry in a really robust way, adaptable to very different cases,

from the acquisition of small objects to the visualization of very large and

complex architectures.

2.5.1 Color projection: The Double David project

3D scanning and camera calibration procedures have been used for the doc-

umentation of the the status of the statue of Michelangelo’s David before

and after a restoration. This was mostly focused on the removal of dust,

spots and other deposits accumulated in the years on its surface, and on the

replacement of the plaster fillings of some fractures (e.g. the ones filling the

small gaps of the fragments of the arm broken in XV cent.). The digital

documentation relies on a detailed 3D model of Michelangelo’s David and a

set of photos.

The Dataset: high quality images and dense 3D model

The 3D model of Michelangelo’s David was provided by the Stanford’s Digital

Michelangelo project [LPC+00] (56 million triangles, reconstructed from 4000

range images using a distance field with 1mm. cell size). Since the restoration

was going to bring changes mostly in terms of different appearance of the

surface, a high quality photographic essay of the pre and post -restoration

condition was taken(a graphic representation of the planned photo survey is

shown in Figure 2.14).

The amount of 2D data collected (61 images, res. 1920x2560 to document

the pre-restoration status; 68 images, res. 2336x3504 for post-restoration

status) was about 800 Mega pixels. Some sample images from both sets are
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Figure 2.14: Examples schema of the photographic campaign, describing the cov-

erage of the set of photos.

shown in Figure 2.15.

The restoration approach was based on a manual relief drafting, followed

by a digitization phase and a final mapping. The restorers performed a

precise graphic survey on the status of the David’s surface. These annotations

were drawn by the restorers on transparent acetate layers positioned onto

each printed images, using different color to indicate the same phenomena

in the different sheets. Therefore, 4 different graphic layers for each one of
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Figure 2.15: Examples of images from the pre- and post-restoration campaign.

the 61 high-resolution photos (documenting the pre-restoration status) were

created.

Mapping and visualizing RGB data on the 3D model

In order to visualize, analyze and compare data with a paper-less mode, two

approaches were chosen: (a) ’classic’ 2D mapping of the scanned reliefs on

the corresponding 2D RGB images, and (b) mapping of the RGB data (pre-

and post-restoration images) on the digital 3D model aligning the two photo

sets (129 images registered) on the high detail 3D model and projecting the

color. The 2D mapping was chosen as an easy way for experienced and un-

experienced users to access the photographic and reliefs archive; the user

can choose any of the provided views, and then visualize the corresponding

photo and, selectively upon his/her choice, the superimposed reliefs related

to imperfections, deposits and deteriorations.
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The 2D-3D registration and color projection make possible an interactive vi-

sualization of the colored 3D model, giving the user the possibility to analyze

the appearance of the statue before and after restoration from any arbitrary

point of view.

The pre and post-restoration models are shown on the left and right

side, respectively (Figure 2.16) . The power of camera calibration allows to

obtain an image of the restored model perfectly aligned to the starting pre-

restoration photo. It is possible to use the camera parameters estimated for a

photo that belongs to the pre-restoration set and render the post-restoration

model from the corresponding camera position.

Figure 2.16: Screenshot of the Virtual Inspector visualization tool used for in-

spection and virtual manipulation of a complex and highly detailed

3D model

An example of this particular mapping is shown in Figure 2.17, where

the left-most image is taken from the pre-restoration set and the central

image is the corresponding one from the post restoration set. This could be
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very useful not only for superimposition of restoration reliefs but also to try

to reproduce a similar illumination condition, which was slightly different

between the two sets.

Figure 2.17: one of the images of the pre restoration set (Left); the corresponding

image in the post restoration set (Center); rendering of post restora-

tion 3D model from camera position of pre restoration image (Right)

In conclusion, the mapping of the David was an interesting application

of color projection in Cultural Heritage. In particular, 3D navigation adds

significant possibilities to compare the visual appearance of David before

and after restoration. Moreover, highly detailed geometric information and

highly detailed color information were put together in a real-time navigable

system.

Another interesting and similar application of color projection techniques

is the modeling of 3D colored scannings of the capitals in the cloister of

Monreale. It belongs to the much wider CENOBIUM (Cultural Electronic

Network Online: Binding up Interoperably Usable Multimedia) [BCC+07]

project. It was born to provide a web-based, openly accessible work environ-

ment, which includes 3D models created by scanning, CAD-representations,

digitized historical photographs and digital photography of the highest pro-
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fessional quality.

All the capitals of the Cloister were acquired with a set of 8 images. A set

of photos, documenting a capital, is shown in Figure 2.18.

Figure 2.18: An example of the set of photos acquired for sampling the color of

each capital.

High quality 3D models of the capitals were produced by using a Konica

Minolta VI 910 Laser Scanner. After the reconstruction of an accurate 3D

model, the images have been calibrated and their color projected onto it using

a specific tool called TexAlign [FDG+05, FCG+05]. Twenty highly detailed

3D models of the most artistically interesting capitals of the cloister were

reconstructed. The screenshots of two models are shown in Figure 2.19.

2.5.2 3D geometry deformation: 3D head model re-

construction from images for HRTF

In the context of Virtual Reality applications, in order to obtain a realistic

three dimensional audio, binaural rendering is used. This technique pro-

vides an exact reproduction of the acoustic field over headphones. Realistic

results can be achieved only by using individualized HRTF filters. The head-

related transfer function (HRTF) describes how a given sound wave input



2.5 Practical applications 32

Figure 2.19: the “Sh10” capital, ornamental leaves (Left); the model of “Sh37”

capital with color information (Right).

(parameterized as frequency and source location) is filtered by the diffrac-

tion and reflection properties of the head and pinna, before the sound reaches

the eardrum and inner ear. Its shape can noticeably vary between subjects

and it’s closely related to the features of the head (primarily the ear, and

secondarily nose, chin, head size). Recently, some methods have been intro-

duced to simulate virtual measurements of HRTFs filters by running finite

element simulations [Kat01, KN06] or ray-casting [ARM06] on a 3D head

model. A collaboration between Visual Computing Lab and Reves Lab at

INRIA brought to the creation of an alternative method for sound scattering

calculation [TDLD07]. Instant sound scattering is based on the use of the

Kirchoff approximation, with which it is possible to calculate the first bounce

of sound scattering in a very short time (minutes instead of hours). In order

to apply this method to HRTF calculation, it is necessary to provide an ac-

curate model of a 3D head. 3D scanning could be expensive so, in order to

reduce the cost, a new method have been proposed: an automatic method to

produce an accurate model of head starting from a set of uncalibrated pho-

tos. Final model would have been obtained via the morphing of a starting

3D model from a large database of of a dummy heads (Figure 2.20) After
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Figure 2.20: Three elements of the 3D dummy library

Figure 2.21: An example of ear selection: starting image, dummy ear camera po-

sition before and after alignment, ear shape after low accuracy mor-

phing

extracting the external borders of both ears from images (extracted mask),

the dummy head that best matches the ear features is selected for morphing.

The user needs to set some key-points (6 or 7) on each photo. A model of

perspective camera is used and a rigid alignment is performed, by modify-

ing extrinsic camera parameters so that the external borders of the 3D ear

are best aligned to the extracted mask (Figure 2.21). A similar approach to

the one used for ears is applied to profile and frontal photos to provide best

camera data for head deformation (Figure 2.22). Using the set of cameras

which defines the alignment of the dummy model with respect to each image,

a set of viewport-dependent 2D-to-3D model deformation is calculated. The

set of deformations is then combined to morph the dummy model to its final

shape.
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Figure 2.22: An example of head alignment: starting image, extracted mask,

dummy head camera position before and after alignment

2.5.3 3D geometry completion: filling holes starting

from calibrated images

Starting from the same previous input data (a 3D model and a set of images),

some methods can recover from some errors or problems happened during 3D

data acquisition. In fact, it is not unusual to have parts of the model which

can be taken by a photo, but cannot be acquired by the scanner due to the

angle between the camera and the laser emitter, or because it is impossible to

find the position of the scanner which permits to ”close the hole”. So, an open

model results. This time the images of the object need to be calibrated. The

input dataset is made by a 3D open model of the object, a image depicting

the pattern on the object (Figure 2.23) and the camera data which define

the alignment of the image (obtained with TexAlign [FDG+05]).

