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Abstract: Zebrafish are a popular vertebrate model in drug discovery. They produce a large number
of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be
used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as
Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing
an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research
developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a
visual-motor response that can potentially expedite discovery of new RD drugs.
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1. Retinal Degeneration Overview

Retinal degeneration (RD) is a leading cause for blindness in humans [1,2]. It encompasses several
inherited retinal dystrophies, such as retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA),
age-related macular degeneration (AMD), and syndromes that affect eyes. RD can be broadly classified
into three types: (i) diseases primarily affecting rods; (ii) diseases primarily affecting cones; and (iii)
diseases where both photoreceptors (PRs) are affected (for a comprehensive review, (see [2]). The severity
of these diseases varies. Some of them are stationary, while others are progressive and present with
symptoms at adulthood. Regardless of the etiology and pathogenesis, when the light-sensitive PRs die,
they cannot properly transmit visual signals. Consequently, the patients lose some of their vision, or
even become blind.

To illustrate the complexity of RD, here we will consider two subtypes: RP and LCA. RP is
a group of genetically heterogeneous diseases affecting 1 in 4000 people, in both the US and the
world [3]. It has more than 45 causal mutations and different modes of inheritance. Most RP cases
are autosomal-recessive (50–60%), while the others are autosomal-dominant (30–40%) and X-linked
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(5–15%) [1]. These patients experienced reduced vision in dim light or night blindness due to rod
degeneration. These dying rods progressively affect the cones in the macula, ultimately leading to
blindness [1,4]. LCA has a birth prevalence of two to three cases in 100,000 and is attributed to more
than 5% of all retinal dystrophies [1,5,6]. It has more than 14 associated disease-causing genes. Some of
them are expressed in the PRs, whereas some others are expressed in the retinal pigment epithelium
(RPE) that lays below the retina. The mode of inheritance is mostly autosomal recessive, but autosomal
dominant inheritance is also possible. The LCA patients suffer from severe visual impairment or
blindness, and photophobia [6]. These disease examples highlight the severity and complexity of
manifestation of RD, which is often caused by genetic heterogeneity.

Many RD mutations affect proteins in the phototransduction pathway, or the well-being of the
retinal cells. In the former situation, the mutations lead to either absence or failure to form correct
proteins, and disrupt the phototransduction pathway. This severely affects PR physiology, leads to their
degeneration, and eventually causes blindness in patients. For example, mutations in RHO (rhodopsin)
and PDE6B (rod-specific phosphodiesterase subunit) are linked to RP [7–9]. The patients experience
tunnel vision, constricted visual fields, and progressive decline in vision. Similarly, mutations in
GNAT1/GNAT2 (rod and cone transducin subunits) are found in patients with severe night blindness
and achromatopsia [2,9]. Mutations in PDE6C (a cone-specific phosphodiesterase subunit) are found
in patients with cone dystrophy or achromatopsia. They experience progressive decline in visual
acuity and eventually lose color vision [10–13]. In some other situations, RD mutations affect the
well-being of retina. As discussed above, LCA is a congenital condition that can affect genes expressed
in either PR or RPE. The condition is commonly associated with RPE65 and LRAT that are specifically
expressed in the RPE. These RPE-expressed genes play a critical role in isomerizing the all-trans retinol
to 11-cis retinal and regenerating the visual pigment. Their mutations compromise the physiology
of PRs and ultimately lead to their degeneration. These examples indicate how multiple mutations
in different genes can affect PR physiology in different ways. It is therefore not surprising that RD’s
severity and progression vary in different cases—some forms are early onset, whilst some others are
late onset. This genetic heterogeneity not only emphasizes the importance of understanding etiology
and pathogenesis of RD, but also the challenges of finding specific treatments for different conditions.

2. Current and Experimental RD Treatments

There are few treatment options for most RD patients. In patients suffering from wet or exudative
AMD, their retinal blood vessels leak and overgrow. The overgrown vessels detach retina and result in
visual impairment. These patients are currently treated by anti-angiogenic drugs (e.g., anti-VEGF, a growth
factor that promotes vessel growth), and surgery, like photodynamic therapy and photocoagulation, to seal
the leaky blood vessel [14]. For many congenital RD patients, there is no treatment. To find new therapies,
researchers are working on several fronts, including gene therapy [15–17], stem-cell therapy [18–20],
retinal transplantation [21], optogenetics (a way to confer light sensitivity to other retinal cells through
expression of light-sensitive proteins called channelrhodopsin) [22,23], prosthetics [24,25], and new drug
discovery. In gene therapy, a functional copy of the gene is introduced to the target cell type in the disorders
with loss-of-function mutations. Alternatively, the mutated gene in autosomal dominant disorders are
suppressed or replaced. In some RP mice models, PRs might die of oxidative stress. This oxidative
damage could be reduced by introducing genes encoding super-oxide dismutase and glutathione
peroxidase. This approach extended cone survival in these RP models [26,27]. With stem-cell therapy,
stem cells or induced pluripotent stem cells [28,29] are used to derive replacement cells for tissues
damaged by RD, including PRs and their precursors, and RPE [30–33]. In retinal transplantation,
healthy neurons are transplanted into diseased retinas. For example, PR sheets harvested from
human cadavers were transplanted to late-stage RP patients [21]. Optogenetics re-introduces light
sensation to the residual retina by expressing different types of opsins (rhodopsin, melanopsin or
channelrhodopsins) [23,34–36]. For patients with advanced RP, prosthetics may be a viable option,
akin to the hearing aid for those with hearing impairment. The Argus II retinal prosthesis system is
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the only FDA approved prosthetic system available [24,25]. In a 3-year follow up study, it improved
visual acuity and visual function in 30 patients, without affecting their quality of life [25]. Despite these
encouraging results, the cost to implant an Argus II is about USD $14,988 per eye. Its affordability
is debatable, even though it may be cost effective when compared to long-term usual care [37].
For drug discovery, many studies have evaluated the effects of vitamin A supplementation [38,39]
and docosahexaenoic acid (DHA) [40,41], with conflicting observations. Others have studied growth
factor supplementation, treatment with anti-oxidant compounds [27,42,43], and naturally-derived
compounds with therapeutic potential. For example, when two RP mouse models were treated with
anti-oxidants, they experienced a reduction in the death rate of cones [42,43]. Even though these
treatment options may be promising, they are largely experimental. We are in need of therapeutic
interventions which are not only potent, but also cost-effective. This need can be met by screening
drugs in animal models that can be efficiently evaluated. Several animal models are used in vision
research, ranging from invertebrate fruit flies, to vertebrate animals, such as zebrafish and rodents.
Each of these models has its own strengths and weaknesses, and is suitable for addressing different
research questions [44]. Among these models, zebrafish are particularly suitable for screening eye
drugs, as their visual system is very comparable to that in humans.

3. Zebrafish as a Model System for the Eye

The zebrafish (Danio rerio) has become an extremely popular and useful animal model in modern
research. Compared to other animal models, zebrafish offer numerous advantages, including high
fecundity, amenability to genetic manipulation, ease of handling and maintenance, low costs, relatively
transparent embryos, and similarity to mammals [45]. In stark contrast to mice, a single breeding pair
of adult zebrafish can produce 100 to 200 embryos on a weekly basis. The ample supply of embryos
facilitates high-throughput in vivo experiments, and large-scale screens that would otherwise be
inefficient to perform.

Zebrafish eyes have important similarities, and some differences, to the human eyes. For example,
the zebrafish have predominantly cone-mediated vision [46] like humans. Humans possess three types
of PRs for color vision: red, green, and blue cones; the zebrafish contain the same PR types, and
also an ultraviolet cone [47]. Additionally, red and green cones in zebrafish are double cones, rather
than individual cones. Zebrafish also possess rods. Thus, they perceive light through similar cellular
mechanisms as in humans. The retinas of zebrafish and humans also share the same layout, with
three cellular layers: the outer nuclear layer (ONL), the inner nuclear layer (INL), and the ganglion
cell layer (GCL). They also have two synaptic layers: the inner and outer plexiform layers (IPL and
OPL). Zebrafish and humans also both contain RPE. However, the zebrafish retina differs from the
human retina in some important aspects. For one, zebrafish eyes are positioned more laterally, while
human eyes are located frontally on the face. Zebrafish also lack a macula and fovea. Instead, their
photoreceptors are organized in a mosaic pattern throughout the retina [48–50]. In contrast, humans
have a macula in which cone density is highest. The density dramatically decreases towards the
periphery, where rod density is highest [51,52]. These features of zebrafish retina uniquely positions
zebrafish as a suitable model for vision research. Other popular models include rodent models, such
as the mouse and rat. Rodents have evolved to live a primarily nocturnal lifestyle, and hence utilize
rods for their vision [53]. They are also dichromatic and only possess short and medium wavelength
cone PRs. Their vision therefore is very different from the trichromatic humans who follow a diurnal
lifestyle. Rodents also lack calycal processes in photoreceptors which are found in human and zebrafish
photoreceptors. Even though these rodent models have revealed critical insights into visual sciences,
they may not always be the ideal system for research on human vision. In contrast, the tetrachromatic
and diurnal zebrafish more closely match the vision and evolved lifestyle of the humans. Thus, they
may be more suitable for modeling human retinal diseases.

The zebrafish have been used to model RD [54–58]. As discussed before, this heterogeneous disease
is caused by mutations in various genes. For example, RP is often caused by mutations in RHO [1],
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which encodes the photopigment in rod PRs for initiating phototransduction. One clinically-relevant
zebrafish RP line expresses a human RHO transgene with a truncation mutation Q344X [59]. This Q344X
mutation was originally identified in patients who suffered from autosomal dominant form of RP.
Another prominent model of RD is the pde6c zebrafish mutant [60,61]. It carries a splice-site mutation in
pde6c, a subunit of cone-specific phosphodiesterase, which results in a truncated protein. The mutation
leading to cone degeneration in a mechanism seems to be analogous to the Pde6b mutation in the rd1
mouse [60,62]. Thus, zebrafish can be used to model clinically-relevant RD. These models can also be
used to identify new drugs, using approaches that allow for large-scale discovery.

4. Zebrafish for Large-Scale In Vivo Drug Screening

Zebrafish have been used in a number of seminal studies to screen for compounds with therapeutic
effects [63–66]. For example, Rihel et al. utilized the wake/rest behavior of larval zebrafish to screen
over 5600 compounds in search for molecules that altered the behavior [67]. Recently, several studies
have utilized zebrafish as an in vivo model to discover potential new drugs (Table 1). This indicates
a shift in interest towards in vivo drug discovery. As an example, Kokel et al. used the photomotor
response and the touch response of zebrafish embryos to screen over 14,000 chemicals to identify
neuroactive compounds [68]. These pioneering studies show that zebrafish behaviors can be utilized
as phenotypes for screening neuroactive compounds, and can potentially be used for screening drugs
for RD. However, it should be noted that zebrafish larvae are still undergoing development during the
drug screening process. Thus, it may not be feasible to study some drug or disease mechanisms with
zebrafish larvae.

Table 1. Recent in vivo zebrafish screens.

Zebrafish Drug Screening Study Number of Compounds Screened Number of Reported Hits Reference

Bruni et al. (2016) 24,760 Top 100 [69]
Dinday et al. (2015) 1000 4 [70]

Gallardo et al. (2015) 2960 165 [71]
Li et al. (2015) 3120 4 [72]

Nath et al. (2015) 13,120 1 [73]
Liu et al. (2014) 3000 8 [74]
Jin et al. (2013) 1200 6 [75]

Kokel et al. (2013) 10,000 1 Pursued [76]
Nath et al. (2013) 3120 4 [77]

Baxendale et al. (2012) 2000 46 [78]
Kokel et al. (2010) 14,000 1627 [68]
Rihel et al. (2010) 5648 547 [67]

Zebrafish are being utilized to screen drugs for a variety of topics. This table shows example screens that have
recently been completed, the number of drugs that were screened, and the number of reported hits according to the
criteria defined by the investigators of the study.

