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Abstract

Effective in silico compound prioritization is a critical step to identify promising

drug candidates in the early stages of drug discovery. Current computational meth-

ods for compound prioritization usually focus on ranking the compounds based on one

property, typically activity, with respect to a single target. However, compound se-

lectivity is also a key property which should be deliberated simultaneously so as to

minimize the likelihood of undesired side effects of future drugs. In this paper, we

present a novel machine-learning based differential compound prioritization method

dCPPP. This dCPPP method learns compound prioritization models that rank ac-

tive compounds well, and meanwhile, preferably rank selective compounds higher via

a bi-directional selectivity push strategy. The bi-directional push is enhanced by push

powers that are determined by ranking difference of selective compounds over multi-

ple bioassays. Our experiments demonstrate that the new method dCPPP achieves

significant improvement on prioritizing selective compounds over baseline models.
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1 Introduction

Drug discovery is time-consuming and costly: it approximately takes at least 10 to 15 years

and $500 million to $2 billion to fully develop a new drug.1 To accelerate this process, in

silico methods2 have been extensively developed as alternatives, particularly for identify-

ing promising drug candidates in the early stages of drug discovery. In silico compound

prioritization, which learns computational models to rank compounds in terms of their

drug-like/disease-specific properties (e.g., efficacy, specificity), has been recently attracting

increasing attention, due to the emerging precision medicine.3 In many applications of preci-

sion medicine (e.g., cancer drug selection4), before precise measurements of disease-specific

compound properties need to be considered, a set of promising compounds (typically drugs)

should be first selected for future investigation. In this paper, we tackle the problem of dif-

ferential compound prioritization for better ranking selective compounds for drug candidate

selection.

Current compound prioritization typically focuses on one single compound property,5

for example, biological activity. Biological activity of a compound can be initially tested in

a target-specific bioassay∗ by measuring whether the compound binds with high affinity to

the protein target that it is aimed to affect. Activity is a critical property that a compound

needs to exhibit in order to act efficaciously as a successful drug. Compound prioritization

in terms of activity needs to rank most active compounds on top of less active compounds.

Compound selectivity is another key property that successful drugs need to exhibit.6

Selectivity measures how a compound can differentially bind to only the target of interest

with high affinity (i.e., high activity) while bind to other proteins with low affinities. There-

fore, the compound selectivity prioritization needs to consider the prioritization difference

of a compound in the activity prioritization structures of multiple targets. Specifically, the

compound selectivity prioritization needs to follow a combinatorial ranking criterion that

1). it ranks all the compounds well based on their activities; and meanwhile, 2). it ranks
∗https://en.wikipedia.org/wiki/Bioassay
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strongly selective compounds preferably higher, probably even higher than more active com-

pounds that are not selective. These criterion correspond to that in real applications, active

and highly selective compounds are preferred over highly active but also highly promiscuous

compounds7 to minimize the likelihood of undesirable side effects.
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B/c represents a bioassay/a compound.

gk+i right next to a compound ci represents the push-up (indicated by ↑) power on ci as a selective compound
in Bk. The solid arrowed lines represent that the push-up power on a selective compound (pointed by the
arrows, e.g., c5 in B2) is determined by the ranking position of the compound in a different bioassay (pointed
by the line ends, e.g., c5 in B1). The lines are annotated with such ranking positions (e.g., r̄1−5 on the solid
arrowed line from c5 in B1 to c5 in B2).

hk−i right next to a compound ci represents the push-down (indicated by ↓) power on ci as an x-selective
compound in Bk. The dashed arrowed lines represent that the push-down power on an x-selective compound
(pointed by the arrows, e.g., c5 in B1) is determined by the ranking position of the compound in a different
bioassay (pointed by the line ends, e.g., c5 in B2). The lines are annotated with such ranking positions (e.g.,
r̄2+5 on the dashed arrowed line from c5 in B2 to c5 in B1).

Figure 1: Overall scheme of dCPPP

In this paper, we present an innovative machine learning method to conduct in silico

compound prioritization that is able to achieve both the above goals, with a particular focus

on better prioritizing selective compounds. This method consists of three components:

1. A compound scoring function, which produces a score for each compound in a bioassay

that will be used to rank the compound in the bioassay. The scoring function uses

bioassay-specific compound features to calculate the scores.

2. An activity ranking model, which learns the compound scoring function and approxi-
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mates the ranking structure among all compounds in a bioassay. The learning is via

minimizing the pairwise ordering errors introduced by the scoring function.

3. A bi-directional selectivity push strategy, which preferably pushes up selective com-

pounds in the activity ranking model of a bioassay, and pushes down the compounds

in the model that are selective in a different bioassay. The bi-directional push strategy

leverages the ranking difference of selective compounds across multiple bioassays and

alters the activity ranking by pushing selectivity-related compounds in two directions

with specific powers.

These three components will be learned simultaneously within one optimization formulation.

This d ifferential Compound Prioritization via bi-directional selectivity Push with Power

method is denoted as dCPPP. Figure 1 presents the overall scheme of dCPPP. To the best

of our knowledge, this is the first work in which the activity and selectivity are both tackled

within one differential prioritization model that integrates multiple bioassays simultaneously.

The rest of the paper is organized as follows. Section 2 presents the related work to

the new method. Section 3 presents the definitions and notations used in the paper. Sec-

tion 4 presents the new method of activity-selectivity differential ranking with bi-directional

powered push. Section 5 presents the materials used for experimental evaluation. Section 7

presents the experimental results. Section 8 and 6 present the discussions and conclusions,

respectively.

2 Related Work

2.1 In Silico Methods for Drug Discovery

A first step in drug discovery is to conduct bioassays that screen a large set of promising

compounds. The outcomes from these bioassays inform the following drug discovery steps.1

Significant amount of research efforts in knowledge discovery from bioassay data is on estab-
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lishing the relationship between the structures of chemical compounds and their bio-chemical

properties, for example, Structure-Activity Relationship (SAR)2 and Structure-Selectivity

Relationship (SSR),8 expressed in the bioassays.

Classification and regression dominate the in silico machine learning methods in bioassay

analysis, particularly in finding SAR and SSR. In these methods, compounds are typically

represented by certain chemical fingerprints, for example, Extended Connectivity Finger-

prints (ECFP)† and Maccs keys ‡. Compound activity and selectivity are used as a la-

bel/numerical target of the compounds. Popular classification and regression methods in-

clude Support Vector Machines (SVM),9 Partial Least-Squares,10 random forests,11 Bayesian

matrix factorization,12 and Naïve Bayesian classifiers,13 etc. Ranking methods, compared

to classification and regression, are less developed for bioassay analysis.

2.2 Structure-Activity-Relationship Modeling

A recent trend in SAR modeling is through leveraging the information from multiple bioas-

says. A class of methods along this line identifies multiple bioassays and leverages information

therefrom to improve SAR qualities. In Ning et al.,14 the SAR classification methods first

identify a set of targets related to the target of interest, and then employ various machine

learning techniques (e.g., semi-supervised learning,15 multi-task learning,16 and classifier en-

semble17) to utilize activity information from these targets for a better SAR model. In Liu

and Ning,18 compound activity ranking models are developed by leveraging multiple bioas-

says. In these methods, assistance bioassays and assistance compounds are identified and

incorporated to build models that can accurately prioritize active compounds in a bioassay.

A different class of methods is via the multi-assay based “affinity fingerprints”. In

the Target-Related Affinity Profiling (TRAP) method,19 the affinity profiles of compounds

against a set of diverse bioassays are used as the fingerprints of the compounds. In Bender

et al.,20 Bayes scores produced from empirical Bayesian SAR models over a set of targets
†Scitegic Inc, http://www.scitegic.com.
‡Accelrys, http://accelrys.com
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are used as the affinity fingerprints for compounds. Similarly, Lessel et al.21 use the docking

scores of compounds against a set of reference binding sides as compound fingerprints. All

these existing methods that utilize multiple bioassays in SAR use them homogeneously and

cannot utilize the differential signals therein effectively.

2.3 Structure-Selectivity-Relationship Modeling

Existing SSR methods include multi-step classification based approaches,22 in which com-

pounds that are classified as active are further classified by a selectivity classifier; multi-class

classification based approaches,23 in which compound activity and selectivity are considered

as two classes in a common multi-class classifier; compound similarity based approaches,24 in

which compounds that are similar to known selective compounds are considered as selective;

etc. A unique thread of research on SSR is using multi-task learning to learn compound

activity and selectivity simultaneously.25 The multi-task method incorporates both activity

and selectivity models into one multi-task model to better differentiate compound activity

and selectivity. Unfortunately, these existing methods cannot produce activity prioritization

and selectivity prioritization simultaneously, or cannot leverage the prioritization structures

among multiple bioassays to improve SSR modeling.

2.4 Learning to Rank

Learning to rank (LETOR)26 focuses on developing ranking models via learning. It has

achieved tremendous success in Information Retrieval (IR). Existing LETOR methods fall

into three categories: 1). pointwise methods,27 which learn individual scores that are used

later for sorting; 2). pairwise methods,28 which model pairwise ranking relations; and 3).

listwise methods,29 which model the full combinatorial structures of ranking lists. A recent

focus on LETOR is to improve the ranking performance on top of the ranking lists.30,31

The idea of using LETOR approaches to prioritize compounds has also drawn some at-

tention recently. For example, Agarwal et al.32 developed bipartite ranking to rank chemical

6
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structures such that active compounds and inactive compounds are well separated in the

ranking lists. Jorissen et al.33 used pointwise methods within SVMs to rank compounds

in a bioassay to detect active compounds and perform similarity search, respectively. Liu

and Ning18 used SVMRank34 to build compound activity prioritization models. However,

LETOR for compound selectivity prioritization is less developed compared to its use for

compound activity prioritization.

3 Definitions and Notations

Table 1: Notations
notations meanings
c/B/t compound/bioassay/target
ck+
i /ck−i selective/non-selective compound ci in Bk

Ck the set of compounds in Bk

Sk the set of selective commpounds in Bk (Sk = {ck+
i })

Ak the set of non-selective commpounds in Bk (Ak = Ck \ Sk)
Sx
k the set of x-selective commpounds in Bk (Sx

k = {ck−i |∃Bl, c
k−
i ∈ Sl})

ski /s
k+
i /sk−i score of ci/ck+

i /ck−i in Bk

rki /r
k+
i /rk−i percentile ranking of ci/ck+

i /ck−i in Bk

pki ranking position of ci in Bk

Rk+
i /Hk−

j reverse height of ck+
i / height of ck−j

gk+
i /hk−j push-up power for ck+

i ∈ Sk/push-down power for ck−j ∈ Sx
k

A compound c is active in a bioassay B with protein target t if the IC50 value (i.e.,

the concentration of the compound that is required for 50% inhibition of the target under

consideration; lower IC50 value indicates higher activity§) of c for t is less than 1 µM. A

compound c is selective in a bioassay B with protein target t if the following two conditions

are satisfied:25

1. c is active for t (i.e., IC50(c, t) < 1µM); and

2. min
∀tk 6=t

IC50(c, tk)

IC50(c, t)
≥ 50,

§http://www.ncgc.nih.gov/guidance/section3.html
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that is, c needs to be active for t, and its activity on t is at least 50-fold higher than its

activity on any other targets.

In this paper, each of the bioassays that are used for model training has only one single

protein target. Thus, activity/selectivity with respect to bioassays and with respect to

targets will be used interchangeably. When a compound is indicated as selective, by default

it is with respect to one certain bioassay/protein target, and the bioassay/protein target is

neglected when no ambiguity is raised. A compound can be selective in at most one bioassay.

A compound ci that is selective in a bioassay Bk is denoted as ck+
i . A compound ci that is

not selective in a bioassay Bk (either active and not selective, or inactive in Bk) is referred to

as non-selective in Bk and denoted as ck−i . A compound that is non-selective in a bioassay Bk

but selective in another bioassay Bl is referred to as x-selective in Bk. The set of compounds

in Bk is denoted as Ck. The set of selective compounds in Bk is denoted as Sk. The set of

non-selective compounds in Bk is denoted as Ak. The set of x-selective compounds in Bk is

denoted as Sx
k . Table 1 lists the notations that are used in this paper.

