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Abstract Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods
that enable humans to give feedback, based on their subjective and unquantified preferences and
knowledge, during the algorithm’s search process. While these methods are gaining popularity in multiple
fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with
interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and
on (b) the effect of human feedback on the algorithm’s ability to search for design alternatives desirable to
end-users. In this paper, we present results and analyses of observational experiments in which different
human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called
WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to
evaluate how the IGA adapts its search process in the objective space to a user’s feedback, and identify
whether any similarities exist in the objective space of plans found by different participants. Some partici-
pants focused on the entire watershed, while others focused only on specific local subbasins. Additionally,
two different hydrology models were used to identify any potential differences in interactive search out-
comes that could arise from differences in the numerical values of benefits displayed to participants. Results
indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the
DSS interface to collect information before giving feedback, and dissimilarities existed among participants
in the objective space of design alternatives.

1. Introduction

Watershed planning and management studies are driven by a need to identify efficient and, at the same
time, acceptable decisions related to the spatiotemporal allocation, use, storage, and regulation of resources
required by inhabiting humans. To better represent the human conditions and needs, ‘‘bottom up’’ partici-
pation of humans (or, stakeholders) in the development of planning and management decisions for their
watersheds has been advocated as being vital for success [Palmer et al., 1995; Lorenzoni et al., 2000; Welp,
2001; Van Asselt Marjolein and Rijkens-Klomp, 2002; Assaf et al., 2008; Voinov and Bousquet, 2010; McIntosh
et al., 2011; Hamilton et al., 2015].

However, engagement of stakeholders to assist with development of decision alternatives is not an easy
task. Multiple conflicting criteria and constraints commonly exist in stakeholder communities, only some of
which may be known to or formulated by the entity or agency overseeing the planning process. Addition-
ally, decisions involving spatial features may include a variety of local and/or subjective constraints, which
only the local decision maker (e.g., a producer preferring only certain types of decisions on her/his farms)
may be aware of. Additionally, many of these stakeholder-specific preferences and knowledge may change
with time, as stakeholders continue to learn and evolve. Hence, actions performed by a community of
humans in a watershed may not always seem to be rational to a watershed planning entity that assumes a
global utility function to represent preferences of watershed inhabitants. Multiple researchers in Cognitive
Psychology and Behavioral Economics [e.g., Kahneman and Tversky, 1979; Metcalfe and Shimamura, 1994;
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Schwartz, 1994; Nelson, 1996; Reder, 1996] have also provided evidence that humans often do not seem to
follow principles of rational choice, and limitations in humans’ cognition play an important role in determin-
ing their choices. For example, an individual driven by local site-scale conditions (e.g., on a farm) may be
more likely to accept a watershed Plan X that has local site-scale decisions in agreement with her/his per-
sonal preferences for a specific type of solution strategy, goals, and/or constraints. Such an individual is less
likely to accept an alternate watershed-scale Plan Y that does not satisfy her/his personal preferences at the
local site of interest, even if Plan Y is better than Plan X in meeting the larger watershed goals (or a global
utility function). In addition, not all individuals are interested in ‘‘optimizing’’ their decision all the time.
Many individuals may be ‘‘satisficers’’ (satisfy 1 suffice) for some criteria, and will accept choices based on
some degree of satisfaction and until a threshold of acceptability is achieved [Simon, 1955, 1977].

One of the biggest limitations in conventional optimization-simulation methods, which are often used to
generate decisions for watershed planning problems [e.g., Randhir et al., 2000; Seppelt and Voinov, 2002;
Perez-Pedini et al., 2005; Arabi et al., 2006; Artita et al., 2008; Lethbridge et al., 2010; Babbar-Sebens et al.,
2013], is that many of these methods assume a rational decision maker (DM) who is able to articulate and
formulate the problem and is able to provide quantitative information that accurately identifies her/his pref-
erence for objectives and/or solutions. While these methods can be immensely effective in searching for
efficient alternatives in large and complex decision spaces, they are limited by the assumption that a math-
ematical solution to the optimization-simulation problem will produce a true Pareto optimal frontier—one
that is expected to contain the DM’s most-preferred solution. This simplistic view of a decision maker’s cog-
nition, attitudes, preferences, and knowledge limits the ability of these optimization-simulation methods to
deal with real-world applications where the above-described complexities in human dimensions exist. For
example, in a previous study [Piemonti et al., 2013] it was found that landowner attitudes toward specific
conservation practices and/or criteria at a local-site may motivate them to further alter local-site decisions
in a prescribed watershed plan that had been optimized for watershed-scale goals. A global decision maker
(e.g., an agency) focused on watershed-scale objective functions (or, objective space) may regard these
modified watershed plans as inferior plans in comparison to the original optimized plans, in contrast to local
stakeholders who find them more acceptable instead. Other researchers [e.g., Babbar-Sebens and Minsker,
2008, 2010, 2012; Singh et al., 2008; Rosenberg and Madani, 2014; Read et al., 2014] have also begun to advo-
cate for advanced search and optimization techniques that enable decision makers to identify solutions
that are more acceptable to a community, and perhaps even in the proximity of the most mathematically
optimal solutions in objective space.

One way to find the ‘‘sweet spot’’ or desirable region of efficient as well as acceptable watershed plans is by
improving methods for engaging with stakeholders, learning from them, and integrating them in the
design process. Currently, most participatory planning approaches (e.g., Integrated Water Resources Man-
agement [Schramm, 1980; Viessman et al., 2008], Shared Vision Modeling and Planning [Hamlet, 1996a,
1996b; Palmer, 1998; Werick et al., 1996], Agent-based Land-Use Models [Millington et al., 2011]) use tradi-
tional stakeholder engagement methods (e.g., focus groups, phone interviews, computer-mediated ques-
tionnaires, mail-in surveys, open community forum, etc.) in combination with decision support systems to
identify a ‘‘shared’’ vision of goals, constraints, and priorities among all stakeholders, thereby facilitating a
better representation of human dimensions in the planning process. However, these engagement methods
are limited in terms of the data they can collect on community knowledge, preferences, and risks. They only
provide a single ‘‘snapshot in time’’ assessment of communities. This makes a higher-order understanding
of stakeholder’s iterative learning processes difficult, because such processes tend to unfold over time [Gun-
derson and Holling, 2002; Prell et al., 2007; Reed, 2008]. Furthermore, commonly used decision support sys-
tems [e.g., Fedra, 1992; Loucks and Da Costa, 1991; Georgakakos and Martin, 1996] have rigid model-building
and decision-making environments that were developed for a specialized subset of users, and may not be
sensitive or attractive to the diverse community of watershed stakeholders whose engagement is necessary
for ensuring success.

Over the last few years, a growing community of researchers has begun to explore Web 2.0 technologies as
an alternate media for improving stakeholder engagement during the planning process [Kelly et al., 2012].
The underlying motivation for this shift is that Web 2.0 provides a promising social networking platform for
connecting and assimilating a large number of humans into the planning process. Such technologies, when
supported by ubiquitous computing devices, also provide opportunities for conducting continuous multiple
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stakeholder interactions, and for improving a community’s situational awareness and learning over time.
However, the functionality of most of these web-based stakeholder engagement and planning tools (e.g.,
Web-based, Water-Budget, Interactive, Modeling Program (WebWMPI) [Matsuura et al., 2009]; Sierra Nevada
Adaptive Management Project (SNAMP) [Fry et al., 2015]; Agricultural Conservation Planning Framework
(ACPF) [Tomer et al., 2015a, 2015b]) has been limited to visualizing, reviewing, and sharing of data and
model results. In comparison, Babbar-Sebens et al. [2015] recently developed a novel, web-based interactive
design tool called WRESTORE (Watershed REstoration using Spatio-Temporal Optimization of REsources;
http://wrestore.iupui.edu/), which not only engages with stakeholders via the Web but also uses their feed-
back (‘‘wisdom of the crowd’’) to dynamically guide the underlying computational design algorithms in
identifying user-preferred watershed plans. The design algorithm in WRESTORE belongs to a family of Inter-
active Optimization [Fisher, 1985; Klau et al., 2010; Meignan et al., 2015] methods, which unlike conventional
optimization-simulation techniques, are useful for design problems containing additional subjective criteria,
constraints, and preferences that are not easy to quantify into a global utility function, and/or may not be
known a priori. Hence, by engaging a human (decision makers and stakeholders) in the iterative loops of
the design process, both the human and the algorithm have the potential to communicate and learn about
such subjective preferences from each other via graphical user interfaces on the Web.

As the current science in models and technologies for human-computer collaboration and online social net-
working [Nielsen, 2009] continues to advance, the potential for improved stakeholder engagement via
online participatory design assisted by machine agents is enormous. However, there is a serious lack of data
and understanding of how users behave in these online design environments and what types of solutions
to watershed plans can be generated when multiple humans engage in such participatory design environ-
ments. In this paper, for the first time, we present and examine results of observational experiments con-
ducted with different types of human participants who used WRESTORE to generate user-preferred
scenarios of spatial allocations of conservation practices in a watershed. To the authors’ knowledge, this
paper represents the first known study that unifies data on online behaviors of real humans with results of
a human-in-the-loop search algorithm employed for designing watershed alternatives. In this paper, we
focus on examining the similarities and dissimilarities among generated watershed plans in the objective
function space (or, objective space). We specifically examined the following research questions:

1. How effective is the interactive optimization algorithm in assisting users generate highly preferred
design alternatives, especially for different types of users with varying interests, preferences, and online
interaction behavior?

