
Parallel Methods for Evidence and Trust based Selection and
Recommendation of Software Apps from Online Marketplaces

Lahiru S. Gallege and Rajeev R. Raje
Department of Computer and Information Science

Indiana University-Purdue University Indianapolis, Indianapolis, IN USA.
Email: {lspileth, rraje}@iupui.edu

ABSTRACT
With the popularity of various online software marketplaces, third-
party vendors are creating many instances of software applications
(‘apps’) for mobile and desktop devices targeting the same set of
requirements. This abundance makes the task of selecting and
recommending (S&R) apps, with a high degree of assurance, for a
specific scenario a significant challenge. The S&R process is a
precursor for composing any trusted system made out of such
individually selected apps. In addition to feature-based
information, about these apps, these marketplaces contain large
volumes of user reviews. These reviews contain unstructured user
sentiments about app features and the onus of using these reviews
in the S&R process is put on the user. This approach is ad-hoc,
laborious and typically leads to a superficial incorporation of the
reviews in the S&R process by the users. However, due to the large
volumes of such reviews and associated computing, these two
techniques are not able to provide expected results in real-time or
near real-time. Therefore, in this paper, we present two parallel
versions (i.e., batch processing and stream processing) of these
algorithms and empirically validate their performance using
publically available datasets from the Amazon and Android
marketplaces. The results of our study show that these parallel
versions achieve near real-time performance, when measured as the
end-to-end response time, while selecting and recommending apps
for specific queries.

CCS CONCEPTS
• Information systems ~ Trust • Information systems ~
Recommender systems • Social and professional topics ~ Software
selection and adaptation

KEYWORDS
Software Selection and Recommendation; Algorithm
Parallelization; Sentiment Analysis; Subjective Logic.

1. Introduction: TruSStReMark
The S&R process typically is ad-hoc, manual and most often uses
the average star-rating system [1,2]. In our previous works
[3,4,5,6,7,8], we intoduced a framework, named as TruSStReMark
Trust-based Service Selection and Recommendation for
Marketplaces, which contains techniques to model, quantify,
specify, and monitor the trust of software apps. We have also
provided methods to analyze, and aggregate, external reviews of
software apps and used them to perform trust-based service
selection, and recommendation (S&R). The TruSStReMark
enhances the two prevalent approaches (i.e., CBF [14] and CLF
[15]) by incorporating insights from user reviews. Our previous
trust-based S&R algorithm (EbRanknRec) [6,7,8] has two
variations: (1) Eb-CBF-Rank (which integrates evidence-based
techniques into the CBF for selection) and (2) Eb-CLF-Rec (which
integrates evidence-based techniques into the CLF for
recommendation). In this paper, we describe two parallel versions
of these two previous algorithms – these versions are: i) batch
processing versions (i.e., bt-pEb-CBF-Rank and bt-pEb-CLF-Rec,
which are based on MapReduce ecosystem) and (2) stream
processing versions (i.e., st-pEb-CBF-Rank and st-pEb-CLF-Rec,
which are based on Sparks and Sparks Streaming ecosystems). As
these parallel techniques use the principles of Subjective Logic
(SL) [10], Sentiment Analysis (SA) [11], MapReduce Echo-
System (MR) [16], and Spark [17] and Spark Streaming (ST)
technologies [18].

1.1 pEbRanknRec-Batch Processing with Hadoop
The improved TruSStReMark framework proposed in this paper
gathers and analyses external user reviews generated by online
marketplaces – these reviews due to their sheer size are now
considered as a big data challenge. The improved TruSStReMark
framework parallelizes and enhances the two prevalent approaches
(based on CBF and CLF) as shown in Figures 1 and 2. The goal of
these two enhanced techniques is to improve the performance and
confidence while searching and recommending software services
by parallelizing the previous algorithms [8] of aggregating external
evidences available as textual reviews. First, the parallel algorithms
maintain a list of named entities for each user (i.e., a profile of
important service QoS feature keywords). It performs the improved
evidence-based search algorithm (Figures 1 to 4) in parallel as
follows: Each user query for items (or services or apps) is tagged
with associated evidences of these feature vectors calculated from
users’ reviews about other items. Given a review dataset from a
marketplace, which includes service descriptions, user-service

This is the author's manuscript of the article published in final edited form as:

Gallege, L. S., & Raje, R. R. (2017). Parallel Methods for Evidence and Trust Based Selection and Recommendation of Software Apps from
Online Marketplaces. In Proceedings of the 12th Annual Conference on Cyber and Information Security Research (p. 4:1–4:8). New York,
NY, USA: ACM. https://doi.org/10.1145/3064814.3064819

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/146989025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3064814.3064819

CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA Gallege et al.