4 Methods

4.1 Compound Scoring

In dCPPP, the compound prioritization among a bioassay uses a linear scoring function as

in Equation 1,

s̃ki = wT
kxi, (1)

where wk is a weighting vector for bioassay Bk, xi is the feature vector of the compound

ci, and s̃ki is the score of compound ci in Bk. Each compound in a bioassay is first scored

using their features, and the compounds which have larger scores will be ranked higher in

the bioassay. The weighting vector wk will be learned for each bioassay Bk.

8
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4.2 Activity Prioritization

The dCPPP method will produce a ranking of compounds in a bioassay that ranks com-

pounds well based on their activities. That is, in general, compounds that are more active

will be ranked higher than those that are less active. To quantitatively measure the activity

ranking quality, we use a metric non-Concordance Index (denoted as nCI) as follows,

nCI({s̃ki }, Ck) =
1

|Pk|
∑

(ci�cj)∈Pk

I(s̃ki ≤ s̃kj ), (2)

where Pk = {ci � cj|ci, cj ∈ Bk} is the set of all possible ordered compound pairs in Bk, I(·)

is the indicator function:

I(x) =


1, if x is true,

0, otherwise.
(3)

In Equation 2, ci � cj indicates that ci is ranked higher than cj in ground truth in Bk based

on their IC50 values, s̃ki ≤ s̃kj indicates that compound ci is predicted as being ranked lower

than cj (i.e., ci’s predicted score s̃ki is smaller than that of cj; dCPPP ranks compounds with

larger scores higher).

Essentially, nCI represents the fraction of mis-ordered compound pairs by a certain com-

pound ranking method. A lower nCI value indicates better ranking performance. Therefore,

activity prioritization seeks a scoring function that can produce lower nCI, and thus we use

nCI over the predicted ranking in Bk as the loss (denoted as Lk
c ) for activity prioritization

in the dCPPP objective, that is,

Lk
c = nCI({s̃ki }, Ck). (4)

4.3 Bi-directional Selectivity Push with Power

To favor selective compounds in compound prioritization, two key questions need to be

addressed: 1). how to enforce the selective compounds to go beyond the ranking structures

9
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of ordinary activity prioritization and get better ranked; and 2). how much the enforcement

should be and how to decide that. To address the first question, we develop the bi-directional

powered push scheme, which, for a target t, pushes t’s selective compounds higher, and pushes

t’s x-selective compounds lower in compound ranking. To address the second question, we

develop a scheme to determine push powers by comparing ranking difference of a compound

in multiple bioassays.

4.3.1 Pushing up Selective Compounds

To push up selective compounds, dCPPP measures the ranking positions of selective com-

pounds and optimizes such positions. Specifically, the reverse height of a selective com-

pound32 is used to quantitatively represent such ranking positions.

Reverse height of a selective compound is the number of non-selective compounds that

are ranked higher than the selective compound, that is,

Rk+
i = R(ck+

i ) =
∑
cj∈Ak

I(s̃k+
i ≤ s̃k−j ), (5)

where Rk+
i is the reverse height of selective compound ck+

i in Bk, Ak is the set of non-

selective compounds in Bk, and I(·) is the indicator function (Equation 3). Thus, to enforce

higher ranking of selective compounds, it is to minimize the reverse heights of the selective

compounds. In Equation 5, the predicted ranking scores are used to indicate that the reverse

height of a selective compound is produced from a ranking model.

Push-up power for a selective compound decides how strongly a selective compound ck+
i

should be pushed up in Bk, which depends on 1). how ci is ranked in Bk; and 2). how ci is

ranked in other bioassays Bl’s which ci is also involved in. Intuitively, if ci is ranked higher

in Bl (i.e., ci is very active to tl but not selective to tl), ci should be pushed much higher in

Bk and much lower in Bl. This is because ci is very specific to tk, and if ci is selected for Bl

(tl), it will introduce low efficacy or side effects.

10
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Based on the above intuition, we define the push-up power for a selective compound ck+
i :

gk+
i = g(ck+

i , Bk, {Bl}|θ↑, ξ↑)

= exp{θ↑[(1− r̄k+
i ) + max

ci∈Al

φ(r̄l−i , r̄
k+
i |ξ↑)]},

(6)

where θ↑ is a parameter, and φ(x, y|ξ) is a thresholding function:

φ(x, y|ξ) = (x− y + ξ)+ =


x− y + ξ, if x− y + ξ ≥ 0,

0, otherwise.
(7)

In Equation 6, r̄k+
i is the predicted percentile ranking of ci from Bk’s baseline activity

prioritization model, r̄l−i is the predicted percentile ranking of ci from Bl’s baseline activity

prioritization model, and ξ↑ is a thresholding parameter. Essentially, the push-up power

in Equation 6 considers whether ck+
i has been ranked high enough in Bk (i.e., 1 − r̄k+

i )

and how differentially it is ranked in other bioassays (i.e., φ(r̄l−i , r̄
k+
i |ξ↑)). If the ranking

positions of ck+
i in Bk and other bioassays are not sufficiently different, the push-up power

is exponentially large.

Selectivity Loss with Powered Push-up To differentially push selective compounds up,

we take the average reverse heights of selective compounds enhanced by respective push-up

powers in the dCPPP learning objective, that is, the push-up loss Lk+
s is defined as

Lk+
s =

1

|Sk|
∑
ci∈Sk

Rk+
i · gk+

i , (8)

where Sk is the set of selective compounds in Bk, |Sk| is the size of Sk.

11

Page 11 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4.3.2 Pushing down x-Selective Compounds

To push down x-selective compounds, dCPPP measures the ranking positions of such x-selective

compounds and optimize such positions. Specifically, the height32 of an x-selective compound

is used to quantitatively measure its ranking position.

Height of an x-selective compound is the number of compounds that are ranked below the

x-selective compound ck−j (i.e., cj is non-selective in Bk but selective in a different bioassay),

that is,

Hk−
j = H(ck−j ) =

∑
ci∈Ck

I(s̃ki ≤ s̃k−j ) (9)

where Hk−
j is the height of x-selective compound ck−j in Bk, Ck is the set of compounds in

Bk, I(·) is the indicator function (Equation 3).

Push-down power for an x-selective compound determines how strongly the x-selective

compound should be pushed down in a bioassay. We define the push-down power for an

x-selective compound in bioassay Bk as follows,

hk−j = h(ck−j , Bk, Bl|θ↓, ξ↓)

= exp{θ↓[r̄k−j + φ(r̄k−j , r̄l+j |ξ↓)]}
(10)

where θ↓ is a parameter, r̄k−j is the predicted percentile ranking of cj in Bk’s baseline activity

prioritization model, r̄l+j is the predicted percentile ranking of cj in Bl (cj ∈ Sl) from Bl’s

baseline activity prioritization model, φ(r̄k−j , r̄l+j |ξ↓) is thresholding function as defined in

Equation 7, and ξ↓ is the thresholding parameter. Thus, the push-down power hk−j considers

the difference of percentile rankings of cj in Bk (cj ∈ Sx
k ) and Bl (cj ∈ Sl). If r̄l+j is not

significantly higher than r̄k−j , the push-down power is large. Please note that a compound

can appear in multiple bioassays, but can be selective in only one bioassay. Therefore, we

only consider the bioassay Bl in which cj is selective when we push down cj in Bk.
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x-Selectivity Loss with Powered Push-down To differentially push x-selective com-

pounds down, we take the average heights of x-selective compounds enhanced by their push-

down powers in the dCPPP learning objective, that is, the push-down loss Lk−
x is defined

as

Lk−
x =

1

|Sx
k |

∑
cj∈Sx

k

Hk−
j · hk−j . (11)

4.4 dCPPP Optimization Problem and Solutions

The overall optimization problem of dCPPP to learn a selectivity prioritization model (i.e.,

the scoring function as in Equation 1, parameterized by wk), which ranks selective com-

pounds higher and x-selective compounds lower, is formulated as follows,

min
wk

Lk = (1− α− β)Lk
c + αLk+

s + βLk−
x , (12)

where α and β are two weighting parameters (α ∈ [0, 1], β ∈ [0, 1], α + β ∈ [0, 1]). Thus,

the dCPPP objective is a weighted combination of the loss on activity prioritization (Lk
c ),

the loss on pushing up selective compounds (Lk+
s ), and the loss on pushing down x-selective

compounds (Lk−
x ).

Since the indicator function in Equation 3 is not continuous or smooth, we use the logistic

loss as the surrogate function:35

I(x ≤ y) ≈ log[1 + exp(−(x− y))] = − log σ(x− y), (13)

where σ(x) is a sigmoid function:

σ(x) =
1

1 + exp(−x)
. (14)

The surrogate function is continuous, smooth and differentiable. Thus, the loss Lk in Equa-

tion 12 with the surrogate function is differentiable, and thus we can use gradient descent36

13

Page 13 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



to solve the optimization problem.

4.4.1 Gradient of Powered Push

The gradient of the loss function in Equation 12 is composed of the gradients on the loss of

compound ranking, the loss on push-up and the loss on push-down, that is,

∇wk
Lk = (1− α− β)∇wk

Lk
c + α∇wk

Lk+
s + β∇wk

Lk−
x , (15)

where

∇wk
Lk

c =
1

|{ski > skj}|
∑
{ski >skj }

∇wk
I(s̃ki ≤ s̃kj ), (16)

∇wk
Lk+

s =
1

|Sk|
∑

ck+i ∈Sk

{gk+
i · ∇wk

Rk+
i }

=
1

|Sk|
∑

ck+i ∈Sk

{gk+
i ·

∑
cj∈Ak

∇wk
I(s̃k+

i ≤ s̃k−j )},
(17)

and

∇wk
Lk−

x =
1

|Sx
k |

∑
ck−j ∈S

x
k

{hk−j · ∇wk
Hk−

j }

=
1

|Sx
k |

∑
ck−j ∈S

x
k

{hk−j ·
∑
ci∈Ck

∇wk
I(s̃ki ≤ s̃k−j )}.

(18)

In Equation 16 to Equation 18, ∇wk
I(s̃ki ≤ s̃kj ) will be approximated by the gradient over

logistic loss function (Equation 13). The variable wk is updated via the following rule:

wk ← wk − λ∇wk
Lk (19)

where λ is the learning rate.
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Algorithm 1: Iterative Optimization for dCPPP

Input: a set of training bioassays {Bk};
parameters α, ξ↑, θ↑, β, ξ↓, θ↓;
learning rate λ; max number of iterations niters

Output: ranking models {dCPPP∗k}.
for t = 1, · · · , niters do

for each bioassay Bk do
if t == 1 then

dCPPP◦k(t) = dCPPP◦k
else

dCPPP◦k(t) = dCPPP∗k(t− 1)
end
while not converged do

Update dCPPP∗k(t) upon dCPPP◦k(t) using gradient descent (Equation 19)
end

end
end
return {dCPPP∗k}

4.5 System Equilibrium from Powered Push

It is possible that after one iteration of the powered push among all related bioassays, the

ranking models are still not optimal due to the change of ranking structures of other updated

models. Thus, multiple iterations of systematically powered push should be conducted until

an equilibrium is achieved among all the bioassays. When multiple iterations of dCPPP

pushes are conducted, the optimal model from the previous iteration serves as the baseline

model for the next iteration.

The initial baseline model for the first iteration corresponds to dCPPP at (α = 0, β = 0),

that is, the standard ranking model without any push. This baseline model is denoted as

dCPPP◦. If each bioassay uses its own optimal α and β values (i.e., the α and β value

that together give the optimal performance for each bioassay), the corresponding optimal

model is denoted as dCPPP∗. Thus, dCPPP∗ from the previous iteration is the baseline for

the next iteration. The models trained in the t-th iteration are denoted by having (t) (e.g.,

dCPPP∗(1), dCPPP◦(2)) and thus dCPPP∗(t− 1) = dCPPP◦(t). Algorithm 1 presents the

overall iterative algorithm for dCPPP optimization.
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5 Materials

In this section, we present the details on dataset generation, experimental protocol and

evaluation metrics. All the datasets and source code are available online and on our website¶

5.1 Dataset Generation

The dataset for the experimental evaluation is very critical, and therefore we present the

dataset construction in detail here. We constructed a set of bioassays from ChEMBL‖ in

accordance with the protocols in Section 5.1.1 and Section 5.1.2 in order to 1). have a

sufficiently large number of bioassays to study; and 2). have a sufficiently large number of

active and selective compounds in each bioassay to reliably learn models.

