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ABSTRACT
Landau and Lipschitz’s approach—termed here H&B due to the use of Happel and Brenner’s slow
rotation approximation—for calculating the average electrical mobility over all orientations of an
ion in the free molecular regime is shown in this manuscript to be an invalid assumption for non-
globular ions when a fixed electrical field is present. The reason behind the invalidity seems to be
the confusion between average “settling” velocity (the calculation intended by H&B) and the
average mobility(drag) in the direction of the field. When a missing orientation is taken into account
by rotating the drag tensor, the average mobility obtained through Landau’s approach coincides
with well-known orientationally averaged Kinetic Theory Methods such as those of Mason and
McDaniel (M&M). H&B’s averaging approach, however, can be related to the true mobility
displacement of the ion or, in other words, the displacement occurring in the direction of the
velocity. This true mobility displacement only agrees with the average mobility displacement if ion
velocity and electrical field have always the same direction, which only happens under special
cases. Analytical and numerical calculations of collision cross-sections of linear and planar structures
using a momentum transfer kinetic theory approach are chosen here as a means to prove that a
single rotation of the drag tensor is sufficient to show agreement between both methods.
A projected area approach is also used to prove the inadequacy of the H&B method.
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I. Introduction

From a semi-classical point of view, it is becoming more
self-evident that there is a need to understand the micro-
scopical behavior of systems in order to correctly define
transport and thermofluid properties. It is far more evi-
dent that as science and technology progresses, the need
to accurately define these properties could signify the dif-
ference between correct and incorrect modeling. In the
free molecular regime, most transport properties are
defined using a “directional” cross-section defined by the
interaction of the species of interest with the surrounding
medium. The ensemble average of all possible orienta-
tions, speeds, and fundamental force interactions define
the collision integral or the collision cross-section (CCS),
which can then be used to define the mobility diameter.
Among many of such CCS-defined transport properties,
electrical mobility is extensively used in the physical
characterization of ions, clusters, and nanometer-sized
aerosol particles (de la Mora et al. 1998; Bohrer et al.
2008). Under standard temperatures and pressures,
Knudsen numbers of nanometer-scale particles that
move at slow velocities fall within the momentum trans-
fer free molecular regime, in which ion mobility, i.e., the
average drift velocity acquired per unit electrical field
experimented by a charged ion, can be expressed using

the Mason–Schamp equation (Mason and McDaniel
1988):

ZpD
ffiffiffiffiffiffiffiffiffiffiffiffi
pmred

8kT

r
3ze

4rgasV
; ½1�

where mred is the reduced mass, k is Boltzmann’s con-
stant, T is the temperature, z is the net number of integer
(positive or negative) charges on the particle, e is the unit
charge, rgas is the density, and V is the particle’s aver-
aged collision cross-section. The collision cross-section
V is a gas momentum-transfer-based collision integral
that is orientationally averaged, i.e., calculates all gas
molecule impingements onto an ion that is randomly
oriented. Equation (1) is the basics of gas dynamics and
has been extensively used analytically and numerically to
infer collision cross-sections and mobilities (Shvartsburg
and Jarrold 1996; Ruotolo et al. 2008; Pease et al. 2009;
Tsai et al. 2009; Hogan and de la Mora 2011; Jiang et al.
2011; Larriba et al. 2011; Larriba and de la Mora 2012;
Larriba et al. 2014).

