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ABSTRACT 
BACKGROUND AND PURPOSE: MRI with sedation is commonly used to detect 
intracranial traumatic pathology in the pediatric population. Our purpose is to compare non-
sedated ultrafast MRI (ufMRI), non-contrast head CT (nHCT), and standard MRI (stMRI) for 
detection of intracranial trauma in patients with potential abusive head trauma (AHT). 

MATERIALS AND METHODS: A prospective study was performed in 24 pediatric patients 
who were evaluated for potential AHT. All patients received nHCT, ufMRI brain without 
sedation, and stMRI with general anesthesia or papoose, sequentially. Two pediatric 
neuroradiologists independently reviewed each modality blinded to other modalities for 
intracranial trauma. Inter-reader agreement was performed, and consensus interpretation for 
stMRI as the gold standard. Diagnostic accuracy was calculated for ufMRI, nHCT, and 
combined ufMRI with nHCT.  

RESULTS: Inter-reader agreement was moderate for ufMRI (k=0.42), substantial for nHCT 
(k=0.63), and nearly perfect for stMRI (k=0.86). 42% of patients had discrepancies between 
ufMRI and stMRI which included detection of subarachnoid hemorrhage, and subdural 
hemorrhage. Sensitivity, specificity, positive and negative predictive values were obtained for 
any traumatic pathology for each exam: UfMRI (50%, 100%, 100%, 31%), nHCT (25%, 100%, 
100%, 21%) and combination of ufMRI with nHCT (60%, 100%, 100%, 33%). UfMRI was 
more sensitive than nHCT for detection of intraparenchymal hemorrhage (p=0.03), and the 
combination of ufMRI with nHCT was more sensitive than nHCT alone for intracranial trauma 
(p=0.02). 

CONCLUSION:  In AHT, ufMRI, even combined with nHCT, demonstrated low sensitivity 
compared to stMRI for intracranial traumatic pathology which may limit its utility in this patient 
population.  

Abbreviations: AHT: abusive head trauma; GRE: gradient recalled echo; nHCT: non contrast 
head CT 
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INTRODUCTION 

 

 The incidence of abusive head trauma (AHT) in the United States from 2000-2009 is 39.8 

per 100,000 children younger than 1 year of age and 6.8 per 100,000 children 1 year of age.1 The 

outcomes of AHT victims are worse than those of children with accidental traumatic brain injury 

including higher rates of mortality and permanent disability from neurological impairment.2-5 

The diagnosis of AHT is frequently not recognized when affected patients initially present to a 

physician, and up to 28% of children with missed AHT diagnoses may be reinjured leading to 

permanent neurological damage or even death.6 Because neuroimaging plays a central role in 

AHT, continued improvements in neuroimaging are necessary. 

Common neuroimaging findings of AHT include intracranial hemorrhage, ischemia, 

axonal injury, and skull fracture with advantages and disadvantages for both CT and MRI for 

detection of AHT.7 A noncontrast head CT (nHCT) is usually the initial imaging study in 

suspected AHT due to high sensitivity for detection of acute hemorrhage and fracture, a high 

level of accessibility from the emergency department, and can be performed quickly and safely 

without the need for special monitoring equipment.8,9  CT imaging disadvantages include 

ionizing radiation, particularly in children, and the reduced sensitivity in detecting 

microhemorrhages, axonal injury, and acute ischemia compared to MRI.10  

MRI is frequently performed in AHT and adds additional information in 25% of all 

children with abnormalities on the initial CT scan.11 Brain MRI can also be useful for 

identification of bridging vein thrombosis, differentiating subdural fluid collections from 

enlarged subarachnoid spaces, characterization of the signal of subdural blood, and 



demonstrating membrane formation within subdural collections.12-16 Brain MRI findings have 

correlated with poor outcomes associated with findings on diffusion-weighted imaging (DWI) 

and susceptibility-weighted imaging (SWI) in AHT; however, disadvantages of MRI continue to 

include the need for sedation in children, and compatible monitoring equipment.17-22 Although 

there is greater accessibility of CT compared to MRI, the availability of MRI is relatively high 

and imaging techniques that allow neuroimaging in potential AHT patients without sedation 

would be valuable particularly given the potential adverse effects of sedation on the developing 

brain.23,24 

A potential solution for diagnostic quality brain MRI without sedation in AHT is the use 

of ultrafast MRI sequences, also termed fast MRI, quick MRI, or rapid MRI. Ultrafast MRI 