5.1.1 Initial Bioassay Selection

We first selected a set of bioassays which are enriched with selective compounds, and mean-

while, the compound selectivity in these bioassays can be largely defined by other selected

bioassays. This set of bioassays provides a closed space from which a subset of bioassays will

be further constructed (Section 5.1.2) for the experiments. We constructed this initial set of

bioassays as follows:

1. Identify all “binding” bioassays with one “single protein” target;

2. From such single-target binding bioassays, find all the bioassays that use IC50 to measure

compound activities, and keep the compounds in such bioassays that have exact IC50

values (i.e., discard from each bioassay the compounds with IC50 ranges, for example,

IC50 ≥ 0.0001µM ; also discard compounds whose measurement cannot be converted to

IC50 values);

3. Combine bioassays of a same target into one bioassay;
¶http://cs.iupui.edu/~liujunf/projects/selRank_2017/
‖https://www.ebi.ac.uk/chembl/, v.22_1, accessed on 12/08/2016)
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4. Clean the combined bioassays as follows:

(a) If a compound appears multiple times with a same IC50 value in one bioassay, keep

the compound with the unique IC50 in the bioassay;

(b) If a compound appears multiple times with different IC50 values in one bioassay,

remove the compound and all its activities from the bioassay. This is to avoid the

complication to resolve conflicts of inconsistent activity values;

(c) If a compound has an invalid IC50 value (e.g., negative or zero IC50), remove the

compound from the bioassay.

5. Select the cleaned bioassays that have at least 20 active compounds.

After the above process, we identified 1,033 bioassays in total. Among these 1,033 bioas-

says (denoted as B0
s), 594 bioassays have selective compounds that are defined within these

1,033 bioassays. Among these 594 bioassays, 553 bioassays have selective compounds that

are defined within these 594 bioassays. Among these 553 bioassays, 227 bioassays have more

than 10 selective compounds, and these selective compounds are involved in 529 out of the

553 bioassays. This set of 529 bioassays represents the initial closed set of selectivity-enriched

bioassays.

5.1.2 Initial Bioassay Pruning

Among the initial closed set of 529 selectivity-enriched bioassays, we defined selectivity for

the compounds in each bioassay with respect to the rest 528 bioassays. These 529 bioassays

are further pruned according to the following protocol in order to have reasonable number

of compounds for dCPPP learning:

1. If a bioassay has less than 100 compounds, keep the bioassay as it is;

2. If a bioassay has more than 100 compounds, identify all its selective compounds and

x-selective compounds:
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(a) If such identified selective and x-selective compounds are more than 100, keep all

such compounds and discard all the other compounds;

(b) If such identified compounds are less than 100, randomly select active compounds

in this bioassay until the total number of selected compounds reaches 100.

The above pruning process retains all the selectivity related information in the original

closed space of selectivity-enriched bioassays. All the remaining bioassays and their com-

pounds are used as the final dataset in our experiments. This set of 529 pruned bioassays is

denoted as Bc
s. In Bc

s, 408 bioassays have at least one selective compound. This set of 408

bioassays with selective compounds is denoted as Be
s. The rest of 121 bioassays (i.e., Bc

s \Be
s)

do not have selective compounds, but they contain x-selective compounds (i.e., selective

compounds in other bioassays).

5.1.3 Dataset Description

We use Bc
s in our experiments. Models with powered-push will be built for the bioassays in

Bc
s. In Bc

s, 155 bioassays have 10 ∼ 50 selective compounds and less than 500 compounds. In

this manuscript, we only report experimental results on these 155 bioassays, denoted as Bm
s ,

because they have on average more selective compounds. Additional experimental results on

Bc
s are available in the Supporting Information. Note that if a bioassay in the final dataset

has more than 100 compounds, these compounds have to be either selective compounds or

x-selective compounds, based on the protocol in Section 5.1.2.

Figure 2 presents the relations among all bioassay sets generated during the dataset

construction process. Table 2 (the “before split” row) presents the data description for Bc
s

and Bm
s . Figure 3 presents the size of bioassays in Bc

s. Figure 4 presents the size of bioassays

in Bm
s .
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BB0
s

Bc
s

Be
s

Bm
s

B: the entire bioassay space
B0
s : 1,033 activity-enriched bioassays
Bc
s: 529 selectivity-closed bioassays
Be
s: 408 bioassays with selective compounds
Bm
s :155 bioassays with 10 ∼ 50

selective compounds
Bi-directional push strategy will be
applied to bioassays in Bm

s within
the context of Bc

s .

Figure 2: Relations among bioassay sets

Table 2: Dataset Description

dataset |{B}| |{ci}| |Ck| |Ak| |Sk| |Sx
k |

before split Bc
s 529 35,226 104.50 80.24 24.26 31.12
Bm
s 155 14,568 102.27 80.67 21.60 36.56

after split Bm
s 155 14,568 102.27 84.18 18.09 18.61

The column “|{B}|” has the number of bioassays in the dataset. The column “|{ci}|” has
the total number of unique compounds in the dataset. The column “|Ck|” has the average
number of compounds in each bioassay. The column “|Ak|” has the average number of non-
selective compounds in each bioassay. The column “|Sk|” has the average number of selective
compounds in each bioassay. The column “|Sx|” has the average number of x-selective
compounds in each bioassay.
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Figure 3: Bioassay size in Bc
s (before split)

5.2 Compound Feature Generation

We used AFGen∗∗ to generate binary compound fingerprints from the compound structures

provided by ChEMBL. Each dimension of the fingerprints represents a compound substruc-

ture, and the binary value at each dimension represents whether the corresponding substruc-
∗∗http://glaros.dtc.umn.edu/gkhome/afgen/overview
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Figure 4: Bioassay size in Bm
s (before split)

ture is present in the corresponding compound or not. Previous research37 demonstrates that

such compound fingerprints are superior to others in compound classification.

For each bioassay, we calculated the pairwise Tanimoto similarity38 of all the compounds

in the bioassay, and used each row of the Tanimoto matrix as the feature representation

of the corresponding compound. Intuitively, the features of a compound ci represent the

similarities between ci and all training compounds in the same bioassay. This feature repre-

sentation scheme is inspired by the idea in Que and Belkin.39 Therefore, a same compound

will have different features in different bioassays, and the different compound information

that may induce different ranking structures is also encoded in the bioassay-specific com-

pound features. This compound feature representation is unique compared to the existing

compound fingerprint representations, and it is generated in a way that is dependent of

computational tasks.

In our experiments, the bioassay-specific compound feature representation achieves best

CI (will be discussed later in Section 5.4.5) 0.717 in dCPPP◦ on Bm
s , compared to the best

CI 0.734 using AFGen features in dCPPP◦, and the best CI 0.748 using Tanimoto on AFGen

features as a kernel in SVMRank.34 Although AFGen feature with SVMRank achieves better

results, it is significantly slower (i.e., 640 seconds on average to train a model) than bioassay-

specific compound feature with dCPPP◦ (i.e., 79 seconds on average). Similarly, AFGen

feature in dCPPP◦ is also significantly slower (i.e., 310 seconds on average to train a model)

than bioassay-specific compound feature in dCPPP◦ (i.e., 79 seconds on average). Thus,
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the bioassay-specific compound feature representation together with dCPPP◦ gives the best

performance in terms of the combination of run time and the ranking results, and will be

used in the experiments.

5.3 Experimental Protocol

We randomly split each bioassay into five folds and make sure that selective compounds

are evenly split into the five folds. We conducted five-fold cross validation over the splits

to evaluate the dCPPP performance. Note that once the data are split, the selectivity

for any training compounds needs to be re-defined with respect to only the training (i.e.,

known) compounds of the bioassays. This is because that testing compounds are hold out as

unknown compounds, and thus cannot be used to define selectivity. Similarly, the selectivity

of the testing compounds (i.e., the ground-truth for performance evaluation) is also re-

defined with respect to training data. In principle, the selectivity re-defined after data split

will be different from that before data split. However, due to the fact that the data are split

randomly and independently for selective (defined before data split) and active compounds,

it is expected the selective (defined after data split) and active compounds are still evenly

distributed across folds. Table 2 (the “after split” row) presents the data description after

the split. After the data split, all the 155 bioassays in Bm
s have selective compounds in at

least one testing fold. The evaluation metrics are only calculated and averaged over testing

folds which have selective compounds.

5.4 Evaluation Metrics

We define and use the following metrics to evaluate the performance of dCPPP.
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5.4.1 Average Precision at k (ap@k)

The average precision at k (ap@k)†† is a popular metric used in LETOR. It considers the

ranking positions of selective compounds among the top k positions of the ranking list.

Average precision at k is defined as:

ap@k =
k∑

i=1

P (i)

min(|Sk|, k)
, (20)

where P (i) is the precision‡‡ among the top-i items in the ranking list. Higher ap@k values

indicate that selective compounds are ranked higher.

5.4.2 Reciprocal Selectivity Position Index (RSPI)

Absolute ranking position is an important metric in compound prioritization. This is because

in real applications, typically, the top few compounds in a ranking list will be of primary

interest. Thus, we define a reciprocal selectivity position index, denoted as RSPI, to measure

the average absolute reciprocal ranking positions of selective compounds in a ranking list:

RSPI(Ck) =
1

|Sk|
∑
ci∈Sk

1

p̃ki
, (21)

where p̃ki is the ranking position of a selective compound ci in bioassay Bk predicted by a

ranking model. The reciprocals are used to favor highly ranked compounds by up weighting

the contribution of highly ranked selective compounds, and down weighting the contribution

of lowly ranked selective compounds. Higher RSPI values indicate higher average absolute

ranking positions for selective compounds and thus better performance of the ranking model.
††https://www.kaggle.com/wiki/MeanAveragePrecision
‡‡https://en.wikipedia.org/wiki/Information_retrieval#Precision
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5.4.3 Normalized Reciprocal Selectivity Position Index (NRSPI)

A normalized version of RSPI, denoted as NRSPI, is defined via the inclusion of reciprocal

ranking positions of all the compounds in a bioassay, so as to also measure the relative

ranking positions of selective compounds in the ranking list:

NRSPI(Ck) =
∑
ci∈Sk

1

p̃ki

/ ∑
cj∈Ck

1

p̃kj
. (22)

Higher NRSPI values indicate higher average relative reciprocal ranking positions of selec-

tive compounds. Both RSPI and NRSPI are similar to ap@k, a popular metric for ranking

performance, but RSPI and NRSPI consider the ranking structures among selective/active

compounds.

5.4.4 Normalized Selectivity Position Index (NSPI)

We also define a normalized selectivity position index, denoted as NSPI, which measures the

average percentile rankings of selective compounds:

NSPI(Ck) =
1

|Ck| × |Sk|
∑
ci∈Sk

p̃ki , (23)

where p̃ki is the ranking position of a selective compound ci in bioassay Bk predicted by a

ranking model. NSPI is normalized by the size of bioassays. Lower NSPI values indicate

higher ranking positions for selective compounds on average.

5.4.5 Concordance Index (CI)

Concordance Index (CI) is a popular metric that is used to evaluate the performance of

ranking algorithms.40 CI measures the fraction of correctly ordered pairs among all possible
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pairs and thus it is complementary to the nCI defined in Equation 2, that is,

CI(Ck) = 1− nCI(Ck). (24)

Higher CI values indicate better prediction overall (i.e., more concordant pairs are predicted

correctly).

In our experiments, we measure the CI values over all compounds Ck in a bioassay

Bk. We also measure the CI values among only selective compounds Sk, and among only

non-selective compounds Ak in Bk, respectively. In this case, the CI values are specifically

denoted as sCI and aCI, respectively.

6 Conclusions

We have developed the differential compound prioritization via bi-directional push with

power method dCPPP. In dCPPP, activity ranking and selectivity prioritization are both

tackled within one differential optimization model that leverages collaborative information

from multiple bioassays. A bi-directional powered push strategy is implemented in dCPPP,

which pushes selective compounds up and x-selective compounds down in ranking. We have

also conducted a comprehensive set of experiments and analysis on the ranking performance

of dCPPP. Our experiments demonstrate that dCPPP is very effective in prioritizing selec-

tive compounds while maintaining a good activity ranking.

