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Abstract 

Telomere dysfunction resulting from telomere shortening and deregulation of shelterin 

components has been linked to the pathogenesis of age-related disorders, including cancer. 

Recent evidence suggests that BRCA1/2 (BRCA1 and BRCA2) tumor suppressor gene products 

play an important role in telomere maintenance. Although telomere shortening has been reported 

in BRCA1/2 carriers, the direct effects of BRCA1/2 haploinsufficiency on telomere maintenance 

and predisposition to cancer development are not completely understood. In this study, we 

assessed the telomere-associated and telomere-proximal gene expression profiles in peripheral 

blood leukocytes from patients with a BRCA1 or BRCA2 mutation, compared to samples from 

sporadic and familial breast cancer individuals. We found that 25 genes, including TINF2 gene (a 

negative regulator of telomere length), were significantly differentially expressed in BRCA1 

carriers. Leukocyte telomere length analysis revealed that BRCA1/2 carriers had relatively 

shorter telomeres than healthy controls. Further, affected BRCA1/2 carriers were well 

differentiated from unaffected BRCA1/2 carriers by the expression of telomere-proximal genes. 

Our results link BRCA1/2 haploinsufficiency to changes in telomere length, telomere-associated 

as well as telomere-proximal gene expression. Thus, this work supports the effect of BRCA1/2 

haploinsufficiency in the biology underlying telomere dysfunction in cancer development. Future 

studies evaluating these findings will require a large study population. This article is protected by 

copyright. All rights reserved 
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Introduction 

Multiple studies suggest that the “one-hit” effects of BRCA1/2 (BRCA1 and BRCA2) occur even 

before loss of the remaining wild-type allele and precede development of cancer (so called 

“haploinsufficiency”) [1-5]. For instance, cultured epithelial cells from heterozygous carriers of 

BRCA1/2 mutations exhibit genomic instability characterized by gene copy number loss and 

decreased homology-directed repair capacity in vitro [5]. Other work suggests that this genomic 

instability may be due to deregulation of genes involved in the G2/M cell cycle transition and 

DNA damage response in BRCA1 heterozygous mutant cells, while BRCA2 heterozygous mutant 

cells show deregulation of genes involved in the G1/S cell cycle checkpoint [6-8]. Interestingly, 

BRCA1, but not BRCA2, heterozygous epithelial cultured cells show upregulation of the 

secretoglobin family of genes and expression profiles similar to those seen in stem and 

progenitor cells [1]. This finding corroborates a study suggesting a role for BRCA1 in regulating 

stemness and differentiation in breast progenitor cells [9]. A separate study demonstrated 

increased proliferation and clonogenic capacity, coupled with epidermal growth factor receptor 

(EGFR) activation, in primary mammary epithelial cells from BRCA1 mutation carriers [10]. 

 

Telomere dysfunction has been hypothesized to account for the unstable phenotype in cells 

derived from heterozygous BRCA1/2 mutation carriers [4,11-14]. Telomere dysfunction 

including telomere shortening has been linked to a variety of human age-related ailments, 

including cardiovascular disease, neurodegenerative disease, chronic inflammatory disease, and 

cancer [15]. An analysis of case control studies revealed an association between short telomeres 

in peripheral blood leukocytes (PBL) and elevated risk for cancers, including bladder, head and 

neck, lung, and kidney cancers [16-22]. Genetic anticipation, or earlier age of onset and 
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sometimes severity of disease in successive generations, has been attributed to telomere 

shortening in familial cancer syndromes such as Li-Fraumeni and dyskeratosis congenita [23,24]. 

An association has been reported between genetic anticipation and shortened telomeres in 

hereditary breast cancers with BRCA1/2 mutations, but not in sporadic breast cancers [14]. A 

similar study of ovarian cancer found significantly shorter PBL telomeres in both sporadic and 

hereditary cases compared to healthy controls by the same group [25]. Such studies are largely 

association-based, and the factors driving telomere shortening and their contributions to disease 

development remain largely unknown. Therefore, efforts to shed light on the mechanisms driving 

telomere dysfunction in cancer, though limited, have offered helpful clues. 