2. In objective space of global, watershed-scale goals, how similar or dissimilar are the design alternatives
found by user-driven interactive optimization algorithm, in comparison to the design alternatives found
by a conventional, noninteractive optimization algorithm, and in comparison to the design alternatives
found by other users?

3. In the objective space pertaining to local, subbasin-scale goals, how similar or dissimilar are the design
alternatives found by different stakeholders, when some of them are focused only in certain local areas
(e.g., landowners) and while others are focused on the entire watershed scale (e.g., agency personnel)?

In the following sections, we first describe the overall methodology (section 2) of the WRESTORE decision
support system and the interactive genetic algorithm, the watershed study site where the conservation
planning problem was solved using interactive genetic algorithm, the experimental setup for user studies,
and the metrics proposed for analyzing results in the objective space. In section 3 we present and discuss
the results from the user experiments that were used to investigate the research questions 1–3, followed by
section 4 that presents the overall conclusions of this study along with directions for future work.

2. Methodology

2.1. Overview of WRESTORE Methodology
The WRESTORE tool was developed by Babbar-Sebens et al. [2015] to enable communities to engage in
online participatory design of plans on spatial allocation of conservation practices on their landscape. The
underlying interactive optimization (or, human-guided search) algorithm in WRESTORE is based on the
Interactive Genetic Algorithm with Mixed Initiative Interaction (IGAMII) algorithm, proposed originally by
Babbar-Sebens and Minsker [2012]. Figure 1 is an overview of workflow that users experience when they
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engage with WRESTORE. While details can be found in Babbar-Sebens et al. [2015], here we discuss only an
overview of the methodology.

Step 1. The user logs in, selects her/his choice of conservations practices from a set of seven possible practi-
ces (Wetlands, Filter Strips, Grassed Waterways, Strip Cropping, Cover Crops, Crop Rotation, and No-till Till-
age practice), and her/his choice of watershed goals (cost, peak flow reduction, sediments reduction, and
nitrates reduction).

Step 2. When the user starts a new experiment, each of the chosen practices is mapped into decision varia-
bles for each of the subbasins in the watershed. So, if a watershed has 100 subbasins and the user chooses
two practices, and if one decision variable exists for each of the practice, then 200 decision variables will be
initialized for the interactive optimization experiment. Decisions can be binary (yes/no) or real numbers
(e.g., filter strip width). Similarly, the watershed goals will be initialized as objective functions in the experi-
ment. In WRESTORE, a calibrated watershed model of the study site, based on Soil and Water Assessment
Tool (SWAT) [Neitsch et al., 2005], is used to simulate the impact of a candidate plan on the watershed, and
calculate values for objective functions.

Step 3. The user then goes through a sequence of online interaction sessions (see Figure 1 that shows an
example scenario of sessions) to generate efficient as well as desirable watershed plans, with the assistance
of IGAMII algorithm. The online interactions sessions are of two types—introspection session and human-
guided search (HS) session. The introspection session provides the user to reflect on designs previously

Figure 1. User workflow in WRESTORE (see Babbar-Sebens et al. [2015] for details).

Water Resources Research 10.1002/2016WR019987

PIEMONTI ET AL. IGA FOR CONSERVATION PLANNING: OBJECTIVE SPACE 4306



found either via a prior noninteractive search (i.e., in Introspection 1), or on the user-preferred alternatives
found by the user in the most recently completed human-guided search run (e.g., in Introspections 2 and 3).
The human-guided search (HS) runs are conducted using an interactive genetic algorithm (see Babbar-Sebens
et al. [2015] for details), and, hence, each of the HS sessions displays the design alternatives (or, watershed
plans) in the population of the genetic algorithm for user evaluation. For example, in Figure 1 there are six
human-guided search (HS) sessions—the initial parent population using in generation 0 of the genetic algo-
rithm are shown in HS 1, while the new child population created in generations 1–5 in the genetic algorithm
are shown in HS 2–6. Currently in WRESTORE, we limit human fatigue by limiting the genetic algorithm’s pop-
ulation size and the number of design alternatives shown to the user in each session to 20, and also via an
inbuilt ‘‘reminder-by-email’’ feature that enables users to return at a later time for evaluating design alterna-
tives in an ongoing session. However, adaptive methods for managing trade-offs between human fatigue and
human feedback are being actively investigated in ongoing research, and we expect that future findings will
enable significant improvements in how human effort is administered in IGAMII. Finally, the other parameters
for the multiobjective genetic algorithm used during HS sessions were set as following: crossover proba-
bility 5 0.9, mutation probability 5 0.05, and selection strategy 5 l 1 k (i.e., mu 1 lambda).

In each of the sessions, an online graphical user interface (GUI), as shown in Figure 2, is used to display
design alternatives to the user. The GUI has multiple interface features (e.g., maps, charts, drop down menus,
and clickable information boxes) that encourage the user to learn about the recommended decisions in candi-
date plans, compare performances of these plans (i.e., objective functions) in local areas (e.g., one or two spe-
cific subbasins) and at the larger watershed-scale, and provide feedback on the quality of the design via a
Likert-scale type user rating and self-confidence in her/his rating. Note that while the genetic algorithm in
WRESTORE uses the watershed-scale performance to generate plans for conservation practices in all the feasi-
ble subbasins in a watershed, the user has the option to provide feedback based only on the decisions in her/
his local subbasins of interests. Hence, both local and global stakeholders have the ability to participate and
interactively generate solutions based on the scale they are most interested in. The user rating is used as an
additional objective function that guides the operations of the genetic algorithm to generate the next itera-
tion of child population.

Figure 2. Graphical user interface (GUI) used in the sequential interaction sessions.
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Step 4. Once all the sequential interaction sessions are completed, the user’s search experiment concludes
and all the new desirable alternatives (e.g., those with user ratings ‘‘I like it’’ in Figure 2) are stored in a case
based memory. The user has access to this memory for extraction and postprocessing of desirable alterna-
tives at a later stage when a final decision has to be identified and/or negotiated.

2.2. Study Site for Participatory Design Experiments
The study site that was used to test WRESTORE in this research is Eagle Creek Watershed (ECW), located 10
miles NW of Indianapolis, IN [Babbar-Sebens et al., 2013; Piemonti et al., 2013]. This Midwestern watershed is
primarily agricultural, with corn and soybean being the major crops grown on the landscape. Growing con-
cerns in downstream water quality due to export of nutrients and sediments from the landscape into the
river channel, and finally into the Mississippi river basin and the Gulf of Mexico [The Conservation Fund,
2016], have led to region-wide efforts in multiple Midwestern watersheds (including ECW) that are focused
on increasing implementation of conservation practices (or, best management practices) on the landscape.
In addition to water quality concerns, this region has also been facing increasing frequencies of floods in
the last few years, and conservation practices also provide potential for mitigating flooding impacts during
storm events. Hence, multiple stakeholders, including state and federal agency personnel, are interested in
examining if a suite of spatially distributed conservation practices would provide a range of environmental
benefits in ECW and similar watersheds in the Midwest.

To assess the impacts of conservation practices on water quality and peak flows, the hydrology and water
quality in ECW were simulated using the Soil and Water Assessment Tool 2005 (SWAT 2005) model [Neitsch
et al., 2005]. The model was used to simulate not only baseline conditions with no conservation practices,
but also scenarios when conservation practices are implemented on the landscape. SWAT uses the topogra-
phy, land use, soil type, and regional weather information to estimate the water routing and the water qual-
ity through the watershed, at a daily time scale. Babbar-Sebens et al. [2015] and Piemonti et al. [2013] give a
detailed description of the model construction, calibration, and how the SWAT model outputs were used to
calculate four physically based environmental objective functions (Peak Flow Reduction, Sediment Reduc-
tion, Nitrates Reduction, and Costs) estimated at the entire watershed scale. As discussed earlier, besides
the four watershed-scale environmental objective functions, a user rating objective function is also used to
guide the search process of the interactive genetic algorithm in WRESTORE. The values for the user rating
function are decided by stakeholders who are engaged in the search process. The values are based on a
Likert-type scale—‘‘I like it’’ (R3), ‘‘Neutral’’ (R2), and ‘‘I do not like it’’ (R1)—that users can utilize to indicate
their personal subjective preference for an alternative. An overview of these objective functions is shown in
Table 1.

ECW was divided into 130 different subbasins (SBs) to simulate the local implementation of a set of conser-
vation practices. In a previous study [Babbar-Sebens et al., 2013], it had been identified that 108 of the 130
subbasins were suitable for implementing conservation practices in agricultural areas. Hence, the decisions
for spatial allocation of practices were limited to these 108 subbasins in the study site. Currently, WRESTORE
is capable of generating design alternatives for seven different BMPs (strip cropping, crop rotation, cover
crops, filter strips, grassed waterways, no-till practices, and wetlands) in all the subbasins considered for
allocation. However, for this study, the researchers focused only on two practices—Cover Crops (CC) and Fil-
ter Strips (FS)—that are represented as binary and real number decision variables, respectively. Table 2
described how the decision variables in WRESTORE’s IGAMII algorithm were converted into SWAT model
parameters relevant to the practice.

