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Alla mia famiglia



Hypotheses non fingo.

Isaac Newton

Considerate la vostra semenza: fatti non
foste a viver come bruti, ma per seguir virtute
e canoscenza.

Dante Alighieri



Abstract

The aim of this thesis is to present a finite element methodology, based upon
a three-dimensional extensions of the classical Hermite interpolation and of
the Coons Patch, for the evaluation of the natural modes of vibration of the
air inside cavities (interior acoustics) and of elastic structures (structural dy-
namics). This methodology is thought for acoustic applications within Mul-
tidisciplinary Desing and Optimization, where computational effectiveness is
a key attribute, especially during iterative optimization.

The distinguishing feature of the proposed technique is its high efficiency,
with the possibility to capture relatively high spatial frequency modes (essen-
tial in acoustics) even using a limited number of degrees of freedom. Also, the
element is quite flexible and may be used for modeling any three–dimensional
geometry. For instance, thin–wall structures like shells and plates are treated
with three–dimensional brick elements with a single element along the thick-
ness. An additional advantage is related to the possibility of applying a
quasi-static reduction, which allows one to eliminate those degrees of freedom
associated with the derivatives while maintaining a high level of accuracy, so
that to further improve the effectiveness of the element.

The classical one–dimensional Hermite interpolation is an interpolating
technique of order three that uses the function and its derivative at the end
points of the element (class C1). The classical Hermite technique for one–
dimensional domains can be extended to higher orders, by including higher
derivatives as nodal unknowns, thereby increasing the class of the element
(for instance, a Hermite element of order five is of class C2). Then, the three-
dimensional extension is obtained combining the Hermite polynomials in each
direction. For example, in the three–dimensional third–order interpolation,
the unknowns are the nodal values of the function, of its three partial deriva-
tives, of its three mixed second derivatives, and of its third mixed derivative.
Similarly to the one–dimensional approach, higher orders are then obtained
by including higher derivatives at nodes.

The Hermite element, even that of order three, is rarely used because
of problems that arise whenever the domain is not topologically hexahedral,
that is when the coordinate lines (and so the base vectors) of two adjacent
blocks present a discontinuity. Specifically, as far as the first-order deriva-
tives are concerned, the problem has been removed by assuming as unknowns
the Cartesian coordinates of the gradient, since they are continuous across
block boundaries. The problem remains for the higher-order derivatives: in
order to express them in terms of Cartesian components, their set should
be complete (in particular, we have only the mixed second derivatives and,
hence, incomplete information on the Hessian matrix). The remedies to this
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issue are key features of the present thesis. In particular, two solutions have
been proposed in this thesis: (1) the high–order derivatives relative to dif-
ferent blocks are treated as independent unknowns at the block boundaries;
(2) a new 3–D high–order internal–nodes family of elements based upon the
Coons Patch is used: these elements are defined so as to have only the func-
tion and the three derivatives as nodal unknowns (thereby, the higher the
order of the element the higher the quantity of internal nodes needed for the
interpolation).

To be specific, the Coons Patch pertain the interpolation over a quadri-
lateral surface. Given the four edge lines, the Coons Patch is obtained as the
sum of the two linear interpolations between opposite boundary lines, minus
a bilinear interpolation through the four corner points. From this technique
stems the idea of a new family of elements, which edges are generated using
the Hermite interpolation. The objective is to extend the use of high–order
elements based on a Hermite approach also to generically complicated ge-
ometries, so as to take advantage of their effectiveness. These elements will
be referred to as Hybrid elements.

The validation is based upon the evaluation of the natural eigenvalues (or
natural frequencies) and modes of the air vibrating inside hexahedral cavities
as well as of those of elastic–thin–plates (in fact, for each of this case exact
or accurate solutions are available).

Applications to quite complicated structures, such as curved domains
(cylindrical cavities) or very simplified wing–boxes are presented. The re-
sults are compared with those obtained using commercial softwares (such as
Ansys).

Finally, comparisons with the literature are also included.



Sommario

Lo scopo di questa tesi è presentare una metodologia agli elementi finiti di
ordine superiore basata su un’estensione 3–D dell’interpolazione alla Hermite
e del Coons Patch, per valutare i modi naturali di vibrazione sia di strutture
elastiche che dell’aria all’interno di cavità (acustica interna). La metodologia
è pensata per applicazioni di acustica in un contesto di Ottimizzazione e
Progettazione Multidisciplinare (MDO), in cui l’efficienza di calcolo è uno
dei requisiti chiave, specie per il fatto di avere frequenti iterazioni numeriche.

Il vantaggio più importante che caratterizza la metodologia proposta è
un’elevata efficienza, che consente di catturare modi relativi a frequenze rel-
ativamente alte (requisito fondamentale in acustica) anche utilizzando pochi
gradi di libertà. Inoltre, lo stesso elemento può essere utilizzato per model-
lare qualsiasi geometria. Le strutture sottili come piastre e gusci, ad esempio,
vengono trattate come domini tridimensionali aventi un solo elemento lungo
lo spessore. Un ulteriore vantaggio consiste nel poter applicare in modo ef-
ficiente le tecniche di riduzione quasi–statica, che permettono di eliminare
i gradi di libertà associati alle derivate, pur mantenendo un alto livello di
accuratezza.

La classica interpolazione alla Hermite è una tecnica di interpolazione di
ordine tre che utilizza i valori nodali della funzione e della derivata ai due
estremi dell’intervallo (classe C1). Questa tecnica può essere generalizzata ad
ordini più elevati, aggiungendo derivate di ordine superiore ai due nodi e, di
conseguenza, aumentando la classe dell’elemento (ad esempio, un elemento
alla Hermite del quinto ordine risulta di classe C2). L’estensione a domini
tridimensionali del metodo si ottiene combinando i polinomi di Hermite nelle
tre direzioni. Ciò comporta, ad esempio, che l’interpolazione alla Hermite
del terzo ordine, nello spazio tridimensionale, abbia come incognite nodali: la
funzione, le tre derivate prime, le tre derivate seconde miste e la derivata terza
mista. L’estensione agli ordini superiori è immediata, una volta considerate
tutte le possibili combinazioni degli opportuni polinomi interpolatori.

L’elemento alla Hermite, compreso quello del terzo ordine, è oggi poco uti-
lizzato a causa delle difficoltà che insorgono qualora il dominio non sia topo-
logicamente esaedrico, e cioè quando le linee coordinate (e di conseguenza i
vettori di base) di due elementi adiacenti presentano una discontinuità. Per le
derivate prime, il problema può essere risolto utilizzando le componenti carte-
siane del gradiente delle incognite, dato che queste sono necessariamente con-
tinue tra elemento ed elemento. Il problema persiste invece per le derivate di
ordine superiore. Infatti, per poterne utilizzare le componenti cartesiane, esse
devono costituire un set completo. Già per le derivate seconde, ad esempio,
si dispone solo di quelle miste e quindi di una definizione solo parziale della



iv

matrice Hessiana. La soluzione a tale problema è un aspetto chiave di questa
tesi. In particolare vengono proposti due rimedi distinti: (1) all’interfaccia,
le derivate di ordine superiore vengono trattate come variabili indipendenti
per ciascun elemento; (2) si utilizza una nuova famiglia di elementi a nodi
interni che nasce dalla tecnica di interpolazione alla Coons (il cosiddetto
Coons Patch), in modo tale da avere solo la funzione e le sue tre derivate
prime come incognite nodali (l’ordine dell’elemento è perciò univocamente
determinato dal numero dei nodi interni).

Il Coons Patch consiste in una tecnica di interpolazione per ricostruire
una superficie quadrilatera a partire dai suoi lati. Data l’espressione analitica
dei quattro lati, il Coons Patch si ottiene come somma di due interpolazioni
lineari tra lati opposti meno un’interpolazione bilineare tra i quattro vertici.
Da questa tecnica nasce l’idea di una nuova famiglia di elementi per i quali
è stato deciso di generare gli spigoli con una interpolazione alla Hermite. Lo
scopo di questa formulazione è di estendere le possibilità di utilizzo degli el-
ementi di ordine superiore basati su tecniche alla Hermite anche a geometrie
comunque complicate, in modo tale da sfruttarne le caratteristiche di effi-
cienza ed accuratezza evidenziate in casi semplici. Questi elementi sono stati
chiamati Hybrid elements.

La validazione del metodo si basa sull’analisi degli autovalori (o delle
frequenze naturali) e dei modi dell’aria all’interno di cavità esaedriche e di
piastre sottili elastiche (per entrambi i casi, infatti, sono disponibili soluzioni
esatte o approssimate).

La metodologia è stata anche applicata a strutture più complesse, come
domini a curvatura (ad esempio cavità cilindriche) o cassoni alari estrema-
mente semplificati. I risultati sono stati messi a confronto con quelli ottenuti
attraverso i più noti softwares agli elementi finiti (come Ansys).

Infine sono state effettuate analisi di confronto con significativi risultati
presenti in letteratura.
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Chapter 1
Introduction

1.1 Context

In most of the engineering fields (for example, Aerospace, Automotive, Oil &
Gas) the typical design process of a quite complex product consists essentially
of three steps: (1) Conceptual Design, which is related to the selection of the
solution that best fits the requirements; (2) the Preliminary Design, which
consists in the definition and in a deep analysis of the solution and (3) the
Detailed Engineering, that is the final phase of the design process in which
the whole scope of work is defined at the required level of details (this is also
referred to as Front–End Engineering Design).

The multidisciplinary nature of the first two phases (at least of the Con-
ceptual Design) requires the integration of the variouos disciplines involved
and the introduction of frequent changes in terms of geometrical and physical
properties of the solution, in order to satisfy all the requirements simultane-
ously. This means iterative calculations which, because of the time con-
straints, often leads to the use of low fidelity and sometimes over–simplified
models, despite the need of high–fidelity tools to balance the lack of experi-
mental data.

In addition, all the different models used for the various disciplines are
usually derived from a unique CAD model from which customized models
are built and adapted for the single discipline.

1.2 Objective and goals

The research activity presented in this thesis pertain the development of a
new three–dimensional high–order finite element methodology, for the eval-
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uation of the natural modes of vibration of the air inside a cavity (interior
acoustics) and/or of an elastic structure (structural dynamics), for relatively
high frequencies, so as to make the technique useful for acoustic applica-
tions, in particular for the fluid/structure acoustic coupling. The work is to
be considered as a first step towards the development of a tool to be used
in Multidisciplinary Optimization and Design (MDO). Therefore, the uman
intervention is to be minimized.

Specifically, to analyze the fluid/structure coupling within an MDO con-
text, it is useful to have an element with four major features: (i) the element
should be efficient in capturing high spatial frequency modes (as essential
in interior acoustics); (ii) the element should be sufficiently general, so as to
model efficiently all types of geometries, thereby facilitating the connection of
various components (as essential in MDO); (iii) the element should be simple;
specifically, it should not require complicated topologies (requiring human in-
tervention), thereby rendering feasible automated-resizing programming for
optimal design applications; (iv) the element should be quite accurate, so as
to give good results with few elements, an important feature when repeated
calculations occur (as in MDO).

High-order finite elements are commonly employed in most of the en-
gineering fields. For example, among the finite elements in the commercial
softwares most commonly used (Ansys, Nastran) , one has the 20–nodes brick
element, which has quadratic shape-functions or the 32–nodes brick element,
which uses cubic shape functions.

This statement needs to be qualified for applications to structure/fluid
interaction, which is the main objective of this work. Here, such an inter-
action is conceived as the coupling of the dynamic of the air inside a cavity
and that of the structure that surrounds the cavity. This coupling is best
formulated in terms of the natural modes of vibration of both the air and the
structure.

The basic idea for the proposed methodology stems from the classical
Hermite interpolation, which is of order three and uses the nodal values of
the interpolating function and of its derivative at the two end–nodes (class
C1). In the field of structural dynamics, the unknown function is the displace-
ment vector u whereas in interior acoustic problems (without considering the
interaction with the external structure) the unknown function is the pressure
p (or the velocity potential ϕ).

In the three–dimensional extension of the third-order Hermite element



1.2 Objective and goals 5

and for structural dynamics, the unknowns are the nodal values of the three-
dimensional displacement vectors, the three partial derivatives, the three sec-
ond mixed derivatives, and the third mixed derivative. Similarly, in acoustics,
the unknowns are the nodal values of the three-dimensional scalar function of
the pressure, its three partial derivatives, its three mixed second derivatives,
and its third mixed derivative.

Note that, in the Hermite interpolation the derivatives of order higher
than first are not all simultaneously present. For example, we have only the
three second mixed derivatives and the only third mixed derivative. Hence,
we have incomplete information on the Hessian matrix. This causes problems
at the block boundaries if the coordinate lines are discontinuous. This last
consideration is the source of an important drowback which affects the efficacy
of the Hermite element. It will be referred to as the block–boundary problem
throughout the thesis and will be briefly outlined in the following.

Accordingly, despite their high–accuracy for the study of relatively simple
domains, elements based on the Hermite interpolation are rarely used in prac-
tice because of problems that arise whenever the domain is not topologically
hexahedral. In particular, the problems occur whenever the coordinate lines
(and therefore the base vectors) of two adjacent blocks present a discontinu-
ity. This implies that the gradient as well as the second– and higher–order
derivatives are discontinuous.

In order to remedy this issue, a first approach has just been developed and
preliminarily studied in the past; it is related to the definition of the topology
within the domain. As far as the first–order derivatives are concerned, the
problem is easily removed by assuming as unknowns the values of the Carte-
sian coordinates of the gradient of the unknown, since these quantities are
continuous across block boundaries.1 The problem, however, remains for the
mixed second–order derivatives, because, in order to express them in terms of
Cartesian derivatives, one needs all the second–order derivatives, not just the
mixed ones, which are the only ones utilized in the three–dimensional Hermite
interpolation. Similar considerations hold for the third-order derivatives.

In order to avoid the situation caused by the block–boundary problem, the
technique suggested consists of assuming that, for the nodes located on the
boundaries between blocks, the second– and third–order derivatives relative
to different blocks are treated as independent unknowns. This technique
is here validated by applications to simple domains, artificially divided in

1 Provided, of course, that the gradient is continuous: for isotropic elastic materials this
is true whenever the elastic coefficients (i.e., the Young modulus E and the Poisson ratio
ν) are continuous; this is the only case considered here.
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different blocks (details of the formulation are provided in Section 2.4 whereas
the obtained results are discussed in Section 7.5).

Next, a second approach has been introduced which is very convenient
to circumvent the block–boundary problem. This enhances considerably the
user–friendliness of the methodology and it is the key innovation of this work.
The new scheme is obtained by combining the one–dimensional Hermite inter-
polation with a three–dimensional extension of the Coons’ Patch technique,
with edges generated by Hermite interpolation. The new element will be
referred to as the Hybrid element.

To explain such an approach, consider a topologically quadrilateral sur-
face. Given the four edge lines, the Coons patch is obtained as: (1) the sum
of the two linear interpolations between opposite boundary lines, minus (2) a
bilinear interpolation through the four corner points (for details see Chapter
4). From this interpolation technique stems the basic idea for the new Hybrid
elements, whose edges are generated using the 3rd order Hermite interpola-
tion. In addition, the number of unknowns of the related Hybrid (i.e., that of
the same order) is reduced by a factor two with respect to the Hermite scheme
of order 3(and the computational time by an order of magnitude), without
any reduction on the accuracy of the scheme, which remains of order 3. It is
worth noting that this element, like the Hermite element, provides a solution
that is continuous with its gradient (class C1). However, the most important
improvement introduced by this scheme is the fact that only the values of the
unknown function and of its gradient are required at the node of each brick.
This impies that the block–boundary problem has been eliminated since for
the first order derivatives one can use the Cartesian components (that are
continuous).

Extension to higher orders have been investigated. Specifically, Hybrid
and Hermite elements of orders from three to seven have been extensively vali-
dated and assessed and a general formulation for generating one–dimensional
high–order shape functions has been developed, having distinguished two
families of elements: the WIP elements(i.e., With Internal Points) and the
WEP elements (i.e., With End Nodes). This distinction is crucial because
each class of elements presents specific advantages.

In particular, if one adopts a C1 WIP interpolation, whose order is defined
by the quantity of nodes utilized, being the nodal unknowns only the func-
tion and the first derivative (for details see Chapter 3), the block–boundary
problem can be eliminated also for the higher–order elements (that is, the
elements of order higher than three).
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In summary, combining the various possibility of interpolation, one ob-
tains effective elements based on a Hermite approach with the key advantage
to be not affected by the block–boundary nodes problem and thereby to be
used for an effective analysis of complicated topologies.

Finally, the advantages of the formulations affordable by using quasi–
static reduction are outlined. As far as an eight–noded high–order element is
conceived (for example, the Hermite element of order p), a large percentage
of the unknowns is related to the derivatives (to be specific, if [(p+ 1)/2]3 is
the total amount of unknowns per node – or unknown vectors per node – of a
Hermite element, one has [(p+1)/2−1]3 unknowns related to the derivatives).
These unknowns can therefore be eliminated using a model order reduction
scheme, such as a Guyan’s quasi–static reduction. This results in a highly
efficient scheme that has a high accuracy even though the retained unknowns
in the final reduced model are relatively few.

The validations cosidered are related to the modal analysis of the air
vibrating inside a cavity without considering the structure that surronds it
(interior acoustics in absence of the structure) as well as to the modal analysis
of a vibrating elastic thin–plate, using various kinds of constraint (specifically,
free; clamped and hinged boundary conditions have been considered).

On the basis of the results obtained, the resulting methodology that is
most efficient is the one based upon a combination of three important in-
gredients: (1) high–order extension of the Hermite interpolation, (2) the
three–dimensional extension of Coons’ Patch technique, and (3) model or-
der reduction. This combination is very powerful and yields a methodology
with the distinguishing feature of a very high accuracy, with the possibility
to capture effectively high spacial frequencies, as required in aeroacoustics
applications. Indeed, the first two items (Hermite and Coons) yield a finite
element that is very accurate. The third item is related to the efficiency,
since it is possible to largely reduce the order of the scheme while preserving
a high level of accuracy.

1.3 Structure of the thesis

This thesis consists of two parts. Part I is dedicated to the mathematical
formulation. In this part the Hermite elements and the Hybrid elements
are introduced along with their higher–order extensions. The chapters are
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structured following the chronological–logical development of the activity.
The mathematical background for the algorithms used to reduce the order of
the finite element matrices is given in appendix (see Appendix E). Part II
is related to results and assessments. A preliminary chapter is dedicated to
the mass and stiffness matrices definition for interior acoustics as well as for
structural dynamics. This final chapter contains the concluding remarks.

Chapter 2 describes the starting point of the activity: the Hermite ele-
ment. Specifically, the basics of the classical third–order Hermite interpola-
tion are presented with the aim to introduce the three–dimensional Hermite
brick element. The so called block–boundary problem is addressed in Sec-
tion 2.3 to put in evidence the limits of the basic formulation. The remedy
proposed is described in Section 2.4.

Chapter 3 addresses the extension to higher orders, along with the ex-
tension of the block–boundary problem.

Chapter 4 introduces the Hybrid element in its third order formulation.
In order to put the thesis in the proper perspective, Section 4.1 describes
the works produced in the literature about finite element techniques based
on the Coons Patch for three–dimensional interior acoustics. The aim is to
put in evidence the differences between the proposed formulation and the
closer elements available in the literature (whereas the comparison of the
results obtained is presented in Part Two). Sections from 4.2 to 4.4 illustrate
the mathematics of the innovative Hybrid element, that is conceived as an
extension of the bi–dimensional Coons Patch. A final section (Section 4.5)
to comment the differencies between the Hermite and the Hybrid elements
closes Chapter 4.

Chapter 5 addresses the extension to higher orders.

Chapter 6 consists of two sections (Sections 6.1 and 6.2) for the defini-
tion of the mass and stiffness matrices in both the problem considered: that
of the air vibrating inside a cavity and that of the elastic structure. Rela-
tively to Section 6.1, a subsection has been dedicated to the one–dimensional
Helmholtz problem (in practice, a second–order derivative operator), since
this is used in the next to assess the elements for very simple domains.

Chapter 7 opens with a section of definitions (Section 7.1), in which the
main expressions of the errors, used for the assessment of the modes as well
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as of the eigenvalues are given. Section 7.2 is related to mono–dimensional
problems, for which an exact solution is available; since no bricks are here
defined, the results are limited to the basic WEP and the WIP formulations,
whitout mention to the Hermite and Hybrid elements. Comparisons between
the two formulations are presented, throughout a h− and p−convergence
study. Next, the three–dimensional Helmholtz equation has been considered
with simple geometries (cubes and parallelepipeds), for which, again, an exact
solution is available. This has been addressed in Section 7.3. Subsection 7.3.9
regards the analysis of the results obtained for interior acoustics using the
IRS reduced formulation. Section 7.4 regards the modal analysis of plates
with various kind of constraints (specifically: free plate; clamped plate and
hinged plate). Finally, Section 7.5 is that related to the block–boundary
problem. It has been studied for thin square plates (structural dynamics)
and for cubic cavities (interior acoustics).

Chapter 8 contains examples of application of the proposed method-
ology. To begin with, Section 8.1 wants to quantify the effectiveness of
the Hybrid methodology through a comparison with the Provatidis’ Coons
Macroelement.[1] Next, Section 8.2.1 regards the application of the method-
ology to curved domains. The results are assessed through those obtained
with Ansys. Finally, Section 8.3.1 is related to the structural modal analysis
for a wing–box. The wing–box considered here is very simple, is conceived as
a thin–walled beam and has not a technical meainig: the aim is to test the
methodology for a quite complex domain (in this case generated by 8 blocks).

Finally, Chapter 9 contains some concluding considerations about the
results achieved and about the activities to be done in the future.
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Chapter 2
Hermite brick elements

In this chapter, the third–order 8−node Hermite element is described, so as
to provide the appropriate background for the introduction of the higher–
order Hermite and Hybrid elements described in the next. The Hermite
element consists in a third–order brick element which nodes are placed at
the vertices. Since the three-dimensional extension derives from the classical
one–dimensional third–order Hermite interpolation (to be considered in each
direction), this formulation is introduced first. After describing the Hermite
brick element, the last two sections are dedicated to the problems that arise
for complex structures and the remedies proposed.

2.1 Classical Hermite interpolation

The classical one–dimensional Hermite interpolation is also referred to as the
Bogner-Fox-Schmit element.[2] This interpolation, that is of class C1, is given
by

f(x) = f (0)
− M−(x) + f (0)

+
M+(x) + f (1)

− N−(x) + f (1)
+
N+(x) (2.1)

(for x ∈ [−1, 1]), where f (0)
± denotes the values of f(x) at x = ±1, and

f (1)
± denotes the values of df/dx also at x = ±1. The Hermite interpolation

polynomials M±(x) and N±(x) are given by (also for x ∈ [−1, 1])

M±(x) =
1
4

(2± 3x∓ x3) and N±(x) =
1
4

(∓1− x± x2 + x3). (2.2)

Note that, for instance, M+(x) is (uniquely) determined by the conditions
M+(1) = 1, M+(−1) = 0 and dM+/dx = 0 for x = ±1. Similarly, we have
that M−(−1) = 1, M−(1) = 0 and dM−/dx = 0 for x = ±1. For the other
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two polynomials one has that N±(±1) = 0 whereas dN−/dx = 1 for x = −1
and dN+/dx = 1 for x = 1.