(ufMRI) utilizes pulse sequences which rapidly acquire images, potentially reducing motion 

artifact and need for sedation. UfMRI has been most commonly used in pediatric neuroradiology 

for evaluation of intracranial shunts in children with hydrocephalus and majority of reported 

ufMRI brain protocols include only multiplanar T2-weighted HASTE sequences.25-34 

Consequently, although an ufMRI has been reported to demonstrate limitations for detection of 

intracranial hemorrhage, the described ufMRI protocol lacked blood-sensitive sequences.35  

Recently, an ufMRI protocol incorporating sequences in addition to T2 sequences have 

been reported in pediatric trauma patients.36 This study did not compare findings to a standard 

MRI (stMRI) and included a wider age range of pediatric patients such that the value of ufMRI 

in pediatric abusive head trauma remain uncertain.36 Therefore, the purpose of our study was to 

evaluate an ufMRI brain protocol performed without sedation for feasibility in terms of scanning 

time and diagnostic value as well as diagnostic accuracy compared to nHCT and  stMRI brain for 

the detection of intracranial traumatic pathology in patients with suspected AHT.   



 

 

MATERIALS AND METHODS 

 

Following institutional review board approval, a prospective study was performed from 

March 2014 through March 2015 evaluating the diagnostic performance of an ufMRI of the brain 

performed at a tertiary children’s hospital in 24 infants who underwent MRI for the indication of 

potential AHT. Infants were eligible for enrollment if they had presented acutely to an 

emergency department, had undergone a nHCT within the preceding 48 hours either performed 

at a referring institution or our institution, were not intubated or sedated for clinical reasons, and 

MRI of the head was requested to further evaluate the patient for potential AHT. The following 

clinical data was collected for each subject: age, gender, and presentation pediatric Glascow 

coma scale. For all patients, an ufMRI brain protocol was performed without sedation, and 

depending on age, with or without using a papoose.  At our institution a papoose is routinely 

used below 3 months of age. The ufMRI was immediately followed by a stMRI of the brain with 

continued use of a papoose or with general anesthesia with a maximum of time interval between 

completion of ufMRI to start of stMRI of 25 minutes in patients requiring sedation. Patients were 

not excluded if ufMRI was non-diagnostic, but were excluded if stMRI sequences were non-

diagnostic.  

MRI imaging was performed with 1.5T or 3T scanners (Avanto and Verio, Siemens 

Healthcare, Erlangen, Germany). The ufMRI protocol and stMRI protocol details are shown in 

Table 1. MRI technologists were instructed to only repeat an ufMRI sequence once if there was 

too much motion artifact. Technical parameters for nHCT were: kVp 100-120, mA 145-185, and 



CT Dose Index 17.1-29.4 mGy.   

Two board certified fellowship trained pediatric neuroradiologists (S.K., C.H.) with 

certificate of added qualification in neuroradiology with 3 years and 8 years of experience 

respectively independently reviewed the ufMRIs followed by a review of the stMRIs. Reviewing 

ufMRI first without the results of the stMRI allows for a blinded evaluation of the ufMRI.  To 

avoid memory bias for nHCT, these were reviewed by the same two pediatric neuroradiologists 

at a separate time following a two month interval from the MRI analysis.  Axial soft tissue 

algorithm nHCT at 5mm slice thickness were included for review.  Coronal and sagittal 

reformats were not available in all cases and were not included in the evaluation.  The pediatric 

neuroradiologists were aware the clinical indication was for evaluation of potential AHT but 

otherwise blinded to the final clinical interpretation as well as additional clinical and radiological 

information of the patient including skeletal survey results.  

UfMRIs, nHCTs, and stMRIs were reviewed for subjective diagnostic quality (diagnostic 

versus nondiagnostic), and specific assessment was recorded for: subdural fluid collection 

(unilateral, bilateral, tentorial, presence of subdural fluid-fluid levels, presence of subdural 

membrane formation/subdural septation), subarachnoid hemorrhage, epidural hemorrhage, 

intraventricular hemorrhage, intraparenchymal hemorrhage, cytotoxic edema, nonhemorrhagic 

vasogenic parenchymal edema, parenchymal lacerations,  hydrocephalus, midline shift, 

herniation (uncal, subfalcine, tonsillar), enlarged subarachnoid spaces, and encephalomalacia. 