 

To understand the predisposition of BRCA1/2 carriers to cancer development, this pilot study 

focused on identifying genes that contribute to telomere dysfunction in hereditary cancer with 

BRCA1/2 mutations by comparing to other breast cancers (i.e., familial and sporadic cancers). In 

addition, we determined the association between leukocyte telomere length and expression of 

telomere-proximal genes in BRCA1/2 mutation carriers. This study sheds light on the distinct 

role between BRCA1 and BRCA2 in telomere maintenance, as well as, provides insight into 

further investigations on the role of BRCA1/2 haploinsufficiency in the biology underlying 

telomere dysfunction in cancer development. 
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Materials and Methods 

Sample Collection 

All BRCA1/2, sporadic, and familial blood samples were obtained from Indiana University 

Simon Cancer Center (IUSCC), along with the approved Institutional Review Board (IRB) 

protocol (IRB #1011003798); 10 mL of peripheral blood was collected from total 40 women 

(BRCA1, n = 10; BRCA2, n = 10; hereditary breast cancer without BRCA1/2, n = 9; and 

sporadic breast cancer, n = 11). Five BRCA1 and 4 BRCA2 samples were from women who had 

not developed cancer. We also obtained freeze-dried PBL DNA of 10 healthy women 

(25<age<70, median age = 49) from the Komen Tissue Bank at the IUSCC, along with IRB 

approval (IRB # 1206009001). 

Gene array analysis 

The high-quality total RNA from blood samples was purified using the QIAamp RNA blood kit 

(Qiagen) according to manufacturer's instructions. The Whole-Genome DASL Assay was used 

intact total RNAs in concentrations ranging from 20 – 100 ng/μl. Following RNA extraction and 

quality assessment, Illumina® Whole-Genome DASL™ microarray (Human Ref-8 BeadChips) 

analysis was performed by Indiana University School of Medicine core facility. The raw data 

was normalized and analyzed using Partek® Genomic Suite. Differentially expressed genes were 

identified using ANOVA analysis. The Indiana University Bioinformatics Core conducted the 

gene array analysis and assisted with identification of differentially expressed genes. To identify 

altered expression in subtelomeric genes associated with telomere shortening, we compared our 

microarray data with the GSE6799 dataset from the public Gene Expression Omnibus repository, 
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as first described in Lou et al. 2009 [26]. Additionally, DAVID 6.8 bioinformatics resource was 

used for grouping genes based on functional similarity in the data [27]. 

Telomere length measurement 

Genomic DNA was extracted from PBL cells using the DNeasy blood and tissue kit (Qiagen, 

#69504). DNA quality was determined using a NanoDrop 2000 Spectrophotometer (Thermo 

Fisher Scientific). For the southern blotting, TeloTAGGG assay was used according to the 

manufacturer’s protocol (Roche, # 12 209 136 001). Mean telomere length was calculated using 

ImageQuant software and TELORUN Excel spreadsheet program [28]. For telomere qPCR, 

singleplex qPCR was performed for each sample using telc/telg and hbgu/hbgd primers [29,30]. 

A five-point standard curve (3-fold serial dilutions from 50 to 0.62 ng) of normal female diploid 

DNA (Promega, #G1521) was included on all plates. A relative measurement of the telomere 

length of each sample was calculated based on the standard curves by dividing the quantity of 

telomeric DNA (T) by the quantity of single-copy-gene DNA (S). The reference DNA has a T/S 

ratio of 1 (7.9 – 8.2 kb in telomere length determined by southern blot analysis). All samples 

were run in triplicate three times and the average Ct was used for the analysis. Control male 

diploid DNA (Promega, #G1471) was run on all plates to assess the plate-to-plate variations. 

Through the analyses, P-values < 0.05 were considered significant. 

Quantitative Reverse Transcription PCR (qRT-PCR) 

mRNA was extracted using the TRIzol reagent (Thermo Fisher Scientific, #15596026). cDNA 

was synthesized using High Capacity cDNA Reverse Transcription Kit (Thermo Fisher 

Scientific, #4368814). qPCR was performed with SYBR Select Master mix (Thermo Fisher 

Scientific, #4472908) on a QuantStudio 6 Flex real-time PCR system (Applied Biosystems). 
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Each sample was tested in triplicate in three independent experiments. Relative mRNA level was 

analyzed by the comparative Ct method using ACTB as a reference gene and cDNA generated 

from blood of healthy woman as the reference cDNA. All primers sequences were shown in 

Supplement Table S4. Through the PCR analysis, P-values < 0.05 were considered significant. 

Statistical analysis 

Unsupervised hierarchical clustering was used to construct heat maps by the Indiana University 

Bioinformatics Core. 