To date, all drug-screening methods have yet to produce any viable treatments for RD patients.
Phenotype-based screening using larval zebrafish behavior may provide the method needed to
discover new drug leads. Behaviors are the processed outputs of a perceived stimulus. In the case of
vision, zebrafish exhibit a number of visually-mediated behaviors upon different light stimuli [79–85].
When these fish carry mutations that affect the visual system, their visual behavior may be altered or
ablated. This altered behavior provides the necessary phenotype to design screens that find compounds
to ameliorate the abnormal behavior [86]. Leading compounds identified through this process may
have a higher likelihood of efficacy, because their therapeutic effects are seen functionally on the
systems level, and not only at the cellular or molecular level (for a comprehensive review of zebrafish
behaviors and visual behaviors, see [86–88]).
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5. Zebrafish Visual Behaviors

5.1. Optokinetic Response (OKR) and the Optomotor Response (OMR)

The optokinetic response (OKR) is one of the visual behaviors that can be observed in zebrafish
larvae as early as 3 days post fertilization (dpf) and robustly starting at 5 dpf [84,89–91]. In this
assay, the larvae are immobilized in a viscous solution, such as methylcellulose, and then presented
with a visual stimulus. The stimulus is usually a set of black and white stripes rotating clockwise
or counterclockwise around the fish. This rotating grating elicits a stereotypical behavior in normal
larvae, consisting of eye movement along the direction of rotation of stripes and saccades. If the larvae
have visual impairments, they may display abnormal OKR. Therefore, OKR can be a good tool for
evaluating visual function.

The optomotor response (OMR) is another visual behavior that zebrafish exhibit beginning between
6 and 7dpf [88,92]. A broad moving stimulus is presented below the larvae, which induces a swimming
behavior in the direction of the stimulus. This can be achieved by placing a monitor below a tank of larvae
to present the stimulus, and swimming behavior can be captured with a camera, and quantified. The OMR
behavior is a result of the larvae attempting to counter water currents and remain in place. As this behavior
is visually modulated, the OMR can be used to generally assess the vision of zebrafish larvae. Larvae that
do not have functional photoreceptors or retinal ganglion cells do not exhibit an OMR [81].

The OKR and OMR have long been used in forward-genetic screens to identify visual
mutants [81,84,93]. In such screens, parental fish are subjected to chemical mutagenesis which would
create random mutations in the genome in the gametes. If the mutation hits a critical gene for vision,
the progeny of these mutagenized adults may display abnormal OKR and OMR. By systematically
analyzing the OKR of many progenies, many visual mutants have been identified. For example,
Brockerhoff et al. used OKR to evaluate 266 mutagenized genomes and isolated 18 OKR mutants [84].
Neuhauss et al. used the OKR and the OMR assays to assess visual defects in 450 previously created
mutants [81]. They were able to identify and characterize visual defects in 13 mutants. The visual
mutants identified from these studies revealed new insights into cellular and molecular defects that
lead to different types of visual problems. For example, the no optokinetic response a (noa) mutant lacked
OKR, and displayed an abnormal electroretinogram (ERG) in which b-wave had a delayed onset and a
smaller amplitude, whereas a-wave was fairly normal [84]. The mutation was subsequently mapped
to dihydrolipoamide S-acetyltransferase (dlat), a subunit of pyruvate dehydrogenase (Pdh) [94]. The Pdh
deficiency likely affected neurons including PRs, that demand high energy, and resulted in the OKR
defect of noa mutants. In recent years, the OKR has also been used in reverse-genetic studies that
revealed visual functions of genes that were mutated in patients [95]. These examples illustrate the
power of using OKR and OMR to isolate visual mutants and dissect the genetic-basis of the defects.

More recently, OKR has also been used to evaluate the efficacy and toxicity of drugs. For example,
it was used to test the effects of two anxiolytic drugs—lorazepam and diazepam [96]. These two
benzodiazepines caused zebrafish larvae to spend more time in the dark during light/dark presentation,
compared with the vehicle-treated controls. This aversion behavior was not likely caused by drug-induced
defects on the visual system, as the compounds did not affect OKR. Even though this study did not
focus on RD, it demonstrates the power of OKR in toxicology research. The OKR has also been used to
evaluate oculotoxicity in a seminal study, in which WT larvae were treated with six known oculotoxic
drugs, and the resulting effects were assayed by two visual behaviors: OKR and the VMR (visual motor
response, see next section) [97]. Both assays showed that the tested compounds interfered with OKR
and VMR—hence, these compounds were indeed oculotoxic. These behavioral assays can therefore be
used to detect oculotoxic drugs. In addition to the OKR, the OMR has also been used to been used
to evaluate the oculotoxicity of drugs. Richards et al. studied the effects of 27 compounds on OMR
utilizing zebrafish larvae [98]. The study was able to utilize the OMR to correctly identify oculotoxic
compounds 70% of the time. These studies show that the OKR and the OMR can be used to evaluate
the drug effects on vision.



Int. J. Mol. Sci. 2017, 18, 1185 6 of 21

Even though OKR has been used in toxicology and pharmacology studies, its slower throughput
may hamper its utility in high-throughput drug screening. Only ten or fewer larvae can be reliably
tracked at the same time using automated-tracking system, because they may move in the immobilizing
solution. Realigning these larvae can become tedious and laborious, and create a bottleneck in drug
screening. Instead, the OKR should be used for the high-content analysis of identified drug candidates.
The assay can analyze many parameters of a sample, such as rotation velocity and spatial frequency
of the grating, and color of and contrast between the stripes in the grating [99]. Measuring these fine
parameters can reveal how a candidate drug may have improved visual function. Therefore, the OKR
may be used as a secondary assay to characterize identified drugs, but not the primary assay for
high-throughput drug screening. To this end, we need an assay that can be done high-throughput.

5.2. Visual Motor Response (VMR)

The visual motor response (VMR) is a startle response mediated by vision, and initiated by a
drastic change in illumination [94,95]. It can be detected in larvae as early as 3 dpf, and becomes robust
by 5 dpf [80,100,101]. In a typical VMR assay, larvae are individually placed in a multi-well plate, which
is then placed inside a lightproof machine to isolate from external disturbances and environmental
light. These larvae are stimulated with controlled white light, and then their resultant movements
are simultaneously visualized by infrared (IR) illumination and recorded with infrared camera in the
machine. The basic workflow of this process is outlined in Figure 1. Similar VMR systems are currently
offered by Viewpoint LifeSciences [102] and Noldus [103], or are homemade [104,105]. Regardless
of the system, the collected VMR generally has two separate parts—a response to drastic light onset
(Light-on VMR), and a response to drastic light offset (Light-off VMR) [80,101,106]. The Light-on VMR
of WT larvae consists of a drastic and sharp increase in locomotor activity at light onset, followed by a
rapid decrease in activity to the baseline level after approximately 30 s. Similarly, the Light-off VMR of
WT larvae consists of a drastic increase in locomotor activity at light offset. However, unlike Light-on
VMR, the Light-off VMR does not immediately return to the baseline level in 30 s, but rather sustains at
an intermediate level. After 30 min, this activity gradually returns to the baseline level. The standard
assay may have several alternating light and dark phases, so that the larvae will be subjected to multiple
trials of light onset and offset. This standard assay is usually performed with 96-well plates, but other
formats have also been used [104,107,108]. Since the well dimensions are known to affect the locomotor
behavior [107], it is advisable to use one type of plate for a project. Here, we will restrict our discussion
on the information we learned from larval activities collected from 96-well plates.

The larval activity in the VMR is generally summarized in larval movement per unit
time [67,79,80,97,100,101,106,109] and displacement [110–117]. In the former method, each larva is
registered in each frame of the video as pixels. These registered pixels are compared with those in the
next frame. If a larva moves, the corresponding registered pixels will move too. Larval movement can
therefore be detected by counting the number of registered pixels that change beyond a pre-defined
threshold in successive frames. This frame-by-frame movement can be averaged over a specific
timeframe, which allows for larval movement per unit time. By selecting appropriate thresholds, larval
activity can be further categorized into different levels, for example: large, medium, and small/no
movement [67,97,100,109]. This categorization may help reveal different types of locomotor outputs in
response to different influences, including drugs and genetic variations. For example, our lab found
that using small movements of larvae in machine learning enhanced the accuracy in classifying different
WT strains [109]. This observation suggests that the difference in small movements between WT strains
was originated from their genetic variations. On the other hand, the displacement method compares the
registered pixels between successive frames in a slightly different way. It measures the actual distance
between the centroids of the registered pixels between successive frames. This approach allows for
the calculation of velocity and reveals different aspect of larval locomotion. These functionalities are
readily available in the software from the commercial systems; similar functions are often available in
homemade software for tracking zebrafish locomotion [104,118–122]. Regardless of the summarization
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approach, the VMR activity is often presented as the average of multiple larvae of the same type,
or under the same treatment. Since this activity reflects the neural output of the larvae upon light
stimulation, the VMR assay can potentially be used to evaluate drug effects on the visual system.
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Figure 1. A typical visual motor response (VMR) experiment. Sufficient zebrafish embryos for an
experiment are collected by breeding adult fish. The embryos can be maintained in petri dishes with
media, as they develop until they are needed for a VMR assay. (A) At the appropriate stage, embryos
can be placed into 96-well plate format to facilitate throughput, storage and, data collection during
a VMR assay. It should be noted that there are multiple arrangements possible for placing zebrafish
larvae in a 96-well plate, such as row-wise, column-wise, or checkerboard patterns. Larvae in the
96-well plate arrangement can then be placed in a light-proof recording chamber and exposed to light
onset or light offset stimulus. The locomotor output of the larvae is recorded and processed. Recorded
data can be visualized through programs such as R 3.4.0 [123] (B) This graph illustrates the VMR of a
group of 7-dpf wild-type larvae (black trace) responding to light onset stimulus [106]. Their response
is compared to the VMR from a group of visually-impaired pde6c mutant larvae (red trace). Healthy
larvae exhibit a strong startle response to the light onset, while the visually-impaired larvae do not.
This lack of response by retinal degeneration (RD) zebrafish models forms the basis for drug screens.

The VMR is conducive to high-throughput screening of drugs for RD because: (i) it can analyze
96 larvae and several drugs at once in one plate; (ii) it is simple to set up and assay, and is less
laborious compared to other visual analyses; (iii) it tests in vivo effects of drug treatments; and (vi) it
allows for simple drug administration, by mixing the drug with fish water. These advantages make
it possible to firstly screen and identify drugs that may enhance light sensation, and then to study
the mechanism of positive drugs. For example, we recently used the VMR to identify a compound
that may treat RD [106]. We found that a RD mutant pde6c displayed significantly reduced VMR
compared with the WT, and that the reduced VMR was ameliorated upon by exposure to schisandrin B,
a naturally-derived compound. We then found that this compound reduced the abnormally-large rods,
but did not exert any measurable effects on cones. Therefore, the compound might have exerted its
effect on VMR through a beneficial effect on the rods. As mentioned in the previous section, the VMR
was also used for evaluating oculotoxicity of six known oculotoxic drugs, which is essentially a drug
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screen [97]. This study concluded that for the visual-toxicity test, the VMR has a sensitivity of 83%,
a specificity of 90%, and a positive predictive value of 83%. Together, these initial characterizations
strongly indicate that the VMR can facilitate high-throughput drug discovery.

6. Current Issues and Developments of VMR for Drug Discovery

Since VMR has shown great promise in drug discovery for RD, we must consider the ongoing
developments and its several limitations. In this section, we will consider seven issues related to the
neural basis of VMR, assay optimization and development, and data analysis.