Subdural fluid collections were defined as fluid collections located under the dura along the 

convexities, falx, or tentorium. Fluid-fluid levels were defined as a difference in signal intensity 

or density which had a meniscus/layering pattern. Subdural membrane formation was defined as 

an identifiable line/band which separated a subdural fluid collection into more than one 



compartment. Subarachnoid hemorrhage was identified as blood localized within the 

subarachnoid space including basal cisterns or sulci which was identified as hyperdensity on CT 

and hyperintense signal on FLAIR imaging or hypointense signal on T2*/SWI imaging. 

Intraparenchymal hemorrhage was defined as intraparenchymal hyperdensity on CT, and focal 

intraaxial signal abnormality with either low signal on T2W, T2* or SWI images or high signal 

intensity on T1W images. Cytotoxic edema was defined as an area demonstrating low density on 

CT involving gray matter, and high signal intensity on DWI images with low signal intensity on 

corresponding apparent diffusion coefficient map and included diffuse axonal injury, and 

vascular infarct. Nonhemorrhagic vasogenic parenchymal edema was defined as low density on 

CT sparing the gray matter, and abnormal T2 signal hyperintensity without associated 

intraparenchymal hemorrhage or cytotoxic edema as defined above. Parenchymal lacerations 

were defined as a parenchymal cleft containing CSF and/or hemorrhage which did not 

correspond to a normal anatomic structure such as a sulcus. Enlarged subarachnoid spaces were 

defined as subarachnoid spaces measuring greater than 4 mm in thickness. Encephalomalacia 

was defined as a focal loss of brain volume involving cortex identified on any sequence.  

Upon completion of review of the nHCTs, ufMRIs and stMRIs, discrepancies between 

neuroradiologists were resolved by discussion to establish a consensus interpretation. For the 

calculation of concordance, an exam was considered concordant if all findings were in 

agreement, and discordant if there was any disagreement for any of the pathologic categories. Κ 

values < 0 are considered no agreement, 0–0.20 as slight agreement, 0.21–0.40 as fair agreement, 

0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement, and 0.81–1 as almost 

perfect agreement.37 Sensitivity, specificity, positive predictive value, and negative predictive 

value for consensus interpretation for ufMRI, nHCT, and ufMRI combined with nHCT, 



respectively, were calculated compared to consensus stMRI as the gold standard. McNemar’s 

test was used to assess for significance of the discordance rate compared to the gold standard for 

each pathologic entity, as well as the changes in sensitivity between ufMRI, nHCT, and 

combined ufMRI with nHCT.  Statistics were performed using MedCalc Statistical Software 

version 14.12.0 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org; 2014) with 

p<0.05 considered statistically significant. 

 

 

RESULTS 

 

The median age was 4 months (range 9 days – 31 months) and male:female ratio was 2:1. 

The median presentation pediatric Glascow coma scale was 15 (range 13-15). As per study 

protocol, no sedation was performed during ufMRIs of the brain for all 24 patients. StMRI was 

performed with papoose in 15/24 (63%) patients and with general anesthesia for 9/24 (37%) 

patients.  UfMRI was performed without sedation in all 24 patients, required less than 2 minutes 

to acquire all of the imaging sequences, and was of diagnostic quality in all patients while stMRI 

required general anesthesia in 9 of 24 patients to achieve diagnostic quality and required 

approximately 15 minutes to acquire all of the imaging sequences. UfMRI sequences and stMRI 

sequences were considered diagnostic in all patients by both neuroradiologists. Four individual 

ultrafast sequences were repeated in 3/24 scans compared to a repeat of 11 stMRI sequences in 

6/24 scans.  All nHCT CTs were of acceptable diagnostic quality. 

Summary of the prevalence of imaging findings identified on stMRI is listed in Table 2. The 

overall prevalence of patients with an abnormal intracranial trauma finding on stMRI was 83.3%.  