The hole reconstruction framework [DVS09] can be divided in three main

parts:

1. Image processing. The first operation is the extraction of the infor-

mation about the pattern from the image. It is thus necessary to apply

image filters in order to extract the red lines from the image (Figure

2.23).
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Figure 2.23: An example of model with hole and image with projected pattern

The user is asked to manually indicate the position of the four corners

of the pattern in order to have a very accurate projector estimation.

2. Estimation of pattern projector position. During this important

phase (which would not be needed in the case of a projector which

is fixed to the digital camera) the position of the pattern projector is

estimated starting from the knowledge of the shape of the projected

pattern and the information taken from the extracted pattern on the

registered image.

3. Geometry reconstruction. Once that camera and projector posi-

tions are known, it is possible to calculate the corresponding 3D po-

sition of each pixel in the image. This is obtained with the usual
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Figure 2.24: the triangle strips generated using the image (Left); the rough hole

filling (Right)

technique of the triangulation. A 3D point is generated for each pixel

of the extracted pattern which does not already map on the geometry.

The produced points are used to create a series of strips (Figure 2.24

left) which split the original hole in a series of smaller holes. The infor-

mation used for creating the strips is extracted from the images, and it

is a quite exact representation of the real geometry of the object. The

remaining steps of the hole filling procedure are the usual ones: a rough

hole filling is applied to the mesh, then a refinement step brings the

size of the newly created triangles to the medium size of the triangles

of the original mesh.

Finally, a smoothing step (which involves also some of the geometry

of the border of the original mesh) produces a final surface which is

nearly indistinguishable respect to the rest of the model.

This hole filling technique can be applied in Cultural Heritage where,

in most cases, a complete scanning of objects is practically impossible.



Chapter 3

Mutual Correspondences

This Chapter will summarize the main features of the three classic approaches

to the alignment problem: correspondences based methods (Section 3.2),

feature based methods (Section 3.3) and MI based methods (Section 3.4).

Pro and cons will be emphasized along with a deep analysis of tools that use

them (section 3.2 and 3.4). Starting from the classic approach, a new one

will be introduced (section 3.5). It is called Mutual Correspondences based

method.

3.1 General issues in image registration

Though the previously mentioned 2D-3D registration methods (Chapter 2)

can achieve good results, they all present some weak points. Moreover, the

image registration problem has some general issues. Hence the creation of

robust, reliable and comparable methods is quite difficult.

The general issues of image registration are shown below. They will be

considered both in the tool creation ( Chapter 4) and in the tests results

(Chapter 5) sections:

• Finding a reliable quality measure of a 2D-3D alignment

Image registration problem handles two different types of data: 2D
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and 3D points. Their intrinsically different nature makes difficult any

comparison between them. Though suitable for practical cases, all the

measures proposed for 2D-3D alignment lack in something.

Minimizing the distance between the 2D point of the correspondence

and the 2D projection of the related 3D point could be somewhat mis-

leading. In this case, we are dealing with a value which is only implicitly

related to 2D and 3D points. So, it cannot be considered a proper com-

parison measure. Moreover, it strongly depends on how accurately the

user sets and arranges the correspondences.

On the other side, MI is a statistical measure connected to the geom-

etry only because illumination related geometric properties maps are

considered. It is essentially a similarity measure between two images.

Nevertheless it could be possible to quantify the goodness of a camera

calibration. For example, setting up a camera in a lab with all the

parameters known in advance, and comparing the estimated camera

with the real one. Though reliable, this procedure cannot be always

accomplished and requires a suited environment. Practically speaking,

only the visual feedback could be considered a good quality measure,

which represents a problem for a more automatic approach and the

comparison between methods.

• Focal estimation

An incorrect starting approximation of the focal length of a camera

could affect the entire optimization algorithm: finding an appropriate

initial focal is still an open problem. The convergence of the focal is

hard because its values fall in a range which is usually smaller (20-70

mm) than the other parameters range. For example, the image is al-

most always taken at a distance of 500-1500 mm from the object (if not

more). To help convergence, the optimization algorithm proposed in
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[MCS09] estimates the camera parameters (extrinsics and focal) adding

offsets to the current values. Nevertheless the focal still affects the

function to optimize possibly producing some local minima, where the

algorithm could stop. Another way to solve this issue is the use of Exif

metadata, which are nowadays provided by all digital cameras. The

focal length value that can be found in the Exif is usually accurate

enough to be a good starting point for accurate final alignments.

Aside from these general problems, each method of the classes mentioned

in Chapter 2 has its pros and cons. In order to find an alternative approach,

a careful analysis of them has been made.

3.2 Correspondences based methods analy-

sis: The TexAlign Tool

Correspondences based methods (Section 2.2) require users to find a lot of

correspondences between the 3D model and the 2D image. Some tools have

been proposed (for example TexAlign [FDG+05, FCG+05]) but the usability

depends tightly from the application case.

TexAlign, a tool provided by Visual Computing Lab of ISTI-CNR, has

been used in a wide variety of possible objects (from very small to very large

ones). The registration process is organized as a work project, so that tens

of images can be handled contemporaneously, and the alignment process can

be saved and resumed at any time.

The interface of TexAlign is divided in three spaces:

• the WorkSpace Tab (Figure 3.1, top) contains all the elements of the

registration project (visualized as thumbnails in the lower part of the

screen).
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Figure 3.1: The three spaces of TexAlign: top, Workspace Tab; middle, Calibra-

tion Tab; bottom, Scene visualization Tab.
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In this space, the user can set correspondences between all the elements

of the project: not only between the 3D model and any image, but

also between images. The data structure used to keep track of all

the relations between the elements of the registration process is the

correspondence graph (Figure 3.2), developed specifically for the tool.

Figure 3.2: A simple example of correspondence graph.

• the Calibration Tab (Figure 3.1, middle) allows to launch the align-

ment for any image which has enough correspondences set to the 3D

model. The estimation of camera parameters can be calculated us-

ing two methods: the classic Tsai one [Tsa87], which needs at least

12 correspondences, and a non-linear method [DG97] derived from the

approach of Faugeras and Toscani [FT86], which needs at least 6 corre-

spondences and performs optimization on extrinsic parameters and the

focal length value. The second approach needs less correspondences,

but the final results is influenced by the initial position of the model

respect to the image: hence, a preliminary rough alignment is needed.
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Once that the user is satisfied with the alignment, the associated view

can be assigned to the image.

• the Scene View Tab (Figure 3.1,bottom) shows the model and the cam-

era positions associated to each registered image.

TexAlign is a user-friendly tool that offers a very reliable and robust

procedure. If the model presents some remarkable geometrical or color/-

lighting related features, it could be very simple for the user to set the cor-

respondences. Moreover, the initial position of the model is only slightly

influential.Nevertheless, correspondences setting can be a tricky process that

requires time and accuracy. For example, Tsai method needs at least 12 and

they could be very difficult to detect.

In order to obtain accurate correspondences, it is necessary to:

• Be meticulous on setting the correspondences. The more the corre-

spondences are precise, the more the registration is accurate.

• Distribute the correspondences selectively. They should not be concen-

trated in the same place, and should cover the entire model.

• Prefer sharp features.

Like TexAlign, all the tools of this group consider only the correspon-

dences, without being aware of the complete geometry of the model. This

could have some advantages when the mesh is not so accurate (for example

due to some errors during the 3D scanning) because it forces the algorithm to

be stuck on some exact points. Any other information is not considered. But

in general correspondences setting can be hard, and one wrong correspon-

dence can influence the final result. Hence the alignment process is usually

iterative. The user has to:

1. set some correspondences;
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2. launch the calibrator;

3. add/correct the correspondences until the calibration is satisfying

As already stated, the analysis of the result is mainly based on visual com-

parison.

3.3 Feature based methods analysis

Feature based methods (Section 2.3) have been introduced to contain user

intervention as much as possible. Correspondences based methods strongly

rely on the precision and distribution of 2D-3D points pairs making them

user dependent.

Feature based methods essentially use image processing algorithms that

compare two images according to a similarity measure. Typically, they are

implemented in two steps:

1. searching for specific features in both images;

2. finding a matching between them according to these features.

This makes feature based methods completely automatic. Image processing

algorithms are very fast, and scalable, which is desirable and advantageous.