 

Results and Discussion 

Telomere-associated genes were deregulated among BRCA1 and BRCA2 carriers 

We collected peripheral blood leukocytes (PBL) from 10 individuals who have a BRCA1 

mutation (i.e., BRCA1 carrier), 10 individuals who have a BRCA2 mutation (i.e., BRCA2 

carrier), 9 familial cancer patients (with no identified BRCA1/2 mutation but a family history of 

breast cancer), and 11 sporadic cancer patients. Characteristics of subjects used in this study are 

shown in Supplemental Table S1. Using mRNA purified from these PBL samples, we first 

performed the Illumina whole-genome DASL (cDNA-mediated Annealing, Selection, 

Extension and Ligation) gene expression assay to identify any differently expressed telomere-

associated genes that play a role similar to telomere-binding proteins in diverse ways. 

Unsupervised hierarchical clustering analysis revealed that there were three distinct clusters of 

gene expression among telomere-associated genes: (i) those upregulated in both BRCA1 and 

BRCA2 carriers (ii) those upregulated only in BRCA1 carriers, and (iii) those not differentially 

expressed among BRCA1/2 carriers and sporadic individuals (Figure 1A). Based on P-value 
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between groups, we found a total of 46 differentially expressed genes in BRCA1 carriers 

compared with all other individuals (i.e., BRCA2 carriers, familial, and sporadic individuals) 

(Supplemental Table S2). One of two downregulated genes, IGFBP2 gene encodes a protein of 

insulin-like growth factor binding protein 2. BRCA1 has been shown to directly interact with the 

insulin-like growth factor signaling and the IGFBP2 gene has been reported as a potential 

disease modifier in BRCA2 carriers [31]. The other downregulated gene, SERPINE1 gene’s 

product interacts with p53 and is also likely involved in the urokinase-type plasminogen-

mediated signaling pathway in breast cancer [32,33]. Based on P-values, the top three hits were 

the PPP2R5C, MX1, and TINF2 genes. The PPP2R5C gene product belongs to the phosphatase 

2A (PP2A) regulatory subunit B family (1.43-fold change) and has the capability to interact with 

BRCA1 [34]. The MX1 gene encodes for interferon-induced GTP-binding protein and was 

previously reported as a potential downstream gene regulated by BRCA1 (1.40-fold change) 

[35]. Notably, the TINF2 gene, which encodes for a component of the shelterin protein complex 

TIN2, was upregulated with a fold change of 1.54. 

 

We next compared the above 46 genes by the resulting differential gene list from the comparison 

between BRCA1/2 carriers vs. non-BRCA1/2 carriers, 25 out of the 46 differentially regulated 

genes were noted to be specifically associated with the BRCA1 carriers (Figure 1B and Table 1). 

According to DAVID 6.8, the top three deregulated functional annotation charts were: (i) 

telomere/chromosome maintenance, (ii) cell cycle, and (iii) DNA binding (Supplemental Figure 

S1). qRT-PCR confirmed that the genes with the highest fold changes (TINF2, MX1, and 

PPP2CB) and plasminogen activator inhibitor-encoding gene (SERPINE1) were differentially 

expressed between BRCA1 and BRCA2 individuals (Figure 1C). The PPP2CB gene encodes a 
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component of PP2A, one of four major serine/threonine phosphatases [36,37]. Because PP2A 

regulates autophosphorylation of ATM [38], altered gene expression of PP2A subunits could 

affect the telomere damage signaling pathway. When BRCA2 carriers were compared with all 

other groups, only 8 genes were identified as being significantly downregulated in BRCA2 

carriers (Supplemental Table S3). 

 

Telomere length was shorter in BRCA1/2 carriers 

Because the microarray analysis revealed differential expression of negative regulators of 

telomere length (TINF2, TERF1, and TRER2), between BRCA1 and BRCA2 carriers, we 

hypothesized that the altered expression of these genes would affect telomere length among 

those individuals. The telomere qPCR results did not indicate significant differences in leukocyte 

telomere length between BRCA1 and BRCA2 carriers (Figure 2A, P = 0.24); instead, we 

observed that both two carriers had relatively shorter telomeres compared to healthy controls 

(Figure 2B, P = 3.9 x 10-7). Because the telomere-related expression profiles were different 

between BRCA1 and BRCA2 carriers, we speculate that these two carriers could undergo 

different molecular processes (or pathways) to cause telomere shortening. It was reported that 

BRCA1 and BRCA2 tumor suppressor gene products play fundamentally distinct roles in 

overlapping biological processes: BRCA2 functions to load RAD51 recombinase at the sites of 

