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ABSTRACT 

Riparian ecosystems are defined by the nature and regularity of the interactions between a given 

river system and its floodplains, and past studies have often presented vegetation cover as the 

exclusive expression of these interactions. There has been to our knowledge, no systematic 

attempt at linking greenhouse gases (GHG) fluxes and types of riparian buffers. The present 

study was conducted to investigate the intensity and seasonality of carbon dioxide (CO2), 

methane (CH4) and nitrous oxide (N2O) fluxes in riparian buffers in three common hydro-

geomorphic settings (HGM) across the White River watershed (Indiana, USA). These classes 

included riparian sites located: (i) in till plain depressions near 1st order streams (HGM-1), (ii) in 

incised narrow valleys with thin alluvium layers above glacial till (HGM-2), and (iii) along 3rd-

4th order streams in broad floodplains with thick alluvial and glacial outwash deposits (HGM-3). 

For each class, 3 sites were selected and GHG fluxes were measured during the wet (May) and 

dry seasons (August). Strong relationships were found between GHG fluxes, soil properties and 

environmental factors, but these relationships varied with season and gas species, making it 

challenging to rely on these relationships for GHG fluxes upscaling. Analysis of variance and 

discriminant analysis showed that the HGM-defined riparian buffers were distinct in terms of 

GHG flux intensity. Regardless of season, the HGM-1 sites emitted CO2 at rates 1.6 times higher 

than at the other sites, likely due to difference in soil C quality. During the wet season, N2O 

emission was significantly higher at the HGM-3 than at the other sites (0.88 vs 0.27 mg N m-2 d-

1), and was negatively related with the gradient of the adjacent channel (r2: 0.69). The riparian 

buffers acted as CH4 sinks, with the HGM-2 sites exhibiting CH4 uptake rates significantly 

greater than the other riparian types (-0.80 vs -0.34 mg CH4-C m-2 d-1).  The consistency of these 
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results underscore the potential of an HGM-based monitoring approach to derive watershed-scale 

GHG budgets for riparian buffers. 

Keywords: greenhouse gases; riparian buffer classes; hydro-geomorphology; channel gradient 

 

1. Introduction 

Because of their location at the interface between terrestrial and aquatic ecosystems, 

riparian zones act as natural filters and contribute to the retention of pollutants which otherwise 

would have been transferred to adjacent surface water bodies. While the water quality protection 

benefits of riparian buffers are well documented (Gold et al., 2001; Vidon and Hill, 2004; Dosskey 

et al., 2010), significant gaps exist in our understanding of the intensity and regulation of 

greenhouse gases (GHG) production in these ecosystems. Anaerobic conditions in riparian soils are 

favorable for the removal of NO3
- via denitrification, but could also enhance the production of 

nitrous oxide (N2O) and methane (CH4) (Gold et al., 2001; Jacinthe et al., 2015). Accelerated 

transfer of these gases into the atmosphere is a concern given the steady increase in their 

atmospheric concentration, their global warming potential (warming potential of N2O and CH4 is 

respectively 298 and 28 times that of CO2), and their implication in stratospheric ozone depletion 

(IPCC, 2013).  

Riparian ecosystems are often categorized on the basis of the type, density, and diversity of 

the vegetation cover they support (e.g., grass, forest), but relationships between vegetation 

attributes and GHG fluxes in riparian buffers have been inconsistent. Hopfensperger et al. (2009) 

found a negative trend between percent vegetation cover and N2O fluxes in forested riparian 

wetlands. Hefting et al. (2003) reported significantly higher N2O emission in forested than in grass-

covered riparian buffers, suggesting an effect of vegetation type. Similarly, higher rates of N2O 
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emission were measured in riparian ecosystems supporting mesquite (Prosopis velutina) vegetation 

compared to other plant communities (McLain and Martens, 2006). van Haren et al. (2010) 

concluded that tree species was the most important predictor of N2O fluxes in central Amazonian 

riparian forests. In contrast, Walker et al. (2002) reported limited effect of land cover and land-use 

on N2O emission in grazed and restored riparian grassland. Likewise, Addy et al. (1999) found 

limited difference between forested and grassed riparian buffers with regard to NO3
- removal and 

N2O emission. However, past studies in the eastern USA (Jacinthe et al., 1998) and southern 

Canada (Vidon and Hill, 2004) have shown that hydrology and geologic settings (till, outwash, 

alluvial) are strong predictors of the N removal capacity of riparian buffers. These results concur 

with the conclusion of Clement et al. (2002) that topography, rather than vegetation, is the most 

important controlling factor of denitrification in riparian buffers. 

Several studies have reported strong relationships between vegetation type and CH4 

fluxes in peatlands leading to the suggestion that vegetation cover can serve as a valid proxy for 

large-scale assessment of CH4 budget in these ecosystems (Dias et al., 2010; Couwenberg et al., 

2011). However, in riparian buffers, similar linkages are less frequently identified. Across 

several riparian buffers in Iowa, no significant difference was detected among different types of 

vegetation cover with respect to CH4 flux (Kim et al., 2010). Work in riparian sites of south-

central Indiana (Jacinthe et al., 2012; Fisher et al., 2014; Jacinthe et al., 2015) has also shown 

limited effect of vegetation type (grass vs forest) on either CO2 and CH4 fluxes, but these studies 

have shown that flood frequency was the determining factor of GHG dynamics in these ecotones. 

Flood events result in the redistribution of materials across affected riparian landscapes, 

influence the spatial distribution of soil properties, and have both short-term and long-lasting 

effects on soil microbial processes controlling GHG production (Samaritani et al., 2011; Audet et 
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al., 2013). For example, similar to the observations made in riparian buffers in Indiana, higher 

rates of CO2 emission were recorded in flood-affected riparian buffers compared to flood-

protected riparian sites adjacent to channelized sections of the Thur River in Switzerland 

(Samaritani et al., 2011). Further, under similar soil moisture and temperature, significantly 

lower rates of soil CH4 uptake were measured in flood-affected than in flood-protected riparian 

sites, suggesting a long-lasting effect of flood events on the soil methanotrophic community 

(Jacinthe, 2015).    

Because landscape hydrogeomorphic characteristics (channel slope, stream bank 

geometry, topography, surficial geology, soil types) influence stream-riparian interactions 

(including flooding frequency), we argue that a hydrogeomorphic (HGM) framework to classify 

riparian zones at the watershed scale (Gold et al., 2001; Vidon and Hill, 2004) could provide a 

useful approach (more than land-cover) to monitor GHG dynamics in riparian buffers and 

elucidate the underlying factors controlling the variability of GHG fluxes in these ecosystems. 