The accuracy is not user dependent, and a fine alignment needs only the

starting point, precise geometry and clear features. Unfortunately not every

feature based methods are general-purpose. There are constraints that, often,

make impossible their use in some applications (i.e. Cultural Heritage). Some

methods need pre-processing steps (reflectance estimation, or de-contouring)

that could affect performances. Other methods starts from the assumption

of having the, same illumination conditions, an uniform background or the

presence of the entire object inside each photos. At these conditions, a well-

equipped (and often expensive) environment is mandatory.
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3.4 Mutual Information based methods anal-

ysis

Mutual Information based methods (Section 2.4) need very little interaction

with the user and introduced a lot of advantages.

First of all, as stated in Section 2.4, by exploiting some illumination-related

geometric properties, it is possible to create much more meaningful render-

ings for the MI than the photorealistic ones. GPU implementation of the

algorithm proposed could be developed as well.

Compared to the error evaluation methods (section 2.2.2), MI is a less

intuitive and immediate alignment measure (though this term can be a little

misleading). It is only a statistical quantity to be maximized that has no

tangible correspondence. To have a concrete idea of the sense of this measure,

it is necessary to draw some graphs as in Figures 2.9, 2.10, 2.11, 2.12.

For test validation, the paper proposed by [MCS09] uses an user-friendly

tool for the alignment through MI . Its interface presents a window where a

3D rendering is placed on top of a 2D image. A slider controls the level of

transparency so that the user can better check the state of the alignment.

User can also choose if inserting the focal among the parameters to estimate.

Different kinds of renderings are proposed (Figure 3.3):

• Normal + Ambient

• Normal

• Ambient

• Specular

• Silhouette

• Specular + Ambient
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Ambient Occlusion is pre-calculated and stored as color, the others imple-

mented with shaders.

Figure 3.3: 2 renderings of the 3D model in the tool used in paper [MCS09]: top,

Normal + Ambient; bottom, Specular.

The optimization problem formalized by the Formula 2.9 needs to be

solved in order to to estimate the camera parameters. The tool provides two

implementations of the fine alignment described in section 2.4. The Optimize

mode uses the open source library NEWUOA [Pow04]. For each iteration it

computes, first, the offsets to be added to the current estimated parameters,
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and then the MI between the two images.

NEWUOA is a software developed by M.J.D. Powell for unconstrained

optimization without derivatives [?]. The NEWUOA seeks the least value

of a function F(x) (x is a vector of dimension n ) when F(x) can be calcu-

lated for any vector of variables x . The algorithm is iterative; a quadratic

model is required at the beginning of each iteration, which is used in a trust

region procedure for adjusting the variables. When the quadratic model is

revised, the new model interpolates F at m points, the value m=2n+1 being

recommended.

In the tool referred in paper [MCS09] user can set the following variables:

• Tolerance: it states the accuracy of the final alignment;

• Expected Variance: it states how much the initial alignment is incorrect;

• Background weight : it weights the relevance of the silhouette.

The Optimize Full mode calls the Optimize function n times (with n set

by the user) changing the value of tolerance, variance, n and other variables,

to let NEWUOA explore a much wider trust region. No information has to

be supplied other than the initial position and (if available) the focal length,

that should be as much accurate as possible. If both are very far from the

correct values, Mutual Information could achieve incorrect results in terms of

the quality of the alignment and efficiency. Nevertheless, having reasonably

precise initial position or focal length values reduces the possibility to stop

in a local minimum and speeds up convergence time. The performance are

extremely interesting, and the alignment of a single image can be found in

less then a minute.

The typical usage of the tool expects the user to:

1. find a good initial position;
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2. call the Optimize Full function without estimating the focal;

3. call the Optimize function to refine the alignment, this time estimating

the focal too.

Due to the essentially statistical nature of Mutual Information, its correlation

to the geometry is only implicit through the illumination-related geometric

properties used in the renderings. So, in case of inaccurate 3D models, it

shows some restrictions.

This tool doesn’t offer enough control to the user. If the algorithm falls

in a local minimum, there is no way to prevent the algorithm from stopping.

Moving the initial position or changing the focal could not change the final

result as well.

Tables 3.1, 3.2 and 3.3 summarize pros and cons of the different approaches.

Correspondences based methods

Pros Cons

robust, reliable and efficient takes time and accuracy

gives control to the user semiautomatic

independent from the initial position needs lots of precise correspon-

dences, sometimes difficult to find

strongly and partially geometrical

related and so useful with incorrect

3D model

independent from the whole 3D ge-

ometry

error gives an intuitive idea of the

alignment

Table 3.1: A summary of the pro/cons of the correspondences based methods
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Feature based methods

Pros Cons

automatic no control by the user on the final

result

precise requires accurate geometry and evi-

dent features

fast sometimes requires a pre-processing

step (for example, de-contouring)

strongly dependent from the initial

position

Table 3.2: A summary of the pro/cons of the correspondences based methods

MI based methods

Pros Cons

automatic no control by the user on the final

result

implementable in GPU strongly dependent from the focal

length and the initial position

implicit whole geometric correlation implicit geometric correlation and

errors with incorrect 3D model

fast and precise sometimes difficult repeatability of

the alignment

intuitive for the user MI value doesn’t give an intuitive

idea of the alignment

Table 3.3: A summary of the pro/cons of the MI based methods
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3.5 Mutual Correspondences: a new approach

Every discussed method has its pros and cons. The basic idea is to find a new

approach that, keeping the reached goals, can deal with the still unresolved

issues. It is important that the new approach could be used in different sce-

narios and should not carry overhead costs. Refining the previous techniques

cannot meet this target, because each one presents limits related to its own

nature. A much more interesting approach could be to try to combine some

approaches taking their best. In Tables 3.1, 3.2 and 3.3 it is evident that

each pros and cons are somehow complementary, and this boosts the idea of

a combination of some of those.

Mutual Correspondences (MC) tries to merge the Correspondences based

methods and the MI based methods. It starts from the observation that

these two classes of methods face up to the alignment problem in two oppo-

site ways. The first is a semiautomatic, geometric approach, the second an

automatic, statistical one. The idea is to find a third equally reliable and

robust approach that combines the degrees of freedom of the Correspondence

based methods, the automatism and the whole geometric correlation of the

MI based methods. Feature based methods haven’t been considered because

they are not so robust. Moreover, MI based methods clearly accomplish the

same goals of feature based methods without requiring pre-processing phases

or suited environment. Some features could be explored even with MI base

methods (silhouette), but this time they are not extracted from an image.

Feature information are directly encoded in an image, and used implicitly

by the MI function to compare the original photo and the 3D rendering

([MCS09])(see Section 2.4).

The Mutual Correspondences error function is expressed by the weighted

function 3.1:

MC(IA,IB ,Corr,C) = k(−MI(IA, IB(C)) + (1− k)E(Corr, C) (3.1)
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C = (θ, φ, ψ, tx, ty, tz, f)

where

IA preprocessed image to align

IB the rendering of the 3D model that depends on the

camera parameters C

MI(IA, IB(C) MI correlation function 2.8

E(Corr, C) correspondences function 2.7

θ, φ, ψ Eulero angles

tx, ty, tz components of translation vector

f focal

k weight constant

Corr correspondence set

The alignment problem is led back to a minimization problem of the

function 3.1:

C∗ = arg min
C∈R

MC(IA,IB ,Corr,C)) (3.2)

C = (θ, φ, ψ, tx, ty, tz, f)

This function could seem a quite odd because two different quantities are

involved. On the one hand there is a statistical, dimensionless quantity; on

the other hand a measure of length (in pixel). Their nature is very different

and adding them up is mathematically weird. Nevertheless, they indirectly

share the same target: quantifying the similarity between two images. Tests

results will show that this intuition works (Chapter 5). Maybe, the absence

of a reliable quality measure in the image to geometry alignment process can

explain this apparent mismatch.

The optimization problem presented in Section 2.4 is refined with the

addition of the error estimation. In parallel with the computation of the
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Mutual Information, the correspondences error between the 2D points and

the projections of the correspondent 3D points is calculated. The function

that drives the alignment now is the 3.1. k, a constant in the range 0-1,

Figure 3.4: A sketch of the MC registration algorithm

allows the user to weight each sub-function. The k value makes possible to

customize the technique according to different scenarios (for an analysis of

the effects of different values of k, see Chapter 5). A synergistic and smart

use of both correspondences and MI allow to cover different cases.