Figure 2.1 shows the M±(x) Hermite interpolators whereas Fig. 2.2 de-
picts the N±(x) Hermite polynomials.
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0,8 
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-1 -0,6 -0,2 0,2 0,6 1 

Figure 2.1: Hermite polynomials: M− (dashed line) and M+ (continuous line)
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-0,18 

-0,06 

0,06 

0,18 
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-1 -0,6 -0,2 0,2 0,6 1 

Figure 2.2: Hermite polynomials: N− (dashed line) and N+ (continuous line)
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2.2 The Hermite 3rd order 8−node element

In order to extend the concept to the three–dimensional case, introduce the
curvilinear coordinates ξα and consider a brick element, which by definition
corresponds to a cube in the ξα–space (ξα ∈ [−1, 1]). Using the Hermite
interpolation in all three directions yields an interpolated function f(ξα) (e.g.,
the components of x(ξα) for the geometry, and the velocity potential ϕ(ξα)
for interior acoustics, as well as the components of the displacement u(ξα)
for structural dynamics) given by

f(ξα) =∑
s

Ps(ξα)fs +
3∑

β=1

P βs (ξα)fs,β +
∑
βγ∈I2

P βγs (ξα)fs,βγ + P 123
s (ξα)fs,123

 ,

where s := (s1 , s2 , s3), with sk = 1, 2, defines the eight nodes of the brick ele-
ment (

∑
s is understood to span over all the eight values of s); moreover, not-

ing that the second–derivative summation spans only over the mixed deriva-
tives, we have that I2 := {(1, 2); (2, 3); (3, 1)}, whereas the term 123 is the
only mixed derivative of order three. In addition, Ps(ξα), P βs (ξα), P βγs (ξα),
and P 123

s (ξα) are suitable products of the Hermite polynomials in Eq. 2.2;
for instance,

Ps(ξα) = Ms1
(ξ1)Ms2

(ξ2)Ms3
(ξ3),

P 1
s (ξα) = Ns1

(ξ1)Ms2
(ξ2)Ms3

(ξ3),

P 13
s (ξα) = Ns1

(ξ1)Ms2
(ξ2)Ns3

(ξ3),

P 123
s (ξα) = Ns1

(ξ1)Ns2
(ξ2)Ns3

(ξ3).

(2.3)

Finally, “,β” denotes the partial derivative with respect to ξβ (for instance
f(ξα),βγ = ∂2f(ξα)/∂ξβ∂ξγ).

The expressions above provide the desired local interpolation procedure
for any function, in particular, for the unknown itself whenever this is a
scalar function u(ξα), as in acoustics. These may be combined to yield a
global interpolation as

u(ξα) =
P∑
p=1

zpχp(ξα), (2.4)

where the zp’s comprise the nodal values of u, u,α (α = 1, 2, 3), u,βγ (β, γ ∈
I2), and u,123 (hence P = 64), whereas χp(ξα) are the global shape functions,
defined locally by Eq. 2.3.
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If the unknown is a vector function u(ξα), as in structural dynamics, we
have

u(ξα) =
P∑
p=1

zpχp(ξ
α), (2.5)

where now the zp’s comprise the nodal values of the Cartesian components
of u, u,α (α = 1, 2, 3), u,βγ (β, γ ∈ Iβγ), and u,123, whereas χp(ξα) are
vector global shape functions, obtained from the χp(ξα)’s in Eq. 2.4 through
multiplication by the appropriate base vector. The same interpolation is used
for the geometry (isoparametric representation).

2.3 The block–boundary problem

In the following, the domain is conceived as a collection of topologically
hexahedral subdomains (blocks), which are described by equations of the
type x = x(ξα), with ξα ∈ [−1, 1] (α = 1, 2, 3). Each block is divided into
N1 ×N2 ×N3 elements (bricks).

The scheme presented in Section 2.2, hereby referred to as Scheme A,
presents no problems as long as the geometry of the problem is topologically
hexahedral (that is, a rectangular parallelepiped in the ξα-space). In this case,
in fact, all the partial derivatives assume the same value for all the bricks
that share a node. Major problems arise for more complicated structures,
even for geometries that may be obtained as combinations of topologically
hexahedral blocks.

Using the same global curvilinear coordinates for all the elements, the
domain may be divided into elements that are themselves topologically hex-
ahedral, with continuous covariant base vectors (tangents to the coordinate
lines), defined by

gα :=
∂x
∂ξα

(2.6)

However, if the base vectors are discontinuous, then the partial derivatives of
any function f(ξα) with respect to ξα,1

∂f

∂ξα
=

∂f

∂xk

∂xk
∂ξα

= grad f · gα, (2.7)

1 The Einstein summation convention for repeated indices is used throughout the present
paper. The indices always range from 1 to 3. Also, Latin indices denote Cartesian coordi-
nates, and Greek ones curvilinear coordinates.
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are also discontinuous, even when gradu is continuous. Then, the method
becomes complicated to use. Specifically, the main obstacle is the fact that,
for instance, the second mixed derivatives ∂2f/∂ξ1∂ξ2 at a node assume
different meaning for the eight elements that share that node. The same
holds true for the third–order one.

For topologically complicated geometries is not possible to introduce a
coordinate system such that the base vectors are continuous everywhere and
this is one of the most important reason why the use of the Hermite element
has been limited to topologically hexahedral geometries. On the other hand,
the method appears to be quite powerful and hence deserve further attention.
For this reason, in the past few years, this issue have been addressed, so as
to render the Hermite element useful for complex geometries as well.[3] The
approach proposed is presented below.

It should be emphasized that, for the first–order derivatives, the problem
may be removed by assuming as unknowns the values of the Cartesian co-
ordinates of grad f (f,h := ∂f/∂xh), provided, of course, that the gradient
is continuous, a condition always satisfied in linear acoustics and in struc-
tural dynamics under the assumption of continuity for the Young modulus
E and the Poisson ratio ν. The partial derivatives may then be obtained
using Eq. 2.7. The problem, however, remains for the second–order mixed
derivatives, because, in order to express them in terms of Cartesian compo-
nents, one needs all the second–order derivatives, not just the mixed ones,
which are the only ones utilized in the three–dimensional Hermite interpo-
lation (the derivatives ∂2f/∂ξα2 are in fact not included in the unknowns).
Similar considerations hold for the third–order derivatives.2

The following section illustrates the two methods proposed to solve the
problem.

2.4 Remedy: Schemes B and C

The above–mentioned problems arise when the base vectors, gα = ∂x/∂ξα,
of two adjacent blocks present a discontinuity. It is apparent that resolving
this issue is crucial to the usefulness of the Hermite element.

2 Of course, for simple topologically hexahedral geometries (i.e., single–block domain),
the formulation presents no problems; indeed, in this case, each partial derivative assumes
the same value for all the eight elements that share a node.
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For the sake of completeness, consider first the somewhat disappointing
results obtained in Morino et al.[4] The first approach tried in[4] consists of
expressing the second– and third–order derivatives, via suitable finite differ-
ences, in terms of the function at the nodes (akin to the approach used by
Gennaretti et al.[5] in a related boundary–element method for aerodynam-
ics). The results for a topologically hexahedral domain, were much worse
that those obtained with the basic Scheme A discussed above, and even
worse than those obtained with the NASTRAN CHEXA element (Ref.[6]).
In another approach used in Ref.,[4] the second– and third–order derivatives
were set equal to zero. The results were even worse. Then, still in Ref.,[4]

a fifth–order Hermite interpolation was considered, because in this case all
the second–order derivatives are available, and hence they as well may be ex-
pressed in terms of Cartesian second–order derivatives (for, the second–order
derivatives are the covariant components of the Hessian tensor). This shifted
the problem from the mixed second– and third–order derivatives into those
of order 3, 4, and 5. As expected, the results obtained (still in Ref.[4]) with
the complete fifth–order scheme (i.e., retaining all the unknowns) were much
better than the corresponding third–order ones. However, those obtained
with the “reduced” fifth–order scheme (i.e., obtained by setting to zero the
derivatives of order 3, 4, and 5) were worse than the “full” third-order Scheme
A.

On the basis of these somewhat disappointing results, two new schemes
have been explored in Ref.[3] In the first (hereby referred to as Scheme B), the
second– and third–order derivatives are treated as independent variables for
each element of a given node (i.e., for each node, the second– and third–order
derivatives are allowed to assume eight different values). Of course, Scheme
B requires many more unknowns than Scheme A. Hence, as a compromise,
a third scheme, hereby referred to as Scheme C, has been introduced. This
is a combination of Schemes A and B, in the sense that Scheme B is used
for the block–boundary nodes (i.e., nodes that are common to two or more
blocks), whereas Scheme A is used for all the interior nodes (i.e., for the large
majority of the nodes). The first results, presented in Ref.[3] and further
analyses presented here in Section 7.5, are revealed extremely encouraging.

However, Scheme C requires a major quantity of unknowns with respect to
Scheme A, even though much less than Scheme B. This additional quantity
of unknowns is related to the amount of interface nodes (and complicated
geometries could require a quite large number of interface nodes). Moreover,
the complexity of the block-boundary node problem increases as one increases
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the order of the scheme (the higher the order, the higher the amount of nodal
unknowns needed). Hence, a more effective solution (not affected by such a
limitation) has also been developed (see Section 7.5 for a complete discussion
of the results).

In addition, an innovative solution has been developed(an approach that
was introduced for the first time in Ref.[7]), which enhances considerably the
user–friendliness of the methodology. The objective was to avoid the block–
boundary node problem, even maintaining a high order of the scheme. It is
possible to do this by adopting a hybrid formulation, that involves different
interpolation schemes, so as to have only the function and its first derivative
as nodal unknowns. In such a scheme, in fact, one eliminates the issue of
incomplete information on the Hessian (there are not higher–order deriva-
tives) and can always use the Cartesian components of the gradient, that
are continuous across the interface between different blocks. Chapter 4 is
extensively dedicated to this approach.
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Chapter 3
Higher–order Hermite elements

In this chapter, an extension to higher–orders for the scheme presented in
Chapter 2 (the Hermite brick element) is proposed.

As far as the Hermite interpolation is conceived, the extension to higher–
orders will be addressed considering again the nodes only at the end–points
and by adding higher nodal derivatives. The mathematical formulation for
the one–dimensional case is presented in Sections 3.1. Next, the three–
dimensional formulation for the orders 5 and 7 is presented in Section 3.2.

3.1 General 1−D Hermite interpolation

In this section, a scheme which nodes are placed only at end–points is used.
This scheme will be treated as an extension of the classical Hermite interpo-
lation, since it is obtained simply by adding higher nodal derivatives.

Hence, if one has a total number of parameters per node equal to n (the
function and its n−1 derivatives), the degree of the interpolating polynomial
is r = 2n− 1.

This formulation, which is general, is an extension to the order r of the
classical Hermite interpolation. In fact, for n = 2 one has r = 3, that is the
classical Hermite interpolation of Section 2.1.

Accordingly, the aim of this section is to define a general interpolation
formula of order r for a function u = u(x) (x ∈ [−1, 1]), when the node are
placed at x = −1 (this node will be referred to with the use of the superscript
“−”) and x = 1 (we will be refer to it using the superscript “+”). In order to
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accomplish this, assume that

u(x) =
n−1∑
p=0

u+
p M+

p (x) +
n−1∑
p=0

u−p M−p (x) (3.1)

where n is the total number of the parameters per each of the two nodes (the
value of the function itself along with the value of its n− 1 derivatives) and
u+, u− are the unknowns at the first and at the second node respectively.
Denote with p and q two integers such that p+q = n−1 and p = 0, . . . , n−1
(therefore, p refers to the order of the nodal derivatives). The order r is
related to the nodal unknowns by the equation r = 2n − 1 = (p + q) + n.
Indicates with M±p (x) (p = 0, . . . , n − 1) the polynomials of order r of the
kind:

M±p (x) =
q∑
j=0

a±pj (1∓ x)p+j
(

1± x
2

)n
(3.2)

where a+
pj and a−pj are sets of q + 1 coefficients, such that the following con-

ditions be satisfied:

dkM±p
dxk

(∓1) = 0 for k = 0, . . . , n− 1 and k 6= p

dkM±p
dxk

(±1) = δkp

In the following we determine the a±pj coefficients (for j = 0, . . . , q). In
view of the following use of Eq. 3.2, and referring to the p polynomial assume
that:

F±(x) =
q∑
j=0

a±pj (1∓ x)p+j and G±(x) =
(

1± x
2

)n

where the subscripts ± refer to polynomials M±(x). It can be easily verified
that the functions F± and G± satisfy the following properties:

G±(∓1) = G
(1)
± (∓1) = . . . = G

(n−1)
± (∓1) = 0

G±(±1) = 1; G
(1)
± (±1) = ±n

2
; . . . ;G(k)

± (±1) = (±1)k
n!

2k(n− k)!

F±(±1) = F
(1)
± (±1) = . . . = F

(p−1)
± (±1) = 0

F
(p)
± (±1) = (∓1)p p!a±p0 ; . . . ; F

(p+q)
± (±1) = (∓1)p+q (p+ q)!a±pq
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so as the following n+ p conditions are immediately satisfied:

dkM±p
dxk

∣∣∣∣∣
∓1

= 0 for k = 0, . . . , n− 1

dkM±p
dxk

∣∣∣∣∣
±1

= 0 for k = 0, . . . , p− 1

whereas it is wanted that

dpM±p
dxp

∣∣∣∣∣
±1

= 1

Then, it results:1

dpM±p
dxp

∣∣∣∣∣
±1

= F
(p)
± G± = (∓1)p p!a±p0 = 1

that is verified for:

a±p0 = (∓1)p
1
p!

(3.3)

The first coefficients are thus determined. The further q conditions should
be imposed to determine the remaining coefficients (a±pj for j = 1, . . . , q):

dp+jM±p
dxp+j

∣∣∣∣∣
±1

=

F
(p+j)
±1 G±1 + (p+ j)F (p+j−1)

±1 G
(1)
±1 +

(p+ j)(p+ j − 1)
2

F
(p+j−2)
±1 G

(2)
±1 + . . . = 0

In particular,

dp+1M±p
dxp+1

∣∣∣∣∣
±1

= F
(p+1)
±1 G±1 + (p+ 1)F (p)

±1G
(1)
±1 = (∓1) a±p1 + a±p0(±1)

n

2
= 0

1Given two generic function f = f(x), g = g(x), one has the following rule for the k–th
derivative of the product

dk

dxk
fg = f (k)g +

(
k

1

)
f (k−1)g(1) + . . .+

(
k

k − 1

)
f (1)g(k−1) + fg(k) =

f (k)g + kf (k−1)g(1) +
k(k − 1)

2
f (k−2)g(2) + . . .+ kf (1)g(k−1) + fg(k)
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may be used to obtain:

a±p1 = (∓1)p
1
2
n

p!
(3.4)

Similarly:

a±pk = (∓1)p
(
n+ k − 1

k

)
1

2kp!
(3.5)

where k = 2, . . . , q.

Once the coefficients are determined, the polynomials defined in Eq. 3.2
are also determined. Hence, Eq. 3.1 can be used to interpolate the function
u = u(x).

To validate the interpolation formula given above, Hermite polynomials
for x ∈ [−1, 1] up to order seven have been used. In Tabs. 3.1, 3.2, 3.3
the coefficients aj and bj are given for each polynomial (and hence for each
value of p available for each order of interpolation). Using the coefficients of
the tables and combining Eqs. 3.1 and 3.2 one obtains the classical Hermite
interpolation formula and the two–node higher order interpolation formulae
(fifth and seventh order) given in Subsections 3.1.1 and 3.1.2.

p
n = 2 0 1
a+

0 ; a−0 1; 1 −1; 1
a+

1 ; a−1 1; 1

Table 3.1: 3rd order Hermite polynomials’ coefficients

p
n = 3 0 1 2
a+

0 ; a−0 1; 1 −1; 1 1; 1
a+

1 ; a−1 3/2; 3/2 −3/2; 3/2
a+

2 ; a−2 3/2; 3/2

Table 3.2: 5th order Hermite polynomials’ coefficients
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p
n = 3 0 1 2 3
a+

0 ; a−0 1; 1 −1; 1 1/2; 1/2 −1/6; 1/6
a+

1 ; a−1 2; 2 −2; 2 1; 1
a+

2 ; a−2 5/2; 5/2 −5/2; 5/2
a+

3 ; a−3 5/2; 5/2

Table 3.3: 7th order Hermite polynomials’ coefficients

3.1.1 5th order 2−node interpolation

Consider now the fifth–order extension of the classical Hermite interpolation.
As stated in 2.1, the third–order Hermite interpolation, of class C1, yields the
cubic polynomial that is determined by the values of the function, and of its
first–order derivative at the two end points. The third–order polynomials,
accordingly to the notation used in Eq. 3.1, are given by

M0±(x) =
1
4

(2± 3x∓ x3) and M1±(x) =
1
4

(∓1− x± x2 + x3).

Similarly, the fifth–order Hermite interpolation, of class C2, yields the
quintic polynomial that is determined by the values of the function, first–
order derivative, and second–order derivative, at the two end points, x = ±1,

f(x) = f (0)
− M0−(x) + f (0)

+
M0+(x)

+f (1)
− M1−(x) + f (1)

+
M1+(x)

+f (2)
− M2−(x) + f (2)

+
M2+(x)

(3.6)

(for x ∈ [−1, 1]), where f (k)
± (k = 0, 1, 2) denote the values, at x = ±1, of

respectively f(x), df/dx, and d2f/dx2, whereas the Hermite interpolation
polynomials Mk±(x) (k = 0, 1, 2) are now given by

M0±(x) =
1
16
(
8± 15x∓ 10x3 ± 3x5

)
,

M1±(x) =
1
16
(
∓5− 7x± 6x2 + 10x3 ∓ x4 − 3x5

)
,

M2±(x) =
1
16
(
1± x− 2x2 ∓ 2x3 + x4 ± x5

)
.

(3.7)

with x ∈ [−1, 1]. For instance M0+(x) is (uniquely) determined by the con-
ditions M0+(1) = 1, M0+(−1) = 0 and dM0+/dx = d2M0+/dx

2 = 0 for
x = ±1.
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Note that, the polynomials in Eqs. 3.7 can be rewritten in the form:

M0±(x) =
1
2
(
8∓ 9x+ 3x2

)(1± x
2

)3

,

M1±(x) =
1
2
(
∓5 + 8x∓ 3x2

)(1± x
2

)3

,

M2±(x) =
1
2

(∓1 + x)2

(
1± x

2

)3

.

In fact, according to Eqs. 3.2, the first factors can be obtained using the
appropriate coefficients of Tab. 3.2. For instance, one has, for the polynomial
M0+(x) (in this case: p = 0, q = 2 whereas a+

0 = 1 and a+
1 = a+

2 = 3/2):

M0±(x)

=
[
1 +

3
2

(1− x) +
3
2

(1− x)2

](
1 + x

2

)3

=
(

4− 9
2
x+

3
2
x2

)(
1± x

2

)3

=
1
2
(
8− 9x+ 3x2

)(1 + x

2

)3

Figure 3.1 shows the M0±(x) fifth–order interpolators whereas Figs. 3.2
and 3.3 depict the functions M1±(x) and M2±(x).
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Figure 3.1: 5th order Hermite polynomials: M0− (dashed line) and M0+ (con-
tinuous line)
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Figure 3.2: 5th order Hermite polynomials: M1− (dashed line) and M1+ (con-
tinuous line)
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Figure 3.3: 5th order Hermite polynomials: M2− (dashed line) and M2+ (con-
tinuous line)

3.1.2 7th order 2−node interpolation

The seventh–order Hermite interpolation, of class C3, yields the polynomial
of order seven that is determined by the values of the function, first–order
derivative, second–order derivative and third–order derivative, at the two end
points, x = ±1,

f(x) = f (0)
− M0−(x) + f (0)

+
M0+(x)

+f (1)
− M1−(x) + f (1)

+
M1+(x)

+f (2)
− M2−(x) + f (2)

+
M2+(x)

+f (3)
− M3−(x) + f (3)

+
M3+(x)

(for x ∈ [−1, 1]), where f (k)
± (k = 0, 1, 2, 3) denote the values, at x = ±1, of

respectively f(x), df/dx, d2f/dx2 and d3f/dx3, whereas the Hermite inter-
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polation polynomials Mk±(x) (k = 0, 1, 2, 3) are now given by

M0±(x) =
1
32
(
∓5x7 ± 21x5 ∓ 35x3 ± 35x+ 16

)
,

M1±(x) =
1
32
(
5x7 ± x6 − 21x5 ∓ 5x4 + 35x3 ± 15x2 − 19x∓ 11

)
,

M2±(x) =
1
32
(
∓2x7 − x6 ± 8x5 + 5x4 ∓ 10x3 − 7x2 ± 4x+ 3

)
,

M3±(x) =
1
32

[
1
3
(
x7 ± x6 − 3x5 ∓ 3x4 + 3x3 ± 3x2 − x∓ 1

)]
.

(3.8)

with x ∈ [−1, 1]. For instance M (0)
+

(x) is (uniquely) determined by the
conditions M (0)

+
(1) = 1, M (0)

+
(−1) = 0 and dM (0)

+
/dx = d2M (0)

+
/dx2 =

d3M (0)
+
/dx3 = 0 for x = ±1.

Note that, the polynomials in Eqs. 3.7 can be rewritten in the form:

M0±(x) =
1
2
(
16∓ 29x+ 20x2 ∓ 5x3

)(1± x
2

)4

,

M1±(x) =
1
2
(
∓11 + 25x∓ 19x2 + 5x3

)(1± x
2

)4

,

M2±(x) =
1
2
(
3∓ 8x+ 7x2 ∓ 2x3

)(1± x
2

)4

,

M3±(x) =
1
6

(∓1 + x)3

(
1± x

2

)4

.

In fact, according to Eqs. 3.2, the first factors can be obtained using the
appropriate coefficients of Tab. 3.3. For instance, one has, for the polynomial
M0+(x) (in this case: p = 0, q = 3 whereas a+

0 = 1, a+
1 = 2 and a+

2 = a+
3 =

5/2):

M0±(x)

=
[
1 + 2 (1− x) +

5
2

(1− x)2 +
5
2

(1− x)3

](
1 + x

2

)4

=
(

8− 29
2
x+

20
2
x2 − 5

2
x3

)(
1± x

2

)3

=
1
2
(
16− 29x+ 20x2 − 5x3

)(1 + x

2

)4

Figure 3.4 shows the M0±(x) seventh–order interpolators whereas Figs.
from 3.5 to 3.7 depict the functions M1±(x), M2±(x) and M3±(x).
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Figure 3.4: 7th order Hermite polynomials: M0− (dashed line) and M0+ (con-
tinuous line)
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Figure 3.5: 7th order Hermite polynomials: M1− (dashed line) and M1+ (con-
tinuous line)
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Figure 3.6: 7th order Hermite polynomials: M2− (dashed line) and M2+ (con-
tinuous line)
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Figure 3.7: 7th order Hermite polynomials: M3− (dashed line) and M3+ (con-
tinuous line)
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3.2 Higher–order Hermite bricks

Here, the mathematical formulations for the three–dimensional Hermite brick
elements of order 5 and 7 is addressed.