This classification could also provide the basis for regional-scale inventories of GHG emission 

from riparian buffers. Through integration of river valley geometry, channel gradient and 

discharge data (to derive flood duration and height), such a classification was developed for the 

White River watershed in Indiana (Panunto, 2012). The classification, mostly used previously for 

insurance and flood management purposes (Woltemade and Potter, 1994), is based on a river 

valley sequencing approach that accounts for longitudinal variations in the morphology (gradient, 

storage capacity) of consecutive valley segments along a river to predict flood magnitude and 

duration (Bedient et al, 2007). For example, flood risk is high along a low-gradient valley segment 

that is located downstream from a high-gradient segment. However, flood risk is much lower when 

a high-gradient segment is downstream from either a low-gradient or another high-gradient 



6 
 

segment. Using the various combinations of channel gradient (low, high) and valley geometry 

(narrow, wide) to derive floodplain hydroperiods in different sections of the White River 

watershed, five major types of riparian buffers were identified (Panunto, 2012). In the present 

study, we aim to determine whether these types of riparian buffers differ in terms of their GHG 

emission potential. To that end, we monitored GHG fluxes and measured relevant soil properties at 

different sites representative of the three most common riparian buffers identified in the watershed.  

 

2.  Material and Methods  

2.1. Description of the study sites 

The study was conducted at nine riparian sites (Fig. 1, Table 1), located within a 70-km 

radius, across the White River watershed in Indiana, USA (humid temperate climate, mean 

annual temperature of 11oC, annual rainfall of 1044 mm). The sites were selected to represent the 

three most common hydrogeomorphic (HGM) settings in which riparian buffers occur in the 

watershed (Panunto, 2012), and more generally in Illinois, Indiana, and Ohio given regional 

similarities in climate, land-use and glaciation history (Antevs, 1929). These include: (i) riparian 

buffers in till plains depression along first-order streams and agricultural drainage ditches 

(HGM-1); (ii) riparian buffers in incised narrow valleys bordered by steep bluffs, most 

commonly occurring along second-order streams in the transition zone from till plains to 

outwash plains (HGM-2); and (iii) riparian buffers in broad floodplains filled with outwash 

deposits along 3rd/4th order segments of the White River (HGM-3). Stream channels along the 

HGM-1 buffers are often dredged and deepened to protect nearby crop fields from flooding, 

while subsurface drains are most often present in the adjacent fields (Franzmeier and Kladivko, 

2001). Due to their topography and longitudinal profile of the adjacent river channels, flood 
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events at HGM-2 are generally of short duration (< 1 day). However, due to their location along 

larger river segments and the geometry of adjacent channel, the HGM-3 buffers are flood-prone 

and can remain flooded for several consecutive days during an event (Liu et al., 2014; Jacinthe, 

2015). Information related to flood regime at the riparian buffers was obtained from Panunto 

(2012), and previous studies conducted at nearby sites (Jacinthe et al., 2012; Fisher et al., 2014; 

Liu et al., 2014; Vidon et al., 2014; Jacinthe, 2015; Jacinthe et al., 2015). River geometry 

information was derived from StreamStats (http://water.usgs.gov/osw/streamstats/indiana.html) 

and summarized in Table 1. 

For each HGM type (Table 1), three riparian buffers were selected on the basis of 

landscape features, and local flood dynamics (Panunto, 2012). The HGM-1 riparian sites selected 

for this investigation consisted of grass-dominated riparian strips (8-20 m wide) adjacent to 

actively-managed croplands (typically with subsurface drainage) under corn (Zea mays)-soybean 

(Glycine max) rotation as is most common for HGM-1 riparian zones in the region. Vegetation in 

these riparian buffers predominantly consisted of orchard grass (Dactylis glomerata L.), blue 

grass (Poa annua L.) and a few interspaced shrubs. The HGM-2 and HGM-3 sites were variably 

flooded secondary-growth deciduous forests, mostly located within municipal parks and other 

protected areas as is common for most HGM-2 and HGM-3 riparian buffers in the region. 

Although small differences in topography may occur within sites, HGM-2 sites generally present 

a concave topography (steep embankment and flat riparian zone), while HGM-3 sites generally 

present a mostly flat topography. The tree stands at the HGM-3 sites were generally denser and 

more mature (> 80 y old) than at the HGM-2 sites with the most common tree species being 

silver maple (Acer saccharinum), American beech (Fagus sylvatica L.), American sycamore 

(Platanus occidentalis), white oak (Quercus alba), bur oak (Quercus macrocarpa) and red ash 

http://water.usgs.gov/osw/streamstats/indiana.html


8 
 

(Fraxinus pennsylvanica). At the HGM-1 sites, soils are classified as Brookston (Typic 

Argiaquolls), deep and poorly-drained soils developed from loamy glacial till and loess in 

depressional areas. Due to natural soil drainage restriction, adjacent agricultural fields are 

equipped with subsurface tile drains, and the subsurface drainage network often runs underneath 

the riparian buffer. At the HGM-2 and HGM-3 sites, the dominant soil types are Genesee silt loam 

(Fluventic Eutrudepts) and Stonelick sandy loam (mesic Typic Udifluvents), moderately well 

drained soils developed on alluvium (HGM-2) or glacial outwash (HGM-3).  

 

2.2. Monitoring of gas fluxes 

Gas fluxes were measured using the static chamber method in May 2011 and in August 

2011, representing respectively the wet and the dry periods that typically characterize the 

growing season in the region. At each site, eight chambers were installed and were distributed so 

as to capture topographical variability within each site. Chambers were installed 3-5 days prior to 

making measurements of GHG fluxes. Chambers (diameter: 30 cm; height above ground: 18 cm; 

depth of insertion into the ground: 5 cm) were made of a polyvinyl chloride (PVC) pipe and a 

PVC lid to close the chamber. The lid was fitted with a gasket at its underside edge to make an 

air-tight seal with the chamber and with a butyl rubber septa at its center to form a sampling port. 

Air samples (~ 10 mL) were taken from each chamber headspace at 0, 20, 40 and 60 min after 

closure, and stored in pre-evacuated 7-mL vials fitted with butyl rubber septa. For most sampling 

dates, air samples were analyzed overnight, upon return from the field. Details regarding the 

construction, ground insertion and operation of the gas chambers are available elsewhere (Fisher 

et al., 2014). From variation in gas concentration inside the chamber, gas flux (F, mass of gas m-2 

d-1) was computed using the equation: 
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where ΔC/Δt: rate of change in GHG concentration inside the chamber (mass GHG m-3 air min-1) 

obtained by linear regression, V: chamber volume (12x10-3 m3), A: area circumscribed by the 

chamber (7.1x10-2 m2), and k: time conversion factor (1440 min d-1). A positive value of F 

corresponds to a net emission of gas from soil into the atmosphere. Conversely, a negative F 

value corresponds to a net transfer (uptake) of gas from the atmosphere into the soil.  