2

relations, and set of reviews by the users, the pEbRanknRec
performs dataset transformations to partition the dataset randomly
(possible due to the review independence property) such that HDFS
could handle the correct service spaces, user spaces and user-
service spaces for each mapper. For each service inside each
mapper, the basic content-based algorithm calculates a vector (of
size k keywords) by parsing the service descriptions using a NLP
technique such as TF-IDF (all data structures are cached and reused
if no updates detected). Additionally, the pEbRanknRec augments
the process by parsing textual reviews from users to calculate the
sentiment expressed by each user’s about the targeted QoS
properties of services. These QoS values for services can be
calculated from the keywords, from service descriptions and from
user reviews. Using the TextBlob library [19] for each sentence, it
calculates the sentiments of user reviews and caches them. SL
provides the necessary operators to aggregate different opinions
about a service QoS values from different users depending on the
situation. The conjunction, consensus and ordering operators (from
the subjective logic) [10] are used in pEbRanknRec algorithms. The
positive polarity of SA is a measure of belief in the textual
evidences and similarly, the negative polarity is a measure of
disbelief. Then naturally, subjectivity is the indication of certainty
when high and uncertainty when low. Therefore, without the loss
of generality we adapt the following linear conversion from SA to
SL, described below in subsection 2.2.1, for all the calculations
done inside the pEbRanknRec.

Figure 1. Parallel evidence-based CBF ranking (pEb-CBF-Rank)

Figure 2. Parallel evidence-based Collaborative Filtering (CLF)
recommendations (pEb-CLF-Rec)

1.2 Conversion of SA to SL
Table 1 presents four sample sentiments calculated from

randomly selected but associated review sentences. The
TruSStReMark identifies a set of named entities for users from
storing their queries (i.e., which QoS features are important to
them). These named entities for apps can be calculated from the
keywords, their description, and from user reviews. Given that, and
using TextBlob library, the TruSStReMark calculates the
sentiments of user reviews. We map the values in Table 1 to the
corresponding SL tuples using the process described below. The
boundary cases in this conversion process are computed as listed in
Table 2. The in-between values are equally weighted and divided
among the relevant entries.

Table 1. General and QoS sentiments and scores from reviews [7,8]

Table 2. Conversion from Sentiments (Subjectivity, Polarity) tuples to
< Belief, Disbelief, Uncertainty > tuples

(P,S) <B,D,U> (P,S) <B,D,U>
(+1,1) <1,0,0> (0,0) <undefined>

(+0.75,0.25) <0.75,0,0.25> (-0.25,0.25) <0,0.25,0.75>
(+0.5,0.5) <0.5,0,0.5> (-0.5,0.5) <0,0.5,0.5>

(+0.25,0.25) <0.25,0,0.75> (-0.75,0.25) <0,0.75,0.25>
(0,0) <undefined> (-1,1) <0,1,0>
Table 3. Matrix representation of the SSA to SL conversion

A = [1, 1
 0.75, 0.25
 0.5, 0.5
 0.25, 0.25

 -0.25, 0.25
 -0.5, 0.5
 -0.75, 0.25
 -1, 1]

Y = [1, 0, 0
 0.75, 0, 0.25
 0.5, 0, 0.5
 0.25, 0, 0.75
 0, 0.25, 0.75
 0, 0.5, 0.5
 0, 0.75, 0.25
 0, 1, 0]

Let A be a matrix in which each row is a case of P, S combination,
and the first column is P, and the second column is S. For example,
from the table, A should be represented in matrix format as
indicated in Table 3. Let Y be a matrix in which each row is the
corresponding case of B, D, U combination, and the 1st column is
B, 2nd column is D and the 3rd column is U. From Table 3, Y should
be derived from direct conversion of A (we just need B and D in Y
since B, D, U are linearly dependent such that B+D=1-U). Then,
the SA to SL mapping problem is defined as to convert from A to
B. Assume the conversion follows the following linear form:

A * X = Y,
…where X is the conversion matrix that the solution is looking for.
We formulate the solution as a multivariate linear regression
[20,21]. Next, the calculation of X is obtained by solving the
following optimization problem:

min_X || A * X - Y ||^2_F
s.t., A * X >= 0

Once X is calculated, then we can use it to convert a new (P, S)
combination (i.e., a), via the following equation:

Sample Review Sentences Named Entity Sentiment Analysis
Polarity Subjectivit

y
Nice, Good Work. General +0.700 0.875
Very bad. General -0.350 0.600
I love this apps’ UI with large text and
figures.

User Interface +0.357 0.514

I hate this app, it drains the battery so fast
and slows down my device.

 Resources Usage -0.252 0.596

Parallel Methods for Evidence and Trust based Selection .. CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA

 3

BDU values = a * X (that is, y = a * X is the converted BDU values)
This result is not necessarily non-negative (as b,d,u values are
probabilities), hence, a normalization method needed to be applied
and the TruSStReMark framework uses the following
normalization:
 y = y / sum(y) (i.e., normalize y by dividing y by the sum of its values)
This is chosen to normalize the dominance of any single value and
get the ranges within the value ranges of b, d, and u [21]. Therefore,
the results should be the normalized y representing the BDU
probabilities.

Starting from the identified boundary samples, which are
listed in Table 3, all the other sentiment values computed by the
framework are converted to subjective logic tuples using the model
described above.

2. pEbRanknRec-Batch Processing with Hadoop
This section discusses the parallelization of these approaches in
details using the map-reduce paradigm.