2.3. Recruitment of Participants and Setup of Testing Scenarios
In this study, we evaluated results of 20 participants who volunteered to interact with the WRESTORE tool,
and test its capabilities in finding watershed-scale plans that agreed with their individual subjective prefer-
ences. These users included 14 surrogate users who were volunteers with appropriate science and engineer-
ing backgrounds, including students from both Indiana University and Oregon State University, and who
helped us with initial evaluation of the tool. After the initial evaluation was done, we successfully tested the
tool with six stakeholder users (state/federal agency personnel, nongovernmental organization personnel,
and watershed individuals) who evaluated the tool during a training workshop. Though the surrogates were
not directly involved in the watershed, they are useful representatives of potential participants in a commu-
nity who may be only cursorily interested in the decisions. The stakeholders were more closely associated
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Table 1. Objective Functions Used to Optimize Design Alternatives in WRESTOREa

m Objective Function

1 Peak flow
reduction (PFR)

PFR5 Min 2Maxi;t PFi;t;base2PFi;t;alt
� �� �

where

PFi;t;case5

flowouti;t;case; if flowouti;t;case > fowouti;t21;case

AND

flowouti;t;case>flowouti;t11;case

0; otherwise

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

and, case represents the baseline (base) or the design alternative (alt)
2 Sediments

reduction (SR)
SR5Min 2

PN
i51

Plast day T 2
t51st day T 1 Souti;t;base2Souti;t;alt

� �h in o

3 Nitrates
reduction (NR)

NR5Min 2
PN

i51

Plast day T 2
t51st day T 1 Nouti;t;base2Nouti;t;alt

� �h in o

4 Cost (C) C5Min
PN

i51 NPVi

h i
where

NPVi5
PBMP

c51
CIc�Ai;c
� �

1
PT2

ty5T1

PBMP

c51
OMc;ty2Rinc;ty
� �

�Ai;c
� �

2PIty2SPty

� �
�PWFty

5 User rating
function (R)

Min [R]
where R 5 21 when user selects R1 (i.e., ‘‘I do not like it’’) radio button on GUI’s feedback panel, R 5 22
when user selects R2 (i.e., ‘‘Neutral’’) radio button on GUI’s feedback panel, R 5 23 when
user selects R3 (i.e., ‘‘I like it’’) radio button on GUI’s feedback panel.
These subjective ratings are determined by a user and are related to user’s personal
preferences for decisions, goals, and/or interests in SBintq

aDefinition of all variables in the columns above (see Piemonti et al. [2013] for details). m 5 ID of objective function; i 5 subbasin ID;
t 5 day; PF 5 peak flow (m3/s); base 5 baseline SWAT model with no new conservation practices; alt 5 SWAT model with conservation
practices indicated in the design alternative; flowouti,t,case 5 daily flow predicted by SWAT model at the outlet of subbasin i, on day t,
and for a specific scenario case; N 5 total number of subbasins (SB) in watershed; T1 5 initial year of simulation; T2 5 final year of simula-
tion; Sout 5 daily sediment load (tons); Nout 5 daily nitrate load (Kg); NPV 5 net present value ($/watershed); c is the identification num-
ber of a practice that varies from 1 to BMP; BMP is the total number of practices being considered in planning problem; CIc is the cost of
implementation in dollars per acre for cth conservation practice; Ai,c is the area in acres of cth conservation practice in a subbasin i; ty is
the simulated year that varies from T1 to T2; Omi,ty is the operation and maintenance costs in dollars per acre, for cth conservation prac-
tice in year ty; Rinc,ty is the rent received by the conservation program in dollars per acre for those lands that are taken out of production
due to cth conservation practice in year ty; SPty is the savings in crop production costs in dollars for all land taken out of production by
conservation practices in year ty; PIty represents the net profits, in dollars, obtained from increased productivity in year ty; PWFty is the
single payment present worth for year ty, based on interest rate int and is given by PWFty 5 1/(11int)ty; SBintq 5 subbasins of interest
of the decision maker belonging to group q (see Figure 3 for details).

Table 2. Changes Made on the SWAT Model to Simulate Conservation Practices

Practice
SWAT Variable

Modified File Notes

Filter strips (can be implemented in
each of the 108 subbasins; deci-
sion variable is value of filter strip
width between 0 and 5 meters for
each of the subbasins)

FILTERW .mgt The Field Office Technical Guide (FOTG, https://efotg.
sc.egov.usda.gov) gives total estimated costs
per acre of filter strips. The installation scenario
in this work assumes filter strip length of 37 m,
and filter strip width of value obtained from the
decision variable FILTERW, in a total field area of
19 ha

Cover crops (can be implemented in
each of the 108 subbasins; deci-
sion variable is value of yes (1) or
no (0) for each subbasins)

Operation
schedule

.mgt An example of operations schedule with corn-winter
wheat in 1 year is given below. The winter wheat
operations (last three lines) can be used at the
scale of hydrologic response units, for both corn
and soybeans.

Year HU* operation kg/ha
1 0.28 harvest and killing
1 0.1 pesticide application 1.12
1 0.12 plant corn
1 0.3 fertilizer application 200.00
1 1.5 harvest and killing
1 0.997 generic fall tillage
1 0.998 plant winter wheat
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with ECW via land ownership or professional responsibilities. Note that though eight stakeholders had origi-
nally participated in the stakeholder workshop, only six of them completed the experiment correctly; hence,
results of only six stakeholders have been analyzed in this paper. This also illuminates the challenges in test-
ing and implementing novel decision support tools in real-world conditions. All participants were first
coached on the various features and benefits of the tool and then instructed on how to proceed with the
experiments. They were all asked to select the two conservations practices (Cover Crops and Filter Strips)
and all four environmental goals, before starting the experiment. However, to explore the effect of varying
user interests, perceptions, and preferences of human participants on the search process of the interactive
genetic algorithm, we created two types of testing scenarios. Both of these scenarios and their rationale are
explained below.
2.3.1. Scenarios Based on Subbasins of Interest
As discussed earlier, stakeholders can comprise of individuals who may be more interested in examining
the problem at local scale (e.g., subbasin or farm scale) and/or at the global scale (e.g., at larger watershed
or river basin scale). The interests and constraints of these stakeholders may not always converge or over-
lap. Hence, seven groups of subbasins were identified on the watershed landscape, and each of the partici-
pants was assigned to a qth (q 5 1 to 7) group with preselected IDs of ‘‘subbasins of interest’’ (SBintq). Figure
3 gives a map of the subbasins in the various groups, and the IDs of participants in each of the qth group.
Note that six groups consisted of randomly selected sets of neighboring upstream and downstream

Figure 3. Map of spatial distribution of subbasins of interest (SBint) in the watershed. The table on the bottom right indicates the assignment of q groups of SBint to testing participants
in Model A-Surrogates, Model B-Surrogates, and Model B-Stakeholder groups. The inset on top right corner only shows stream networks in the local subbasins of interest belonging to
groups q 5 1 to 6.
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subbasins in different local regions of the watershed, whereas the seventh group consisted of the entire
watershed. Once the participants were notified about IDs of their subbasins of interest, they were asked to
evaluate candidate watershed plans based on their subjective preference for decisions in only SBintq and/or
based on their perception of performance of the candidate plans in only SBintq. Hence, the participants
were asked to provide values for user ratings based on only the assigned SBintq. Note that the groups con-
sisted of hydrologically connected as well as hydrologically disconnected subbasins, in order to examine for
potential relationships between hydrologic dependencies within subbasins, and preferences expressed by
participants.
2.3.2. Scenarios Based on Simulation Models
A stakeholder’s preference for a decision may be influenced not only by the actual decision itself (e.g., more
preference for one practice versus another), but also by how well the decision performs in goals/criteria val-
ued by the stakeholder. The performances of practices in WRESTORE are estimated by the underlying SWAT
watershed model. Hence, two models—Model A and Model B—were generated and used to explore the
potential differences due to users’ varying preferences for performances of conservation plans in objective
space. Model A was the original calibrated SWAT model of the ECW study site (see Piemonti et al. [2013] for
details on calibration), whereas Model B was a SWAT model of the watershed created by artificially enhanc-
ing the flow and water quality benefits predicted by the calibrated SWAT model (i.e., Model A). Enhance-
ment in benefits was accomplished by activating a few wetlands in the watershed. This change
considerably increased the benefits of peak flow reduction, sediment reduction, and nitrate reduction,
when the conservation practices under consideration—i.e., Cover Crops and Filter Strips—were allocated in
the subbasins by the search optimization algorithm. However, the users were not informed of this enhance-
ment, and hence, they evaluated the design alternatives under the assumption that only Cover Crops and
Filter Strips were being implemented in the watershed. The rationale for this artificial enhancement of ben-
efits was to examine if an improvement in flow, nitrate, and sediment benefits would change the partici-
pants’ preferences for practices, design alternatives, or spatial locations on the interface. In the rest of the
paper, all surrogates whose experiments included Model A will be identified as Model A-Surrogates group, all
surrogates whose experiments included Model B will be identified as Model B-Surrogates group, and all
stakeholders whose experiments included Model B will be identified as Model B-Stakeholders. The Model A-
Surrogates and Model B-Surrogates groups contained seven participants (four females and three males in
each of the groups), whereas the Model B-stakeholders contained six participants (five males and one
female). Please note that because of limited resources and logistical constraints we were not able to con-
duct a Model A-Stakeholders experiment. However, since we already conducted the scenario experiment
with surrogates, the findings of this study are not expected to be affected significantly by the absence of
Model A-Stakeholders data from such an experiment.