Air samples were analyzed for CO2, CH4 and N2O using a Varian CP-3800 gas 

chromatograph (GC) interfaced with a CombiPal autosampler (CTC Analytics, Zurich, 

Switzerland) and operating at an oven temperature of 90 oC. The GC was fitted with a thermal 

conductivity detector (100 oC, for CO2 detection), a flame ionization detector (100 oC, for CH4 

detection) and an electron capture detector (300 oC, for N2O detection). The stationary phase 

consisted of a pre-column (L: 0.3 m; id: 2 mm) and an analytical column (L: 1.8 m; id: 2 mm) 

packed with Porapak Q (80-100 mesh). Carrier gases included UHP N2 (60 mL min-1) and UHP 

He (60 mL min-1), and the flame gases for the FID detector were hydrogen and hydrocarbon-free 

compressed air. The GC was calibrated using standard gases obtained from Alltech (Deerfield, 

IL). The GC system (detection limit: 20 µL CO2 L-1, 0.12 µL CH4 L-1, 0.03 µL N2O L-1) was 

calibrated with standards obtained from Alltech (Deerfield, IL).   

 

2.3. Soil properties 

At each sampling occasion, surface soil temperature (0-20 cm) was measured next to 

each chamber with a portable soil thermometer (Cole Parmer, Vernon Hills, IL), and soil 

samples (0-20 cm) were collected for determination of gravimetric soil moisture content and 

mineral nitrogen. The samples collected during the August sampling event (dry season) were 
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also used for determination of soil pH, texture, C and N content, dissolved organic carbon and 

denitrification enzyme activity. Soil pH was determined with a pH electrode using a 2:1 water to 

soil suspension. Soil texture was determined by sieving for the sand fraction (>53 µm) and by the 

hydrometer method for the silt and clay fractions following organic matter removal with 

hydrogen peroxide and dispersion of soil samples with sodium hexametaphosphate. Total carbon 

and total nitrogen (TN) was determined by dry combustion (960 oC) of finely-ground (150 µm) 

soil samples on a Vario TOC C-N analyzer in solid mode (Elementar Americas, NJ). Fresh soil 

(~20 g moist) was extracted with 2 M KCl, and the extract analyzed for NO3
- and NH4

+ using a 

photometric analyzer (Aquakem 20, EST Analytical, Fairfield, OH). Field moist samples were 

also extracted with deionized water (10 g of soil, 20 mL of water), and the filtrate (0.45 µm GF 

filter) analyzed for dissolved organic C (DOC) using a Vario TOC C-N analyzer in liquid mode 

(Elementar Americas, NJ). Gravimetric moisture content at the time of GHG measurements was 

determined by oven drying of moist soil samples at 105 oC for 48 h in an oven. All results are 

reported on the basis of dry soil.   

Denitrification activity was also measured in the soil samples collected during the dry 

season sampling (August 2011). Denitrification was measured using the acetylene (C2H2) 

inhibition technique (Smith and Tiedje, 1979). Duplicate field-moist soil samples (10 g) were 

transferred into serum bottles (160 mL) and slurried with 10 mL of denitrification media (per 

liter: 1.5 g KNO3, 1 g glucose, 0.25 g chloramphenicol). Bottles were capped with butyl rubber 

septa and crimp-sealed. Each bottle headspace was evacuated and flushed with N2 gas (3 times 

for a total of 15 min) to create anaerobic conditions. Each bottle was amended with C2H2 (10 

kPa) and incubated at room temperature (22 oC). Bottle headspace was periodically sampled over 
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a 7-day period to determine N2O and CO2 production rates. Gas samples were stored in 

evacuated glass vials and analyzed for N2O and CO2 by gas chromatography. 

  

2.4. Data analysis 

The data were analyzed using descriptive statistics, analysis of variance (ANOVA), 

regression models, and discriminant analysis (DCA). ANOVA was performed to assess the effect 

of riparian zone type (HGM) and season on GHG fluxes and related soil properties. In this 

analysis, HGM and season were used as the main factors. ANOVA and regression analysis were 

conducted with the SAS software for Windows (Version 9.3, SAS Institute Inc., Cary, N.C., 

USA) using the GLM (general linear modeling) and REG procedures, respectively. Statistical 

significance was determined at the 95% confidence level. In order to validate our general 

hypothesis that HGM types are distinct in terms of GHG dynamics, we conducted discriminant 

analysis (DCA) using the CO2, CH4 and N2O data to determine to what extent the riparian sites 

are separated based on their HGM settings. Before conducting DCA, data were normalized by 

subtracting the mean value to each individual value and dividing by the standard deviation 

(Zimmer and Lautz, 2013). Discriminant analysis was performed with PAST3 statistical software 

(Hammer et al., 2001). 

 

3. Results 

3.1. General soil properties 

Soil pH ranged from 5.7 to 7.5 (Table 2), and was on average slightly lower (6.7±0.7) at 

the HGM-1 than at the other riparian sites (7.2±0.1). In general, soils have a higher sand content 

at the HGM-2 buffers and are more fine-textured (clay+silt: 62% on average) at the HGM-1 sites 
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(Table 2). The riparian sites significantly differed (P<0.001) with respect to organic C (SOC) 

concentration and C/N ratio of the soil organic matter. On average, SOC content was 1.3 times 

higher at HGM-3 than at the other types of riparian sites (Table 2). The lowest concentrations of 

SOC (range: 32.1-35.8 g C kg-1) and DOC (11.7 - 33.7 mg C kg-1) were recorded at the sandy-

loam HGM-2 sites (Tables 2 and 3).  

The riparian sites also significantly differed with regard to soil respiration (P<0.001), and 

denitrification enzyme activity (P<0.004). Overall, for the soil parameters linked to organic C 

availability and microbial activity, measured level was consistently highest at the HGM-1 and 

lowest at the HGM-2 sites (Table 2). Soil respiration and DEA were strongly related (r2: 0.52; P 

< 0.001), but relationships of these soil biochemical properties with DOC and SOC were not 

significant. DEA was positively correlated with soil clay content (r2: 0.48). 

Significant difference (P<0.002) among the riparian buffers was observed with respect to 

both NH4
+ and NO3

- concentration (Table 3). Irrespective of the season, NH4
+ and NO3

- were 

equally represented in the mineral N pool at the HGM-2 sites, whereas NH4
+ was dominant at the 

HGM-1 sites and NO3
- at the HGM-3 sites (Table 3). The NH4

+/ NO3
- ratio of mineral N was 

correlated negatively with the C/N ratio of soil organic matter, and positively with soil 

respiration (Tables 2 and 3). 

 

3.2. Environmental conditions: soil moisture and temperature 

The sampling periods, a priori designated as wet season and dry season, presented 

drastically different weather conditions. The spring/early summer of 2011 was wet with total 

rainfall (Indianapolis airport, 12-40 km from the study sites) of 329 mm in April-May. In 

contrast the July-August period of 2011 was very dry with a total rainfall of 40 mm. Normal 
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precipitation during these periods is 225 mm and 195 mm, respectively. Air temperature was 

near normal in April-May averaging 15.5 oC, whereas the July-August period was marked by 

warmer than normal temperature (average: 27.8 oC; normal: 24.1 oC).  

