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Abstract 

Dryland crop production requires significant water investments, but problems associated with 

irrigation have been observed in many dryland regions (e.g., China, Australia and the Mediterranean 

basin). A key strategy for maintaining crop yields without over-exploiting the scarce water resource 

is by increasing water use efficiency (WUE). Plastic mulching technology for wheat and maize has 

been commonly used in China, but their effect on yield, soil water content, evapotranspiration (ET), 

and WUE has not been compared with traditional irrigation. Using a meta-analysis approach, we 

quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in 

the same region. By covering the ridges with plastic and channeling rainwater into a very narrow 

planting zone (furrow), our results showed that plastic mulching resulted in a yield increase 

comparable to irrigated crops but used 24% less water in comparison with irrigation due primarily to 

a much greater WUE and better retention of soil water. The higher WUE in plastic-mulched 

croplands was likely a result of a greater proportion of available water being used for transpiration 

(T) than evaporation (E). Currently production costs and residual plastic pollution hinder worldwide 

adoption of the technique, despite being a promising strategy for dryland cropping systems. 

Keywords: agricultural production, China, evaporation, meta analysis, transpiration, water use 

efficiency  
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1. Introduction 

Dryland crop production remains the primary source of staple food production for the majority of 

densely-populated regions such as China, sub-Saharan Africa, India, and the Mediterranean. With 

aridity index (i.e., ratio between precipitation and potential evapotranspiration (ET0)) ≤ 0.65 (Wang 

et al., 2012), crop production in drylands is a continuous exercise to allocate the limited rainwater 

supply to meet the ET demand of growing crops. Therefore, increasing water use efficiency (WUE; 

crop yield per unit of available water) in dryland cropping systems is essential in order to maximize 

productivity (Bennie and Hensley, 2001; Lu et al., 2016a). 

The challenges facing dryland crop production are further amplified with a changing climate 

(i.e., more frequent drought) as most climate models suggest that climate change will be more 

detrimental towards dryland (i.e., rainfed) than to fully irrigated crop production systems (Piao et al., 

2010). In countries like China where dryland regions account for 65% of the total arable land and 

contribute the majority of the nation’s food production (Deng et al., 2006), supplementary irrigation 

is necessary to ensure food security. Low WUE associated with irrigation in the dry regions, 

however, has caused severe environmental problems, including groundwater decline and drying 

rivers (Deng et al., 2006), seawater intrusion and soil salinization (Cudennec et al., 2007; Lambers, 

2003; Narayan et al., 2007) as reported in China, Australia and the Mediterranean.   

The use of water-saving strategies is therefore critical for dryland cropping systems 

considering that rainfall is not only low in absolute amount but is also unevenly distributed. During 

the last five decades (1950-2000), grain production has increased dramatically from about 113x106 

tons to 512 x106 tons in China (~3% increase annually) (Cui et al., 2010). Currently, China is the 

largest producer of wheat and only second after the United States (US) in terms of global maize 

production (Daryanto et al., 2016). One water-saving strategy that may have contributed to the 

increase is the adoption of plastic mulching technology that is most commonly used in northern 

China for maize and wheat production. Nationwide, plastic mulching has increased maize and wheat 
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grain production by 33.7% and 33.2%, respectively (Liu et al., 2014). Food security and the growth 

of grain production have been an ongoing priority for the Chinese government, who have provided 

farmers with a guaranteed amount of plastic mulch at low, subsidized prices since the agricultural 

reform initiated in 1979 (Colby et al., 1991; Ni, 2013). The technique, introduced in 1978, has gained 

popularity ever since (Zhou et al., 2009) and, over the past two decades, the use of plastic mulch has 

increased in all provinces and regions of China. Between 1990 and 2000 alone, 80% of the world’s 

plastic-mulched surface was found in China with 25% annual growth rate (Espi et al., 2006). While 

the lowest estimated increase rate of cultivation area covered by plastic mulch would be about 5% 

over the next ten years if the covered crop area increased from the current 20x106 ha to 30x106 ha, 

the number could be higher (8-10%) if the increasing covered crop area went above 30x106 ha (Liu et 

al., 2014).  