Figure 3. TruSStReMark Batch Processing Architecture

 TruSStReMark is categorized into two phases called as online and
offline phases. The offline phase performs scraping of evidences
from marketplace, organize and cleansed them into a data
warehouse (i.e., ETL -Extract, Transform and Load, categorization
and organization of evidences). The online phase uses the data
warehouse to generate and update metadata related to trust
contracts and to perform analysis (i.e., execution of the algorithms
to analyze evidences in real-time). Real-time analysis of evidences
for one service is fast enough to perform in a single computing
node, however, the next step was to improve our solution to
perform parallel quarries from different users and handle the load
of a real marketplace. As the number of apps and number of parallel
queries (roughly indicated by number of downloads) increases,
both online and offline phases needed modifications such that they
can perform analysis and produce results in real-time. When loaded
with parallel user quarries to simulate an online service
marketplace, the performance of these evidence-based operations
in both phases are affected as a result of these modifications.
 First, as an experimental motivation for parallelizing our previous
algorithms, we performed and compared the runtime variation of
the serialized versions of these algorithms (i.e., Eb-CBF-Rank and
Eb-CLF-Rec) with the increasing number of reviews in the
datasets. As the number of reviews increases, both the number of

users and number of apps also increases [8]. Based on this exercise,
it was clear that both prevalent and our trust-based algorithms take
more time to perform their operations. However, the trust-based
algorithms increase at a much larger rate, due to the sentiment
analysis operations on the reviews, the conversions of aggregated
sentiments to subjective logic based tuples, and the subjective
logic-based calculations of the selected set of QoS-related
sentences [8].
 Therefore, we propose that this increase in time can be reduced
significantly by parallelizing and running the algorithms (named
pEbRanknRec) using a framework such as MapReduce based
Hadoop environment using an Amazon EMR (Elastic MapReduce)
cluster. Additionally, the pEbRanknRec augments the process (i.e.,
relevant CBF and CLF) by parsing textual reviews from users to
calculate the sentiment expressed about each user’s targeted QoS
properties of apps. These QoS values, as indicated earlier, for apps
can be calculated from the keywords, from service description and
from user reviews. Using TextBlob library inside each sentence, the
algorithm calculates the sentiments of user reviews and cached
them. The conjunction, consensus and ordering operators from
subjective logic are used in pEbRanknRec algorithms [8].
 We use the Hortonworks Data Platform (Figure 3), which is an
open-source Hadoop distribution with pre-configured packages and
tools such as, YARN (i.e., the resource and job management
engine), HDFS (i.e., Hadoop Distributed File System) and HIVE
(i.e., the data warehouse infrastructure). Periodically, during the
offline phase, the custom review scrapper loads the most recent
batch of the reviews from the marketplace to the HDFS. This ETL
processing (i.e., Extract, Transform and Load) part of the offline
phase can be configured to run either hourly, daily or off-peak load
times. For example, a MapReduce job runs offline periodically to
calculate vectors (of size k keywords –the outline of this algorithms
are presented in Figure 4 and Figure 5) by parsing a new service
description (i.e., identified using unique item id from the reviews)
using a NLP technique such as TF-IDF (all data structures are
cached and reused if no updates detected).
 Given a review dataset from a marketplace which includes
service descriptions, user-service relations, and a set of reviews by
the users, the batch processing version of the algorithm
pEbRanknRec performs dataset transformation to partition (i.e.,
possible due to the review independence property) such that HDFS
could handle the correct service spaces, user spaces and user-
service spaces for each mapper. Also, during the offline phase,
MapReduce batch jobs are submitted to extract sentiments and load
to a structured format in the Hive warehouse, and then convert
those sentiments to subjective logic based tuples to the appropriate
location in the Hive warehouse. Finally, when the new data is
available in the Hive warehouse, other batch jobs use subjective
logic operators to update trust vectors in the user space and the
service space (i.e., Service Vector Space S[] and User Vector Space
in U[] in Figure 4 and Figure 5) with a fresh set of subjective logic
tuples, which are organized by their QoS values.
 The goal of the online phase of the parallelized TruSStReMark
framework (i.e., pEbRanknRec approach as indicated in Figure 3
and Figure 4) is to improve performance and confidence while

CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA Gallege et al.

4

searching and recommending software apps by parallelizing the
previous algorithms of aggregating external evidences available as
textual reviews. First, it has a list of named entities for each user
(i.e., a profile of important service QoS feature keywords). It
performs the improved evidence-based search and
recommendation algorithms (i.e., as indicated in Figure 3 and
Figure 4) in parallel as follows: each user query for items/apps/apps
is tagged with evidences of these feature vectors are used (i.e.,
which are calculated from users reviews during the offline phase of
the algorithm). Since, structured data (i.e., user spaces, item spaces
and their corresponding trust scores) are available in the data
warehouse each mapper can now handle the correct service spaces,
user spaces and user-service spaces as indicated in Figure 4 and
Figure 5.

Figure 4. Evidence-based search and ranking (pEb-CBF-Rank)

Figure 5. Evidence-based Recommendation (pEb-CLF-Rec)

For each app inside each mapper, the following parts of the
basic content-based algorithm are executed. When a query is
forwarded to the system, during the online phase of the algorithms,
each mapper uses part of the meta-data by executing the algorithm
to measure accuracy and performance matrixes. Then we randomly
pick approximately 5% of the users from each dataset to remove
one service from each of the selected users and we parse each of
the dataset though both prevalent and evidence-based algorithms to
generate top-N search and recommendation (S&R) result sets for
each user. If the test service is found in the set (at any particular
rank i) of resulting apps list to the relevant user then it is considered
as a Hit. We use a custom range petitioner to sort the candidate set
directed to each reducer to produce a globally sorted candidate
service set based on their confidence scores. In Figure 4 and Figure
5, steps 1-4 constitutes the offline phase and rest makeup the online
phase of the algorithm.