Overall, dCPPP achieves significant improvement in compound selectivity prioritization.

In specific, dCPPP∗ outperforms dCPPP◦ in selective compound prioritization in terms of

ap@5 at 47.0%, and in terms of RSPI at 26.1%, with statistical significance. Meanwhile,

dCPPP still preserves a good overall activity ranking among all compounds. Specifically,

dCPPP∗ maintains a similar performance in CI (even slightly better by 1.2%) as dCPPP◦.

The overall experimental results on all evaluation metrics are available in Section 7.1, and

dCPPP needs only two iterations in order to achieve its optimality.
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The experimental results show that, after the first iteration, the performance of dCPPP

increases significantly in terms of all evaluation metrics related to selective compounds prior-

itization, and slightly decreases in compound activity ranking (e.g., in CI). Specifically, the

performance of dCPPP∗ in terms of ap@5 and RSPI increases from 0.558 and 0.411 to 0.687

and 0.490 over dCPPP◦, respectively. However, the compound activity ranking performance,

in terms of CI, decreases from 0.635 to 0.631 in the first iteration. In the second iteration,

dCPPP is still able to improve compound selectivity prioritization but the improvement is

not as significant as that from the first iteration. This indicates that the system quickly con-

verges to a stable state, and the selectivity prioritization has been updated toward optimal

conditions. Specifically, the performance in terms of ap@5 and RSPI is increased from 0.687

and 0.490 to 0.702 and 0.499, respectively, which is relatively marginal compared to that in

the first iteration. On the other hand, dCPPP tries to fix the compound activity ranking in

the second iteration that has been altered in the first iteration, and thus the CI performance

increases from 0.631 to 0.636 in the second iteration. Detailed results on compound ranking

and selective compound prioritization over the two iterations and over the hyperparameters

are available and discussed in Section 7.2 and 7.3.

In terms of top-N ranking performance, dCPPP has siginificantly better performance in

retaining top-N compounds of ground truth, in ranking selective compounds among top,

and in retaining selective compounds from top-N compounds of ground truth. In specific, in

terms of retaining top-N compounds, dCPPP∗ has better performance (on average 2.40/6.59

top-5/10 compounds retained among top5/10 rankings, respectively) compared to that of

dCPPP◦ (on average 2.37/6.51 top-5/10 compounds retained among top5/10 rankings, re-

spectively). In terms of ranking selective compounds among top, dCPPP∗ significantly

outperforms dCPPP◦. On average, dCPPP∗ ranks 2.52/3.21 selective compounds among

top-5/10 rankings, but dCPPP◦ ranks only 2.25/3.04 selective compounds among top-5/10

rankings. Moreover, among the average 1.98 selective compounds among top-5 compounds

of each bioassay in the ground truth, dCPPP∗ is able to retain 1.51 of them on average,
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while dCPPP◦ is able to only retain 1.38. Among the average 1.01 selective compounds in

top-6 to top-10 compounds of ground truth, dCPPP∗ is able to push 0.66 of them into top

5, while dCPPP◦ has 0.56 such compounds in top 5. Detailed results and analysis on top-N

performance are presented in Section 7.4.

Overall, our experiments demonstrate that dCPPP is very effective in compound selec-

tivity prioritization and competent in compound activity ranking. Detailed result analysis

will be thoroughly discussed in Section 7.

7 Experimental Results

In the results presented in this section, we used parameters θ↑ = 0.5 and θ↓ = 0.5. We tested

combinations of various θ↑ and θ↓ values, and found that θ↑ = 0.5 and θ↓ = 0.5 give the best

performance over all the evaluation metrics overall. Based on our experiments, only two

iterations will lead to systematic convergence. Therefore, we only report the results from

the two iterations.

7.1 Overall Performance

Table 3 presents overall performance comparison between the dCPPP◦ and the optimal

dCPPP∗ models. Note that for each bioassay, its optimal dCPPP∗ is the model that intro-

duces the best RSPI value, and thus the performance of dCPPP∗ in terms of other metrics

(e.g., ap@5; the dCPPP∗(t) rows in Table 3) does not necessarily correspond to the optimal

in those metrics. The optimal performance in each respective metric is calculated as the

“b-imprv (%)” values, and therefore, the performance in “b-imprv (%)” does not necessarily

correspond to a same set of parameters. The “diff (%)” values in Table 3 are calculated as

percentage difference of average dCPPP∗ performance over average dCPPP◦ performance,

where the average performance is calculated as the average over all the bioassays in respective

metrics. The “imprv (%)” values in Table 3 are calculated as the average of bioassay-wise
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Table 3: Overall Performance Comparison
iter method ap@5 ap@10 RSPI NRSPI NSPI CI aCI sCI

1

dCPPP◦(1) 0.558 0.613 0.411 0.383 0.268 0.635 0.599 0.506
dCPPP∗(1) 0.687 0.733 0.490 0.439 0.218 0.631 0.590 0.462
diff (%) 23.118 19.576 19.221 14.621 18.657 -0.630 -1.503 -8.696

imprv (%) 43.193 28.402 23.761 22.813 17.214 0.263 0.169 1.665
p-value 6.68e-24 1.06e-25 7.96e-23 2.58e-28 9.46e-18 4.36e-1 2.12e-1 1.40e-3

b-imprv (%) 46.765 30.704 23.761 23.367 22.468 17.161 22.474 68.473
p-value 6.43e-49 7.03e-47 7.96e-23 7.90e-47 7.21e-34 2.87e-7 3.81e-6 1.77e-23

2

dCPPP◦(2) 0.687 0.733 0.490 0.439 0.218 0.631 0.590 0.462
dCPPP∗(2) 0.702 0.746 0.499 0.445 0.213 0.636 0.596 0.467
diff (%) 2.183 1.774 1.837 1.367 2.294 0.792 1.017 1.082

imprv (%) 2.726 2.160 1.784 1.785 1.749 1.110 1.382 1.680
p-value 2.47e-7 4.31e-9 9.39e-9 6.57e-11 3.20e-3 1.99e-2 7.68e-2 4.79e-1

b-imprv (%) 4.562 3.322 1.784 2.019 6.457 17.119 23.077 72.756
p-value 1.97e-17 2.73e-16 9.39e-9 3.84e-12 6.58e-17 7.74e-32 6.37e-36 1.16e-34

ov
er
al
l

dCPPP◦(1) 0.558 0.613 0.411 0.383 0.268 0.635 0.599 0.506
dCPPP∗(2) 0.702 0.746 0.499 0.445 0.213 0.636 0.596 0.467
diff (%) 25.806 21.697 21.411 16.188 20.522 0.157 -0.501 -7.708

imprv (%) 47.003 31.269 26.096 25.157 18.952 1.203 1.320 1.813
p-value 1.76e-26 1.68e-28 1.61e-24 4.33e-31 9.17e-20 8.15e-1 6.96e-1 3.90e-3

b-imprv (%) 49.181 32.732 26.096 25.437 22.734 16.478 21.520 64.846
p-value 1.33e-30 3.36e-31 1.61e-24 7.48e-32 4.38e-25 2.67e-27 8.78e-29 5.92e-24

The columns “ap@5”, “ap@10”, “RSPI”, “NRSPI”, “NSPI”, “CI”, “aCI” and “sCI” have the average ap@5, ap@10,
RSPI, NRSPI, NSPI, CI, aCI and sCI values of dCPPP over the testing sets. The row “dCPPP◦(t)” has the
average model performance in each respective metric from dCPPP◦ in iteration t. The row “dCPPP∗(t)” has
the average model performance in each respective metric from dCPPP∗ in iteration t (dCPPP∗ corresponds
to the model of best RSPI value). The row “diff (%)” has the percentage difference of average performance in
each respective metric of dCPPP◦(t) and dCPPP∗(t). The row “imprv (%)” has the average of bioassay-wise
improvement from dCPPP∗(t) over dCPPP◦(t) in each respective metric. The row “b-imprv (%)” has the
average of each bioassay’s best improvement in each respective metric. The row “p-value” has the p-values
for “imprv (%)”/“b-imprv (%)”.

performance improvement from dCPPP◦ over dCPPP∗.

In dCPPP iteration 1 (i.e., the row block where “iter” has “1” in Table 3), the average

performance of dCPPP∗ is significantly better (i.e., “imprv (%)”) than that of dCPPP◦ in

terms of ap@5, ap@10, RSPI, NRSPI and NSPI (p-values 6.68e-24, 1.06e-25, 7.96e-23, 2.58e-28

and 9.46e-18, respectively). In terms of CI and aCI, dCPPP∗ is not significantly different
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(p-values 4.36e-1 and 2.12e-1, respectively) from dCPPP◦ on the average performance (i.e.,

“imprv (%)”). This demonstrates that dCPPP is able to better prioritize selective compounds

while retaining the overall ranking structures of active compounds. In terms of sCI, it turns

out that dCPPP∗ is still significantly better (p-value 1.40e-3) than dCPPP◦ on the average

performance (i.e., “imprv (%)”). This indicates that for a significant amount of bioassays,

differential push could also help activity ranking. In terms of the best performance with

respective to each metric (i.e., “b-imprv (%)”), dCPPP∗ significantly outperforms dCPPP◦

on all the metrics including CI, aCI and sCI. This indicates that by pushing compounds

differently, it may also help better rank all the compounds overall.

In dCPPP iteration 2 (i.e., the row block where “iter” has “2” in Table 3), the aver-

age ranking performance (i.e., “imprv”) of dCPPP∗ is still significantly better than that of

dCPPP◦ in all the metrics (except in aCI and sCI where the improvement is not significant).

However, the performance improvement is not as great as that in iteration 1, and the smaller

improvement also applies in the best performance with respect to each metric (i.e., “b-imprv

(%)”). This indicates that the iterative learning process starts to converge in iteration 2. In

particular, the dCPPP∗ performance of ranking both active and selective compounds (i.e.,

in terms of CI) is improved significantly from dCPPP◦. The performance in terms of aCI

and sCI is also improved in iteration 2 (i.e., positive “diff (%)” in iteration 2 compared to

the negative value in iteration 1). This indicates that in iteration 2, the learning process

tends to fix the broken ranking structures among both selective and active compounds and

thus converge to a systematically stable state. The results from the two iterations show

that the dCPPP method is able to continuously push the selective/x-selective compounds

over iterations, and meanwhile, it tends to maintain good ranking structures among both

selective and active compounds.

Over these two iterations (i.e., the row block where “iter” has “overall” in Table 3),

dCPPP∗ significantly outperforms dCPPP◦ in all the evaluation metrics (except in CI and

aCI, in which the improvement is not significant). In particular, dCPPP is able to improve
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selectivity prioritization in terms of ap@5 at 47.003%, and in terms of RSPI at 26.096%,

both with statistical significance. These results demonstrate the superiority of the dCPPP

in prioritizing selective compounds.

7.2 Selective Compound Prioritization
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Figure 5: Evaluation of dCPPP(1) on Bm
s

Figure 5a, 5b, 5c, 5d and 5e present the results of dCPPP(1) in terms of ap@5, ap@10,

RSPI, NRSPI and NSPI, respectively, over various α and β values (i.e., the parameters to

weight the push-up and push-down terms, respectively, in dCPPP Equation 12). The values

in these figures are the average performance in respective evaluation metrics over all the

bioassays in which both push-up for selective compounds and push-down for x-selective

compounds can be applied (i.e., bioassays in dataset Bm
s ). Correspondingly, Figure 6a,

6b, 6c, 6d and 6e show performance in terms of ap@5, ap@10, RSPI, NRSPI and NSPI of

dCPPP(2) over different α and β settings.
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Figure 6: Evaluation of dCPPP(2) on Bm
s

7.2.1 dCPPP(1) Performance

Figure 5a and 5b show that in the first iteration, dCPPP has the optimal ap@5 performance

(ap@5 = 0.634) at (α = 0.6, β = 0.2), and the optimal ap@10 performance (ap@10 =

0.688) when α = 0.6 and β ∈ [0.2, 0.4]. The optimal results demonstrate that, when push-

up weight is large (α ≥ 0.6) and push-down is also applied, the selective compounds are

preferably pushed into top-5/10 of the ranking lists.