3.2.1 The Hermite 5th order 8–node element

In order to increase the accuracy of the basic third–order Hermite element,
higher–orders have been explored. A first step is the extension to order 5.

In Subsection 3.1.1, the fifth–order polynomials for a two nodes interpo-
lation have been obtained. Such a technique can be considered as a Hermite
interpolation technique, since it could be seen as an extension of the third–
order classical Hermite interpolation (of class C1), by including a higher nodal
derivative. Specifically, the classical Hermite interpolation needs the function
and the first derivative at end–nodes whereas the fifth-order Hermite inter-
polation needs the function, the first derivative end the second derivative at
end–nodes (class C2).

The quintic polynomials obtained in Subsection 3.1.1 (for x ∈ [−1, 1]),
are:

M0±(x) =
1
16
(
8± 15x∓ 10x3 ± 3x5

)
,

M1±(x) =
1
16
(
∓5− 7x± 6x2 + 10x3 ∓ x4 − 3x5

)
,

M2±(x) =
1
16
(
1± x− 2x2 ∓ 2x3 + x4 ± x5

)
.

If one considers the extension to the three–dimensional case, one has

f(ξα)

=
∑
s

Ps(ξα)fs +
3∑

β=1

P βs (ξα)fs,β +
∑
βγ∈I2

P βγs (ξα)fs,βγ +
∑

βγλ∈I3

P βγλs (ξα)fs,βγλ

+
∑

βγλµ∈I4

P βγλµs (ξα)fs,βγλµ +
∑

βγλµν∈I5

P βγλµνs (ξα)fs,βγλµν + P 112233
s (ξα)fs,112233

 ,

(3.9)

where s := (s1 , s2 , s3), with sk = 1, 2, defines the eight nodes of the brick
element (

∑
s is understood to span over all the eight values of s); moreover,

noting that the mixed derivatives include at most the second derivative with
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respect to each variable, we have that

I2 := {(1, 1); (2, 2); (3, 3); (1, 2); (2, 3); (3, 1)},
I3 := {(1, 2, 3); (1, 1, 2); (1, 1, 3); (2, 2, 1); (2, 2, 3); (3, 3, 1); (3, 3, 2)},
I4 := {(1, 1, 2, 2); (2, 2, 3, 3); (3, 3, 1, 1); (1, 1, 2, 3); (2, 2, 3, 1); (3, 3, 1, 2)},
I5 := {(1, 1, 2, 2, 3); (2, 2, 3, 3, 1); (3, 3, 1, 1, 2)},

(3.10)

whereas the term 112233 is the only pertinent the sixth–order derivative. In
addition, Ps(ξα), P βs (ξα), P βγs (ξα), P βγλs (ξα), P βγλµs (ξα), P βγλµνs (ξα), and
P 112233

s (ξα) are suitable products of the Hermite polynomials in Eq. 3.7; for
instance,

Ps(ξα) =M0s1
(ξ1)M0s2

(ξ2)M0s3
(ξ3),

P 1
s (ξα) =M1s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3),

P 11
s (ξα) =M2s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3),

P 13
s (ξα) =M11

(ξ1)M0s2
(ξ2)M1s3

(ξ3),

P 123
s (ξα) =M1s1

(ξ1)M1s2
(ξ2)M1s3

(ξ3)

P 11223
s (ξα) =M2s1

(ξ1)M2s2
(ξ2)M1s3

(ξ3).

(3.11)

The expressions above provide the desired local interpolation procedure for
any function f(ξα). Similarly to Section 2.2 (Eq. 2.4), whenever the unknown
function is a scalar u = u(ξα) (as in acoustics), these may be combined to
yield a global interpolation as

u(ξα) =
P∑
p=1

zpχp(ξα),

where now the zp’s comprise the nodal values of u, u,α (α = 1, 2, 3), u,βγ
(βγ ∈ I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈ I4), u,βγλµν (βγλµν ∈ I5), as
well as u,112233, whereas χp(ξα) are the global shape functions (considered
the eight nodes, P = 216), defined locally by Eqs. 3.11.

If the unknown is a vector function, as in structural dynamics, we have

u(ξα) =
P∑
p=1

zpχp(ξ
α),

where now the zp’s comprise the nodal values of the Cartesian components
of u, u,α (α = 1, 2, 3), u,βγ (βγ ∈ I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈
I4), u,βγλµν (βγλµν ∈ I5), as well as u,112233, whereas χp(ξα) are vector
global shape functions, obtained from the χp(ξα)’s in Eqs. 3.11, through
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multiplication by the appropriate base vector. The same interpolation is
used for the geometry (isoparametric representation).

3.2.2 The Hermite 7th order 8–node element

A further improvement in accuracy is given by shifting the order of the ele-
ment from five to seven.

In Subsection 3.1.2, the seventh–order Hermite polynomials have been
given. They are related to the function, the first derivative, the second
derivative and the third derivative, evaluated in correspondence of each of
the two nodes; the interpolation is indeed of class C3, and is described (for
x ∈ [−1, 1]) by the shape functions:

M0±(x) =
1
32
(
∓5x7 ± 21x5 ∓ 35x3 ± 35x+ 16

)
,

M1±(x) =
1
32
(
5x7 ± x6 − 21x5 ∓ 5x4 + 35x3 ± 15x2 − 19x∓ 11

)
,

M2±(x) =
1
32
(
∓2x7 − x6 ± 8x5 + 5x4 ∓ 10x3 − 7x2 ± 4x+ 3

)
,

M3±(x) =
1
32

[
1
3
(
x7 ± x6 − 3x5 ∓ 3x4 + 3x3 ± 3x2 − x∓ 1

)]
.

As above, if one considers the extension to the three–dimensional case,
one has

f(ξα)

=
∑
s

Ps(ξα)fs +
3∑

β=1

P βs (ξα)fs,β +
∑
βγ∈I2

P βγs (ξα)fs,βγ +
∑

βγλ∈I3

P βγλs (ξα)fs,βγλ

+
∑

βγλµ∈I4

P βγλµs (ξα)fs,βγλµ +
∑

βγλµν∈I5

P βγλµνs (ξα)fs,βγλµν

+
∑

βγλµνω∈I6

P βγλµνωs (ξα)fs,βγλµνω +
∑

βγλµνωτ∈I7

P βγλµνωτs (ξα)fs,βγλµνωτ

+
∑

βγλµνωτι∈I8

P βγλµνωτιs (ξα)fs,βγλµνωτι + P 111222333
s (ξα)fs,111222333

 ,

(3.12)

where s := (s1 , s2 , s3), with sk = 1, 2, defines the eight nodes of the brick
element (

∑
s is understood to span over all the eight values of s); moreover,

noting that the mixed derivatives include now at most the third derivative
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with respect to each variable, we have that

I2 :=

{(1, 1); (2, 2); (3, 3); (1, 2); (2, 3); (3, 1)},
I3 :=

{(1, 1, 1); (2, 2, 2); (3, 3, 3); (1, 2, 3); (1, 1, 2);

(1, 1, 3); (2, 2, 1); (2, 2, 3); (3, 3, 1); (3, 3, 2)},
I4 :=

{(1, 1, 2, 2); (2, 2, 3, 3); (3, 3, 1, 1); (1, 1, 2, 3); (2, 2, 3, 1); (3, 3, 1, 2);

(1, 3, 3, 3); (2, 3, 3, 3); (1, 2, 2, 2); (3, 2, 2, 2); (2, 1, 1, 1); (3, 1, 1, 1)},
I5 :=

{(1, 1, 3, 3, 3); (2, 2, 3, 3, 3); (1, 1, 2, 2, 2); (3, 3, 2, 2, 2); (2, 2, 1, 1, 1); (3, 3, 1, 1, 1);

(1, 2, 3, 3, 3); (1, 3, 2, 2, 2); (2, 3, 1, 1, 1); (1, 1, 2, 2, 3); (2, 2, 3, 3, 1); (3, 3, 1, 1, 2)},
I6 :=

{(1, 2, 2, 3, 3, 3); (1, 1, 2, 3, 3, 3); (1, 3, 3, 2, 2, 2); (3, 1, 1, 2, 2, 2); (2, 3, 3, 1, 1, 1);

(3, 2, 2, 1, 1, 1); (1, 1, 1, 2, 2, 2); (1, 1, 1, 3, 3, 3); (2, 2, 2, 3, 3, 3); (1, 1, 2, 2, 3, 3)},
I7 :=

{(1, 1, 1, 2, 2, 2, 3); (1, 1, 1, 2, 3, 3, 3); (1, 2, 2, 2, 3, 3, 3);

(1, 1, 2, 2, 3, 3, 3); (1, 1, 2, 2, 2, 3, 3); (1, 1, 1, 2, 2, 3, 3)},
I8 :=

{(1, 1, 1, 2, 2, 2, 3, 3); (1, 1, 1, 2, 2, 3, 3, 3); (1, 1, 2, 2, 2, 3, 3, 3)},
(3.13)

whereas the term 111222333 is the only pertinent the ninth–order derivative.

In addition, Ps(ξα), P βs (ξα), P βγs (ξα), P βγλs (ξα), P βγλµs (ξα), P βγλµνs (ξα),
P βγλµνωs (ξα), P βγλµνωτs (ξα), P βγλµνωτιs (ξα), and P 111222333

s (ξα) are suitable
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products of the Hermite polynomials in Eq. 3.7; for instance,

Ps(ξα) =M0s1
(ξ1)M0s2

(ξ2)M0s3
(ξ3),

P 1
s (ξα) =M1s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3),

P 11
s (ξα) =M2s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3),

P 13
s (ξα) =M11

(ξ1)M0s2
(ξ2)M1s3

(ξ3),

P 111
s (ξα) =M3s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3),

P 1122
s (ξα) =M2s1

(ξ1)M2s2
(ξ2)M0s3

(ξ3),

P 11333
s (ξα) =M2s1

(ξ1)M0s2
(ξ2)M3s3

(ξ3),

P 122333
s (ξα) =M1s1

(ξ1)M2s2
(ξ2)M3s3

(ξ3),

P 1112223
s (ξα) =M3s1

(ξ1)M3s2
(ξ2)M1s3

(ξ3),

P 111222333
s (ξα) =M3s1

(ξ1)M3s2
(ξ2)M3s3

(ξ3),

(3.14)

The expressions above provide the desired local interpolation procedure for
any function f(ξα). Similarly to Section 2.2 (Eq. 2.4), whenever the unknown
function is a scalar u = u(ξα) (as in acoustics), these may be combined to
yield a global interpolation as

u(ξα) =
P∑
p=1

zpχp(ξα),

where now the zp’s comprise the nodal values of u, u,α (α = 1, 2, 3), u,βγ (βγ ∈
I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈ I4), u,βγλµν (βγλµν ∈ I5), u,βγλµνω
(βγλµνω ∈ I6), u,βγλµνωτ (βγλµνωτ ∈ I7), u,βγλµνωτι (βγλµνωτι ∈ I8), as
well as u,111222333, whereas χp(ξα) are the global shape functions (considered
the eight nodes, P = 512), defined locally by Eqs. 3.14.

If the unknown is a vector function u(ξα), as in structural dynamics, we
have

u(ξα) =
P∑
p=1

zpχp(ξ
α),

where now the zp’s comprise the nodal values of the Cartesian components
of u, u,α (α = 1, 2, 3), u,βγ (βγ ∈ I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈ I4),
u,βγλµν (βγλµν ∈ I5), u,βγλµνω (βγλµνω ∈ I6), u,βγλµνωτ (βγλµνωτ ∈ I7),
u,βγλµνωτι (βγλµνωτι ∈ I8), as well as u,111222333, whereas χp(ξα) are vector
global shape functions, obtained from the χp(ξα)’s in Eqs. 3.14, through
multiplication by the appropriate base vector. The same interpolation is
used for the geometry (isoparametric representation).
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3.3 Block–boundary problem

The block–boundary problem discussed in Section 2.3 persists in higher–
order formulations, once having shifted on higher–order derivatives the issue
of incomplete informations.

In fact, for the fifth–order scheme one has the complete set of derivatives
of the function up to order two (in fact, for each node we have all the 3
first derivatives and all the 6 second derivatives) whereas incomplete set of
derivatives from order three to order six (we have only a mixed sixth–order
derivative).

Similarly, for the 7th order 8−node Hermite element one has all the deriva-
tives up to order three (i.e., the 3 first derivatives, the 6 second derivatives
and the 10 third derivatives) whereas incomplete information for the deriva-
tives of order from four to nine (we have only a mixed ninth–order derivative).

Results for a Scheme C formulation introduced in Section 2.4, applied
also to higher orders, are presented in Section 7.5. They show that, as a
rule of thumb, the higher the order of the element (and thus the higher the
quantity of derivatives for which incomplete information is available), the
greater the loss in accuracy highlighted. In addition, the complexity of a
Scheme C implementation increases as the order of the element increases.

This leads to the idea of an element for which the order is reached with
less unknowns then the Hermite element, thus reducing the complexity of the
scheme with advantages for the Scheme C implementation.
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Chapter 4
Hybrid brick elements

The approach presented here, has been introduced in the past years.[7] The
interpolation scheme is obtained by combining the one–dimensional Hermite
interpolation with a three–dimensional extension of the Coons’ Patch tech-
nique, introduced for the first time in ’60s by S. A. Coons .[8]–[10]

4.1 State of the art

The interpolation technique presented here is quite different from related
schemes available in the literature, known as Coons Macroelement (see, in
particular, the paper of Provaditis,[1] which presents a review of past work in
the subject). In order to explain the difference with respect to the work of
Provaditis, a few words regarding the Coons patch and its three–dimensional
extensions appears to be in order. In order to put the present thesis in the
proper perspective, it is important to emphasize that, if the interpolation
method is used as a finite–element basis, the order of accuracy of the result-
ing Coons element cannot reach the value four, no matter how accurate the
description of the boundary line is.1 The same is true for three–dimensional
extensions which utilize only nodes along the boundary edges of a macroele-
ment (as in the work of Provatidis): no matter how accurate the description
of the unknown is along these edges, the order of the scheme is at most equal
to three (this applies in particular, to the work of Provaditis).

In the approach introduced in,[7] the unknown is described by a third–
order Hermite interpolation. It should be emphasize that the edge lines are

1For, the term
(
ξ1 ξ2

)2
would be missing.
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not arbitrary, but are described by a Hermite interpolation. The three–
dimensional element generated following this scheme is referred to as Hybrid

element.

4.2 The Coons Patch

Consider a topologically quadrilateral surface; given the four edge lines, the
Coons Patch is obtained as: (1) the sum of the two linear interpolations
between opposite boundary lines, minus (2) a bilinear interpolation through
the four corner points (see Eq. 4.2). Let x0(ξ, η), with ξ, η ∈ [−1; 1], describe
a generic topologically quadrilateral surface patch. Let

x = x1,3(η) = x0(±1, η) and x = x2,4(ξ) = x0(ξ,±1)

with ξ, η ∈ [−1; 1], be the equations that describe the four edges of the patch,
and let

x
++

= x0(+1,+1) = x1(+1) = x2(+1)

x
+−

= x0(+1,−1) = x4(+1) = x1(−1)

x
−+

= x0(−1,+1) = x2(−1) = x3(+1)

x
−−

= x0(−1,−1) = x3(−1) = x4(−1)

(4.1)

denote the four corner points.
As indicated above, we assume the functions x1(η), x2(ξ), x3(η), x4(ξ)

to be prescribed. One wants to approximate x0(ξ, η) with a surface x
C
(ξ, η)

that has these lines as edges. The surface x
C
(ξ, η) thereby obtained is known

as a Coons’ Patch.[8]–[10] As mentioned above, the Coons’ Patch is obtained
as a sum of the two linear interpolations between opposite boundary lines,
minus a bilinear interpolation through the four corner points. This yields,
being L±(x) the linear interpolation functions (that should be seen also as
the low–order interpolation within the scheme) such that L±(x) := (1±x)/2

x
C
(ξ, η)

= L+(ξ) x1(η) + L+(η) x2(ξ) + L−(ξ) x3(η) + L−(η) x4(ξ)

− L+(ξ)L+(η) x
++
− L+(ξ)L−(η) x

+−
− L−(ξ)L+(η) x

−+
− L−(ξ)L−(η) x

−−

(4.2)

The four edges of this surface indeed coincide with the four generating lines.
For instance, we have, using Eq. 4.1,

x
C
(1, η)

= x1(η) + L+(η) x2(1) + L−(η) x4(1)− L+(η) x
++
− L−(η) x

+−
= x1(η),
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since x2(1) = x
++

and x4(1) = x
+−

(see Eq. 4.1). Similarly, x
C
(ξ, 1) = x2(ξ),

x
C
(−1, η) = x3(η), and x

C
(ξ,−1) = x4(ξ).

4.3 The three–dimensional extension

Next, consider the extension to the three–dimensional case, as suggested
in.[7] Specifically, we want to obtain a block starting from its six prescribed
generating faces. In analogy with what is done to obtain Eq. 4.2, the func-
tion x(ξ, η, ζ), which describes the block, is obtained as: (1) the sum of
the three linear interpolations between opposite faces, minus (2) the sum of
three bilinear interpolations through four “parallel” edges, plus (3) a trilinear
interpolation through the eight vertices. This yields

x(ξ, η, ζ)

= L+(ξ) x̌(+1, η, ζ) + L+(η) x̌(ξ,+1, ζ) + L+(ζ) x̌(ξ, η,+1)

+ L−(ξ) x̌(−1, η, ζ) + L−(η) x̌(ξ,−1, ζ) + L−(ζ) x̌(ξ, η,−1)

− L+(ξ) L+(η) x̌(+1,+1, ζ)− L+(ξ) L+(ζ) x̌(+1, η,+1)− L+(η) L+(ζ) x̌(ξ,+1,+1)

− L+(ξ) L−(η) x̌(+1,−1, ζ)− L+(ξ) L−(ζ) x̌(+1, η,−1)− L+(η) L−(ζ) x̌(ξ,+1,−1)

− L−(ξ) L+(η) x̌(−1,+1, ζ)− L−(ξ) L+(ζ) x̌(−1, η,+1)− L−(η) L+(ζ) x̌(ξ,−1,+1)

− L−(ξ) L−(η) x̌(−1,−1, ζ)− L−(ξ) L−(ζ) x̌(−1, η,−1)− L−(η) L−(ζ) x̌(ξ,−1,−1)

+ L+(ξ) L+(η) L+(ζ) x̌(+1,+1,+1) + L+(ξ) L+(η) L−(ζ) x̌(+1,+1,−1)

+ L+(ξ) L−(η) L+(ζ) x̌(+1,−1,+1) + L+(ξ) L−(η) L−(ζ) x̌(+1,−1,−1)

+ L−(ξ) L+(η) L+(ζ) x̌(−1,+1,+1) + L−(ξ) L+(η) L−(ζ) x̌(−1,+1,−1)

+ L−(ξ) L−(η) L+(ζ) x̌(−1,−1,+1) + L−(ξ) L−(η) L−(ζ) x̌(−1,−1,−1)
(4.3)

where x̌(ξ, η, ζ) denotes the function prescribed at the six faces (for instance,
x̌(1, η, ζ) denotes the face at ξ = 1, x̌(1, 1, ζ) the edge for ξ = η = 1, and
x̌(1, 1, 1) the vertex for ξ = η = ζ = 1). The block thereby generated does
indeed have the prescribed faces; for instance,

x(ξ, η, 1)

= L+(ξ) x̌(1, η, 1) + L+(η) x̌(ξ, 1, 1) + L−(ξ) x̌(−1, η, 1) + L−(η) x̌(ξ,−1, 1)

− L+(ξ) x̌(1, η, 1)− L+(η) x̌(ξ, 1, 1)− L−(ξ) x̌(−1, η, 1)− L−(η) x̌(ξ,−1, 1)

− L+(ξ) L+(η) x̌(1, 1, 1) − L+(ξ) L−(η) x̌(1,−1, 1)

− L−(ξ) L+(η) x̌(−1, 1, 1)− L−(ξ) L−(η) x̌(−1,−1, 1)

+ L+(ξ) L+(η) x̌(1, 1, 1) + L+(ξ) L−(η) x̌(1,−1, 1)

+ L−(ξ) L+(η) x̌(−1, 1, 1) + L−(ξ) L−(η) x̌(−1,−1, 1) + x̌(ξ, η, 1)
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or,

x(ξ, η, 1) = x̌(ξ, η, 1).

It should be emphasized that combining the above procedure with that
in Section 4.2, that is, assuming that the six generating faces of the block are
provided as Coons patches, allows one to generate a block simply from the
equations of its twelve edge lines.

4.4 The Hybrid 3rd order 8−node element

Next, consider what happens to the three–dimensional extension of the Coons
patch technique, when the twelve generating edge lines are obtained by using
the Hermite interpolation technique.

In the simplest version of the Hybrid element, the third–order Hermite
interpolation is used to define each edge. Hence, it is sufficient to provide the
location, x, and the covariant base vectors, ∂x/∂ξ, at each of the two end
points of each edge. Extending this to three dimensions, and still using the
Hermite interpolation to define the twelve edge lines, one obtains an interpo-
lation technique that requires only the location and the three covariant base
vectors at the eight corners of each block (as well as each brick), for a total
of 32 parameters (instead of the 64 required by the Hermite interpolation).
The same scheme is used for the unknowns (isoparametric scheme). The re-
sult is that, with respect to the Hermite scheme, the number of unknowns is
reduced by a factor two (and the computational time by an order of magni-
tude), without any reduction on the accuracy of the scheme, which remains
of order three. It is worth noting that this element, like the Hermite element,
provides a solution that is continuous with its gradient (class C1).

However, the most important improvement introduced by this scheme is
the fact that now the block–boundary node problem discussed at the end of
Subsection 2.3 can be eliminated: only the values of the unknown function
and of its gradient are required at the node of each brick (if a brick has block–
boundary nodes, the problem is resolved using the Cartesian components of
the gradient).

Returning to the Coons patch interpolation, Eq. 4.2, we assume that the
four edge lines of the patch be described by a Hermite interpolation of the
type given in Eq. 2.2, that is,

x1,3(η) = x(±1, η) = x±+ M+(η) + x±−M−(η) + xη±+
N+(η) + xη±− N−(η)

x2,4(ξ) = x(ξ,±1) = x+±M+(ξ) + x−±M−(ξ) + xξ
+± N+(ξ) + xξ−± N−(ξ)

(4.4)
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where x±± denote the four corner points of the patch, xξ
+± := ∂x/∂ξ|x+±

and xη
+± := ∂x/∂η|x+±

denote the corresponding base vectors, whereas
M±(x), N±(x) denote the one–dimensional Hermite shape functions (see again
Eq. 2.2).

