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ABSTRACT 
With the popularity of various online software marketplaces, third-
party vendors are creating many instances of software applications 
(‘apps’) for mobile and desktop devices targeting the same set of 
requirements. This abundance makes the task of selecting and 
recommending (S&R) apps, with a high degree of assurance, for a 
specific scenario a significant challenge. The S&R process is a 
precursor for composing any trusted system made out of such 
individually selected apps. In addition to feature-based 
information, about these apps, these marketplaces contain large 
volumes of user reviews. These reviews contain unstructured user 
sentiments about app features and the onus of using these reviews 
in the S&R process is put on the user. This approach is ad-hoc, 
laborious and typically leads to a superficial incorporation of the 
reviews in the S&R process by the users. However, due to the large 
volumes of such reviews and associated computing, these two 
techniques are not able to provide expected results in real-time or 
near real-time. Therefore, in this paper, we present two parallel 
versions (i.e., batch processing and stream processing) of these 
algorithms and empirically validate their performance using 
publically available datasets from the Amazon and Android 
marketplaces. The results of our study show that these parallel 
versions achieve near real-time performance, when measured as the 
end-to-end response time, while selecting and recommending apps 
for specific queries. 
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1. Introduction: TruSStReMark
The S&R process typically is ad-hoc, manual and most often uses 
the average star-rating system [1,2]. In our previous works 
[3,4,5,6,7,8], we intoduced a framework, named as  TruSStReMark 
Trust-based Service Selection and Recommendation for 
Marketplaces, which contains techniques to model, quantify, 
specify, and monitor the trust of software apps. We have also 
provided methods to analyze, and aggregate, external reviews of 
software apps and used them to perform trust-based service 
selection, and recommendation (S&R). The TruSStReMark 
enhances the two prevalent approaches (i.e., CBF [14] and CLF 
[15]) by incorporating insights from user reviews. Our previous 
trust-based S&R algorithm (EbRanknRec) [6,7,8] has two 
variations: (1) Eb-CBF-Rank (which integrates evidence-based 
techniques into the CBF for selection) and (2) Eb-CLF-Rec (which 
integrates evidence-based techniques into the CLF for 
recommendation). In this paper, we describe two parallel versions 
of these two previous algorithms – these versions are: i) batch 
processing versions (i.e., bt-pEb-CBF-Rank and bt-pEb-CLF-Rec, 
which are based on MapReduce ecosystem) and (2) stream 
processing versions (i.e., st-pEb-CBF-Rank and st-pEb-CLF-Rec, 
which are based on Sparks and Sparks Streaming ecosystems). As 
these parallel techniques use the principles of Subjective Logic 
(SL) [10], Sentiment Analysis (SA) [11], MapReduce Echo-
System (MR) [16], and Spark [17] and Spark Streaming (ST) 
technologies [18]. 

1.1 pEbRanknRec-Batch Processing with Hadoop 
The improved TruSStReMark framework proposed in this paper 
gathers and analyses external user reviews generated by online 
marketplaces – these reviews due to their sheer size are now 
considered as a big data challenge. The improved TruSStReMark 
framework parallelizes and enhances the two prevalent approaches 
(based on CBF and CLF) as shown in Figures 1 and 2. The goal of 
these two enhanced techniques is to improve the performance and 
confidence while searching and recommending software services 
by parallelizing the previous algorithms [8] of aggregating external 
evidences available as textual reviews. First, the parallel algorithms 
maintain a list of named entities for each user (i.e., a profile of 
important service QoS feature keywords). It performs the improved 
evidence-based search algorithm (Figures 1 to 4) in parallel as 
follows: Each user query for items (or services or apps) is tagged 
with associated evidences of these feature vectors calculated from 
users’ reviews about other items. Given a review dataset from a 
marketplace, which includes service descriptions, user-service 
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relations, and set of reviews by the users, the pEbRanknRec 
performs dataset transformations to partition the dataset randomly 
(possible due to the review independence property) such that HDFS 
could handle the correct service spaces, user spaces and user-
service spaces for each mapper. For each service inside each 
mapper, the basic content-based algorithm calculates a vector (of 
size k keywords) by parsing the service descriptions using a NLP 
technique such as TF-IDF (all data structures are cached and reused 
if no updates detected). Additionally, the pEbRanknRec augments 
the process by parsing textual reviews from users to calculate the 
sentiment expressed by each user’s about the targeted QoS 
properties of services. These QoS values for services can be 
calculated from the keywords, from service descriptions and from 
user reviews. Using the TextBlob library [19] for each sentence, it 
calculates the sentiments of user reviews and caches them. SL 
provides the necessary operators to aggregate different opinions 
about a service QoS values from different users depending on the 
situation. The conjunction, consensus and ordering operators (from 
the subjective logic) [10] are used in pEbRanknRec algorithms. The 
positive polarity of SA is a measure of belief in the textual 
evidences and similarly, the negative polarity is a measure of 
disbelief. Then naturally, subjectivity is the indication of certainty 
when high and uncertainty when low. Therefore, without the loss 
of generality we adapt the following linear conversion from SA to 
SL, described below in subsection 2.2.1, for all the calculations 
done inside the pEbRanknRec.  