6.1. Extraocular PRs and Locomotor Response

We defined earlier that VMR is a visual startle that is initiated by a drastic light change.
Depending on the assaying parameters, the VMR assay may also detect light sensation by extraocular
PRs. This extraocular-PR contribution was deduced by two observations: (1) an eyeless chokh/rx3 mutant
lacks VMR [79]; and (2) eye enucleation abolished VMR [106]. However, these deductions were also
based on VMR conducted with the original protocol established by Emran et al., which summarized
larval activity in bins of seconds [79,80]. When the chokh mutants were subjected to a similar assay, and
their activities summarized in bins of minutes, they displayed a delayed locomotor activity during
light offset in a scale of minutes [116]. Subsequent analysis reviewed that this delayed locomotion
was driven by the deep-brain PRs of the eyeless chokh/rx3 mutants. Based on these observations, we
recommend the following design to maximize detection RD drugs by the VMR assay: (1) use the
original VMR protocol [80,106] that summarizes activity in seconds to screen drugs for RD; (2) focus
on analyzing the initial seconds of the VMR after light change, up to 20 s; and (3) test any positive
candidates against the eyeless chokh/rx3 mutants, or enucleated larvae, with the original VMR protocol
to exclude drug effects originating from extraocular PRs.

6.2. Neural Basis of VMR

The underlying brain circuitry that drives VMR is unclear [87], as also illustrated in the last section.
The VMR is a startle response, which is usually activated by a number of hindbrain reticulospinal
neurons [124]. The exact neurons driving the VMR are not clear, and we have only recently begun
to learn the circuitry that drives locomotor behavior during light offset through two studies [116,125].
When zebrafish larvae were stimulated by dark flash, they twisted their body to form a circular shape that
was termed the O-bend (Figure 2B). This O-bend was distinct from a less drastic version of body twist,
termed the C-bend (Figure 2A), which was initiated by the Mauthner (M) cells in the hindbrain [126]. When
the M-cells were ablated, the larvae could still display an O-bend upon a dark flash [125]. Interestingly,
the O-bend was abolished by eye enucleation, suggesting this initial dark response was initiated by retina
and was independent of M-cells [116]. Future studies should focus on dissecting the roles of different
reticulospinal neurons in different parts of VMR [124]. This can be achieved by systematically ablating
reticulospinal neurons, and measuring the VMR in the ablated larvae [125,127].
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Figure 2. Zebrafish larvae display different startle escape behaviors. (A) A larva escapes from a
touch-stimulus by exhibiting a C-bend. In this response, larvae curve their bodies in a C-shape
and swim quickly away from the location of the stimulus [128]; (B) Larvae orient into an O-bend in
response to a dark flash. The larva curves its body approximately 180 degrees to swim in the opposite
direction [125]. Reproduced with permissions from Burgess et al. and Lorent et al.
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6.3. Rod and Cone Responses in VMR

The VMR does not directly measure pure rod and cone responses at the moment. The basic setup
from commercial suppliers uses white LEDs as the light source, and does not necessarily discriminate
rod and cone contributions. We and other colleagues have been addressing these issues. In our
preliminary studies, we detected VMR from a cone mutant nof /gnat2 that lacked functional cones
but possessed functional rods [129], suggesting rods contribute to the VMR [130]. We also introduced
neutral-density filters to the light path of the VMR machine, and still detect appreciable VMR from WT
larvae at light intensities that drive scotopic vision (unpublished observations). These studies suggest
that the VMR assay can detect rod response. To discriminate responses driven by different colour
cones, the VMR machine can be modified to use LEDs with wavelengths matching the absorption
maxima of respective cones. Such a machine has been built by Noldus and several groups [105,131].
In one of these studies [131], the machine has been used to test VMR driven by different wavelengths,
which begin to reveal different cone contributions to VMR

6.4. VMR Assay Optimization

The assaying time for VMR can be optimized. In the original protocol established by
Emran et al. [80,101], the total run time is approximately 6 h. This protocol involves a dark adaptation
for at least three hours, and three trials/technical repeats of light onset and offset, with each light change
lasting for 30 min. For larger-scale screening, this long protocol should be streamlined. First, the long
dark adaptation may be shortened without affecting VMR initiation. Even though using three technical
repeats may confer some analytical advantages during initial screens, they do not replace biological
repeats which address biological variations. We also found that the first technical repeat of Light-on
VMR was significantly different from the second and third technical repeats, whereas all three technical
repeats of Light-off VMR were comparable [101]. Therefore, we may also shorten the VMR assay by
using just one trial of light onset and offset, and focus on generating biological repeats when necessary.
Together, these modifications may shorten a VMR assay to approximately 1.5 h. Other colleagues have
used different time periods in their VMR trials. For example, Mora-Zamorano et al. used a 10-min
dark adaptation, followed by two cycles of 10 min light-on and light-off cycles. Their run time was
50 min [132]. Deeti et al. used a variation in which the light was turned on for the first 30 min, followed
by four on-off cycles in 20 min intervals [97]. Their assay time was 1 h and 40 min. For screening eye
drugs, we recommend the length of each light onset and offset period should be maintained at 30 min.
In each light period, the larvae are essentially adapting to light or darkness. Shortening this adaptation
may affect the VMR of subsequent light change. For example, zebrafish larvae require 20–30 min
light adaptation before they would maximally responsive to dark flash and display the characteristic
O-bend [125], as discussed above. In addition, we could not detect a drastic Light-on VMR when the
previous dark phase was shorter than 30 min, probably due to the larvae being still quite active in
the dark phase until the end of the 30-min period (unpublished observations). When the underlying
circuitry for VMR is fully elucidated, we can potentially further optimize the assay design and shorten
the assaying time.

6.5. VMR of Adult Zebrafish

VMR is currently performed using larvae, and may be more suitable for screening drugs for
early-onset RD [133]. In this sense, OKR may be more suitable for screening drugs for late onset
retinal diseases, as it can be performed on adult fish. Nonetheless, adult zebrafish also display visual
startle, and can be tracked in parallel by advanced computer vision [134]. We therefore believe that the
VMR can also be adapted for studying adult-onset RDs, which in turn will expand our capability in
finding new drugs for these conditions. However, the throughput of studying VMR in adults is likely
lower. Despite lower throughput, this adaptation would be suitable for testing promising candidate
compounds identified by other higher throughput screens.
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6.6. Data Analysis of VMR

VMR data are complex and require new approaches for data analysis. The complexity of VMR
data comes from the experimental design, of which there are a few challenges, which we will highlight
here. First, in a VMR experiment, multiple larvae are measured repeatedly over a long period of time.
These repeated measurements are correlated in time (time-dependent), and cannot be handled by t-test
and ANOVA. These tests also compare data at a specific time point. They need to be run multiple
times to analyze the multiple time points in the time-series data. This would increase the overall type
I error rate, and the probability of rejecting the null hypothesis when it is true (i.e., false positives).
This time-dependent issue is often handled by repeated-measures ANOVA, a variant of ANOVA for
analyzing repeated measurements. Nonetheless, this test requires data variance satisfies sphericity
assumption, which stipulates that the variances of the differences between group combinations are
equal. To handle these analytical issues, we recently introduced Hotelling’s T-squared test for analyzing
locomotor data [101]. This test not only reduces the type I error rate compared to the t-test, but also
takes into account the time dependency between repeated measures. It allows for comparing the
activity profile of two groups of samples in a specified timeframe, and gives an intuitive p-value
for significance inference. Second, summarization of larval activity can take place in short time bins
(e.g., seconds), during which many larvae may displaying little or no movement. As a result, the
distribution of larval activities would likely deviate from a Gaussian distribution. This deviation
creates data imbalance and poses challenges to traditional analyses which rely on the assumption of a
Gaussian distribution. To address this issue, we introduced another approach—the logistic generalized
linear mixed model (logistic GLMM) [135]. This approach handles binary response variable, and can
be used to estimate the probability of the binary response based on multiple predictors. It also assumes
that the conditional distribution of the response variable is a Bernoulli distribution rather than a
Gaussian distribution. When we applied this approach, we transformed the activity values into binary
responses as 0 (no movement) and 1 (otherwise). This transformation made the data less imbalanced.
The logistic GLMM also addresses another issue in repeated measurements, in which the larvae from
the same location of the 96-well plate tend to correlate over time. This issue is handled in the logistic
GLMM by treating group-level terms, such as location, as random effects. These effects can be used to
characterize the correlation between observations in the same group. We believe these new analyses
complement each other and effectively analyze VMR data. Other colleagues have also visualized VMR
data with different approaches, including heatmap [136], mapping the movement back to individual
wells of the 96-well plate [104], or creating web-based application to process raw data and perform
standard statistical tests [137].

6.7. Determining Sample Size for VMR Analysis

An appropriate number of larvae must be chosen in each experimental group for efficient VMR
analysis. To this end, we conducted power analysis of the Hotelling’s T-squared test, and determined
several factors for selection appropriate sample size [101]. In general, a small number of samples are
needed for the test to attain statistical significance. This number is a function of the length of time
period used in the analysis, effect size, and the number of experimental repeats. In most cases, the
number is compatible with the 96-well plate format. For example, only 32 larval samples are needed in
each group, if the time period is two seconds, and the effect size equals to 0.8. The actual number can be
proportionally reduced with appropriate experimental replications. The best type would be biological
repeats; the other type would be technical repeats. As discussed above, the original VMR protocol
consists of three technical repeats of light onset and offset. If used cautiously, these technical repeats
can reduce the number of larvae needed for each group. However, using data from technical repeats
may suffer from pseudoreplication, a scenario when the repeats are not independently measured.
This would increase type I error rate and reduce confidence intervals. In addition, we also found
that not all technical repeats can be combined because we identified difference between technical
repeats in the original VMR protocol [101]. As stated above, the first Light-on response was statistically
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different from the second and the third; whereas all three Light-off response were comparable. This
difference was probably due to the longer 3.5-h dark adaptation prior to the first Light-on response,
while all other technical repeats were preceded by the same 30-min light/dark phase. Nonetheless,
these observations indicate that the first Light-on response should be analyzed separately, and the
other repeats of the same type may be combined. Therefore, we recommend caution when using
technical repeats, which are better restricted for a first-pass screen. The positive findings should be
validated by biological repeats and follow-up experiments. Future studies should also focus on testing
additional approaches to reduce sample number to facilitate higher throughput. One approach we
have pursued is machine learning [100,109]. This approach extracts and classifies different types of
larvae based on their similarities in VMR patterns. These similar larvae likely share similar genetic
information, or have been exposed to similar experimental conditions. In theory, machine-learning
approaches can analyze larvae individually, which may substantially reduce the required sample
number in experiments. We started testing this idea by using different machine-learning approaches
to classify WT and pde6c mutants [109]. We found that one approach, the support vector machine,
provided classification accuracy as high as 95%. We expect that this approach may facilitate analysis of
individual larva in the future.

Together, these considerations and developments strongly position VMR as a promising in vivo
approach to screen drugs for RD in a high-throughput manner. To realize this goal, other logistical
issues in such high-throughput screens should also be considered.

7. Logistical Considerations in Using Zebrafish for High-Throughput Drug Screening

In this section, we will first consider how high-throughput assays are traditionally designed and
conducted. Then, we will discuss how such screens have been done in vivo using zebrafish behavior,
and what we have learned from these studies that may facilitate using zebrafish visual behavior to
screen RD drugs.

7.1. Traditional Methods for High-Throughput Drug Screening

There are a number of methods to facilitate designing a drug screen [138]. Traditionally, assays
are developed around biochemical or cell-based approaches [139–141], and the readouts are generally
colorimetry, fluorescence, or luminescence [142–144]. In a cell-based approach, the readout could
be monitoring the morphology of the cell and subcellular organelles. These approaches focus on
targeting a molecule, such as a protein, or nucleotides that will interact with the drug. By focusing
on a simple assay and readout, these target-based approaches allow for high-throughput screens
that can result in approximately 50-million data points, with each point being the result of a single
drug tested at a single concentration [145]. This maximizes the chances of a lead hit by screening a
large number of compounds. However, these target-based, high-throughput techniques have two
major drawbacks. First, they can only be performed by those with sophisticated screening facilities,
typically pharmaceutical companies. Second, they may not reveal whether function of the disease
model will be restored by the positive compounds. For example, a screen may find successful leads
to prevent cells from dying, but it cannot guarantee that the surviving cells would function properly.
In fact, target-based approaches are associated with a decline of efficacy in finding new drugs [146,147].
Hence, scientists are keen to find additional efficient approaches.