Combining Eqs. 4.2 and 4.4 yields

x(ξ, η)

= x++ [L+(ξ)M+(η) +M+(ξ)L+(η)− L+(ξ)L+(η)]

+ x+− [L+(ξ)M−(η) +M+(ξ)L−(η)− L+(ξ)L−(η)]

+ x−+ [L−(ξ)M+(η) +M−(ξ)L+(η)− L−(ξ)L+(η)]

+ x−− [L−(ξ)M−(η) +M−(ξ)L−(η)− L−(ξ)L−(η)]

+ xξ
++
N+(ξ)L+(η) + xξ

+−N+(ξ)L−(η) + xξ−+
N−(ξ)L+(η) + xξ−−N−(ξ)L−(η)

+ xη
++
L+(ξ)N+(η) + xη

+−L+(ξ)N−(η) + xη−+
L−(ξ)N+(η) + xη−−L−(ξ)N−(η),

(4.5)

Introducing the function

Ps1s2 (ξ, η) = Ls1 (ξ)Ms2
(η) +Ms1

(ξ)Ls2 (η)− Ls1 (ξ)Ls2 (η) (4.6)

Eq. 4.5 may be rewritten as

x(ξ, η) =
2∑

s1 ,s2=1

xs1s2Ps1s2 (ξ, η)

+
2∑

s1 ,s2=1

xξs1s2Ns1
(ξ)Ls2 (η) +

2∑
s1 ,s2=1

xηs1s2Ls1 (ξ)Ns2
(η)

(4.7)

Next, let us turn to the three–dimensional extension (i.e., the expression
for a hexahedral block). Combining Eqs. 4.3 and 4.7, one obtains

xblock(ξ, η, ζ) = xfaces(ξ, η, ζ)− xedges(ξ, η, ζ) + xvertices(ξ, η, ζ),

where, setting s := (s1 , s2 , s3), with sk = 1, 2, xs,1 := ∂x/∂ξ|xs , xs,2 :=
∂x/∂η|xs , and xs,3 := ∂x/∂ζ|xs , the contribution from the three linear inter-
polations between the opposite faces is given by (

∑
s is understood to span
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over the eight values of s)

xfaces(ξ, η, ζ)

=
∑
s

xs Ps1s2 (ξ, η)Ls3 (ζ) +
∑
s

xs Ps2s3 (η, ζ)Ls1 (ξ) +
∑
s

xs Ps3s1 (ζ, ξ)Ls2 (η)

+
∑
s

xs,1Ns1
(ξ)Ls2 (η)Ls3 (ζ) +

∑
s

xs,2 Ls1 (ξ)Ns2
(η)Ls3 (ζ)

+
∑
s

xs,2 Ls1 (ξ)Ns2
(η)Ls3 (ζ) +

∑
s

xs,3 Ls1 (ξ)Ls2 (η)Ns3
(ζ)

+
∑
s

xs,3 Ls1 (ξ)Ls2 (η)Ns3
(ζ) +

∑
s

xs,1Ns1
(ξ)Ls2 (η)Ls3 (ζ)

whereas the contribution from three bilinear interpolations through “parallel”
edges is given by

xedges(ξ, η, ζ) =
∑
s

[
xsMs1

(ξ) + xs,1Ns1
(ξ)
]
Ls2 (η)Ls3 (ζ)

+
∑
s

[
xsMs2

(η) + xs,2Ns2
(η)
]
Ls1 (ξ)Ls3 (ζ)

+
∑
s

[
xsMs3

(ζ) + xs,3Ns3
(ζ)
]
Ls1 (ξ)Ls2 (η)

and finally the trilinear interpolation through the eight vertices is given by

xvertices(ξ, η, ζ) =
∑
s

xs Ls1 (ξ)Ls2 (η)Ls3 (ζ)

Combining these expressions, one obtains

xblock(ξ, η, ζ) =
∑
s

xsRs(ξ, η, ζ) +
∑
s

3∑
α=1

xs,α S
α
s (ξ, η, ζ), (4.8)

where

Rs(ξ, η, ζ)

= Ps1s2 (ξ, η)Ls3 (ζ) + Ps2s3 (η, ζ)Ls1 (ξ) + Ps3s1 (ζ, ξ)Ls2 (η)

−Ms1
(ξ)Ls2 (η)Ls3 (ζ)− Ls1 (ξ)Ms2

(η)Ls3 (ζ)− Ls1 (ξ)Ls2 (η)Ms3
(ζ)

+ Ls1 (ξ)Ls3 (η)Ls3 (ζ)

hence, considering Eq. 4.6

Rs(ξ, η, ζ)

= Ms1
(ξ)Ls2 (η)Ls3 (ζ) + Ls1 (ξ)Ms2

(η)Ls3 (ζ)

+ Ls1 (ξ)Ls2 (η)Ms3
(ζ)− 2Ls1 (ξ)Ls2 (η)Ls3 (ζ)

(4.9)
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whereas

S1
s (ξ, η, ζ) = Ns1

(ξ)Ls2 (η)Ls3 (ζ)

S2
s (ξ, η, ζ) = Ls1 (ξ)Ns2

(η)Ls3 (ζ)

S3
s (ξ, η, ζ) = Ls1 (ξ)Ls2 (η)Ns3

(ζ)

(4.10)

The expressions above provide the desired local interpolation procedure for
the geometry x = x(ξ, η, ζ). The same interpolation can be used to inter-
polate any function f = f(ξα) (similarly to Chapter 2, ξα with α = 1, 2, 3
refers to the three coordinates ξ, η, ζ) in the volume defined by the block.
One obtains

f(ξα) =
∑
s

fsRs(ξα) +
∑
s

3∑
α=1

fs,α S
α
s (ξα), (4.11)

Accordingly to Section 2.2 (Eq. 2.4), whenever the unknown function is a
scalar u = u(ξα) (as in acoustics), these may be combined to yield a global
interpolation as

u(ξα) =
P∑
p=1

zpχp(ξα), (4.12)

where now the zp’s comprise the nodal values of u and u,α (α = 1, 2, 3)
(considered the eight nodes, P = 32), whereas χp(ξα) are the global shape
functions, defined locally by Eqs. 4.9, 4.10.

If the unknown is a vector function u, as in structural dynamics, we have

u(ξα) =
P∑
p=1

zpχp(ξ
α), (4.13)

where now the zp’s comprise the nodal values of the Cartesian components
of u and u,α (α = 1, 2, 3) whereas χp(ξα) are vector global shape functions,
obtained from the χp(ξα)’s in Eqs. 4.9, 4.10 through multiplication by the
appropriate base vector. The same interpolation is used for the geometry
(isoparametric representation).

4.5 Comments

In this Chapter a new element, whose geometry and unknown function are
completely defined by only their nodal values and their nodal values of the
three first–order partial derivatives, has been introduced and referred to as
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the Hybrid 3rd order 8−node brick. As in the case of the Hermite 3rd order
8–nodes element, the local interpolation, Eq. 4.8, may be recast as a global
interpolation, as in Eq. 2.4 and the same expression may be used to interpo-
late, still within each brick element, any function. Thus, Eq. 4.8 provides an
isoparametric finite–element interpolation function.

An important advantage of the 3rd order 8−nodes Hybrid element over
the Hermite one, is that it is exempt from the block–boundary nodes problem
that arise in the Hermite element for non hexhedral geometries (see Section
2.3).

In addition, in the case of the Hybrid third–order 8–nodes element, the
32 local shape functions are linear combinations of monomials of the type
ξpηqζr (with p = 0, 1, 2, 3, q, r = 0, 1; or q = 0, 1, 2, 3, p, r = 0, 1; or r =
0, 1, 2, 3, p, q = 0, 1), also numbering 32 in total. Both sets of functions are
linearly independent and thus they span the same subspace. Hence, either
one may be used as a basis for this subspace.

Finally, note that all the monomials with p + q + r ≤ 3 are included in
this subspace. Hence, the scheme is of order three and an h3−convergence is
expected, as it is for the Hermite scheme, even though half nodal unknowns
are required (recall that, for the Hermite brick, 64 unknowns per brick are
needed).



Chapter 5
Higher–order Hybrid element

In this chapter the problem of how to improve the accuracy of the Hybrid
element is discussed. In particular, an extension to order 7 of the Hybrid
element presented in Chapter 4 is proposed. This is based upon Hermite
interpolations, that will be hereafter referred to as WEP interpolations, to
indicate an interpolation method With End–Points (only).

On the contrary, WIP interpolation will refer to an interpolation method
With Intermediate–Points.

5.1 Higher–order WEP Hybrid elements

In order to describe the extension to higher–orders of the WEP Hybrid scheme
(that is a brick consisting of only 8 nodes), it is convenient to rephrase the
Hybrid element formulation of Section 4.4 as follows: the scheme consists of
a combination of a high–accuracy and a low–accuracy interpolation scheme.
For instance, for the two–dimensional case (specifically, for a quadrilateral
surface in space) the scheme consists of (1) a low–accuracy (linear) interpo-
lation of two opposite lines which are described by a high–accuracy (third–
order) interpolation, plus (2) a similar process for two other opposite lines,
minus (3) a double low–accuracy (bilinear) interpolation of the four corners.

In order to increase the accuracy, one is forced to increase the order of
the low–accuracy interpolation. In general, the order of the accurate interpo-
lation requires twice as many parameters as the low order one. For instance,
if the accurate interpolation is of the eleventh order, the other would be of
the fifth order. It is easy to see that, except for the third order, the issue of
the patch–boundary nodes represents itself.
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In this thesis two different Hybrid elements of order higher than three
have been addressed. Specifically, one of them is related to a Hermite inter-
polation scheme (and hence a WEP interpolation for the definition given at
the beginning of the Chapter); it is of order seven and has been addressed
in Subsection 5.1.1. This element will be referred to as the Hybrid 7th order
8−nodes.

A quite different approach stems from an internal node formulation (that
is a WIP formulation), is of order five and has been addressed in Subsection
5.4.1. This formulation, despite a lower order of the element with respect to
the former one, presents the key advantage of eliminating the block–boundary
problem also for higher–order elements. This element will be referred to as
the Hybrid 5th order 27−nodes.

5.1.1 The Hybrid 7th order 8−node element

In this subsection, a WEP formulation is adopted. Specifically, the 3rd–order
Hermite interpolation is used for the low–accuracy interpolation whereas the
7th order WEP interpolation is used for the high–accuracy interpolation.
Specifically, a seventh–order hybrid scheme extension is considered: this may
be obtained from Eq. 4.3, by replacing the low–accuracy (linear) interpola-
tion with a third–order Hermite interpolation, and the high–accuracy (third–
order) interpolation with a seventh–order WEP interpolation.1

For each of the eight nodes, this requires the use of the values of the func-
tion and its first, second and third derivatives, along with the first derivative
of each one of these quantities in the other two directions. To be precise,
the unknowns at each node are: (i) the function, u, (ii) the three first–order
derivatives (u,1, u,2, u,3), (iii) the six second–order derivatives (u,11, u,22,
u,33; u,12, u,23, u,31), (iv) ten third–order derivatives (u,111, u,222, u,333; u,112,
u,113, u,221, u,223, u,331, u,332; u,123), (v) nine fourth–order derivatives (u,1123,
u,2213, u,3312; u,1112, u,1113, u,2221, u,2223, u,3331, u,3332), and (vi) three fifth–
order derivatives (u,11123, u,22213, u,33312). Thus, the total of unknowns is 32
for each node.

To begin with, both the third–order Hermite shape functions of Eq. 2.2
and the seventh–order Hermite shape functions of Eq. 3.1.2 that, for con-
venience, are repeated hereafter. To avoid misleadings in the meaning of
symbols, the third–order polynomials are now referred to as Mk(x) (for

1 Note that, within the Hybrid elements family, the overall accuracy cannot reach the
order eight: as it is easy to verify, the term

(
ξ1 ξ2

)4
would always be missing.
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k = 0, 1) whereas the seventh–order ones are now referred to as Nk(x) (for
k = 0, 1, 2, 3). Thus, one has for x ∈ [−1, 1]:

M0±(x) =
1
4

(2± 3x∓ x3),

M1±(x) =
1
4

(∓1− x± x2 + x3)

and

N0±(x) =
1
32
(
∓5x7 ± 21x5 ∓ 35x3 ± 35x+ 16

)
,

N1±(x) =
1
32
(
5x7 ± x6 − 21x5 ∓ 5x4 + 35x3 ± 15x2 − 19x∓ 11

)
,

N2±(x) =
1
32
(
∓2x7 − x6 ± 8x5 + 5x4 ∓ 10x3 − 7x2 ± 4x+ 3

)
,

N3±(x) =
1
32

[
1
3
(
x7 ± x6 − 3x5 ∓ 3x4 + 3x3 ± 3x2 − x∓ 1

)]
.

Equation 4.11 of Section 4.4 may be rewritten for a seventh–order scheme
and for a generic function f = f(ξα) to give

f(ξα) =∑
s

Rs(ξα) fs +
3∑

β=1

Rβs (ξα) fs,β +
∑

βγ∈=I2

Rβγs (ξα) fs,βγ +R123
s fs,123(ξα)


+
∑
s

 3∑
β=1

Sββs (ξα) fs,ββ +
∑

βγλ∈I3

Sβγλs (ξα)fs,βγλ

+
∑

βγλµ∈I4

Sβγλµs (ξα)fs,βγλµ +
∑

βγλµν∈I5

Sβγλµνs (ξα)fs,βγλµν


(5.1)

where s := (s1 , s2 , s3), with sk = 1, 2, defines the eight nodes of the brick
element (

∑
s is understood to span over all the eight values of s); moreover,

noting that the mixed derivatives include now at most the third derivative in
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a direction when a first derivative is present upon the others, one obtains

I2 :=

{(1, 2); (1, 3); (2, 3)},
I3 :=

{(1, 1, 1); (2, 2, 2); (3, 3, 3);

(1, 1, 2); (1, 2, 2); (1, 1, 3); (3, 3, 1); (2, 2, 3); (3, 3, 2)},
I4 :=

{(1, 1, 2, 3); (2, 2, 3, 1); (3, 3, 1, 2);

(1, 3, 3, 3); (2, 3, 3, 3); (1, 2, 2, 2); (3, 2, 2, 2); (2, 1, 1, 1); (3, 1, 1, 1)},
I5 :=

{(1, 2, 3, 3, 3); (1, 3, 2, 2, 2); (2, 3, 1, 1, 1)},

(5.2)

In addition, Rs(ξα), Rβs (ξα), Rβγs (ξα), R123
s (ξα) and Sββs (ξα), Sβγλs (ξα), Sβγλµs (ξα),

Sβγλµνs (ξα), are suitable products of the Hermite polynomials of order seven
and three. Specifically, we have

Rs(ξα)

= N0s1
(ξ1)M0s2

(ξ2)M0s3
(ξ3) +M0s1

(ξ1)N0s2
(ξ2)M0s3

(ξ3)

+M0s1
(ξ1)M0s2

(ξ2)N0s3
(ξ3)− 2N0s1

(ξ1)N0s2
(ξ2)N0s3

(ξ3)

(5.3)

R1
s(ξα)

= N1s1
(ξ1)M0s2

(ξ2)M0s3
(ξ3) +M1s1

(ξ1)N0s2
(ξ2)M0s3

(ξ3)

+M1s1
(ξ1)M0s2

(ξ2)N0s3
(ξ3)− 2N1s1

(ξ1)N0s2
(ξ2)N0s3

(ξ3)

(5.4)

R12
s (ξα)

= N1s1
(ξ1)M1s2

(ξ2)M0s3
(ξ3) +M1s1

(ξ1)N1s2
(ξ2)M0s3

(ξ3)

+M1s1
(ξ1)M1s2

(ξ2)N0s3
(ξ3)− 2N1s1

(ξ1)N1s2
(ξ2)N0s3

(ξ3)

(5.5)

R123
s (ξα)

= N1s1
(ξ1)M1s2

(ξ2)M1s3
(ξ3) +M1s1

(ξ1)N1s2
(ξ2)M1s3

(ξ3)
(5.6)

whereas

S11
s (ξα) = N2s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3)

S111
s (ξα) = N3s1

(ξ1)M0s2
(ξ2)M0s3

(ξ3)

S1123
s (ξα) = N2s1

(ξ1)M1s2
(ξ2)M1s3

(ξ3)

S11123
s (ξα) = N3s1

(ξ1)M1s2
(ξ2)M1s3

(ξ3)

(5.7)
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The expressions above provide the desired local interpolation procedure for
any function f(ξα). Similarly to Section 2.2 (Eq. 2.4), whenever the unknown
function is a scalar u = u(ξα) (as in acoustics), these may be combined to
yield a global interpolation as

u(ξα) =
P∑
p=1

zpχp(ξα),

where now the zp’s comprise the nodal values of u, u,α (α = 1, 2, 3), u,βγ (βγ ∈
I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈ I4), u,βγλµν (βγλµν ∈ I5), u,βγλµνω
(βγλµνω ∈ I6), u,βγλµνωτ (βγλµνωτ ∈ I7), u,βγλµνωτι (βγλµνωτι ∈ I8), as
well as u,111222333, whereas χp(ξα) are the global shape functions (considered
the eight nodes, P = 512), defined locally by Eqs. 3.14.

If the unknown is a vector function, as in structural dynamics, we have

u(ξα) =
P∑
p=1

zpχp(ξ
α),

where now the zp’s comprise the nodal values of the Cartesian components
of u, u,α (α = 1, 2, 3), u,βγ (βγ ∈ I2), u,βγλ (βγλ ∈ I3), u,βγλµ (βγλµ ∈ I4),
u,βγλµν (βγλµν ∈ I5), u,βγλµνω (βγλµνω ∈ I6), u,βγλµνωτ (βγλµνωτ ∈ I7),
u,βγλµνωτι (βγλµνωτι ∈ I8), as well as u,111222333, whereas χp(ξα) are vector
global shape functions, obtained from the χp(ξα)’s in Eqs. 3.14, through
multiplication by the appropriate base vector. The same interpolation is
used for the geometry (isoparametric representation).

5.2 Block–boundary problem

Note that, the block–boundary problem discussed in Section 2.3 appears
again. In fact, for the seventh–order scheme, we have all the derivative of
order 1, 2 and 3; however, we do not have all the derivatives of order 4 and
5.

This comment leads to the idea of creating a Hybrid element of order
higher then three with the distinguishing feature of being not affected by the
block–boundary problem. This is obtained using a WIP formulation.

The formulation developed is addressed in Subsection 5.4.1.

5.3 One–dimensional WIP interpolation

In this section a high–order internal–node scheme is addressed. This scheme
will be shortly referred to as a WIP scheme to indicate an interpolation
method With Intermediate–Points. The main intent here is to introduce a
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new hybrid scheme, in which for the Hermitian interpolation scheme, instead
of prescribing the function and its derivatives at the end points, one prescribes
the values of the function and of its first derivative at n points within the
interval of interest, two of which being the end points.

Specifically, let Mk(x) and Nk(x), with k = 1, . . . , n (the total number of
nodes is here assumed to be n), the polynomials related to the function and
the derivative respectively of the k − th node, we have

u(x) =
n∑
k=1

ukMk(x) +
n∑
k=1

u′kNk(x)

where the polynomials Mk(x) and Nk(x) satisfy the conditions

Mk(xj) = δkj ; M ′k(xj) = 0; Nk(xj) = 0; N ′k(xj) = δkj . (5.8)

For any value of n, these polynomials are given by

Mk(x) =
x− a
xk − a

n∏
k 6=j=1

(x− xj)2

(xk − xj)2

Nk(x) = (x− xk)
n∏

k 6=j=1

(x− xj)2

(xk − xj)2

(5.9)

with a obtained from

1
xk − a

+ 2
n∑

k 6=j=1

1
xk − xj

= 0 (5.10)

Indeed, it is apparent that the polynomials Mk(x) and Nk(x) vanish with
their derivatives at x = xj , with k 6= j. In addition, for k = j, we have
Nk(xk) = 0, as well as M ′k(xk) = 0 since, using Eq. 5.10, the logarithmic
derivative of Mk(x) at x = xk is given by

M ′k(xk)
Mk(xk)

=

[
1

x− a
+ 2

n∑
k 6=j=1

1
x− xj

]
x=xk

= 0.

Finally, it is apparent that Mk(xk) = 1, whereas

N ′k(xk) =

[
n∏

k 6=j=1

(x− xj)2

(xk − xj)2
+
(
x− xk

) d
dx

n∏
k 6=j=1

(x− xj)2

(xk − xj)2

]
x=xk

= 1

Thus, all the interpolation conditions in Eq. 5.8 are satisfied.
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5.3.1 5th order 3−node interpolation

As an application of Eqs. 5.9 and 5.10, the fifth–order shape functions for a
three point interpolation are given here.

In Subsection 3.1.1 the quintic polynomials for an interpolation that uses
only the two end–nodes has been given. In this Subsection the quintic poly-
nomials are those for a three nodes interpolation, obtained with the nodal
values of the function and the first derivative at x = −1, 0, 1,

f(x) = f (0)
− M−(x) + f (0)

+
M0(x) + f (0)

+
M+(x)

+f (1)
− N−(x) + f (1)

+
N0(x) + f (1)

+
N+(x)

(for x ∈ [−1, 1]), where f (k)
± (k = 0, 1, 2, 3) denote the values, at x = ±1,

of respectively f(x), df/dx, d2f/dx2 and d3f/dx3, whereas the Hermite in-
terpolation polynomials related to the external points (i.e., for x = −1, 1),
M±(x) and N±(x), and those related to the interior point (i.e., for x = 0)
M0(x) and N0(x), are given by

M±(x) =
1
4
(
∓3x5 − 2x4 ± 5x3 + 4x2

)
,

M0(x) = x4 − 2x2 + 1,

N±(x) =
1
4
(
x5 ± x4 − x3 ∓ x2

)
,

N0(x) = x5 − 2x3 + x.

(5.11)

with x ∈ [−1, 1]. For instance M0(x) is (uniquely) determined by the six
conditions M0(0) = 1, M0(±1) = 0 and dM0/dx = 0 for x = −1, 0, 1.

Figure 5.1 shows the three M±(x) and M0(x) fifth–order interpolators,
whereas Fig. 5.2 depicts the three functions N±(x) and N0(x).