Figure 1. Parallel evidence-based CBF ranking (pEb-CBF-Rank) 

Figure 2. Parallel evidence-based Collaborative Filtering (CLF) 
recommendations (pEb-CLF-Rec) 

1.2 Conversion of SA to SL 
Table 1 presents four sample sentiments calculated from 

randomly selected but associated review sentences. The 
TruSStReMark identifies a set of named entities for users from 
storing their queries (i.e., which QoS features are important to 
them). These named entities for apps can be calculated from the 
keywords, their description, and from user reviews. Given that, and 
using TextBlob library, the TruSStReMark calculates the 
sentiments of user reviews. We map the values in Table 1 to the 
corresponding SL tuples using the process described below. The 
boundary cases in this conversion process are computed as listed in 
Table 2. The in-between values are equally weighted and divided 
among the relevant entries.  

Table 1. General and QoS sentiments and scores from reviews [7,8] 

Table 2. Conversion from Sentiments (Subjectivity, Polarity) tuples to 
< Belief, Disbelief, Uncertainty > tuples 

(P,S) <B,D,U> (P,S) <B,D,U> 
(+1,1) <1,0,0> (0,0) <undefined> 

(+0.75,0.25) <0.75,0,0.25> (-0.25,0.25) <0,0.25,0.75> 
(+0.5,0.5) <0.5,0,0.5> (-0.5,0.5) <0,0.5,0.5> 

(+0.25,0.25) <0.25,0,0.75> (-0.75,0.25) <0,0.75,0.25> 
(0,0) <undefined> (-1,1) <0,1,0> 
Table 3. Matrix representation of the SSA to SL conversion 

A = [1,      1 
  0.75, 0.25 
  0.5,   0.5 
  0.25, 0.25 

    -0.25, 0.25 
    -0.5,   0.5 
    -0.75, 0.25 
    -1,      1] 

Y = [1,      0,      0 
  0.75, 0,      0.25 
  0.5,   0,      0.5 
  0.25, 0,      0.75 
  0,      0.25, 0.75 
  0,    0.5,   0.5 
  0,      0.75, 0.25 
  0,    1,   0] 

Let A be a matrix in which each row is a case of P, S combination, 
and the first column is P, and the second column is S. For example, 
from the table, A should be represented in matrix format as 
indicated in Table 3. Let Y be a matrix in which each row is the 
corresponding case of B, D, U combination, and the 1st column is 
B, 2nd column is D and the 3rd column is U. From Table 3, Y should 
be derived from direct conversion of A (we just need B and D in Y 
since B, D, U are linearly dependent such that B+D=1-U). Then, 
the SA to SL mapping problem is defined as to convert from A to 
B. Assume the conversion follows the following linear form: 

A * X = Y, 
…where X is the conversion matrix that the solution is looking for.
We formulate the solution as a multivariate linear regression 
[20,21].  Next, the calculation of  X is obtained by solving the 
following optimization problem: 

min_X  || A * X - Y ||^2_F 
s.t.,      A * X >= 0 

Once X is calculated, then we can use it to convert a new (P, S) 
combination (i.e., a), via the following equation: 

Sample Review Sentences Named Entity Sentiment Analysis 
Polarity Subjectivit

y 
Nice, Good Work.  General +0.700 0.875 
Very bad.  General -0.350 0.600 
I love this apps’ UI with large text and 
figures.   

User Interface  +0.357 0.514 

I hate this app, it drains the battery so fast 
and slows down my device.  

 Resources Usage  -0.252 0.596 
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BDU values = a * X (that is, y = a * X is the converted BDU values) 
This result is not necessarily non-negative (as b,d,u values are 
probabilities), hence, a normalization method needed to be applied 
and the TruSStReMark framework uses the following 
normalization:  
  y = y / sum(y) (i.e., normalize y by dividing y by the sum of its values) 
This is chosen to normalize the dominance of any single value and 
get the ranges within the value ranges of b, d, and u [21]. Therefore, 
the results should be the normalized y representing the BDU 
probabilities. 