2.4. Metrics for Evaluation of Research Questions
Once test experiments with all participants were over, the results from all the interaction sessions were ana-
lyzed for every user. Multiple metrics were estimated in these analyses, in order to enable investigation of
the three research questions that were stated earlier. Below are descriptions of how these metrics were
calculated.
2.4.1. Metrics for Assessing User Interaction Behavior
An improved understanding of the nature and amount of interactions an end-user may have with a deci-
sion support system (DSS) are critical for facilitating a user’s acceptance of the DSS and her/his personal
confidence in solutions generated by such a system [Belton et al., 2008; Meignan et al., 2015]. Hence, evalu-
ating the nature of a user’s interaction behavior in DSSs, such as WRESTORE, is important for evaluating
whether the DSS provides a user adequate opportunity to examine the multiple ‘‘what-if-scenarios’’ in
design alternatives, and, as a result, learn about the decision-making problem in-hand. To assess the nature
of user interactions in WRESTORE, we calculated the following two interface usability metrics and one confi-
dence metric.

Mean percentage of time spent in gathering information. We assessed every participant’s ability to navigate
and gather information on design alternatives by tracking how much time they spent on browsing and
clicking on maps where individual decisions were displayed, and time spent on browsing and clicking on
bar graphs where performance of decision alternatives were compared on the GUI (Figure 2). In a previous
study [Piemonti et al., 2017], we had learned that time spent by a user in gathering information on the GUI
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can provide cues to her/his underlying motivations, ongoing learning, and interest in using the tool to assist
with solving the problem in hand. Task times for each interaction session were recorded in the database.
When the participants were taking a break and not using the tool, they were instructed to press the ‘‘Save
all’’ button in GUI, so that these off-task time intervals could be considered as outliers and excluded from
the analyses. However, there were some occasions when some participants did not click the ‘‘Quit’’ or ‘‘Save
all’’ buttons, resulting in excessively long task times. To remove these outliers, we manually excluded these
task times that were greater than two standard deviations from the mean task time across all sessions, for
each participant. At the end, we calculated the sample estimate of percent of time spent in gathering infor-
mation via the following equation:

PTSk5

PH
h51

PLh;k

l51 Dtl;k;hPH
h51 ttotalk;h

� 100; (1)

where PTSk is the percentage of time spent by a participant with ID k in gathering information per experi-
ment, H is total number of sessions, Lh,k is the total number of events associated with gathering information
in hth session, Dtl,k,h is the interval of time spent in lth information gathering event by kth participant in hth
session, and ttotalk,h is the total time (including gathering information, making decisions, etc.) spent by kth
participant’s in hth session.
Mean percentage of mouse clicking events related to information gathering. Besides tracking the time spent in
gathering information, we also tracked how many mouse clicks were made in GUI areas that provided click-
able information (e.g., drop down menus, pop-up boxes in maps and charts, etc.). For each participant, we
used the following general formula for sample estimate of percentage of mouse clicking events related to
information gathering,

PMCk5

PH
h51 NCk;hPH
h51 TCk;h

� 100; (2)

where PMCk is the percentage of mouse clicks made by kth participant in GUI areas where information can
be gathered, NCk,h is the number of clicks made in areas that provide information in the hth session by kth
participant, and TCk,h is the total number of clicks in hth session by kth participant.
Confidence trends. While giving user ratings on the desirability of design alternatives (see magnified feedback
panel in Figure 2), the users were also asked to indicate how confident she/he felt about her/his own user rat-
ing. The confidence levels, along with the user’s interaction behavior, can offer potential insights into the qual-
ity of a user’s evaluation and how much the user trusts in her/his own feedback [Fischer and Budescu, 2005].
The users moved the bar on the confidence slider to identify a suitable confidence level between 0 and 100.
At the end of the experiment, the average values of confidence levels were estimated for every hth session. In
this study, we calculated an overall average value for the entire set of twenty design alternatives in a session
irrespective of their user ratings, and then we also calculated average values of subsets of designs in a session
that had that the same user rating (i.e., R1, R2, or R3). Trend analyses were then performed on these average
values using the Mann-Kendall hypothesis test [Helsel and Hirsch, 2002] to assess whether the average confi-
dence levels monotonically increased or decreased over the span of sequential interaction sessions. A signifi-
cance alpha level of 0.1 was used to determine the statistical significance of the trend. Since the main focus of
this test was to minimize the risk of not detecting an existing trend (i.e., Type II error), a larger alpha value was
chosen. At the end, three types of trends (positive, negative, and no trend) were identified for each of the
average confidence level types (i.e., average confidence of all designs, average confidence of R1 designs, aver-
age confidence of R2 designs, and average confidence of R3 designs) per participant.
2.4.2. Metrics Based on User Ratings for Assessing Efficiency of Interactive Optimization Algorithm
To evaluate how effective the interactive optimization algorithm is in finding desirable alternatives for indi-
vidual users, we calculated the percent number of design alternatives with a specific user rating at the end
of search experiments. This metric, PRatei,k, was calculated using equation (3) below.

PRatei;k5
Xi;k

TD
� 100; (3)

where PRatei,k is the percentage of design alternatives with ith user rating (i.e., Ri in Table 1) found by the
kth user, Xi,k is the total number of designs with user rating Ri found by kth user, and TD is the total number
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of designs presented to a participant. As explained earlier, all the participants were shown at least 260
design alternatives that were included in the initial Introspection session and first two cycles of the Human-
guided Search sessions (i.e., I1, HS1-HS6 after I1, and HS1-HS6 after I2). Therefore, TD had a value of 260.

To examine the overall outcome for users working with one of the three modelScen simulation models sce-
narios (i.e., modelScen 5 Model A-Surrogates, Model B-Surrogates, or Model B-Stakeholders), a summary group
metric GPRatei,modelScen in equation (4) was also estimated for all Ri user ratings. This metric was based on
the average of the PRateik for all users in each of the model scenario groups, and for a specific ith user
rating.

GPRatei;modelScen5

PMaximumID
k51 ðPRatei;k � belk;modelScenÞ

NmodelScen
; (4)

where NmodelScen is the total number of users in a particular modelScen model scenario group, and
belk,modelScen 5 1 if kth user belongs to modelScen group under consideration, else belk,modelScen 5 0. Note
that the summation term in the numerator sums from lowest value of participant ID (i.e., k 5 1) to maximum
value of participant ID (i.e., MaximumID 5 25 in Figure 3).
2.4.3. Assessment of Similarities and Dissimilarities in Global Objective Space
The similarities and dissimilarities among design alternatives in the watershed-scale (i.e., global) objective
function space (described in Table 1) were evaluated using a metric proposed by Piemonti et al. [2013] on
the overall distance between Pareto Fronts. This distance metric was first estimated for each of the partici-
pants, and then an average of the metric values across the participants was calculated to summarize the
results for participants in each of the modelScen model scenario groups.

For every participant, in order to assess the effect of interactive optimization on search results, the distance
in the objective space between the design alternatives found via the participant’s interactive search experi-
ment and the design alternatives found via a noninteractive search was estimated. Note that even though
the participant was not involved in the noninteractive search process, he/she had the opportunity to review
and rate twenty of the noninteractive search’s final nondominated design alternatives in the first introspec-
tion session I1. All design alternatives found via interactive optimization were first separated into three sep-
arate groups based on their user rating Ri (i.e., ‘‘I don’t like it,’’ ‘‘Neutral,’’ and ‘‘I like it’’). Then the distance
metric was calculated by comparing the group of alternatives with specific Ri user rating with all the twenty
nondominated design alternatives found earlier via noninteractive search. For the purpose of simplifying
visualization, two physical objectives at a time (e.g., cost and peak flow reduction or cost and nitrates reduc-
tion) were selected to calculate and visualize the distance. This metric is based on an average relative
Euclidean distance (equation (5)) and compares the position of every jth design alternative from the nonin-
teractive Pareto Front, with each dth design alternative that has ith user rating and is from the set of solu-
tions found via interactive search.