When all the results are obtained, we produce another set
randomly to cross validate and generate results iteratively to get the
average of all matrices. To compare the sequential algorithm with
the parallel algorithm, we use average end-to-end time calculations.
In the parallel version of the algorithm, the end-to-end time is
measured by combining the average mappers time and reducer
times in online phase with offline phase.

2.1 Experimentation and Evaluation Criteria

We perform the offline stage after partitioning and loading data to
the HDFS. Then each mapper locally parses the reviews by
executing the algorithm to measure accuracy and performance
matrixes. Then we randomly pick approximately 5% of the users
from each dataset to remove one service from each of the selected
users and we parse each of the dataset though both prevalent and
evidence-based algorithms to generate top-N search and
recommendation (S&R) result sets for each user. If the test service
is found in the set (at any particular rank i) of resulted services list
to the relevant user (considered as a Hit). We use a custom range
partitioner to sort the candidate set directed to each reducer to
produce a globally sorted candidate service set based on their
confidence scores. When all the results are obtained, we produce
another set of used to cross validate and generate results iteratively
to get the average. We evaluate each of the result-set for both pEb-
CBF-Rank and pEb-CLF-Rec using HR (Hit Ratio) and ARHR
(Average Reciprocal Hit-Rank) measurements that are commonly
used in S&R evaluations. The HR is a measure of the number of test
services that each algorithm included in the result-set of S&R. If n
is total #services of the result-set, then HR = (Number of Hits)/n.
The ARHR is for evaluating the relative significance of the position
(pi) in the result-set of S&R. Hits which appear earlier are scored
higher than the Hits appear later in the result-set ordering. If service
is positioned at pi in the result-set of size n, then ARHR = (1\n)
∑(1\pi). The globally sorted final result-sets are evaluated using the
rank (i.e., number of 3,5,10,15 or 20 set of services) by producing
100 times to get the average.

2.2 Results and Analysis of pEbRanknRec-Batch

To evaluate this parallelized approach, we increase the size of data
to 10 times the size of both the sequential experiments datasets (i.e.,
when algorithms perform inside a single instance). We then apply
Search/Ranking (pEb-CBF-Rank) to the Android marketplace
Review dataset [10] (which now includes 34,169,077 reviews of
mobile 2,702,594 apps and apps) and apply Recommendation
techniques (pEb-CLF-Rec) to the Amazon Marketplace Reviews

pEb-CBF-Rank: Service Reviews, Descriptions and Query

For Each Selected Interval (0)(BY Hour, Day, OR Size)
 Push new/updated review data to HDFS
Each Mapper in Parallel (1) (only for new reviews):
 For Each SERVICE (S[] as Service Vector)
 For All REVIEWS (T as Combined Text Document of R,D)
 Calculate TF-IDF and select top k and cache
 Cached: S[k] Service Vector (Sorted from TF-IDF score)
Each Mapper in Parallel (2): (only for new reviews):
 For Each USER (U[] as User Vector)
 For All REVIEWS (T as Combined Text Document of R,Q)
 Calculate TF-IDF and select top k and cache
 Cached: U[k] User Vector (Sorted from TF-IDF score)
Each Mapper in Parallel: with S[] (3) and with U[] (4)
 For Each SERVICE (S[]/U[] as QoS <B,D,U> tuples){
 For Each REVIEW (T as Text)(1 to N) {
 For each QoS in S[]/U[] {
 In Parallel Calculate SENTIMENT of T (P,S)
 (Polarity, Subjectivity)
 In Parallel Convert (P,S) to <B,D,U>
 Calculate W - TIME-SENSITIVITY of T (Range 0 to 1)
 [('ReviewDate'-'ServiceFirstAvailableDate') /

('Today'- 'ServiceFirstAvailableDate')]
 In Parallel Update S[i]/U[i] <B,D,U>

 (Consensus OR Conjunction)
 Based on current <B,D,U> : subject to weights of W
 Cached: Produce S*[], U*[] (with evidence <B,D,U>s)
 // User and Service Space Metadata generation Complete!

Each Mapper in Parallel: (With respective to Q)
 For each size k and perform CBF on S[]/U[]
Each Reducer in Parallel:

 pEb-CLF-Rec: Service Reviews, Descriptions and Query

Execute Steps (0)-(3) Cntd Addition to Figure 4
Each Mapper in Parallel(4): (only for new/updated reviews):
 Pass all reviews and augment or update
 Cached: produce local U-I [] rating vector
Each Mapper in Parallel: User’s U[], U[QoS] <B,D,U> tuples
 For Each CANDIDATE SERVICE (S[], S[QoS] <B,D,U> tuples)
 Calculate Two COSINE Similarity
 Each based on the vales from
 - (1) S[] with U[]
 - (2) S[QoS] with U[QoS] [For Each (B,D,U)]
 If two users are A and B: For each common R rating,
 Then COSINE Similarity: ((Ʃ Ar * Br)/(||A|| * ||B ||))
 Where ||A|| = (Ʃ (Ar)2)0.5
// User-Service Space Metadata generation Complete!