Starting from the identified boundary samples, which are 
listed in Table 3, all the other sentiment values computed by the 
framework are converted to subjective logic tuples using the model 
described above.  

2. pEbRanknRec-Batch Processing with Hadoop 
This section discusses the parallelization of these approaches in 
details using the map-reduce paradigm.  
 

 
Figure 3. TruSStReMark Batch Processing Architecture 

  TruSStReMark is categorized into two phases called as online and 
offline phases. The offline phase performs scraping of evidences 
from marketplace, organize and cleansed them into a data 
warehouse (i.e., ETL -Extract, Transform and Load, categorization 
and organization of evidences). The online phase uses the data 
warehouse to generate and update metadata related to trust 
contracts and to perform analysis (i.e., execution of the algorithms 
to analyze evidences in real-time). Real-time analysis of evidences 
for one service is fast enough to perform in a single computing 
node, however, the next step was to improve our solution to 
perform parallel quarries from different users and handle the load 
of a real marketplace. As the number of apps and number of parallel 
queries (roughly indicated by number of downloads) increases, 
both online and offline phases needed modifications such that they 
can perform analysis and produce results in real-time. When loaded 
with parallel user quarries to simulate an online service 
marketplace, the performance of these evidence-based operations 
in both phases are affected as a result of these modifications. 
  First, as an experimental motivation for parallelizing our previous 
algorithms, we performed and compared the runtime variation of 
the serialized versions of these algorithms (i.e., Eb-CBF-Rank and 
Eb-CLF-Rec) with the increasing number of reviews in the 
datasets. As the number of reviews increases, both the number of 

users and number of apps also increases [8]. Based on this exercise, 
it was clear that both prevalent and our trust-based algorithms take 
more time to perform their operations. However, the trust-based 
algorithms increase at a much larger rate, due to the sentiment 
analysis operations on the reviews, the conversions of aggregated 
sentiments to subjective logic based tuples, and the subjective 
logic-based calculations of the selected set of QoS-related 
sentences [8].   
    Therefore, we propose that this increase in time can be reduced 
significantly by parallelizing and running the algorithms (named 
pEbRanknRec) using a framework such as MapReduce based 
Hadoop environment using an Amazon EMR (Elastic MapReduce) 
cluster. Additionally, the pEbRanknRec augments the process (i.e., 
relevant CBF and CLF) by parsing textual reviews from users to 
calculate the sentiment expressed about each user’s targeted QoS 
properties of apps. These QoS values, as indicated earlier, for apps 
can be calculated from the keywords, from service description and 
from user reviews. Using TextBlob library inside each sentence, the 
algorithm calculates the sentiments of user reviews and cached 
them. The conjunction, consensus and ordering operators from 
subjective logic are used in pEbRanknRec algorithms [8].   
    We use the Hortonworks Data Platform (Figure 3), which is an 
open-source Hadoop distribution with pre-configured packages and 
tools such as, YARN (i.e., the resource and job management 
engine), HDFS (i.e., Hadoop Distributed File System) and HIVE 
(i.e., the data warehouse infrastructure). Periodically, during the 
offline phase, the custom review scrapper loads the most recent 
batch of the reviews from the marketplace to the HDFS. This ETL 
processing (i.e., Extract, Transform and Load) part of the offline 
phase can be configured to run either hourly, daily or off-peak load 
times. For example, a MapReduce job runs offline periodically to 
calculate vectors (of size k keywords –the outline of this algorithms 
are presented in Figure 4 and Figure 5) by parsing a new service 
description (i.e., identified using unique item id from the reviews) 
using a NLP technique such as TF-IDF (all data structures are 
cached and reused if no updates detected).  
    Given a review dataset from a marketplace which includes 
service descriptions, user-service relations, and a set of reviews by 
the users, the batch processing version of the algorithm 
pEbRanknRec performs dataset transformation to partition (i.e.,  
possible due to the review independence property) such that HDFS 
could handle the correct service spaces, user spaces and user-
service spaces for each mapper. Also, during the offline phase, 
MapReduce batch jobs are submitted to extract sentiments and load 
to a structured format in the Hive warehouse, and then convert 
those sentiments to subjective logic based tuples to the appropriate 
location in the Hive warehouse.  Finally, when the new data is 
available in the Hive warehouse, other batch jobs use subjective 
logic operators to update trust vectors in the user space and the 
service space (i.e., Service Vector Space S[] and User Vector Space 
in U[] in Figure 4 and Figure 5) with a fresh set of subjective logic 
tuples, which are organized by their QoS values. 
    The goal of the online phase of the parallelized TruSStReMark 
framework (i.e., pEbRanknRec approach as indicated in Figure 3 
and Figure 4) is to improve performance and confidence while 
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searching and recommending software apps by parallelizing the 
previous algorithms of aggregating external evidences available as 
textual reviews. First, it has a list of named entities for each user 
(i.e., a profile of important service QoS feature keywords). It 
performs the improved evidence-based search and 
recommendation algorithms (i.e., as indicated in Figure 3 and 
Figure 4) in parallel as follows: each user query for items/apps/apps 
is tagged with evidences of these feature vectors are used (i.e., 
which are calculated from users reviews during the offline phase of 
the algorithm). Since, structured data (i.e., user spaces, item spaces 
and their corresponding trust scores) are available in the data 
warehouse each mapper can now handle the correct service spaces, 
user spaces and user-service spaces as indicated in Figure 4 and 
Figure 5. 
 