Binary inter-reader agreement for complete agreement versus any discrepant finding was 

moderate for ufMRI (k=0.42, 95%CI 0-0.87), substantial for nHCT (k=0.63, 95%CI 0.30-0.96), 

and nearly perfect for stMRI (k=0.86, 95%CI 0.60-1). Only one patient had an inter-reader 

discrepancy on stMRI which involved presence of old blood products along the tentorium. 

Discrepancy rates for individual findings on the consensus interpretation for ufMRI and 

nHCT compared to stMRI are listed in Table 3. The only significant discrepancy rate by 

pathology was the detection of intraparenchymal hemorrhage on nHCT compared to stMRI 

(p=0.03). For the total discrepancy rates per exam type, there was significance for consensus 

ultrafast (p=0.004), nHCT (p=0.0003) and combined ufMRI and nHCT (p=0.01) compared to the 

gold stMRI.   

Discrepancies where consensus ufMRI missed but were detected on consensus stMRI 

included: four patients with subarachnoid hemorrhage, three patients with bilateral subdural fluid 

collections in which one collection was not identified, two patients with a fluid-fluid level in a 

subdural collection, and three patients with tentorial subdural hemorrhage. UfMRI demonstrated 

complete agreement between both reviewers and the stMRI for presence of at least one subdural 

collection, intraventricular hemorrhage, parenchymal laceration, presence of enlarged 

subarachnoid spaces, encephalomalacia, parenchymal hemorrhage, herniation or midline shift, 

and hydrocephalus. There were no abnormal findings described on ultrafast that were normal on 

stMRI. Examples of ufMRI findings compared to stMRI findings are seen in Figures 1, 2 and 3.  

Diagnostic accuracy of consensus comparisons for each test for detecting any intracranial 

traumatic pathology to gold standard stMRI are listed in Table 4. The differences in the resulting 

sensitivity of ufMRI versus nHCT and ufMRI versus combined ufMRI with nHCT were not 



statistically significant (p=0.13, p=0.48); however the difference in sensitivity of combined 

ufMRI with nHCT versus nHCT alone was statistically significant (p=0.02). 

 

DISCUSSION 

 

In this study we demonstrate that an ufMRI can be reproducibly performed in pediatric 

patients referred for potential AHT with subjective diagnostic quality and without sedation. The 

lack of need for sedation is considered a primary advantage of ufMRI, and this may allow more 

institutions to perform brain MRIs on these patients without requirement for anesthesiology. 

Indeed, at many institutions which contain an MRI scanner and even those with 24/7 MRI 

technologist availability, anesthesiology can become a limiting factor for MRI in pediatric 

patients. However, ufMRI may be of little benefit if patients are intubated for clinical reasons as 

stMRI sequences could be performed without loss of spatial resolution. 

Although feasible, ufMRI demonstrates decreased inter-reader concordance between the 

reviewers compared to stMRI. Several of the discrepancies could be identified in retrospect on 

the ufMRI, but were likely missed due to differences in slice thickness which allows more 

opportunities to identify a finding on the stMRI compared to the ufMRI. The most frequent 

discrepant finding involved detection and localization of subarachnoid hemorrhage which was 

better appreciated on SWI than ultrafast axial T2* images, likely due to both differences in 

spatial resolution and signal intensity.  Although many missed findings on ufMRI can be 

retrospectively appreciated, given that both reviewers have experience in pediatric neuroimaging, 

the decreased inter-reader concordance is a limitation of ufMRI compared to stMRI.  



When compared to nHCT, ultrafast demonstrated similar discrepancy rates for detection of 

subdural and subarachnoid blood, but had significantly improved detection of intraparenchymal 

hematoma. This is likely due T2* sequences, which not only detects acute blood, which would 

be bright on nHCT, but also chronic hemosiderin, which would be essentially undetectable on 

nHCT.  Although signal loss on T2* cannot differentiate the chronicity of blood, the detection of 

blood products not seen on nHCT indicates previous injury, and would be helpful when 

assessing for AHT. We did not find differences in detection of intraparenchymal hemorrhage 

between ufMRI and stMRI in these patients, however, previous reports have demonstrated 

greater sensitivity of SWI compared to GRE for detection of cerebral microhemorrhage, and 

therefore we suspect similarly that the ultrafast T2* images will be less sensitive to detection of 

cerebral microhemorrhage compared to SWI in a larger cohort.38 The lack of significance for the 

detection of cytotoxic edema and enlarged subarachnoid spaces between ufMRI and nHCT was 

not expected as DWI is more sensitive to cytotoxic edema than CT and T2 HASTE images show 

the bridging veins within the subarachnoid space more clearly.  This may be due to the lower 

prevalence of these entities in our patient cohort. 

