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Abstract 

Purpose of Review: Type 1 Diabetes (T1D) is an autoimmune disease marked by β-cell 

destruction.  Immunotherapies for T1D have been investigated since the 1980s and have focused 

on restoration of tolerance, T-cell or B-cell inhibition, regulatory T-cell (Treg) induction, 

suppression of innate immunity and inflammation, immune system reset, and islet 

transplantation.  The purpose of this review is to provide an overview and lessons learned from 

single immunotherapy trials, describe recent and ongoing combination immunotherapy trials, and 
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provide perspectives on strategies for future combination clinical interventions aimed at 

preserving insulin secretion in T1D. 

Recent Findings: Combination immunotherapies have had mixed results in improving short-term 

glycemic control and insulin secretion in recent-onset T1D. 

Summary: A handful of studies have successfully reached their primary end-point of improved 

insulin secretion in recent-onset T1D.  However, long-term improvements glycemic control and 

the restoration of insulin independence remain elusive.  Future interventions should focus on 

strategies that combine immunomodulation with efforts to alleviate β-cell stress and address the 

formation of antigens that activate autoimmunity. 

 

Introduction 

Type 1 diabetes (T1D) is characterized by absolute insulin deficiency secondary to 

autoimmune-mediated ablation of pancreatic islet β cells (1).  Hallmarks of T1D are the 

development of circulating autoantibodies against β-cell antigens (2), the presence of immune 

cell infiltrates within pancreatic islets (3), and a progressive decline in insulin secretion that 

eventually culminates in clinically significant hyperglycemia and metabolic instability.  Once a 

terminal disease, T1D is now manageable with exogenous insulin administration.  However, 

insulin therapy is not a cure, and persons with T1D remain susceptible to labile blood glucose 

levels and the development of microvascular and macrovascular diabetic complications (4, 5).   

The first clinical trial that tested an immunological intervention in T1D was the French 

Cyclosporine Diabetes Study (6).  Cyclosporine A (CSA) interferes with T-cell receptor-

mediated signal transduction thereby inhibiting T-cell activation and helper T-cell IL-2 

production (7).  Two studies showed a significant decrease in the need for exogenous insulin 



following CSA treatment for over one year (6, 8), however, after CSA withdrawal, blood glucose 

control worsened and autoantibody levels rebounded (9).  Furthermore, CSA treatment had the 

potential for renal and β-cell toxicity (9).  Despite this lack of a lasting impact and potential 

toxicity, these trials ushered in a new clinical era focused on immunomodulatory strategies to 

delay or prevent T1D.  To date, a number of additional interventions have been tested, including 

parenteral insulin administration, dietary exposures, broad spectrum immunosuppressants, anti-

inflammatory drugs, and T- or B-cell targeted immunosuppressants.  While a handful of trials 

have shown moderate benefits, true remission, as defined by insulin independence, remains 

elusive.  The goal of this review is to provide an overview of lessons learned from early single 

target immunotherapy regimens and to describe more recent efforts focused on combination 

immunotherapies for T1D treatment and prevention. 

 

The Pathogenesis of T1D 

Multiple different cell types contribute to the pathogenesis of T1D, which involves a 

complex interaction between the β cell and components of both the innate (non-specific) and 

adaptive (specific) immune responses.  While the focus of this review will be immunotherapies, 

a basic understanding of the mechanisms of T1D development is integral and will be 

summarized here (for additional detail see reviews by Wållberg and Cooke (10) or Lehuen and 

associates (11)).  The precipitating trigger of the autoimmune attack on the β cell remains 

unclear.  However, it is thought to result from the complex interplay between genetic 

predisposition and environmental influences (12).  The strongest contributor to genetic 

predisposition (~60%) is the human leukocyte antigen (HLA) class II, which encodes for 

components of the class II major histocompatibility complex present on antigen presenting cells 



(APCs) (13).  HLA class and other major genetic predisposition contributors (e.g. INS, CTLA4, 

PTPN22, and IL2RA) persist for life and progression to T1D is usually preceded by years of 

autoantibody expression against β-cell autoantigens (13). Emerging opinions suggest β-cell 

autoantigens may be generated by posttranslational modifications in which newly generated 

“foreign” β-cell proteins are not present during thymic selection leading to autoantibody 

production (14).  In the initial phases of disease, islet resident APCs (e.g. macrophages and 

dendritic cells) take up autoantigens and migrate to pancreatic lymph nodes (15).  Within the 

lymph nodes, autoantigens are presented by APCs resulting in the activation of circulating naïve 

autoreactive T cells (15).  Activation of these T cells allows them to migrate through tissues and 

into the islet, where they encounter β-cell autoantigens, resulting in T-cell reactivation and the 

initiation of islet inflammation and insulitis. (15).  These islet infiltrates typically contain a 

mixture of cytotoxic CD8+ T cells, helper CD4+ T cells, B cells, dendritic cells, and 

macrophages, and each of these cell types plays a role in autoimmune-mediated β-cell death (11, 