Arguably, the most accepted simplifications for acquir-
ing an average V for an ion or aerosol nanoparticle are
(1) the consideration that all directions are equally proba-
ble and (2) that non-inertial effects can be ignored. The
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first of such simplifications has had the most controversy
in the last few years due to the application of two differ-
ent approaches. The first approach follows the work of
Mason and McDaniel (M&M; Li and Wang 2003a,b)
based on Chapman-Enskog’s theory, which defines an
orientationally averaged collision integral and agrees with
Equation (1). The second approach, which we will refer
to as the Happel and Brenner method (H&B; Epstein
1924; Happel and Brenner 1981; Landau and Lifshitz
1987), is a momentum transfer approach that calculates a
drag tensor for the particle of interest. This drag tensor is
positive definite, when dynamic effects of rotation are
neglected, and therefore can be diagonalized and, if
inverted, an average value of the mobility, and thus of
the collision cross-section, is said to be found by averag-
ing the sum of the trace of the inverse tensor (see Landau
and Lifschitz, equation 59-6). The controversy relies in
the fact that these two methods (M&M and H&B) do
not yield the same results even though both methods
have been amply supported (Dahneke 1973a,b; Chan and
Dahneke 1981; Landau and Lifshitz 1987; Garciaybarra
and Rosner 1989; Bird 1994; Mackowski 1994, 2006;
Tammet 1995; Mesleh et al. 1997; Shvartsburg et al.
1997; de la Mora 2002; Garcia-Ybarra et al. 2006; Larriba
and Hogan 2013a,b; Li et al. 2014a,b).

In this work, it is shown that the drag tensor calcu-
lated in H&B, when used to calculate the average mobil-
ity in the direction of the field, does not consider all
possible orientations of the ion (H&B section 5–2.12)
and that a small geometrical consideration leads to both
approaches being equivalent. Averaging the inverted ten-
sor using the H&B approach (H&B section 5–8) does
however have a physical meaning that is equivalent to
calculating the average settling velocity—probably the
one intended by H&B and perhaps later misinterpreted.
The total displacement in the direction of the velocity is
termed here true displacement and its value differs from
the average mobility displacement in the direction of the
field. Theory is corroborated first analytically using a cyl-
inder/disk and later on through numerical calculations
using IMoS (Zhang et al. 2012; Larriba-Andaluz and
Hogan 2013; Ouyang et al. 2013; Larriba-Andaluz and
Hogan 2014; Larriba-Andaluz et al. 2015; Oberreit et al.
2015), an all-atom momentum transfer model that can
mimic both approaches, H&B and M&M (see the online
supplementary information [SI] for results in calcula-
tions). Although not pursued in this work, special atten-
tion should be taken when using the mean diffusivity
(Basser et al. 1994; Alexander et al. 2007; Basser and
Pierpaoli 2011), which can lead to averaging errors for
planar and linear ions due to the similarities between dif-
fusion and electrical mobility (Einstein’s relation). Given
that the charged particles studied herein this manuscript

are large polyatomic entities (up to 5000 atoms), we will
refer to them as ions, particles, or nanoparticles indis-
tinctively with the only precaution that these ions must
fall within the free molecular regime.

2. Theory

2.1. Average non-dynamic mobility of charged
polyatomic nanoparticles when all orientations
are equally probable

Let a random amorphous polyatomic charged structure
with massm and charge q be pulled by a constant electric
field E in a gas medium. The resulting equation of
motion (for slow velocities) is given by

m€!x D q
!
E¡K _!x ; ½2�

where the translational inertia of the ion is given by the
balance of the electrical force, q

!
E , and the collision-

induced drag force, K _!x . One can argue that the equili-
bration between the forces will happen fast enough that
the LHS will almost immediately become negligible
under small changes in velocity. In order for such equili-
bration to happen, one can also hypothesize that the
speed of rotation of the nanoparticle must not signifi-
cantly affect singular collisions between gas molecule
and ion. In order to simplify the picture, let us assume
the following hypotheses:

(i) The particle reaches terminal velocity instantly.
This terminal velocity and its direction are deter-
mined by the equilibrium of forces in Equation (2).
After terminal velocity is reached, any inertial
acceleration, rotational or translational, is assumed
to be negligible.

(ii) All orientations of the ion are equally probable.
(iii) For (ii) to be true, the nanoparticle is continuously

reorienting itself after a random number of gas
collisions as it drifts through space. This reorienta-
tion happens enough to allow pure statistical
randomness.

(iv) The nanoparticle speed of rotation can have any
value as long as it is slow enough that the angular
velocity of the nanoparticle contributes negligibly
to the momentum transfer upon collision of a gas
molecule with the ion. If the ion speed of rotation
is high, individual collisions with gas molecules
would be affected by the speed of rotation and the
analysis assumed herein would need to be
modified.