Our rationale for combining nHCT and ufMRI is the theoretical algorithm of using both 

exams as a potential replacement for stMRI, with nHCT providing greater sensitivity for skull 

fractures and ufMRI for parenchymal injury.  While this combination does improve sensitivity 

compared to nHCT alone and raises sensitivity slightly for intracranial pathology compared to 

ultrafast alone, the overall low sensitivity likely reflects the high sensitivity of SWI on the stMRI 

to small hemorrhages overall, particularly in the subarachnoid space. The decreased sensitivity of 

ufMRI, nHCT and the combination of the two compared to gold stMRI limits our ability to 

recommend the use of ufMRI in the setting of potential AHT. Institutions that incorporate ufMRI 



for pediatric trauma patients should be aware of this potential limitation, and we suggest that if 

an alternative ufMRI protocol is utilized that a comparison is made to a stMRI to assess the 

accuracy of the ufMRI.   

Discrepancies with ufMRI findings may be reduced if these studies are performed more 

frequently allowing for increased familiarity of the radiologist to the subtleties of ufMRI findings 

or could be avoided by reviewing these studies in consensus. Another possibility would be 

limiting the use of ufMRI for specific indications such as differentiation of enlarged 

subarachnoid spaces versus chronic subdural hematomas on nHCT or screening for intracranial 

trauma in patients with low clinical suspicion for AHT which can be followed by a later 

conventional MRI if necessary. ufMRI was very accurate for differentiation of enlarged 

subarachnoid spaces from subdural collections, a common difficulty with nHCT.  If ufMRI is 

incorporated into clinical use, we recommend a period of time in which side by side analysis 

with stMRIs is performed prior to completely replacing stMRI sequences and a low threshold for 

recommending stMRI.  

We could have chosen a broader population to study, particularly any child who came into 

the emergency department for head trauma, accidental or abusive.  However, the included 

patients in our study is an ideal patient population because of the younger age range, with a 

higher likelihood of requiring sedation for MRI.  However, the goal of MRI in AHT is not 

necessarily for acute patient management but for a highly sensitive imaging modality to 

document intracranial injury in a medicolegal context.  One could argue that needing a high level 

of sensitivity requires neuroimaging with the least amount of error in this patient population, and 

is an ideal challenge to the concept of a fast MRI not needing sedation.  Because of the need for 

detail with regards to medicolegal issues, we did not theorize whether the misses on ufMRI 



without a stMRI would lead to immediate poor patient outcome. Since most of the discrepancies 

were smaller findings, we would expect a limited effect on immediate patient outcome, not 

considering the known poor long-term outcomes of a child at risk for abuse.  In this regard, 

ufMRI could play a larger role in screening for intracranial pathology where AHT is unlikely.   

 

LIMITATIONS 

 

One limitation of this study is the relatively small sample size. A larger number of patients or 

a multicenter study may help further the understanding of findings on ufMRI that are 

reproducibly identified or missed compared to stMRI. Also, nHCT technique was variable due to 

inclusion of exams from referring institutions rather than repeating the nHCT and exposing the 

patient to additional radiation.  Decreasing doses on head CT lessens the signal to noise ratio and 

possibly sensitivity to intracranial pathology.  However, our institution is a firm adherent to the 

Image Gently pledge of the Alliance for Radiation Safety in Pediatric Imaging39 and has 

consistently lower dose than our referring institutions.  Increasing radiation dose at the cost of 

potential increased risk in malignancy seems counterproductive in this sensitive patient 

population.  Finally, the study was performed across both 1.5T and 3T scanners, which have 

signal to noise differences.  As the ultrafast examination and stMRI examination was performed 

on the same magnet, this dichotomy in methodology likely has less effect on our results.  