16). In addition to antigen presentation, islet-associated macrophages secrete pro-inflammatory 

cytokines that promote T-cell responses and the production of cytotoxic free radical species, 

which contribute to β-cell death (17).  Dendritic cells have been implicated in the development of 

regulatory T cells (Tregs) that promote immune cell tolerance and prevent autoimmunity (18).   

However, dendritic cell populations are diminished in at-risk individuals and in recent-onset T1D 

(19).  B cells also serve as APCs, and following CD4+ T-cell-mediated activation, produce 

autoantibodies against islet autoantigens (20) and secrete TNFα contributing to inflammation 

(21).  Pro-inflammatory CD4+ T-cells do not cause β-cell death through direct contact, but rather 

CD4+ T cells secrete pro-inflammatory cytokines to promote recruitment of other immune cells 

(22).  In contrast, CD8+ T cells lead to β-cell death through direct contact with β cells (23, 24), 



predominately utilizing the perforin/granzyme B apoptotic death pathway (25), but they may also 

utilize the Fas/FasL apoptotic death pathway (24).  Pro-inflammatory cytokines secreted from T 

cells and macrophages, such as IFNγ, IL-1β, and TNFα, also promote β-cell apoptosis, 

exacerbating islet loss during T1D development (26, 27).  

 

 

 

Single immunotherapies 

Immune-mediated reactions against the β cell encompass several different cell types and 

multiple pathways of autoimmune-mediated death, providing ample targets for immunotherapies 

aimed at treating or preventing T1D.  Since the French Cyclosporine Diabetes study, a number of 

therapies have been tested.  To date, the majority of these initial studies have undertaken a single 

intervention approach.  A focus of many trials has been on the induction of self-tolerance to 

prevent autoimmunity.  The Diabetes Prevention Trial-Type 1 Diabetes (DPT-1) consisted of 

two studies aimed at defining whether oral or parenteral insulin could prevent or delay T1D 

development in first- or second-degree relatives of a person with T1D.  In the first DPT-1 study, 

participants with a high risk of T1D development (>50%) administered twice daily subcutaneous 

doses of insulin (0.25 U/kg body weight/day) plus annual insulin infusions (28), while in the 

second DPT-1 study, participants with an elevated risk of T1D development (26-50%) consumed 

oral insulin capsules daily (7.5 mg/day) (29).  Subcutaneous insulin did not delay or prevent T1D 

(28).  Similarly, oral insulin did not alter T1D incidence, however, in a subgroup with higher 

insulin autoantibody, the incidence rate was improved (29).   



Following the DPT-1 oral insulin study, The Type 1 Diabetes TrialNet Study initiated a 

second prevention trial in relatives of persons with T1D.  TrialNet Oral Insulin participants were 

confirmed IAA positive with at least one other autoantibody and then randomized to receive a 

once daily insulin capsule (7.5 mg) or placebo.  At follow-up, participants will have glycemic 

control and autoantibody status recorded (https://clinicaltrials.gov/ct2/show/NCT00419562), and 

results from this trial are due to be reported soon.  Another ongoing study centered on restoring 

tolerance to insulin is the Fr1da Insulin Intervention study.  While TrialNet Oral Insulin 

participants had a relative with T1D, Fr1da participants are not required to have a relative with 

T1D and could be identified by population-based screening.  Additionally, Fr1da treatment 

boosted the oral insulin dose from 7.5 mg/day to 67.5 mg/day after the first three months of the 

study.  Fr1da participants are extensively screened for presence of islet autoantibodies (GADA, 

IA2A, and ZnT8) and then randomized to receive oral insulin capsules or placebo (30).  At 

follow-up, participants will be screened for changes in islet autoantibodies, CD4+ T-cell response 

to insulin, and changes to the number of circulating Tregs 

(https://clinicaltrials.gov/ct2/show/NCT02620072) (30).  

Multiple studies have also focused on intranasal insulin delivery to delay or prevent T1D.  