Though very different, their usage is complementary. While correspon-

dences based methods are flexible and give the user a significant control over

the final alignment, MI based method are automatic and fast. The com-

bination of the error and MI functions lets the user have a robust, flexible

and automatic method adding, at the same time, a further degree of control

through k.

Along with the usage, their flaws are complementary too. A joint use of the
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two techniques, automatically solves some of their weak points. Correspon-

dences clearly drive and force convergence, avoiding local minima that MI

can’t skip; at the same time, MI reduces considerably the number of corre-

spondences the user must set. So, the amount of time and accuracy required

to the user is smaller. Moreover, through MI, it is possible to connect, though

implicitly, with the whole 3D model.

Moreover, correspondences based methods can converge even with initial

incorrect values of the focal and starting position. This feature has been

preserved in the MC function due to its own nature. If the model is very

far from the alignment position, the error calculated through the correspon-

dences is much bigger than the Mutual Information. So, apart from the value

of k, it will always weight more in the overall MC function. Only when the

correspondences error and the MI reach comparable values, k becomes mean-

ingful. Generally, it is much easier to find a good initial position manually

than finding some very precise correspondences.

In conclusion, it is possible to find two distinct moments in the conver-

gence process::

• a rough alignment : the error is much bigger than the MI, so the latter

is negligible; MC will soon converge towards the neighbourhood of the

minimum.

• a fine alignment : when the value of the error and the MI are approxi-

mately the same, k weights the two sub-functions.

The typical usage of the method expects the user to:

1. manually find a satisfying initial position and call the function with k=1

(that corresponds to a fully MI based method) for an early alignment;

2. if necessary, refine the alignment by setting an appropriate number of

correspondences around the non correctly aligned areas; k must be set
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as well.

A robust implementation of the MC based method is provided by the

TexAlign Suite (Chapter 4).



Chapter 4

TexAlign Suite

This Section will present the new TexAlign Suite, a framework developed

with the aim to put together different approaches to the image to geometry

alignment problem. It is written in C++ and uses only open source libraries

as Vcg Lib, OpenGl, Qt, Tsai, Levmar e NEWUOA. It is developed for

Windows and Unix platforms.

The Section will describe the libraries used (Section 4.1.1), the user in-

terface (Section 4.2.1), the project structure (Section 4.2.2), the calibration

modes (Section 4.2.3). The last Section (4.3) contains a practical user guide.

4.1 Overview

Each of the methods discussed so far depends on a variety of factor such

as lighting conditions, goodness of the 3D scanning, geometry of the model,

local minima, features, accuracy and background. In different scenarios it

could be easier using one in place of another. So TexAlign Suite has been

developed on purpose. It reunites all the three approaches (involving error

function, MI and MC) in only one robust tool allowing to use the best for

every specific case.

TexAlign Suite has been widely influenced by the TexAlign [FDG+05] and

the tool for MI registration developed both by Visual Computing Lab of ISTI-
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CNR [MCS09]. TexAlign Suite takes a 3D model and one image as an input.

The visual output is a fine 2D-3D alignment according to proper camera

parameters (extrinsics and intrisics). The registration process is organized

as a work project, so that the alignment can be saved and resumed at any

time.

4.1.1 Libraries

VcgLib

Vcg Lib is a C++ templatated library for the manipulation, processing of

triangle and tetrahedral meshes. The library, released under the GPL license,

is the result of the collaborative efforts of the Visual Computing Lab of the

ISTI - an institute of the Italian National Research Council (CNR).

Vcg Lib provides support for creation and managements of components, data

structures algorithms. Renderings and GUI design are not supported. It is

up to the application that uses Vcg Lib to deal with all the other aspects

and the interaction with the user.

TexAlign Suite uses Vcg Lib for the creation and management of the

mesh. The tracking and camera model is implemented and managed using

Vcg Lib data structures and methods.

OpenGl

OpenGL (Open Graphics Library) is a standard specification defining a cross-

language, cross-platform API for writing applications that produce 2D and

3D computer graphics. In TexAlign Suite it is used to rendering the mesh

through shaders.



4.2 TexAlign Architecture 56

Qt

Qt is a cross-platform application development framework, widely used for

the development of GUI programs (in which case it is known as a widget

toolkit), and also used for developing non-GUI programs such as console

tools and servers. Qt is object oriented and uses standard C++, but makes

extensive use of the C pre-processor to enrich the language.

TextAlign uses Qt for the GUI design and development. It turns out

to be very helpful for the possibility to graphically design some components

and for the signal and slots construct. Controls (or widgets) can send signals

containing event information which can be received by other controls using

special functions known as slots.

Others

For the analysis of the Tsai library, Levmar and NEWUOA software packages

see Section 4.2.3.

4.2 TexAlign Architecture

TexAlign Suite is a C++ framework that puts together different approaches

to the image to geometry alignment problem. It is developed for Windows

and Unix platforms using only open source libraries.

It has three main modules:

• user interface;

• projects management (in/out);

• the calibration modes.
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4.2.1 User Interface

TexAlign Suite presents one principal space, a working area, where a ren-

dering of a 3D model of an object and a photo are overlapped. The photo

shows the 3D model from a particular viewpoint. User can easily move the

3D model (a triangular mesh) with the help of a trackball. On the right

side of the working area there is a window containing a camera summary. It

visualizes the current parameters and other info:

• Camera model: if present, it is read from the Exif file;

• Focal length: in mm; initially read from the project file or from the

Exif file, if present;

• Lens distortion: in case of radial distortion;

• Center of distortion: in case of radial distortion;

• Tra: translation vector;

• Rot: rotation matrix;

• Error: in px. Meaningful only if correspondences are set; it is the mean

distance between the 2d image points and the correspondent 3D points

projected on the image plane, according to the formula 2.7.

An essential menu and a toolbar offer the user all the functionalities he needs

to use the three calibration modes:

• Correspondences modes (Tsai and Levmar);

• MI mode;

• MC mode.
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Figure 4.1: A screenshot of the TexAlignSuite

The Toolbar

TexAlign Suite toolbar offers some useful shortcuts and functionalities. The

shortcuts are related to input and output operations (save/load project),

calibration modes (Tsai, Levmar, MI, MC) and preferences. An icon repre-

senting a padlock allow the user to lock/unlock the focal. This is fundamental

because each method can include the focal length in the list of the parame-

ters to be estimated. In the MI mode sometimes could be useful keeping the

focal locked (for example if the starting point is very far from the aligned po-

sition) to prevent a bad estimation. This could affect the entire convergence

process.

Sometimes the focal length is unknown and not present in the Exif file.

With a spinbox the user can manually change it. In some cases, when a

significant offset needs to be added to the current value, forcing the focal is
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Figure 4.2: A screenshot of the toolbar

the only way to have significant improvements.

A slider has been introduced to control the transparency of the image.

This is very helpful to check the alignment. As stated in Section 3.1 visual

feedback is the only reliable quality measure. Hence, overlapping the model

and the image and changing image alpha, helps to highlight some details in

the alignment and to state where refine it (i.e. setting more correspondences).

4.2.2 The Project

The TexAlign Suite project is saved in an XML file. His structure is very

simple and intuitive. It is arranged as follow:

• information about the 3D model (path, id, number of correspondences

attached);

• information about the image (path, id, number of correspondences at-

tached);

• camera parameters (rotation matrix, translation vector, viewport di-

mensions, focal length, scale correction and others);

• list of correspondences as a pair of 2D-3D points, with the id of their

related device (model or image).

Menu items and shortcuts on the toolbar let the user save and load his

projects.
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4.2.3 The Calibration Modes

There are four different calibration methods: Tsai mode, Levmar mode, MI

mode, MC mode. They are implementations of the correspondences, MI

and MC based methods, respectively, using different libraries. They can be

launched from items in the Calibration menu or from toolbar shortcuts.

In each mode there is the possibility to read the focal length from the Exif

file attached to the image (if available). The Exchangeable image file format

(Exif) is a specification for the image file format used by digital cameras.

The specification uses the existing JPEG, TIFF Rev. 6.0, and RIFF WAV

file formats, with the addition of specific metadata tags.

TextAlign Suite has a small but effective C++ library that returns each tag

in the Exif file. If the focal length is not stored in the project file, the tool

automatically tries to load it from the Exif file. This value is supplied by the

camera manufacturer, hence it is reliable.