(v) The averaged drift velocity (<vi>) under assump-
tions (i) through (iv) must be in the direction of
the electrical field (Ei).
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Under these hypotheses, both forces, electrical and
drag must be equal in direction and magnitude at all
times during the flight (in Einstein’s notation):

qEiD FDi DKijvj: ½3�

Given that, when neglecting angular velocity (hypoth-
esis iv), the drag tensor Kij is symmetric, the tensor can
be diagonalized and an average value calculated by
assuming all orientations are equally probable. Since the
tensor can be diagonalized, the average value is the sum
of the trace divided by three.

Averaging leads to two options:

q h Ei i D qED hKijvj i ffi hKij i h vj i ; ½4�

q
Ei
Kij

� �
D qE hK ¡ 1

ij i D h vj i ; ½5�

The first possibility is to average the tensor Kij directly
by “assuming” that it is independent of the velocity and
then inverting it. The second approach is to first invert
the tensor and then take the average of the inverted
tensor Kij

¡1. The two results, which differ for any

non-spherical ion, are given by

Kij
¡ 1 D Z1

q
D 3

K11 CK22 CK33
; ½4 0 �

K ¡ 1
ij D Z2

q
D 1

3
1
K11

C 1
K22

C 1
K33

� �
; ½5 0 �

where Kii are the principal directions of the tensor.
The purpose of this work is to understand the qualita-

tive difference between both calculated mobilities Z1 and
Z2. While a derivation will not be shown here, the calcu-
lation of the mobility using an orientationally averaged
calculation, e.g., first collision integral, such as that of
Mason and McDaniel, M&M, using Equation (1) agrees
with averaging Kij first (Equation (4)) and then inverting

it (see analytical example). The average mobility using
Equation (5) on the other hand agrees with the work of
Landau and Lifschitz and that of Happel and Brenner,
H&B. There has to be an underlying reason or a miscon-
ception to why these two ways of averaging lead to differ-
ent mobility results.

Given that Equation (3) is correct under given
assumptions, how is it possible that averaging the tensor
does not provide a mathematically correct description

Figure 1. (a) Given a molecular structure with a fixed orientation, one can infer the tensor Kij from three perpendicular directions (Ex, Ey,
Ez). Black arrows correspond to the direction of the field, red arrows correspond to the drag force response, and blue arrows correspond
to the drift velocity resulting from the equilibrium. Only one drift velocity vj can be produced from each drag-Field pair for a given Kij,
i.e., Fxi DKijvjFx . (b) A rotation of the ion around Ex should still produce the same reaction Fx but a different drift velocity vj2. The tensor
Kij does not contain this orientation of the ion so that Kijvj2Fx will not produce Fxi. Instead a rotation of the tensor must also be made to
produce this new orientation Fxi DREiKijRT

EiREivjFx .

B=w in print; colour online

REi D
cosuC a2 1¡ cosuð Þ ab 1¡ cosuð Þ¡ csinu ac 1¡ cosuð ÞC bsinu

ab 1¡ cosuð ÞC csinu cosuC b2 1¡ cosuð Þ bc 1¡ cosuð Þ¡ asinu

ac 1¡ cosuð Þ¡ bsinu bc 1¡ cosuð ÞC asinu cosuC c2 1¡ cosuð Þ

2
4

3
5: ½7�
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regardless of whether the regular or inverse tensors are
used? The answer, as will be shown, is that not all orien-
tations are considered in Equation (3) and therefore
averaging Equation (3) is not necessarily “equivalent to
the assumption that all orientations are equally probable”
and hypothesis (ii) will not be satisfied.