Plastic mulch conserves water in areas where irrigation is limited or not available, and 

protects emerging crops from low spring soil temperature  (Zhou et al., 2009). The use of organic 

mulch (e.g., straw mulch), on the other hand, has been limited due to its rapid decomposition and its 

adverse effects on soil temperature (i.e., too cold during winter or spring) (Chen et al., 2015). In 

general, the plastic mulching technology is deployed in a ridge-furrow system; the plastic mulch is 

placed on top of the ridge to concentrate the flow of water from the ridge to the furrow where the 

crops are planted. From now on, the term ‘plastic mulching’ will be used to refer to the 

aforementioned description. The use of plastic mulching, however, requires larger input of money 

and labor on an annual basis, and may result in reduced subsoil water with increasing plant growth 

and transpiration rate compared to traditional irrigation (Li et al., 1999; Liu et al., 2009). The 

effectiveness of plastic mulching also varies, depending on the type of surface cover on the furrow, 

climate and soil conditions, as well as their interactions (Han et al., 2014), highlighting the 

importance of quantitatively examining the efficacy of this water-saving strategy.  
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In this communication, we compare plastic mulching and traditional irrigation in terms of 

improving wheat and maize yield, as well as relevant crop and soil parameters (e.g., ET, WUE, and 

soil water content). We used a meta-analysis approach to summarize the results from independent 

experiments (Hedges et al., 1999) across different climatic zones and soil types. Using China’s 

dryland crop production as an example, our results can help to quantitatively evaluate plastic 

mulching and develop water-saving strategies in other semi-arid regions that are severely affected by 

drought and water shortages. 

2. Methods 

Peer-reviewed journal articles published in English from 1985 to 2016 were collected to build the 

database based on Web of Science search using the following sets of keywords: (i) wheat or maize, 

(ii) film mulch or plastic mulch or plastic cover, and (iii) water stress or water deficit or drought or 

irrigation deficit. We replaced the phrases ‘film mulch’, ‘plastic mulch’ and ‘plastic cover’ with 

‘irrigation’ and ‘China’ to search for articles discussing supplementary irrigation specific to the 

region. The search for mulching and irrigation articles resulted in 78 and 394 articles, respectively, 

but only articles from China that met the following criteria were included in the database: (i) the 

experiments were conducted under field conditions where the effect of irrigation or plastic mulching 

was compared with flat (even or level topography), rainfed conditions, (ii) the reported plants were 

monoculture cereals of maize (Zea mays) and wheat (i.e., bread wheat; Triticum aestivum), and (iii) 

the articles reported crop response as grain yield. This resulted in 49 articles (see list in the 

Supplementary Information) that all came from regions with similar agro-ecological features. If the 

articles reported a combination with other treatments (e.g., addition of fertilizer, cultivar, or spacing 

width), the effects of these treatments were averaged across the mulching or irrigated condition. By 

averaging the response, we avoided over-representation of a study, reduced publication bias, 

increased the reliability of our results, and ensured the independence of each data entry (Lu et al., 

2016b). We did not differentiate among irrigation methods and only recorded the amount of water 
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applied, since there have been many studies showing that the type of irrigation was not significant in 

comparison to the amount of water in determining yield, including in the drylands (Erdem et al., 

2006; Onder et al., 2005; Sammis, 1980; Shalhevet et al., 1983; Ünlü et al., 2006). We also recorded 

the amount of rainfall received during the growing season to understand the extent of irrigation 

relative to the rainfall. The ratio between irrigation and rainfall ranged between 0.3 and 4.9. If a study 

was conducted across different years or study sites with similar agro-ecological features, or reported 

more than one amount of irrigation, all observations were considered independent and included in the 

database (Daryanto et al., 2016).  

The magnitude of yield, total ET, WUE, and average soil water content (0-20 cm) responses 

throughout the crop growing season were examined based on four treatments: (i) irrigation and three 

different types of mulch that covered the furrow: (ii) plastic, (iii) straw, and (iv) no cover or bare 

(Fig. 1). No additional irrigation was provided for each of the mulching treatments. The number of 

observations (samples) for each treatment are available in the corresponding figure of the Results 

section. To compare the differences in crop or soil response ratio between each treatment, meta-

analysis was used to construct the confidence intervals. In order to include those studies that did not 

adequately report sample size or standard deviation, we performed an unweighted analysis using the 

log response ratio (lnR) to calculate bootstrapped confidence limits using the statistical software 

MetaWin 2.0 (Rosenberg et al., 2000). The response ratio is the ratio between the outcome of 

treatment group (i.e., irrigation or mulched) to that of the control group (i.e., flat, rainfed condition) 

to estimate the proportional change resulting from irrigation or mulching. We performed a simple 

diagnostic test using the formula following Lajeunesse (2015) to improve the reliability of lnR in 

estimating the effect size. The results of the calculation are provided in Supplementary Table S1. 