In Figure 5a, there is a notable gap between the ap@5 values when α = 0 and α > 0.

Specifically, when the push-up starts to take effect (i.e., α is increased from 0), the ap@5

values are increased significantly. A similar gap also exists in the ap@10 performance be-

tween α = 0 and α > 0 in Figure 5b. This indicates that even a slight push-up could

alter the ranking structure significantly and push the selective compounds up into the top

of the ranking lists. However, the full-power push-up (i.e., α = 1.0) without considering

the activity ranking performance among compounds (i.e., considering only the Lk+
s term

and neglecting the Lk
c and Lk−

x terms in Equation 12) does not lead to the optimal solu-
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tion in terms of both ap@5 and ap@10. This indicates that the prioritization of selective

compounds over non-selective compounds is structurally constrained by the ordering among

both selective and non-selective compounds together, and leveraging the information from

non-selective compounds and their ordering structures is beneficial in improving selective

compound prioritization in top-5/10 of the ranking.

On the other hand, push-down over the x-selective compounds also benefits the selective

compounds prioritization. For example, ap@10 is increased from 0.682 at (α = 0.4, β = 0.0),

to 0.687 at (α = 0.4, β = 0.2) in Figure 5b. This may be due to the fact that the push-down

exerts extra force on altering the overall ranking structures of each bioassay and thus better

separates selective compounds from x-selective compounds. However, an over push-down

does not benefit selective prioritization any more. For example, ap@10 is decreased from

0.688 at (α = 0.4, β = 0.4) to 0.683 at (α = 0.4, β = 0.6) in Figure 5b. The reason could be

that an overemphasis on x-selective becomes detrimental to the overall ranking structures

among both selective and non-selective compounds.

Figure 5c presents the performance in terms of RSPI of all the Bm
s bioassays in the first

iteration. In terms of RSPI (i.e., the average reciprocal positions of selective compounds),

the best performance of dCPPP (RSPI = 0.458) is achieved at the parameter region α ∈

[0.4, 0.6], β ∈ [0.2, 0.4], that is, when both the push-up and push-down are applied, the

selective compounds are most effectively to be ranked higher in the bioassays.

The trend of performance in RSPI is similar to that in ap@k, that is, 1) when α is

increased from 0 (i.e., the push-up starts to take place), the RSPI values are significantly

increased; 2) the full-power push-up does not lead to optimal performance; 3) push-down

over the x-selective compounds also has effects on better ranking selective compounds; and

4) an over push-down (e.g., β ≥ 0.6 with α = 0.4) does not benefit selectivity prioritization;

etc.

Figure 5d and 5e demonstrate concordant trend of NRSPI and NSPI with that of ap@5,

ap@10 and RSPI, that is, the best performance in terms of NRSPI and NSPI, respectively,
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happens with non-zero α and β values. NRSPI (Equation 22) is a very similar metric to RSPI

(Equation 21), which considers all the compounds, instead of only selective compounds as in

RSPI, in evaluating ranking positions of selective compounds. High RSPI and NRSPI values

associated with non-zero α and β values indicate that selective compounds are ranked both

higher in their average absolute positions and higher in their average relative positions among

all the compounds. NSPI measures the average percentile ranking of selective compounds.

On average, the selective compounds are ranked at 77 percentile at best (α = 0.6, β = 0.2

in Figure 5e), while in the baseline dCPPP◦ the average ranking percentile is 73.

7.2.2 dCPPP(2) Performance

Figure 6a and 6b present the performance in terms of ap@5 and ap@10 in the second iteration,

respectively. The dCPPP method has optimal average ap@5 value (ap@5 = 0.691) at (α =

0.6, β = 0.2), and optimal average ap@10 value (ap@10 = 0.737) at (α = 0.2, β = 0.4), and

(α ∈ [0.4, 0.8], β = 0.2). Both of ap@5 and ap@10 in the second iteration are significantly

improved from that in the first iteration (8.99% and 7.12%, respectively). This demonstrates

that as in dCPPP(2), more selective compounds are pushed into top-5/10 as the push-up

and push-down powers are applied (α > 0, β > 0). Please note that in Table 3, the best

ap@5 and ap@10 values are calculated according to dCPPP∗ that is defined with respect to

optimal RSPI values, but in Figure 6a and 6b, the ap@5 and ap@10 values are the average

values over all the bioassays under certain α and β values.

In the second iteration, the change of the ap@5 and ap@10 over α and β values is

generally smooth. However, there are still some minor irregular trends. For example, ap@5

values first decrease from 0.687 at (α = 0.0, β = 0.2) to 0.686 at (α = 0.2, β = 0.2), then

increase to 0.688 at (α = 0.4, β = 0.2), although the changes are very small. This may

indicate that in the second iteration, the ranking structures become more sensitive to push

powers, since they are close to optimal. Also, in the second iteration, both ap@5 and ap@10

results fall into a much smaller range over various α and β values (i.e., ap@5 ∈ [0.684, 0.691]
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and ap@10 ∈ [0.733, 0.737]) compared to that of the first iteration (i.e., ap@5 ∈ [0.536, 0.634]

and ap@10 ∈ [0.596, 0.688]). The best results of ap@5 and ap@10 are only 1.02% and 0.55%

better than their worst results in the second iteration. Actually, this is a common trend

among all the evaluation metrics in the second iteration, which indicates that the system is

becoming stabilized in terms of ap@k performance.

In the second iteration, as shown in Figure 6c, the best RSPI (RSPI = 0.492) is still at

(α = 0.6, β = 0.2) as that in the first iteration. The best RSPI performance from the second

iteration is improved by 7.42% from that in the first iteration (RSPI = 0.458). However,

some other α and β settings (i.e., (α = 0.2, β = 0.0), (α = 0.2, β = 0.4), (α = 0.2, β = 0.4))

also result in similar optimal RSPI performance. This indicates that the system is becoming

stabilized and more sensitive to push powers. The RSPI performance results from the second

iteration also show that when push-up power is applied (i.e., α > 0), the results are better

than that without push-up power (i.e., α = 0). However, too large push-up power (i.e.,

α > 0.6) does not yield optimal results. This is a similar trend as in the first iteration.

Similarly, a full push-down also breaks the overall ranking structures among selective and

non-selective compounds, and thus, a non-optimal result (RSPI = 0.490) is expected when

β = 1.0.

Figure 6d and Figure 6e present the performance in terms of NRSPI and NSPI of Bm
s

bioassays in the second iteration, respectively. In Figure 6d and Figure 6e, NRSPI and

NSPI also have similar trend with that of RSPI in Figure 6c. That is, when moderate

push-up and push-down powers are applied, the optimal results are achieved. Specifically,

in terms of NRSPI, the optimal result (NRSPI = 0.440) is achieved at (α = 0.2, β = 0.4),

(α = 0.2, β = 0.6), and (α = 0.6, β = 0.2). In terms of NSPI, the optimal result (NSPI =

0.216) is achieved at (α ∈ [0.4, 0.2], β = 0.2).

7.2.3 Overall Performance for Selective Compound Prioritization

For all the bioassays, we compared their ap@5, ap@10, RSPI, NRSPI and NSPI values
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Table 4: Percentage Improvement of dCPPP(α = 0.6, β = 0.2) vs. dCPPP◦

iter method ap@5 ap@10 RSPI NRSPI NSPI

1

dCPPP◦(1) 0.558 0.613 0.411 0.383 0.268
dCPPP(1) 0.634 0.688 0.458 0.416 0.233
diff (%) 13.620 12.235 11.436 8.616 13.060

imprv (%) 29.197 19.268 15.049 15.246 10.874
p-value 4.83e-13 2.41e-15 3.12e-13 5.24e-14 4.66e-11

b-imprv (%) 30.598 20.139 15.049 15.582 14.804
p-value 9.27e-39 2.63e-38 3.12e-13 5.87e-38 1.09e-09

2

dCPPP◦(2) 0.687 0.733 0.490 0.439 0.218
dCPPP(2) 0.691 0.737 0.492 0.440 0.216
diff (%) 0.582 0.546 0.408 0.228 0.917

imprv (%) 0.874 0.813 0.240 0.366 0.821
p-value 6.92e-02 3.10e-03 3.65e-02 2.37e-02 3.54e-02

b-imprv (%) 1.239 1.093 0.240 0.457 2.075
p-value 4.70e-03 5.33e-05 3.65e-02 9.80e-03 3.49e-05

The columns “ap@5”, “ap@10”, “RSPI”, “NRSPI”, and “NSPI” have the average RSPI, NRSPI, NSPI, CI,
aCI and sCI values of dCPPP over the testing sets. The row “dCPPP◦(t)” has the average model
performance in each respective metric from dCPPP◦ in iteration t. The row “dCPPP (t)” has the
average model performance in each respective metric from dCPPP(α = 0.6, β = 0.2) in iteration
t (dCPPP(α = 0.6, β = 0.2) corresponds to the model of best RSPI value with various learning
rate). The row “diff (%)” has the percentage difference of average performance in each respective
metric. The row “imprv (%)” has the average of bioassay-wise improvement from dCPPP (t) over
dCPPP◦(t) in each respective metric. The row “b-imprv (%)” has the average of each bioassay’s best
improvement in each respective metric. The row “p-value” has the p-value for “imprv (%)”/“b-imprv
(%)”.

of dCPPP at (α = 0.6, β = 0.2) with the respective values of dCPPP◦ in both iteration 1

and 2 in Table 4. The paired t-tests demonstrate the significance of the improvement from

dCPPP on dCPPP◦ in iteration 1. However, in iteration 2, the improvement is relatively

less significant (though mostly still significant at 5% confidence level). This is expected as

the ranking starting to converge to a systematically stable state. Additionally, the small

difference among performances with various push-up and push-down powers also indicates

that the system is approaching an equilibrium.
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7.3 Compound Ranking

Figure 5f, 5g and 5h present the CI values among all compounds, aCI among non-selective

compounds and sCI among selective compounds over all the bioassays in the first iteration,

respectively. Correspondingly, Figure 6f, 6g and 6h present the respective values over all the

bioassays in the second iteration. In Figure 5f, as α and β increase, the CI values over all the

bioassays decrease in general. This is anticipated as increasing α and β values will induce

less emphasis on overall ranking structures as in Equation 12 and thus decreased CI values.

However, dCPPP at (α = 0.2, β = 0.0) slightly increases CI (CI = 0.636) from dCPPP◦

(CI = 0.635). This may be due to the fact that pushing up selective compounds may affect

the ranking on other non-selective compounds and thus increase CI. Figure 5g shows the

similar trend over aCI as that of CI, because the majority of compounds are non-selective

compounds in the bioassays.

In iteration 2, Figure 6f and 6g show the similar trend that higher α and β values

will lead to lower CI and aCI values. Also, dCPPP achieves both optimal CI and aCI

at (α = 0.0, β = 0.0) (CI = 0.634 and aCI = 0.594, respectively). This is because that,

without any emphasis on selectivity, dCPPP is only interested in the ranking structure

among all compounds by their activities. However, dCPPP also achieves optimal CI at

(α = 0.0, β = 0.8) and (α = 0.6, β = 0.2). This indicates that in this iteration, dCPPP tends

to repair the skewed active compound ranking structures even during selective compound

prioritization.

In Figure 5h, the ranking performance in terms of sCI among only selective compounds

changes relatively irregularly. Specifically, with α ∈ [0.4, 0.6], β ∈ [0.2, 0.4] (i.e., the optimal

parameter region in which RSPI achieves the best), sCI is even below 0.5 (i.e., random

ranking). This is because the selective compounds may be pushed into discordant orders

compared to the ground truth. Note that the push-up power (Equation 6) is defined based

on the difference of percentile rankings of a compound in multiple bioassays. Therefore,

different selective compounds may receive different push powers within a bioassay due to
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their ranking positions among others bioassays. Together with the combinatorial influence

from multiple x-selective compounds pushed-down at same time in the same bioassay, it is

less likely that the selective compounds are pushed up but still in their original orders as

before the push.