 
Figure 4. Evidence-based search and ranking (pEb-CBF-Rank) 

 

 
Figure 5. Evidence-based Recommendation (pEb-CLF-Rec) 

 

For each app inside each mapper, the following parts of the 
basic content-based algorithm are executed. When a query is 
forwarded to the system, during the online phase of the algorithms, 
each mapper uses part of the meta-data by executing the algorithm 
to measure accuracy and performance matrixes. Then we randomly 
pick approximately 5% of the users from each dataset to remove 
one service from each of the selected users and we parse each of 
the dataset though both prevalent and evidence-based algorithms to 
generate top-N search and recommendation (S&R) result sets for 
each user. If the test service is found in the set (at any particular 
rank i) of resulting apps list to the relevant user then it is considered 
as a Hit. We use a custom range petitioner to sort the candidate set 
directed to each reducer to produce a globally sorted candidate 
service set based on their confidence scores. In Figure 4 and Figure 
5, steps 1-4 constitutes the offline phase and rest makeup the online 
phase of the algorithm.  

When all the results are obtained, we produce another set 
randomly to cross validate and generate results iteratively to get the 
average of all matrices. To compare the sequential algorithm with 
the parallel algorithm, we use average end-to-end time calculations. 
In the parallel version of the algorithm, the end-to-end time is 
measured by combining the average mappers time and reducer 
times in online phase with offline phase. 

 

2.1 Experimentation and Evaluation Criteria     

We perform the offline stage after partitioning and loading data to 
the HDFS. Then each mapper locally parses the reviews by 
executing the algorithm to measure accuracy and performance 
matrixes. Then we randomly pick approximately 5% of the users 
from each dataset to remove one service from each of the selected 
users and we parse each of the dataset though both prevalent and 
evidence-based algorithms to generate top-N search and 
recommendation (S&R) result sets for each user. If the test service 
is found in the set (at any particular rank i) of resulted services list 
to the relevant user (considered as a Hit). We use a custom range 
partitioner to sort the candidate set directed to each reducer to 
produce a globally sorted candidate service set based on their 
confidence scores. When all the results are obtained, we produce 
another set of used to cross validate and generate results iteratively 
to get the average. We evaluate each of the result-set for both pEb-
CBF-Rank and pEb-CLF-Rec using HR (Hit Ratio) and ARHR 
(Average Reciprocal Hit-Rank) measurements that are commonly 
used in S&R evaluations. The HR is a measure of the number of test 
services that each algorithm included in the result-set of S&R. If  n 
is total #services of the result-set, then HR = (Number of Hits)/n. 
The ARHR is for evaluating the relative significance of the position 
(pi) in the result-set of S&R. Hits which appear earlier are scored 
higher than the Hits appear later in the result-set ordering. If service 
is positioned at pi in the result-set of size n, then ARHR = (1\n) 
∑(1\pi). The globally sorted final result-sets are evaluated using the 
rank (i.e., number of 3,5,10,15 or 20 set of services) by producing 
100 times to get the average.  
 
2.2 Results and Analysis of pEbRanknRec-Batch 

 

To evaluate this parallelized approach, we increase the size of data 
to 10 times the size of both the sequential experiments datasets (i.e., 
when algorithms perform inside a single instance). We then apply 
Search/Ranking (pEb-CBF-Rank) to the Android marketplace 
Review dataset [10] (which now includes 34,169,077 reviews of 
mobile 2,702,594 apps and apps) and apply Recommendation 
techniques (pEb-CLF-Rec) to the Amazon Marketplace Reviews 