An alternative drug-screening approach would be to find a lead that can restore function or
alleviate disease phenotype in a whole animal. This in vivo, phenotype-based screening was the
predominant screening approach before the advent of high-throughput techniques [148]. Using the
previously described cell-death example, a lead hit from phenotype-based screening would keep the
dying cell alive, while restoring functions that are altered by the cell death. One major advantage of this
approach is that a screen can take place before the disease and drug mechanisms are elucidated [149].
For example, the anticonvulsant Levetiracetam was discovered in 1992 during a random chemical
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screen to prevent seizures in mice. Yet, to this day, the molecular mechanism of Levetiracetam remains
unknown [150].

7.2. Drawbacks of Using Zebrafish Behavior for Drug Screening

The phenotype-based approach using zebrafish also has some drawbacks compared to the
contemporary high-throughput-screening technologies. In general, a screen based on zebrafish behavior
will take more time to complete than a traditional screen, as we need to control many factors that
can influence the behavior of larval zebrafish. For example, they typically need to acclimate to a new
environment, such as a 96-well plate, or a testing chamber. Without doing this, their behavior may vary,
which would in turn affect the sensitivity of the assay. When we worked with RD zebrafish larvae, we
needed to acclimatize them, taking several hours for us to finish the whole assay. However, slower
throughput is relative; such screens may take even longer to perform if they are done with mice models.
In addition, light perception of zebrafish is controlled by circadian rhythm [151]. Therefore, screening
with zebrafish cannot generally be performed all hours of the day without sophisticated scheduling
and groupings of larvae into photoperiods. There are also some variations in locomotor between
wild-type (WT) strains and within clutches [101,111,113,114]. These variations are likely originated
from the genetic differences between WT strains [152,153], and between individuals within a strain.
Thus, it is advisable to use one particular WT strain for any study, a consideration that will hold
true for any other vertebrates used in phenotype-based in vivo screens for eye drugs. With all of the
advantages and disadvantages taken together, zebrafish visual-behavioral assays have significant
potential to identify novel therapeutics that can functionally treat RD.

While zebrafish behavioral assays may identify functional drugs, they do not provide information
on the effects occurring at the tissue level or below. Thus, many zebrafish drug-screening assays also
utilize imaging techniques for primary data acquisition. For example, transgenic zebrafish expressing
fluorescent proteins in the developing vasculature can be used for screening compounds that affect
angiogenesis [154]. Another example is that researchers are applying Förster resonant energy transfer
(FRET) techniques in zebrafish to gain insight into the biochemical aspects of disease [155,156]. Since a
positive lead from cellular/biochemical data may or may not translate into effective systemic treatment,
a lead from a behavioral screen will likely be more successful as the disease phenotype is remediated
at the functional level. Therefore, a behavioral screen should be validated by cellular and biochemical
imaging techniques to ensure robustness of the treatment, and may potentially provide insight into the
molecular mechanism.

This behavioral-screen strategy may identify new drugs for RD, where underlying genetic basis
and pathogenesis of many subtypes are still unclear. These conditions may not have definitive molecular
targets for biochemical screens, making such an endeavor inefficient and risky. On the contrary, they
can be benefited by behavioral phenotype-based screening, as this approach does not require a specific
molecular target to begin with. Between 1999 and 2008, phenotype-based drug screening identified
37% of the first-in-class drugs [148] which have a novel mechanism of action for treating a disease that
no other current drugs have targeted. We believe that new drugs can be found by behavioral screen
through restoring visual function to RD zebrafish models.

7.3. Auxiliary Technologies to Facilitate High-Throughput Drug Screening in Zebrafish

During high-throughput screens in zebrafish, a few logistical issues may arise and must be
addressed. One major hurdle is being able to routinely collect enough embryos for screening. This number
can be several thousand on a daily basis. This is achievable in the fish model because each pair of
sexually-mature adults can produce up to 200 eggs on a weekly basis. As these adults are small (~1–2
inches), many adults can be housed in a moderate size facility and provide the desired number of
embryos. However, breeding these adults efficiently represents another hurdle. They are usually bred
in small static tanks in pairs, or in small groups for collecting several hundred embryos. As a screen is
scaled up, using many small breeding tanks becomes inconvenient and too labor-intensive. To address
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this hurdle, a single, large breeding vessel should be used for breeding many fish. This approach
takes advantage of the group-breeding behavior of zebrafish and allows them to breed in their
preferred way. Such large-scale breeding systems are available from several suppliers: Pentair Aquatic
Eco-Systems [157], Techniplast [158], and Aquaneering Incorporated [159]. Their performance was
evaluated by a study that used a similar home-made device that was able to generate over 8000 embryos
in a breeding session [160]. This device was much more efficient than 40 smaller tanks for breeding the
same number of fish. It not only significantly reduced the breeding time, but also produced twice as
many embryos.

Another hurdle in efficient drug screening is the handling of large numbers of embryos. In many
current screens, the embryos are manually transferred. In large-scale screens, they can be automatically
sorted and dispensed. This can be achieved by microfluidics, an engineering approach that controls
small volume of fluids. This microfluidics approach has been applied to high-throughput zebrafish
research, with great success [161,162]. One of these systems has been developed by an applied and
industry-commissioned research and development organization, CSEM [163]. This CellFactor system
can sort and dispense zebrafish eggs 96-well plate in less than 7 min. Another system, vertebrate
automated screening technology (VAST) [161], is commercialized by Union Biometrica [164] as the
VAST BioImagerTM. This platform can automatically take up, orient, and image individual zebrafish
larvae on the attached microscope, and can dispense the larvae in a multi-well plate. By attaching to a
fluorescent microscope, this system can inspect transgenic fish tagged with fluorescent proteins. This
can greatly facilitate sorting and isolating of visual mutants that are tagged with specific reporters. For
example, the Q344X transgenic mutant [59], discussed above, carries a GFP reporter that expresses in
the olfactory bulbs. The reporter can be used to quickly isolate and verify all transgenic mutants in
the automated-sorting system for drug screening. In the original study of VAST system, the authors
screened for an astray/robo2 mutant with defects in retinal axon guidance. They could distinguish
WT from astra/robo2 mutants, with a sensitivity of 100% and specificity of 98.8% for a 96-well plate
with 83 randomly seeded mutants. They estimated that a complete cycle of loading, positioning,
cellular-resolution imaging and dispensing a larva would take less than 16 s.

8. Conclusions

In this review, we have evaluated how to use zebrafish for in vivo screening of RD drugs.
The zebrafish is an excellent vertebrate model for eye-disease research and high-throughput studies.
Its visual behavior VMR can be compatible with high-throughput drug screening. We believe that
future developments and optimizations of the VMR assay could expedite discovery of new RD drugs.
These drugs may treat the incurable RD, prolong the vision of visually-impaired patients, and give
them hope for the future.

Acknowledgments: Logan Ganzen was supported by a CTSI Predoctoral Award in Translational Research from
the Indiana Clinical and Translational Sciences Institute from grant numbers TL1 TR001107 and UL1 TR001108
(A. Shekhar, PI) from the National Institutes of Health, National Center for Advancing Translational Sciences,
Clinical and Translational Sciences Award. Prahatha Venkatraman was supported by a Faculty for the Future
Fellowship from the Schlumberger Foundation. Chi Pui Pang was partially supported by a Direct grant (Grant No.
2041771) from the Medical Panel, The Chinese University of Hong Kong, and a General Research Fund (Grant No.
2140694) from the Research Grants Council of Hong Kong. Mingzhi Zhang was partially supported by the
National Scientific Foundation of China (Grant No. 81486126), the Provincial Natural Scientific Foundation of
China (Grant No. 8151503102000019).

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.



Int. J. Mol. Sci. 2017, 18, 1185 14 of 21

References

1. Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [CrossRef]
2. Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal

diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [CrossRef] [PubMed]
3. Hamel, C. Retinitis pigmentosa. Orphanet J. Rare Dis. 2006, 1, 40. [CrossRef] [PubMed]
4. Fadool, J.; Dowling, J. Zebrafish: A model system for the study of eye genetics. Prog. Retin. Eye Res. 2008, 27,

89–110. [CrossRef] [PubMed]
5. Chung, D.C.; Traboulsi, E.I. Leber congenital amaurosis: Clinical correlations with genotypes, gene therapy

trials update, and future directions. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2009, 13, 587–592. [CrossRef]
[PubMed]

6. Weleber, R.G.; Francis, P.J.; Trzupek, K.M.; Beattie, C. Leber Congenital Amaurosis. Available online:
http://www.ncbi.nlm.nih.gov/pubmed/20301475 (accessed on 26 January 2017).

7. Dryja, T.P.; McGee, T.L.; Reichel, E.; Hahn, L.B.; Cowley, G.S.; Yandell, D.W.; Sandberg, M.A.; Berson, E.L.
A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 1990, 343, 364–366.
[CrossRef] [PubMed]

8. Dryja, T.P.; Hahn, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L. Mutation spectrum of the rhodopsin gene
among patients with autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1991, 88, 9370–9374.
[CrossRef] [PubMed]

9. Dryja, T.P.; Hahn, L.B.; Reboul, T.; Arnaud, B. Missense mutation in the gene encoding the α subunit of rod
transducin in the Nougaret form of congenital stationary night blindness. Nat. Genet. 1996, 13, 358–360.
[CrossRef] [PubMed]

10. Thiadens, A.A.H.J.; den Hollander, A.I.; Roosing, S.; Nabuurs, S.B.; Zekveld-Vroon, R.C.; Collin, R.W.J.;
de Baere, E.; Koenekoop, R.K.; van Schooneveld, M.J.; Strom, T.M.; et al. Homozygosity mapping reveals
PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am. J. Hum. Genet. 2009, 85,
240–247. [CrossRef] [PubMed]

11. Chang, B.; Grau, T.; Dangel, S.; Hurd, R.; Jurklies, B.; Sener, E.C.; Andreasson, S.; Dollfus, H.; Baumann, B.;
Bolz, S.; et al. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to
mutations in the PDE6C gene. Proc. Natl. Acad. Sci. USA 2009, 106, 19581–19586. [CrossRef] [PubMed]

12. Winick, J.D.; Blundell, M.L.; Galke, B.L.; Salam, A.A.; Leal, S.M.; Karayiorgou, M. Homozygosity mapping of
the Achromatopsia locus in the Pingelapese. Am. J. Hum. Genet. 1999, 64, 1679–1685. [CrossRef] [PubMed]

13. Michaelides, M.; Hardcastle, A.J.; Hunt, D.M.; Moore, A.T. Progressive Cone and Cone-Rod Dystrophies:
Phenotypes and Underlying Molecular Genetic Basis. Surv. Ophthalmol. 2006, 51, 232–258. [CrossRef] [PubMed]

14. Kulkarni, A.; Kuppermann, B. Wet age-related macular degeneration. Adv. Drug Deliv. Rev. 2005, 57,
1994–2009. [CrossRef] [PubMed]

15. Raz-Prag, D.; Zeng, Y.; Sieving, P.A.; Bush, R.A. Photoreceptor protection by adeno-associated virus-mediated
LEDGF expression in the RCS rat model of retinal degeneration: Probing the mechanism. Investig. Ophthalmol.
Vis. Sci. 2009, 50, 3897–3906. [CrossRef] [PubMed]

16. Chadderton, N.; Millington-Ward, S.; Palfi, A.; O’Reilly, M.; Tuohy, G.; Humphries, M.M.; Li, T.;
Humphries, P.; Kenna, P.F.; Farrar, G.J. Improved Retinal Function in a Mouse Model of Dominant Retinitis
Pigmentosa Following AAV-delivered Gene Therapy. Mol. Ther. 2009, 17, 593–599. [CrossRef] [PubMed]