DNA damage, while BRCA1 is required during the initial steps of the DNA damage signal 

amplification [39-42]. Another distinction was observed that a majority of BRCA1 breast tumors 

were basal-like while BRCA2 breast tumors were mainly luminal B [43,44]. Tumors with 

BRCA1 mutations are generally negative for both estrogen and progesterone receptors, whereas 

most tumors with BRCA2 mutations are positive for these hormone receptors. These differences 
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may facilitate our understanding of how BRCA1 and BRCA2 mutations induce separate 

molecular pathways through telomere shortening (or loss) and contribute to breast cancer 

development. 

 

Our findings support a previous report [14] that BRCA1/2 germline mutation carriers results in 

shorter overall telomere length in PBL at baseline (Figure 2B, P = 8.0 x 10-5). In addition, Sedic 

et al. reported that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers 

(BRCA1mut/+) exhibited increased genomic instability and rapid telomere erosion [45]. 

However, other previous studies reported longer telomeres in PBL from BRCA1/2 carriers, or no 

association was found [46,47]. These distinct conclusions are suspected to be due, in part, to the 

different analysis procedures. For example, Cawthon originally reported that telomere qPCR was 

analyzed by the standard curve method [30], while most epidemiological telomere studies use the 

comparative Ct method. Moreover, each study uses a different control DNA, and the detailed 

information was often not described well in each report. 

 

We also compared telomere length in unaffected BRCA1/2 carriers with affected BRCA1/2 

carriers and found a trend that affected BRCA carriers had shorter telomeres than unaffected 

BRCA1/2 carriers (Figure 2B, P = 0.062). Although the P-value was not significant due to the 

small sample size, this trend may explain that hematopoietic stem-like cells suffer telomere 

damage in the course of disease development as well as during therapy. In addition, leukocyte 

telomere homeostasis could be influenced by additional environmental factors (e.g., 

immunologic response to cancer) during carcinogenesis. In this case, leukocyte telomere length 

may remain short, even among BRCA1/2 patients in clinical remission. To rule out the 



 
A

cc
ep

te
d

   A
rt

ic
le

 
 

 

This article is protected by copyright. All rights reserved 

12 

 

possibility of technical bias against the qPCR-based results, we carried out classical southern bot 

analysis using the same DNA samples (Figure 2C). The results from the southern blot analysis 

were highly correlated with the results from telomere length qPCR (P = 0.022), indicating that 

the variation between two different methods was relatively small and there was no technical bias 

in this study (Figure 2D).  

 

Genes within one megabase of the telomere were expressed differently between affected and 

unaffected BRCA1/2 carriers. 

 

Next, we determined whether expression of subtelomeric genes was associated with telomere 

shortening. To do this, we compared our microarray data with the GSE6799 dataset [26]. The 

dataset contains 1,323 subtelomeric (within 1 Mb from telomere) genes representing all telomere 

ends, along with 92 random control genes, 12 housekeeping genes and 198 other telomere-

associated genes. Using this dataset, it has been reported that expression of three genes, ISG15, 

DSP, and C1S, located at three different subtelomeric ends (chromosome 1p, 6p, and 12p, 

respectively) were increased in fibroblasts and myoblasts with telomere shortening [26,48]. In 

general, we found that clusters of upregulated genes were more evident in BRCA1/2 carriers as 

compared to sporadic or familial individuals (Supplemental Figure S2). When we compared 

genes in the GSE6799 dataset with BRCA1 individuals who had developed breast cancer versus 

those who had not, twenty genes were deregulated in affected BRCA1 carriers (n = 5) compared 

to unaffected BRCA1 carriers (n = 5). Almost all of them (19 out of 20 genes) were 

downregulated and only SERPINE1 gene expressed highly in affected BRCA1 carriers (Table 2). 

A recent study indeed reported a role of SERPINE gene product in longevity. The study 

demonstrated that carriers of the null SERPINE1 allele had a longer life span along with longer 
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leukocyte telomere length [49]. Out of the 20 genes, 12 genes were localized within 1 Mb of the 

telomere (blue arrowhead with asterisk in Figure 3A). Both ZNF10 and CHFR are located on 

chromosome 12q24.33, and both DLL1 and FAM120B are located on chromosome 6q27, 

indicating that these subtelomeric regions could be influenced by telomere shortening [48,50]. 