Moreover, in the Options window, user can also load the CCD width. It

is useful to calculate the pixel width. Having the correct focal length and

pixel width makes the entire registration process easier and faster.

The Tsai mode

The Tsai mode implements a correspondences based method (Section 2.2).

It relies on the Tsai library [Tsa95] a software package in C that contains

routines for calibrating Roger Tsai’s perspective projection camera model

(Section 2.1). It is open source and can be downloaded for free. Routines are

provided for three levels of calibration. The first level is a direct implementa-

tion of Tsai’s algorithm in which only the extrinsic parameters are estimate.

In the second one, 3 (focal, Tz, and k1) of the 11 calculated model param-

eters are numerically optimized. The third level is an extension of Tsai’s

algorithm in which the full 11 parameter model is numerically optimized.
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Figure 4.3: An example of pincushion distortion (left) and barrel distortion

(right).

Full optimization is slower but provides the most accurate calibration. Tsai

mode uses the first and the third level of calibration depending on the status

of the focal length icon. If it is blocked, only the extrinsic parameters are

calibrated; otherwise, all the 11 parameters are calculated and optimized. It

needs at least 12 correspondences to work.

Among the values the Tsai library calibrates, there is the radial distortion

parameter k1. The sign of k1 identifies two different types of radial distortion:

• k1 < 0⇒ pincushion distortion: image magnification increases with

the distance from the optical axis. The visible effect is that lines that

do not go through the center of the image are bowed inwards, towards

the center of the image (Figure 4.3 left).

• k1 > 0 ⇒ barrel distortion: image magnification decreases with dis-

tance from the optical axis. The apparent effect is that of an image

which has been mapped around a sphere (Figure 4.3 right).

• k1 = 0 ⇒ no distortion.

TexAlign Suite supports a functionality that undistort the original im-

age, after estimating k1. To properly interpolate the pixels, the Push-Pull
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algorithm [DCOY03] is used, avoiding discontinuity in the image.

The Levmar mode

The Levmar mode is an implementation of a correspondences error based

method (Section 2.2.2). Starting from a number of correspondences (it needs

at least 3 or 4 to estimate focal length too) it computes the mean distance

between the 2D image points and the correspondent 3D points projected on

the image plane, according to the equation 2.7. This equation is formalized as

a sum of squares of m nonlinear functions with m = 2∗total correspondences

(considering two distinct functions for x and y). Minimizing this function

brings to a fine alignment.

The chosen minimization library is Levmar [Lou04], written in C/C++.

The current version (2.5) is open source and available for a free down-

load. The Levmar software package is an implementations of the Levenberg-

Marquardt optimization algorithm (LM). It is an iterative technique that

finds a local minimum of a function f: Rn → Rm that is expressed as the

sum of squares of m nonlinear functions of n parameters with m ≥ n. The

formula 2.7 is expressed this way. Constraint m ≥ n imposes at least 3 (or

4) correspondences.

Levenberg-Marquardt has become a standard technique for nonlinear least-

squares problems. It can be thought of as a combination of steepest descent

and the Gauss-Newton method. When the current solution is far from the

correct one, the algorithm behaves like a steepest descent method which is

slow, but guarantees to converge. When the current solution is close to the

correct solution, it becomes a Gauss-Newton method.

The Gauss-Newton method is based on a linear approximation to the com-

ponents of a function f(x) (a linear model of f(x)) in the neighbourhood

of x. Function 2.7 can be linearly approximated. Due to the nature of the



4.2 TexAlign Architecture 63

function, the Levenberg-Marquardt optimization algorithm (LM) appears as

a sensible choice.

Focal length estimation is performed trough the padlock icon, just like in

the Tsai mode.

Figure 4.4: A screenshot of the Tsai/Levmar mode

Levmar and Tsai mode share comparable performance, but the first one

needs fewer correspondences. Like the Tsai mode, the convergence is guaran-

teed even for very far initial positions from the alignment position, although

Levmar can be influenced by the initial position. Pre-processing (involv-

ing normal computation) could overcome this problem. However only the

extrinsics and the focal length are estimated. Distortion parameters are dis-

carded, making the undistortion of the original image impossible. If the final

alignment is not satisfactory, user can set other correspondences, or use the

current position as the initial position in the MI or MC mode.
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The real issue of Levmar mode is estimating properly the focal length, if

it starts from an incorrect value (Figure 4.5).

Figure 4.5: An alignment in Levmar mode with an incorrect focal

The MI mode

The MI mode is an implementation of a MI based method, using illumination-

related geometric properties (Section 2.4). The available renderings use

properties like ambient occlusion, surface normals, reflection, silhouette or

a combination of some of them (normal and ambient, specular and ambient).

Ambient Occlusion is pre-calculated and stored as color, the others are im-

plemented with OpenGL shaders. The MI between one of the renderings and

a grey-scale version of the original image is calculated. User can choose the

rendering mode in the Options window (Figure 4.6).
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Figure 4.6: A screenshot of the Options window

The camera estimation has been formalized as an optimization problem

(Formula 2.9). The value calculated with Formula 2.8 needs to be minimized

with an iterative algorithm.

The open source library NEWUOA([Pow04]) has been used. NEWUOA

is a software developed by M.J.D. Powell for unconstrained optimization

without derivatives. The NEWUOA seeks the least value of a function F(x)

(x is a vector of dimension n ) when F(x) can be calculated for any vector

of variables x . The algorithm is iterative and at the beginning of each

iteration F(x) is approximated with a quadratic model Q. It is used in a trust

region procedure for adjusting the variables. When Q is revised, the new Q

interpolates F(x) at m points, the value m = 2n + 1 being recommended,

with n the number of parameters. Only one interpolation point is altered on

each iteration.

The choice of NEWUOA is justified by the smoothness of the function to

optimize. Algorithms based on estimating derivatives perform poorly on the
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Figure 4.7: A screenshot of the MI mode (Ambient occlusion rendering used)

non-smooth MI functions, especially near the minimum. Other algorithms,

based on pattern search, require many iterations to converge, due to the num-

ber of dimensions of the problem. Most image registration techniques try to

produce smooth MI function using techniques such as Parzen-window [Par62]

or antialiasing rendering. Although MI minimization could be formalized as

a nonlinear least-squares problem, NEWUOA is preferred to Levmar. Infact

MI function cannot be linearly approximated and smoothing processes are

very expensive.

In TexAlign Suite, the alignment can be performed in the Optimize mode,

clicking on an icon on the toolbar or from the menu. Each iteration computes

first the offsets to be added to the current estimated parameters, and then

the MI between the two images. In the Option window user can set the

maximum number of iterations (parameter Iterations), beyond which the
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algorithm would stop even if it hasn’t find a local minimum.

User can also set the following variables:

• Tolerance: it states the accuracy of the final alignment;

• Expected Variance: it states how much the initial alignment is incorrect;

• Background weight : it weights the relevance of the silhouette.

In order to perform MI based alignment, parameter Mutual Info weigth must

be set to 1. The Optimize Full mode calls the Optimize function Iterations

times changing the value of tolerance, variance, and other variables, to let

NEWUOA explore a much wider trust region.

The MC mode

The MC mode is an implementation of the MC based method proposed in

Section 3.5. Having properly designed the other two modes, its implementa-

tion is straightforward. The MC mode is perfectly integrated in the MI mode

through the parameter Mutual Info weigth in the Options window. Its range

is 0-1 and represents the k value in the related model (equation 3.1). MC of-

fers the same functionalities of the MI mode plus the Mutual Info weigth that

combines the computation of the MI and the correspondens error expressed

by the formula 2.7. Setting Mutual Info weigth to 1 means switching to the

MI based alignment and no correspondences are required; setting 0 means

switching to the correspondences error based alignment, this time using the

NEWUOA library. In this case at least one correspondence needs to be set.

In-between values weight the two approaches.

NEWUOA library has been preferred to the Levmar library for a number

of reasons. Setting Mutual Info weigth to 0 allow to have another implemen-

tation of the correspondences error alignment and could work with only one

correspondence. Nevertheless, using NEWUOA to solve this non-linear least
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squares problem, even if possible, is not advantageous. NEWUOA is based

on the interpolation of a quadratic model around m sampled points, that,

though flexible, is quite expensive. Levmar, instead, is specifically developed

for non-linear least squares problems; so it shows a better performance. As

to minimizing MC function (with k > 0), it retains all the features of the MI

function, including non being linearly approximated; so, using NEWUOA

library is an immediate choice.