17. Palfi, A.; Millington-Ward, S.; Chadderton, N.; O’Reilly, M.; Goldmann, T.; Humphries, M.M.; Li, T.;
Wolfrum, U.; Humphries, P.; Kenna, P.F.; et al. Adeno-Associated Virus-Mediated Rhodopsin Replacement
Provides Therapeutic Benefit in Mice with a Targeted Disruption of the Rhodopsin Gene. Hum. Gene Ther.
2010, 21, 311–323. [CrossRef] [PubMed]

18. Rowland, T.J.; Buchholz, D.E.; Clegg, D.O. Pluripotent human stem cells for the treatment of retinal disease.
J. Cell. Physiol. 2012, 227, 457–466. [CrossRef] [PubMed]

19. Bermingham-McDonogh, O.; Reh, T.A. Regulated reprogramming in the regeneration of sensory receptor
cells. Neuron 2011, 71, 389–405. [CrossRef] [PubMed]

20. Comyn, O.; Lee, E.; MacLaren, R.E. Induced pluripotent stem cell therapies for retinal disease. Curr. Opin. Neurol.
2010, 23, 4–9. [CrossRef] [PubMed]

21. Berger, A.S.; Tezel, T.H.; del Priore, L.V.; Kaplan, H.J. Photoreceptor transplantation in retinitis pigmentosa:
Short-term follow-up. Ophthalmology 2003, 110, 383–391. [CrossRef]

http://dx.doi.org/10.1016/S0140-6736(06)69740-7
http://dx.doi.org/10.1016/j.preteyeres.2010.03.004
http://www.ncbi.nlm.nih.gov/pubmed/20362068
http://dx.doi.org/10.1186/1750-1172-1-40
http://www.ncbi.nlm.nih.gov/pubmed/17032466
http://dx.doi.org/10.1016/j.preteyeres.2007.08.002
http://www.ncbi.nlm.nih.gov/pubmed/17962065
http://dx.doi.org/10.1016/j.jaapos.2009.10.004
http://www.ncbi.nlm.nih.gov/pubmed/20006823
http://www.ncbi.nlm.nih.gov/pubmed/20301475
http://dx.doi.org/10.1038/343364a0
http://www.ncbi.nlm.nih.gov/pubmed/2137202
http://dx.doi.org/10.1073/pnas.88.20.9370
http://www.ncbi.nlm.nih.gov/pubmed/1833777
http://dx.doi.org/10.1038/ng0796-358
http://www.ncbi.nlm.nih.gov/pubmed/8673138
http://dx.doi.org/10.1016/j.ajhg.2009.06.016
http://www.ncbi.nlm.nih.gov/pubmed/19615668
http://dx.doi.org/10.1073/pnas.0907720106
http://www.ncbi.nlm.nih.gov/pubmed/19887631
http://dx.doi.org/10.1086/302423
http://www.ncbi.nlm.nih.gov/pubmed/10330355
http://dx.doi.org/10.1016/j.survophthal.2006.02.007
http://www.ncbi.nlm.nih.gov/pubmed/16644365
http://dx.doi.org/10.1016/j.addr.2005.09.003
http://www.ncbi.nlm.nih.gov/pubmed/16309781
http://dx.doi.org/10.1167/iovs.08-3153
http://www.ncbi.nlm.nih.gov/pubmed/19324854
http://dx.doi.org/10.1038/mt.2008.301
http://www.ncbi.nlm.nih.gov/pubmed/19174761
http://dx.doi.org/10.1089/hum.2009.119
http://www.ncbi.nlm.nih.gov/pubmed/19824806
http://dx.doi.org/10.1002/jcp.22814
http://www.ncbi.nlm.nih.gov/pubmed/21520078
http://dx.doi.org/10.1016/j.neuron.2011.07.015
http://www.ncbi.nlm.nih.gov/pubmed/21835338
http://dx.doi.org/10.1097/WCO.0b013e3283352f96
http://www.ncbi.nlm.nih.gov/pubmed/19949329
http://dx.doi.org/10.1016/S0161-6420(02)01738-4


Int. J. Mol. Sci. 2017, 18, 1185 15 of 21

22. Del Bene, F.; Wyart, C. Optogenetics: A new enlightenment age for zebrafish neurobiology. Dev. Neurobiol.
2012, 72, 404–414. [CrossRef] [PubMed]

23. Henriksen, B.S.; Marc, R.E.; Bernstein, P.S. Optogenetics for retinal disorders. J. Ophthalmic Vis. Res. 2014, 9,
374–382. [PubMed]

24. Duncan, J.L.; Richards, T.P.; Arditi, A.; da Cruz, L.; Dagnelie, G.; Dorn, J.D.; Ho, A.C.; Olmos de Koo, L.C.;
Barale, P.-O.; Stanga, P.E.; et al. Improvements in vision-related quality of life in blind patients implanted
with the Argus II Epiretinal Prosthesis. Clin. Exp. Optom. 2017, 100, 144–150. [CrossRef] [PubMed]

25. Ho, A.C.; Humayun, M.S.; Dorn, J.D.; da Cruz, L.; Dagnelie, G.; Handa, J.; Barale, P.-O.; Sahel, J.-A.;
Stanga, P.E.; Hafezi, F.; et al. Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind.
Ophthalmology 2015, 122, 1547–1554. [CrossRef] [PubMed]

26. Lu, L.; Oveson, B.C.; Jo, Y.; Lauer, T.W.; Usui, S.; Komeima, K.; Xie, B.; Campochiaro, P.A. Increased expression
of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid. Redox Signal. 2009, 11,
715–724. [CrossRef] [PubMed]

27. Usui, S.; Komeima, K.; Lee, S.Y.; Jo, Y.-J.; Ueno, S.; Rogers, B.S.; Wu, Z.; Shen, J.; Lu, L.; Oveson, B.C.; et al.
Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa.
Mol. Ther. 2009, 17, 778–786. [CrossRef] [PubMed]

28. MacLaren, R.E.; Pearson, R.A.; MacNeil, A.; Douglas, R.H.; Salt, T.E.; Akimoto, M.; Swaroop, A.; Sowden, J.C.;
Ali, R.R. Retinal repair by transplantation of photoreceptor precursors. Nature 2006, 444, 203–207. [CrossRef]
[PubMed]

29. Pellegrini, G.; de Luca, M.; Arsenijevic, Y. Towards therapeutic application of ocular stem cells. Semin. Cell
Dev. Biol. 2007, 18, 805–818. [CrossRef] [PubMed]

30. Huang, Y.; Enzmann, V.; Ildstad, S.T. Stem Cell-Based Therapeutic Applications in Retinal Degenerative
Diseases. Stem Cell Rev. Rep. 2011, 7, 434–445. [CrossRef] [PubMed]

31. Reardon, S.; Cyranoski, D. Japan stem-cell trial stirs envy. Nature 2014, 513, 287–288. [CrossRef] [PubMed]
32. Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.-P.; Davis, J.L.;

Heilwell, G.; Spirn, M.; et al. Human embryonic stem cell-derived retinal pigment epithelium in patients
with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label
phase 1/2 studies. Lancet 2015, 385, 509–516. [CrossRef]

33. Takahashi, M.; Kurimoto, Y. Pilot Safety Study of iPSC-Based Intervention for Wet-Type AMD. Available
online: http://www.riken-ibri.jp/AMD/english/summary.html (accessed on 15 Febrary 2017).

34. Lin, B.; Koizumi, A.; Tanaka, N.; Panda, S.; Masland, R.H. Restoration of visual function in retinal
degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. USA 2008, 105, 16009–16014.
[CrossRef] [PubMed]

35. Lagali, P.S.; Balya, D.; Awatramani, G.B.; Münch, T.A.; Kim, D.S.; Busskamp, V.; Cepko, C.L.; Roska, B.
Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.
Nat. Neurosci. 2008, 11, 667–675. [CrossRef] [PubMed]

36. Doroudchi, M.M.; Greenberg, K.P.; Liu, J.; Silka, K.A.; Boyden, E.S.; Lockridge, J.A.; Arman, A.C.; Janani, R.;
Boye, S.E.; Boye, S.L.; et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual
function in multiple mouse models of blindness. Mol. Ther. 2011, 19, 1220–1229. [CrossRef] [PubMed]

37. Vaidya, A.; Borgonovi, E.; Taylor, R.S.; Sahel, J.-A.; Rizzo, S.; Stanga, P.E.; Kukreja, A.; Walter, P.
The cost-effectiveness of the Argus II retinal prosthesis in retinitis pigmentosa patients. BMC Ophthalmol.
2014, 14, 49. [CrossRef] [PubMed]

38. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Willett, W.C. ω-3 Intake and visual acuity
in patients with retinitis pigmentosa receiving vitamin A. Arch. Ophthalmol. 2012, 130, 707–711. [CrossRef]
[PubMed]

39. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Hayes, K.C.; Nicholson, B.W.; Weigel-DiFranco, C.; Willett, W. A
randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch. Ophthalmol.
1993, 111, 761–772. [CrossRef] [PubMed]

40. Hoffman, D.R.; Locke, K.G.; Wheaton, D.H.; Fish, G.E.; Spencer, R.; Birch, D.G. A randomized,
placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa.
Am. J. Ophthalmol. 2004, 137, 704–718. [PubMed]

http://dx.doi.org/10.1002/dneu.20914
http://www.ncbi.nlm.nih.gov/pubmed/21567983
http://www.ncbi.nlm.nih.gov/pubmed/25667740
http://dx.doi.org/10.1111/cxo.12444
http://www.ncbi.nlm.nih.gov/pubmed/27558213
http://dx.doi.org/10.1016/j.ophtha.2015.04.032
http://www.ncbi.nlm.nih.gov/pubmed/26162233
http://dx.doi.org/10.1089/ars.2008.2171
http://www.ncbi.nlm.nih.gov/pubmed/18823256
http://dx.doi.org/10.1038/mt.2009.47
http://www.ncbi.nlm.nih.gov/pubmed/19293779
http://dx.doi.org/10.1038/nature05161
http://www.ncbi.nlm.nih.gov/pubmed/17093405
http://dx.doi.org/10.1016/j.semcdb.2007.09.011
http://www.ncbi.nlm.nih.gov/pubmed/17959397
http://dx.doi.org/10.1007/s12015-010-9192-8
http://www.ncbi.nlm.nih.gov/pubmed/20859770
http://dx.doi.org/10.1038/513287a
http://www.ncbi.nlm.nih.gov/pubmed/25230622
http://dx.doi.org/10.1016/S0140-6736(14)61376-3
http://www.riken-ibri.jp/AMD/english/summary.html
http://dx.doi.org/10.1073/pnas.0806114105
http://www.ncbi.nlm.nih.gov/pubmed/18836071
http://dx.doi.org/10.1038/nn.2117
http://www.ncbi.nlm.nih.gov/pubmed/18432197
http://dx.doi.org/10.1038/mt.2011.69
http://www.ncbi.nlm.nih.gov/pubmed/21505421
http://dx.doi.org/10.1186/1471-2415-14-49
http://www.ncbi.nlm.nih.gov/pubmed/24731533
http://dx.doi.org/10.1001/archophthalmol.2011.2580
http://www.ncbi.nlm.nih.gov/pubmed/22332205
http://dx.doi.org/10.1001/archopht.1993.01090060049022
http://www.ncbi.nlm.nih.gov/pubmed/8512476
http://www.ncbi.nlm.nih.gov/pubmed/15059710


Int. J. Mol. Sci. 2017, 18, 1185 16 of 21

41. Schaefer, E.J.; Robins, S.J.; Patton, G.M.; Sandberg, M.A.; Weigel-DiFranco, C.A.; Rosner, B.; Berson, E.L. Red
blood cell membrane phosphatidylethanolamine fatty acid content in various forms of retinitis pigmentosa.
J. Lipid Res. 1995, 36, 1427–1433. [PubMed]

42. Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants reduce cone cell death in a model of
retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 2006, 103, 11300–11305. [CrossRef] [PubMed]

43. Komeima, K.; Rogers, B.S.; Campochiaro, P.A. Antioxidants slow photoreceptor cell death in mouse models
of retinitis pigmentosa. J. Cell. Physiol. 2007, 213, 809–815. [CrossRef] [PubMed]

44. Slijkerman, R.W.N.; Song, F.; Astuti, G.D.N.; Huynen, M.A.; van Wijk, E.; Stieger, K.; Collin, R.W.J. The pros
and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies.
Prog. Retin. Eye Res. 2015, 48, 137–159. [CrossRef] [PubMed]

45. Patton, E.E.; Zon, L.I. The art and design of genetic screens: Zebrafish. Nat. Rev. Genet. 2001, 2, 956–966.
[CrossRef] [PubMed]

46. Bilotta, J.; Saszik, S.; Sutherland, S.E. Rod contributions to the electroretinogram of the dark-adapted
developing zebrafish. Dev. Dyn. 2001, 222, 564–570. [CrossRef] [PubMed]

47. Robinson, J.; Schmitt, E.A.; Hárosi, F.I.; Reece, R.J.; Dowling, J.E. Zebrafish ultraviolet visual pigment:
Absorption spectrum, sequence, and localization. Proc. Natl. Acad. Sci. USA 1993, 90, 6009–6012. [CrossRef]
[PubMed]

48. Fadool, J.M. Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev. Biol. 2003,
258, 277–290. [CrossRef]

49. Salbreux, G.; Barthel, L.K.; Raymond, P.A.; Lubensky, D.K. Coupling Mechanical Deformations and Planar
Cell Polarity to Create Regular Patterns in the Zebrafish Retina. PLoS Comput. Biol. 2012, 8, e1002618.
[CrossRef] [PubMed]

50. Cameron, D.A.; Carney, L.H. Cell mosaic patterns in the native and regenerated inner retina of zebrafish:
Implications for retinal assembly. J. Comp. Neurol. 2000, 416, 356–367. [CrossRef]

51. Purves, D.; Augustine, G.; Fitzpatrick, D. Anatomical Distribution of Rods and Cones. Available online:
https://www.ncbi.nlm.nih.gov/books/NBK10848/ (accessed on 17 February 2017).

52. Jonas, J.B.; Schneider, U.; Naumann, G.O. Count and density of human retinal photoreceptors. Graefes Arch.
Clin. Exp. Ophthalmol. 1992, 230, 505–510. [CrossRef] [PubMed]

53. Bibliowicz, J.; Tittle, R.K.; Gross, J.M. Toward a better understanding of human eye disease insights from the
zebrafish, Danio rerio. Prog. Mol. Biol. Transl. Sci. 2011, 100, 287–330. [PubMed]

54. Link, B.A.; Collery, R.F. Zebrafish Models of Retinal Disease. Annu. Rev. Vis. Sci. 2015, 1, 125–153. [CrossRef]
[PubMed]

55. Morris, A.C. The genetics of ocular disorders: Insights from the zebrafish. Birth Defect. Res. Part C Embryo
Today Rev. 2011, 93, 215–228. [CrossRef] [PubMed]

56. Gross, J.M.; Perkins, B.D. Zebrafish mutants as models for congenital ocular disorders in humans.
Mol. Reprod. Dev. 2008, 75, 547–555. [CrossRef] [PubMed]

57. Brockerhoff, S.E.; Fadool, J.M. Genetics of photoreceptor degeneration and regeneration in zebrafish.
Cell. Mol. Life Sci. 2011, 68, 651–659. [CrossRef] [PubMed]

58. Tsujikawa, M.; Malicki, J. Genetics of photoreceptor development and function in zebrafish. Int. J. Dev. Biol.
2004, 48, 925–934. [CrossRef] [PubMed]

59. Nakao, T.; Tsujikawa, M.; Notomi, S.; Ikeda, Y.; Nishida, K. The Role of Mislocalized Phototransduction in
Photoreceptor Cell Death of Retinitis Pigmentosa. PLoS ONE 2012, 7, e32472. [CrossRef] [PubMed]

60. Stearns, G.; Evangelista, M.; Fadool, J.M.; Brockerhoff, S.E. A Mutation in the Cone-Specific pde6 Gene
Causes Rapid Cone Photoreceptor Degeneration in Zebrafish. J. Neurosci. 2007, 27, 13866–13874. [CrossRef]
[PubMed]

61. Lewis, A.; Williams, P.; Lawrence, O.; Wong, R.O.L.; Brockerhoff, S.E. Wild-Type Cone Photoreceptors Persist
Despite Neighboring Mutant Cone Degeneration. J. Neurosci. 2010, 30, 382–389. [CrossRef] [PubMed]

62. Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Nusinowitz, S.; Heckenlively, J.R. Retinal degeneration
mutants in the mouse. Vis. Res. 2002, 42, 517–525. [CrossRef]

63. Owens, K.N.; Santos, F.; Roberts, B.; Linbo, T.; Coffin, A.B.; Knisely, A.J.; Simon, J.A.; Rubel, E.W.; Raible, D.W.
Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet.
2008, 4, e1000020. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/7595066
http://dx.doi.org/10.1073/pnas.0604056103
http://www.ncbi.nlm.nih.gov/pubmed/16849425
http://dx.doi.org/10.1002/jcp.21152
http://www.ncbi.nlm.nih.gov/pubmed/17520694
http://dx.doi.org/10.1016/j.preteyeres.2015.04.004
http://www.ncbi.nlm.nih.gov/pubmed/25936606
http://dx.doi.org/10.1038/35103567
http://www.ncbi.nlm.nih.gov/pubmed/11733748
http://dx.doi.org/10.1002/dvdy.1188
http://www.ncbi.nlm.nih.gov/pubmed/11748826
http://dx.doi.org/10.1073/pnas.90.13.6009
http://www.ncbi.nlm.nih.gov/pubmed/8327475
http://dx.doi.org/10.1016/S0012-1606(03)00125-8
http://dx.doi.org/10.1371/journal.pcbi.1002618
http://www.ncbi.nlm.nih.gov/pubmed/22936893
http://dx.doi.org/10.1002/(SICI)1096-9861(20000117)416:3&lt;356::AID-CNE7&gt;3.0.CO;2-M
https://www.ncbi.nlm.nih.gov/books/NBK10848/
http://dx.doi.org/10.1007/BF00181769
http://www.ncbi.nlm.nih.gov/pubmed/1427131
http://www.ncbi.nlm.nih.gov/pubmed/21377629
http://dx.doi.org/10.1146/annurev-vision-082114-035717
http://www.ncbi.nlm.nih.gov/pubmed/28532376
http://dx.doi.org/10.1002/bdrc.20211
http://www.ncbi.nlm.nih.gov/pubmed/21932431
http://dx.doi.org/10.1002/mrd.20831
http://www.ncbi.nlm.nih.gov/pubmed/18058918
http://dx.doi.org/10.1007/s00018-010-0563-8
http://www.ncbi.nlm.nih.gov/pubmed/20972813
http://dx.doi.org/10.1387/ijdb.041890mt
http://www.ncbi.nlm.nih.gov/pubmed/15558483
http://dx.doi.org/10.1371/journal.pone.0032472
http://www.ncbi.nlm.nih.gov/pubmed/22485131
http://dx.doi.org/10.1523/JNEUROSCI.3136-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18077698
http://dx.doi.org/10.1523/JNEUROSCI.5019-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20053919
http://dx.doi.org/10.1016/S0042-6989(01)00146-8
http://dx.doi.org/10.1371/journal.pgen.1000020
http://www.ncbi.nlm.nih.gov/pubmed/18454195


Int. J. Mol. Sci. 2017, 18, 1185 17 of 21

64. Peterson, R.T.; Link, B.A.; Dowling, J.E.; Schreiber, S.L. Small molecule developmental screens reveal the
logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 2000, 97, 12965–12969. [CrossRef]
[PubMed]

65. Peterson, R.T.; Shaw, S.Y.; Peterson, T.A.; Milan, D.J.; Zhong, T.P.; Schreiber, S.L.; MacRae, C.A.; Fishman, M.C.
Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 2004,
22, 595–599. [CrossRef] [PubMed]

66. Novodvorsky, P.; Da Costa, M.M.J.; Chico, T.J.A. Zebrafish-based small molecule screens for novel
cardiovascular drugs. Drug Discov. Today Technol. 2013, 10, e109–e114. [CrossRef] [PubMed]

67. Rihel, J.; Prober, D.A.; Arvanites, A.; Lam, K.; Zimmerman, S.; Jang, S.; Haggarty, S.J.; Kokel, D.; Rubin, L.L.;
Peterson, R.T.; et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation.
Science 2010, 327, 348–351. [CrossRef] [PubMed]

68. Kokel, D.; Bryan, J.; Laggner, C.; White, R.; Cheung, C.Y.J.; Mateus, R.; Healey, D.; Kim, S.; Werdich, A.A.;
Haggarty, S.J.; et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish.
Nat. Chem. Biol. 2010, 6, 231–237. [CrossRef] [PubMed]

69. Bruni, G.; Rennekamp, A.J.; Velenich, A.; McCarroll, M.; Gendelev, L.; Fertsch, E.; Taylor, J.; Lakhani, P.;
Lensen, D.; Evron, T.; et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds.
Nat. Chem. Biol. 2016, 12, 559–566. [CrossRef] [PubMed]

70. Dinday, M.T.; Baraban, S.C. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model
of Dravet Syndrome. eNeuro 2015, 2. [CrossRef] [PubMed]

71. Gallardo, V.E.; Varshney, G.K.; Lee, M.; Bupp, S.; Xu, L.; Shinn, P.; Crawford, N.P.; Inglese, J.; Burgess, S.M.
Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration
identifies multiple pathways potentially involved in metastatic invasion. Dis. Model. Mech. 2015, 8, 565–576.
[CrossRef] [PubMed]

72. Li, X.; Rhee, D.K.; Malhotra, R.; Mayeur, C.; Hurst, L.A.; Ager, E.; Shelton, G.; Kramer, Y.; McCulloh, D.;
Keefe, D.; et al. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J. Clin. Investig.
2015, 126, 389–401. [CrossRef] [PubMed]

73. Nath, A.K.; Ryu, J.H.; Jin, Y.N.; Roberts, L.D.; Dejam, A.; Gerszten, R.E.; Peterson, R.T. PTPMT1 inhibition
lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 2016, 10, 694–701. [CrossRef]
[PubMed]

74. Liu, Y.; Asnani, A.; Zou, L.; Bentley, V.L.; Yu, M.; Wang, Y.; Dellaire, G.; Sarkar, K.S.; Dai, M.; Chen, H.H.;
et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial
malate dehydrogenase. Sci. Transl. Med. 2014, 6, 266ra170. [CrossRef] [PubMed]

75. Jin, S.; Sarkar, K.S.; Jin, Y.N.; Liu, Y.; Kokel, D.; Van Ham, T.J.; Roberts, L.D.; Gerszten, R.E.; MacRae, C.A.;
Peterson, R.T. An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of
action. J. Biomol. Screen. 2013, 18, 108–115. [CrossRef] [PubMed]

76. Kokel, D.; Cheung, C.Y.J.; Mills, R.; Coutinho-Budd, J.; Huang, L.; Setola, V.; Sprague, J.; Jin, S.; Jin, Y.N.;
Huang, X.-P.; et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol.
2013, 9, 257–263. [CrossRef] [PubMed]

77. Nath, A.K.; Roberts, L.D.; Liu, Y.; Mahon, S.B.; Kim, S.; Ryu, J.H.; Werdich, A.; Januzzi, J.L.; Boss, G.R.;
Rockwood, G.A.; et al. Chemical and metabolomic screens identify novel biomarkers and antidotes for
cyanide exposure. FASEB J. 2013, 27, 1928–1938. [CrossRef] [PubMed]