The Type 1 Diabetes Prediction and Prevention (DIPP) study screened for T1D HLA 

susceptibility alleles in infants and in siblings of individuals with T1D.  Those with high-risk 

HLA alleles were eligible to receive daily doses of intranasal insulin (1 U/kg/day); however, the 

rate of progression to T1D was unchanged in either cohort (31).  The Intranasal Insulin Trial 

(INIT I) treated autoantibody-positive participants with intranasal insulin (1.6 mg/day) and 

similarly showed that intranasal insulin did not prevent or accelerate T1D incidence.  In this trial, 

intranasal insulin was associated with increased antibody and decreased T-cell responses to 



insulin (32).  The INIT II study is ongoing and will expand the number of subjects from 38 to 

300 and will further investigate autoantibody level changes in addition to glycemic control ( 

https://clinicaltrials.gov/show/NCT00336674).  

Early prevention studies have also focused on neonatal dietary interventions.  A study of 

infants with a first-degree relative with T1D found that infants receiving hydrolyzed casein-

based formula in place of breast milk were less likely to be positive for two or more 

autoantibodies, versus infants receiving conventional formula.  At study end, no difference in 

autoantibodies or diabetes incidence was evident seven years post intervention (33, 34).  The 

FINDIA pilot study found that removal of bovine insulin from formula resulted in blunted 

progression of additional islet autoantibodies three years after intervention compared to 

conventional cow’s milk formula, supporting the idea of restoration of tolerance.  However no 

long term follow-up has been reported from this study (35).  Other dietary intervention including 

delayed gluten exposure (36), omega-3 fatty acid supplementation (37), and nicotinamide (38) 

have not significantly prevented or delayed T1D onset. 

 While the above studies focused on intervention prior to clinical onset of T1D, 

interventions after clinical onset of T1D have tested a number of immunosuppressive drugs to 

prevent or reverse T1D development.  This strategy has produced limited long-term success or 

detrimental side effects that precluded therapeutic outcomes.  The Cyclosporine trials provided 

an impetus for targeting T-cells, and several antibodies against the Fc receptor of T-cells 

preventing complement binding have been tested. While the mechanism of CD3 inhibition is not 

well understood, T-cell apoptosis, altered T-cell trafficking, antigenic immunomodulation of the 

T-cell receptor, and Treg induction have been observed pre-clinically following anti-CD3 

therapy (39).  Given these effects, the anti-CD3 antibody teplizumab was administered to 



individuals with recent-onset T1D.  Unfortunately, one year after initiation, participants in 

placebo, full-dose, and low-dose teplizumab were not insulin independent (40).  After two-year 

follow-up, post hoc analysis revealed that teplizumab improved C-peptide and HbA1c levels in 

responders with higher baseline glycemic control or altered memory T-cell populations (41, 42).  

Otelixizumab, another anti-CD3 antibody, led to an improvement in C-peptide levels, but only in 

participants whose β-cell function was in the top 50th percentile at baseline (43).  TrialNet is 

currently testing tepluzimab for prevention or delay of T1D in high-risk relatives of persons with 

T1D (https://clinicaltrials.gov/ct2/show/NCT01030861).  

CTLA4-Ig is a co-stimulatory modulator that prevents T-cell activation by binding to 

CD80 and CD86, preventing subsequent APC binding and downstream signaling (44).  In recent-

onset T1D, abatacept administration delayed C-peptide decline and decreased the need for 

exogenous insulin over the first twelve months (44).  However, protection was lost by twenty-

four months (44), and blockade of CD80 and CD86 drastically reduced Tregs and exacerbated 

autoimmunity (45).  Prevention of T1D with abatacept is currently being tested in autoantibody 

positive relatives of persons with T1D (https://clinicaltrials.gov/ct2/show/NCT01773707).  

Since Tregs have been shown to be reduced in T1D, efforts to restore functional Tregs to 

reverse autoimmunity and preserve remaining β-cell mass are underway.  Marek-Trzonkowska 

and associates (46) and Bluestone and associates (47) recently reported on respective phase I 

trials to assess safety of using Treg adoptive immunotherapy in T1D.  Participants with T1D, 

either within two months of diagnosis or ranging from 14-104 weeks post diagnosis, had their 

own Tregs isolated from peripheral blood, expanded ex vivo with anti-CD3 and anti-CD28 plus 

IL-2, and varying numbers of cells were adoptively transferred back into the donor (46, 47).  

Bluestone found a population of transferred Tregs that were long-lived and still in circulation one 



year post transfer (47).  Marek-Trzonkowska study participants exhibited an increase in C-

peptide levels and lower exogenous insulin requirement (46).  Bluestone study participants 

exhibited no decline in C-peptide levels and no worsening in HbA1c over 1 year post transfer 

(47).  Bluestone and associates are currently investigating the combined use of adoptively 

transferred Tregs plus IL-2 administration (https://clinicaltrials.gov/ct2/show/NCT02772679). 