5.4 Higher–order WIP Hybrid elements

A second approach for the Hybrid scheme stems from an internal node for-
mulation (that is a WIP formulation). The case studied here is of order five
and has been addressed in Subsection 5.4.1. This formulation, despite a lower
order of the element with respect to the former one, presents the advantage
of eliminating the block–boundary problem. This element will be referred to
as the Hybrid 5–th order 27–nodes.
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Figure 5.1: 5th order WIP polynomials: M− (dashed line), M+ (continuous
line) and M0 (points)
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Figure 5.2: 5th order WIP polynomials: N− (dashed line), N+ (continuous
line) and N0 (points)
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5.4.1 The Hybrid 5th order 27–node element

This subsection is dedicated to the fifth–order Hybrid element, obtained us-
ing a WIP formulation. To formulate such a scheme, one starts with the
three–dimensional Coons interpolation, Eq. 4.11, and replaces the high–
accuracy (third order) interpolation functions, with the corresponding poly-
nomial given in Eq. 5.9, whereas the low–accuracy (linear) interpolation
functions are replaced by Lagrangian interpolation polynomials

Lk(x) =
n∑

k 6=j=1

x− xj
xk − xj

(5.12)

which satisfy the condition Lk(xj) = δkj (again, n is the number of nodes for
each dimension). It should be noted that the scheme requires points that are
internal not only to the edges but also to the element itself.

Specifically, a number of nodes n equal to 3 is considered. Thus, one
has a brick of 27 nodes. Within the element, a second–order interpolation
is used for the low–accuracy interpolation (instead of a linear one) whereas
a fifth–order interpolation has been used for the high–accuracy interpolation
(instead of a third–order). Equation 4.11 is hereafter repeated:

f(ξα) =
∑
s

fsRs(ξα) +
∑
s

3∑
α=1

fs,α S
α
s (ξα),

Again, one has

Rs(ξ, η, ζ)

= Ms1
(ξ)Ls2 (η)Ls3 (ζ) + Ls1 (ξ)Ms2

(η)Ls3 (ζ)

+ Ls1 (ξ)Ls2 (η)Ms3
(ζ)− 2Ls1 (ξ)Ls2 (η)Ls3 (ζ)

and

S1
s (ξ, η, ζ) = Ns1

(ξ)Ls2 (η)Ls3 (ζ)

S2
s (ξ, η, ζ) = Ls1 (ξ)Ns2

(η)Ls3 (ζ)

S3
s (ξ, η, ζ) = Ls1 (ξ)Ls2 (η)Ns3

(ζ)

as in the basic third–order Hybrid scheme. The first difference is in the
definition of s: now, one has s := (s1 , s2 , s3), with sk = 1, 2, 3 (hence, s
is understood to span over 27 nodes). The second difference regards the
interpolation polynomials: now the high–accuracy interpolators are given by
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Eqs. 5.3.1:

M±(x) =
1
4
(
∓3x5 − 2x4 ± 5x3 + x2

)
and M0(x) = x4 − 2x2 + 1,

N±(x) =
1
4
(
x5 ± x4 − x3 ∓ x2

)
and N0(x) = x5 − 2x3 + x.

whereas the low-accuracy interpolation, no longer linear, is given by the
quadratic polynomials

L±(x) =
1
2
x (x± 1) and L0(x) = −x2 + 1.

where “±” refers to the nodes placed in x = ±1 and “0” is related to the node
at x = 0.

5.5 Comments

It is interesting to make a comparison with the Hybrid elements obtained
using a WEP formulation and the Hybrid elements obtained through a WIP
scheme.

Firstly, note that, for the third–order case, the internal–point and the
end–point hybrid schemes coincide.

You may easily convince yourself that a fifth–order formulation is possible
for the WIP element, but not for the WEP element.

Thus, the lowest order for which a comparison is meaningful is the seventh–
order scheme. In this case in fact, the WEP element requires 32 unknowns
for each of the 8 nodes, for a total of 256 unknowns. In the seventh–order
WIP brick, for each finite element we have 43 nodes, with 4 unknowns for
each node, also for a total of 256 unknowns.2 Thus, for the seventh–order
formulation, the number of unknowns in each element are the same for the
two types of elements.

2 In general, for the n−th order scheme, we have
(
n+1

2

)3
nodes, with 4 unknowns per

node, for a total of 1
2
(n+ 1)3 unknowns.
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Chapter 6
Mass and Stiffness matrices

The objective of this Chapter is to define the mass and stiffness matrices for
the two problems under consideration in this thesis: evaluation of the natural
modes of vibration of the air inside a cavity (interior acoustics, see Section
6.1) and those of an elastic structure (structural dynamics, see Section 6.2).

Variational formulations will be used. As for any variational formulation,
the boundary conditions in general may be divided into two types (see for
instance, the works of Brenner and Scott[11] and Braess[12]): essential or ge-
ometrical boundary conditions (e.g., Dirichlet boundary conditions for the
Laplacian), which must be satisfied by the shape functions used for the dis-
cretization (for instance, Eqs. 2.3 for the Hermite 3rd order 8−node brick of
Chapter 2, or Eqs. 4.9 and 4.10 for the Hybrid 3rd order 8−node of Chapter
4), and natural boundary conditions (e.g., Neumann boundary conditions for
the Laplacian), which require no action, in the sense that they are automat-
ically satisfied.

6.1 Mass and stiffness matrices in acoustics

The first problem under consideration is the evaluation of the natural modes
of vibration for the air inside a given cavity, that is governed by the wave
equation for the velocity potential ϕ, such that v = gradϕ. The problem
has been formulated in terms of the velocity potential, as this simplifies the
boundary condition of a rigid wall, that is, zero normal component of the
velocity, i.e., a zero normal derivative of ϕ: ∂ϕ/∂n = 0; the pressure equals
iωϕ/ρ, ρ being the density of the air. This problem may be stated in varia-
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tional form as

1
2
ω2

c2
s

∫
V
ϕ2dV − 1

2

∫
V
‖gradϕ‖2dV = stationaryϕ(ξα), (6.1)

where cs is the speed of sound.

The only type of boundary conditions considered in this work for the
acoustics problem are those of a rigid boundary wall, which as mentioned
above requires that ∂ϕ/∂n = 0. This is a natural boundary condition and
therefore no action is required.

Substituting the approximation for ϕ of Eq. 2.4, Eq. 6.1 yields

Kz =
ω2

c2
s

Mz (6.2)

where z = {zn} is the vector of the unknowns, whereas the mass and stiffness
matrices are respectively given by M = [mmn] and K = [kmn], with

mmn =
∫
V
χm(ξα)χm(ξα)dV

kmn =
∫
V

gradχm(ξα) · gradχn(ξα)dV,
(6.3)

6.1.1 One–dimensional eigenvalue problem

The above results can be used to implement the one–dimensional eigenvalue
problem, (i.e., that related, from a physical point of view, to the dynamic of
the air vibrating inside a closed–end pipe). One has:

LΦ(ξ) = λΦ(ξ) (6.4)

where Φ is the eigenfunction whereas λ = ω2/c2 denotes the eigenvalue.
L is the second–order ordinary differential operator: L = −d2/dx2 so as
−φ′′(ξ) = λφ(ξ) (ξ being the local coordinate such that ξ ∈ [−1, 1]). Using a
Galerkin approximation one has

Φ(ξ) =
∑
n

znχn(ξ)

and

−
∑
n

〈
χm, χ

′′
n

〉
zn =

∑
n

〈
χ′m, χ

′
n

〉
zn = λ

∑
n

〈χm, χn〉 zn

or

Kz = λMz
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where z = {zn} is the vector of the unknowns, whereas the mass and stiffness
matrices are respectively given by

mmn =
∫
χmχndξ

kmn =
∫
χ′mχ

′
ndξ

(6.5)

6.2 Mass and stiffness matrices in structural dynamics

The second problem considered in this thesis is the evaluation of the natural
modes of vibration of an isotropic elastic material, with continuous material
properties. This may be stated in variational form as1

1
2
ω2

∫
V
ρ‖u‖2dV − 1

2

∫
V
σαβεαβdV = extr[u(ξα)], (6.6)

where
σβα = 2G[εβα + εγγδ

β
αν/(1− 2ν)] (6.7)

and
εαβ = (uα/β + uβ/α)/2 = gα ·

∂u
∂ξβ

+ gβ ·
∂u
∂ξα

, (6.8)

with .../α denoting covariant differentiation.
The boundary conditions considered are either those for a free–surface

boundary (that is a natural boundary condition, which require no action),
or those for a clamped–surface boundary, for which the values of the nodal
displacements (and their tangential derivatives) vanish. The study has been
extended to the validation of the formulation for the case of a shell hinged
at the boundary.

Substituting the approximation for u proposed in Eq. 2.4 (again, see Sec-
tion 2.2), where now the interpolating functions are vector functions χ(ξα),
yields

Kz = ω2Mz (6.9)

where again z = {zn} is the vector of the unknown nodal values, whereas
the mass and stiffness matrices are respectively given by M = [mmn] and

1The most general linear stress–strain relationship is given by σαβ = cαβγδεγδ. where in
cαβγδ there are only twenty one independent coefficients, because of the symmetry of the
stress and strain tensors, as well as from energy considerations. For the sake of simplicity,
this general expression is not included in this work, since all the numerical results are
limited to isotropic homogeneous material.
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K = [kmn], with

mmn =
∫
V
ρχm(ξα) · χn(ξα)dV

kmn =
∑
α,γ

∫
V

2G

(
P γαP

α
γ +

ν

1− 2ν
PααP

γ
γ

)
dV,

(6.10)

where
P γα (ξρ) =

∑
β

[
χm,α · gβ + χn,β · gα

]
gβγ (6.11)

gβγ being the contravariant metric tensor components, in the undeformed
configuration.



Chapter 7
Validation and assessment

In this Chapter, a validation of the proposed methodology is addressed, both
in interior acoustic and structural applications. This Chapter consists of five
sections of results, before of which an introduction section (Section 7.1) is in-
tended to introduce the fundamental definitions of the errors that will be used
throughout the Chapter to assess the schemes and qualitative considerations
about the following analysis..

The first part consists of preliminary results obtained for a one-dimensional
problem (Section 7.2). Test cases are very simple and the main intention is
to pre–assess the skills of the methodology itself, without introducing any
complexities in the geometry or in the constraints application.

The second one (Section 7.3) includes three-dimensional interior acoustic
analysis for quite simple domains. In particular, the modes and the eigenval-
ues of the air vibrating inside a cavity are explored; the cavities considered
are either a parallelepiped or a cube.

Next, the third part concerns the application of the quais–static reduction
procedures (Guyan’s and IRS, see Appendix E for details) for thin geometries
(such as those used here for structural applications) and for solid domains
(such as the cavities used in interior acoustics applications).

The fourth part (Section 7.4) is dedicated to structural problems; the
geometries considered include rectangular-cross-section beam, rectangular
plates and spherical shells, all treated as three-dimensional structures (whereas
the analysis in Section 7.2 is for a one-dimensional domain). Results are ob-
tained with and without quasi-static reduction.

Finally, the last part (Section 7.4) regards an assessment of Scheme C,
used as a remedy for the bloc–boundary problem.
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7.1 Preliminary definitions

Consider the expression of the error introduced in the evaluation of the eigen-
functions. Let us begin with the least-square definition, given by

εk =
[∫
V
ρ
(
Φk − ΦA

k

)2 dV
]1/2

(7.1)

where Φk and ΦA
k(ξ

α) denote, respectively, the exact and the approximate th
eigenfunction. In general we may define

εjk =
[∫
V
ρ
(
Φj − ΦA

j

)(
Φk − ΦA

k

)
dV
]1/2

(7.2)

Note that, according to Eq. 2.4

ΦA
k(ξ

α) =
∑
j

zjkχj(ξα) (7.3)

where zkj denotes the j−th component of the k−th eigenvector of Eq. 6.2;
the vectors zk satisfies the orthonormality relation zT

jM zk = δjk, which cor-
responds to the condition

∫
V ΦA

j ΦA
kdV = δjk, as easily verified. In addition,

for convenience, the exact eigenfunctions Φk(ξα) are approximated with the
same interpolation formula that is, using the same shape functions χj(ξα),
as

Φk(ξα) =
∑
q

yqkχj(ξα), (7.4)

where yqk denotes the q–th component of the k–th vectors yk which is defined
as follows: the components yqk are those nodal values corresponding to zqk,
that are obtained from the exact k–th eigenfunction Φk(ξα), and are also
normalized by yT

kM yk = 1. Combining Eqs. 7.2, 7.3, 7.4, and using Eq. 6.3
as well as zT

kM zk = yT
kM yk = 1, one obtains

ε2jk =
∑
qr

(
yqk − zqk

)(
yrk − zrk

) ∫
V
χq χr dV = (yj − zj)

T M (yk − zk)

= 2 − zT
jMyk − zT

kMyj

(7.5)

The error on the eigenvalues is instead referred to as ek and is given by :

ek =
∣∣λk − µk∣∣. (7.6)

The above definitions of the errors regarding eigenfunctions (modes) and
eigenvalues (frequencies squared) are utilized throughout the entire validation
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process. The above definition of ek is particularly useful in presenting h–
convergences; the further definition of the relative error will be used

erk =

∣∣λk − µk∣∣
µk

. (7.7)

A final comment before presenting the results pertains the difference in the
order of magnitude of the eigenvalue error as compared to that of the eigen-
function error. Specifically, let Φ be an exact eigenfunction of the selfadjoint
operator L, with

‖Φ‖2 =
〈
Φ,Φ

〉
:=
∫
V

Φ2dV = 1.

Consider an approximate eigenfunction Φε = Φ + εΦ′, with
〈
Φ,Φ′

〉
= 0; we

have
‖Φε‖2 = 1 + ε2

〈
Φ′,Φ′

〉
.

Using LΦ = µΦ, we have µ =
〈
LΦ,Φ

〉
and

µε :=

〈
LΦε,Φε

〉〈
Φε , Φε

〉 =

〈
L(Φ + εΦ′),Φ + εΦ′

〉〈
Φ + εΦ′ , Φ + εΦ′

〉
=

〈
LΦ,Φ

〉
+ ε
〈
LΦ′,Φ′

〉〈
Φ,Φ

〉
+ ε
〈
Φ′,Φ′

〉 =
µ+ ε2

〈
LΦ′,Φ′

〉
1 + ε2

〈
Φ′,Φ′

〉 = µ+O
(
ε2
) (7.8)

7.2 One–dimensional case

The objective of this subsection is to provide a preliminary assessment for the
WEP and the WIP schemes, in terms of both the mesh size (h–convergences)
and the order of the scheme (p–convergences). In order to accomplish this, it
is sufficient to address one-dimensional problems. The main advantages are
the simplicity of implementation along with a lower computational effort with
respect to a three–dimensional analysis, especially in case of refined meshes.

The assessment is not limited to low-order modes (that is modes related
to low spatial frequencies).

Specifically, the problem of a closed-end pipe of length ` has been consid-
ered. This is mathematically equivalent to the solution of the one-dimensional
Helmholtz equation with Neumann boundary conditions, that is, setting
µ = ω2/c2

s (cs is the speed of sound),

d2Φ
dx2

+ µΦ = 0 with
dΦ
dx

∣∣∣∣
x=0,`

= 0,
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for which the eigensolutions are given by

Φk = cos
kπx

`
and µk =

ω2
k

c2
s

=
k2π2

`2

In the applications that follow, a length ` = π has been chosen along with a
speed of sound cs = 1, so as to have µk = k2.

7.2.1 h–convergence

This Subsection is dedicated to the h−convergence analyses for a closed-end
pipe, for various schemes. Specifically, the schemes considered are:

1. the classical Hermite third-order scheme, here referred to also as “WEP
III” (see Subsection 2.2);

2. the 5th order WEP scheme, here referred to also as “WEP V” (see
Subsection 3.1.1);

3. the WIP scheme of order five and class C1 (see Subsection 5.3.1);

4. the 7th order WEP scheme, here referred to also as “WEP VII”(see
Subsection 3.1.2);

5. the WIP scheme of order seven and class C1 (therefore obtained with
four nodes, with the function and the first derivative as nodal un-
knowns).

For each scheme, the convergence is studied by increasing the number of
elements; thus, we talk about h–convergence. The expected convergence
rate is based upon the order of the polynomial within each element. For
example, in case of scheme 1. that uses a polynomial of order 3, the expected
convergence for εk is like h3 = `3/N3, whereN is the number of elements used.
Thus, for this scheme a convergence rate equal to 3 for modes is expected.
Similarly, for the other schemes, which use polynomials of order 5 and 7, the
expected convergence rates are equal to 5 and 7.

On the other hand, it is known that the error on the eigenvalue is like the
square of that on the eigenfunction (see Eq. 7.8). Hence, the convergence
rate for the eigenvalues is expected to be twice as large as that for the eigen-
functions, that is, 6 for scheme 1., 10 for schemes 2. and 3. (order 5) and 14
for schemes 4. and 5. (order 7).

To begin with, h–convergence analyses for the first ten eigenfunctions
and eigenvalues are presented in Figs. from 7.1 to 7.10 with the aim of
assessing and comparing the convergence properties of the five schemes, both
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in terms of modes and eigenvalues, for a relatively wide range of frequencies.
In this set of figures, those on the left side pertain the convergence for the
eigenfunctions (log εk with k = 1, . . . , 10), whereas those on the right side
pertain the convergence for the corresponding eigenvalues (log ek with k =
1, . . . , 10) as functions of − logN . Indeed, since the convergence is expected
to be like hn = `n/Nn (for a scheme of order n), the results are conveniently
presented in a log–log diagram. The dashed lines in those diagrams represent
the ‘expected trends’.

Below each image, an additional supporting figure is presented. This
shows only the linear trend (that is obtained for sufficiently refined meshes),
along with the equation that best fit the data, so that to give additional in-
formations about the ‘obtained trend’. Some of the obtained values are not
present for the first two eigenfunctions and eigenvalues because the corre-
sponding errors are too small and thus not considered for the determination
of the rate of convergence (log ε ≥ −8 and log e ≥ −12 have been considered
realistic with respect to the round–off errors).

In this group of images, the obtained trends present the following aspect:
the k–th mode (and eigenvalue) h–convergence has a minimum for a mesh of
N = k. This has been associated to the subdivision itself that, in this case,
presents nodes on stationary points.1

The WIP scheme denotes a better accuracy. It is expected, since the
comparison is give for the same N . In fact, the WIP approach uses a greater
number of DOFS than the WEP scheme (for a WIP scheme one has NDOF =
2[(nnode − 1)N + 1] whereas for a WEP scheme NDOF = 1/2(p+ 1)(N + 1),
being p the order of the scheme and nnode the number of nodes of the element).

Tables 7.1 and 7.2 concern the obtained convergence rates (for eigenvalues
and eigenfunctions respectively). The expected values (i.e., for a n–order
scheme, n for the eigenfunctions and 2n for the eigenvalues) are given in the
first line of each table.

The convergence rate is always close to that expected, confirming that
lower element–boundary continuity of the internal–point scheme does not
decrease the convergence rate (in addition, in the figures the internal–point
error appears to be generally lower than the end–point error). It appears
that best results, in terms of rate of convergence, are obtained with order
five, especially using the WEP configuration (the numerical rate overruns
that expected of 40% for the eigenfunctions 5, 6, 7). However, the main

1 The zero frequency mode is excluded from this analysis, so that, for the numeration
used, k holds the k–frequency mode. Hence, one has, for the i–th node (` = π): x = i/N
and Φk = cosNπx/` = cosπi = ±1.
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expected advantage of a WIP configuration stems from the improved user–
friendliness, not from a higher accuracy.

In Subsection 7.2.2 an analysis with the aim to assess the accuracy of
both methods is addressed.

WEP III WEP V WIP V WEP VII WIP VII
Expected rate 6 10 10 14 14

1 5.7 9.8 - - -
2 5.4 10.3 9.7 - -
3 5.2 10.8 9.6 13 10.7
4 5.1 10.6 9.9 13 13.4
5 5.4 10.6 9.7 12.7 13.4
6 5.3 10.7 9.6 12.6 13.4
7 5.2 10.9 9.5 12.5 13.4
8 5.1 10.9 9.4 12.6 13.4
9 5 11 9.4 12.5 13.4
10 5 11 9.3 12.5 13.4

Table 7.1: Closed–end pipe: convergence rates for eigenvalues

WEP III WEP V WIP V WEP VII WIP VII
Expected rate 3 5 5 7 7

1 3.5 6.1 - - -
2 3.6 6.3 5.7 - -
3 3.4 6.6 5.7 7 5.3
4 3.3 6.8 5.6 7.1 7.4
5 3.3 7 5.6 7.1 7.6
6 3.4 7 5.5 7.1 7.7
7 3.3 7 5.5 7.1 7.6
8 3.4 6.9 5.5 7.1 7.7
9 3.4 6.9 5.5 7.1 7.7
10 3.6 6.9 5.5 7 7.5

Table 7.2: Closed–end pipe: convergence rates for eigenfunctions
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Figure 7.1: Closed–end pipe: 1st mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.2: Closed–end pipe: 2nd mode (left) and eigenvalue (right); ex-
pected trend (top) and obtained trend (bottom)
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Figure 7.3: Closed–end pipe: 3rd mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.4: Closed–end pipe: 4th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.5: Closed–end pipe: 5th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.6: Closed–end pipe: 6th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.7: Closed–end pipe: 7th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.8: Closed–end pipe: 8th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.9: Closed–end pipe: 9th mode (left) and eigenvalue (right); expected
trend (top) and obtained trend (bottom)
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Figure 7.10: Closed–end pipe: 10th mode (left) and eigenvalue (right); ex-
pected trend (top) and obtained trend (bottom)
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7.2.2 Preliminary WIP p–convergences

This subsection is dedicated to the WIP schemes as the number of nodes
increases. The problem under consideration is the same of the preceding
Subsection, that is a closed–end pipe of length π, so as to have, for the k–th
mode, an eigenvalue equal to k2 (cs = 1m/s).

The first two figures regard the assessment of the well known Runge’s phe-
nomenon, occurring when the number of nodes n becomes too large. Specif-
ically, it is wanted to show how large can be this quantity, before reaching
the instability. This is shown in the left part of Fig. 7.11, where the p–
convergence for the first eigenvalue is presented. It appears that, within
order 27 (obtained with 14 nodes), the solution is accurate and not affected
by a round–off error instability. This is obtained using equidistant nodes. On
the other hand, the right part of Figure 7.11 is obtained using the Gauss–
Chebishev–Lobatto nodes, according to which the nodes are placed with a
trigonometric distribution (see, for instance, Ref.[13]): the accuracy of the so-
lution appears to be good up to an order 37 (that corresponds to a 19−node
scheme).

Next, the behavior for a low number of nodes (such that results are largely
within the stability region defined in Fig. 7.11) is investigated. Figure 7.12
depicts the p–convergence for the eigenvalues from 1 to 5, for WIP schemes,
from two to eight nodes (that corresponds to a order 15).
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Figure 7.11: Closed end pipe: equidistant (left) and Gauss–Chebishev–
Lobatto (right) nodes distribution for WIP schemes
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Figure 7.12: Closed end pipe: WIP p−convergence for eigenvalues 1− 5

7.2.3 WEP schemes vs WIP schemes

Next, the accuracy of the various schemes is assessed, either reducing the
mesh size (h–convergences will be depicted) and increasing the order of poly-
nomials (p–convergences will be depicted).