Soil temperature at the riparian sites was 5.6 oC warmer during the dry than in the wet 

season (Table 4). In both seasons, soil moisture was generally highest at the clay-loam HGM-1 

sites and lowest at the sandy-loam HGM-2 sites. Soil was anomalously dry during the dry season 

especially at sites with coarse soil texture (mean: 0.19 g H2O g-1 soil; 33% less moisture than in 

the wet season; Table 4). The largest seasonal variation in soil moisture was observed at the 

HGM-3 sites. In the month prior to the wet season monitoring of GHG flux, the HGM-3 sites 

were likely flooded on two occasions (April 20-23 and April 27-30) as indicated by stream 

discharge in excess of bankfull (~400 m3 s-1; USGS gauging station 3353000, 

http://waterwatch.usgs.gov).   

 

3.3. Greenhouse gases fluxes 

Measured gas fluxes exhibited considerable between-site and within-site variability (Figs. 

2 - 4). The intensity of CO2 emission did not significantly vary between the wet and dry season 

(3.77 vs 3.44 g CO2-C m-2 d-1), but CO2 emission was significantly higher at the HGM-1 buffers 

than at the other sites (Table 5 and Fig. 2). CO2 flux was positively related to soil moisture 

during the dry season (r2: 0.48), but not during the wet season (Table 6). No relationship between 

CO2 flux and soil temperature was detected in either season. However, in both seasons, 

significant positive relationships (r2: 0.48-0.49, P<0.05) were found between CO2 flux and soil 

NH4
+concentration.  

http://waterwatch.usgs.gov/
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Although emission of CH4 was detected in a few instances (2.2% of cases), soils at the 

riparian buffers were net CH4 sinks (Fig. 3). Methane fluxes ranged from -2.21 mg CH4-C m-2 d-1 

(site 4, dry season) to +0.38 mg CH4-C m-2 d-1 (site 8, wet season). ANOVA showed a significant 

effect of both riparian buffer type and season on CH4 fluxes. Across study sites, the rate of CH4 

uptake was 2-times higher in the dry than in the wet season (Table 5). Although not significant, 

negative relationships were observed between soil sand content and CH4 fluxes (r2: 0.32, P<0.10 

during the wet season; r2: 0.21, P<0.20 during the dry season). Consequently (Fig. 3), in both the 

wet (-0.53 mg CH4-C m-2 d-1) and dry season (-1.11 mg CH4-C m-2 d-1), CH4 consumption was 

significantly greater at the sandy-loam HGM-2 than at the other types of riparian buffers (-0.21 

and -0.47 mg CH4-C m-2 d-1 during the wet and dry periods, respectively). 

At the riparian sites, N2O fluxes ranged between -0.50 and 4.51 mg N2O-N m-2 d-1 (Fig. 

4). Overall, the within-site spatial variability of N2O fluxes was greatest during the wet season 

and at the HGM-3 sites (Fig. 4). Several instances (10.4% of the cases) of negative N2O fluxes 

were recorded, the quasi-totality of them at site 4 and site 6. ANOVA showed a significant effect 

of both riparian buffer type and season on N2O fluxes (Table 5). Across study sites, the riparian 

buffers emitted N2O at a rate that was almost 2-times higher in the wet than in dry season (0.48 

vs 0.26 mg N2O-N m-2 d-1, respectively; Table 5). During both seasons, the lowest average N2O 

flux was measured at the HGM-2 sites (Fig. 4 and Table 5). During the wet season, N2O 

emission was significantly greater at the HGM-3 than at the HGM-1 sites (0.88 vs 0.31mg N2O-

N m-2 d-1, respectively; Fig. 4), but during the dry season there was no difference in N2O 

emission between these two types of buffers (0.30 vs 0.36 mg N2O-N m-2 d-1, respectively; Fig. 

4). During the wet season, N2O flux correlated positively with soil NO3
- concentration (r2: 0.83, 

P< 0.001) and negatively with the slope gradient of adjacent channel (r2:0.69, P< 0.001; Table 6 
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and Fig. 5). During the dry season, however, N2O flux correlated with soil clay content, 

NH4
+concentration, and soil respiration (Table 6).    

Despite some degree of overlap, the DCA yielded discernible separations among the 

three types of riparian buffers on the basis of GHG fluxes (Fig. 6). Overall, 73% of 

measurements from HGM-1 sites were correctly classified, but only 60% of measurements from 

HGM-2 and HGM-3 were correctly classified, suggesting some degree of similarity between 

these two types of riparian buffers.  

 

3.4. Previously published data 

To evaluate the variability of the observed trend between gas flux and HGM class, data 

from the present investigation was combined with gas flux measurements made in 2010 at 

riparian buffers located in similar HGM settings across the White River watershed (Fisher et al., 

2014; Vidon et al., 2014; Jacinthe et al., 2015). For that analysis, gas fluxes were collated for the 

months April-May 2010 (rainfall: 183 mm; temperature: 17 oC) and for the months August-

September 2010 (rainfall: 24 mm; temperature: 24 oC). These periods were treated as wet and 

dry seasons respectively in the analysis. Results showed (Tables 7 and 8) that, in almost all cases 

and irrespective of the season, HGM setting was a significant controlling factor of GHG 

emission. Consistent with the 2011 gas flux measurements, the 2010 data showed significantly 

higher CO2 emission from the HGM-1 buffers and more intense N2O efflux during the wet 

season from the HGM-3 buffers. Similar to the 2011 results (Fig. 4), the HGM-2 units were the 

lowest N2O emitters and also showed the highest capacity to consume CH4, especially during the 

dry season (Table 7). 
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4. Discussion 

Several past studies have characterized riparian buffers on the basis of fluvial landforms 

and hydrologic connectivity with adjacent channels (Nanson and Croke, 1992; Baker and Wiley, 

2004; Rinaldi et al., 2016). These studies have almost exclusively focused on vegetation 

community composition, density and diversity as the integrated expression of the interactions 

between a given river system and its floodplains (Nanson and Croke, 1992; Bendix and Hupp, 

2000; Baker and Wiley, 2004; Goebel et al., 2006; Rinaldi et al., 2016). To our knowledge, there 

has been no systematic attempt at linking GHG dynamics and riparian landforms. The present 

study was designed to investigate whether such linkages exist, and whether the intensity of GHG 

fluxes in riparian buffers varies in a predictable manner depending on their hydro-

geomorphological location. The study results indicate that the HGM-defined riparian buffers are 

noticeably distinct with regard to soil properties (Tables 2-4), and fluxes of the GHG species 

monitored in the present study (Tables 5 and 8; Figs. 2-4 and Fig. 6). Overall, the HGM-1 

buffers are strong CO2 emitters whether in wet or dry period, the HGM-2 buffers act as strong 

CH4 sinks, whereas N2O fluxes are higher and more variable at the HGM-3 than at the other 

types of riparian buffers investigated (Tables 5). A similar trend was observed (Tables 7 and 8) 

in prior investigations conducted at comparable riparian sites in the White River watershed 

(Fisher et al, 2014; Jacinthe et al., 2015). 