78. Baxendale, S.; Holdsworth, C.J.; Meza Santoscoy, P.L.; Harrison, M.R.M.; Fox, J.; Parkin, C.A.; Ingham, P.W.;
Cunliffe, V.T. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic
seizures. Dis. Model. Mech. 2012, 5, 773–784. [CrossRef] [PubMed]

79. Emran, F.; Rihel, J.; Adolph, A.R.; Wong, K.Y.; Kraves, S.; Dowling, J.E. OFF ganglion cells cannot drive the
optokinetic reflex in zebrafish. Proc. Natl. Acad. Sci. USA 2007, 104, 19126–19131. [CrossRef] [PubMed]

80. Emran, F.; Rihel, J.; Dowling, J.E. A behavioral assay to measure responsiveness of zebrafish to changes in
light intensities. J. Vis. Exp. 2008, e923. [CrossRef] [PubMed]

81. Neuhauss, S.C.; Biehlmaier, O.; Seeliger, M.W.; Das, T.; Kohler, K.; Harris, W.A.; Baier, H. Genetic disorders
of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 1999, 19, 8603–8615.
[PubMed]

http://dx.doi.org/10.1073/pnas.97.24.12965
http://www.ncbi.nlm.nih.gov/pubmed/11087852
http://dx.doi.org/10.1038/nbt963
http://www.ncbi.nlm.nih.gov/pubmed/15097998
http://dx.doi.org/10.1016/j.ddtec.2012.01.005
http://www.ncbi.nlm.nih.gov/pubmed/24050238
http://dx.doi.org/10.1126/science.1183090
http://www.ncbi.nlm.nih.gov/pubmed/20075256
http://dx.doi.org/10.1038/nchembio.307
http://www.ncbi.nlm.nih.gov/pubmed/20081854
http://dx.doi.org/10.1038/nchembio.2097
http://www.ncbi.nlm.nih.gov/pubmed/27239787
http://dx.doi.org/10.1523/ENEURO.0068-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26465006
http://dx.doi.org/10.1242/dmm.018689
http://www.ncbi.nlm.nih.gov/pubmed/25810455
http://dx.doi.org/10.1172/JCI83831
http://www.ncbi.nlm.nih.gov/pubmed/26657863
http://dx.doi.org/10.1016/j.celrep.2015.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25660020
http://dx.doi.org/10.1126/scitranslmed.3010189
http://www.ncbi.nlm.nih.gov/pubmed/25504881
http://dx.doi.org/10.1177/1087057112458153
http://www.ncbi.nlm.nih.gov/pubmed/22960781
http://dx.doi.org/10.1038/nchembio.1183
http://www.ncbi.nlm.nih.gov/pubmed/23396078
http://dx.doi.org/10.1096/fj.12-225037
http://www.ncbi.nlm.nih.gov/pubmed/23345455
http://dx.doi.org/10.1242/dmm.010090
http://www.ncbi.nlm.nih.gov/pubmed/22730455
http://dx.doi.org/10.1073/pnas.0709337104
http://www.ncbi.nlm.nih.gov/pubmed/18025459
http://dx.doi.org/10.3791/923
http://www.ncbi.nlm.nih.gov/pubmed/19078942
http://www.ncbi.nlm.nih.gov/pubmed/10493760


Int. J. Mol. Sci. 2017, 18, 1185 18 of 21

82. Muto, A.; Orger, M.B.; Wehman, A.M.; Smear, M.C.; Kay, J.N.; Page-McCaw, P.S.; Gahtan, E.; Xiao, T.;
Nevin, L.M.; Gosse, N.J.; et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. 2005, 1,
e66. [CrossRef] [PubMed]

83. Bilotta, J. Effects of abnormal lighting on the development of zebrafish visual behavior. Behav. Brain Res.
2000, 116, 81–87. [CrossRef]

84. Brockerhoff, S.E.; Hurley, J.B.; Janssen-Bienhold, U.; Neuhauss, S.C.; Driever, W.; Dowling, J.E. A behavioral
screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. USA 1995, 92,
10545–10549. [CrossRef] [PubMed]

85. Chhetri, J.; Jacobson, G.; Gueven, N. Zebrafish—on the move towards ophthalmological research. Eye 2014,
28, 367–380. [CrossRef] [PubMed]

86. Rihel, J.; Schier, A.F. Behavioral screening for neuroactive drugs in zebrafish. Dev. Neurobiol. 2012, 72,
373–385. [CrossRef] [PubMed]

87. Portugues, R.; Engert, F. The neural basis of visual behaviors in the larval zebrafish. Curr. Opin. Neurobiol.
2009, 19, 644–647. [CrossRef] [PubMed]

88. Orger, M.B.; Gahtan, E.; Muto, A.; Page-McCaw, P.; Smear, M.C.; Baier, H. Behavioral screening assays in
zebrafish. Methods Cell Biol. 2004, 77, 53–68. [PubMed]

89. Brockerhoff, S.E. Measuring the optokinetic response of zebrafish larvae. Nat. Protoc. 2006, 1, 2448–2451.
[CrossRef] [PubMed]

90. Brockerhoff, S.E.; Hurley, J.B.; Niemi, G.A.; Dowling, J.E. A new form of inherited red-blindness identified in
zebrafish. J. Neurosci. 1997, 17, 4236–4242. [PubMed]

91. Easter, S.S.; Gregory Nicola, J.N. The Development of Eye Movements in the Zebrafish (Danio rerio).
Dev. Psychobiol. 1997, 31, 267–276. [CrossRef]

92. Baier, H.; Orger, M.B.; Smear, M.C.; Anstis, S.M. Perception of Fourier and non-Fourier motion by larval
zebrafish. Nat. Neurosci. 2000, 3, 1128–1133. [CrossRef] [PubMed]

93. Gross, J.M.; Perkins, B.D.; Amsterdam, A.; Egaña, A.; Darland, T.; Matsui, J.I.; Sciascia, S.; Hopkins, N.;
Dowling, J.E. Identification of zebrafish insertional mutants with defects in visual system development and
function. Genetics 2005, 170, 245–261. [CrossRef] [PubMed]

94. Taylor, M.R.; Hurley, J.B.; van Epps, H.A.; Brockerhoff, S.E. A zebrafish model for pyruvate dehydrogenase
deficiency: Rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc. Natl.
Acad. Sci. USA 2004, 101, 4584–4589. [CrossRef] [PubMed]

95. Roosing, S.; Lamers, I.J.C.; de Vrieze, E.; van den Born, L.I.; Lambertus, S.; Arts, H.H.; POC1B Study
Group; Peters, T.A.; Hoyng, C.B.; Kremer, H.; et al. Disruption of the basal body protein POC1B results in
autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 2014, 95, 131–142. [CrossRef] [PubMed]

96. Chen, F.; Chen, S.; Liu, S.; Zhang, C.; Peng, G. Effects of lorazepam and WAY-200070 in larval zebrafish
light/dark choice test. Neuropharmacology 2015, 95, 226–233. [CrossRef] [PubMed]

97. Deeti, S.; O’Farrell, S.; Kennedy, B.N. Early safety assessment of human oculotoxic drugs using the zebrafish
visualmotor response. J. Pharmacol. Toxicol. Methods 2014, 69, 1–8. [CrossRef] [PubMed]

98. Richards, F.M.; Alderton, W.K.; Kimber, G.M.; Liu, Z.; Strang, I.; Redfern, W.S.; Valentin, J.-P.; Winter, M.J.;
Hutchinson, T.H. Validation of the use of zebrafish larvae in visual safety assessment. J. Pharmacol. Toxicol. Methods
2008, 58, 50–58. [CrossRef] [PubMed]

99. Huang, Y.-Y.; Neuhauss, S.C.F. The optokinetic response in zebrafish and its applications. Front. Biosci. 2008,
13, 1899–1916. [CrossRef] [PubMed]

100. Gao, Y.; Zhang, G.; Jelfs, B.; Carmer, R.; Venkatraman, P.; Ghadami, M.; Brown, S.A.; Pang, C.P.; Leung, Y.F.;
Chan, R.H.M.; et al. Computational classification of different wild-type zebrafish strains based on their
variation in light-induced locomotor response. Comput. Biol. Med. 2016, 69, 1–9. [CrossRef] [PubMed]

101. Liu, Y.; Carmer, R.; Zhang, G.; Venkatraman, P.; Brown, S.A.; Pang, C.-P.; Zhang, M.; Ma, P.; Leung, Y.F.
Statistical analysis of zebrafish locomotor response. PLoS ONE 2015, 10, e0139521. [CrossRef] [PubMed]

102. Viewpoint LifeSciences. Available online: http://csl.mendeley.com/styles/485647231/MDPI-LOGAN-
FINAL (accessed on 23 May 2017).

103. Noldus. Available online: http://www.noldus.com (accessed on 23 May 2017).
104. Zhou, Y.; Cattley, R.T.; Cario, C.L.; Bai, Q.; Burton, E.A. Quantification of larval zebrafish motor function

in multiwell plates using open-source MATLAB applications. Nat. Protoc. 2014, 9, 1533–1548. [CrossRef]
[PubMed]

http://dx.doi.org/10.1371/journal.pgen.0010066
http://www.ncbi.nlm.nih.gov/pubmed/16311625
http://dx.doi.org/10.1016/S0166-4328(00)00264-3
http://dx.doi.org/10.1073/pnas.92.23.10545
http://www.ncbi.nlm.nih.gov/pubmed/7479837
http://dx.doi.org/10.1038/eye.2014.19
http://www.ncbi.nlm.nih.gov/pubmed/24503724
http://dx.doi.org/10.1002/dneu.20910
http://www.ncbi.nlm.nih.gov/pubmed/21567979
http://dx.doi.org/10.1016/j.conb.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19896836
http://www.ncbi.nlm.nih.gov/pubmed/15602905
http://dx.doi.org/10.1038/nprot.2006.255
http://www.ncbi.nlm.nih.gov/pubmed/17406490
http://www.ncbi.nlm.nih.gov/pubmed/9151740
http://dx.doi.org/10.1002/(SICI)1098-2302(199712)31:4&lt;267::AID-DEV4&gt;3.0.CO;2-P
http://dx.doi.org/10.1038/80649
http://www.ncbi.nlm.nih.gov/pubmed/11036270
http://dx.doi.org/10.1534/genetics.104.039727
http://www.ncbi.nlm.nih.gov/pubmed/15716491
http://dx.doi.org/10.1073/pnas.0307074101
http://www.ncbi.nlm.nih.gov/pubmed/15070761
http://dx.doi.org/10.1016/j.ajhg.2014.06.012
http://www.ncbi.nlm.nih.gov/pubmed/25018096
http://dx.doi.org/10.1016/j.neuropharm.2015.03.022
http://www.ncbi.nlm.nih.gov/pubmed/25842247
http://dx.doi.org/10.1016/j.vascn.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24091134
http://dx.doi.org/10.1016/j.vascn.2008.04.002
http://www.ncbi.nlm.nih.gov/pubmed/18541443
http://dx.doi.org/10.2741/2810
http://www.ncbi.nlm.nih.gov/pubmed/17981678
http://dx.doi.org/10.1016/j.compbiomed.2015.11.012
http://www.ncbi.nlm.nih.gov/pubmed/26688204
http://dx.doi.org/10.1371/journal.pone.0139521
http://www.ncbi.nlm.nih.gov/pubmed/26437184
http://csl.mendeley.com/styles/485647231/MDPI-LOGAN-FINAL
http://csl.mendeley.com/styles/485647231/MDPI-LOGAN-FINAL
http://www.noldus.com
http://dx.doi.org/10.1038/nprot.2014.094
http://www.ncbi.nlm.nih.gov/pubmed/24901738