pEb-CBF-Rank: Service Reviews, Descriptions and Query 
 
For Each Selected Interval (0)(BY Hour, Day, OR Size) 
   Push new/updated review data to HDFS  
Each Mapper in Parallel (1) (only for new reviews):  
  For Each SERVICE (S[] as Service Vector) 
    For All REVIEWS (T as Combined Text Document of R,D)  
       Calculate TF-IDF and select top k and cache 
  Cached:  S[k] Service Vector (Sorted from TF-IDF score) 
Each Mapper in Parallel (2): (only for new reviews): 
  For Each USER (U[] as User Vector) 
      For All REVIEWS (T as Combined Text Document of R,Q)  
 Calculate TF-IDF and select top k and cache 
  Cached:  U[k] User Vector (Sorted from TF-IDF score)  
Each Mapper in Parallel: with S[] (3)  and  with U[] (4) 
  For Each SERVICE (S[]/U[] as QoS <B,D,U> tuples){ 
   For Each REVIEW (T as Text)(1 to N)   { 
     For each QoS in S[]/U[] { 
       In Parallel Calculate SENTIMENT of T (P,S) 
                     (Polarity, Subjectivity) 
       In Parallel Convert (P,S) to <B,D,U> 
       Calculate W - TIME-SENSITIVITY of T (Range 0 to 1) 
         [('ReviewDate'-'ServiceFirstAvailableDate') /  

('Today'- 'ServiceFirstAvailableDate')] 
       In Parallel Update S[i]/U[i] <B,D,U>  

           (Consensus OR Conjunction) 
       Based on current <B,D,U> : subject to weights of W 
  Cached:  Produce S*[], U*[] (with evidence <B,D,U>s) 
  // User and Service Space Metadata generation Complete! 
 
Each Mapper in Parallel: (With respective to Q) 
  For each size k and perform CBF on S[]/U[]  
Each Reducer in Parallel: 
       
            

        

 pEb-CLF-Rec: Service Reviews, Descriptions and Query 
 
Execute Steps (0)-(3) Cntd Addition to Figure 4  
Each Mapper in Parallel(4): (only for new/updated reviews):  
  Pass all reviews and augment or update 
  Cached: produce local U-I [] rating vector  
Each Mapper in Parallel: User’s U[], U[QoS] <B,D,U> tuples 
 For Each CANDIDATE SERVICE (S[], S[QoS] <B,D,U> tuples) 
   Calculate Two COSINE Similarity        
       Each based on the vales from  
        - (1) S[] with U[]   
        - (2) S[QoS] with U[QoS] [For Each (B,D,U)]  
    If two users are A and B: For each common R rating, 
    Then COSINE Similarity: ((Ʃ Ar * Br)/(||A|| * ||B ||))  
     Where ||A|| = ( Ʃ (Ar)2 )0.5 
// User-Service Space Metadata generation Complete! 
 
Each Mapper in Parallel: (With respective to Q) 
  For each size p,k and perform CLF on S-I[]  
Each Reducer in Parallel: 
  Produce local candidate set C[p*k] 
    Locally sorted: C[p*k] based on search ranking score 
Use custom range practitioner (globally) produce C*[p*k] 
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dataset (which now includes Reviews 34,686,770 reviews of 
products 2,441,053) respectively. Both datasets had around 6 
million users, users > 50 reviews more than 50 thousand, 80 median 
words per review and timespan Jan 1995 – October 2016. Our 
experimental setup was made up of Java and Python running on an 
environment containing Amazon EC2 (Amazon Elastic Computing 
Cloud) free tier Linux t2.micro instances with 64-bit platform 
support, 15 node EMR (Elastic MapReduce) Cluster running 
version 2.4 Hadoop. 
   We present the results from the experiments conducted with a 
parallel version of the trust-based selection algorithm (i.e., pEb-
CBF-Rank).  For the search/ranking study, we have used the 
Android Marketplace dataset. The experiments compare our 
evidence-based approach for search/ranking with the prevalent 
approaches of Content-based filtering (i.e., CBF and sequential 
sEb-CBF-Rank, with parallel pEb-CBF-Rank). Table 4 indicates 
the HR and ARHR percentage improvements obtained by these 
approaches using the Android marketplace-based dataset. It is 
evident from Figure 6 that the proposed parallel evidence-based 
search and ranking algorithm performs better than the prevalent 
content-based filtering (CBF) algorithm. This is equally true with 
our original sequential version in terms of the HR and ARHR 
achieved. We performed these parallel algorithms iteratively 100 
times to get the average of quality matrices including the average 
runtime. Since, we randomly take a portion of the dataset out to 
cross validate the results at each step there is a slight difference 
between the sequential and parallel version of the results. However, 
they perform nearly within the same range of values when we 
average the results. 
 