To mathematically calculate the drag tensor for a
polyatomic ion with a fixed orientation, a possible option

is to use three perpendicular directions to calculate the
corresponding drag tensor Kij (see analytical example of
disk/cylinder). The electric field can be defined in Equa-
tion (3) as a function of two Euler angles (f;x) as
Ei DE sinf cosx; sinf sinx; cosfð Þ, so that for a fixed Kij

(with principal directions K11; K22; K33/:

qE sinf cosx; sinf sinx; cosfð ÞD K11v1;K22v2;K33v3ð Þ;
½3 0 �

where vj D v1; v2; v3ð Þ. The velocity satisfying (3’) is

vj D qE
K11

sinf cosx;
qE
K22

sinf sinx;
qE
K33

cosf

� �
;

where the values qE=Kii can be termed orientation
weights. This process only uses two of the three Euler
angles for a fixed tensor Kij, which is key to the argument
developed here. If one were to integrate Equation (30)
over the third angle, an angle of revolution along the Ei
axis (termed u), the equation would be invariant to the

integration:

Z2p
0

qEiduD qEi D
Z2p
0

KijvjduDKijvj: ½300�

Except for particular cases, this cannot be the correct
equation to average assuming all orientations are equally

probable as it is invariant under the integration of one of
the angles. Imagine, for example, a simple finite u rota-
tion of the ion along the Ei axis. Physically, a new drift
velocity is produced, vj2, for the same Ei, which is not sat-
isfied by Equation (3). Figure 1 provides detailed insight
of the missing rotation for an L-shaped ion (used here to
easily represent the rotation). Initially, Figure 1a shows
an ion drag tensor that can be produced by randomly
selecting three perpendicular directions of Ei. A new
orientation that was not accounted for in Equation (3) is
now provided in Figure 1b.

Therefore, to account for all possible orientations, one
must include a rotation of the ion along the Ei axis. In
such a case, Equation (3) can be rewritten as

qEi D FDi D REiKijR
T
Ei

� �
REivj

	 

; ½6�

where REi is the rotation matrix of an angle u along a unit
vector û D (a, b, c) D sinf cosx; sinf sinx; cosfð Þ in the
direction of Ei (or vi):

The first term in brackets in the right-hand side of
Equation (6) represents the rotation of the tensor Kij

while the second term in brackets represents the rota-
tion of the velocity vector vj. Equation (6) remains
valid and equivalent to Equation (3) regardless of
how much the ion is rotated along the Ei axis. Only
one position of this particular u-rotation would be

Dij D

2
6666664

K11

2
AaC K22

2
Cabc C K33

2
Cacb Symm Symm

ab
2

K11BaCK22BbCK33Bcð Þ K22

2
AbC K11

2
Cabc C K33

2
Cbca Symm

ac
2

K11Ba CK22Bb CK33Bcð Þ bc
2

K11BaCK22BbCK33Bcð Þ K33

2
Ac C K11

2
CacbC K22

2
Cbca

3
7777775
;

Dij
0D

2
664
K11a2CK22b2CK33c2 0 0

0 K11a2CK22b2CK33c2 0

0 0 K11a2CK22b2CK33c2

3
775: ½9�
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taken into account when only the tensor Kij in Equa-
tion (3) is averaged. Since every u-rotation is indepen-
dent of each other, Equation (6) and not (3) should
be employed and the resulting tensor, not Kij, should
be used when averaging.

To average such tensor, one can make use of Equa-
tion (6) to get the average u-rotated tensor for a fixed Ei:

qEi D FDiDREiKijRT
Ei REivj DREiKijRT

Ei vi DDijvi: ½8�

Equation (8) needs further explanation to prove that
the product of the averages is indeed the average of the
products. The result can be proven by brute force. How-
ever, since the product of the averages, Dijvi, yields qEi,
as shown at the end of the derivation, the covariance
must indeed be zero.