Specifically, Figs. from 7.13 to 7.16 show a h–convergence analysis of the
classical third-order Hermite element (that coincides with a WEP scheme of
order three), for the whole set of numerical modes and the related eigenvalues
obtained. If N is the number of mesh elements, in these figures we have
N = 1, 2, 3, 4, 5 or N = 1, 2, 4, 8, 16. Thus, since the number of total degrees
of freedom is given by NDOF = 2(N+1), we have NDOF = 4, 6, 8, 10, 12 (first
two figures) and NDOF = 4, 6, 10, 18, 34 (last two figures). It appears that,
even though 2(N + 1) modes are generated, a quantity of N + 1 modes and
related eigenvalues are accurately captured (in summary, the error on modes
ε has revealed lower than 10−1 whereas the relative error on eigenvalues er
appears to be lower than 10−2). In addition, the last two eigenvalues appear
to be not accurate and therefore the results on eigenfunctions (that are even
larger) are not presented for them. A minimum for the 1 + N−mode is
obtained. For this modal shape, the nodes and the stationary points coincide.

Figures from 7.17 to 7.20 depict a p–convergence using a WIP configura-
tion, for a mesh of N = 1 (first two figures) and N = 2 (last two figures).
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Specifically, the schemes considered here are those of order p = 3, 5, 7, 9, 11.
Again, at least a half of the total amount of modes extracted has revealed an
error ε lower than 10−1 and a related relative error on eigenvalues er lower
than 10−2.

Figures 7.21 and 7.22 depict a p–convergence obtained using a WEP con-
figuration, for N = 1. In this case, the orders considered are p = 5, 7, 9, 17.
Similar considerations hold for the accuracy obtained in these figures.

Figures from 7.23 to 7.26 concern the accuracy of the various WEP ele-
ments. In particular, figures 7.23 and 7.24 (that is a zoom of the former one)
show results on eigenvalues obtained using the third-order in comparison with
those obtained using fifth–order: it appears that, for high frequencies, the
fifth–order scheme maintain the accuracy better than three when the same
amount of unknowns are utilized (here, a WEP fifth-order with a N = 5
subdivision has the same degrees of freedom of a Hermite third-order with
N = 8 elements).

Similar considerations hold for the other two figures, where a Hermite
seventh–order with N = 5 is compared to a Hermite third–order with N = 11
and to a Hermite fifth–order with N = 7. It is easy to convince yourself that
the comparison is made for the same amount of degrees of freedom, being
NDOF = 1/2(p+ 1)(N + 1) (p is the order of the scheme).

Similarly, Figs. from 7.27 to 7.30 concern the accuracy of WIP elements
for the complete range of eigenvalues extracted. Specifically, Figs. 7.27 and
7.28 depict the i−th eigenvalue λi (i = 1, NDOF ), for various schemes (order
from three to eleven has been explored). Figures 7.29 and 7.30 show the
logarithm of the relative error eri (see eq. 7.7) of the i–th eigenvalue. A
phenomenon (considered) similar to that discussed in Subsection 7.2.1 has
occurred: the errors have now a minimum or a maximum for i = 1 + kN ;
this is more evident in the last figure, where each trend has been traced with
a line.

Next, consider WEP schemes and WIP schemes together. Figures from
7.31 to 7.36 compare these approaches in their fifth and seventh–orders.
Specifically, Figs. 7.31 and 7.32 regard order five whereas Figs. 7.33 and
7.34 concern order seven. They depict the eigenvalues λi. The last two fig-
ures depict log eri . It appears that, for the same order p and for the same
NDOF , the WEP approach (of class Cp) is generally more accurate than the
WIP (of class C1).
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Figure 7.13: Closed end pipe: Hermite h–convergence for eigenvalues (N =
1, 2, 3, 4, 5)
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Figure 7.14: Closed end pipe: Hermite h–convergence for eigenfunctions
(N = 1, 2, 3, 4, 5)
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Figure 7.15: Closed end pipe: Hermite h–convergence for eigenvalues (N =
1, 2, 4, 8, 16)
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Figure 7.16: Closed end pipe: Hermite h–convergence for eigenfunctions
(N = 1, 2, 4, 8, 16)
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Figure 7.17: Closed end pipe: WIP p–convergence for eigenvalues (N = 1)
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Figure 7.18: Closed end pipe: WIP p–convergence for eigenfunctions (N = 1)
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Figure 7.19: Closed end pipe: WIP p–convergence for eigenvalues (N = 2)
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Figure 7.20: Closed end pipe: WIP p–convergence for eigenfunctions (N = 2)
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Figure 7.21: Closed end pipe: WEP p–convergence for eigenvalues
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Figure 7.22: Closed end pipe: WEP p–convergence for eigenfunctions
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Figure 7.23: Closed end pipe: 3rd vs 5th order WEP schemes
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Figure 7.24: Zoom of Fig. 7.23
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Figure 7.25: Closed end pipe: 3rd vs 5th vs 7th order WEP schemes
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Figure 7.26: Zoom of Fig. 7.25
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Figure 7.27: Closed end pipe: 3rd vs 5th vs 7th vs 9th vs 11th order WIP
schemes
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Figure 7.28: Zoom of Fig. 7.27
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Figure 7.29: Logarithmic errors representation of Fig. 7.27
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Figure 7.31: Closed end pipe: 5th order WEP vs WIP scheme (λi vs i)
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Figure 7.32: Zoom of Fig. 7.31
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Figure 7.33: Closed end pipe: 7th order WEP vs WIP scheme (λi vs i)
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Figure 7.34: Zoom of Fig. 7.33
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Figure 7.35: Closed end pipe: 5th order WEP vs WIP scheme (log ei vs i)
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Figure 7.36: Closed end pipe: 7th order WEP vs WIP scheme (log ei vs i)



7.3 Three–dimensional interior acoustics 93

7.3 Three–dimensional interior acoustics

Next, we want to assess the methodology in three-dimensional internal acous-
tics, exploring the possibility of using quasi-static reductions in solid geome-
tries (the Guyan procedure introduced in Section E.1 has been considered
as well as its extension known as the IRS techniques, introduced in Section
E.2).

The problem investigated is the eigenproblem for the Laplacian, because
a closed–form solution is available. This corresponds to the evaluation of
the natural frequencies and modes of vibration of the air inside a hexahedral
cavity, with edges a, b and c; the walls are assumed to be rigid, since this
corresponds to the natural boundary condition and no further actions are
required in constraints application. The exact solution we have is:

Φmnp = cos
mπx

a
cos

nπy

b
cos

pπz

c
(7.9)

and

µmnp =
ω2
mnp

c2
s

=
m2π2

a2
+
n2π2

b2
+
p2π2

c2
(7.10)

(recall that the rigid wall boundary condition is ∂u/∂n = 0, i.e., a natural
boundary condition). For simplicity, a velocity of sound cs = 1 has been
choosen. The discretization uses a subdivision into finite elements, with N

elements in each direction, for a total of N3 elements and (N + 1)3 nodes.

7.3.1 h−convergences

First, we consider a cubic cavity of sides π, so that to have µmnp = ω2
mnp =

m2 + n2 + p2.
Figures from 7.37 to 7.42 show a h–convergence study for three eigenval-

ues (to be specific, those having the exact values of 3, 12 and 27, respectively
related to the [1, 1, 1],[2, 2, 2] and [3, 3, 3] modes), using orders up to seven.
Results are compared with Ansys (see the Ansys Reference Manual[14]). The
element used is Fluid 30, specific for three-dimensional fluid-structure inter-
action problems. This element is a eight-noded brick that has four nodal
unknowns (that is the three components of the displacement and the pres-
sure) when the interaction between the fluid and the structure is taken into
account whereas only one (that is the pressure) when the structure is not in-
cluded in the analysis. Since the structure interaction is not included in this
analysis, the option ‘structure absent’ has been applied and a single degree of
freedom per node (that is the pressure) has been considered for comparisons
(see the Ansys Elements Reference also included in[14]).



94 7. Validation and assessment

Table 7.3 show the numerical value of the convergence rate obtained with
such formulations, compared to that expected (i.e., 6, 10 and 14, see Seection
7.1).

Finally, Figs. from 7.43 to 7.45 depict the eigenvalues related to the
[1, 1, 1],[2, 2, 2] and [3, 3, 3] modes as functions of 1/NDOF . In these figures
the images on the left contain all the proposed elements and include the
Ansys Fluid 30 whereas those on the right are a zoom on the higher order
(only orders from 5 to 7 are showed). It appears that, even though the total
amount of the unknowns increases within the element as the order of the
element increases, the efficiency revealed by the higher orders is better than
that showed by the lower–order elements.

Fluid Hybrid Hermite Hybrid Hermite Hybrid Hermite
30 III III V-II V VII-III VII

Exp.
2 6 6 10 10 14 14

rate
[1, 1, 1] 1.9 4.9 5.3 9.5 10.3 12.2 -
[2, 2, 2] 2 5.1 5.2 9.1 11.1 13.0 16.6
[3, 3, 3] 1.9 4.8 5.1 8.9 11.4 14.7 14.2

Table 7.3: Cubic cavity: convergence rates for eigenvalues
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Figure 7.37: Cubic cavity: h–convergence for λ[1,1,1]
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Figure 7.38: Convergence rates of Fig. 7.37
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Figure 7.39: Cubic cavity: h–convergence for λ[2,2,2]
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Figure 7.40: Convergence rates of Fig. 7.39
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Figure 7.41: Cubic cavity: h–convergence for λ[3,3,3]
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Figure 7.42: Convergence rates of Fig. 7.41
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Figure 7.43: Cubic cavity: λ[1,1,1] vs 1/NDOF
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Figure 7.44: Cubic cavity: λ[2,2,2] vs 1/NDOF
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Figure 7.45: Cubic cavity: λ[3,3,3] vs 1/NDOF
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7.3.2 High–frequencies analysis

Next, an assessment of the numerical modes obtained is addressed. The
objective is to determine how many modes (and how many eigenvalues) are
acceptably captured using the basic Hermite (see Section 2.2) and Hybrid
bricks (see Section 4.4) along with their higher–order extensions (see Sections
3.2 and 5.1).

The problem under investigation is that of a rectangular cavity of sides
a = π, b = 1.01π and c = 0.99π or that of a cube cavity of side π. In
particular, the analysis of modes is best addressed for a rectangular cavity,
since this geometry may be used to minimize the coupling between modes
and therefore rendering simpler the evaluation.

The dimensions of the parallelepiped are chosen to avoid the coupling
between modes that pertain to the same eigenvalues, as in the case of a cube,
while maintaining the eigenvalues related to the same number of waves suffi-
ciently close to each other (thus, the eigenvalue related to [1, 0, 0] is wanted
quite close to the [0, 1, 0] and [0, 0, 1] ones). Indeed, in each figure, the modes
and the related eigenvalues are sorted per number of waves and [k, l,m] holds
the i–th mode to its number of waves per direction. As an example of the
above mentioned coupling, see Figures 7.46 and 7.47. In this set of images,
Fig. 7.46 depicts the values of zTj Myi − δij (for i, j = 1, . . . , NDOF ), as ob-
tained for a cube of side π using a Hybrid 3rd order 8−node brick with N = 1,
whereas Fig. 7.47 concerns the same analysis for a Hybrid 3rd order 8−node
brick with N = 1 and for a Hybrid 5th order 27−node brick with N = 1.

The number of subdivisions, supposed equal for each direction will be
referred to as N = N1 = N2 = N3 whereas the number of waves will be
referred to as nw.

In the following, the value of zTj Myi−δij is depicted as a two–dimensional
mapping using a grey scale from 0 to 0.05 and it is obtained through a modal
reconstruction that uses a further subdivision of the N3 elements (the domain
has just been meshed in NxNxN elements for the M and K evaluation) in
ndiv = 3.
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Figure 7.46: Cubic cavity: coupled modes with Hybrid 3rd order (N = 1)
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Figure 7.47: Cubic cavity: coupled modes with Hybrid 3rd order (N = 2)
and Hybrid 5th order (N = 1)
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7.3.3 Hermite 3rd order 8−node element

This subsection is dedicated to the Hermite 3rd order 8−node brick in-
troduced in Section 2.2. A preliminary analysis of this element has been
addressed throughout the past years, starting from the 2004 International
Conference on Computational & Experimental Engineering & Sciences (IC-
CES’04).[3] The study was limited to very low eigenvalues and frequencies
of simple structural problems (plates and shells). Here, an extensive anal-
ysis related to both the complete set of eigenvalues and modes extracted is
presented.

Figures from 7.48 to 7.53 show a complete set of results concerning
modes and eigenvalues for the Hermite 3rd order 8−node brick, obtained
with meshes of N = 1, 2, 3 elements per direction.

Results for N = 1 are presented in Figs. 7.48 and 7.49, where the whole
set of modes and eigenvalues (a total of 64) is considered. For the total
number of waves one has Nw = 3. Results show very good accuracy for the
first 8 modes and eigenvalues, the last of them corresponding to 1 wave per
direction.

Results for N = 2 are presented in Figs. 7.50 and 7.51, where, again, the
whole set of modes and eigenvalues (they are 216) is considered. For the total
number of waves, now one has Nw = 5. Results show very good accuracy for
the first 27 modes and eigenvalues, i.e., for nw ≤ 2. Acceptable results are
obtained also for 2 ≤ nw ≤ 3. Results for N = 3 are presented in Figs. 7.52
and 7.53. Even though the maximum number of modes that can be obtained
is 512 (and the maximum number of waves is Nw = 7), results are plotted
only for the first 125 modes and eigenvalues (i.e., for nw ≤ 4). Again, results
are very good for nw ≤ 3.

Looking at Figs. from 7.48 to 7.51, if Nw = 2N+1 is the number of waves
included using a mesh of N elements in each direction,2 the quantity of waves
per direction captured with very good accuracy appears to be nw = N . Also,
an acceptable accuracy seems to be maintained until (nw = N + 1).

As a rule of thumb, one can assume that, say NDOF = (2N + 2)3 the
total number of unknowns, the quantity of modes acceptably captured is
N0 = (N + 1)3. As a consequence, N0/NDOF = 1/8 of the total modes
extracted has a good accuracy.

2This corresponds to the total number of unknowns per direction, 2N + 2, minus 1 to
take into account the presence of a zero frequency.
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Figure 7.48: Rectangular cavity: eigenfunctions with the Hermite 3rd order
8−node (N = 1)
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Figure 7.49: Rectangular cavity: eigenvalues with the Hermite 3rd order
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Figure 7.50: Rectangular cavity: eigenfunctions with the Hermite 3rd order
8−node (N = 2)
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Figure 7.52: Rectangular cavity: eigenfunctions with the Hermite 3rd order
8−node (N = 3)
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7.3.4 Hermite 5th order 8−node element

This subsection is dedicated to the Hermite 5th order 8−node brick, intro-
duced in Subsection 3.2.1. This element has been preliminarily introduced at
the 12th AIAA/CEAS Aeroacoustics Conference.[15] In that case, the anal-
ysis was limited to the h−convergence analysis for a very small subset of
low–frequency eigenvalues. Here the study is extended to modes and to the
complete set of eigenvalues and modes extracted.

The following figures pertains the air vibrating inside a rectangular cavity
of sides π, 1.01π and 0.99π.

Figures 7.54 and 7.55 show a mode analysis for the element, using a
subdivision of N = 1. The discretized problem has 216 degrees of freedom
(i.e., 27 unknowns per node for each of the 8 nodes; note that for the Hermite
3rd order 8−node element of the preceding subsection, the same number of
unknowns is obtained for N = 2). Now one has Nw = 5 as a maximum
number of waves per direction.3 It appears that good results are obtained
for a number of waves nw ≤ 3.

Within the same analysis, Fig. 7.55 shows the results for the eigenval-
ues whereas Fig. 7.56 adds to the preceding figure the results obtained in
Subsection 7.3.3 for the Hermite 5th order 8−node with N = 2 to have a
comparison for the same number of unknowns. In particular, the 5th order
element shows a better accuracy than the 3rd order, for frequencies having
nw ≤ 3 (see also the zoom on the right).

Figure 7.57 show a comparison between the Hermite 3rd order 8−node
and the Hermite 5th order 8−node bricks, for the same number of unknowns.
Specifically, the blue lines are obtained using N = 2 elements for the third
order brick and N = 1 for the fifth order one whereas the green lines are
related to a N = 5 elements for the third–order brick and N = 2 elements for
the fifth order brick. The different colors refer to a specific value of NDOF

(i.e., 63 for the blue and 123 for the green lines), since one has NDOF =
(2N + 2)3 for the third–order brick and NDOF = (3N + 3)3 for the fifth–
order one.

As expected (see Subsection 7.3.3), results are very good for nw ≤ 2 for
the blue trend (being Nw = 5 the maximum number of waves included in
this analysis).

Also, the green trends are extremely accurate for nw ≤ 5 (now Nw = 11
is the total number of waves for this meshes). A good accuracy is obtained

3Similarly to Subsection 7.3.3, in this case it results nw = 3N + 2, N being the number
of subdivision for each direction.
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for 6 ≤ nw ≤ 8
As a rule of thumb, one can assume that, say NDOF = (3N + 3)3 the

total number of unknowns, the quantity of modes acceptably captured is
(considering also the results obtained in Subsection 7.3.3) N0 = [3/2(N+1)]3.
As a consequence, again N0/NDOF = 1/8 of the total modes extracted has a
good accuracy.

Consider the Hermite 5th order 8−node element with N = 3 elements.
In order to have the same quantity of DOFs, compare it with the Hermite
3rd order with N = 5 elements. On the basis of the above results and of
the results presented in Subsection 7.3.3, the expected amount of acceptable
modes is 63. This translates in a maximum number of waves acceptably
captured of nw = 5. Figures from 7.58 to 7.60 show the [k, k, k] mode for k =
1, 2, 3, 4, 5, 6. The aim is to show the capability of maintaining the accuracy
in the modal shape. Specifically, they depict a comparison beetween the
numerical modes and the exact ones. On the other hand, Figure 7.61 shows
the ‘bad’ numerical modes (the last two in number of waves to be extracted)
in comparison with the exact ones: the loss in accuracy appears to be mainly
related to the presence of non–zero first derivatives at the boundaries.

The following figures pertains the air vibrating inside a cubic cavity of
side π.

To assess the method in comparison with commercial solutions, some of
the preliminary resuts (see Ref.[15]) are reviewed. Figure 7.62 pertains the
modal analysis of the air vibrating inside a cubic cavity of side π. In this
figure results are limited to the first 27 eigenvalues, obtained using three
different approaches: (1) a Hermite 5th order 8−node with N = 1; (2) a
Hermite 3rd order 8−node with N = 2 and (3) an Ansys FLUID 30 element
with N = 5. For this schemes we have the same quantity of unknowns (to
be specific, 216). In fact, one has NDOF = (3N + 3)3 for the fifth order;
NDOF = (2N + 2)3 for the third order and NDOF = (N + 1)3 for Ansys
Fluid 30, since it uses a single nodal unknown (i.e., the potential velocity)
when the ‘structure absent’ option is active (as in the present case). Results
show generally a better accuracy for the Hermite elements, especially for the
higher eigenvalues.
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Figure 7.54: Rectangular cavity: eigenfunctions with the Hermite 5th order
8−node (N = 1)
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Figure 7.56: Zoom of Fig. 7.55
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Figure 7.58: Rectangular cavity: modes [1, 1, 1] and [2, 2, 2] with Hermite 5th
order (N = 3) and Hermite 3rd order (N = 5)

-1 

-0,6 

-0,2 

0,2 

0,6 

1 

0 0,2 0,4 0,6 0,8 1 z 
[3

,3
,3

] 

Hermite V (N=3) 

Hermite III (N=5) 

Exact mode 

-1 

-0,6 

-0,2 

0,2 

0,6 

1 

0 0,2 0,4 0,6 0,8 1 z 
[4

,4
,4

] 

Hermite V (N=3) 
Hermite III (N=5) 
Exact mode 

0 

Figure 7.59: Rectangular cavity: modes [3, 3, 3] and [4, 4, 4] with Hermite 5th
order (N = 3) and Hermite 3rd order (N = 5)
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Figure 7.62: Cubic cavity: 5th and 3rd order Hermite elements vs Ansys
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7.3.5 Hermite 7th order 8−node element

The Hermite 7th order 8−node brick has been introduced in Subsection 3.2.2.
This element has been preliminarily presented at the 13th AIAA/CEAS
Aeroacoustics Conference[16] with an analysis related to a very small sub-
set of low–frequency eigenvalues. In this subsection the analysis has been
extended also to eigenfunctions and regards low–frequency modes as well as
relatively high–frequency modes.

The following figures pertains the air vibrating inside a parallelepiped
cavity of sides π, 1.01π and 0.99π.

Figure 7.63 regards the modes analysis using a subdivision of N = 1.
Specifically, the figure depicts the value of δij − yTi Mzj through a gray–scale
mapping. The numerical problem has 512 degrees of freedom (i.e., 64 un-
knowns per node for each of the 8 nodes) and therefore the whole set of
modes (and corresponding eigenvalues) are related to a total number of waves
Nw ≤ 7. However, the figure is related to the first 125 eigenfunctions (i.e.,
to nw ≤ 4), since this subset contains itself all the accurate modes.4

Similarly, Fig. 7.64 concerns the first 125 eigenvalues, sorted per number
of waves, according to the ordination of the modes presented in Fig. 7.63.
Results obtained in Subsection 7.3.3 for N = 3 are repeated here for compar-
ison, since the two analysis (order 3 and order 7) pertain the same number
of degrees of freedom (in fact, here we have NDOF = (4N + 4)3 with N = 1
whereas for the third–order case we have NDOF = (2N + 2)3 with N = 3).

As a rule of thumb, one can assume that, say NDOF = (4N+4)3 the total
number of unknowns, the quantity of modes acceptably captured is (accord-
ing to the results of Subsection 7.3.3) N0 = [2(N + 1)]3. As a consequence,
again N0/NDOF = 1/8 of the total modes extracted denotes a good accuracy.

The following figures pertains the air vibrating inside a cubic cavity of
sides π.

Figure 7.65 regards a comparison between the three Hermite elements
described in this section (i.e., those related to orders 3, 5 and 7), for sub-
divisions of the domain chosen so as to have the same number of DOFs. It

4In Subsection 7.3.3 an analysis for the Hermite 3rd order 8 nodes brick having the same
DOFs (that for N = 3) has been presented: in that case, a set of 125 modes and eigenvalues
has been presented. In this range, a subset of 64 modes (that corresponds to nw ≤ 3) has
denoted good accuracy.
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depicts the relative error for the [k, k, k] eigenvalue, for k ≤ 10. The blue
lines concern the Hermite elements in its third order (N = 3) and seventh
order (N = 1) formulation. In each case one has 512 unknowns, that is a
total number of waves Nw = 7. The subset of modes acceptably captured
is related to nw ≤ 3. The three green lines are related to the Hermite 3rd
order with N = 5, as well as to the Hermite 5th order with N = 3 and to the
Hermite 7th order with N = 2. For each of the green line the total number
of DOFs is 123 whereas the number of eigenvalues acceptably captured is (as
expected ) related to nw ≤ 5. Finally, the two red lines are related to a more
refined mesh; specifically, the third order Hermite element is now used with
N = 7 whereas the seventh order Hermite element is considered with N = 3,
for a total of 163 unknowns and nw ≤ 7 waves acceptably captured.