Each Mapper in Parallel: (With respective to Q)
 For each size p,k and perform CLF on S-I[]
Each Reducer in Parallel:
 Produce local candidate set C[p*k]
 Locally sorted: C[p*k] based on search ranking score
Use custom range practitioner (globally) produce C*[p*k]

Parallel Methods for Evidence and Trust based Selection .. CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA

 5

dataset (which now includes Reviews 34,686,770 reviews of
products 2,441,053) respectively. Both datasets had around 6
million users, users > 50 reviews more than 50 thousand, 80 median
words per review and timespan Jan 1995 – October 2016. Our
experimental setup was made up of Java and Python running on an
environment containing Amazon EC2 (Amazon Elastic Computing
Cloud) free tier Linux t2.micro instances with 64-bit platform
support, 15 node EMR (Elastic MapReduce) Cluster running
version 2.4 Hadoop.
 We present the results from the experiments conducted with a
parallel version of the trust-based selection algorithm (i.e., pEb-
CBF-Rank). For the search/ranking study, we have used the
Android Marketplace dataset. The experiments compare our
evidence-based approach for search/ranking with the prevalent
approaches of Content-based filtering (i.e., CBF and sequential
sEb-CBF-Rank, with parallel pEb-CBF-Rank). Table 4 indicates
the HR and ARHR percentage improvements obtained by these
approaches using the Android marketplace-based dataset. It is
evident from Figure 6 that the proposed parallel evidence-based
search and ranking algorithm performs better than the prevalent
content-based filtering (CBF) algorithm. This is equally true with
our original sequential version in terms of the HR and ARHR
achieved. We performed these parallel algorithms iteratively 100
times to get the average of quality matrices including the average
runtime. Since, we randomly take a portion of the dataset out to
cross validate the results at each step there is a slight difference
between the sequential and parallel version of the results. However,
they perform nearly within the same range of values when we
average the results.

Table 4. Percentage improvements of HR and ARHR on Android
Marketplace based dataset experiments

Technique /
Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20

CBF (HR) 11.67 21.34 22.67 24.81 26.72
sEb-CBF-Rank (HR) 12.22 25.69 30.81 32.62 33.9
pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65
CBF (ARHR) 5.3 9.92 10.76 12.4 12.86
sEb-CBF-Rank (ARHR) 6.78 14.27 17.11 17.38 17.92
pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56

Figure 6. HR & ARHR comparison of Android Marketplace dataset

 Next, we present the results from the experiments conducted
with parallel version of the trust-based recommendation algorithm
(i.e., pEb-CLF-Rec). For this recommendation study, we used the
Amazon Marketplace dataset. The experiments compare the
evidence-based approach for search with the prevalent approaches

of Collaborative filtering (i.e., CLF, sequential version (sEb-CLF-
Rank), and parallel version (pEb-CLF-Rec) of the algorithms).

Table 5. Percentage improvements of HR and ARHR on Amazon
Marketplace based dataset experiments

Technique /
Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20

CLF (HR) 19.17 21.8 24.26 26.72 30.72
sEb-CLF-Rank (HR) 21.08 23.82 26.65 29.18 32.18
pEb-CLF-Rank (HR) 20.64 23.13 25.95 28.58 31.38
CLF (ARHR) 9.58 10.38 11.55 13.03 15.03
sEb-CLF-Rank (ARHR) 10.64 12.53 13.66 15.36 18.36
pEb-CLF-Rank (ARHR) 9.93 12.02 13.21 14.89 17.52

 Table 5 indicates the HR and ARHR percentage improvements
obtained by these approaches against the Amazon marketplace-
based dataset. It is evident from the Figure 7 that the proposed
parallel evidence-based search and ranking algorithm perform
better than the prevalent collaborative filtering approach (CLF) and
equally with our earlier sequential approach in terms of HR and
ARHR. In summary, by analyzing the results, we observe that the
percentage improvement of HR and ARHR is equal to prevalent
approaches given the results were generated in near real-time.
Again, as mentioned previously, we randomly take a portion of the
dataset out to cross validate the results at each step there is a slight
difference between the sequential and parallel version of the results.
However, they perform nearly during the same range of values
when we average the results. This shows the importance of QoS
consideration in our evidence-based approach in real-time, and this
validates our approach.

Figure 7. HR & ARHR comparison of Amazon Marketplace dataset

Figure 8. Results comparison of pEb-CBF-Rank without

randomization
As an additional step to verify the behavior of sequential and
parallel version of the algorithms, we removed the random portion

CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA Gallege et al.

6

of the dataset partitioning. At each iteration of the experiment, both
the sequential and parallel algorithms now receive the same test and
training data without random selection between the approaches by
manually overriding the data in HDFS. The experiment was
performed 100 times to get the average values of both HR and
ARHR matrices and Figure 8 indicates results of this additional
experiment. As expected, the results indicate that both sequential
and parallel algorithms were able to produce the same HR and
ARHR values, since they both received the same data sets in HDFS.