Our qRT-PCR results confirmed that the genes analyzed were indeed downregulated in the 

affected BRCA1 group compared to the unaffected BRCA1 group (Figure 3B). A comparison of 

BRCA2 carriers who developed breast cancer versus those who did not develop breast cancer 

yielded 14 differentially expressed genes, including 10 downregulated (Table 3). Out of the 14 

genes, 7 genes (TUBB3, HBZ, ING1, CYP2E1, UBE2J2, TXNL4A, and RPL23AP82) were 

localized to subtelomeric regions (red arrowhead with asterisk in Figure 3A). We confirmed by 

qRT-PCR that the genes assayed have significantly altered expression levels between the 

affected and the unaffected BRCA2 groups (Figure 3C). These findings suggest that altered 

expression of telomere-proximal genes may be associated with the differences in telomere length 

among affected and unaffected BRCA1/2 carriers. Although the detailed mechanism of gene 

downregulation at subtelomeres due to telomere shortening remains unknown, a recent report has 

shown that telomeric repeat-containing RNA (TERRA) are accumulated when telomeres are 

critically shortened [51]. Hence, we speculate that one possible mechanism of the gene 

downregulation might be involved in TERRA expression levels. When TERRA expression 

increases and is accumulated at short telomeres, TERRA might modulate the expression level of 

telomere-proximal (subtelomeric) genes. Whatever the case, the gene expression changes 

specific to BRCA1/2 carriers with telomere shortening may become potential molecular 

indicators for capturing the early onset of BRCA1/2 breast cancer. One of limitations in this 



 
A

cc
ep

te
d

   A
rt

ic
le

 
 

 

This article is protected by copyright. All rights reserved 

14 

 

study is the small sample size for analysis. Therefore, further investigation is required to validate 

our findings with a larger sample size. 

 

In summary, we presented significantly different gene expression patterns between BRCA1 and 

BRCA2 carriers. The present study is unique because we focused on identifying changes in 

telomere-associated genes as well as telomere-proximal genes associated with BRCA1/2 

mutation status. This pilot study sheds light on previously uncharacterized differences between 

BRCA1/2 carriers with relation to telomere-associated genes. 
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Legends to Figures 

Figure 1 Telomere-associated genes express differently among BRCA1 and BRCA2 

carriers. 

(A) Unsupervised hierarchical clustering of expression of telomerase-associated genes reveals 

three distinct gene clusters. Distinct gene clusters are denoted by boxes outlined in blue dot-line. 

From left to right, the first cluster shows genes not differentially expressed among sporadic, 

familial, and BRCA1/2 carrier individuals. The second cluster highlights genes overexpressed in 

BRCA1 and BRCA2 carrier individuals, and the third cluster highlights genes overexpressed 

only in BRCA1 carrier individuals. Up-regulation, down-regulation, and no significant change 

are indicated by red, green, black, respectively. (B) Schematic diagram representing the 

microarray results of the differentially regulated genes in BRCA1/2 carriers. (C) Validation of 

microarray data with quantitative RT-PCR. ACTB (actin beta) gene was used to normalize the 

data. Data represent mean values ± standard deviations of the means from three independent 

experiments performed in triplicate. n = 4. 

 

Figure 2 BRCA1/2 mutation is associated with shorter telomere length. 

(A) No difference in age-adjusted telomere length between BRCA1 and BRCA2 carriers. Dash 

line represents the mean of relative telomere length (T/S ratio) determined by qPCR (0.73 in 

BRCA1, 0.62 in BRCA2). P-value is not significant. (B) Shorter telomeres in BRCA1/2 carriers 

than controls. Age-adjusted telomere length was plotted (n = 10 in each group). Dash line 

represents the mean of relative telomere length (T/S ratio) determined by qPCR (0.60 in affected 

BRCA1/2, 0.77 in unaffected BRCA1/2, and 1.31 in controls). (C) Representative southern blot 

of telomere length analysis. The southern blot shows telomere lengths from leukocyte of normal 

control (N), sporadic cancer (S), familial cancer (F), BRCA1 carrier (B1) and BRCA2 carrier 

(B2) individuals. kb, kilobases. (D) Correlation between relative T/S ratios determined by qPCR 

and mean TRF lengths determined by Southern blot analysis. Pearson's correlation coefficient 

was 0.790. 

 

Figure 3 Telomere-proximal genes were expressed differently between affected and 

unaffected BRCA1/2 carriers. 