Bootstrapping was also iterated 9999 times to improve the probability that the confidence interval 

was calculated around the cumulative mean effect size for each categorical variable. The difference 

between the control and irrigated or mulched condition was considered significant if the bootstrap 
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confidence intervals did not overlap with zero, while the difference among treatments was significant 

if the intervals did not overlap with each other (P < 0.05) (Curtis and Wang, 1998).  

3. Results 

Our results show that both irrigation and plastic mulching increased soil water content, WUE, and 

crop yield when compared to flat, rainfed cropping systems (Figs. 2a-d). There were, however, 

different extents of soil water content, WUE and yield increase with different furrow cover when 

compared with traditional irrigation. The absence of cover on the furrow resulted in the lowest soil 

water content increase (6%) when compared with straw-covered (13%) or plastic-covered furrow 

(19%) and irrigated condition (22%; Fig. 2a). Plastic mulching with plastic-covered furrow 

successfully increased crop yield to a level comparable to that of irrigated crops (Fig. 2b), although 

the crops received 24% more water on average (i.e., mean irrigation:rainfall=1.24±0.94) for the 

irrigated treatment. Covering the furrow with straw, however, did not increase yield compared with 

uncovered furrow (Fig. 2b). Despite producing higher yield (i.e., 50% increase) compared with flat, 

rainfed cropping system, irrigated crops had the lowest WUE (3%) compared with plastic-mulched 

crops (18-37%; Fig. 2c). Regardless of the type of furrow cover, there was a much higher water loss 

through ET with irrigation (43%) in comparison to plastic mulching (<10%) (Fig. 2d).  

4. Discussion 

Although soil water content increase between straw- and plastic-covered furrow was similar (Fig. 

2a), plastic-covered furrow tended to produce higher crop yield compared to straw-covered furrow 

(Fig. 2b). Increasing root weight density, root length density and root diameter of the plastic-covered 

furrow (Gao et al., 2014) allowed the crops to utilize deep soil moisture (Zhou et al., 2009), 

minimizing loss through deep drainage and leading to higher crop yield.  

Differences in soil temperature during germination and seedling establishment might also 

contribute to the disparity in yield since plastic cover increased soil temperature as opposed to straw 
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mulch. Low soil temperature during early growth (i.e., early spring) associated with straw mulch 

might have delayed metabolic processes in wheat plants and later retarded the differentiation of 

reproductive organs (Li et al., 1999). The addition of a plastic layer in the furrow, on the other hand, 

resulted in faster warming of soil but slower cooling at night (Ham et al., 1993). This is particularly 

important at corn seedling stage since low soil temperature in the unmulched control was too low to 

allow the crop to reach maturity (Zhou et al., 2009). Similarly, early development of wheat plants 

with higher soil temperature allowed shoots to emerge earlier and consequently had a longer 

phenostage, increased tiller number, and enhanced early spike differentiation, including the 

production of optimum spikelet number and grain number per spike (Li et al., 1999). With a longer 

reproductive period (i.e., flowering to harvesting), there is greater transport of assimilates from 

vegetative to reproductive organs, resulting in higher grain yield (Li et al., 1999). This effect of soil 

temperature, however, was less obvious in irrigated crops because farmers in northern China 

traditionally followed a late sowing procedure (Zhang et al., 1998). The effect of soil temperature on 

crop performance would decrease rapidly with increasing leaf area index since soil temperature only 

controlled the rate of crop development when the plant meristem was within the soil (Chen et al., 

2007). 

The absence of any cover in the furrow generated the lowest increase in soil water content 

(Fig. 2a), probably due to runoff and excessive evaporative water loss in the unmulched furrow. 