3. pEbRanknRec-Stream Processing with Spark
This section describes TruSStReMark adaptation to the stream
processing concepts. Since there were improvements with
parallelized versions of the algorithms (i.e,. pEb-CBF-Rank and
pEb-CLF-Rec), we also realized that MapReduce based batch
processing is also limiting the performance of these algorithms.
Therefore, we thought that this increase in time can be reduced
further by running the algorithms using a data streaming framework
such as Apache Spark based Sparks Streaming oriented processing
to replace the Apache Hadoop based batch processing framework.
Since Spark Streaming can directly use HDFS, the overall
architecture remains the same (as indicated in Figure 8). The
advantage that stream processing brings is its ability to perform
micro-batch based transformations, without flushing the data to the
disk. For example, earlier, during the batch processing,
TruSStReMark executes mapreduce jobs in batches (e.g., to extract
related sentiments from QoS of apps using the reviews, to convert
sentiments to subjective logic based tuples and augment apps’ trust
vectors using subjective logic based operators).
The end-to-end time is measured to perform each streaming step
and iteratively to measure the average runtime. The streaming
version performs faster which is expected due to not having the
overhead associated with the batch oriented processing associated
with MapReduce jobs. For example, each time a batch job executes
the results are needed to be written to distributed disk such that the
next batch jobs have a consistent view of the data to preserve the
states. However the streaming version of this does not need to write
data and preserved them in the distributed version of the memory
to perform sequence of jobs by having a consistent view of the
states. This improves the performance of our algorithms while
performing the bath oriented jobs to calculate the QoS oriented
sentiments, to convert them to the associated subjective logic based
tuples, and then update the service trust scores using subjective
logic based operators. The experiments are performed with this
improved stream processing architecture using Amazon EMR
(Apache Spark with Spark Streaming) clusters. The results and
analysis are discussed in next subsections.

3.1 Results and Analysis of pEbRanknRec-Stream

 Table 6 indicates the HR and ARHR percentage improvements
by comparing the batch oriented version of the pEb-CBF-Rank
(i.e., bt-pEb-CBF-Rank) to stream oriented version of the pEb-
CBF-Rank (i.e., st-pEb-CBF-Rank). As indicated earlier the slight
differences are due to the random requirement of data partitioning

to training and test datasets which is mandatory to calculate the HR
and ARHR measures.

Figure 9. TruSStReMark Stream Processing Architecture

Table 6. HR and ARHR on batch and streaming of pEb-CBF-Rank

Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20
bt-pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65
st-pEb-CBF-Rank (HR) 12.34 24.05 31.64 30.60 31.96
bt-pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56
st-pEb-CBF-Rank (ARHR) 5.69 13.07 17.713 16.30 16.68

Figure 10. Comparison of bt-pEb-CBF-Rank and st-pEb-CBF-Rank

Figure 10 indicates these results in graphical notation. As expected
we concluded that apart from the slight differentiation of the quality
measures due to the random requirements in calculating HR and
ARHR, the batch and streaming version of the trust-based selection
algorithms performs equally well in quality matrices.
 Similarly, Table 7 indicates the HR and ARHR percentage
improvements by comparing the batch oriented version of the pEb-
CLF-Rac (i.e., bt- pEb-CLF-Rac) to stream oriented version of the
pEb-CLF-Rac (i.e., st- pEb-CLF-Rac). As indicated earlier the
variations of the values are due to the randomness of the data
partition while calculating the quality matrices.

Table 7. HR & ARHR on batch & streaming results of pEb-CLF-Rac
Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20

bt-pEb-CLF-Rec (HR) 20.64 23.13 25.95 28.58 31.38

st-pEb-CLF-Rec (HR) 19.60 24.28 27.24 27.15 29.81

bt-pEb-CLF-Rec (ARHR) 9.93 12.02 13.21 14.89 17.52

st-pEb-CLF-Rec (ARHR) 9.43 12.621 13.87 14.14 16.64

Parallel Methods for Evidence and Trust based Selection .. CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA

 7

Figure 11. Comparison of bt-pEb-CLF-Rec and st-pEb-CLF-Rec

 Figure 11 indicates the trust-based recommendation algorithms
versions of the batch and streaming results in graphical notation.
As expected we concluded that HR and ARHR matrices of the
batch and streaming version of the trust-based recommendation
algorithms performs equally well.

4. Performance and Runtime Analysis

We evaluated the performance of the pEb-CBF-Rank and the pEb-
CLF-Rec against prevalent approaches. Since the main concern is
performance of the algorithms, we compared the runtime
comparison of algorithms (prevalent CBF/CLF with both
sequential sEb-CBF/CLF-Rank/Rec, and parallel pEb-CBF/CLF-
Rank/Rec) with the increasing number of reviews in the datasets.