 

4.1. Hydrobiogeochemical controls on GHG emissions 

Soil moisture and temperature are common regulators of CO2 efflux from soils. In the 

temperate humid region, soil temperature is often the controlling factor of CO2 emission whereas 

soil moisture is often the determining factor in arid environments (McLain and Martens, 2006). 
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Thus, the correlation (Table 6) between soil moisture and CO2 flux during the dry season suggests 

that soil microbial activity at the study sites was severely water-limited during that period, which is 

consistent with the exceptionally low precipitation amount in July-August 2011 (40 mm as 

opposed to 195 mm normally). Of the riparian sites investigated, the HGM-1 types are protected 

from flooding; yet, they emitted significantly more CO2 than the other buffers (Tables 5, 7 and 8). 

This observation is in contrast with the results of Samaritani et al. (2011) who reported higher 

rates of CO2 emission in riparian buffers along flood-affected compared to non-flooded sections 

of the Thur River (Switzerland). Previous work at riparian sites in the White River watershed has 

also shown an increase in CO2 flux with increased flood frequency (Jacinthe, 2015). Therefore, 

higher CO2 emission at the HGM-1 sites likely reflects differences among sites in soil C quality as 

suggested by the amount of extractable DOC, C/N ratio of soil organic matter and laboratory 

assays of soil respiration (Table 2).  

Methane fluxes at the land surface is the balance between CH4 biological production and 

consumption as CH4 diffuses from its zone of production. Methanogenesis is controlled by soil 

moisture, soil redox status, temperature and organic substrates to support microbial activity 

(indirectly creates O2-depleted pockets). In the present study, significant relationships between 

these variables and CH4 fluxes, especially during the wet season (Table 6), suggest that CH4 

production was likely non negligible during that period, although occurring at lower rates than 

CH4 consumption activity. In riparian buffers where a high water table occurs and intersects the 

upper soil layers, vigorous emission of CH4 has been documented (Van den Pol-Van Dasselaar et 

al., 1998; Vilain et al., 2010). Although water table depth was not monitored and evidence of 

ponding water not found, the near-surface soil layers at the riparian sites were probably wet 

enough to harbor centers of methanogenic activity. Conversely, a significant increase in CH4 
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uptake was observed during the dry season (Fig. 3; Tables 5 and 7). Averaged over all the 

sampling sites, the rate of CH4 uptake doubled during the dry season (-0.68 mg CH4-C m-2 d-1) 

compared to the wet season (-0.31 mg CH4-C m-2 d-1). Consistent with the HGM by season 

interaction (Tables 5 and 7), the seasonal increase in CH4 consumption was most pronounced at 

the HGM-2 sites. The seasonal increase in CH4 uptake was positively related to soil sand 

content, suggesting that in the dry season CH4 flux was predominantly controlled by 

methanotrophy, a diffusion-dependent process likely facilitated by coarse soil texture as long as 

soil moisture remains above a certain threshold. For the McCloud (#6) and Bargersville (#9) sites 

(Table 2, Figs. 1 and 3), the seasonal increase in CH4 consumption was much less than soil sand 

content would predict. At these sites, dry season CH4 uptake was probably limited by low soil 

moisture (< 0.14 g H2O g-1 soil). The sensitivity of methanotrophs to soil moisture stress is well 

known (Gulledge and Schimel, 1998; Van den Pol-Van Dasselaar et al., 1998). Research has 

shown that CH4 uptake in soils occurs at an optimum soil moisture between 0.20 and 0.35 g H2O 

g-1 soil, and that the process can be halted when soil moisture falls below 0.05 g H2O g-1 soil 

(Van den Pol-Van Dasselaar et al., 1998). Therefore, unfavorable conditions for the 

methanotrophs due to extremely low soil moisture at these two sites may have contributed to the 

low rate of CH4 uptake observed during the dry season sampling.   

The strong correlation (r2: 0.83) between N2O fluxes and soil NO3
- during the wet season 

was expected, and similar relationships were reported for various ecosystems such as croplands, 

grassland, and forests (Vilain et al., 2010). During the wet season sampling period, soils were 

relatively warm (17.9±2.5 oC) and moist (0.28±0.09 g H2O g-1 soil); therefore, N2O production 

likely originated from soil denitrification and was largely dependent on NO3
-availability. Taking 

an average bulk density of 1.1 g cm-3 for the region’s riparian soils (Jacinthe et al., 2012; Fisher 
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et al., 2014), water-filled pore space (WFPS) would be 61% on average, barely within the WFPS 

threshold of 60-70% above which maximum rates of N2O emission have typically been observed 

(Vilain et al., 2010). Therefore, even during the wet season, the N2O fluxes measured in this 

study most likely do not represent the maximum emission at the study sites. In fact, in previous 

investigations in the same watershed and at sites similar to the HGM-3 riparian buffers, N2O 

fluxes as high as 28 mg N2O-N m-2 d-1 (Fisher at al., 2014; WFPS: 72%) and 81 mg N2O-N m-2 

d-1 (Jacinthe et al., 2012; WFPS> 100%) were measured following flood events. These levels of 

emission are several-fold greater than the highest N2O emission rate (4.51 mg N2O-N m-2 d-1) 

measured in the present study. In the dry season, N2O emission was likely limited by both low 

soil NO3
- (5.7±3.0 mg N kg-1 soil) and soil moisture content (0.19±0.09 g H2O g-1 soil) (Tables 3 

and 4). Instead, during that period, N2O flux was related to soil NH4
+ concentration and soil 

respiration, suggesting that N2O production was associated with mineralization of soil organic 

matter and nitrification (Mummey et al., 1994).  