DRi;k A; Bð Þ5
PJ

j51

PNDi;k

d51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj2Ai;d;k
� �2

1 Bj2Bi;d;k
� �2

q
J � NDi;k

: (5)

DRi,k (A, B) represents the distance between two objective functions (A is the scaled value between 0 and 1
of peak flow reduction, sediment reduction, or nitrate reduction and B is the scaled value between 0 and 1
of cost), J is the total number of alternatives in the noninteractive Pareto Front shown to the user in first
Introspection session I1 and NDi,k is the total number of design alternatives with ith user rating found by the
kth participant at the end of the interactive optimization experiment. The scaled A and B values were
obtained from the original values of objective functions (i.e., peak flow reduction, sediment reduction,
nitrate reduction, or cost) by using equation (6). In this equation, X is the original value of one of the four
objective functions under consideration, min X is minimum value of the objective function under consider-
ation and across all users working with the same simulation model (i.e., Model A or Model B), and max X is
maximum value of the objective function under consideration and across all users working with the same
simulation model (i.e., Model A or Model B).

Xscaled5
X2min X

max X2min X
; (6)

where Xscaled can be A or B.
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Once the distance metric was calculated for each participant, a representative group distance metric was
also calculated in a manner similar to equation (4) for the multiple participants belonging to each of mod-
elScen groups. Equation (7) shows how this group metric, GDRi,modelScen, was calculated as the average of the
distances DRi,k of all participants in a modelScen group, and for each of the ith user ratings. Note that the
summation term in the numerator of equation (7) sums from lowest value of participant ID (i.e., k 5 1) to
maximum value of participant ID (i.e., MaximumID 5 25 in Figure 3).

GDRi;modelScenðA; BÞ5
PMaximumID

k51 ðDRi;kðA; BÞ � belk;modelScenÞ
NmodelScen

: (7)

2.4.4. Assessment of Similarities and Dissimilarities in Local Objective Space for User’s Influenced by
Local ‘‘Subbasins of Interest’’
As mentioned earlier, user’s feedback can be based on what spatial scale they are most interested in. For
example, stakeholders focused on local subbasin-scale impacts may be more interested in viewing and
learning about the performance of proposed practices in their local subbasins of interests. Hence, their user
rating may be more influenced by this local-scale performance, even though the physical objective func-
tions in the genetic algorithm are based on the global watershed-scale performance of the recommended
distribution of practices. To evaluate evidence of such user behavior in the test experiments, we examined
for any potential overlaps or biases in performance functions—i.e., costs, peak flow reduction, sediment
reduction, and nitrate reduction—at local scales for individual users, and potential similarities/dissimilarities
in these biases among users with interests focused on local versus global scales. This was done by first gen-
erating the histograms of performances of desirable (i.e., R3 user ratings) design alternatives at the individual
subbasins of interest (Figure 3) that were of interest to participants.

3. Results and Discussion

This section has been divided into three subsections, each of which examines the results relevant to three
research questions stated in section 1. In each subsection, we discuss results for the experimental scenarios
described earlier for simulation models, participant types, and participant areas of interest. Because of the
exploratory nature of this work, we have discussed comparisons among individual participants, including
comparisons among groups. A major benefit of these comparisons is that they can help:

a. Improve our current understanding of how effective interactive optimization can be in generating per-
sonalized design alternatives for users with different interests, preferences, and behaviors.

b. Evaluate agreement among participants and variability across participants who belong to a certain
group. This can further provide insight into whether, and to what extent, the personalized interactive
search can also assist in the generation of desirable alternatives that may satisfy the requirements of
most of the community members within a group, even though each individual user interacts indepen-
dently with the WRESTORE system.

3.1. Assessment of User Behavior and Efficiency of the Interactive Optimization Algorithm
In this subsection, we investigate the first research question related to efficiency of the interactive genetic
algorithm in generating user-preferred design alternatives, for different types of users with varying interests,
preferences, and online interaction behavior.
3.1.1. Assessment for Individual Participants
In this study, the percentage of user ratings (equation (3)) provides insight into how successful the interac-
tive optimization algorithm was in identifying desirable alternatives (i.e., alternatives with user rating R3), for
the different types of participants (Surrogates and Stakeholders), and for different watershed models (i.e.,
Model A and Model B) that were used to evaluate cost-benefits of the design alternatives. The light red, yel-
low, and green vertical bars in Figure 4 show the percentage of user ratings (PRatei,k) at the end of the
search experiment, and for each ith rating (i.e., Ri) ranked by each surrogate participant who was working
with watershed Model A. Mann-Kendall trends in average confidence levels of design alternatives with the
same Ri user rating were also estimated for each of the participant with ID ‘‘k.’’ These temporal trends in
average confidence levels are represented by white arrows (positive trend) and black arrows (negative
trend) in this figure. Absence of arrow indicates a lack of a statistically significant temporal trend. Note that
the trends in confidence levels provide an insight into the participant’s learning process and a measure of
self-trust of his/her own evaluation of alternatives through time. The red, yellow, and green horizontal lines
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in this figure indicate the group average values of PRate1,k, PRate2,k, PRate3,k across all participants, respec-
tively. These group statistics for different user ratings were calculated using equation (4), and are discussed
in details in section 3.1.2 on group assessment. The table in the top right corner of Figure 4 lists values of
metrics used to track individual user’s behavior (equations (1) and (2)) on the web-based GUI.

By the end of the experiments, as shown in bar graph of Figure 4, four (i.e., 57%) out of seven of these surro-
gate participants had a higher value of PRate1,k (for R1 or ‘‘I don’t like it’’ alternatives) than PRate3,k. This indi-
cates that more than half of these participants did not like most of the design alternatives produced by the
interactive search algorithms. However, the confidence arrows indicate that only two of these four (i.e.,
50%) surrogate participants experienced an increase (white arrows) in the average confidence levels of R1

design alternatives over time (Participant 1 and Participant 6 in Figure 4). This suggests that only half of
these four individuals by the end of the experiment were increasingly self-confident about the design alter-
natives they did not like. Moreover, when behavioral data on the participant’s interaction with the GUI was
also taken into account (see table in Figure 4), we observed that the Participant 6, unlike Participant 1, spent
a considerable amount of time and made a large number of mouse clicks in tasks involving gathering of
information on the GUI. This indicates that his/her assignment of R1 user rating to design alternatives, and
his/her self-confidence in his/her own assessment of designs, are most likely supported by a cognitive learn-
ing process that involved the use of semantic information on the design and the costs and benefits. Also,
notice that for ‘‘I like it’’ alternatives, Participants 3 and 7 have the highest PRate3,k than PRate2,k and PRate1,k.
However, user rating provided by Participant 3 may be more reliable than Participant 7 because Participant
3 shows no evidence of decreasing confidence levels through time for her/his PRate3,k, shows an increase in
confidence levels for her/his PRate1,k, and also has high percentage of her/his interaction with the tool in
the information gathering areas (67% of time and 66% of mouse clicks in gathering information reported in
the table). Participant 7, on the other hand, had significantly lower interaction with the GUI (34% of time
and 14% of mouse clicks) in information gathering areas of the GUI, and also experienced a decrease in all
of his/her confidence levels through time. This indicates that even though Participant 7 liked most of his/
her designs, the user behavior, and self-confidence in his/her feedback do not suggest that the user ratings
may be a reliable portrayal of her/his assessment of designs alternatives.

Figures 5 and 6 show the range of values of percentage of user ratings for participants in the Model B-Surro-
gates and Model B-Stakeholder experiments, respectively. Contrary to results of Model A-Surrogates in Figure
4, user experiments with artificially enhanced Model B (i.e., Surrogates and Stakeholder) generated a higher
percentage of participants that found a high proportion of design alternatives that they liked. Specifically,
four out of seven (i.e., 57%) of Model B-Surrogates participants and four out of six (66%) of the Model

Figure 4. Percentage of designs with different ratings, found by the participants in the group Model A-Surrogates.
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B-Stakeholders participants had values for PRate3,k higher than PRate1,k and PRate2,k. These results indicate
that participants (stakeholders and nonstakeholders) seemed to be a lot more satisfied with their design
alternatives when the watershed simulation model overpredicted the performance of the conservation
practices, than participants in Model A-Surrogates.

In Figure 5 it is also interesting to note that Model B-Surrogates had only one participant (Participant 21)
whose confidence level increased over time for design alternatives rated R3, even though his/her PRate3,k

was smaller than PRate1,k. This participant has a moderate amount of interaction (the average percent of
time in information gathering was 34% and the average percent of mouse clicks in information gathering
was 47%) with the GUI. On the other hand, Participants 20, 22, and 24, had PRate3,k higher than PRate1,k (Fig-
ure 5), but with a decrease in their confidence level trends for R3 designs over time. While the decrease in
confidence level of Participants 22 and 24 is supported by their lack of time spent and mouse clicks made
toward gathering of information, Participant 20 demonstrated unexpected interaction behavior and

Figure 5. Percentage of designs with different ratings, found by the participants in the group Model B-Surrogates.

Figure 6. Percentage of designs with different ratings, found by the participants in the group Model B-Stakeholders.
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confidence trends. This participant (i.e., Participant 20) spent moderate amount of time (average percent of
time was 36%) and significant amount of browsing effort (average percent of mouse clicks was 71%) in
gathering information, but did not yield any increases in trends of her/his self-confidence levels.