Figure 12. Aggregated average runtimes of the parallel algorithms

 As the number of reviews increases, both the number of users and
number of apps also increase. To compare the sequential algorithm
with the parallel algorithm we use average end-to-end time
calculations. In the parallel version of the algorithm, the end-to-end
time is measured by combining the average mappers time and
reducer times in the online phase with the offline phase.
 Since the main concern is performance of the algorithms, we
compared the runtime comparison of algorithms (prevalent
CBF/CLF with both sequential sEb-CBF/CLF-Rank/Rec, and
parallel pEb-CBF/CLF-Rank/Rec) with the increasing number of
reviews in the datasets. As the number of reviews increases, both
the number of users and number of services also increase.
 From the comparisons in Figure 12, it is clear that both prevalent
and trust-based algorithms take more time to perform their

operations. Since, the sequential evidence-based S&R algorithms
increase at a much higher rate, due to due to its additional
calculations. Our parallelized algorithms using
MapReduce/Hadoop environment perform equally when dataset
size is much higher. Each data set inside local node of the cluster is
small and it was able to perform the algorithm efficiently locally to
produce global results.
 Also, caching experiments are performed by directly using the
HIVE meta-data store. From the comparisons in Figure 11, it is
clear that both prevalent and trust-based algorithms take more time
to perform their operations. Since, the sequential evidence-based
S&R algorithms increase at a much higher rate, due to its additional
calculations. Our parallelized algorithms using
MapReduce/Hadoop environment perform equally when the
dataset size is much larger. Each data set inside the local node of
the cluster is small hence, it was able to efficiently perform the
algorithm locally in order to produce global results.

Figure 13. Aggregated average runtime of batch vs streaming

 Figure 13 indicates analysis about streaming versions of the
algorithms in terms of average runtime compared to average
runtime of the batch processing versions of the algorithms. The
streaming version performs faster which is expected due to not
having the overhead associated with the batch oriented processing
that MapReduce jobs require. Each time a batch job executes the
results need to be written to a disks which are distributed such that
the next batch jobs have a consistent view of the data in order to
preserve the states. We also noted that the gap is being widen when
the number of reviews are increased. This is also expected, as when
the load increases the stream processing performs much better than
batch oriented processing version of the algorithms.

5. Related Works
There are not many related efforts on evidence-based searching,
ranking and recommending when considering software apps and
services from marketplaces. Though, many prevalent approaches
propose techniques to improve collaborative and content-based
filtering algorithms. The work proposed by Fu et al. [22]
experiments on a recommender system to parallelize data using
Hadoop echo-system. It collects data from users, commodities, and
transactions. Although they describe and address the challenges in
processing and generating recommendations with large data sets,

CISRC '17, April 04-06, 2017, Oak Ridge, TN, USA Gallege et al.

8

they do not consider external evidences to further improve results
quality. Zhou et al. [23] propose a real time search and
recommender system targeting microblogs. They only consider
user tags (i.e., hashtags) to compute the similarity. In the context of
software, it is not enough to consider the service type and
description tags. The work proposed by Jiang et al. [24]
experiments with a Hadoop based recommendation mechanism to
improve collaborative filtering performance at scale. The
difference between this our approach is that we consider individual
service features and attributes while their approach considers
confidence about web services as a whole. Zhang et al. [25] propose
a ranking model for scientific publication (e.g., dblp). The model
named as Knowledge-Social-Trust, which is a graph-based
network. It recommends in real-time by quickly calculating the
relative importance of citations by crawling repositories. Compared
to our use case in service marketplace, it has no concept of citing
or referring one service to another. Therefore, their evidence-based
model can be adapted to the context of marketplaces if these stores
introduce service referencing or advanced user interactions.

6. Conclusion and Future Works
This paper presents a framework (“TruSStRemark”), which
investigates algorithmic modifications necessary to parallelize and
perform evidence-based search and recommend (S&R) of services.
Using the TruSStReMark framework we suggested algorithmic
modifications necessary to parallelize and perform evidence-based
search and recommendation (S&R) of apps. The framework uses
datasets from Amazon and Android marketplaces. The two batch
processing versions of the parallel algorithms (i.e., pEb-CLF-Rec
and pEb-CLF-Rec) in the pEbRanknRec algorithms were executed
using an EMR environment in AWS using Hadoop echo-system.
The main algorithmic calculations are based on sentiments from the
large volumes of textual reviews, which are then numerically
converted to subjective logic based BDU tuples to apply aggregation
operators). Hive warehouse is used as the caching meta-store, where
algorithms quickly find the aggregated trust scores of QoS related to
apps. When compared to prevalent approaches, the results indicate
that our parallelized algorithms improve the average performance of
the trust-based algorithms and are able to generate better or equally
well with both datasets in terms of HR and ARHR. Next, the batch
processing part of the Hadoop jobs are streamlined using Sparks
streaming techniques.
When compared to the batch oriented technique, the stream oriented
algorithms (i.e., st-pEb-CLF-Rec and st-pEb-CLF-Rec) were able to
perform equally well with the advantage of reduced aggregated
average runtimes. The advantage of our approach is that it is based
on heterogeneous and dynamic software features (QoSs) of apps that
enable better temporal comparisons between software apps. The
results of this study indicate that the evidence-based approaches
provide better selections and recommendations both in terms of
quality and relative ranking of apps. The results of this study indicate
that the evidence-based approaches provide better selections and
recommendations both in terms of quality and relative ranking of
software services. We plan to improve performance further by using
an iterative version of MapReduce with intelligent caching. Also,
other similarity measurement techniques such as matrix
factorization used in the latent-models applications are our future
explorations in the context of large datasets in marketplaces.