Similar results were obtained with straw mulch, probably because of rapid decomposition of the 

straw (Chen et al., 2015). With higher magnitude of water loss to evaporation (E) during the end of 

growing season (i.e., during summer when  air temperature was also high) (Li et al., 2013), it was 

unsurprising that there was lower yield associated with unmulched furrows (Fig. 2b). Maize, in 

particular, was sensitive to drought during the reproductive phase, to the point that yield could not be 

recovered even with subsequent irrigation due to flower sterility and asynchrony between anthesis 

and silking (Daryanto et al., 2016). 
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Our results show that plastic mulching could be considered an effective water-saving strategy 

since it simultaneously increased WUE and yield, particularly when combined with a plastic-covered 

furrow (Fig. 1, Fig. 2c). Despite generating crop yields similar to irrigated systems, plastic mulching 

in combination with plastic-covered furrow had much higher WUE (Fig. 2c). The addition of plastic 

cover on the furrow reduced the gaps by which water could evaporate, consistent with the data from 

Li et al. (2003) where increasing surface perforation of the plastic mulch from 0% to 30.5% 

decreased the restraining effect on E by 69.26% to 11.82%, respectively. By reducing the majority of 

water loss from E, increased soil water content in the plastic-covered furrow thus allowed more of 

the available water to be used by transpiration (T). In contrast, a much higher E rather than from 

plant T in irrigated fields could lead to low WUE (Fig. 2c). Indeed, a study estimated that the E:ET 

ratio of plastic mulch could be as low as 0.06 as opposed to 0.32 in unmulched fields (Li et al., 

2013), allowing the mulched field to support better plant growth. Improved plant growth generated a 

positive feedback through the shading effect of an extended plant canopy, which reduced wind speed, 

the amount of solar radiation reaching the soil and soil temperature, ultimately reduced evaporative 

water loss (Cooper et al., 1987). Conversely, despite the crop yield increase, supplementary irrigation 

could not be considered an ideal management strategy in this water-scarce region because of the 

much higher ET and lower WUE compared to the plastic mulching treatment (Fig. 2d).  

While plastic mulching could be a promising strategy to improve crop yield in dryland 

regions, recent investigation suggested that the amount of plastic residue could range from 50 to 260 

kg ha-1 in cultivated lands (Liu et al., 2014). This plastic pollution can lead to unsustainable farming 

systems due to soil structure deterioration (e.g., block water infiltration and nutrient movement), 

possible salinization, and the release of harmful chemicals into soil and water systems (e.g., phthalate 

esters, aldehydes and ketones) (Liu et al., 2014). These potential problems need a thorough 

examination and require the formulation of countermeasures that meet policy, regulatory and 

technological requirements. Using thicker plastic films (0.015-0.02 mm vs current 0.008 mm) which 
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have a longer service life or biodegradable plastic material (Liu et al., 2014) could emerge as a viable 

short-term option to improve crop WUE, although the technology could increase production costs. 

These costs consist of the initial investment to purchase the plastic film (USD 102 ha-1) and the cost 

of mulching and disposing of the film (USD 62 ha-1), resulting in a total of 164 USD  ha-1 (vs 112 

USD  ha-1 for irrigation which yielded the maximum cost benefit ratio) (Xie et al., 2005). This cost 

might deter the adoption of plastic mulching technology by poor smallholders. In the future, the 

development of low-cost biodegradable plastic mulch film must be a priority to eliminate plastic 

pollution and to control production costs. If these limitations are addressed successfully, the use of 

plastic mulching in China may serve as the standard for improving WUE and crop yield in other 

dryland cropping systems. 

5. Conclusions 

Plastic mulching technology is a promising strategy to improve WUE and crop yield to a level 

comparable to irrigated croplands in the drylands due to its ability to increase soil water content and 

to direct most of the available water to T instead of E. The effectiveness of plastic mulching 

technology, however, was most enhanced by the presence of a plastic cover on the furrow to reduce 

soil evaporation, which otherwise would have occurred at a rate similar to uncovered furrows. 

Covering the furrow with straw did not result in improved crop yield, as yield was similar to 

uncovered furrow. Despite its effectiveness, high production costs (i.e., purchasing, laying, and 

disposing of the plastic) and plastic pollution limit the adoption of current plastic mulch technology, 

particularly in poor rainfed agricultural regions.  
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Figure Captions 

Fig. 1. Schematic diagram of the water harvesting strategy of ridge-furrow plastic mulching (i.e., 

plastic-covered ridge with different furrow cover). 

 

Fig. 2. Changes in soil water content (a), yield (b), WUE (c) and ET (d), expressed as a ratio 

between the treatment and the control. The treatment is either rainfed, plastic mulched ridge with 

different furrow covers or flat, irrigated cropping system while the control is a flat, rainfed 

cropping system. A positive value indicates an increase in the ratio due to the treatment. Letter 

‘n’ indicates the number of samples, P values indicate statistical significance between different 

treatments. Note differences in the scale of the x-axis. 
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