In Figure 6h, dCPPP also achieves optimal sCI (sCI = 0.471) among selective com-

pounds iteration 2 at (α = 0.0, β = 0.0). The reason is similar to that of Figure 6f and 6g,

that is, a full emphasis on the compound activity prioritization without any selectivity push

(i.e., α=0 and β=0) will introduce a better overall ranking structure based on compound

activities, and therefore, the selective compounds are also prioritized based on their activi-

ties. As α and β increase, sCI starts to vary irregularly. This is still because that different

selective/x-selective compounds will receive different push-up/-down powers, depending on

the compounds’ ranking percentile differences among bioassays, and thus pushed into discon-

cordant pairs compared to the ground truth. Similar to the ap@5, ap@10, RSPI, NRSPI and

NSPI values, which fluctuate in a very small range in iteration 2 (Section 7.2), CI, aCI and

sCI also become more stable in iteration 2 than in iteration 1. This also indicates that the

overall ranking is converging to a systematically equilibrium state in the second iteration.

7.4 Top-N Performance

In this section, we evaluate the top-N performance of dCPPP.

7.4.1 Compound Ranking

Table 5 presents the top-N (N = 5 and 10) performance of dCPPP compared to dCPPP◦

in ranking compounds (both selective and non-selective). Since α = 0.6 and β = 0.2 represent

a reasonably good set of parameters for all the bioassays overall as indicated in Section 7.2,

we compare dCPPP at (α = 0.6, β = 0.2) in top-N performance evaluation. Please note

that dCPPP∗ corresponds to the model which achieves optimal performance in terms of RSPI

for each individual bioassay using their respective optimal α and β values, and the baseline
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Table 5: Top-N Performance on Compound Ranking (Compound Counts)
iter N dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 5 2.37 2.31 (7.59× 10−2) 2.36 (9.40× 10−1)
10 6.51 6.42 (2.47× 10−2) 6.50 (7.74× 10−1)

2 5 2.36 2.39 (9.18× 10−2) 2.40 (4.02× 10−2)
10 6.50 6.56 (1.45× 10−2) 6.59 (2.80× 10−3)

The column “N ” has the numbers of compounds on top of the ranking results that are
considered. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have the number of
compounds from the top-N compounds in the ground truth that are still ranked among top
N by dCPPP◦, by dCPPP at (α = 0.6, β = 0.2) and by dCPPP∗, respectively. The numbers
in parentheses in “dCPPP(0.6, 0.2)” and “dCPPP∗” columns are the p-values comparing the
results of dCPPP and dCPPP∗ with those of dCPPP◦, respectively.

model in iteration 2 dCPPP◦(2) that dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ improve

from is dCPPP∗(1).

In the first iteration, among the top 5/10 of the ranking results, dCPPP at (α = 0.6, β =

0.2) rank fewer compounds (i.e., 2.31/6.42 compounds, respectively) that are among top

5/10 in the ground truth than dCPPP◦ (i.e., 2.37/6.51 compounds, respectively) and the

difference is close to statistical significance (p-value 7.59 × 10−2/2.47 × 10−2). The optimal

dCPPP∗ ranks about same ground-truth top-5/top-10 compounds (i.e., 2.36/6.50) compared

to dCPPP◦ (the difference is statistically insignificant). This indicates that in terms of top-

N ranking of ground-truth compounds (both selective and non-selective), dCPPP is very

similar to dCPPP◦. In the second iteration, dCPPP at (α = 0.6, β = 0.2) is able to rank

among top 5/10 more compounds (i.e., 2.39/6.56 compounds, respectively) that are among

top 5/10 in the ground truth than dCPPP◦, and the difference is very close to statistical

significance (p-value 9.18 × 10−2/1.45 × 10−2). Moreover, dCPPP∗ in iteration 2 also has

better performance in terms of ranking the top5/10 compounds from ground truth (i.e.,

2.40/6.59 compounds, respectively) than dCPPP◦ with statistical significance. The optimal

dCPPP∗ outperforms dCPPP at (α = 0.6, β = 0.2) in iteration 2 as well. Overall, the

performance in iteration 2 is better than that of iteration 1, in term of both top-5 and top-

10 ranking of both selective and active compounds. Particularly, in the first iteration, both

dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ do not outperform dCPPP◦. However, in the
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second iteration, they outperform dCPPP◦ with reasonable significance. This indicates that

dCPPP is able to improve the ranking at the top of the ranking lists over iterations.

Table 6: Top-N Performance on Compound Ranking (Bioassay Counts)
iter N method 0 1 2 3 4 5 6 7 8 9 10

1

5
dCPPP◦ 14 27 38 42 28 4 - - - - -

dCPPP(0.6, 0.2) 13 29 42 44 24 4 - - - - -
dCPPP∗ 11 30 40 44 26 4 - - - - -

10
dCPPP◦ 0 0 1 3 11 26 34 33 29 15 2

dCPPP(0.6, 0.2) 0 0 1 4 9 32 35 31 28 13 2
dCPPP∗ 0 0 1 5 9 26 38 34 28 14 2

2

5
dCPPP◦ 11 30 40 44 26 4 - - - - -

dCPPP(0.6, 0.2) 11 27 42 44 27 4 - - - - -
dCPPP∗ 10 29 40 45 27 4 - - - - -

10
dCPPP◦ 0 0 1 5 9 26 38 34 28 14 2

dCPPP(0.6, 0.2) 0 0 1 3 11 22 36 36 29 14 2
dCPPP∗ 0 0 1 4 11 20 34 37 31 15 2

The column “N ” has the numbers of compounds on top of the ranking results that are considered. The col-
umn “method” has all the methods in comparison. The columns corresponding to number 0, 1, · · · , k, · · · , 10
represent the number of bioassays that retrain k out of the top-N (N = 5, 10) most active compounds in
the ground truth in top-N compound rankings by the various methods, respectively.

In Table 6, we compare the number of bioassays in which sufficient amount of top-N com-

pounds in the ground truth are retained still among top-N rankings by the various methods.

Note that here only the activity ranking is considered. Table 6 shows that in iteration 1,

dCPPP◦ enables more bioassays to retain more true top-N compounds. For example, 28/4

bioassays retain 4/5 of the top-5 most active compounds in their top-5 rankings, respec-

tively. Thus, cumulatively 32 bioassays retain at least 4 of the 5 most active compounds

in their top-5 rankings, compared to 28 bioassays from dCPPP at (α = 0.6, β = 0.2) and

30 bioassays from dCPPP∗, respectively. Similarly for top-10 rankings, dCPPP◦ enables 46

bioassays to retain at least 8 compounds out of the 10 most active compounds, compared

to 43 bioassays from dCPPP at (α = 0.6, β = 0.2) and 44 bioassays from dCPPP∗, respec-

tively. The performance is expected, because dCPPP at (α = 0.6, β = 0.2) and dCPPP∗

push selective compounds higher than they should be as if solely activity is considered, and

as a result lower some activity compounds from the top of the ranking lists. Even though,
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the performance of dCPPP◦ and dCPPP are very comparable, indicating that dCPPP is

able to achieve the overall compound ranking structures similarly as dCPPP◦. Table 6 also

shows that in the second iteration, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ enable 31

bioassays to retain at least 4 out of 5 most active compounds among top 5 rankings, and

45 and 48 bioassays top retain at least 8 out of 10 most active compounds among top 10

rankings, respectively, which is better than dCPPP◦. Note that dCPPP◦ in iteration 2 is

dCPPP∗ from iteration 1, and thus Table 6 shows that in iteration 2, the performance of

dCPPP in terms of retaining top active compounds start to get better. This indicates that

in the second iteration, dCPPP tends to fix the altered ranking lists from the first iteration,

similarly as indicated in Table 5.

7.4.2 Compound Selectivity Ranking

Table 7: Top-N Performance on Selectivity Ranking (Compound Counts)
iter N dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 5 2.25 2.40 (1.47× 10−8) 2.49 (3.76× 10−17)
10 3.04 3.18 (9.14× 10−9) 3.19 (1.07× 10−10)

2 5 2.49 2.50 (3.93× 10−2) 2.52 (3.80× 10−3 )
10 3.19 3.21 (2.90× 10−2) 3.21 (4.98× 10−2 )

The column “N ” has the numbers of compounds on top of the ranking results that are consid-
ered. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have the number of selective
compounds that are ranked among top N by dCPPP◦, by dCPPP at (α = 0.6, β = 0.2) and
by dCPPP∗, respectively. The numbers in parentheses in “dCPPP(0.6, 0.2)” and “dCPPP∗”
columns are the p-values comparing the results of dCPPP and dCPPP∗ with those of dCPPP◦,
respectively.

Table 7 presents the top-N (N = 5 and 10) performance of dCPPP compared to dCPPP◦

in prioritizing selective compounds. The comparison is in terms of the number of selective

compounds that are ranked on top by dCPPP, regardless whether these selective compounds

are ranked on top or not in the ground truth. Among the top 5/10 of the ranking results from

iteration 1, dCPPP at (α = 0.6, β = 0.2) consistently ranking more selective compounds (i.e.,

2.40/3.18 selective compounds, respectively) compared to dCPPP◦ (i.e., 2.25/3.04 selective

compounds, respectively), with statistical significance. Please note that these top ranked
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selective compounds could be either among top N in the ground truth or below top N in the

ground truth. If each bioassay uses its own optimal (in terms of RSPI) α and β parameters,

dCPPP∗ also ranks more selective compounds (i.e., 2.49/3.19) than both dCPPP◦ with

statistical significance and dCPPP at (α = 0.6, β = 0.2). In the second iteration, dCPPP

at (α = 0.6, β = 0.2) also outperforms dCPPP◦ in ranking selective compounds among top

5/10. Specifically, dCPPP at (α = 0.6, β = 0.2) is able to rank 2.50/3.21 selective compounds

in top 5/10 of the ranking list, while dCPPP◦ could rank 2.49/3.19 selective compounds,

and the difference is statistically significant (p-value 3.93× 10−2/2.90× 10−2). In addition,

dCPPP∗ outperforms dCPPP◦ in iteration 2 as well and is able to rank 2.52/3.21 selective

compounds in top5/10 with statistical significance. Also, dCPPP∗ outperforms dCPPP at

(α = 0.6, β = 0.2) in ranking more selective compounds in top 5/10. The results in Table 7

demonstrates that over the two iterations, dCPPP is able to consistently push more selective

compounds onto top.

Table 8: Top-N Performance on Selectivity Ranking (Bioassay Counts)
iter N method 0 1 2 3 4 5 6 7 8 9 10

1

5
dCPPP◦ 11 35 45 37 22 6 - - - - -

dCPPP(0.6, 0.2) 6 31 45 46 19 7 - - - - -
dCPPP∗ 4 28 49 44 21 9 - - - - -

10
dCPPP◦ 5 21 42 34 25 14 9 4 1 0 0

dCPPP(0.6, 0.2) 3 18 40 38 24 15 10 5 2 0 0
dCPPP∗ 3 18 40 38 24 16 9 4 3 0 0

2

5
dCPPP◦ 4 28 49 44 21 9 - - - - -

dCPPP(0.6, 0.2) 4 28 48 44 22 9 - - - - -
dCPPP∗ 4 28 46 45 23 9 - - - - -

10
dCPPP◦ 3 18 40 38 24 16 9 4 3 0 0

dCPPP(0.6, 0.2) 3 18 40 39 23 16 9 5 3 0 0
dCPPP∗ 3 17 40 38 23 16 10 5 2 0 0

The column “N ” has the numbers of compounds on top of the ranking results that are considered.
The column “method” has all the methods in comparison. The columns corresponding to number
0, 1, · · · , k, · · · , 10 represent the number of bioassays that rank k selective compounds in top-N (N =
5, 10) compound rankings by the various methods, respectively.

Table 8 presents the number of bioassays that rank selective compounds on top. In

this comparison, dCPPP is significantly better than dCPPP◦. For example, dCPPP at
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(α = 0.6, β = 0.2) and dCPPP∗ enable 72 and 74 bioassays, respectively, to rank at least

3 selective compounds among top-5 rankings in iteration 1, compared to 65 bioassays from

dCPPP◦. In terms of top 10 rankings, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ enable

32 and 32 bioassays, respectively, to rank at least 5 selective compounds among top-10

rankings in iteration 1, compared to 28 bioassays from dCPPP◦. In the second iteration,

dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ enables even more bioassays to rank more selective

compounds. For example, for top-5 rankings, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗

enable 75 and 77 bioassays to rank at least 3 selective compounds among top-5 rankings,

respectively, compared to 74 bioassays from dCPPP◦. Note that in iteration 2, dCPPP◦ is

the dCPPP∗ from iteration 1. Thus, compared to the best performance from iteration 1,

dCPPP further improves selectivity ranking among top 5 in iteration 2. Similar conclusions

can be drawn for top-10 rankings.