In addition to surface processes, fluctuation in the riparian groundwater level may have 

also contributed to differences among the riparian sites with respect to N2O fluxes (ranking: 

HGM-3 > HGM-1 > HGM-2; Tables 5 and 7). That ranking was not, however, totally consistent 

with the DEA results (HGM-1 > HGM-3 > HGM-2; Tables 2). A previous investigation (Liu et 

al., 2014) conducted at riparian sites similar to those selected for the present work has reported 

higher mass flux of NO3
- removal (9.4-21.7 versus 0.4-1.9 mg N day-1 m-1) at HGM-3 than at 

HGM-1 sites. That investigation (Liu et al., 2014) also showed greater fluctuations in water table 

depth at HGM-3 (from 240 cm below ground surface to 215 cm above ground) than at HGM-1 

sites (between 20 and 190 cm bgs). Therefore, limited interaction between groundwater and the  

biologically-active surface soil layers at the HGM-1 buffers likely contributed to the lower N2O 
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fluxes despite the much higher denitrification potential of these soils (Table 2). The relative 

stability of groundwater level at HGM-1 likely results from the presence of subsurface tile drain 

systems that run underneath most HGM-1 buffers in this physiographic region. As noted 

previously, subsurface tile drainage, facilitates the removal of excess water from poorly-drained 

soils and allows timely implementation of farming activities. Subsurface drainage is very 

common in US Midwest agricultural landscapes (present in 35-50% of all croplands in Ohio, 

Indiana and Illinois; NRCS, 1987). While these hydrological alterations may result in low N2O 

emission, they can also lead to inefficient nutrient retention in riparian buffers and worsening 

water quality problems (Jacinthe et al., 2015).  

 

4.2. Riparian HGM characteristics as a tool to estimate GHG emissions 

Although relationships were found between GHG fluxes and soil temperature (ex. CH4), 

soil moisture (CH4 in wet season, CO2 in dry season), and other intrinsic soil properties, the 

relative significance of these relationships varied with season and for each gas species (Table 6). 

This variability makes it difficult to use these relationships to scale up GHG fluxes at the 

watershed scale. In addition, these soil and environmental variables are not widely available at 

the landscape scale and must be measured, further raising questions about the accuracy and cost-

effectiveness of regional GHG inventories that are based on these variables.   

Overall, our results (Tables 7 and 8; Fig. 6) suggest that riparian HGM classes may be a 

reasonable approach to categorize the range of GHG emission rates in riparian zones in a region. 

As indicated previously, riparian ecosystems are often classified on the basis of vegetation cover 

(Palik et al., 2004; Goebel et al., 2006). However, vegetation cover based classifications 

generally fail to predict key riparian functions such as NO3
- removal in the subsurface (see 
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Dosskey et al., 2010). As Clement et al. (2002) argued, divergent results in terms of the role of 

vegetation on NO3
- removal in riparian zones could be due to the failure to account for 

differences in hydrogeomorphic settings among study sites. Results of the present study, along 

with those of previous investigations in the White River watershed (Jacinthe et al., 2012; Fisher 

et al., 2014; Vidon et al., 2014; Jacinthe et al., 2015) support the idea that one needs to account 

for HGM settings in order to project riparian functions, and especially GHG emission rates. 

Although the riparian buffers were distinct in terms of GHG dynamics, the overlap between 

HGM-2 and HGM-3 shown by DCA (Fig 6) is an observation that deserves further 

consideration. This observation might suggest that the number of sites (3 per HGM type) was 

inadequate to fully characterize these classes of riparian buffers. It might also be an indication 

that the HGM classification developed for the White River watershed (Panunto, 2012) needs 

some refinement through perhaps the inclusion of sub-units within the larger group of HGM-2 

and HGM-3 riparian buffers. 

More broadly speaking, these findings are also consistent with research stressing the 

relationship between landscape HGM characteristics and riparian functions, and with our current 

understanding of the impact of topography, surficial geology, and soil types on riparian 

biogeochemical processes (Gold et al., 2001; Vidon and Hill, 2004). Riparian landscapes are the 

product of the interactions of hydrologic and geomorphologic processes that determine the extent 

of the connection between riparian buffer and adjacent channels. Landscape topography can 

affect the spatial distribution of soil moisture, nutrient and organic matter within a riparian buffer 

and, consequently the intensity of GHG emission in different landscape positions. Past studies 

(Dhondt et al., 2004; Vilain et al., 2010) have documented relationships between NO3
- removal, 

N2O production and landscape characteristics of riparian buffers. Work in southern Ontario 
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(Vidon and Hill, 2004) has shown that slope gradient and configuration (concave, convex) at the 

upland-riparian zone margin determines water table position, and ultimately the NO3 removal 

capacity of riparian buffers. The present investigation extends that conceptual understanding of 

local relationships between landscape features and riparian functions, and demonstrates that 

channel gradient, for example, could be a good predictor of N2O flux in riparian buffers. In 

addition, our results have shown consistent differences among the types of riparian sites with 

respect to GHG fluxes (two consecutive years; Tables 5 and 7). These findings suggest that the 

upscaling of riparian zone GHG data can be greatly facilitated if the selection of field studies is 

guided by hydro-geomorphic criteria. Therefore, the HGM classification could emerge as a 

fruitful approach for functional characterization of soil processes and trace gas dynamics in 

riparian buffers in the US Midwest, and perhaps in other eco-regions. Increased availability of 

satellite and airborne remote sensing information (e.g. LiDAR, light detection and ranging) and 

other fine-scale digital landscape data should improve our ability to map/classify riparian buffers 

and generate regional-scale estimates of riparian GHG emission. 
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Figure captions 

Fig. 1. The White River watershed in Indiana (depicted by the gray area in the Indiana map 
insert, top left). The circles indicate locations of the study sites along the main stem (3rd - 4th 
order) and tributaries (1st - 2nd order) of White River. The sites sampled in 2010 are indicated by 
a triangle. The number in parentheses corresponds to site number (listed in Table 1). Shown in 
the bottom right insert are sketches (not to scale) depicting landforms associated with the three 
types of riparian buffers investigated.  
 
Fig. 2. Seasonal variation in daily fluxes of carbon dioxide at nine riparian sites in the White 
River watershed. Spatial variability of fluxes at each site is shown in the box plot. The filled 
circle and the horizontal bar in each box represent the mean and median flux, respectively. 
 
Fig. 3. Seasonal variation in daily fluxes of methane at nine riparian sites in the White River 
watershed. Spatial variability of fluxes at each site is shown in the box plot. The filled circle and 
the horizontal bar in each box represent the mean and median flux, respectively.  
 
Fig. 4. Seasonal variation in daily fluxes of nitrous oxide at nine riparian sites in the White River 
watershed. Spatial variability of fluxes at each site is shown in the box plot. The filled circle and 
the horizontal bar in each box represent the mean and median flux, respectively.  
 
Fig. 5. Relationships of soil nitrate concentration (left) and adjacent channel gradient (right) with 
nitrous oxide flux in riparian buffers during the wet season. 
 
Fig. 6. Scatter plots of discriminant analysis (DCA) scores showing separation among types of 
riparian buffers (HGM-1, HGM-2, and HGM-3) on the basis of greenhouse gas (CO2, CH4, and 
N2O) fluxes. Group centroids are shown in the graph insert (error bars represent one standard 
deviation). 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 

 Soil nitrate, mg NO3-N kg-1 soil
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Fig 6 
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Table 1 
Location of the study sites selected to represent the three major riparian hydro-geomorphic units (HGM) in the    
IN. 