Table 4. Percentage improvements of HR and ARHR on Android 
Marketplace based dataset experiments 

Technique / 
Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

CBF (HR) 11.67 21.34 22.67 24.81 26.72 
sEb-CBF-Rank (HR) 12.22 25.69 30.81 32.62 33.9 
pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65 
CBF (ARHR) 5.3 9.92 10.76 12.4 12.86 
sEb-CBF-Rank (ARHR) 6.78 14.27 17.11 17.38 17.92 
pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56 

 

 
Figure 6.  HR & ARHR comparison of Android Marketplace dataset 

 

    Next, we present the results from the experiments conducted 
with parallel version of the trust-based recommendation algorithm 
(i.e., pEb-CLF-Rec).  For this recommendation study, we used the 
Amazon Marketplace dataset. The experiments compare the 
evidence-based approach for search with the prevalent approaches 

of Collaborative filtering (i.e., CLF, sequential version (sEb-CLF-
Rank), and parallel version (pEb-CLF-Rec) of the algorithms). 

Table 5. Percentage improvements of HR and ARHR on Amazon 
Marketplace based dataset experiments 

 

Technique / 
Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

CLF (HR) 19.17 21.8 24.26 26.72 30.72 
sEb-CLF-Rank (HR) 21.08 23.82 26.65 29.18 32.18 
pEb-CLF-Rank (HR) 20.64 23.13 25.95 28.58 31.38 
CLF (ARHR) 9.58 10.38 11.55 13.03 15.03 
sEb-CLF-Rank (ARHR) 10.64 12.53 13.66 15.36 18.36 
pEb-CLF-Rank (ARHR) 9.93 12.02 13.21 14.89 17.52 

 
    Table 5 indicates the HR and ARHR percentage improvements 
obtained by these approaches against the Amazon marketplace-
based dataset. It is evident from the Figure 7 that the proposed 
parallel evidence-based search and ranking algorithm perform 
better than the prevalent collaborative filtering approach (CLF) and 
equally with our earlier sequential approach in terms of HR and 
ARHR. In summary, by analyzing the results, we observe that the 
percentage improvement of HR and ARHR is equal to prevalent 
approaches given the results were generated in near real-time. 
Again, as mentioned previously, we randomly take a portion of the 
dataset out to cross validate the results at each step there is a slight 
difference between the sequential and parallel version of the results. 
However, they perform nearly during the same range of values 
when we average the results. This shows the importance of QoS 
consideration in our evidence-based approach in real-time, and this 
validates our approach. 
 

 
Figure 7.  HR & ARHR comparison of Amazon Marketplace dataset 

 

 
Figure 8. Results comparison of pEb-CBF-Rank without 

randomization 
As an additional step to verify the behavior of sequential and 
parallel version of the algorithms, we removed the random portion 
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of the dataset partitioning. At each iteration of the experiment, both 
the sequential and parallel algorithms now receive the same test and 
training data without random selection between the approaches by 
manually overriding the data in HDFS. The experiment was 
performed 100 times to get the average values of both HR and 
ARHR matrices and Figure 8 indicates results of this additional 
experiment. As expected, the results indicate that both sequential 
and parallel algorithms were able to produce the same HR and 
ARHR values, since they both received the same data sets in HDFS.   
 

3. pEbRanknRec-Stream Processing with Spark 
This section describes TruSStReMark adaptation to the stream 
processing concepts. Since there were improvements with 
parallelized versions of the algorithms (i.e,. pEb-CBF-Rank and 
pEb-CLF-Rec), we also realized that MapReduce based batch 
processing is also limiting the performance of these algorithms. 
Therefore, we thought that this increase in time can be reduced 
further by running the algorithms using a data streaming framework 
such as Apache Spark based Sparks Streaming oriented processing 
to replace the Apache Hadoop based batch processing framework. 
Since Spark Streaming can directly use HDFS, the overall 
architecture remains the same (as indicated in Figure 8). The 
advantage that stream processing brings is its ability to perform 
micro-batch based transformations, without flushing the data to the 
disk. For example, earlier, during the batch processing, 
TruSStReMark executes mapreduce jobs in batches (e.g., to extract 
related sentiments from QoS of apps using the reviews, to convert 
sentiments to subjective logic based tuples and augment apps’ trust 
vectors using subjective logic based operators).  
The end-to-end time is measured to perform each streaming step 
and iteratively to measure the average runtime. The streaming 
version performs faster which is expected due to not having the 
overhead associated with the batch oriented processing associated 
with MapReduce jobs. For example, each time a batch job executes 
the results are needed to be written to distributed disk such that the 
next batch jobs have a consistent view of the data to preserve the 
states.  However the streaming version of this does not need to write 
data and preserved them in the distributed version of the memory 
to perform sequence of jobs by having a consistent view of the 
states. This improves the performance of our algorithms while 
performing the bath oriented jobs to calculate the QoS oriented 
sentiments, to convert them to the associated subjective logic based 
tuples, and then update the service trust scores using subjective 
logic based operators. The experiments are performed with this 
improved stream processing architecture using Amazon EMR 
(Apache Spark with Spark Streaming) clusters. The results and 
analysis are discussed in next subsections. 
 