Since in TexAlign Suite MC mode is built upon the MI mode, it could be

launched in the Optimize mode or Optmize Full mode.

Figure 4.8: A screenshot of the MC mode (A combination of specular and ambient

occlusion rendering used)
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4.3 User guide

TexAlign Suite is a powerful and flexible tool that works well in different

scenarios. Every mode should be used properly according to the task. User

may want to use the mode he feels more comfortable with. But for most

cases, some are better than others, and the MC mode is the more general.

• Tsai mode should be used when correspondences are very easy to set

and focal length unknown. User must be very accurate and meticulous.

It is necessary when distortion parameters need to be calibrated.

• Levmar mode should be used when correspondences are very difficult

to set. In fact it is possible that only few correspondences are clear and

evident. User must be very accurate and meticulous. Focal should be

known in advance.

• MI mode should be used when a more automatic process is needed

and MI optimization algorithm doesn’t stop in local minima. Typical

usage expects that user:

1. sets an acceptable initial position;

2. calls the Optimize Full function without estimating the focal;

3. calls the Optimize function to refine the alignment, this time es-

timating the focal (if not present in the Exif file) too.

• MC mode, the most flexible and generic, should be used whenever

the other modes fail. Typical usage expects that user:

1. sets an acceptable initial position or sets few accurate correspon-

dences and, through Levmar mode, finds an acceptable initial po-

sition;
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2. launches MI mode with Optimize function, estimating the focal

(if not present in the Exif file);

3. sets (or changes) correspondences around the non-aligned areas.

4. changes MutualInfoweight to balance correctly the two sub-

functions. Tests results show that k = 0.9 is an acceptable value

(see Chapter 5).



Chapter 5

Tests Results

This Chapter will discuss tests results that prove the effectiveness of the

proposed methodology. Section 5.1 will show convergence tests of the MC

function and a visual comparison of the results achieved with the three ap-

proaches. Section 5.2 will present some particular cases where the use of MC

is necessary to reach a fine alignment.

5.1 Validation of Mutual Correspondences

5.1.1 Convergence tests

In Section 3, Mutual Correspondences (MC) have been introduced as a sort of

quality measure obtained merging the correspondences error and the Mutual

Information (Section 2). The combined use of the two techniques gives a fine

alignment even in problematic scenarios. What could have been mathemati-

cally unclear (dealing with such different measures), turned out to work as ex-

pected during tests. They all have been performed considering 800x600 pixels

images, to keep uniformity with tests made by Corsini et al. in [MCS09].

One of the first test deals with a 3D model of a horse statue. The mesh

is made of about 1 million triangles and is aligned with a 2496x1664 pixels

photo (Figure 5.1). Five correspondences have been set.
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This test shows that minimizing MC means approaching a fine alignment,

just like minimizing correspondences error or MI.

Figure 5.1: Photo (left) and model (right)of the horse statue

The plots in Figure 5.2 display the MC function (equation 3.1) and its

weighted sub-functions at each iteration of the algorithm proposed in Section

3.5. MC function shares the slope of the correspondences error sub-function.

Even starting from a very far initial position from the best alignment, MC has

a very steep convergence,while the MI sub-plot appears very flat. Although
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the weight is very high, for the most part of iterations, correspondences error

is bigger than the MI values. This is clear in the Table 5.1 where around

the iteration number 140, the two values shift their roles. From that point,

till the end, MI begins to be relevant, and the whole MC plot approaches

the MI sub-plot. Visually speaking this means that, for the most part, the

registration is driven by the correspondences; when a rough alignment is

reached, MI (less and less refined by the correspondences error) steps into as

MC function guide.

Figure 5.2: Convergence by iterations with MC function and the two sub-functions
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n (1-k)*error k*MI MC

1 52.9731 3.14399 56.1171

2 51.9025 3.15874 55.0613

3 52.2288 3.14834 55.3772

4 51.9446 3.16748 55.112

5 52.3153 3.14386 55.4592

6 52.7031 3.13107 55.8342

7 53.0951 3.14442 56.2396

8 54.0594 3.13641 57.1958

9 53.744 3.1414 56.8854

10 54.0761 3.1212 57.1973

11 53.6892 3.14253 56.8317

12 53.2815 3.16616 56.4477

13 52.8889 3.1415 56.0304

14 50.0593 3.18579 53.2451

15 46.4017 3.22623 49.6279

16 40.1358 3.31964 43.4555

17 32.0654 3.40113 35.4665

18 46.5906 3.43389 50.0245

19 31.6482 3.40344 35.0517

20 29.6527 3.41751 33.0702

21 30.3635 3.42312 33.7866

22 28.7255 3.41824 32.1437

23 28.8149 3.42005 32.235

24 28.2054 3.41477 31.6202

25 28.4877 3.42062 31.9084

26 28.2054 3.41477 31.6202

27 27.8085 3.41121 31.2197

28 28.0519 3.40314 31.4551

29 29.5952 3.42559 33.0207

30 28.2129 3.41747 31.6304

n (1-k)*error k*MI MC

31 26.3912 3.41079 29.802

32 29.6335 3.42129 33.0548

33 28.7692 3.42072 32.1899

34 28.4908 3.4239 31.9147

35 26.6993 3.39468 30.094

36 28.7815 3.41056 32.192

37 30.1807 3.42172 33.6024

38 27.3127 3.41245 30.7251

39 22.769 3.37125 26.1402

40 30.4452 3.27486 33.72

41 22.3758 3.36475 25.7405

42 21.1011 3.35441 24.4555

43 21.439 3.35896 24.7979

44 20.9197 3.33992 24.2596

45 19.6114 3.3379 22.9493

46 19.907 3.30354 23.2105

47 20.8881 3.28103 24.1692

48 19.6173 3.33236 22.9497

49 19.5029 3.32838 22.8313

50 20.4979 3.28448 23.7824

51 19.5029 3.32838 22.8313

52 19.551 3.32847 22.8795

53 19.603 3.31992 22.9229

54 20.5248 3.33955 23.8644

55 19.0807 3.33045 22.4111

56 18.627 3.32447 21.9514

57 19.6886 3.32874 23.0174

58 19.4852 3.32567 22.8109

59 19.4443 3.33177 22.7761

60 18.4135 3.30843 21.722
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n (1-k)*error k*MI MC

61 20.1212 3.32461 23.4458

62 20.4794 3.32904 23.8084

63 19.4284 3.32446 22.7528

64 16.8445 3.29966 20.1441

65 16.0143 3.2506 19.2649

66 13.06 3.21357 16.2736

67 21.9695 3.24523 25.2147

68 14.1536 3.27708 17.4306

69 19.676 3.18936 22.8653

70 13.2119 3.22127 16.4332

71 13.3459 3.19697 16.5429

72 13.9647 3.23831 17.203

73 12.9759 3.22547 16.2014

74 13.2496 3.2232 16.4728

75 14.0666 3.21145 17.278

76 12.9759 3.22547 16.2014

77 13.0319 3.225 16.2569

78 12.9794 3.21941 16.1988

79 13.5872 3.23892 16.8261

80 12.7625 3.23042 15.9929

81 12.3802 3.22602 15.6062

82 13.0947 3.22718 16.3219

83 12.9335 3.22478 16.1583

84 12.9969 3.23094 16.2278

85 12.349 3.21136 15.5604

86 13.2647 3.2208 16.4855

87 13.6131 3.22577 16.8389

88 12.9023 3.22215 16.1245

89 11.4522 3.19961 14.6518

90 9.94548 3.16481 13.1103

n (1-k)*error k*MI MC

91 10.8769 3.1459 14.0228

92 9.86266 3.15763 13.0203

93 10.3357 3.17926 13.515

94 9.87039 3.15876 13.0291

95 9.97834 3.15007 13.1284

96 9.70945 3.15523 12.8647

97 9.39344 3.14511 12.5385

98 9.11435 3.13964 12.254

99 8.95119 3.13238 12.0836

100 8.81513 3.12746 11.9426

101 8.81513 3.12746 11.9426

102 9.00685 3.13039 12.1372

103 8.7633 3.12382 11.8871

104 9.14838 3.13527 12.2836

105 8.79015 3.12944 11.9196

106 8.60949 3.12877 11.7383

107 8.80032 3.12894 11.9293

108 8.64342 3.12493 11.7683

109 8.87395 3.13076 12.0047

110 8.48433 3.11866 11.603

111 8.86141 3.12461 11.986

112 9.05576 3.12607 12.1818

113 8.85078 3.12511 11.9759

114 8.10147 3.11369 11.2152

115 7.53279 3.10455 10.6373

116 7.68067 3.1027 10.7834

117 7.69624 3.11159 10.8078

118 6.86602 3.08914 9.95515

119 6.27425 3.07093 9.34518

120 5.70546 3.01723 8.72269
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n (1-k)*error k*MI MC