Next, to have a comparison between the present element and those avail-
able in commercial softwares, some preliminary set of results (see also the
preliminary analysis of [16]) is presented in Fig. 7.66 and pertains the modal
analysis of the air vibrating inside a cubic cavity of side π. In this figure
results are limited to the first 64 eigenvalues, as obtained with three differ-
ent approaches: (1) a Hermite 7th order 8−node element with N = 1; (2)
a Hermite 3rd order 8−node element with N = 3 and (3) an Ansys FLUID
30 element with N = 7. For these schemes we have the same quantity of
unknowns (to be specific, 512). In fact, one has NDOF = (4N + 4)3 for
the seventh order Hermite element; NDOF = (2N + 2)3 for the third or-
der Hermite element and NDOF = (N + 1)3 for the Ansys Fluid 30 element
(see Subsection 7.3.4). It appears that the Hermite elements show generally
a better accuracy than the Ansys one, especially for the higher–frequency
eigenvalues.
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Figure 7.63: Rectangular cavity: eigenfunctions with the Hermite 7th order
(N = 1)

Figure 7.64: Rectangular cavity: eigenvalues with the Hermite 7th order
(N = 1) and Hermite 3rd order (N = 3)
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Figure 7.66: Cubic cavity: 7th and 3rd order Hermite elements vs Ansys
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7.3.6 Hybrid 3rd order 8−node element

The Hybrid 3rd order 8−node brick has been introduced in Section 4.4. A pre-
liminary validation of this element has been presented in occasion of the 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Mate-
rials Conference.[7] In that occasion, the assessment was limited to simple
structural applications and to a restricted number of eigenvalues. Here, the
analysis is extended to interior acoustics and the assessment is related to
eigenvalues as well as to eigenfunctions, with extension to relatively high–
frequency modes.

Figures from 7.67 to 7.72 concern an analysis of the modes and eigenval-
ues, as obtained with a subdivision of N = 1, 2, 3 elements per direction. In
particular, Figs. 7.67 and 7.68 depict the results for N = 1. In this case a
total of 32 modes and eigenvalues are obtained (in fact, one has 4 unknowns
for each of the 8 nodes of the brick element). According to the order of
the element and to the results obtained for the 3rd order Hermite brick in
Subsection 7.3.3, a maximum of nw = 1 number of waves per direction is ex-
pected to be accurate. This is confirmed in the figures, for modes as well as
for eigenvalues. Similar considerations hold for the other four figures, related
in couples to N = 2 and N = 3. In general, as expected, the same amount
of modes and eigenvalues that are accurate using a Hermite 3rd order brick
(those related to a number of waves nw ≤ N), is also very accurate using a
Hybrid 3rd order element.

One of the main advantages above the Hermite formulation is that, in
this case, only half unknowns are needed, reducing of 50% the size of the
problem without reducing accuracy. Therefore, as a rule of thumb, one can
say that a quantity of modes and eigenvalues equal to 1/4 of the total DOFs
is acceptably captured.
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Figure 7.67: Rectangular cavity: eigenfunctions with the Hybrid 3rd order
8−node element (N = 1)
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Figure 7.68: Rectangular cavity: eigenvalues with the Hybrid 3rd order
8−node element (N = 1)
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Figure 7.69: Rectangular cavity: eigenfunctions with the Hybrid 3rd order
8−node element (N = 2)
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Figure 7.70: Rectangular cavity: eigenvalues with the Hybrid 3rd order
8−node element (N = 2)
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Figure 7.71: Rectangular cavity: eigenfunctions with the Hybrid 3rd order
8−node element (N = 3)
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Figure 7.72: Rectangular cavity: eigenvalues with the Hybrid 3rd order
8−node element (N = 3)
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7.3.7 Hybrid 7th order 8−node element

This Subsection regards the results obtained for interior acoustics (modal
analyses) with the Hybrid 7th order 8−node element introduced in Subsection
5.1.1. A preliminary analysis concerning this element has been presented
at the 13th AIAA/CEAS Aeroacoustics Conference.[16] In that occasion,
the analyses were limited to the first eigenvalues of a cubic cavity and to a
preliminary assessment for relatively high frequencies. Recent developments
pertain the modal analyses of the air vibrating inside a rectangular cavity
and the validation regards the eigenvalues as well as the eigenfunctions.

Figure 7.73 regards the mapping of the projections between the numerical
modes zj (for j = 1, . . . , NDOF ) and the analytical modes y (also, for i =
1, . . . , NDOF ). Specifically, they depict the mapping of δij − zTj Myi, using a
mesh of N = 1 (therefore, a total of 256 unknowns are included, since one
has 32 nodal unknowns for each of the 8 nodes).

Figures 7.74 and its zoom presented in Fig. 7.75 pertain the whole set
of eigenvalues, sorted per number of waves, according to the ordination used
for Fig. 7.73.

Figure 7.75 focuses only on the eigenvalues expected to be accurate. The
results have been compared with those obtained for the Hybrid 3rd order
8−node element with N = 3, since this presents the same number of DOFs (in
fact, one has NDOF = 4(2N+2)3 for the 7th order whereas NDOF = 4(N+1)3

for the 3rd order).

The following analysis pertains the air vibrating inside a cubic cavity of
sides π.

Results obtained with a different mesh sizes (N = 1, 2) are shown in
Figs. 7.76 and 7.77 which are preliminary result presented in 2007 and which
pertain the modal analysis of the air vibrating inside a cubic cavity of side π.
In these figures results are limited to the first 39 eigenvalues (that correspond
to a number of waves nw ≤ 2), obtained using three different approaches: (1)
a Hybrid 7th order 8−node element; (2) a Hybrid 3rd order 8−node element
and (3) an Ansys FLUID 30 element with N = 9.

The figure on the top is obtained with a mesh of N = 1 whereas the
figure on the bottom is obtained using a mesh of N = 2. For both the
Hybrid schemes we have the same quantity of unknowns (to be specific, 256
and 864 respectively). In fact, one has NDOF = 4(2N + 2)3 for the 7th
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order and NDOF = 4(N + 1)3 for the 3rd order. For the Ansys element a
subdivision in N = 6, 9 elements has been used respectively. These meshes
produce NDOF = (N + 1)3 = 343, 1000 unknowns (see Subsection 7.3.4).

According to Fig. 7.77, the Hybrid elements show a better accuracy,
especially for the higher eigenvalues, even though the unknowns used with
Ansys are around 15% more.

Moreover, it appears that the higher order shows a better accuracy for
the finer mesh. In fact, the relative error for the last eigenvalue (i.e., (λ39A −
λ39N )/λ39A = (12 − λ39N )/12) is 3 · 10−7 for the Hybrid 7th order whereas
4 · 10−3 for the Hybrid 3rd order.
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Figure 7.73: Rectangular cavity: eigenfunctions with the Hybrid 7th order
8−node (N = 1)
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8−node (N = 1)

1 
[0,0,0]  

27  
[2,2,2] 

64 
[3,3,3] 

0 

4 

8 

12 

16 

20 

24 

28 

32 

λ i
 

i 

Hybrid III (N=3) 
Hybrid VII (N=1) 
Exact Eigenvalue 

Figure 7.75: Zoom of Fig. 7.74



122 7. Validation and assessment

0 

2 

4 

6 

8 

10 

12 

14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

λ i
 

i 

Hybrid III (N=3) 
Hybrid VII (N=1) 
ANSYS - FLUID 30 (N=6) 
Exact eigenvalues 
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(N = 3)
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7.3.8 Hybrid 5th order 27−node element

This Subsection regards the Hybrid 5th order 27–node element, that has
been introduced in Subsection 5.4.1. A validation of this element has been
presented recently, at the 15th AIAA/CEAS Aeroacoustics Conference.[17]

Results have been obtained for a rectangular cavity and are here analyzed
thoroughly.

Figures from 7.78 to 7.80 concern the analysis of modes and eigenvalues
obtained by subdividing the parallelepiped domain in N = 1 element per
direction. In this case one has a total of 108 modes and eigenvalues, since the
element uses 4 unknowns for each of the 27 nodes. The maximum number of
waves is nw = 5 for one direction, when it is nw ≤ 2 in the other two direc-
tions. Results appear extremely good for the first 27 modes and eigenvalues
(that correspond to 1/4 of the total modes and eigenvalues extracted and to
nw ≤ 2).

One can compare the above results with thee Hybrid 3rd order 8−nodes
(see Subsection 7.3.6) with N = 2 elements: in fact, one has again NDOF =
108, since the element uses 4 nodal unknowns for each of the 27 nodes deriving
from the mesh. Such a comparison is shown in Figs. 7.79 and 7.80, were the
results obtained in Subsection 7.3.6 for N = 2 are repeated.

Again, an advantage above the Hermite scheme of same order (compare
the results of Subsection 7.3.4) is that a 50% of unknowns are needed, even
though the same quantity of modes and eigenvalues appears to be accurate.
Similarly to the results obtained in Subsection 7.3.6 for the Hybrid 3rd order
8−node element, as a rule of thumb one can say that a quantity of modes
and eigenvalues equal to 1/4 of the total DOFs is acceptably captured.
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Figure 7.78: Rectangular cavity: eigenfunctions with the Hybrid 5th order
27−node (N = 1)
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Figure 7.81: Rectangular cavity: eigenfunctions with the Hybrid 5th order
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7.3.9 IRS for interior acoustics

This section regard the reduced formulations, as obtained by using a quasi–
static reduction algorithm. In particular, the applicability of the basic Guyan’s
reduction and of its extension called IRS (see Appendix E for details about
the mathematical formulations) is addressed for acoustic problems in full
three dimensional domains. Specifically, the application to three–dimensional
acoustic problems of the basic Guyan’s procedure is discussed, along with the
substantial improvement obtained shifting to the IRS technique.

In the next, results are labelled according to the following criterion. Com-
plete means that no reduction technique has been applied. To identify a re-
duced formulation, the level of Guyan’s reduction (i.e., the number of nodal
unknown to be retained) is declared. Thus, Guyan1 means that only the
function is retained; Guyan4 means that the function and the first three
derivatives are retained, and so on. The same meaning holds for IRS1.

The analyses presented here pertain the air vibrating within a cubic cavity
of side π.

Figures 7.83 and 7.84 show a preliminary investigation of the Guyan’s
reduction technique. Specifically, they depict the h−convergences for the
Hermite 3rd order and 5th order elements, obtained with various Guyan
schemes. The h−convergences are presented in function of the total degrees
of freedom NDOF , since the various formulations consider different amounts
of nodal unknowns (in fact, for Guyan1 one has NDOF = (N + 1)3; for
Guyan4 one has NDOF = 4(N + 1)3 , etc.). The Ansys Fluid 30 element is
included in the analyses as a way of comparison. It appears that, even though
results became better than Ansys if a refined mesh is used, the application
of the Guyan’s procedure shows an important penalization with respect to
the complete formulation. In comparison with the Ansys Fluid 30 element,
results for the Hermite 5th order are worse even when a 40% of the unknowns
is eliminated. This problem has been attributed to the non-negligibility of
the inertia effects in case of a cubic domain. Thus, the IRS version of Guyan’s
procedure (see Section E.2 for mathematical details), that takes into account
also the first order inertia terms, has been implemented and results have been
compared with Guyan’s.

Figures from 7.85 to 7.87 show the convergences obtained for the eigenval-
ues related to the [1, 0, 0], [1, 1, 0] and [1, 1, 1] modes, using both the Guyan’s
and the IRS techniques, when only the function is retained (this implies that
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the scheme has only a single degree of freedom per node). Figures express the
results in terms of the number of unknowns (one has NDOF = (N + 1)3 for
each element used). They show that the use of IRS improves the accuracy,
giving results much better than Ansys despite a less computational effort
(assumed to be directly related to the amount of degrees of freedom).

Finally, Figs. 7.88 and 7.89 show a comparison between the basic Guyan’s
reduction and the IRS technique. The first is obtained with a N = 2 (image
on the left) mesh of the geometry whereas the second is related to a N = 3
subdivision of the domain.
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7.4 Structures

In this section, the results obtained for structural applications are presented
(including those obtained with the reduced formulations). For simplicity, for
all the test cases, the density ρ and the Young Modulus E are set equal to 1,
whereas a Poisson Ratio ν of 0.225 is considered. To have meaningful com-
parisons, Ansys elements have been used with the ‘consistent mass matrix’
option for all the results.

In the next, λi is used to indicate the i−th eigenvalue whereas ωi is used to
indicate the i−th natural frequency; accordingly, ω̄i is the i−th dimensionless
frequency.

7.4.1 Guyan for (thin) structures

This subsection is dedicated to a preliminary analysis of the results obtained
using a reduction technique in thin structures analysis. Modal analyses for
the vibration of a free rectangular cross–section beam of dimensions ` = 1,
h1 = 0.01 and h2 = 0.015 are presented. The structure is treated as a
three–dimensional object, with a mesh of N elements along the length and 1
element along the other two directions, for a total amount of N subdivisions
in the volume itself.

In case of thin structure (beams as well as plates and shells) it is conve-
nient to reduce the number of unknowns up to half the number of nodes: in-
stead of the upper– and lower–side nodal displacements (say, uu and ul respec-
tively), one may use their semi–sum and semi–difference, um = 1/2(uu + ul)
and u∆ = 1/2(uu − ul).

Since u∆/τ is related to thickness variations (normal components) and
rotations around the mid–surface (in–plane components), the u∆ variables
correspond to high–frequency motions and therefore the Guyan reduction
may be applied to remove them and all the derivatives. We refer to this
scheme as Double Guyan reduction.

Results are compared with those obtained using the Ansys Solid-Shell
190 (optimized for thin–wall structures) and the Ansys Solid 186, that is a
twenty-noded element with three degrees of freedom per node (i.e., the three
components of the displacement). The results presented regard the first ten
eigenvalues.

In the next, results are labelled according to the criterion introduced in
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Subsection 7.3.9 or with a ‘Double Guyan’.

Figures from 7.90 to 7.99 depict the eigenvalues as a function of the de-
grees of freedom NDOF , with and without using the Double Guyan reduction
procedure.
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Figure 7.97: Free rectangular cross–section beam: λ8 with Guyan
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7.4.2 Free and clamped plates

Consider a thin square plate of side ` = 1 and thickness h = 0.01. To begin
with, assume free boundary conditions.

Figures from 7.100 to 7.107 regard convergence analyses for the relatively
high dimensionless frequencies. Results are compared with those obtained
using Ansys. Specifically, the comparisons have been done with the Ansys
two–dimensional shell element (denoted here by Ansys 2D), which is com-
monly used to analyze plates and shells. Also, the three–dimensional element
with 20 nodes (here denoted by Ansys 3D 20n) has been used, because it is
the most closely related to the present elements. The plate is discretized with
N elements along each side and one element in the normal direction.

The images in Figs. from 7.100 to 7.103 concern the results for quite
large sets of frequencies. The figures are presented in two couples of images
(complete set of frequencies extracted and zoom). Specifically, the first two
figures are obtained using the Hermite and the Hybrid elements of order
3 and the Ansys Shell element, each with N = 6. Then, they have been
compared with the Ansys Shell with N = 16 (assumed to give the converged
solutions). The second set of images is obtained using the Hermite of orders
3 and 5, using respectively N = 5 and N = 3 elements and the Ansys Shell
with N = 9 elements. These meshes give the same number of NDOF for the
Hermite elements and a number of DOFs for the Ansys element relatively
close to each other (to be specific, we have NDOF = 5184 for the Hermites
and NDOF = 6000 for the Ansys element). The zoom is presented for the first
49 dimensionless frequencies ω̄i = ωiρ/E. Note that, the first 6 frequencies
(that are zero) are related to the first six rigid motions.

Next, the convergence analyses for the first four dimensionless natural
frequencies, ω̄i = ωiρ/E (for the assumptions made at the beginning of this
section ω̄1 = ω1) are shown in Figs. from 7.104 to 7.107. The horizontal lines
correspond to the frequency of the thin plate equation (eigenvalue of the bi–
Laplacian), as obtained with the Galerkin method (with base functions given
by the product of free beam eigenfunctions). The figure on the left presents
the value of ω̄i as a function of 1/N whereas that on the right is obtained as
a function of 1/NDOF .

Results include Guyan’s reduction and Double Guyan (see Subsection
7.4.1). They are shown in Figs. 7.108 and 7.109. It is apparent that the
Guyan reduction plays a key role in the use of Hermite and Hybrid elements
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in thin structures applications. In fact, it may be introduced with minimal
penalization and it gives an accuracy higher than that of the Ansys Shell,
even though the Ansys Shell element being specifically designed for shells.

Consider now the same thin square plate with clamped edges.

In Fig. 7.110, the first eigenvalue is presented as a function of 1/N and
1/NDOF for a clamped plate. Specifically, in the first image, the comparison
is made with equal number of elements and the loss in accuracy is insignif-
icant. The advantage of the Guyan 8−to−1 reduction in DOFs is more
evident in the second image, where the comparison with the Ansys results is
very encouraging (here, the results for the Ansys three–dimensional 20−node
element is shown with the Ansys Shell element).
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Figure 7.106: Free square plate: ω̄3 vs 1/N (left) and vs 1/NDOF (right)
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Figure 7.107: Free square plate: ω̄4 vs 1/N (left) and vs 1/NDOF (right)
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Figure 7.108: Free square plate: ω̄1−2 vs 1/NDOF with Guyan
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Figure 7.109: Free square plate: ω̄3−4 vs 1/NDOF with Guyan
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Figure 7.110: Clamped square plate: ω̄1 vs 1/N (top) and vs 1/NDOF (bot-
tom) with Guyan

7.4.3 Hinged plates

Consider a rectangular plate, hinged at its boundaries, of edges a = 1,
b = 1.01 and thickness h = 0.01 . The natural frequencies are evaluated
for different subdivisions of the geometry and are compared to those exact,
relative to the bending modes of a hinged plate. In fact, in this case the
modes are given by

Φmn(x, y) = sin
mπx

a
sin

nπy

b
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whereas the natural frequencies are given by

ωmn =
√
D/ρ

[(mπ
a

)2
+
(nπ
b

)2
]

where D denotes the bending stiffness of the plate. The exact eigenvalues are
then given by µmn = ω2

mn. For small thicknesses, these frequencies are much
lower than those relative to in-plane motion and therefore are a good refer-
ence for the numerical results. Since the proposed methodology treats the
geometry of each structure as a three–dimensional domain (indeed, only brick
elements have been introduced), the eigenfunctions Φmn = Φmn(x, y) have
been used to obtain the three–dimensional functions Φ̂mn = Φ̂mn(x, y,±h/2)
(see Subsection 7.4.4 for details). Then, the numerical modes have been com-
pared with the exact ones Φ̂mn using the definitions of εmn, emn and emn%

given in Section 7.1 (Eqs. 7.5, 7.6 and 7.7 respectively). Note that, as for the
results shown in Section 7.3, also in this context it is convenient to have a
rectangular geometry so that to avoid, as much as possible, coupling between
the modes related to close (numerically equal) eigenvalues.

Figures from 7.111 to 7.114 pertain the first seven eigenvalues (for which
it results nw ≤ 3) as a function of the total unknowns NDOF , obtained with
and without reduction (the classical Guyan’s technique has been applied).
They are compared with those obtained using Ansys Solid-Shell element (that
is a eight-noded, six-degrees-of-freedom per node element, specific for thin
structures applications).

Next, Figs. from 7.115 to 7.128 regard relatively high frequencies, for
both the modes and the eigenvalues, obtained with a complete formulation
as well as with the application of a reduction algorithm. In particular, the
reduced modes (i.e., those obtained with a Guyan’s reduction) have been
compared with the exact ones, after having recovered the complete unknown
vector from the master components through the transformation z = TGzm of
Eq. E.6 (see Section E.1).

The considerations presented for the Laplacian expressed in Section 7.3,
regarding the number of accurate frequencies, are extended for the structural
results: in this case it appears that eigenvalues related to a number of waves
nW ≤ N − 1 are acceptably captured (whereas modes related to a lower nW
show minimal errors). In addition, a key result concerns the application of the
Guyan’s reduction: in fact, in this case a negligible loss in accuracy is obtained
for the whole set of eigenvalues captured with the complete formulation,
despite having reduced by a factor 8 the total quantity of unknowns. Fig.
7.124 compares the Hermite 3rd order 8−node element with N = 4, in its
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complete and reduced formulation, with the Ansys Solid-Shell element with
N = 5, specific for this structures analysis. According to the preceding
discussion, the results are presented up to the [3, 3] eigenvalue. Note that,
the accuracy obtained is generally higher than that obtained with Ansys
(even though a finer mesh is used). Note also that, in this figure the Ansys
element has been used with 432 DOFs whereas the Hermite element reduced
with the Guyan’s technique has been used with 50 DOFs only.
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Figure 7.111: Hinged rectangular plate: λ[1,1] and λ[2,1] vs 1/NDOF
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Figure 7.113: Hinged rectangular plate: λ[3,1] and λ[1,3] vs 1/NDOF
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Figure 7.115: Hinged rectangular plate: modes with Hermite 3rd order (and
with N = 2)
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Figure 7.116: Zoom of Fig. 7.115
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Figure 7.117: Hinged rectangular plate: modes with Hermite 3rd order (and
with N = 3)
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Figure 7.118: Hinged rectangular plate: eigenvalues with Hermite 3rd order
(and with N = 3)



7.4 Structures 151

[1,1] [2,2] [3,3] [4,4] 

0 

0,18 

0,36 

0,54 

0,72 

0,9 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1-
zT

iM
y i 

i 

Hermite III (N = 4) 

Figure 7.119: Hinged rectangular plate: modes with Hermite 3rd order (and
with N = 4)
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Figure 7.120: Hinged rectangular plate: eigenvalues with Hermite 3rd order
(and with N = 4)
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Figure 7.121: Hinged rectangular plate: modes with Hermite 3rd order (and
with N = 8)
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Figure 7.122: Hinged rectangular plate: eigenvalues with Hermite 3rd order
(and with N = 8)



7.4 Structures 153

1 
[1,1] 

4 
[2,2] 

9 
[3,3] 

16 
[4,4] 

25 
[5,5]     

0 

0,64 

1,28 

1,92 

2,56 

3,2 

λ i
 

i 

Hermite III (N=4) 
Hermite III Guyan1 (N = 4) 
Exact solution 

Figure 7.123: Hinged rectangular plate: eigenvalues with Hermite 3rd order
and Guyan (N = 4)
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Figure 7.124: Hinged rectangular plate: eigenvalues with Hermite 3rd order
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Figure 7.125: Hinged rectangular plate: modes with Hermite 3rd order and
Guyan (N = 6)
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Figure 7.126: Hinged rectangular plate: eigenvalues with Hermite 3rd order
with Guyan (N = 6)
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Figure 7.127: Hinged rectangular plate: modes with Hermite 3rd order and
Guyan (N = 9)
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Figure 7.128: Hinged rectangular plate: eigenvalues with Hermite 3rd order
with Guyan (N = 9)
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7.4.4 From 2−D plate theory to a 3−D continuum

Consider a rectangular plate of sides a and b and thickness h, hinged at
its edges. The modal shapes related to the [m,n] eigenfunction for the re-
lated two–dimensional problem are given by, indicating with ū the vertical
displacement (of such a simplified model):

ū = ū(x, y) = sin
mπx

a
sin

nπy

b
(7.11)

The objective of this subsection is to describe the procedure to transform the
surface ū = ū(x, y) in a three–dimensional vector function u = u(x, y, z).