For Model B-Stakeholders (Figure 6) group, majority of the participants (i.e., four out of six participants or
�66%) were also found to have increasing confidence levels over time, similar to Model B-Surrogates. In par-
ticular, Participant 15 had PRate3,k close to 70%, suggesting that he/she was satisfied with most of the
design alternatives found by him/her. However, unlike other participants, Participant 15 did not spend a lot
of time interacting with the GUI to collect information on the attributes of individual design alternatives.
This can be attributed to the fact that Participant 15 was interested in the entire watershed scale (Group 7
in Figure 3) and was not focused on a smaller region (local subbasins) of interest. Since the default visualiza-
tion in the GUI shows information on decisions and cost-benefits at the watershed scale, this user did not
need to do additional mouse clicks or use drop down menus in order to procure attribute information at
this scale. Also, only one of the participants in this group presented a decrease in the confidence level
trends (Participant 16) for design alternatives with user rating R2. In summary, even though PRate3,k was
found to be highest for the majority of the participants in both the two groups using Model B, most of the
participants in Model B-Stakeholders were found to be increasingly (white arrows) confident in the accuracy
of their user ratings throughout the experiment, contrary to participants in Model B-Surrogates.
3.1.2. Overall Group Assessment
The above results on individual participants demonstrate the unique differences in individual user behavior
and search outcomes, when humans are included in the loop of interactive optimization experiments. To
measure the differences in effectiveness of search at the group level, we compared the horizontal red,
green, and yellow lines in Figures 4–6. These lines indicate the average of the percentage of solutions (for
each user rating) across all participants in a group. Figure 4 shows that GPRate1,modelScen>GPRate3,modelS-

1,modelScen>GPRate3,modelScen>GPRate2,modelScen when modelScen 5 Model A-Surrogates, whereas Figures 5
and 6 show that GPRate3,modelScen>GPRate2,modelScen>GPRate1,modelScen when modelScen 5 Model B-Surro-
gates or Model B-Stakeholders. This indicates that when participants used the enhanced watershed Model B,
the search algorithm was able to better identify a larger percent of ‘‘I like it’’ alternatives, thereby, delivering
more design alternatives that the participants would be satisfied with. One potential reason that could be
attributed toward this behavior is that majority of participants seemed to be more influenced by the perfor-
mance of the decisions in the objective space. Hence, they indicated satisfaction with a lot more designs
when Model B was used in contrast to Model A, since Model B overpredicted the performances. Second, a
larger set of ‘‘I like it’’ alternatives also could have potentially made it easier for the underlying genetic algo-
rithm to identify genes that coincided with higher user satisfaction, and hence, leading to better search
effectiveness. However, to further examine and validate these potential reasons, a much larger sample size
of user experiments, than what was possible in this study, would be required. While such types of experi-
ments were beyond the scope of this initial observational study, the user behaviors observed in these
experiments provide insight into potential hypotheses to test for future planned studies with large number
of stakeholders.

3.2. Assessment of Similarities and Dissimilarities in Global Objective Space
In this subsection, we investigate the second research question related to similarity and dissimilarity among
design alternatives (found via interactive as well as noninteractive search) in objective space of global,
watershed-scale goals. The physical objective space reflects the range of physical environmental benefits
and costs that different design alternatives would be expected to encompass. As also mentioned earlier,
the similarity among results from multiple user experiments in watershed-scale objective space was
assessed by calculating the distance (equation (5)) between the set of a nondominated design alternatives
found by every participant and the initial set of noninteractively optimized design alternatives. Design alter-
natives generated via user’s participation in interactive optimization were separated into three groups
based on the user ratings Ri. Below is a discussion of similarities and dissimilarities in objective space of vari-
ous design alternatives with user rating Ri in each set, and found by the participants belonging to groups
Model A-Surrogates, Model B-Surrogates, and Model B-Stakeholders.
3.2.1. Assessment of Individual Participants
Table 3 presents the results of the distance metric calculated for participants in Model A-Surrogates group,
for each of the user rating Ri, and using two objectives at a time (as described in equation (5)). It can be
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observed that for any pair of objective functions (e.g., cost versus PFR), the distances (e.g., DR1,k) for the
same user rating (e.g., R1) was similar across all users. Note that this distance metric not only represents how
far the centers of mass of two sets of design alternatives are from each other, but it also captures the spread
of the alternatives around their center of mass. For all the participants in this group, it can be seen that
DR1,k was greater than DR3,k, suggesting that designs classified as R3 (i.e., ‘‘I like it’’) are closer to the design
alternatives in the noninteractive Pareto Front. For some participants—i.e., Participants 1, 4, 5, and 6—DR3,k

was greater than DR2,k. This could be attributed to the fact that for these participants the set of R2 design
alternatives was less spread than the set of R3 design alternatives, leading to a smaller value of DR2,k.

Figure 7, which graphically illustrates the distribution of design alternatives with R1, R2, and R3 user ratings
in the objective space, further exemplifies the difference in spreads for Participants 1 and 6. Participant 1
was interested in the performance of design alternatives at the scale of the entire watershed (Figure 7a),
and Participant 6 was interested in the performance in a small set of local subbasins (SBs) (Figure 7b). From
the perspective of quality of user interaction behavior, both of these participants had also demonstrated
increasing trends in their self-confidence in evaluation of user ratings. Figure 7 also shows the set of design
alternatives (labeled as ‘‘Noninteractive Pareto’’) that were used for the initial evaluation in Introspection 1
(I1) sessions, for all participants. These 20 design alternatives had been previously found via an exhaustive
noninteractive search based on only the four physical objective functions (Cost, PFR, SR, and NR) and the
calibrated Model A. This set of design alternatives gave the participant a good starting point for her/his
search. The first observation that one can make from these figures is that both participants found multiple
design alternatives with R1 and R2 user ratings in noninteractive Pareto Front that they did not find

Table 3. Distance Between Noninteractive and Interactive Pareto Fronts in Objective Space of Functions A (Peak Flow Reductions (PFR),
Sediments Reduction (SR), or Nitrates Reduction (NR)) and B (Cost), for Model A-Surrogates

Participant, k

A: PFR, B: Cost A: SR, B: Cost A: NR, B: Cost

DR1,k DR2,k DR3,k DR1,k DR2,k DR3,k DR1,k DR2,k DR3,k

1 0.22 0.09 0.12 0.24 0.08 0.11 0.22 0.07 0.09
2 0.25 0.16 0.11 0.27 0.17 0.12 0.23 0.15 0.10
3 0.21 0.14 0.11 0.24 0.15 0.14 0.20 0.14 0.11
4 0.19 1.3E-4 0.11 0.21 1.4E-4 0.11 0.18 1.2E-4 0.10
5 0.24 0.14 0.16 0.27 0.16 0.18 0.22 0.13 0.16
6 0.23 0.08 0.10 0.25 0.10 0.12 0.23 0.08 0.09
7 0.31 0.12 0.12 0.34 0.15 0.15 0.32 0.12 0.12

Figure 7. Pareto Front representation of watershed performance for (a) Participant 1 and (b) Participant 6 in Model A-Surrogates group. Par-
ticipant 1 was asked to provide the user rating for the design alternative based on the watershed performance, while Participant 6 was
asked to provide the user rating for the design alternative based on the group of SBs: 103, 105, 106, 121, and 122. Note that negative costs
indicate positive revenue.
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desirable. Additionally, both participants, along with other participants not shown in this figure, found a
much greater number of R3 (‘‘I like it’’) designs in the space slightly suboptimal to noninteractive Pareto
Front. The shape and size of this desirable region of alternatives with R3 designs were found to be unique
to each participant, with potential overlaps in some areas. It can also be seen that for Participant 1 there are
distinct clustered regions in the objective space where the user found most of her/his preferred and less-
preferred design alternatives. In this example, cost at the watershed scale seems to be the deciding criteria
based on which a user decided the R1, R2, and R3 user ratings. However, this clear distinction in the regions
of desirable and less-desirable alternatives does not seem to exist for Participant 6, who was more con-
cerned about the design at the subbasin scale. Even when most of the preferred design alternatives lie on
the low cost (on the left side) region of the objective space for Participant 6, there are multiple design alter-
natives in the same region that were also rated R1 by this participant. This also indicates that while the user
rating objective function was able to guide the optimization algorithm to identify large number of design
alternatives with R3 rating, the search process was less sensitive to watershed-scale performance for this
user. Another conclusion that can be made by this result is that for many humans watershed-scale perfor-
mance might not be the only criteria for identifying solutions that are acceptable to them.

Table 4 presents the DRi.k for participants in groups Model B-Surrogates and Model B-Stakeholders. Notice
that the values of these distances are significantly higher than for Model A-Surrogates in Table 3. This is
an effect of the artificially enhanced peak flow reduction, nitrate reduction, and sediment reduction esti-
mated by Model B during interactive optimization, as explained in the Methodology section. Results of
Model B-Surrogates showed that only 43% of the participants seem to have DR1,k>DR3,k, while in contrast
83% of the participants for Model B-Stakeholders showed distances values of DR1,k>DR3,k. Overall, these
results suggest that in both the groups not all participants necessarily preferred solutions with enhanced
PFR, SR, and NR values closer to the Pareto Front of noninteractive design alternatives.