121 4.97973 2.96945 7.94918

122 5.19799 2.99798 8.19597

123 4.62259 2.95928 7.58187

124 4.32458 2.94398 7.26856

125 3.81695 2.9482 6.76515

126 3.81695 2.9482 6.76515

127 4.00462 2.95647 6.96109

128 3.9614 2.95305 6.91445

129 4.08864 2.9595 7.04814

130 3.78433 2.94793 6.73226

131 3.5148 2.93752 6.45232

132 3.72577 2.93852 6.66429

133 3.72368 2.94123 6.66491

134 3.72925 2.94508 6.67432

135 3.64157 2.94362 6.58519

136 3.90433 2.95184 6.85617

137 4.21631 2.96097 7.17728

138 4.04924 2.96115 7.01038

139 3.15863 2.92211 6.08074

140 2.96729 2.91052 5.87781

141 2.73452 2.89513 5.62965

142 2.54051 2.86583 5.40634

143 2.70864 2.85903 5.56766

144 3.33873 2.89284 6.23158

145 2.06725 2.84106 4.90831

146 2.0662 2.84812 4.91432

147 2.35697 2.85758 5.21455

148 1.76415 2.81574 4.57988

149 1.87921 2.81455 4.69376

150 1.80064 2.82005 4.6207

n (1-k)*error k*MI MC

151 1.76415 2.81574 4.57988

152 1.88949 2.82069 4.71018

153 2.08602 2.832 4.91802

154 1.83578 2.81697 4.65274

155 1.90783 2.81676 4.72459

156 1.89553 2.8064 4.70193

157 1.67857 2.79994 4.47852

158 1.76282 2.82064 4.58346

159 1.57913 2.80653 4.38566

160 1.92164 2.82856 4.7502

161 1.74464 2.81909 4.56373

162 1.82347 2.8323 4.65578

163 2.0689 2.83882 4.90772

164 1.31708 2.78862 4.1057

165 1.04225 2.76989 3.81214

166 1.05646 2.76942 3.82588

167 1.0658 2.75401 3.8198

168 1.34209 2.78611 4.12821

169 0.918978 2.7625 3.68148

170 0.754526 2.74778 3.50231

171 1.33126 2.80716 4.13842

172 0.762562 2.73808 3.50064

173 0.485826 2.72702 3.21284

174 0.407048 2.7324 3.13944

175 0.825115 2.80724 3.63235

176 0.407048 2.7324 3.13944

177 0.294685 2.71099 3.00568

178 0.396166 2.71967 3.11583

179 0.391555 2.73286 3.12442

180 0.531856 2.74035 3.27221
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n (1-k)*error k*MI MC

181 0.429102 2.73307 3.16217

182 0.4762 2.72983 3.20603

183 0.567103 2.75616 3.32326

184 0.493833 2.74809 3.24192

185 0.530268 2.7397 3.26997

186 0.383301 2.72855 3.11185

187 0.443816 2.73093 3.17474

188 0.414747 2.73631 3.15105

189 0.240949 2.69413 2.93508

190 0.307649 2.69821 3.00586

191 0.324614 2.69638 3.02099

192 0.193399 2.69265 2.88605

193 0.217185 2.6917 2.90889

194 0.326706 2.69323 3.01993

195 0.358365 2.70765 3.06601

196 0.277598 2.69669 2.97429

197 0.239895 2.69103 2.93093

198 0.277796 2.71088 2.98868

199 0.195246 2.67518 2.87042

200 0.216558 2.68671 2.90327

201 0.195246 2.67518 2.87042

202 0.20981 2.67368 2.88349

203 0.220431 2.67544 2.89587

204 0.18837 2.67679 2.86516

205 0.199704 2.67753 2.87723

206 0.199641 2.67566 2.8753

207 0.208452 2.67085 2.8793

208 0.188205 2.67864 2.86685

209 0.175859 2.67686 2.85272

210 0.21001 2.67662 2.88663

n (1-k)*error k*MI MC

211 0.201446 2.67462 2.87607

212 0.200584 2.67626 2.87684

213 0.191609 2.68042 2.87203

214 0.163214 2.68071 2.84393

215 0.165655 2.68138 2.84704

216 0.167507 2.68337 2.85088

217 0.168101 2.68473 2.85283

218 0.172878 2.67632 2.8492

219 0.173093 2.68123 2.85433

220 0.17238 2.68295 2.85533

221 0.174346 2.67799 2.85234

222 0.167775 2.67918 2.84696

223 0.171052 2.68373 2.85478

224 0.160219 2.6794 2.83962

225 0.165609 2.67956 2.84517

Table 5.1: Sub-functions values in MC optimization algorithm
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Figure 5.3: Convergence by iterations with the MC two sub-functions

Figure 5.3 is even more helpful to understand the relationship between

the two sub-functions and how they affect each other. MI weighted plot falls

off only when the the sub-functions show comparable values. This happens

around a rough alignment. As a result, the MC based optimization algorithm

solves the problem (that Corsini et al. left open in [MCS09]) of automatically

find a rough alignment.

This behavior is clearly visible in Figure 5.4, where screen-shots show the

visual feedbacks of the alignment process at some succeeding iterations. As

stated in Section 3.1 visual feedback is the only practical quality measure,

and, in this case, it displays the expected results: an accurate fine alignment

in a decent number of iterations (225).
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Figure 5.4: Visual feedback of the MC alignment algorithm. MCWeight = 0.9
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5.1.2 Comparing the three approaches

It could be interesting to compare the different results that the three method-

ologies (correspondences error, MI, MC) achieve. Screen-shots are essential

to have an idea of their validity. Model in Figure 5.1 represents a classic and

exemplary scenario. It have been aligned in the MC mode of the TextAlign

Suite on a 800x600 pixels view-port, changing MCWeigth value. The final

alignments are shown in Figure 5.6. They all start from the same initial posi-

tion. MC based alignment(MCWeight 6= 0, 1) achieves the best results, with

MCWeigth = 0.9. MI based alignment (MCWeigth = 1) is the worst of the

three, probably due to a minimum that MI cannot overpass. Focal length

prevents correspondences error based alignment to be barely decent. It can-

not be correctly estimated by setting only five correspondences and starting

from an distant initial position. Moreover it takes twice the amount of itera-

tions. In Levmar mode, better results are achieved with better performance

only starting with correct focal length.(Sections 4.2.3).

In order to prove what visual feedbacks display, the shape of the MI

and MC functions have been evaluated in the neighborhood of the optimal

solution. This analysis provides useful information about the convergence

obtained with the two approaches. The initial accurate registration was ob-

tained using MC based alignment with MutualWeight = 0.9. Camera pa-

rameters related to the optimal position have been perturbated in different

directions. An offset for a maximum of 30 pixels from the optimal position

results. Considering that the viewport used is 800x600 pixels, the pertur-

bation is meaningful. The plots in Figure 5.5 have been obtained just like

the ones shown in Section 2.4. The X axis represents the distance in pixels,

while the Y axis represents, respectively, the values of MI and MC.

MI plot looks very noisy and values on the Y axis move along a very small

range (2.5-4). A minimum on the aligned position is evident, as well lots of
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local minima where the algorithm could stop. This is coherent with the vi-

sual feedback of Figure 5.6 where the optimal alignment is not achieved. MC

plot shows, on a much wider range on the Y axis, a steep slope with a clear

minimum on the aligned position. This allows the minimization algorithm

to have a good convergence.

Figure 5.5: Horse statue: MI function plot (top), MC function plot (bottom)
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(a)

(b)

(c)

(d)

Figure 5.6: Comparison between the final alignment got with the three approaches:

(a) starting point, (b) correspondences error based method (k = 0), (c)

MI based method (k = 1), (d) MC based method (k = 0, 9)
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5.2 Test cases

Specific tests have been prepared in order to prove the efficacy of the MC

approach in a wider set of samples. Typically, the main reasons that prevent

the classic approaches from an accurate alignment are related to:

• mismatch in the resolutions of data (images and models);

• possible distortion in the photos;

• inaccurate or incomplete geometry;

• lack of meaningful features.