References
[1] Konstan, J. A., 2008. Introduction to recommender systems. ACM Special

Interest Group on Management of Data (SIGMOD) Conference.
[2] Ning, X. and Karypis, G. 2015. Recent Advances in Recommender Systems and

Future Directions. In Proceedings of Pattern Recognition and Machine
Intelligence (PReMI) Volume 9124: 3-9.

[3] Gallege, L. S., Gamage, D. U., Hill, J. H., and Raje R. R. 2011. "Understanding
the trust of software-intensive distributed systems," Concurrency and
Computation: Practice and Experience, pp. 114-143.

[4] Gallege, L. S., Gamage, D. U., Hill, J. H., and Raje R. R. 2016. "Towards a
Comprehensive Method for Integrating Trust into Enterprise DRE Systems," in
Proceedings of Real-time Computing Systems and Applications (RTCSA 2011).

[5] Gallege L.S., 2013. "TruSSCom: Proposal for Trustworthy Service
Representation, Selection and Negotiation for Integrating Software Systems," in
Proceedings of the 2013 International Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH 2013).

[6] Gallege, L. S., Gamage, D. U., Hill, J. H., and Raje R. R. 2013. "Trust contract
of a service and its role in service selection for distributed software systems," in
Proceedings of 8th Annual Cyber and Information Security Research
Conference (CSIIRW 2013).

[7] Gallege, L. S., Gamage, D. U., Hill, J. H., and Raje R. R. 2013. "Trustworthy
Service Selection Using Long-Term Monitoring of Trust Contracts," in
Proceedings of 17th IEEE International Enterprise Computing (EDOC 201).

[8] Gallege L. S. and Raje, R. R. 2016 "Towards Selecting and Recommending
Online Software Services by Evaluating External Attributes," in Proceedings of
the 11th Annual Cyber and Information Security Research Conference (CISR
2016).

[9] Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton University
Press. Princeton.

[10] Jøsang, A. 1997. Artificial Reasoning with Subjective Logic. In Proceedings of
the Second Australian Workshop on Common-sense Reasoning, Perth,
Australia.

[11] Pang, B. and Lee L. 2002. ThumbsUp? Sentiment Classification using Machine
Learning Techniques. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP).

[12] Amazon Snap Review dataset. 2015. http://snap.stanford.edu/data/
[13] Android Marketplace from Google Play Store. 2016. Reviews from Mobile App

Market-place, https://play.google.com/store/apps.
[14] Wikipedia Inc, Content Based Filtering, Accessed on 12/01/16, URL:

https://en.wikipedia.org/wiki/Recommender_system#Content-based_filtering,
2016.

[15] Wikipedia Inc, Collaborative Filtering, Accessed on 12/01/16, URL:
https://en.wikipedia.org/wiki/Collaborative_filtering, 2016.

[16] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI) p.137-150.

[17] H. Karau, A. Konwinski, P. Wendell and M. Zaharia, Learning Spark:
Lightning-Fast Big Data Analytics, 1st ed., O'Reilly Media, Inc., 2015.

[18] Apache Inc, Spark Streaming, Accessed on 12/01/16, URL:
https://en.wikipedia.org/wiki/Apache_Spark#Spark_Streaming, 2016.

[19] TextBlob Project. 2016. Python based Text Processing Tool Suit.
[20] Wikipedia Inc., Linear Regression, Accessed on 08/15/16,

URL:https://en.wikipedia.org/wiki/Linear_regression, 2016.
[21] Wikipedia Inc., Miltivariate Linear Regression, Accessed on 08/15/16,

URL:https://en.wikipedia.org/w/index.php?title=Multivariate_linear_regressio
n, 2016.

[22] Fu, C. and Leng, Z. 2010. A Framework for Recommender Systems in E-
Commerce Based on Distributed Storage and Data-Mining, In Proceeding of
International Conference on E-Business and E-Government (ICEE),
Guangzhou. pp. 3502-3505.

[23] Zhou, X., Wu, S., Chen, C., Chen, G., and Ying, S. 2014. Real-time
recommendation for microblogs. Information sciences (IJJS 2014).

[24] Jiang, J., Lu, J., Zhang, G. and Long, G. 2011. Scaling-Up Item-Based
Collaborative Filtering Recommendation Algorithm Based on Hadoop, IEEE
World Congress on Services, Washington, DC.

[25] Zhang, J., Votava, P., Lee, T. J., Adhikarla, S., Kulkumjon, I. C., Schlau, M.,
Natesan, D., and Nemani R. 2013. Technique of Analysing Trust Relationships
to Facilitate Scientific Service Discovery and Recommendation. In Proceeding
of international Conference on Service Computing (SCC 2013).

http://snap.stanford.edu/data/web-Amazon.html
http://textblob.readthedocs.org/en/dev/

	1.1 pEbRanknRec-Batch Processing with Hadoop
	1.2 Conversion of SA to SL
	2. pEbRanknRec-Batch Processing with Hadoop
	3. pEbRanknRec-Stream Processing with Spark
	3.1 Results and Analysis of pEbRanknRec-Stream
	4. Performance and Runtime Analysis
	5. Related Works
	6. Conclusion and Future Works
	References