A few of our pathologic categories had zero prevalence in this small patient sample, 

particularly hydrocephalus, herniation and midline shift, and parenchymal lacerations.  This is 

likely due to the exclusion criterion of intubation, resulting in a neurologically intact patient 

cohort.  Hydrocephalus and significant mass effect causing herniation and midline shift would 



not be expected to be missed on ufMRI given the gross morphologic changes to the brain.  

However, parenchymal lacerations, or subcortical tears are uncommon but specific injuries for 

AHT in very young infants due to immature myelination of the subcortical white matter.  Given 

the small size of these lesions, the sensitivity of ufMRI for this finding is uncertain.      

Finally, T1 weighted and T2-weighted FLAIR sequences are conspicuously absent in our 

ultrafast protocol.  These would likely increase both concordance and sensitivity for intracranial 

pathology.  However, these sequences are also sensitive to patient motion due to the length of 

acquisition even with decreasing NEX and matrix size.  Optimization of time versus image 

signal and resolution by altering these parameters is a further area of study.  Furthermore, motion 

correction techniques, such as radial k-space acquisition, may also be beneficial despite the 

longer time for acquisition.  

CONCLUSIONS 

Diagnostic quality ufMRI of the brain can be reliably performed without sedation in 

patients with potential AHT and requires a very short amount of time to acquire compared to 

stMRI. However, ufMRI of the brain, as evaluated in our study, demonstrated greater 

discrepancy between neuroradiologists and had low sensitivity for intracranial trauma findings, 

particularly subarachnoid hemorrhage, even when combined with nHCT.    This limits the use of 

ufMRI, or combination of ufMRI and nHCT, as a replacement exam for a stMRI in the imaging 

workup of AHT.  
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TABLE 1. Ultrafast and standard MRI brain protocols 
 

Exam Sequence Parameters Time 
UfMRI  
 

 Magnet Strength TE (ms) TR (ms) Matrix Slice 
Thickness 
(mm) 

Total 
time: 
1.5T: 
1m43s 
3T: 
1m54s 

 Axial T2 
HASTE 

1.5T 
3T  

96 
98 

550 
536 

192x154 
192x154 

4 
4 

23s 
19s 

 Coronal T2 
HASTE 

 96 
98 

550 
536 

123x192 
123x192 

4 
4 

23s 
19s 

 Axial DWI  77 
78 

4508 
12600 

128x128 
128x128 

4 
4 

36s 
46s  

 Axial epi T2*  39 
39 

4190 
3350 

192x154 
192x154 

4 
4 

21s 
30s 

StMRI        Total 
time: 
1.5T: 
17m15s 
3T: 
14m42s 

 Sagittal 3D 
T1 MPRAGE 

1.5T 
3T 

2.98 
2.18 

2180 
1460 

192x256 
251x256 

1.2 
0.9 

3m53s 
3m16s 

 Axial T2 
TSE 

 99 
116 

3950 
3980 

320x320 
307x384 

2 
2 

1m51s 
2m12s 

 Coronal T2 
TSE 

 109 
116 

3870 
3520 

320x320 
320x320 

2 
2 

2m12s 
4m6s 

 Axial T2 
FLAIR 

 152 
107 

10000 
7000 

256x256 
180x320 

4 
4 

3m0s 
1m24s 

 Axial DWI  77 
78 

4508 
12600 

128x128 
128x128 

4 
4 

36s 
46s 

 Axial SWI  40 
40 

49 
27 

195x320 
182x256 

1.5 
1.5 

5m43s 
2m58s 

 
  



 
 
TABLE 2. Prevalence of imaging findings per patient on standard MRI. 
 
 

FINDING PREVALENCE 
SUBDURAL COLLECTION 11/24 (46%) 
BILATERAL SUBDURAL 10/11 (44%) 
SUBARACHNOID HEMORRHAGE 8/24 (33%) 
INTRAPARENCHYMAL HEMORRHAGE 7/24 (29%) 
INTRAVENTRICULAR HEMORRHAGE 1/24 (4%) 
EPIDURAL HEMORRHAGE 3/24 (13%) 
CYTOTOXIC EDEMA 4/24 (17%) 
PARENCHYMAL LACERATION 0/24 (0%) 
VASOGENIC EDEMA 2/24 (8%) 
HERNIATION OR MIDLINE SHIFT 0/24 (0%) 
HYDROCEPHALUS 0/24 (0%) 
ENCEPHALOMALACIA 2/24 (8%) 
LARGE SUBARACHNOID SPACES 5/24 (21%) 
TOTAL NUMBER OF PATIENTS WITH 
ANY ABNORMAL FINDING 