Taken together, these early data suggest that Treg therapy may be beneficial for preserving β-cell 

mass and possibly reversing T1D.  

 At least one trial has focused on the B cell using Rituximab, which targets the B-cell μ 

immunoglobulin chain.  In recent onset T1D, Rituximab was found to significantly lower HbA1c 

levels, increase C-peptide levels, and reduce exogenous insulin demand (48).  However, CD19+ 

B cells steadily rebounded over the following twelve months as tolerance was not established 

with rituximab (48).  Two-year post-intervention follow-up reported rituximab delayed the 

decrease in C-peptide levels, but did not appear to alter CD19+ B cells or antibody production 

(49).  Interestingly, Rituximab has yet to be tested in the pre-clinical phase of T1D. 

Another avenue of intervention has been to target inflammation and innate immunity. 

Imatinib is an inhibitor of protein tyrosine kinases, specifically c-Abl, c-Arg, PDGFR, and c-Kit 

(50).  Imatinib also has anti-inflammatory effects, including decreasing production of TNFα by 

macrophages.  In mouse models, imatinib has been shown to protect β cells against cytokine and 

chemical agent induced apoptosis and protect against autoimmune-mediated and chemical agent-

induced T1D (51, 52).  Currently, imatinib is being used in a phase II study in recent-onset T1D 

(https://clinicaltrials.gov/ct2/show/NCT01781975).  Another inhibitor of TNFα activity is 

entanercept, which is a soluble recombinant TNFα receptor fusion protein that binds to TNFα to 

inhibit activity (53).  In participants with recent-onset T1D, entanercept improved HbA1c and C-



peptide levels (53).  IL-1 has also been a target for intervention in two studies.  Anakinra is an 

IL-1 receptor agonist and has also been used for rheumatoid arthritis therapy (54).  Anakinra was 

administered to recent-onset T1D participants.  Unfortunately, this agent did not alter C-peptide 

levels (55).  Canakinumab is a monocolonal antibody against IL-1β, which was investigated in 

recent-onset T1D concurrently with anakinra (55).  In similar fashion, canakinumab did not 

improve C-peptide levels (55).  Innate immunity modulation is also being investigated with the 

use of the Bacillus Calmette-Guérin (BCG) vaccine.  BCG is an FDA approved vaccine 

primarily used for tuberculosis prevention, which also induces production of TNF (56). TNF 

destroys insulin-reactive T cells and may also induce Treg production, but does not destroy 

healthy T cells (56).   Over twenty years ago, an initial clinical trial with low dose BCG induced 

remission of T1D in some participants (57).  Unfortunately, remission was not observed in an 

expanded trial.  More recently, a small proof of concept trial in participants with long-standing 

T1D resulted in improved C-peptide levels, fewer circulating autoreactive T cells, reduced GAD 

autoantibody levels, and Treg induction (56).  Currently, BCG is being investigated in a larger 

clinical trial in participants with long standing T1D in effort to repeat the pilot trial’s results 

(https://clinicaltrials.gov/ct2/show/NCT02081326).  

 

Combination Immunotherapies 

Whereas trials of single agent immunotherapeutic regimens have elucidated important 

insights into T1D pathogenesis, long-term insulin independence remains an aspirational 

outcome.  The majority of single-agent studies have focused on recent-onset diabetes, when the 

autoimmune reaction against β cells has been occurring for a number of years and substantial 

loss of β-cell mass has already occurred (58).  To address this, several drugs are now being tested 



as preventive therapies in autoantibody positive at-risk individuals, including GAD-alum, oral 

insulin, Tregs, abatacept, and tepluzimab.  A second approach has been to develop multifaceted 

combination approaches that target different arms of T1D pathology.  Preclinical studies in 

animal models (see reviews by Shoda and associates (59) and Reed and Herold (60)), insights 

from other autoimmune diseases, and experience from the islet transplantation field provide 

justification for this approach.  

Since the publication of the Edmonton Protocol (61), the islet transplantation field has 

tested a number of combination immunotherapy approaches to prevent nonspecific inflammatory 

reactions against the islet graft and to prevent recurrent autoimmunity.  These include: 

daclizumab or basiliximab (62, 63), anti-thymocyte globulin with entanercept (64), anti-CD3 

antibodies with TNFα inhibition (65), alemtuzumab (63), and anakinra with etanercept (66, 67).  

These strategies have led to improved glycemic control following islet transplant and have 

provided insight into modulating the immune system and promoting β-cell survival. 