7.4.3 Compound Selectivity Push

Table 9: Top-N Performance on Selectivity Push (Compound Counts)
iter N gt dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 1-5 1.98 1.38 1.44(7.10× 10−3) 1.49(1.63× 10−6)
6-10 1.01 ↑0.56 ↑0.61(1.60× 10−3) ↑0.65(6.21× 10−8)

2 1-5 1.98 1.49 1.50(1.95× 10−1) 1.51(7.36× 10−2)
6-10 1.01 ↑0.65 ↑0.65(4.92× 10−1) ↑0.66(2.28× 10−1)

The column “N ” has the numbers of compounds on top of the ranking results that are consid-
ered. The column “gt” has the average number of selective compounds in top-N compounds in
the ground truth. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have results for
dCPPP◦, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗, respectively. The numbers in parentheses
in “dCPPP(0.6, 0.2)” and “dCPPP∗” columns are the p-values comparing the results of dCPPP
and dCPPP∗ with those of dCPPP◦, respectively. The first row corresponds to the number
of selective compounds among top 5 in the ground truth that are still ranked in top 5 by the
different methods. The second row corresponds to the number of selective compounds that are
among top 10 to top 6 in the ground truth and ranked into top 5 (denoted by ↑) by the different
methods.

Table 9 presents the performance of dCPPP in pushing ground-truth top-N selective

compounds on top. The comparison is in terms of the number of selective compounds that

are ranked among top N in the ground truth and have also been retained among top N by
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dCPPP. In the first iteration, among the average 1.98 selective compounds among top 5 in

the ground truth, dCPPP◦ is able to retain 1.38 of such selective compounds still among

top 5, but dCPPP at (α = 0.6, β = 0.2) is able to retain 1.44 and dCPPP∗ is able to

retain 1.49, both with statistical significance compared to dCPPP◦. In addition, among 1.01

selective compounds that are among top 10 to top 6 in the ground truth, dCPPP◦ is able to

push on average 0.56 selective compounds into its top-5 ranking compounds, while dCPPP

at (α = 0.6, β = 0.2) is able to push 0.61 and dCPPP∗ is able to push 0.65, both with

statistical significance.

In the second iteration, among the 1.98 selective compounds among top 5 in the ground

truth, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ are able to retain 1.50 and 1.51 such

selective compounds still among top 5, respectively, while dCPPP◦ could retain 1.49 such

selective compounds. Among the 1.01 selective compounds that are ranked in top 10 upto

top 6 in the ground truth, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ could push 0.65 and

0.66 such selective compounds into top 5 of their ranking lists, while dCPPP◦ could push

0.65. The results in Table 9 demonstrate that dCPPP is able to retain most of the selective

compounds on top, and push lower ranked selective compounds onto top. In addition, Table 9

shows that in the first iteration, in total there are 2.14 (i.e., 1.49+0.65) selective compounds

that are ranked on top 5 by dCPPP∗, and those 2.14 selective compounds are ranked among

top 10 in the ground truth. On the other hand, Table 7 shows that in the first iteration,

dCPPP∗ ranks 2.49 (more than 2.14) selective compounds among top 5. This indicates that

dCPPP∗ even pushes selective compounds that are ranked below top 10 in the ground truth

onto top 5.

Table 10 compares the number of bioassays that retain a certain portion of selective

compounds that are among top-N active compounds in the ground truth and still keep such

selective compounds in top-N rankings. Table 10 shows that from dCPPP at (α = 0.6, β =

0.2) and dCPPP∗, more bioassays have a larger portion of top-5 selective compounds (≥ 60%)

still retained among top-5 rankings than from dCPPP◦ after the first iteration, and more
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Table 10: Top-N Performance on Selectivity Push (Bioassay Counts)
iter N method (%) [0, 20) [20, 40) [40, 60) [60, 80) [80, 100) [100, 100] NA

1

5
dCPPP◦ 20 8 20 20 2 67 18

dCPPP(0.6, 0.2) 18 5 18 22 2 72 18
dCPPP∗ 13 5 19 20 3 77 18

↑10
dCPPP◦ 27 5 14 6 0 41 63

dCPPP(0.6, 0.2) 20 6 14 6 0 47 63
dCPPP∗ 16 5 15 7 0 49 63

2

5
dCPPP◦ 13 5 19 20 3 77 18

dCPPP(0.6, 0.2) 12 5 18 22 2 78 18
dCPPP∗ 12 4 19 21 2 79 18

↑10
dCPPP◦ 16 5 15 7 0 49 63

dCPPP(0.6, 0.2) 16 5 15 7 0 50 63
dCPPP∗ 16 5 14 7 0 51 63

The column “N ” has the numbers of compounds on top of the ranking results that are considered. The column
“method” has all the methods in comparison. The columns corresponding to number (%) “[a, b)” represent
the portion (in percentage) of selective compounds are retained or pushed. The row blocks corresponding to
“N=5” represents the number of bioassays which retain the corresponding portions of selective compounds
among the top-5 compounds in the ground truth. The row blocks corresponding to “N=↑10” represent the
number of bioassays which push corresponding portions of selective compounds from top-6 to top-10 active
compounds in the ground truth into top-5 rankings.

bioassays have their top-6 to top-10 selective compounds pushed onto top-5 by dCPPP at

(α = 0.6, β = 0.2) and dCPPP∗. In the second iteration, even more bioassays have their

top-5 selective compounds retained still among top-5 by dCPPP at (α = 0.6, β = 0.2) and

dCPPP∗, and more top-6 to top-10 selective compounds pushed up. This demonstrates that

dCPPP is effective in prioritizing selective compounds.

7.5 Percentile Ranking Change

Figure 7 presents the difference of percentile rankings introduced by dCPPP(1) among the

training selective compounds. The difference of percentile rankings of a compound ci is

defined as r̃k+
i −max

Bl

r̃l−i , where r̃k+
i and r̃l−i are the estimated percentile ranking of ci in

bioassay Bk as a selective compound, and in bioassay Bl as a non-selective compound,

respectively. A positive/negative difference indicates that ci is ranked higher/lower in Bk

as a selective compound than in any/some other bioassays Bl as a non-selective compound.
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Figure 7: Ranking Difference among Selective Compounds in Iteration 1
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Figure 8: Ranking Difference among Selective Compounds in Iteration 2

Figure 7 shows that for dCPPP∗(1), the majority of percentile ranking difference is positive

(i.e., along y-axis, more data points above the line x = 0). This indicates that dCPPP is able

to push selective compounds on top effectively. In addition, the average percentile ranking

difference from dCPPP∗(1) is larger than that from dCPPP◦(1) (i.e., more data points above

the line y = x in Figure 7). This indicates that dCPPP is able to further distinguish

selective compounds from non-selective compounds by pushing selective compounds on top.

Specifically, in dCPPP◦(1), selective compounds are ranked 20 percentage higher on average

in the bioassays in which they are selective than in the bioassays in which they are non-

selective. In dCPPP∗(1), selective compounds are ranked 30 percentage higher on average.

The difference between the ranking percentile difference in dCPPP∗(1) and in dCPPP◦(1) is
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statistically significant (p-value=2.18× 10−50).

Figure 8 presents the difference of percentile rankings among the training selective com-

pounds introduced by dCPPP(2). In dCPPP∗(2), selective compounds are ranked on average

61 percentage higher in the bioassays in which they are selective than in bioassays in which

they are non-selective (i.e., along y-axis in Figure 8). The difference between the ranking

percentiles in dCPPP∗(2) and in dCPPP◦(2) is statistically significant (i.e., more data points

above the line y = x; p-value=2.12 × 10−306). The increase in the percentile ranking dif-

ference of training selective compounds indicates that dCPPP is powerful to further push

up the selective compounds and push down the x-selective compounds in iteration 2. Also,

the significant difference between the ranking difference introduced by dCPPP◦(2) and that

introduced by dCPPP∗(2) shows that, after iteration 2, the selective compounds have been

ranked significantly higher in the bioassays in which they are selective and in other bioassays

in which the compounds are non-selective.

7.6 Push Power Change
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Figure 9: Push-up Weight Change among Selective Compounds

Figure 9 and Figure 10 present the change of push-up/push-down powers (i.e., g in

Equation 6 and h in Equation 10) on the training selective compounds between the two

iterations, respectively. The average push-up power in iteration 1 and 2 is ḡ1 = 1.16 and
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Figure 10: Push-down Weight Change among x-Selective Compounds

ḡ2 = 1.09, respectively. The average push-down power in iteration 1 and 2 is h̄1 = 1.34 and

h̄2 = 1.27, respectively. The difference between the average push-up powers in iteration 1

and the average push-up power in iteration 2 is statistically significant with p-value 2.47 ×

10−322. The difference between the average push-down powers is also significant with p-

value 2.20× 10−163. The decrease of the push powers in iteration 2 indicates that when the

selective compounds are pushed higher after iteration 1, the ranking difference of selective

compounds in the bioassay in which they are selective and in other bioassays in which they

are non-selective is increased (Equation 6 and 10).

8 Discussions

8.1 Push Relation Among Bioassays

Figure 11 presents a subset of push relations among all the bioassays in the first iteration

of dCPPP as a weighted directed network. Each node in the network represents one bioassay.

Since each bioassay has one unique target, the gene name of the target is used to represent

each bioassay on the corresponding node. An edge from bioassay Bl to bioassay Bk represents

that there is a compound shared by Bl and Bk, and the compound in Bk is pushed with

a power determined by the its ranking difference in Bk and Bl (i.e., Bl helps to push the
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Figure 11: Push relation among bioassays

compound in Bk). A red edge from Bl to Bk represents that the corresponding pushed (up)

compound is selective in Bk. A blue edge from Bl to Bk represents that the corresponding

pushed (down) compound is x-selective in Bk. The weight (width) of an edge represents

the corresponding push-up/down power. Figure 11 shows that there are many edges among

genes of a same family (e.g., PIK3CA, PIK3CB, PIK3CD, PIK3CG; SSTR1, SSTR2, SSTR3,

SSTR4, SSTR5). This well conforms to the Chemogenomics principle41,42 that targets of

a same family tend to bind to similar compounds. The full set of relations is available in

Figure S1 in the Supporting Information.

The weighted directed networks are constructed based on push-up/down powers that

are collectively determined by multiple compound prioritization models. Compared to con-

ventional compound-sharing based networks43,44 that are typically undirected and/or un-

weighted, such model-based weighted directed networks may exhibit interesting signals that
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could inform novel drug development approaches. Further research may be oriented along

this direction via better exploring the structures of the weighted directed networks.

8.2 Bioassay-Specific Compound Features

In dCPPP, the vector of Tanimoto similarities of ci compared to other training compounds

in a bioassay B is used as the compound features for ci in Bk. Therefore, the compound

features are task specific. This compound feature representation follows the idea of the very

recent trend of learning task-specific compound features using deep learning45–47 for various

compound prediction problems. Thus, we will explore better compound feature learning for

compound prioritization purposes.

8.3 Differential Promisucous Compound Prioritization

The x-selective compounds that are pushed down in dCPPP represent a certain type of

promiscuous compounds, which are the promiscuous compounds that show multi-fold dif-

ference in their activitivities against an off-target and the target of interest (based on the

definition of “selectivity” as in Section 3). This type of promiscuous compounds is much less

preferable for the target of interest, compared to the other promiscuous compounds, which

are active against multiple targets, but not very differentiably. In this work, we focus on

pushing x-selective compounds down but not explicitly other promiscuous compounds. How-

ever, other promiscuous compounds should also be properly considered for pushing down as

well. We will tackle this aspect in the future work.

Supporting Information Availability

Supporting Information Available: Assay information, push relation and additional experi-

mental results are available in the Supporting Information. Detailed method description and

results can be found at https://cs.iupui.edu/~liujunf/projects/selRank_2017/.