Visual feedbacks and graphics of these tests prove that the use of Mutual

Correspondences can overcome these problems. They have been used to

compare the approaches.

The tests run on TextAlign Suite in a 800x600 pixels view-port with a

limited number of correspondences (4-5). It is important to clarify that all

the examples shown below can be registered using correspondences only. But,

in order to have a good alignment, the number of correspondences should be

at least 20. Only a high number of correspondences makes the estimation of

the focal length possible. Nevertheless, the goal of the MC based alignment

is to minimizing the intervention of the user, keeping a certain degree of

control over the process through few correspondences. After all, if the user

is able to find 20 accurate correspondences, Tsai method is the best choice

because it estimates focal distortion too.

Graphics have been obtained perturbing camera parameters around the

optimal position and plotting the three functions along some random direc-

tions, just like the previous graphics. Again test results show thatMCWeight =

0.9 achieves the best alignment. Graphics of the shape of the correspondence
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error function are show to better understand the relationship between the

three functions.

5.2.1 Shepherd nativity statue

This test tries to align a 1936x1296 pixels photo on a 3D model of 2 millions

triangles with 4 correspondences (Figure 5.7). Each data source show high

level of detail. Figure 5.8 displays the results of MI and MC registration.

Figure 5.7: Photo (left) and model (right)of the shepherd figurine

Even if the result is valid, a whole accurate alignment can’t be obtained just

using MI; around the pelvis and the legs, the shepherd model shows an error
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of some pixels. This is probably due to a radial distortion of the original

photo that can’t be estimated with MI. The correspondences, adequately

distributed, force the calibration, obtaining a better alignment. The analysis

Figure 5.8: Shepherd nativity statue: MI alignment (top), MC alignment (bottom)

of the graphics in Figure 5.9 validates this hypothesis. MC plot keeps the

slope of the convergences error plot producing a strong minimum. MI plot,

instead, presents two shallower and shifted minima on a much smaller range

on the Y-axis.
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Figure 5.9: Correspondence error plot (k = 0)(top), MI function plot (k =

1)(middle), MC function plot (k = 0, 9) (bottom)
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5.2.2 Satyr statue

This test run on a 3216x2136 pixels photo and a 3D model of about 1.4

millions triangles with 4 correspondences (Figure 5.10). The two data sources

don’t show the same level of detail, in addition to an incomplete and probably

inaccurate geometry. Figure 5.11 shows that the best result MI achieves

Figure 5.10: Photo (left) and model (right)of the satyr statue

doesn’t match a correct alignment. Probably the MI is badly affected by

the color of the background which is very similar to the color of the statue.



5.2 Test cases 88

Even if MC alignment shows an error around the elbow and the thigh, the

improvement is evident. The error is only of a few pixels. The plots in Figure

Figure 5.11: Satyr statue: MI alignment (top), MC alignment (bottom)

5.12 validate the results. While the MI plot is noisy and full of local minima,

MC plot presents a flattened minimum.
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Figure 5.12: Correspondence error plot (k = 0)(top), MI function plot (k =

1)(middle), MC function plot (k = 0, 9)(bottom)
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5.2.3 Michelangelo’s David

This test tries to align a 3D model of about 2 millions triangles on a 2705x3605

pixels photo with 5 correspondences (Figure 5.13). The two data sources have

both an high level of detail. The 3D geometry, though extremely accurate, is

incomplete. A careful analysis of Figure 5.14 highlights the limit of Mutual

Figure 5.13: Photo (left) and model (right)of the David’s ankle
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Information. The best MI alignment doesn’t achieve an optimal alignment.

The mesh models only the part of David’s ankle featured in the photo making

any information from the silhouette useless. The lack of distinctive features

doesn’t help either. Findings meaningful correspondences becomes more dif-

ficult, which prevents the user from using correspondences based methods.

The plots in Figure 5.15 are produced with a perturbation of 10 pixels from

Figure 5.14: Michelangelo’s David: MI alignment (top), MC alignment (bottom)

ndfigure

the optimal position. This time MC plot doesn’t show a sharp minimum.

Nevertheless the estimated error is less than one pixel and the visual feedback

proves that the whole alignment is the best possible. MI plot, even if shows

a minimum, looks very flat, which doesn’t help a minimization algorithm to

find that minimum.
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Figure 5.15: Correspondence error plot (k = 0)(top), MI function plot (k =

1)(middle), MC function plot (k = 0, 9)(bottom)



Chapter 6

Conclusions and Future Work

The thesis proposes an original method for the image to geometry registra-

tion. This goal has been reached through the development of the Mutual

correspondences alignment. It gets into the classic approaches overcoming

most of their issues.

The main idea is to create a new approach merging to old methodolo-

gies. In order to make the right choice, a detailed analysis of the existing

algorithms have been proposed. Correspondences error based alignment and

Mutual Information based alignment have been chosen because they show

complementary pros and cons, boding well for a combination of the two.

Moreover they are based on the same idea, the minimization of a function,

even though they deal with different quantities.

It wasn’t obvious that the two approaches would work together. Adding two

different quantities isn’t mathematically correct, but each one is related, in-

directly, to the same feature. This intuition turns out to be correct through

tests targeted to specific scenarios. In these cases both correspondences error

and Mutual Information can’t achieve a good alignment.

The new methodology has been implemented within the TextAlign Suite

tool, an open source software developed by the candidate. The tool benefits

from a simple and intuitive interface, that even a inexpert user can work

with. Its strength lies in its flexibility, that allows the user to switch between
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different modes. Very different cases can be handled, not only related to the

size of the model, but also to the task being accomplished.

In the future, TextAlign Suite will be turned into a plug in for Meshlab

[mes], an open source, portable, and extensible system for the processing and

editing of unstructured 3D triangular meshes. The system is aimed to help

the processing of the typical not-so-small unstructured models arising in 3D

scanning, providing a set of tools for editing, cleaning, healing, inspecting,

rendering and converting this kind of meshes. Integrating TextAlign Suite

to Meshlab framework represents an important addition to a software that

is embedding more and more functionalities. User interface needs to be up-

dated, along with the architectural design. Various images would be aligned

to the same model.

There are a lot of possible future extension that can be developed in

order to improve the Mutual Correspondences based alignment. They can

deal with:

• The estimation of focal length; this still represents an open issue. An

original method to estimate the focal could be the goal of further re-

searches. As an alternative, an adaptive mechanism could be proposed.

A MC value can be chosen as a threshold. The focal length would be

estimated only under this threshold.

• The smart calibration, an automatic combination of the different ap-

proaches. For example, the recommended usage of the TexAlign Suite

suggests that the user first uses Levmar mode setting few correspon-

dences and them the MC mode. This procedure can be more auto-

matic. An adaptive system could be developed. According to some

parameters (features in the image, background weight, number of cor-

respondences, starting position) it could run different algorithms in the

smartest order, to make convergence faster.
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• Inferring correspondences through more images. TexAlign [FDG+05,

FCG+05] uses a a particular data structure called correspondences

graph to infer 2D-3D correspondences from 2D-2D correspondences

between calibrated images. In TexAlign user needs to set correspon-

dences. An interesting improvement could be to automatically align

2D images according to shared features and to use bundle adjustment

to improve the performances of the system.

• Trying to boost MI finding new meaningful renderings or other combi-

nations;

• Finding an automatic system that can iteratively align a set of images

to a model. Each iteration would use the information computed in

previous step;

• Adding distortion parameters to the variables to be estimated in MC

function;

• Performing a set of ground truth tests. They should be made in a

equipped lab where all the camera parameters are known in advance.

Comparing them with the results of various alignment methods could

give interesting information about their quality. Nevertheless this kind

of tests are usually difficult and expensive. Moreover, in order to have

comparable scenarios and results, every case should present comparable

difficulties for each methods.

In conclusion Mutual Correspondences represents a significant improve-

ment over the previous image to geometry registration algorithms and could

be an interesting starting point for further researches.
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a mio padre, perchè con una mano indica gli ostacoli e con l’altra stringe

la mia;
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a mia nonna perchè è stata la prima a mettermi la matita in mano e
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