At a first glance, it is particularly interesting to note
that the average of REivj is in this case always in the
direction of the field (vi) regardless of the value of vj
(average rotation along the Ei direction). The average
value Dij for that particular position of Ei (assuming
Kij is given as a diagonal matrix with three principal
axes) is given by the following matrix:

where

AiD 1¡ 2i2C 3i4ð Þ BiD 3i2 ¡ 1ð Þ
:

Cijk D 3i2j2C k2

Since the tensor is symmetric and the product of Dijvi
must still be in the direction of vi, diagonalizing the
above matrix gives

Finally, averaging over all positions of vector û:

ûD sinf cosx; sinf sinx; cosfð Þ ½10�

gives

D
00
ijD

2
6666664

K11 CK22 CK33

3
0 0

0
K11 CK22 CK33

3
0

0 0
K11 CK22 CK33

3

3
7777775
:

½11�
Note that u is described as expected by only two

angles (x,f) of the total three needed to describe the ori-
entation of an object. It is true that in the derivation of
H&B, a third Euler angle, with the same orientation as u,
is used to average the settling velocity. However, as
shown in Equation (300), Equation (3) is invariant under
such rotation making the average of the angle meaning-
less. The average value of Dij

00 is

D00
ij D

K11 CK22 CK33

3
; ½12�

which coincides with q=Z1 in Equation (4). The most
significant property of D

00
ij is that the average of its

inverse is 1= hD00
ij i . It is therefore indifferent whether

Equation (6) or

q REiK
¡ 1
ij RT

Ei

� �
Eið ÞDREivj ½6 0 �

is used. For a fixed field and when all orientations are
taken into account, the Mobility is given by tensor Mij

Figure 2. Shows the comparison between true and average displacements for two equivalent structures rotating fast (dotted line) and
slow (dashed line). True mobility displacement is not in the direction of the Field but, when all directions are equally probable, the aver-
age displacement in the direction of the Field is given by <xi>. On the other hand, true displacement xj occurs in the direction of the
velocity and is given by the true mobility Z2. It must always be true that <xj> �<xi>. Dt is the time taken for a single rotation while t
is the total time to cover a given distance.

B=w in print; colour online
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(to differentiate from Z) as

Mij D
1

D00
ij

D 3
K11CK22CK33

: ½13�

Ageneralconclusionis thereforethatwhenallorientations
are considered andwhen the rotations that produce suchori-
entationsdonotaffect thegasmolecule collisions, there isone
and only one solution to calculating the average value of the
mobilityinthedirectionofthefieldandthatis theonegivenby
Equation(13).ThisresultalsoagreeswiththatofM&M.

2.2. True vs. average mobility

So far, we have seen that the average mobility should be
obtained by averaging the tensor Dij and not the tensor Kij

(despite the coincidence). This average mobility is what is
calculated in an ion mobility spectrometer (IMS). What
remains to do now is to understand the reasoning behind
why Equation (4) yields the same value as Equation (13)
despite its averaging being in principle mathematically
incorrect while Equation (5) yields a different value. To do
so, let us first imagine an ion that travels a given distance
with a fixed orientation. After such distance is covered, it
instantly rotates and travels a new distance in a new fixed
orientation. This is repeated until all orientations of the ion
are covered. See Figure 2 for a sketch of the process.

Since Equation (6) must remain valid, then the true
drift velocity of a particle along a path before rotating
will be given by vj and therefore its mobility must be
given by qKij

¡1. Generally, under a fixed orientation, the
drift velocity will not be in the direction of the field.
Overall, however, if all directions are equally probable,
the distance traveled in the direction of the field would
be given by the projection of vj on the direction of Ei
(average drift <vi>) times the total displacement in
time. This is shown in Figure 2 for two particles that are
rotating at different speeds. As long as hypothesis (iv) is
in effect, the average displacement regardless of the speed
of rotation is taken from averaging Equation (6) as

xi D t vi D tq

Dij
EiD tqMij Ei; ½14�

where t is the total drift time.
Before describing the physical meaning of Equa-

tion (5), let us first interpret why Equation (4) and Equa-
tion (12) coincide. When Equation (6) is used, the right-
hand side always yields the drag force (FD D Kijvj D Dijvi)
regardless of the value assigned to the angle u. Every
u-rotation gives exactly the same information so the
average of Dij or Kij must be equal even though Kij is
missing one orientation. This is similar to projecting vj
in the Ei direction.