Class Site Name Adjacent stream Coordinates Drainage area 
(103 km2) 

Chan   
(m    

HGM-1a 1 LWD-2 b Leary Weber Ditch 39° 51' 27" N, 85° 50' 31"W 0.2  

2 LWD-3 Leary Weber Ditch 39° 51' 16" N, 85° 50' 22" W 0.3  

3 Hessian  School Branch 39° 53' 38" N, 86° 21' 4" W 0.8  

       
HGM-2 4 Rice estate Fishback Creek 39° 53' 16" N, 86°19' 6" W 5.3  

5 Hideaway Eagle Crest Branch 39° 52' 22" N, 86°18' 54" W 0.2  

6 McCloud Big Walnut Creek 39° 49' 56" N, 86° 41' 6" W 30.9  

       
HGM-3 7 Strawtown White River 40° 7' 35" N, 85° 56' 51" W 185.6  

8 Southwestway White River 39° 39' 23" N, 86° 14' 9" W 503.5  

9 Bargersville White River 39° 36' 7" N, 86° 14' 33" W 517.7  
a Class of riparian buffers are determined by hydro-geomorphic settings. The channel adjacent to HGM-1 ripari    
periodically dredged and deepened to prevent flooding of nearby agricultural fields. Sites 1-4 are adjacent to ac  
agricultural fields, sites 5-9 are located within protected areas (parks, nature reserves). 
b Abbreviation: Leary Weber ditch (LWD). 
c Obtained from StreamStats (http://water.usgs.gov/osw/streamstats/indiana.html). Along the main stem of the W      
9), a mean channel gradient of 0.77 and 0.49 mm m-1 was derived from a regional landscape analysis for stream    
south of Indianapolis, respectively 21. 
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Table 2.  
General properties of riparian soil (0-20 cm) in different hydro-geomorphic (HGM) settings in the White River    
are means of 8-9 sampling points per site with standard deviation in parentheses. 

Riparian 
class 

  Soil properties 

Site # Site name pH Texture Organic C,  
g C kg-1 

Total N, 
g N kg-1 

DOC, 
mg C kg-1 

BSR  
µg C g   

 
    

HGM-1a 1 LWD-2 b 7.3 (0.1) CL [38, 28] c 43.2 (5.5) 2.1 (0.6) 55.6 (3.7) 0.21 (0    

2 LWD-3 7.1 (0.2) CL [33, 27] 39.3 (2.3) 1.7 (0.4) 116.6 (11)  0.31 (0    

3 Hessian  5.9 (0.2) CL [41, 30] 37.2 (0.7) 1.9 (0.1) 55.7 (10.3) 0.28 (0    

Riparian class average 6.8  40.3 B d 1.9 73.1 A 0.26    
          
HGM-2 4 Rice estate 7.2 (0.1) SCL [48, 25] 35.8 (3.1) 1.8 (0.3) 13 (4.6) 0.11 (0    

5 Hideaway 7.3 (0) SL [54, 8] 32.1 (4.3) 1.3 (0.4) 16.7 (4.7) 0.12 (0    

6 McCloud 7.3 (0.1) SL [56, 14] 33.5 (2) 1.7 (0.2) 11.7 (5.6) 0.08 (0    

Riparian class average 7.3  33.9 C 1.6 13.5 C 0.10    
          
HGM-3 7 Strawtown 7.2 (0.1) L [31, 23] 48.3 (6.2) 1.9 (0.3) 48.2 (15.5) 0.12 (0    

8 SWW 7.2 (0.1) SCL [48, 27] 49.4 (1.2) 1.7 (0.3) 57.3 (22.2) 0.13 (0    

9 Bargersville 7.1 (0.1) SCL [52, 21] 46.9 (3.3) 1.7 (0.2) 57.2 (2.8) 0.12 (0    

Riparian class average 7.2  47.9 A 1.7 54.8 B 0.12    
a Class of riparian buffers as determined by hydro-geomorphic setting.   
b LWD: Leary Weber ditch; SWW: Southwestway park; L: loam; CL: clay loam; SL: sandy loam; SCL: sandy c    
dissolved organic carbon; BSR: basal soil respiration; DEA: denitrification enzyme activity. 
c Numbers in brackets are the % sand and clay, respectively. 
d For a given soil property, mean values in the same column followed by different letters are significantly differ       
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Table 3.  
Seasonal variation in mineral N and dissolved organic carbon (DOC) at the riparian buffers in the White River w    
are means of 8-9 sampling points per site with standard deviation in parentheses. 

Riparian 
class 

   Wet season  Dry s  

Site # Site name NO3, 
mg N kg-1 

NH4, 
mg N kg-1  

DOC, 
mg C kg-1  NO3, 

mg N kg-1 
N  

mg N  
 

   
HGM-1 a 1 LWD-2 3.8 (1.1) 4.8 (1.3) 55.6 (3.7)  5.4 (0.3) 6.5    

2 LWD-3 3.4 (1.4) 4.3 (1.7) 116.6 (11)   3.2 (0.2) 6.7    

3 Hessian  4.2 (2.9) 12.6 (3.8) 55.7 (10.3)  1.2 (0.3) 5.4    

Riparian class average 3.8 B b 7 A 73.1 A  3.5 C 6.      
          
HGM-2 4 Rice estate 4.3 (2.7) 5.8 (3.7) 13 (4.6)  3.5 (0.2) 4.8    

5 Hideaway 5.5 (1.8) 1.8 (1) 16.7 (4.7)  5.2 (0.7) 5.7    

6 McCloud 4.5 (2.2) 5 (2.5) 11.7 (5.6)  4.4 (0.6) 4.8    

Riparian class average 4.8 B 4.1 B 13.5 C  4.4 B 5.     
          
HGM-3 7 Strawtown 6.4 (3) 5.9 (2.7) 48.2 (15.5)  8.6 (1.3) 6.4    

8 Southwestway 11.6 (6.9) 5.1 (3) 57.3 (22.2)  10.2 (1.4) 5.1    

9 Bargersville 8 (3.9) 5.1 (2.5) 57.2 (2.8)  9.2 (0.6) 4.6    

Riparian class average 8.7 A 5.4 B 54.8 B  9.3 A 5.     
  

a HGM: hydro-geomorphic settings; LWD: Leary Weber ditch.   
b For a given property, mean values in the same column followed by different letters are significantly different a      
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Table 4.  
Seasonal variation in soil moisture and temperature at the riparian buffers in the White River watershed, IN. Va      
sampling points per site with standard deviation in parentheses. 