Int. J. Mol. Sci. 2017, 18, 1185 19 of 21

105. Maurer, C.M.; Schonthaler, H.B.; Mueller, K.P.; Neuhauss, S.C.F. Distinct Retinal Deficits in a Zebrafish
Pyruvate Dehydrogenase-Deficient Mutant. J. Neurosci. 2010, 30, 11962–11972. [CrossRef] [PubMed]

106. Zhang, L.; Xiang, L.; Liu, Y.; Venkatraman, P.; Chong, L.; Cho, J.; Bonilla, S.; Jin, Z.-B.; Pang, C.P.; Ko, K.M.;
et al. A naturally-derived compound schisandrin B enhanced light sensation in the pde6c zebrafish model of
retinal degeneration. PLoS ONE 2016, 11, e0149663. [CrossRef] [PubMed]

107. Ingebretson, J.J.; Masino, M.A. Quantification of locomotor activity in larval zebrafish: Considerations for
the design of high-throughput behavioral studies. Front. Neural Circuits 2013, 7, 109. [CrossRef] [PubMed]

108. Colwill, R.M.; Creton, R. Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav. Processes 2011, 86,
222–229. [CrossRef] [PubMed]

109. Gao, Y.; Chan, R.H.M.; Chow, T.W.S.; Zhang, L.; Bonilla, S.; Pang, C.-P.; Zhang, M.; Leung, Y.F. A
high-throughput zebrafish screening method for visual mutants by light-induced locomotor response.
IEEE/ACM Trans. Comput. Biol. Bioinforma. 2014, 11, 693–701. [CrossRef] [PubMed]

110. Ali, S.; Champagne, D.L.; Richardson, M.K. Behavioral profiling of zebrafish embryos exposed to a panel of
60 water-soluble compounds. Behav. Brain Res. 2012, 228, 272–283. [CrossRef] [PubMed]

111. De Esch, C.; van der Linde, H.; Slieker, R.; Willemsen, R.; Wolterbeek, A.; Woutersen, R.; et al. Locomotor
activity assay in zebrafish larvae: Influence of age, strain and ethanol. Neurotoxicol. Teratol. 2012, 34, 425–433.
[CrossRef] [PubMed]

112. Ali, S.; Mil, H.G.J.v.; Richardson, M.K. Large-Scale Assessment of the Zebrafish Embryo as a Possible
Predictive Model in Toxicity Testing. PLoS ONE 2011, 6, e21076. [CrossRef] [PubMed]

113. Lange, M.; Neuzeret, F.; Fabreges, B.; Froc, C.; Bedu, S.; Bally-Cuif, L.; Norton, W.H.J. Inter-individual and
inter-strain variations in zebrafish locomotor ontogeny. PLoS ONE 2013, 8, e70172. [CrossRef] [PubMed]

114. Vignet, C.; Bégout, M.-L.; Péan, S.; Lyphout, L.; Leguay, D.; Cousin, X. Systematic Screening of Behavioral
Responses in Two Zebrafish Strains. Zebrafish 2013, 10, 365–375. [CrossRef] [PubMed]

115. Padilla, S.; Hunter, D.L.; Padnos, B.; Frady, S.; MacPhail, R.C. Assessing locomotor activity in larval zebrafish:
Influence of extrinsic and intrinsic variables. Neurotoxicol. Teratol. 2011, 33, 624–630. [CrossRef] [PubMed]

116. Fernandes, A.M.; Fero, K.; Arrenberg, A.B.; Bergeron, S.A.; Driever, W.; Burgess, H.A. Deep Brain
Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Curr. Biol. 2012, 22, 2042–2047. [CrossRef]
[PubMed]

117. Beker van Woudenberg, A.; Wolterbeek, A.; te Brake, L.; Snel, C.; Menke, A.; Rubingh, C.; de Groot, D.;
Kroese, D. A category approach to predicting the developmental (neuro) toxicity of organotin compounds:
The value of the zebrafish (Danio rerio) embryotoxicity test (ZET). Reprod. Toxicol. 2013, 41, 35–44. [CrossRef]
[PubMed]

118. Conklin, E.E.; Lee, K.L.; Schlabach, S.A.; Woods, I.G. VideoHacking: Automated Tracking and Quantification
of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment. J. Undergrad.
Neurosci. Educ. 2015, 13, A120–A125. [PubMed]

119. Pittman, J.T.; Ichikawa, K.M. iPhone® applications as versatile video tracking tools to analyze behavior in
zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 2013, 106, 137–142. [CrossRef] [PubMed]

120. Mueller, K.P.; Neuhauss, S.C.F. Automated visual choice discrimination learning in zebrafish (Danio rerio).
J. Integr. Neurosci. 2012, 11, 73–85. [CrossRef] [PubMed]

121. Mueller, K.P.; Neuhauss, S.C.F. Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage.
PLoS ONE 2014, 9, e87372. [CrossRef] [PubMed]

122. Burgess, H.A.; Granato, M. Sensorimotor Gating in Larval Zebrafish. J. Neurosci. 2007, 27, 4984–4994.
[CrossRef] [PubMed]

123. R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.r-
project.org (accessed on 15 May 2017).

124. Metcalfe, W.K.; Mendelson, B.; Kimmel, C.B. Segmental homologies among reticulospinal neurons in the
hindbrain of the zebrafish larva. J. Comp. Neurol. 1986, 251, 147–159. [CrossRef] [PubMed]

125. Burgess, H.A.; Granato, M. Modulation of locomotor activity in larval zebrafish during light adaptation.
J. Exp. Biol. 2007, 210, 2526–2539. [CrossRef] [PubMed]

126. Eaton, R.C.; Bombardieri, R.A.; Meyer, D.L. The Mauthner-initiated startle response in teleost fish. J. Exp. Biol.
1977, 66, 65–81. [PubMed]

127. Liu, K.S.; Fetcho, J.R. Laser ablations reveal functional relationships of segmental hindbrain neurons in
zebrafish. Neuron 1999, 23, 325–335. [CrossRef]

http://dx.doi.org/10.1523/JNEUROSCI.2848-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20826660
http://dx.doi.org/10.1371/journal.pone.0154552
http://www.ncbi.nlm.nih.gov/pubmed/27111849
http://dx.doi.org/10.3389/fncir.2013.00109
http://www.ncbi.nlm.nih.gov/pubmed/23772207
http://dx.doi.org/10.1016/j.beproc.2010.12.003
http://www.ncbi.nlm.nih.gov/pubmed/21147203
http://dx.doi.org/10.1109/TCBB.2014.2306829
http://www.ncbi.nlm.nih.gov/pubmed/26356340
http://dx.doi.org/10.1016/j.bbr.2011.11.020
http://www.ncbi.nlm.nih.gov/pubmed/22138507
http://dx.doi.org/10.1016/j.ntt.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22484456
http://dx.doi.org/10.1371/journal.pone.0021076
http://www.ncbi.nlm.nih.gov/pubmed/21738604
http://dx.doi.org/10.1371/journal.pone.0070172
http://www.ncbi.nlm.nih.gov/pubmed/23950910
http://dx.doi.org/10.1089/zeb.2013.0871
http://www.ncbi.nlm.nih.gov/pubmed/23738739
http://dx.doi.org/10.1016/j.ntt.2011.08.005
http://www.ncbi.nlm.nih.gov/pubmed/21871562
http://dx.doi.org/10.1016/j.cub.2012.08.016
http://www.ncbi.nlm.nih.gov/pubmed/23000151
http://dx.doi.org/10.1016/j.reprotox.2013.06.067
http://www.ncbi.nlm.nih.gov/pubmed/23796951
http://www.ncbi.nlm.nih.gov/pubmed/26240518
http://dx.doi.org/10.1016/j.pbb.2013.03.013
http://www.ncbi.nlm.nih.gov/pubmed/23558086
http://dx.doi.org/10.1142/S0219635212500057
http://www.ncbi.nlm.nih.gov/pubmed/22744784
http://dx.doi.org/10.1371/journal.pone.0087372
http://www.ncbi.nlm.nih.gov/pubmed/24489905
http://dx.doi.org/10.1523/JNEUROSCI.0615-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17475807
http://www.r-project.org
http://www.r-project.org
http://dx.doi.org/10.1002/cne.902510202
http://www.ncbi.nlm.nih.gov/pubmed/3782495
http://dx.doi.org/10.1242/jeb.003939
http://www.ncbi.nlm.nih.gov/pubmed/17601957
http://www.ncbi.nlm.nih.gov/pubmed/870603
http://dx.doi.org/10.1016/S0896-6273(00)80783-7


Int. J. Mol. Sci. 2017, 18, 1185 20 of 21

128. Lorent, K.; Liu, K.S.; Fetcho, J.R.; Granato, M. The zebrafish space cadet gene controls axonal pathfinding of
neurons that modulate fast turning movements. Development 2001, 128, 2131–2142. [PubMed]

129. Moyano, M.; Porteros, Á.; Dowling, J.E. The effects of nicotine on cone and rod b-wave responses in larval
zebrafish. Vis. Neurosci. 2013, 30, 141–145. [CrossRef] [PubMed]

130. Venkatraman, P.; Carmer, R.; Pang, C.-P.; Zhang, M.; Leung, Y.F. Understanding the contribution of
photoreceptors to the Visual Motor Response. Investig. Ophthalmol. Vis. Sci. 2015, 56, 998.

131. Burton, C.E.; Zhou, Y.; Bai, Q.; Burton, E.A. Spectral properties of the zebrafish visual motor response.
Neurosci. Lett. 2017, 646, 62–67. [CrossRef] [PubMed]

132. Mora-Zamorano, F.X.; Klingler, R.; Murphy, C.A.; Basu, N.; Head, J.; Carvan, M.J. Parental Whole Life
Cycle Exposure to Dietary Methylmercury in Zebrafish (Danio rerio) Affects the Behavior of Offspring.
Environ. Sci. Technol. 2016, 50, 4808–4816. [CrossRef] [PubMed]

133. Zhang, L.; Chong, L.; Cho, J.; Liao, P.-C.; Shen, F.; Leung, Y.F. Drug Screening to Treat Early-Onset Eye
Diseases. Asia Pac. J. Ophthalmol. 2012, 1, 374–383. [CrossRef] [PubMed]

134. Pérez-Escudero, A.; Vicente-Page, J.; Hinz, R.C.; Arganda, S.; de Polavieja, G.G. idTracker: Tracking
individuals in a group by automatic identification of unmarked animals. Nat. Methods 2014, 11, 743–748.
[CrossRef] [PubMed]

135. Liu, Y.; Ma, P.; Cassidy, P.; Carmer, R.; Zhang, G.; Venkatraman, P.; Brown, S.A.; Pang, C.-P.; Zhong, W.;
Zhang, M.; et al. Statistical analysis of zebrafish locomotor behaviour by logistic generalized linear mixed
models. Sci. Rep. 2017, in press. [CrossRef]

136. Rihel, J.; Prober, D.A.; Schier, A.F. Monitoring Sleep and Arousal in Zebrafish. Methods Cell Biol. 2010, 100,
281–294. [PubMed]

137. Scott, C.A.; Marsden, A.N.; Slusarski, D.C. Automated, high-throughput, in vivo analysis of visual function
using the zebrafish. Dev. Dyn. 2016, 245, 605–613. [CrossRef] [PubMed]

138. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011,
162, 1239–1249. [CrossRef] [PubMed]

139. Michelini, E.; Cevenini, L.; Mezzanotte, L.; Coppa, A.; Roda, A. Cell-based assays: Fuelling drug discovery.
Anal. Bioanal. Chem. 2010, 398, 227–238. [CrossRef] [PubMed]

140. An, W.F.; Tolliday, N. Cell-Based Assays for High-Throughput Screening. Mol. Biotechnol. 2010, 45, 180–186.
[CrossRef] [PubMed]

141. Moore, K.; Rees, S. Cell-Based Versus Isolated Target Screening: How Lucky Do You Feel? J. Biomol. Screen
2001, 6, 69–74. [CrossRef] [PubMed]
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