Figure 8 illustrates examples of the distribution of user ratings in the watershed-scale objective space for
two participants (IDs 8 and 20) in Model B-Surrogates and two participants (IDs 15 and 11) in Model
B-Stakeholders groups. Note that Participants 8 and 15 rated design alternatives based on their perfor-
mance at the scale of the entire watershed (Figures 8a and 8c), and Participants 22 and 11 rated designs
based on the performance of alternatives in a particular subset of local subbasins (Figures 8b and 8d).
Notice that even when Figures 8a and 8c are for participants who were concerned with optimizing the
solutions for the entire watershed, the design alternatives with different user ratings are considerably
scattered in the objective space for Participant 15 in Figure 8c. Participant 8 in Figure 8a, on the other
hand, has well-defined clusters of R1, R2, and R3 design alternatives, similar to Participant 1 from Model
A-Surrogates (shown in Figure 7). Conversely, Figure 5 indicates that Participant 8 did not have any clear
trend in confidence levels, whereas Participant 15 had an increase in self-confidence levels over time for
R2 and R3 ratings (Figure 6). Hence, the results of Participant 15’s user experiments could be considered
more reliable from the user’s perspective, in spite of the lack of clear clusters in objective space. This

Table 4. Distance between Noninteractive and Interactive Pareto Fronts in Objective Space of functions A (Peak Flow Reductions (PFR),
Sediments Reduction (SR) or Nitrates Reduction (NR)) and B (Cost), for Model B-Surrogates and Model B-Stakeholders

Participant, k

A: PFR, B: Cost A: SR, B: Cost A: NR, B: Cost

DR1,k DR2,k DR3,k DR1,k DR2,k DR3,k DR1,k DR2,k DR3,k

Model B-Surrogates 8 0.50 0.41 0.33 0.47 0.41 0.35 0.46 0.41 0.35
9 0.27 0.01 0.21 0.38 0.01 0.32 0.33 0.01 0.28
20 0.63 0.47 0.29 0.58 0.44 0.28 0.57 0.45 0.29
21 0.33 0.37 0.46 0.33 0.37 0.45 0.32 0.36 0.45
22 0.34 0.39 0.41 0.38 0.38 0.39 0.37 0.38 0.40
24 0.40 0.37 0.41 0.39 0.37 0.40 0.39 0.38 0.40
25 0 0.39 0.38 0 0.39 0.36 0 0.38 0.35

Model B-Stakeholders 11 0.24 0.13 0.26 0.37 0.19 0.42 0.32 0.17 0.37
13 0.29 0.28 0.18 0.41 0.36 0.26 0.36 0.32 0.23
14 0.24 0.30 0.18 0.36 0.37 0.26 0.31 0.34 0.23
15 0.30 0.11 0.24 0.47 0.16 0.37 0.41 0.13 0.33
16 0 0.23 0.28 0 0.30 0.36 0 0.28 0.33
18 0.45 0.23 0.42 0.44 0.23 0.41 0.45 0.23 0.41
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further suggests that Participant 15 is a lot more flexible about her/his criteria in objective space, and not
necessarily motivated by the need to mathematically optimize watershed-scale goals to the best possible
value. Two other examples in Figure 8 of Participants 11 and 20 who rated the design alternatives based
on a particular set of SBs have R1, R2, and R3 designs overlapping each other in watershed-scale objective
space. Comparing these with the confidence trends in Figure 6 indicates that Participant 11 has an
increase in confidence levels for all the trends, thereby suggesting a higher reliability in the acceptability
of these designs. In contrast, Participant 20 has negative trends for alternatives with user ratings R3 and R2

in Figure 5. Moreover, even when both participants seem to have a good percentage of mouse click
events (76 and 71% respectively), the discrepancies in the average percentage time spent (73 and 36%
respectively) also suggest that the reliability of the results of Participant 11 may be higher than that of
the results found by Participant 20.

Figure 8. Pareto Front representation of watershed performance for (a) Participant 8 and (b) Participant 20 in Model B-Surrogates group.
Participant 8 was asked to provide the user rating for the design alternative based on the watershed performance, while Participant 20 was
asked to provide the user rating for the design alternative based on the group of SBs: 58, 59, 61, and 63. Similarly, the Pareto Fronts for (c,
d) Participants 15 and 11, respectively, in Model B-Stakeholders group are shown. Participant 15 was asked to provide the user rating for the
design alternative based on the watershed performance, while Participant 11 was asked to provide the user rating for the design alterna-
tive based on the group of SBs: 41, 90, 92, and 93. Note that negative costs indicate positive revenue.
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3.2.2. Overall Group Assessment
Table 5 shows the group averages in distance metrics for the different participant groups and models, cal-
culated using equation (7). Notice that for group working with Model A, the values of GDR1,modelScen was
found to be greater than GDR3,modelScen for the different combinations of A and B objective functions. This
suggests that this group, on an average, preferred design alternatives located closer to the design alterna-
tives on the noninteractive Pareto Front. The groups working with Model B, on the other hand, had values
of GDR1,modelScen close to values of GDR3,modelScen. This finding seems counterintuitive, at first glance, for par-
ticipants working with Model B-Surrogates or Model B-Stakeholders. Note that Model B overestimated the
PFR, SR, and NR benefits in comparison to Model A, and Model A was used to estimate benefits of alterna-
tives on the noninteractive Pareto Front. Hence, a user assessing the quality of the design alternative based
on only the physical objective function values estimated by Model B should be expected to prefer designs
with higher GDR3,modelSecn than GDR1,modelScen. However, this was not always observed, indicating that even
Model B participants may not have been entirely motivated by the performance of design alternative esti-
mated at the watershed scale in order to decide what design alternatives they liked. Additional factors may
have been more important to these participants when they were evaluating design alternatives. For exam-
ple, some participants may have been more influenced by the value of the design decisions (e.g., certain
locations may be more favorable for a BMP from the user’s perspective, in spite of the performance). This
issue will be examined in a forthcoming article.

3.3. Assessment of Similarities and Dissimilarities in Local Objective Space for User’s Influenced
by Local ‘‘Subbasins of Interest’’
In this subsection, we present results for the third research question related to similarity and dissimi-
larity among design alternatives in objective space of local, subbasin-scale goals. Note that even
though the underlying optimization algorithm used four of the cost-benefit objective functions to
assess watershed-scale goals (Table 1), the participants who were focused on local subbasin scales
(Figure 3) had the option to provide their user ratings based on their perception of costs and benefits
at the subbasin scale. Hence, the user rating gave participants an indirect mechanism to guide the
multiobjective search on the basis of performance at subbasin scales, in addition to watershed-scale
performance.

To assess for similarities and dissimilarities in subbasin-scale performance across participants, we gener-
ated and compared histograms of subbasin-scale objective function values for participants in the six
(q 5 1 to 6) groups of subbasins of interest (SBintq shown in Figure 3). Figure 9 shows the scaled histo-
grams for R3 (‘‘I like it’’) design alternatives, found by only six of the participants whose watershed-scale
objective function values were shown earlier in Figures 7 and 8. Figures 9a–9f are histograms of pairs of
participants in groups Model A-Surrogates, Model B-Surrogates, and Model B-Stakeholders, respectively.
For each pair, the histogram on the right indicates the distribution of objective function values in the
SBintq that were of interest to the participants focused on the subbasin-scale goals (i.e., Participants 6,
20, and 11 in Figures 9b, 9d, and 9f, respectively), whereas the histograms on the left illustrate the
subbasin-scale distributions of design alternatives for the same subbasins on the right, but found by par-
ticipants who were instead focused on the larger watershed-scale goals (i.e., Participants 1, 8, and 15 in
Figures 9a, 9c, and 9e, respectively). The curved blue arrows indicate the hydrologic connectivity in the
subbasins of interest; the directions of arrows indicate the direction of flow from upstream subbasin to
downstream subbasin. For example, in Figures 9a and 9b, Participant 6 was focused on local, subbasins
belonging to sixth group in Figure 3. In these subbasins, with IDs 103, 105, 106, 121, and 122, subbasin
105 is directly upstream of 106, and subbasin 121 is directly upstream of 122. Hence, the blue arrows are
directed from 105 to 106 and 121 to 122 in Figures 9a and 9b.