48

Page 48 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Acknowledgment

This material is based upon work supported by the National Science Foundation under

Grant Number IIS-1566219 and and IIS-1622526. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

Author Information

Corresponding Author

*E-mail: xning@iupui.edu. Phone: +1 317-278-3784.

ORCID

Xia Ning: 0000-0002-6842-1165

Notes

The authors declare no competing financial interest.

49

Page 49 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



List of Journal Abbreviations

Journal Abbreviation
ACS Central Science ACS Cent. Sci.
BMC Bioinformatics BMC Bioinf.
British Journal of Pharmacology Br. J. Pharmacol.
Chemical Biology & Drug Design Chem. Biol. Drug Des.
ChemMedChem ChemMedChem
Computational and Structural Biotechnology Journal Comput. Struct. Biotechnol. J.
Current Opinion in Chemical Biology Curr. Opin. Chem. Biol.
Drug Discovery Today Drug Discovery Today
Journal of Chemical Information and Computer Sciences J. Chem. Inf. Model.
Journal of Chemical Information and Modeling J. Chem. Inf. Model.
Journal of Health Economics J. Health Econ.
Journal of Machine Learning Research J. Mach. Learn. Res.
Knowledge and Information Systems Knowl. Inf. Syst.
Nature Nature
Nature Biotechnology Nat. Biotechnol.
Nature Reviews Genetics Nat. Rev. Genet.
Statistics in Medicine Stat. Med.
Trends in Pharmacological Sciences Trends Pharmacol. Sci.

References

(1) DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G. The Price of Innovation: New Esti-

mates of Drug Development Costs. J. Health Econ. 2003, 22, 151 – 185.

(2) Hansch, C.; Maolney, P. P.; Fujita, T.; Muir, R. M. Correlation of Biological Activity of

Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients.

Nature 1962, 194, 178–180.

(3) Ashley, E. A. Towards Precision Medicine. Nat. Rev. Genet. 2016, 17, 507–522.

(4) Deng, X.; Nakamura, Y. Cancer Precision Medicine: From Cancer Screening to Drug

Selection and Personalized Immunotherapy. Trends Pharmacol. Sci. 2016, 38(1), 15–

24.

50

Page 50 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(5) Geppert, H.; Vogt, M.; Bajorath, J. Current Trends in Ligand-Based Virtual Screen-

ing: Molecular Representations, Data Mining Methods, New Application Areas, and

Performance Evaluation. J. Chem. Inf. Model. 2010, 50, 205–216, PMID: 20088575.

(6) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.; Camp-

bell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.;

Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.;

Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. A Quantitative Analysis of Kinase In-

hibitor Selectivity. Nat. Biotechnol. 2008, 26, 127–132.

(7) Hu, Y.; Gupta-Ostermann, D.; Bajorath, J. Exploring Compound Promiscuity Patterns

and Multi-Target Activity Spaces. Comput. Struct. Biotechnol. J. 2014, 9, 1–11.

(8) Peltason, L.; Hu, Y.; Bajorath, J. From Structure-Activity to Structure-Selectivity

Relationships: Quantitative Assessment, Selectivity Cliffs, and Key Compounds.

ChemMedChem 2009, 4, 1864–1873.

(9) Wassermann, A.; Geppert, H.; Bajorath, J. In Chemoinformatics and Computational

Chemical Biology ; Bajorath, J., Ed.; Application of Support Vector Machine-Based

Ranking Strategies to Search for Target-Selective Compounds; Humana Press, 2011;

Vol. 672; pp 517–530.

(10) Lindström, A.; Pettersson, F.; Almqvist, F.; Berglund, A.; Kihlberg, J.; Linusson, A.

Hierarchical PLS Modeling for Predicting the Binding of a Comprehensive Set of Struc-

turally Diverse Protein-Ligand Complexes. J. Chem. Inf. Model. 2006, 46, 1154–1167,

PMID: 16711735.

(11) Weill, N.; Rognan, D. Development and Validation of a Novel Protein-Ligand Finger-

print to Mine Chemogenomic Space: Application to G Protein-Coupled Receptors and

Their Ligands. J. Chem. Inf. Model. 2009, 49, 1049–1062, PMID: 19301874.

51

Page 51 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(12) Gönen, M.; Kaski, S. Kernelized Bayesian Matrix Factorization. IEEE Trans. Pattern

Anal. Mach. Intell. 2014, 36, 2047–2060.

(13) Nigsch, F.; Bender, A.; Jenkins, J. L.; Mitchell, J. B. O. Ligand-Target Prediction Using

Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance

Statistics. J. Chem. Inf. Model. 2008, 48, 2313–2325.

(14) Ning, X.; Rangwala, H.; Karypis, G. Multi-Assay-Based Structure-Activity Relation-

ship Models: Improving Structure-Activity Relationship Models by Incorporating Ac-

tivity Information from Related Targets. J. Chem. Inf. Model. 2009, 49, 2444–2456.

(15) Chapelle, O., Schölkopf, B., Zien, A., Eds. Semi-Supervised Learning ; MIT Press: Cam-

bridge, MA, 2006.

(16) Caruana, R. Multitask Learning. Machine Learning 1997, 28, 41–75.

(17) Kuncheva, L. I.; Whitaker, C. J. Measures of Diversity in Classifier Ensembles and

Their Relationship with the Ensemble Accuracy. Machine Learning 2003, 51, 181–207.

(18) Liu, J.; Ning, X. Multi-Assay-Based Compound Prioritization via Assistance Utiliza-

tion: a Machine Learning Framework. J. Chem. Inf. Model. 2017, 57, 484–498.

(19) Dixon, S. L.; Villar, H. O. Bioactive Diversity and Screening Library Selection via

Affinity Fingerprinting. J. Chem. Inf. Model. 1998, 38, 1192–1203.

(20) Bender, A.; Jenkins, J. L.; Glick, M.; Deng, Z.; Nettles, J. H.; Davies, J. W. "Bayes

Affinity Fingerprints" Improve Retrieval Rates in Virtual Screening and Define Orthog-

onal Bioactivity Space: When are Multitarget Drugs a Feasible Concept? J. Chem.

Inf. Model. 2006, 46, 2445–2456.

(21) Lessel, U. F.; Briem, H. Flexsim-X: a Method for the Detection of Molecules with

Similar Biological Activity. J. Chem. Inf. Model. 2000, 40, 246–253.

52

Page 52 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(22) Stumpfe, D.; Geppert, H.; Bajorath, J. Methods for Computer-Aided Chemical Biology.

Part 3: Analysis of Structure-Selectivity Relationships through Single-or Dual-Step

Selectivity Searching and Bayesian Classification. Chem. Biol. Drug Des. 2008, 71,

518–528.

(23) Wassermann, A. M.; Geppert, H.; Bajorath, J. Searching for Target-Selective Com-

pounds Using Different Combinations of Multiclass Support Vector Machine Ranking

Methods, Kernel Functions, and Fingerprint Descriptors. J. Chem. Inf. Model. 2009,

49, 582–592, PMID: 19249858.

(24) Vogt, I.; Stumpfe, D.; Ahmed, H. E. A.; Bajorath, J. Methods for Computer-Aided

Chemical Biology. Part 2: Evaluation of Compound Selectivity using 2D Molecular

Fingerprints. Chem. Biol. Drug Des. 2007, 70, 195–205.

(25) Ning, X.; Walters, M.; Karypis, G. Improved Machine Learning Models for Predicting

Selective Compounds. J. Chem. Inf. Model. 2012, 52, 38–50, PMID: 22107358.

(26) Li, H. Learning to Rank for Information Retrieval and Natural Language Processing ;

Synthesis Lectures on Human Language Technologies; Morgan & Claypool Publishers,

2011.

(27) Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; Li, H. Learning to Rank: from Pairwise

Approach to Listwise approach. Proceedings of the 24th international conference on

Machine learning ; 2007; pp 129–136.

(28) Burges, C. J.; Ragno, R.; Le, Q. V. Learning to Rank with Nonsmooth Cost Functions.

Advances in Neural Information Processing Systems (NIPS). 2006; pp 193–200.

(29) Lebanon, G.; Lafferty, J. Cranking: Combining Rankings using Conditional Probability

Models on Permutations. International Conference on Machine Learning. 2002; pp

363–370.

53

Page 53 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(30) Boyd, S.; Cortes, C.; Mohri, M.; Radovanovic, A. Accuracy at the Top. Advances in

Neural Information Processing Systems (NIPS). 2012; pp 962–970.

(31) Agarwal, S.; The Infinite Push: A new Support Vector Ranking Algorithm that Directly

Optimizes Accuracy at the Absolute Top of the List. Proceedings of the 2011 SIAM

International Conference on Data Mining ; 2011; pp 839–850.

(32) Agarwal, S.; Dugar, D.; Sengupta, S. Ranking Chemical Structures for Drug Discovery:

A New Machine Learning Approach. J. Chem. Inf. Model. 2010, 50, 716–731, PMID:

20387860.

(33) Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Support

Vector Machine. J. Chem. Inf. Model. 2005, 45, 549–561, PMID: 15921445.

(34) Joachims, T. Optimizing Search Engines Using Clickthrough Data. Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. New York, NY, USA, 2002; pp 133–142.

(35) Rudin, C. The P-Norm Push: A Simple Convex Ranking Algorithm That Concentrates

at the Top of the List. J. Mach. Learn. Res. 2009, 10, 2233–2271.

(36) Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.; Hamilton, N.; Hullender, G.

Learning to Rank Using Gradient Descent. Proceedings of the 22nd International Con-

ference on Machine Learning. New York, NY, USA, 2005; pp 89–96.

(37) Wale, N.; Watson, I. A.; Karypis, G. Comparison of Descriptor Spaces for Chemical

Compound Retrieval and Classification. Knowl. Inf. Syst. 2008, 14, 347–375.

(38) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity Searching. J. Chem.

Inf. Model. 1998, 38, 983–996.

54

Page 54 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(39) Que, Q.; Belkin, M. Back to the Future: Radial Basis Function Networks Revisited.

Proceedings of the 19th International Conference on Artificial Intelligence and Statis-

tics. 2016; pp 1375–1383.

(40) Harrell, F. E.; Lee, K. L.; Mark, D. B. Multivariable Prognostic Models: Issues in De-

veloping Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing

Errors. Stat. Med. 1996, 15, 361–387.

(41) Caron, P. R.; Mullican, M. D.; Mashal, R. D.; Wilson, K. P.; Su, M. S.; Murcko, M. A.

Chemogenomic Approaches to Drug Discovery. Curr. Opin. Chem. Biol. 2001, 5, 464–

70.

(42) Klabunde, T. Chemogenomic Approaches to Drug Discovery: Similar Receptors Bind

Similar Ligands. Br. J. Pharmacol. 2007, 152, 5–7.

(43) Chen, B.; Dong, X.; Jiao, D.; Wang, H.; Zhu, Q.; Ding, Y.; Wild, D. J. Chem2Bio2RDF:

a Semantic Framework for Linking and Data Mining Chemogenomic and Systems

Chemical Biology Data. BMC Bioinf. 2010, 11, 255.

(44) Hu, Y.; Bajorath, J. Compound Promiscuity: What Can We Learn from Current Data?

Drug Discovery Today 2013, 18, 644 – 650.

(45) Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. Low Data Drug Discovery

with One-Shot Learning. ACS Cent. Sci. 2017, 3, 283–293.

(46) Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a

Method for Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 2015,

55, 263–274, PMID: 25635324.

(47) Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; Jensen, K. F. Convolutional

Embedding of Attributed Molecular Graphs for Physical Property Prediction. J. Chem.

Inf. Model. 2017, 57, 1757–1772, PMID: 28696688.

55

Page 55 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



for Table of Contents use only

active compounds
selective compounds
x-selective compounds

B1

B2 B3

c1

c2

c3

c4

c5

c4

c6

c7

c5

c8

c9

c2

c4

c5

c10

h−
 ↓

g+ ↑

h+
 ↓

h−
 ↓

g+ ↑

↑ g+

↓ h−


↓ h−


r̄+

r̄−

r̄+

r̄−

r̄+

r̄−

r̄+

r̄−

r̄−

r̄+

1

Page 56 of 56

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