One of the first combination trials tested mycophenolate mofetil (MMF) alone or in 

combination with daclizumab (DZB) in recent onset T1D.  MMF is an immunosuppressant used 

during organ transplantation, that when hydrolyzed becomes mycophenolic acid (MPA).  MPA is 

an inhibitor of inosine monophosphate dehydrogenase, which controls guanine monophosphate 

production during purine synthesis required for T- and B-cell proliferation (68).  DZB binds to 

the α subunit (CD25) of IL-2 receptor expressed on activated T and B cells (69).  The 

combination of MMF and DZB proved successful in delaying or preventing diabetes in rats (70).  

However, in the human trial, MMF/DZB or MMF alone was unsuccessful in preventing loss of 

C-peptide or the need for exogenous insulin over two years (71).  Additionally, despite an initial 

drop in HbA1c at three months post treatment, HbA1c levels gradually rose to baseline levels 



over two years (71).  Furthermore, a number of adverse effects were reported during the study, 

including neutropenia and leukopenia (71). Mechanistic follow-up also suggested that 

MMF/DZB was likely ineffective because levels of CD4+CD25+ Tregs, essential regulators of 

self-tolerance in T1D, were reduced by the intervention (72).   

A phase I trial focused on use of rapamycin and IL-2 in an effort to boost Treg function 

in recent-onset T1D, and the use of this combination was based on strong preclinical data 

suggesting modulation of multiple aspects of T1D pathogenesis in mouse studies (73, 74).  

Rapamycin is routinely used during organ transplantation and blocks the mammalian target of 

rapamycin complex 1 (mTORc1), which is an important regulator of cell cycle progression (75).  

Rapamycin inhibits proliferation of pro-inflammatory Th1 and Th17 T-cells, but has a weaker 

effect on Tregs, which do not require mTORc1 for cell growth (76, 77).  Furthermore, low dose 

rapamycin had been shown to enhance Treg function (78). IL-2 acts on multiple cell types 

expressing the IL-2 receptor and has been shown to prevent or reverse hyperglycemia in NOD 

mice through activation and expansion of Tregs (79, 80).  Moreover, Rapamycin/IL-2 prevented 

diabetes in NOD mice (74) .  Surprisingly, this combination led to a marked decrease of β-cell 

function, as measured by C-peptide, in participants with T1D duration between 4 and 48 months 

(81).  However, rapamycin/IL-2 treatment was successful in boosting the number of Tregs and 

participants maintained an enhanced response to IL-2, however, no differences were found in 

CD4+/CD8+ T-cell ratio and participants exhibited increased eosinophilia and acute TGF-β and 

soluble IL-2 receptor elevations (81).  The investigators who conducted the study concluded, 

combined with published reports, that IL-2 therapy may be beneficial in enhancing Tregs in T1D 

subjects, but in combination with rapamycin, a suspected β-cell toxicant (82), led to impaired β-

cell function (81). 



 Recently, combination therapy with low-dose anti-thymocyte globulin (ATG) and 

pegylated granulocyte CSF (G-CSF) has shown promising results.  While other efforts to 

preserve functional β-cell mass largely focused on recent-onset intervention, within 100 days of 

clinical diagnosis, ATG/G-CSF administration was focused on patients with established T1D of 

at least four months, but less than two years duration (83).  ATG has previously used as acute 

anti-rejection therapy during organ transplantation, and the main mechanism of this agent is T-

cell depletion in the circulation and peripheral lymphoid tissues through complement-dependent 

lysis and T-cell activation and subsequent apoptosis (84).  Additionally, ATG has diverse effects 

on other immune system components, including: altered cell-surface moieties that mediate 

leukocyte interactions, B-cell apoptosis induction, dendritic cell inhibition, and stimulation of 

Tregs and natural killer T cells (84).  G-CSF, or granulocyte colony stimulating factor, also has 

diverse functions.  G-CSF maintains circulating neutrophils in a steady state, inhibits TLR-

induced pro-inflammatory cytokine production in macrophages and neutrophils, enhances IL-4 

and IL-10 production from T cells, and decreases pro-inflammatory Th-17 cell populations (85).  

In this Phase IIa clinical trial, participants received a low-dose ATG/G-CSF regimen and β-cell 

function tended to maintained at 12 months in the treated group, as measured by the 4 hour area 

under the curve of the C-peptide response to mixed meal tolerance stimulation.  HbA1c levels 

also tended to be lower at 6 months in those who received ATG/G-CSF (83).  A two-year follow-

up revealed no difference in C-peptide levels 24 months post-intervention (86).  However, this 

follow-up study found subjects receiving ATG/G-CSF had reduced CD4+ T-cells and 

CD4+/CD8+ T-cell ratio and increased natural killer cells, memory T-cells, and neutrophils (86).  