Table 5. Group Averages, GDRi,modelScen, for Distance Between Noninteractive Pareto Front and Design Alternatives Found by Partici-
pants via Interactive Optimization

Group, modelScen (or mS)

A: PFR, B: Cost A: SR, B: Cost A: NR, B: Cost

GDR1, mS GDR2, mS GDR3, mS GDR1, mS GDR2,mS GDR3,mS GDR1,mS GDR2,mS GDR3,mS

Model A-Surrogates 0.24 0.10 0.12 0.26 0.12 0.13 0.23 0.10 0.11
Model B-Surrogates 0.35 0.34 0.36 0.36 0.34 0.36 0.35 0.30 0.34
Model B-Stakeholders 0.25 0.21 0.26 0.34 0.27 0.35 0.32 0.25 0.32
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Figure 9. Scaled histograms of subbasin-scale objective function values of ‘‘I like it’’ design alternatives, found by Participants 1 and 6 in Model A-Surrogates group, Participants 8 and 20 in
Model B-Surrogates group, and Participants 15 and 11 in Model B-Stakeholders group. The x axes gives the magnitude of objective functions (PFR, Cost, SR, and NR) listed on the top, and the
y axes indicate the frequency of designs with corresponding objective function value on the x axis. The light blue curvy arrows indicate the direction of streamflow between subbasins that
are hydrologic connected. The red boxes indicate histograms where noticeable dissimilarities between left and right histograms exist. Note that negative costs indicate positive revenue.
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In Figure 9, at first glance, the histograms of ‘‘I like it’’ design alternatives found by the participants focused
on goals at the entire watershed scale (Figures 9a, 9c, and 9e) look somewhat similar to histograms of par-
ticipants on the right (Figures 9b, 9d, and 9f). On closer inspection, however, noteworthy differences can be
detected among some of the histograms. These dissimilar histograms are indicated by red boxes drawn
around them in Figure 9. The first thing to notice in these dissimilar histograms is the difference in distribu-
tion shapes between the participant focused on watershed scale on the left and participant focused on sub-
basin scale on the right. For example, in Figures 9a and 9b, the red-outlined distribution of nitrate
reductions of subbasin 103 are peaked at lower value for Participant 1 than for Participant 6. Similar differ-
ences in the location of the peak along the x axis and the peak height along the y axis can also be noticed
for other pairs of dissimilar histograms in Figures 9a–9f. While the occurrence of dissimilarities can be con-
sidered as potential outcomes of the algorithm’s search operations (specifically, crossover, mutation, and
selection operations of the underlying genetic algorithm in WRESTORE), the differences in shape of distribu-
tions and the intensity of peaks in distributions of user-favored designs also indicate a possible influence of
users’ unique preferences and known biases for specific subbasins and criteria. However, in order to confirm
the extent of individual contributions from user preferences and search operations on the occurrence of dis-
similarities, additional research needs to be conducted in the future with larger number of participants and
detailed tracking of user’s mouse clicks beyond those done for this study.

The second thing to notice in Figure 9 is that while for some participants there is no one criterion that dom-
inates the dissimilar histograms (e.g., Figure 9a versus Figure 9b, and Figure 9e versus Figure 9f), for others
one unique criterion clearly dominated where the histograms of left participant were different from those
of the right participant. For example, in Figure 9c versus Figure 9d the histogram for cost function between
watershed-scale Participant 8 and subbasin-scale Participant 20 were different for all of the subbasins 58,
59, 61, and 63. Hence, Participant 20, who was only interested in subbasins 58, 59, 61, and 63, was clearly
driven by values of the costs objective function in determining her/his feedback (on user ratings) to the
interactive genetic algorithm.

The third thing to notice in Figure 9 is that for most of the hydrologically connected subbasins occurrence
of dissimilarities among histograms in upstream subbasins coincided with dissimilarities among histograms
in downstream subbasins. These dissimilarities in histograms of downstream subbasins were a lot more
noticeable when there were multiple dissimilar histograms in multiple upstream subbasins. For example, in
Figures 9c and 9d, SBs 58, 59, and 61 drain into 63, and have a total of five dissimilar histograms in the three
upstream SBs that coincide with three noticeably dissimilar cost-benefit histograms in downstream SB 63.
In contrast, Figures 9a and 9b and Figures 9e and 9f have only one upstream subbasin for every down-
stream subbasin and with one or two dissimilar histograms in the upstream subbasins; these coincide with
less noticeable dissimilarities in histograms of downstream SBs. While in these experiments it was not possi-
ble to know whether the participants were as much concerned about the downstream subbasins as about
the upstream subbasins in the SBintq, this result has general implications for subbasin-scale decision makers
(e.g., Participants 6, 20, and 11) who may guide the algorithm’s search based on subbasin-scale criteria. For
such decision makers, if histograms of subbasin-scale objective functions are significantly different than
those of the designs found by the watershed-scale decision makers (e.g., Participant 1, 8, and 15) for the
same subbasins, then the benefits (and any cost or revenue impacted by the benefits) in the downstream
subbasins may also end up being noticeably different because of the hydrologic connectivity that conveys
benefits to lower subbasins.

4. Conclusions and Future Work

In this research, we conducted an observational study to improve our understanding of how variability in
the nature of users’ behavior, preferences, interests, and feedback can affect the results of an interactive
genetic algorithm employed to search for user-desired design alternatives of watershed conservation plans.
In this paper, we focused on examining the user-machine-generated results in objective function space of
the conservation planning problem. While not all design alternatives found via this interactive search pro-
cess were rated ‘‘I like it’’ (R3 user rating) by participants, 55% of the participants found a higher percentage
of design alternatives that they liked than percentages of alternatives rated R1 (‘‘I don’t like it’’) or R2 (‘‘Neu-
tral’’). This suggests that over half of the population were able to find more options for acceptable design
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alternative when they were engaged in the search process in collaboration with the underlying interactive
genetic algorithm than with the number of desirable designs generated by the noninteractive genetic algo-
rithm. The effectiveness of IGA in finding user-desired design alternatives has also been reported by other
studies that have investigated IGAs for water resources problems [e.g., Babbar-Sebens and Minsker, 2008,
2010, 2012; Singh et al., 2008]. This demonstrates the effectiveness (Research Question 1) of such interactive
search methods for assisting users during participatory design of conservation plans.

We also examined variability (Research Question 1) in user behavior of surrogates as well as stakeholder par-
ticipants via usability metrics (e.g., time spent in gathering information, etc.), and via evaluation of users’
feedback on self-confidence levels and user ratings. The usability and confidence metrics were used to eval-
uate the quality of individual user’s participation and have implications for research on group decision-
making approaches that engage multiple types of individuals with varied backgrounds via web-based
design platforms. Note that user behavior metrics are important not only for comparing DSS tools and mea-
suring GUI efficiency, but, as illustrated in this study, can be useful for evaluating the nature of a user’s inter-
action with the tool. User’s GUI interactions can further help improve our understanding on whether their
behavior correlates with their own individual learning process. However, it is also worth noting that user
learning can be noisy and multidimensional in nature and can happen in a noncontinuous manner; hence,
we recommend that additional methods for observing the learning process of interacting users are needed
so that developers of decision support tools can integrate them in their tools in the future. Such an
improved understanding on user behavior and learning has the potential to also enable researchers to
develop more human-like simulation models of their stakeholders’ preferences (i.e., user surrogates or
‘‘avatars’’).

The use of Model A versus enhanced Model B helped us identify how users would respond to values of costs
and benefits that were either closely accurate or artificially inflated. The user-preferred design alternatives
identified for both the cases of models were found to be in the region close to the design alternatives gen-
erated via noninteractive search, implying that users were not necessarily only driven by the goal to ‘‘opti-
mize’’ the physical cost-benefit objective functions. They may have also been driven by the values of the
decision variables themselves; hence, we recommend that this issue should be further investigated. It is
also worth pointing out that the information contained in Figure 8 can be computed ‘‘on-the-fly’’ as a user
is interacting with the DSS, and can be used to compute a measure of ‘‘reliability’’ of the user (based on the
distance from the noninteractive Pareto Front and the spread in the user-desired solutions). A possible con-
sequence of such a reliability computation could, then, be to exclude or give less weight to an ‘‘unreliable’’
user in a group decision-making exercise, if a user prefers solutions with very large distances from the non-
interactive Pareto Front. Such unreliable users could be inexperienced or even malicious. However, a
detailed study of such dynamics of a collaborative decision-making exercise was beyond the scope of this
paper, and is recommended for potential future research.

In this research, similarities and dissimilarities in the objective function space of user-desired alternatives
generated by participants in the groups Model A-surrogates, Model B-surrogates, and Model B-stakeholders
were also evaluated (Research Questions 2 and 3). While most participants who based their user ratings on
watershed-scale goals tended to find desirable and undesirable alternatives that were clearly clustered in
separate regions (except for Participant 15), participants who were focused on subbasin-scale goals did not
exhibit such clustered patterns at the watershed scale. Moreover, for these participants with interests at
subbasin scales the histograms of subbasin-scale goals were also found to have distributions different than
the histograms of subbasin-scale goals generated and preferred by the watershed-scale participants. While
this observational study provides an important insight into the types of patterns one may find in the solu-
tions generated by different humans with different scale biases and interests, we expect these findings to
be transferrable to studies involving other watersheds. This will especially be true when the stakeholder
group consists of individuals with watershed-scale interests and individuals with local-scale interests, e.g. a
group of agency personnel and landowners.

Finally, for most of the hydrologically connected subbasins in this study’s watershed, occurrence of dissimi-
larities among histograms of participants in upstream subbasins coincided with occurrence of dissimilarities
among histograms of participants in downstream subbasins. These dissimilarities in histograms of down-
stream subbasins were a lot more noticeable when the number of dissimilar histograms in multiple
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upstream subbasins increased. We recommend that in order to evaluate the generality of this finding, simi-
lar analyses should be conducted in future studies on other watersheds with complex subbasin networks.
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