3.1 Results and Analysis of pEbRanknRec-Stream 

    Table 6 indicates the HR and ARHR percentage improvements 
by comparing the batch oriented version of the pEb-CBF-Rank 
(i.e., bt-pEb-CBF-Rank) to stream oriented version of the pEb-
CBF-Rank (i.e., st-pEb-CBF-Rank). As indicated earlier the slight 
differences are due to the random requirement of data partitioning 

to training and test datasets which is mandatory to calculate the HR 
and ARHR measures.  
 

 
Figure 9. TruSStReMark Stream Processing Architecture 

 
Table 6. HR and ARHR on batch and streaming of pEb-CBF-Rank 

Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 
bt-pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65 
st-pEb-CBF-Rank (HR) 12.34 24.05 31.64 30.60 31.96 
bt-pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56 
st-pEb-CBF-Rank (ARHR) 5.69 13.07 17.713 16.30 16.68 

 

 
Figure 10. Comparison of bt-pEb-CBF-Rank and st-pEb-CBF-Rank 

    
Figure 10 indicates these results in graphical notation. As expected 
we concluded that apart from the slight differentiation of the quality 
measures due to the random requirements in calculating HR and 
ARHR, the batch and streaming version of the trust-based selection 
algorithms performs equally well in quality matrices.  
 Similarly, Table 7 indicates the HR and ARHR percentage 
improvements by comparing the batch oriented version of the pEb-
CLF-Rac (i.e., bt- pEb-CLF-Rac) to stream oriented version of the 
pEb-CLF-Rac (i.e., st- pEb-CLF-Rac). As indicated earlier the 
variations of the values are due to the randomness of the data 
partition while calculating the quality matrices. 
 

Table 7. HR & ARHR on batch & streaming results of pEb-CLF-Rac 
Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

bt-pEb-CLF-Rec (HR) 20.64 23.13 25.95 28.58 31.38 

st-pEb-CLF-Rec (HR) 19.60 24.28 27.24 27.15 29.81 

bt-pEb-CLF-Rec (ARHR) 9.93 12.02 13.21 14.89 17.52 

st-pEb-CLF-Rec (ARHR) 9.43 12.621 13.87 14.14 16.64 
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Figure 11. Comparison of bt-pEb-CLF-Rec and st-pEb-CLF-Rec 
 

    Figure 11 indicates the trust-based recommendation algorithms 
versions of the batch and streaming results in graphical notation. 
As expected we concluded that HR and ARHR matrices of the 
batch and streaming version of the trust-based recommendation 
algorithms performs equally well.  

4. Performance and Runtime Analysis  
 

We evaluated the performance of the pEb-CBF-Rank and the pEb-
CLF-Rec against prevalent approaches. Since the main concern is 
performance of the algorithms, we compared the runtime 
comparison of algorithms (prevalent CBF/CLF with both 
sequential sEb-CBF/CLF-Rank/Rec, and parallel pEb-CBF/CLF-
Rank/Rec) with the increasing number of reviews in the datasets.  

 
Figure 12. Aggregated average runtimes of the parallel algorithms 

 

  As the number of reviews increases, both the number of users and 
number of apps also increase. To compare the sequential algorithm 
with the parallel algorithm we use average end-to-end time 
calculations. In the parallel version of the algorithm, the end-to-end 
time is measured by combining the average mappers time and 
reducer times in the online phase with the offline phase.  
    Since the main concern is performance of the algorithms, we 
compared the runtime comparison of algorithms (prevalent 
CBF/CLF with both sequential sEb-CBF/CLF-Rank/Rec, and 
parallel pEb-CBF/CLF-Rank/Rec) with the increasing number of 
reviews in the datasets. As the number of reviews increases, both 
the number of users and number of services also increase.  
    From the comparisons in Figure 12, it is clear that both prevalent 
and trust-based algorithms take more time to perform their 

operations. Since, the sequential evidence-based S&R algorithms 
increase at a much higher rate, due to due to its additional 
calculations. Our parallelized algorithms using 
MapReduce/Hadoop environment perform equally when dataset 
size is much higher. Each data set inside local node of the cluster is 
small and it was able to perform the algorithm efficiently locally to 
produce global results. 
    Also, caching experiments are performed by directly using the 
HIVE meta-data store. From the comparisons in Figure 11, it is 
clear that both prevalent and trust-based algorithms take more time 
to perform their operations. Since, the sequential evidence-based 
S&R algorithms increase at a much higher rate, due to its additional 
calculations. Our parallelized algorithms using 
MapReduce/Hadoop environment perform equally when the 
dataset size is much larger. Each data set inside the local node of 
the cluster is small hence, it was able to efficiently perform the 
algorithm locally in order to produce global results. 