Additionally, Tregs were elevated after 6, 12, and 18 months, but not after 24 months (86).  

Taken together, these results suggest that ATG/G-CSF therapy leads to prolonged 



immunomodulatory effects and a larger clinical trial in recent-onset T1D is underway within the 

TrialNet Clinical Network (https://clinicaltrials.gov/ct2/show/NCT02215200). 

 A recently reported study tested intralymphatic injection of GAD65 in an aluminum 

hydroxide formulated vaccine (GAD-alum) in combination with oral vitamin D in recent onset 

T1D (87).  L-glutamic acid decarboxylase (GAD) is an autoantigen found in ~80% of recent-

onset T1D (88).  In a phase II clinical trial, GAD-alum alone preserved C-peptide in recent-onset 

T1D (89) and participants exhibited increased Tregs (90, 91), however, a subsequent phase III 

trial showed no significantly beneficial effect in glycemic control (92).  In a separate TrialNet 

study, two- or three-doses of GAD-alum did not improve C-peptide level, HbA1c levels, or 

insulin requirement (93).  In mouse studies, vitamin D3 has been shown to reduce insulitis and 

diabetes (94) and modulate dendritic cell maturation (95). In clinical trials, however, vitamin D3 

has failed to significantly improve C-peptide, HbA1c, or exogenous insulin requirements (96, 

97).  Intralymphatic GAD-alum injection resulted in stable C-peptide levels, improved HbA1c 

levels, and reduced insulin requirement and led to up-regulation of anti-inflammatory Th2 T-

cells and decreased pro-inflammatory Th1 T-cell cytokines (87).  Additional GAD-alum 

combination studies are ongoing, including combined with: vitamin D and the anti-inflammatory 

ibuprofen (https://clinicaltrials.gov/ct2/show/NCT01785108), the anti-inflammatory agent 

GABA, (https://clinicaltrials.gov/ct2/show/NCT02002130), etanercept and vitamin D 

(https://clinicaltrials.gov/ct2/show/NCT02464033), and alone with vitamin D for T1D prevention 

in high-risk subjects (https://www.clinicaltrials.gov/ct2/show/NCT02387164).  These studies 

should yield insight into whether GAD-alum is more effective in combination with other 

immunomodulatory agents versus GAD-alum alone. 



 Autologous hematopoietic stem cell transplantation (AHSCT) is currently being 

investigated as therapy for T1D.  AHSCT are thought to “reset” immune tolerance system by 

ablating all immune cells (98).  Following peripheral blood hematopoietic stem cells 

mobilization from the bone marrow with cyclophosphamide/G-CSF, they are collected by 

leukapheresis and frozen (99).  Shortly thereafter, high dose immunosuppression with 

cyclophosphamide/ATG is administered to ablate the immune system and the previously 

collected stem cells are reconstituted and injected intravenously (99).  Following AHSCT, 

participants with recent-onset T1D had improved C-peptide levels, with many participants found 

to be insulin independent beyond one year (99-101).  Other studies have shown varying degrees 

of improved C-peptide levels and exogenous insulin independence, however, risk of adverse 

effects due to immune system ablation are high and success of AHSCT is predicated by the 

participant’s glycemic control history (102-104).  Additionally, an ongoing clinical trial in 

multiple autoantibody positive participants is investigating the feasibility of infusing 

cryopreserved core blood to prevent T1D development 

(https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12613000186752), an 

approach that may prove applicable to future AHSCT or tolerance restoration studies.  

 

Concluding Remarks and Future Perspectives 

 The discovery of insulin in the 1920s was essential for transforming a once fatal disease 

into a manageable disease.  Exogenous insulin therapy, however, is not an outright cure and 

persons utilizing exogenous insulin are unable to manage the minute-to-minute fluctuations in 

blood glucose and are still subject to the development of significant co-morbidities, including 

micro and macrovascular complications and severe hypoglycemia.  Closed-loop artificial 



pancreas systems (105, 106) are a step in the right direction, but do not address the underlying 

causes of T1D.  Since the identification of T1D as an autoimmune disease in the 1970s (2, 3), 

efforts to reverse or prevent the autoimmune insult have focused solely on the immune system.  