However, when Kij is inverted using Equation (3):

qK ¡ 1
ij Ei D vj; ½15�

rotating Kij
¡1 an angle u using Ei as the axis will yield dif-

ferent values of vj given by REivj (vj 6¼ REivj). In such case,

.REiK
¡ 1
ij RT

Ei/ 6¼ K ¡ 1
ij so that Equation (5) wrongly

describes the average value of mobility in the direction of
the field and should not be used.

An interpretation can nonetheless be extracted from
Equation (5) by trying to calculate the displacement in
the direction of the velocity. In such a case, the third ori-
entation angle can be thought of a rotation using the
velocity as an axis (instead of using Ei as in Equation (6)):

q RvjK
¡ 1
ij RT

vj

� �
RvjEi
	 
D vj; ½16�

where Rvj in this case is the rotation of the ion and angle
u using as an axis the velocity vj. Note that Equation (16)
and Equation (60) have very different meanings and yield

different results when averaged. Averaging RvjK
¡ 1
ij RT

vj

� �
or K ¡ 1

ij will yield in this case the same result and which

coincides with Equation (5). Indeed, this is equivalent
to H&B’s approach that ultimately calculates the aver-
age “settling velocity” and should not be mistaken with
calculating the average mobility in the direction of the
field. Given that the ion’s true displacement is in the
direction of the velocity, one can define a true mobility
displacement, xj, different from the average displace-
ment in the direction of the field xi given by

xj DDtvj D qDtK ¡ 1
ij Ei: ½17�

Since any angle u used to rotate Ei is valid in Equa-
tion (16), we can choose the angle that makes Ei be a vector
fixed in the horizontal direction as is shown in Figure 2.
Averaging over the rest of possible orientations yields

xj D tvj D qtZ2 Ei; ½18�

where the <xj> is now termed true mobility displacement.
<xj> is always larger or equal to<xi> and represents how
much distance the ion has traveled regardless of direction
vs. the average mobility displacement <xi>, which repre-
sents the distance covered in the direction of the field. Per-
haps, the intention of H&B was to define this true drift
velocity (displacement), which they refer to as “settling
velocity” and it was misinterpreted later to be the averaged
displacement in the direction of the field. It is quite clear
however that Z2 cannot be used to calculate the electrical
mobility of the particle given by a regular IMS instrument
as regular instruments cannot interpret how far the ion
deviates from the straight path given by a constant electric
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field. Not even in such cases where an ion does not rotate at
all during flight since the average displacement in the direc-
tion of the field would still be given by Equation (14).

3. Results and discussion

In order to understand the error associated with using Z2
instead of using the corrected average Mobility Z1, an ana-
lytical as well as a numerical method is employed. The ana-
lytical method calculates the true as well as the average
mobility for a disk/cylinder and compares both. The
numerical method IMoS has been used to demonstrate the
validity of the theory for any structure (not only a disk/cyl-
inder) using all atom models (see the SI). In particular, lin-
ear structures up to 1000 atoms and planar structures were
studied up to 5000 atoms were computed using the Pro-
jected Area and Exact Hard Sphere Methods (EHSS). For
the EHSS method, three different models of orientation for
the ion are used to obtain independent values Z1 and Z2,
which are then compared using Figure S1 and Table SI.

3.1. True vs. average electrical mobility
of a disk/cylinder

The net drag force d
!
F on an element of area dA with an

outward normal is given by (de la Mora 2002):

d
!
F

dA
DNkT

ffiffiffiffiffiffiffiffiffi
8mg

pkT

r
!
v�
(
nn 1¡ 3a

4
C ap

8

� �
C I

a
4

)
: ½19�

Here N is number concentration, T is the temperature, k
is the Boltzmann’s constant,mg is themass of the gas (much
smaller than the mass of the ion), nn is the normal diadic, I
is the unit diadic, and a is the accommodation coefficient.