 

 
Figure 13. Aggregated average runtime of batch vs streaming  

 

    Figure 13 indicates analysis about streaming versions of the 
algorithms in terms of average runtime compared to average 
runtime of the batch processing versions of the algorithms. The 
streaming version performs faster which is expected due to not 
having the overhead associated with the batch oriented processing 
that MapReduce jobs require. Each time a batch job executes the 
results need to be written to a disks which are distributed such that 
the next batch jobs have a consistent view of the data in order to 
preserve the states. We also noted that the gap is being widen when 
the number of reviews are increased. This is also expected, as when 
the load increases the stream processing performs much better than 
batch oriented processing version of the algorithms.  
 

5. Related Works  
There are not many related efforts on evidence-based searching, 
ranking and recommending when considering software apps and 
services from marketplaces. Though, many prevalent approaches 
propose techniques to improve collaborative and content-based 
filtering algorithms. The work proposed by Fu et al. [22] 
experiments on a recommender system to parallelize data using 
Hadoop echo-system. It collects data from users, commodities, and 
transactions. Although they describe and address the challenges in 
processing and generating recommendations with large data sets, 
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they do not consider external evidences to further improve results 
quality. Zhou et al. [23] propose a real time search and 
recommender system targeting microblogs. They only consider 
user tags (i.e., hashtags) to compute the similarity. In the context of 
software, it is not enough to consider the service type and 
description tags. The work proposed by Jiang et al. [24] 
experiments with a Hadoop based recommendation mechanism to 
improve collaborative filtering performance at scale. The 
difference between this our approach is that we consider individual 
service features and attributes while their approach considers 
confidence about web services as a whole. Zhang et al. [25] propose 
a ranking model for scientific publication (e.g., dblp). The model 
named as Knowledge-Social-Trust, which is a graph-based 
network. It recommends in real-time by quickly calculating the 
relative importance of citations by crawling repositories. Compared 
to our use case in service marketplace, it has no concept of citing 
or referring one service to another. Therefore, their evidence-based 
model can be adapted to the context of marketplaces if these stores 
introduce service referencing or advanced user interactions.  

6. Conclusion and Future Works 
This paper presents a framework (“TruSStRemark”), which 
investigates algorithmic modifications necessary to parallelize and 
perform evidence-based search and recommend (S&R) of services. 
Using the TruSStReMark framework we suggested algorithmic 
modifications necessary to parallelize and perform evidence-based 
search and recommendation (S&R) of apps. The framework uses 
datasets from Amazon and Android marketplaces. The two batch 
processing versions of the parallel algorithms (i.e., pEb-CLF-Rec 
and pEb-CLF-Rec) in the pEbRanknRec algorithms were executed 
using an EMR environment in AWS using Hadoop echo-system. 
The main algorithmic calculations are based on sentiments from the 
large volumes of textual reviews, which are then numerically 
converted to subjective logic based BDU tuples to apply aggregation 
operators). Hive warehouse is used as the caching meta-store, where 
algorithms quickly find the aggregated trust scores of QoS related to 
apps. When compared to prevalent approaches, the results indicate 
that our parallelized algorithms improve the average performance of 
the trust-based algorithms and are able to generate better or equally 
well with both datasets in terms of HR and ARHR. Next, the batch 
processing part of the Hadoop jobs are streamlined using Sparks 
streaming techniques.  
When compared to the batch oriented technique, the stream oriented 
algorithms (i.e., st-pEb-CLF-Rec and st-pEb-CLF-Rec) were able to 
perform equally well with the advantage of reduced aggregated 
average runtimes. The advantage of our approach is that it is based 
on heterogeneous and dynamic software features (QoSs) of apps that 
enable better temporal comparisons between software apps. The 
results of this study indicate that the evidence-based approaches 
provide better selections and recommendations both in terms of 
quality and relative ranking of apps. The results of this study indicate 
that the evidence-based approaches provide better selections and 
recommendations both in terms of quality and relative ranking of 
software services. We plan to improve performance further by using 
an iterative version of MapReduce with intelligent caching. Also, 
other similarity measurement techniques such as matrix 
factorization used in the latent-models applications are our future 
explorations in the context of large datasets in marketplaces.  
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