As summarized in this review, multiple strategies have been utilized in an effort to cure T1D and 

active immunotherapy clinical trials are summarized in Table 1.  Single target immunotherapies 

have shown success in achieving their predetermined endpoints, however, they have largely been 

unsuccessful in maintaining long-term glycemic control and significantly preserving insulin 

secretion. Refinement and combinations of these immunotherapies have the potential to lengthen 

the duration of glycemic control, but as of yet, combination immunotherapies have not 

completely reversed T1D.  Continued refinement of intervention doses, more rigorous 

investigation of intervention responders, and/or combinations of minimally successful single 

target immunotherapies should continue to be investigated in a clinical setting.     

 The majority of interventions reviewed here were implemented in recent-onset T1D.  

Since 60-90% of β-cell mass is dysfunctional or destroyed by the time of clinical onset, 

intervention may be more beneficial prior to onset of T1D.   Prevention studies mentioned above 

used autoantibodies as biomarkers for T1D.  Other potential biomarkers of T1D development 

include: genetic predisposition (13, 58, 107-109), unmethylated preproinsulin (110, 111), 

proinsulin-to-C-peptide ratios (112, 113), and microRNA species (114).  In addition, β-cell 

derived neo-antigens offer another potential biomarker of T1D, but also a target for T1D 

prevention (115, 116).  Alleviation of inherent β-cell stress has emerged recently as an important 

avenue to consider in future therapies.  ER stress has been shown to precede T1D development 

and lead to β-cell death and formation of neo-antigens (117-119).  A clinical trial is underway 

using TUDCA, a chemical chaperone that alleviates ER stress, in recent-onset T1D 



(https://clinicaltrials.gov/ct2/show/NCT02218619).  Furthermore, imatinib has been found to 

suppress β-cell ER stress mediated through IRE1α signaling (120).  This finding supports the 

concept of utilizing interventions to target not only the immune system, but also the β cell.   In 

addition, lessons on preventing β-cell death and promoting β-cell regeneration may be discerned 

from therapies used to treat type 2 diabetes (reviewed in (121, 122)) in combination with  

immunotherapies and agents focused on alleviating β-cell stress.  
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Table 1.  Active Type 1 Diabetes Immunotherapy Clinical Trials 
Single Immunotherapies 
Title Intervention Primary Outcome(s) Secondary 

Outcome(s) 
Registry Link 

Oral Insulin for Prevention 
of Diabetes in Relatives at 
Risk for Type 1 Diabetes 
Mellitus 

Oral Insulin Glycemic control 
Autoantibody status 

Metabolic status https://clinicaltrials.gov/ct2/show/NCT00419562 

Fr1da Insulin Intervention Oral Insulin Activation of 
Immune Response 
Efficacy of Immune 
Response 

FOXP3/IFNG gene 
expression 
IgG-binding to 
Insulin 
Circulating Insulin-
tetramer positive T 
cells 
Progression to 
Diabetes 

https://clinicaltrials.gov/ct2/show/NCT02620072 

Trial of Intranasal Insulin in 
Children and Young Adults 
at Risk of Type 1 Diabetes 
(INITII) 

Intranasal Insulin Proportion of 
subjects diagnosed 
with type 1 diabetes 

B cell function 
Insulin Action 
Circulating 
autoantibodies 
GAD-65 and IA2 
T cell response 

https://clinicaltrials.gov/show/NCT00336674 

Teplizumab for Prevention 
of Type 1 Diabetes In 
Relatives "At-Risk" 

Teplizumab Proportion of 
subjects diagnosed 
with type 1 diabetes 

Adverse effects of 
teplizumab 

https://clinicaltrials.gov/ct2/show/NCT01030861 

CTLA4-Ig (Abatacept)for 
Prevention of Abnormal 
Glucose Tolerance and 
Diabetes in Relatives At -
Risk for Type 1 

CTLA4-Ig (abatacept) Change from normal 
glucose tolerance to 
abnormal glucose 
tolerance 

Change in C-peptide 
to oral glucose 
tolerance test 

https://clinicaltrials.gov/ct2/show/NCT01773707 

Imatinib Treatment in 
Recent Onset Type 1 
Diabetes Mellitus 

Imatinib Mesylate Change in baseline to 
12 month 2 hour area 
under the curve in 
residual β cell 
function (C-peptide) 

HbA1c levels 
C-peptide response 
Exogenous insulin 
use 
Number of severe 
hypoglycemic 
events 
Adverse effects 

https://clinicaltrials.gov/ct2/show/NCT01781975 



Tauroursodeoxycholic Acid 
(TUDCA) in New-Onset 
Type 1 Diabetes 

Tauroursodeoxycholic 
Acid (TUDCA) 

Change in baseline to 
6, 12, & 18 month 2 
hour area under the 
curve in residual β 
cell function (C-
peptide) 