For elastic and specular collisions (a D 0), the drag
force can be written as

!
F D K� !

v; ½20�

where the friction tensor K is given by

KDNkT

ffiffiffiffiffiffiffiffiffi
8mg

pkT

r I
nndA ½21�

and where dA is integrated over the complete surface Aw

of the ion.
In the case of a cylinder or a disk, with each of the

bases having a surface AB and side surface AC , the fric-
tion tensor is given by

KDN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mgkT

p

r I 2
64
cos2u

sin2u

1

3
75

dADN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mgkT

p

r
2
66664
1
2
Ac

1
2
Ac

2AB

3
77775: ½22�

The average mobility depending on whether we use
the average of the tensor or its inverse yields:

Z1D 3ze
4N

ffiffiffiffiffiffiffiffiffiffiffiffi
2p

mgkT

s
1

Ac C 2ABð Þ ½23�

Z2 D ze
N

ffiffiffiffiffiffiffiffiffiffiffiffi
2p

mgkT

s
8ABCAc

24ABAc
: ½24�

We wish to compare the average of the friction tensor
and/or its inverse with the well-known Mason–Schamp
equation (repeated from Equation (1)):

ZM&M D 3ze
16NV

2p
mgkT

� �1 6 2

: ½25�

Here, V, is the first collision integral, which, when
specular and elastic collisions are considered and the
body is convex (such as in the case of a cylinder or a
disk), coincides with the average projected area of the
ion. For a disk/cylinder, Cauchy’s theorem states that

VPA D Aw

4
D Ac C 2AB

4
: ½26�

Figure 3. Ratio of VH&B
VPA

.Z1=Z2/ as a function of the ratio of AB=
AC for a disk/cylinder molecule. Note that at AB

Ac
D 1=4, has its

maximum value of 1.
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Using the above expression in the Mason–Schamp
equation, one arrives at

ZM&M D 3ze
4N

ffiffiffiffiffiffiffiffiffiffiffiffi
2p

mgkT

s
1

Ac C 2ABð Þ ; ½27�

which is exactly equivalent to Z1. However, when Z2 is
compared to ZM&M , we arrive at the following equality:

6ACAB

8ABCAc
D Ac C 2AB

3
; ½28�

which has a solution ABDAc=4 (or the diameter is equal
to the length of the cylinder/disk). By analogy, one can
term the collision cross-section from Z2 as

VH&BD 9AcAb
16AB C 2Ac

. Figure 3 shows the ratio VH&B
VPA

(Z1=Z2/

as a function of the ratio of AB/AC . As can be observed,
VH&B is always equal or smaller than VPA and they are
only equal at the particular value specified. Moreover,
the bigger the difference between AC and AB, the smaller
the ratio becomes. A rotation of the tensor in Equa-
tion (22) using Equations (6–13) would lead to the tensor
Kii D AC C 2AB

3 and to the agreement of both mobilities in
Equations (23) and (24).

4. Conclusions

In this manuscript, it is shown that previous approaches
to calculate average collision cross-sections agree when
the same considerations are applied. The previously used
H&B approach using the inversion of the drag tensor
assuming all directions are equally probable is shown to
be invalid due to the omission of one of the angles of
rotation of the ion in Equation (3). A small geometrical
consideration to rotate the tensor in the axial direction
of the electric force is sufficient to demonstrate that same
identical results can be obtained through the tensor or
the inverse. We show however that the H&B method
gives instead a total displacement of the ion in the direc-
tion of the velocity, which we have termed the true
mobility displacement to differentiate it from the average
mobility displacement.

Analytical calculations of a disk/cylinder molecule
show that the ratio between true and average mobility
can be quite large. Indeed, there is only one value where
the true mobility is equal to the average mobility of the
ion. In all other cases, the mobility inferred using H&B,
can be several times smaller than that inferred from
using the average projected area.

Numerical calculations of the collision cross-section
of linear and planar structures using four different
approaches has been pursued using IMoS, a momentum

transfer kinetic theory approach using all atom models.
By calculating both H&B and M&M approaches and
comparing them to the regular projected area approxi-
mations the inadequacy of the H&B method to predict
average mobility values is confirmed.
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