(A) Genes loci of differentially expressed genes. Twenty genes (blue arrowhead) from GSE6799 

express differently between BRCA1 individuals with cancer vs BRCA1individuals without 

cancer. Fourteen genes (red arrowhead) from GSE6799 express differently between BRCA2 

individuals with cancer vs BRCA2 individuals without cancer, respectively. Asterisk (*) 

represents a gene within 1 Mb from telomere. (B) and (C) qRT-PCR of telomere-proximal genes 

in BRCA1 carriers (B) and BRCA2 carriers (C). ACTB (actin beta) gene was used to normalize 

the data. Data represent mean values ± standard deviations of the means from three independent 

experiments performed in triplicate. n = 4. 
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Table 1 Summary of 25 telomere-associated genes deregulated in BRCA1 carriers. 

Gene Fold Change P value 

TINF2 1.54 4.0E-03 

MX1 1.40 3.0E-03 

PPP2CB 1.38 9.5E-03 

JUNB 1.38 2.1E-02 

TTC21B 1.35 2.4E-02 

ZNF34 1.35 3.1E-02 

TERF1 1.35 4.2E-02 

RPS11 1.34 2.6E-02 

CHFR 1.33 8.0E-03 

ZNF324 1.31 1.5E-02 

TERF2 1.30 1.6E-02 

BIN1 1.29 4.1E-01 

FN3KRP 1.28 7.8E-03 

CCND3 1.27 1.4E-02 

CTDP1 1.27 3.1E-02 

BARD1 1.27 1.8E-02 

ZBTB45 1.26 2.8E-02 

TRDMT1 1.23 3.2E-02 

SIP1 1.23 2.8E-02 

MFNG 1.23 3.4E-02 

FYTTD1 1.22 3.8E-02 

UPF3A 1.21 7.5E-03 

PPP2R2A 1.16 3.8E-02 

SERPINE1 -1.23 2.1E-02 

IGFBP2 -1.24 3.8E-02 
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Table 2 Summary of 20 genes from GSE6799, which express differently in affected BRCA1 

individuals compared to unaffected BRCA1 individuals. 

Gene Gene locus Fold change P value 

SERPINE1 7q22.1 1.37 4.1E-02 

CECR5 22q11.1 -1.42 4.7E-02 

PSPH 7p11.2 -1.45 2.8E-02 

ZCCHC3 20p13 -1.48 4.8E-02 

ZNF10 12q24.33* -1.50 1.4E-02 

NPAS2 2q11.2 -1.51 7.0E-03 

CHFR 12q24.33* -1.52 2.5E-02 

SFRS17A Xp22.33*/Yp11.2 -1.55 3.4E-02 

RPH3AL 17p13.3 -1.57 4.3E-02 

CCR7 17q21.2 -1.58 1.1E-02 

ID2 2p25.1 -1.59 1.5E-02 

DLL1 6q27* -1.61 1.8E-02 

FAM120B 6q27* -1.61 4.7E-02 

SH3YL1 2p25.3 -1.62 2.3E-02 

CYP2E1 10q26.3* -1.63 7.0E-03 

ZNF324 19q13.43* -1.63 1.1E-02 

MFNG 22q13.1 -1.65 4.2E-03 

RGS19 20q13.33* -1.66 1.1E-02 

ZNF34 8q24.3* -1.79 1.8E-02 

MEN1 11q13.1 -1.84 8.9E-03 

*telomere-proximal locus 
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Table 3 Summary of 14 genes from GSE6799, which express differently in affected BRCA2 

individuals compared to unaffected BRCA2 individuals. 

Gene Gene locus Fold change P value 

TUBB3 16q24.3* 1.73 3.4E-04 

CCNE1 19q12 1.49 1.0E-02 

CDKN2A 9p21.3 1.41 2.5E-02 

HBZ 16p13.3* 1.39 2.2E-02 

BLM 15q26.1 -1.27 4.0E-02 

ING1 13q34* -1.28 3.1E-02 

PSMD11 17q11.2 -1.33 4.5E-02 

MYC 8q24.21 -1.37 2.5E-02 

CYP2E1 10q26.3* -1.41 3.6E-02 

UBE2J2 1p36.33* -1.46 1.8E-02 

CDA 1p36.12 -1.49 2.2E-02 

TXNL4A 18q23 -1.55 3.3E-02 

RPL23AP82 22q13.33* -1.64 2.5E-02 

DNMT3A 2p23.3 -1.68 1.5E-03 

*telomere-proximal locus 
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