20/24 (83%) 

  



Table 3. Discrepancy rates for consensus ufMRI, nHCT and combined versus stMRI 
 

 Uf vs stMRI 
 

nHCT vs 
stMRI 

 

Ultrafast + 
nHCT vs 

stMRI 
 

Subdural collection 0/24 (0%) 0/24 (0%) 0/24 (0%) 

Bilateral subdural 3/24 (13%) 1/24 (4%) 1/24 (4%) 

Tentorial Subdural 
hemorrhage 

3/24 (13%) 3/24 (13%) 3/24 (13%) 

Subdural membrane 
formation 

0/24 (0%) 2/24 (8%) 0/24 (0%) 

Subdural fluid-fluid 
level 

2/24 (8%) 2/24 (8%) 2/24 (8%) 

Subarachnoid 
hemorrhage 

4/24 (17%) 4/24 (17%) 4/24 (17%) 

Intraparenchymal 
hemorrhage 

0/24 (0%) 6/24 (25%)* 0/24 (0%) 

Intraventricular 
hemorrhage 

0/24 (0%) 1/24 (4%) 0/24 (0%) 

Epidural hemorrhage 0/24 (0%) 0/24 (0%) 0/24 (0%) 

Cytotoxic edema 0/24 (0%) 4/24 (17%) 0/24 (0%) 

Parenchymal 
laceration 

0/24 (0%) 0/24 (0%) 0/24 (0%) 

Vasogenic edema 0/24 (0%) 1/24 (4%) 0/24 (0%) 

Herniation or midline 
shift 

0/24 (0%) 0/24 (0%) 0/24 (0%) 

Hydrocephalus 0/24 (0%) 0/24 (0%) 0/24 (0%) 

Encephalomalacia 0/24 (0%) 0/24 (0%) 0/24 (0%) 

Large subarachnoid 
spaces 

0/24 (0%) 1/24 (4%) 0/24 (0%) 

Any discrepancy 10/24 (42%)* 15/24 (63%)* 8/24 (33%)* 

 
Note: * denotes statistically significant McNemar’s test (p<0.05) 
 
  



 
Table 4. Diagnostic performance of consensus ufMRI, nHCT, and combined ufMRI with 
nHCT compared to StMRI 
 

 Sensitivity Specificity PPV NPV 
UfMRI 50% 

(27%-73%) 
100% 

(40%-100%) 
 

100% 
(69%-100%) 

 

31% 
(8%-58%) 

 
     

nHCT 25% 
(9%-49%) 

 

100% 
(40%-100%) 

 

100% 
(48%-100%) 

 

21% 
(6%-46%) 

 
     

Combined 
Ultrafast with 
nHCT 

60% 
(36%-81%) 

 

100% 
(40%-100%) 

 

100% 
(74%-100%) 

 

33% 
(10%-65%) 

 
 
Note: Parentheses denote 95% Confidence Intervals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

Figure 1. A 4 month-old with suspected abusive head trauma found to have bilateral subdural 
collections identified on coronal T2 TSE (A) however the right subdural collection was not 
prospectively identified on ultrafast coronal T2 HASTE (B).   
 

 
 
  



Figure 2. A 31 month old with a suspected abusive head trauma with a subdural hematoma (not 
shown) found to have subarachnoid hemorrhage in the sulci of the left superior frontal and 
parietal lobes on axial SWI (A) which was prospectively detected by only one reviewer on 
ultrafast axial EPI T2* (B). 

 
 
 
 
 
  



 
Figure 3. A 10 month-old with suspected abusive head trauma found to have subtle parenchymal 
edema identified in the left parietal lobe on axial and coronal T2 TSE (A, B) which was not 
prospectively identified on ultrafast axial or coronal HASTE (C, D). 

 
 

 


	Diagnostic Performance of Ultrafast Brain MRI for Evaluation of Abusive Head Trauma
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION
	LIMITATIONS
	CONCLUSIONS
	REFERENCES:
	TABLE 2. Prevalence of imaging findings per patient on standard MRI.