Endoplasmic 
reticulum stress 
Liver function 

https://clinicaltrials.gov/ct2/show/NCT02218619 

Repeat BCG Vaccinations 
for the Treatment of 
Established Type 1 Diabetes 

Bacillus Calmett-Guérin 
(BCG) 

Improvement in 
HbA1c levels 

Change in immune 
response 
C-peptide levels 

https://clinicaltrials.gov/ct2/show/NCT02081326 

Combination Immunotherapies 
Title Intervention Primary Outcome Secondary 

Outcome(s) 
Registry Link 

T1DM Immunotherapy 
Using Polyclonal Tregs + 
IL-2 (TILT) 

Tregs + IL-2 Adverse effects 
Survival of Tregs 

C-peptide response 
Exogenous insulin 
use 
HbA1c levels 
Number of severe 
hypoglycemic 
events 
IL-2 effect on Treg 
kinetics 
β-cell death 
Circulating 
autoantibodies 
GAD-65, IA2, and 
ICA  
Circulating Insulin-
tetramer positive T 
cells 
General immune 
response 

https://clinicaltrials.gov/ct2/show/NCT02772679 

ATG-GCSF in New Onset 
Type 1 Diabetes (ATG-
GCSF) 

Anti-tymocyte globulin 
(ATG) 
Granulocyte colony 
stimulating factor 
(GCSF) 

Change in baseline to 
12 month 2 hour area 
under the curve in 
residual β cell 
function (C-peptide)  

Effect of treatment 
on surrogate 
markers for 
immunologic and 
metabolic outcomes 

https://clinicaltrials.gov/ct2/show/NCT02215200 

DIABGAD - Trial to 
Preserve Insulin Secretion in 
Type 1 Diabetes Using 
GAD-Alum (Diamyd) in 

Glutamic Acid 
Decarboxylase in alum 
formulation (GAD-
alum) 

Change in baseline to 
6, 15, and 30 month 
2 hour area under the 
curve and 90 minute 

Maximum C-
peptide level 
HbA1c 
Exogenous insulin 

https://clinicaltrials.gov/ct2/show/NCT01785108 



Combination With Vitamin 
D and Ibuprofen 

Vitamin D 
Ibuprofen 

value in residual β 
cell function (C-
peptide) 

dose 
Th-2 cell-mediated 
immune response 
Circulating 
inflammatory 
markers 
Fasting C-peptide 

The Use of Glutamic Acid 
Decarboxylase (GAD) and 
Gamma-Amino Butyric 
Acid (GABA) in the 
Treatment of Type I 
Diabetes (GABA) 

Maltodextrin 
Glutamic Acid 
Decarboxylase in alum 
formulation (GAD-
alum) 
Gamma-Aminobutyric 
Acid (GABA) 

Change in baseline to 
12 month total daily 
insulin dose 
requirement 
Change in baseline to 
12 month 2 hour area 
under the curve 
residual β cell 
function (C-peptide) 

Circulating 
autoantibodies 
GAD-65, IA2, and 
ICA 

https://clinicaltrials.gov/ct2/show/NCT02002130 

EDCR Study - Etanercept 
Diamyd Combination 
Regimen -Open Trial to 
Evaluate Safety in Children 
With Type 1 Diabetes 

Glutamic Acid 
Decarboxylase in alum 
formulation (GAD-
alum) 
Vitamin D 
Etanercept 

Tolerability of 
combination therapy 
(injection site, 
incidence of 
infection, number of 
adverse effects, 
number of serious 
adverse effects, 
neurological 
assessments) 
Serum calcium and 
vitamin D 
Circulating 
autoantibody (GAD-
65) 

Change in immune 
system markers 
from baseline to 6 
months 
(inflammatory 
markers, Th2 cell-
mediated immune 
response, Tregs 
Change in baseline 
to 6, 9, 15, 30 
month 2 hour area 
under the curve 
residual β cell 
function (C-peptide) 
Maximum C-
peptide 
Exogenous insulin 
dose 
Fasting C-peptide 

https://clinicaltrials.gov/ct2/show/NCT02464033 

Prevention Trial: Immune-
tolerance With Alum-GAD 
(Diamyd) and Vitamin D3 to 
Children With Multiple Islet 
Autoantibodies (DiAPREV-

Glutamic Acid 
Decarboxylase in alum 
formulation (GAD-
alum) 
Vitamin D3 

Proportion of 
subjects diagnosed 
with type 1 diabetes 

Change from 
baseline to 5 years 
in glucose 
metabolism 
Occurrence of 

https://www.clinicaltrials.gov/ct2/show/NCT02387164 



IT2)  adverse effects 
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