Riparian 
class 

  Wet season  Dry season 

Site # Site name Soil moisture, 
g g-1 soil 

Temperature, 
oC  Soil moisture, 

g g-1 soil 
Temperatu  

oC 
HGM-1a 1 LWD-2 0.32 (0.05) 17.3 (1.1)  0.24 (0.02) 23.2 (0.5  

2 LWD-3 0.34 (0.06) 18.7 (1.7)  0.25 (0.03) 23.9 ( (0.8  

3 Hessian  0.28 (0.11) 17.3 (1.3)  0.18 (0.09) 23.1 (0.4  

Riparian class average 0.31 Ab 17.7 B  0.23 A 23.4 B 
        
HGM-2 4 Rice estate 0.23 (0.02) 14.7 (0.7)  0.15 (0.01) 22.2 (0.4  

5 Hideaway 0.23 (0.06) 14.5 (0.3)  0.19 (0.04) 22 (0.4) 

6 McCloud 0.22 (0.06) 17.6 (1.0)  0.14 (0.04) 23.2 (0.4  

Riparian class average 0.23 B 15.6 C  0.16 B 22.5 C 
        
HGM-3 7 Strawtown 0.38 (0.07) 19.1 (0.4)  0.24 (0.06) 24.1 (0.2  

8 Southwestway 0.27 (0.11) 20.3 (1.4)  0.16 (0.04) 24.6 (0.6  

9 Bargersville 0.23 (0.07) 21.6 (0.7)  0.13 (0.02) 25.2 (0.3  

Riparian class average 0.29 A 20.3 A  0.17 B 24.6 A 
  
a HGM: hydro-geomorphic settings; LWD: Leary Weber ditch.   
b For a given property, mean values in the same column followed by different letters are significantly different a      
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Table 5.  
Mean greenhouse gas fluxes in riparian buffers as related to hydro-geomorphic (HGM) settings 
and season (wet period: April-May; dry period: July-August) in 2011. Values are means 
(standard errors in parentheses) of 40-65 measurements. 
 

  Carbon dioxide  
(g CO2-C m-2 d-1) 

Methane  
(mg CH4-C m-2 d-1) 

Nitrous oxide  
(mg N2O-N m-2 d-1) 

HGM 1 4.54 (0.28) Aa -0.28 (0.04) A 0.33 (0.03) B 

 2 3.14 (0.21) B -0.80 (0.08) B 0.17 (0.04) B 

 3 3.27 (0.26) B -0.40 (0.04) A 0.59 (0.11) A 
     

Season Wet 3.77 (0.26) -0.32 (0.03) X 0.48 (0.09) X 

 Dry 3.44 (0.16) -0.69 (0.06) Y 0.26 (0.03) Y 
     
               Analysis of variance, P>F 

HGM <0.001 <0.001 <0.001 

Season 0.21 <0.001 0.02 

HGM x season 0.19 0.02 0.04 
a For a given factor, values in a column followed by different letters are significantly different at 
P< 0.05. 
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Table 6.  
Regression coefficients for the relationships between gas fluxes and soil properties at the riparian 
sites during the wet and dry seasons. 
 

 Wet season  Dry season 

 CO2 CH4 N2O  CO2 CH4 N2O 

Sand  ns ns ns  ns ns ns 

Clay ns ns ns  ns ns 0.49* 

Soil temperature ns 0.51* ns  ns 0.36* ns 

Soil moisture ns 0.42* ns  0.47* ns ns 

NH4
+ concentration 0.48* ns ns  0.49* ns 0.38* 

NO3
- concentration ns ns 0.83**  ns ns ns 

DOC concentration ns 0.47* ns  ns 0.43* ns 

Soil organic C ns 0.43* ns  ns ns ns 

C/N ratio ns ns 0.55*  ns ns ns 

Respiration ns ns ns  ns ns 0.53* 

Denitrification activity ns 0.51* ns  ns 0.42* ns 

 
*, **: Statistically significant at P < 0.05 and P < 0.01, respectively. ns: not statistically 
significant. 
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Table 7.  
Seasonal variation in greenhouse gas fluxes measured in 2010 in riparian buffers located in 
different hydro-geomorphic (HGM) settings across the White River watershed, IN. Data are from 
Vidon et al. (2014) for the SS site, and from Fisher et al. (2014) and Jacinthe et al. (2015) for the 
other sites. Fluxes are in units: g CO2-C m-2 d-1, mg CH4-C m-2 d-1, and mg N2O-N m-2 d-1. For a 
given site, the dataset includes 21-30 observations during the wet season, and 18-23 observations 
during the dry season. Abbreviation: LWD = Leary Webber ditch; SS = Starling Nature 
Sanctuary; WR: main stem of the White River. 
 

HGM Site Sampling 
period 

 Carbon 
dioxide Methane Nitrous 

oxide 
__________Wet season a __________ 

1 LWD-1 04/10 to 05/28 Min - Max 0.23 to 6.04 -0.97 to 0.40 -0.39 to 2.21 

   Mean (std) 4.49 (0.22)Ab -0.27 (0.11) 0.29 (0.22) B 
       
2 SS 04/15 to 05/26 Min - Max 0.76 to 6.25 -0.96 to 4.42 -0.25 to 2.22 

   Mean (std) 3.27 (1.54) B -0.19 (0.29) 0.17 (0.19) B 
       
3 WR 04/16 to 05/20 Min - Max 1.14 to 3.44 -0.48 to 0.34 0.13 to 6.1 

   Mean (std) 2.73 (0.24) B -0.19 (0.08) 0.62 (0.20) A 

   __________ Dry season __________ 

1 LWD-1 8/6 to 9/22 Min - Max 0.37 to 3.95 -0.96 to 0.49 0.34 to 0.54 

   Mean (std) 2.8 (0.24) A -0.31(0.11) A 0.26 (0.13) A 
       
2 SS 9/1 to 9/29 Min - Max 0.23 to 2.53 -0.90 to 0.06 -0.44 to 0.93 

   Mean (std) 1.38 (0.58) B -0.55 (0.21) B 0.14 (0.19) B 
       
3 WR 8/30 to 09/12 Min - Max 0.15 to 5.1 -1.64 to 0.27 -0.15 to 0.46 

   Mean (std) 2.63 (0.4)AB -0.54 (0.24) B 0.20 (0.12) A 
a Rainfall and temperature: 183 mm and 17 oC during the wet season; 24 mm and 24 oC during 
the dry season. 
b For a given season, mean values in a column followed by different letters indicate significant 
different (P< 0.05) between HGM type. 
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Table 8.  
Summary analysis of variance for the effect of year and hydro-geomorphic (HGM) settings on greenhouse gas flu    
buffers. The 2010 data are summarized in Table 7, and the 2011 data are reported in Figs. 2-4. All study sites (3      
in 2011) are located in the White River watershed, IN.  
 
  Wet season a  Dry season 

  Carbon dioxide Methane Nitrous oxide  Carbon dioxide Methane N   

Analysis of variance, P<F       

HGM <0.001 0.792 0.003  0.014 <0.001  

Year 0.061 0.022 0.052  0.001 0.002  

HGM x Year 0.316 0.003 0.081  0.308 0.015  
a The wet and dry seasons correspond respectively to the months April-May and August-September.  

 

 
 

 

 

 

 

 