Note that, in this thesis no shell elements have been introduced and hence
no two–dimensional formulations are required, since shell–like structures are
treated as three–dimensional objects. For this reason, the three–dimensional
form of Eq. 7.11 has been used to obtain a reference eigenfunction in eval-
uating the accuracy of the methodology in capturing structural modes (see
results obtained in Subsection 7.4.3). In particularm, since a single element
along the thickness h is used to model any thin structures, for a 8−node
formulation one has to determine the function u = u(x, y,±h

2 ).

Indicate with xu and xd the undeformed configuration and the modal
shape (related to the mode [m,n]) and consider the following notations:

Smx = sinmπ
x+ 1

2
and Cmx = cosmπ

x+ 1
2

Sny = sinnπ
y + 1

2
and Cny = cosnπ

y + 1
2

One has, using the local coordinates ξ, η, ζ ∈ [−1, 1]:

xu = xu(ξ, η, ζ) =

a(ξ + 1)/2
b(η + 1)/2

0

+ ζ

0
0
1

 (7.12)

xd = xd(ξ, η, ζ) =

a(ξ + 1)/2
b(η + 1)/2
SmξSmη

+ ζ

nξnη
nζ

 (7.13)

Within the hypothesis of linear displacement, Eq. 7.13 can be rewritten as

xd = xd(ξ, η, ζ) =

a(ξ + 1)/2
b(η + 1)/2
SmξSnη

+ ζ

nξnη
1

 (7.14)
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Then, denoting with u the (linearized) displacement vector such that
u = xd − xu, one obtains:

u = u(ξ, η, ζ) =

 0
0

SmξSnη

+ ζ

nξnη
0

 (7.15)

In order to define the normal unit vector n = n(ξ, η), we determine the
two base vectors aξ = aξ(ξ, η) and aη = aη(ξ, η). It results:

aξ = aξ(ξ, η) = ∂xd/∂ξ =

 a
0

S′mξSnη

 (7.16)

aη = aη(ξ, η) = ∂xd/∂η =

 0
b

SmξS
′
nη

 (7.17)

n =
aξ × aη
‖aξ × aη‖

=

nξnη
nζ

 =
1√
A

−bS′mξSnη−aSmξS′nη
1

 (7.18)

where

A = b2S′2mξS
2
nη + a2S2

mξS
′2
nη (7.19)

and ζ = ±h/2. One obtains for the displacement:

u =

 0
0

SmξSnη

+ ζ

nξnη
0

 =

 0
0

SmξSnη

± h/2√
A

−bS′mξSnη−aSmξS′nη
0

 (7.20)

For example, in order to use the 3rd order 8−node Hybrid element, one
needs to recast the corresponding set of parameters, that is the function and
the three partial derivatives. Specifically, one has:

∂uξ
∂ξ

(ξ, η) = ±h
2
a2bm2n2π4

C2
nηSmξSnη

2A3/2

∂uη
∂ξ

(ξ, η) = ∓h
2
ab2m3nπ4

S2
nηCmξCnη

2A3/2

∂uζ
∂ξ

(ξ, η) = S′mξSnη

(7.21)
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∂uξ
∂η

(ξ, η) = ∓h
2
a2bmn3π4

S2
mξCmξCnη

2A3/2

∂uη
∂η

(ξ, η) = ±h
2
ab2m2n2π4

C2
mξSmξSnη

2A3/2

∂uζ
∂η

(ξ, η) = SmξS
′
nη

(7.22)

If the Hermite 3rd order 8−node element is used, it is apparent that one
needs also the second mixed derivatives and the third mixed derivative. For
higher–order schemes, higher–order derivatives are required.

7.5 Block–boundary problem: Scheme C

In order to validate the Scheme C introduced in Section 2.4, a thin square
plate, free at its boundaries, is initially considered. Here, the plate is artifi-
cially divided into two halves, and each of the two resulting plates is treated
as a different block. Thus, for the same plate we can use three schemes: (a)
Scheme A (i.e., that used in the preceding section), (b) Scheme B (in which
each element is considered as a separate block), and (c) Scheme C in which
each of the two portion is treated as a separate block. As a preliminary re-
sult, the first twenty frequencies obtained using the three different schemes
are presented in Fig. 7.129. In this figure, Kode 0−0 denotes Scheme A for all
the plate (this is the same approach used in the preceding sections), whereas
Kode 1− 0 and Kode 1− 1 denotes Scheme C and Scheme B, respectively.

Next, consider a rectangular plate, free at its boundaries, of edges a = 1,
b = 2 and thickness h = 0.01. As a Scheme A, the structure is divided in
N × 2N × 1 elements, so that to have square elements of size hN = 1/N .
Instead, as a Scheme C, the plate has been divided in two square halves of
side 1, on their turn subdivided in N ×N × 1 elements.

Figures from 7.130 to 7.134 depict the h–convergences for the first five
eigenvalues in terms of the number of elements N (the images on the left) and
of the total number of unknowns NDOF (the image on the right), using both
Schemes A and C and comparing the results with the new Ansys Solid-Shell
element, specific for thin-wall structure analyses. It appears that the results
obtained are still better than those obtained with Ansys.

In Figures from 7.135 to 7.137, Scheme C has been assessed for acoustics.
Specifically, consider a parallelepiped cavity of sides a = 2π and b = c = π .
Similarly to the structural approach, for Scheme A a mesh of 2N × N × N
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elements has been generated, so that to obtain cubic elements of size hN =
π/N . On the other hand, for Scheme C the plate has been divided in two
blocks, on their turn sub-divided in N × N × N elements. Now a exact
solution is available (indeed, one has µmnp = ω2

mnp = (m/2)2 + n2 + p2 if
the speed of sound cs = 1, see Section 7.3). Thus the error e[m,n,p] will
be showed, since the analysis is now limited to eigenvalues. In particular,
the first three eigenvalues (i.e., those related to [1, 0, 0], [1, 1, 0] and [1, 1, 1]),
evaluated using both Scheme A and Scheme C. Note that, in this case, the
interface presents (N + 1)2 nodes (that are the nodes for which the Scheme
C must be applied) whereas, for the preceding plate, Scheme C applies only
to 2(N + 1) nodes. Therefore, the penalization is expected to be higher for
the 3–D acoustic domains than that obtained for thin structures domains.

Figure 7.129: Free square plate: Schemes A, B and C
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Figure 7.130: Free rectangular plate: λ1 with Scheme C
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Figure 7.131: Free rectangular plate: λ2 with Scheme C
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Figure 7.132: Free rectangular plate: λ3 with Scheme C
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Figure 7.133: Free rectangular plate: λ4 with Scheme C
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Figure 7.134: Free rectangular plate: λ5 with Scheme C

Figure 7.135: Rectangular cavity: e[1,0,0] with Scheme C
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Figure 7.136: Rectangular cavity: e[1,1,0] with Scheme C

Figure 7.137: Rectangular cavity: e[1,1,1] with Scheme C
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Chapter 8
Test cases

In this chapter applications of the proposed methodology to various problems
are presented. Specifically, the chapter is structured in three sections.

First, Section 8.1 is dedicated to a comparison with the work presented
in[1] by G. C. Provatidis. Specifically, in this section it is wanted to prove the
effectiveness of the proposed Hybrid methodology and its advantages above
the Coons’ Macroelements introduced in.[1]

Section 8.2.1 regards curved domains in interior acoustics. Specifically, it
concerns the problem of the air vibrating inside a cylindrical volume.

Section 8.3.1 pertains the modal analysis of a very simplified wing–box.
The aim is to assess the performance of the proposed methodology for more
complicated geometries. Preliminary results concerning this problem have
just been presented in.[7]

8.1 Comparisons with the literature

In this section a rectangular acoustic cavity of dimensions a = 2.5 m, b =
1.1 m and c = 1 m with a speed of sound cs = 1 m/s is considered. The
problem of the air vibrating inside this domain is the same that has been
investigated by C. G. Provatidis in,[1] used to assess the validity of the so
called Coons’ Macroelement. Specifically, this is a brick element with nodes
arranged only along the twelve edges and not throughout the volume (as
the proposed Hermite or Hybrid bricks) or throughout the boundary (as
the most conventional finite elements). In this element, the cubic B–Spline
interpolation is used for the potential velocity.

The analysis proposed in[1] has been repeated here and the errors related
to the eigenvalues with respect to the exact ones (that are given by Eq. 7.10 at
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the beginning of Section 7.3) has been compared with those presented by the
author. The analysis regards only the 8 eigenvalues which results are available
in the work of Provatidis. Specifically, the eigenvalues treated are those re-
lated to the [0, 0, 0], [1, 0, 0],[0, 1, 0],[0, 0, 1],[1, 1, 0],[1, 0, 1],[2, 0, 0],[3, 0, 0] modes.
In figures, the Coons Macroelement will be referred to as the Provatidis El-
ement.

Figure 8.1 shows the relative error (per cent) for each of the above men-
tioned eigenvalues, as evaluated in[1] as well as obtained using a Hybrid 3rd
order formulation. The Coons Macroelement is chosen with a total number
of nodes n = 76 whereas the Hybrid element has been used with n = 27, 64
(that correspond to N = 2, 3 elements in each direction respectively). Ac-
cording to the validation analysis presented in Subsection 7.3.6, the [m,n, p]
eigenvalue for the Hybrid 3rd order 8−node element is considered acceptably
accurate only if m,n, p ≤ N , where N is the number of subdivisions. Thus,
the error for the last eigenvalue (i.e., that related to the [3, 0, 0] mode) is
not considered for the Hybrid with n = 27 nodes (since it corresponds to a
mesh of N = 2). For the set of results showed, it appears that, even though
the Hybrid has been applied with less nodes, the relative errors are gener-
ally much lower. Table 8.1 contains the numerical results depicted in the
preceding figure.

The Coons Macroelement uses a cubic B–Spline interpolation and needs
the potential velocity as nodal unknown whereas the Hybrid uses the three–
dimensional extension of the Coons Patch of Section 4.4 and uses 4 nodal
unknowns. Since the amount of nodal unknowns is different in these two
elements, the results should be showed also as a function of 1/NDOF . This
is shown in Figs. 8.2 and 8.3 that depict the relative error (per cent) as a
function of the degrees of freedom, for the eigenvalues related to the two sets
J1 = {[1, 0, 0]; [0, 1, 0]; [0, 0, 1]} and J2 = {[1, 1, 0]; [1, 0, 1]}. In particular,
they show the superiority of the Hybrid over the Coons Macroelement also
using less unknowns and hence, a minor computational effort.
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Figure 8.1: The Hybrid 3rd order 8−node vs the Provatidis Element

[m,n, p] µ[m,n,p]
er[m,n,p] (×100)

Macroelement (n = 76) Hybrid III (n = 27) Hybrid III (n = 64)
[0, 0, 0] 0 0 0.00 0.00
[1, 0, 0] 1.579 0.04 0.01 0.00
[0, 1, 0] 8.157 0.31 0.01 0.00
[0, 0, 1] 9.870 0.31 0.01 0.00
[1, 1, 0] 9.736 0.56 0.29 0.03
[1, 0, 1] 11.449 0.55 0.29 0.03
[2, 0, 0] 6.317 0.15 0.10 0.09
[3, 0, 0] 14.212 0.29 − 0.11

Table 8.1: Relative errors (per cent) of Fig. 8.1
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8.2 Acoustics 169

8.2 Acoustics

8.2.1 Cylindrical cavity

The proposed methodology has been applied to interior acoustics of curved
volumes, such as cylindrical geometries. Specifically, the cylindrical cavity
chosen has inner radius Ri = 1 and outer radius Ro = 32 , with a length
` = 4 (along the z–axis) and an angle of π. For simplicity, a speed of sound
cs = 1m/s has been considered. The geometry has been meshed with an
equal number of elements N along each direction (that now are r, θ and z

of a cylindrical frame of reference). Since the geometry has been generated
through the use of a single block, no block–boundary problem has to be
managed. The Hermite 3rd order 8 node brick element has been used for the
modal analysis.

The h–convergences for the first six eigenvalues are presented in Figs.
from 8.4 to 8.9. In these images, those on the left represent the evaluated
eigenvalues as a function of the number of elements N whereas those on the
right depict the evaluated eigenvalues as a function of the total degrees of
freedom NDOF . The results obtained are compared with those related to the
Ansys Fluid 30 element, specific for acoustic applications.

Results include the application of a reduction technique. Specifically,
according to the results of Subsection 7.3.9 for acoustics applications, the IRS
extension of the classical Guyan’s reduction is used here. The left–side images
reveal that the accuracy obtained with the reduced formulation is comparable
with that related to the complete scheme, for a given subdivision N , even
though the unknowns are reduced here by a factor 8 (all the derivatives
are in fact considered as slave variables). This advantage is clearly shown
in the right–side images, which reveal the better accuracy of the reduced
formulation with respect to the complete one, as a function of the quantity
of unknowns (and hence, as a function of the computational effort).
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Figure 8.4: Cylindrical cavity: λ1 vs 1/N and vs 1/NDOF
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Figure 8.5: Cylindrical cavity: λ2 vs 1/N and vs 1/NDOF
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Figure 8.6: Cylindrical cavity: λ3 vs 1/N and vs 1/NDOF
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Figure 8.7: Cylindrical cavity: λ4 vs 1/N and vs 1/NDOF
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Figure 8.8: Cylindrical cavity: λ5 vs 1/N and vs 1/NDOF
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Figure 8.9: Cylindrical cavity: λ6 vs 1/N and vs 1/NDOF
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8.3 Structures

8.3.1 Simplified wing–box

Finally, in order to assess the method for relatively complex structures, con-
sider the results for a simplified rectangular cross–section wing box model,
that is, an aluminum (E = 70GPa, ν = .35, ρ = 2.7Kg/dm3) structure,
with no ribs, no spars, no stringers, and with uniform thickness τ = .005m.
The structure has height = 1.0m, width = 2.0m, and length = 5.0m. This
study has been preliminary addressed in the past and a first set of results is
addressed in.[7]

Figure 8.10: Simplified wing–box: lay–out

The structure is conceived as a combination of 8 blocks (i.e., four blocks to
describe the faces plus the four blocks to define the edges); hence, the block–
boundary nodes problem of Section 2.3 may be considered. To avoid this
issue a Hybrid third–order element is used along with its reduced formulation.
Since the problem is purely structural, the reduction is accomplished using
the standard Guyan’s technique.

The results are presented in Figures from 8.11 to 8.15, which depict the
five lowest bending frequencies ωi expressed in Hertz. In the images on the
left, the frequencies are presented as functions of 1/N whereas in those on
the right they are depicted as functions of 1/NDOF . The left set of figures
shows the negligibility of the loss in accuracy obtained applying the Guyan’s
reduction to all the nodal derivatives (the reduction factor here is hence of
1:4). The overall results indicate that the accuracy of the reduced Guyan ele-
ment is comparable to that of the Hybrid third–order element in its complete
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formulation. The results are compared with those obtained using a Solid 186
element of Ansys, that is a 20 node brick with quadratic shape functions.
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Figure 8.11: Simplified wing–box: ω1 vs 1/N and vs 1/NDOF
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Figure 8.12: Simplified wing–box: ω2 vs 1/N and vs 1/NDOF
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Figure 8.13: Simplified wing–box: ω3 vs 1/N and vs 1/NDOF
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Figure 8.14: Simplified wing–box: ω4 vs 1/N and vs 1/NDOF
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Figure 8.15: Simplified wing–box: ω5 vs 1/N and vs 1/NDOF



Chapter 9
Concluding remarks

On the basis of the formulations proposed and considering the results pre-
sented, final considerations are in order.

To begin with, consider the 3rd order 8−node Hybrid element. In such a
formulation, all the monomials ξpηqζr with p+ q + r ≤ 3 are included in the
shape functions. Hence, the scheme is of order three as it is for the Hermite
scheme, even though half nodal unknowns are required. Same considerations
hold for the Hybrid 7th order with respect to the Hermite 7th order (in this
case one has a total of 256 unknowns for the Hybrid element vs 512 of the
Hermite one). It means that, with a Hybrid formulation, one can reach the
same (or a quite close) accuracy with half unknowns and hence, with a less
computational effort. This is a first advantage of the Hybrid formulation (in
both WIP and WEP configuration)

In addition, for the Hybrid 3rd order 8−nodes and for the Hybrid 5th
order 27−nodes, only the nodal values of the function and of its three first–
order partial derivatives are required to define the element geometry and the
function (isoparametric formulation).

Thus, the key advantage of the WIP Hybrid elements is that they are
exempt from the block–boundary problem, that affects the WEP schemes in
case of discontinuous base vectors (see Section 2.3).

Hence, the goal of implementing an effective high–order elements based
upon the Hermite interpolation is considered reached, at least in the sense of
a first step toward the development of a FEM tool, to be efficiently used for
acoustic design.

Of course, the WEP p−th order element provides an interpolation that
is of class Cp (continuous with its derivatives up to the order p), whereas the
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WIP element of same order, which is of class Cp within the element, is only
of class C1 at the boundary between elements (however, this implies minimal
penalization). Furthermore, a large percentage of the nodal unknowns in a
WEP formulation are related to the derivatives. To be specific, for a WEP
Hermite scheme of order p one has (p+1)3/8 nodal unknowns, one of which is
related to the function and the other 1−8/(p+1)3 related to the derivatives.
Similarly, for a WEP Hybrid scheme, one has (p+ 1)3/16 nodal unknowns (a
half of the WEP Hermite), of which 1− (p+ 1)3/16 are derivatives. Instead,
for a WIP Hybrid formulation only half unknowns are related to the (first)
derivatives. This implies that the reduction of order, when applicable, is
more effective when used on a WEP Hermite scheme.

The choice between the Hybrid schemes and the Hermite schemes depends
upon both the complexity of the domain and the accuracy needed. A WIP
Hybrid scheme leads to a very effective element in terms of user–friendliness.
On the contrary, the WEP formulation, even though highly–accurate (class
Cp at the interfaces) is quite more cumbersome to implement and, above
all, affected by the block–boundary problem when the geometry presents
discontinuous base vectors.

A final consideration about the future work required. As a first step,
applications to various realistic coupled (fluid–structure) problems should be
performed (also evaluating the possibility of parallel calculus). In particular,
the noise generated by the turbolent boundary layer and the interior acoustic
comfort may be studied. Also, the extension to dynamic problems may be
analyzed. Also, it should be necessary to extend the possibility of analysis. In
particular, it may be included in the code the possibility of having a certain
acoustic impedance as well as different material models for the structural
modeling. Then, dynamic analysis as well as harmonic response analysis of
coupled systems may be performed.



Part III

Appendix





Appendix A
Interior acoustics – structural dynamics

coupling

In this section the interaction between the dynamic of the air vibrating inside
a cavity and the dynamics of the elastic structure that surrounds it is formu-
lated and used in very simple test cases. Specifically, in Subsection A.1 the
problem is formulated in terms of the displacement and the pressure whereas
in Subsection A.2 an approach in terms of the displacement and the potential
velocity is given.

A.1 Pressure–displacement formulation

The interaction between the dynamic of the fluid inside a cavity and that of
the structure that surround it, can be formulated in terms of the displacement
field u and of the pressure p. Consider an acoustic domain D

A
surrounded by

a structural domain D
S
, such that Ω is the interface surface between the two

adjacent domains (i.e., Ω = ∂D
A

= ∂D
S
). In this case, one has the governing

equations given by:

ρ
S
ü (x

S
, t) + L

S
u (x

S
, t) = f (x

S
, t) x ∈ D

S

1
c2
s

p̈ (x
A
, t)−∇2p (x

A
, t) = 0 x ∈ D

A

(A.1)

where ρ
S

is the density of the elastic structure (assumed to be homogeneous in
D

S
) and u = u (x

S
, t) is the 3−D displacement function whereas p = p (x

A
, t)

is the pressure field. Boundary conditions have to be imposed. For the force
f = f (x

S
, t) assume that,

f = p n (A.2)
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where n = n (x
S
, t) is the normal unit vector at the interface fluid–structure.

Considering Eqs. 2.4 and 2.5 and indicating with Ψn = Ψn(ξα) and χn =
χn(ξα) the shape functions used to interpolate the displacement and the
pressure respectively, one has:

u =
∑
n

unΨn and p =
∑
n

pnχn (A.3)

Using Eq. A.3 in a Galerkin approximation of Eqs. A.1, the first equation of
Eqs. A.1, expressed in frequency, becomes

− ω2M
S
u + K

S
u = Rp (A.4)

where M
S

and K
S

are the structural mass and stiffness matrices introduced
in Section 6.2 whereas R = [rmn] is given by

rmn =
∫

Ω
Ψm(ξα) · n χn(ξα) dΩ. (A.5)

having indicated with Ω the fluid–structure interface (that is a surface for
three–dimensional domains).

Next, in view of the use of the second equation of Eqs. A.1, consider the
acoustic boundary condition of impermeable wall1

∂p

∂n
= ρ

A
ü · n x ∈ Ω (A.6)

Introduce a function δ = δ(x
A
) such that:

δ(x
A
) = 0 x

A
∈ D

A
and lim

x
A
→ Ω

δ(x
A
) = 1 (A.7)

The second equation of Eqs. A.1 can be rewritten, taking into the domain D
A

the condition at the boundary Ω of Eq. A.6 through the function δ = δ(x
A
)

of Eq. A.7, as:

1
c2
s

p̈ (x
A
, t)−∇2p (x

A
, t) = ρ

A
ü · n δ x ∈ D

A
(A.8)

Similarly to the discretization approach used for the first equation of Eqs.
A.1, one has:

− ω2M
A

p + K
A

p = −ω2RTu (A.9)

1Equation A.6 can be explained considering that p = ϕ̇ and ∇ϕ = u̇. In fact, ∂p
∂n

=
∂
∂n

(ρA ϕ̇) = ρA

∂ϕ̇
∂n

= ρA
∂
∂t
∂ϕ
∂n

= ρA
∂
∂t
∇ϕ · n = ρA ü · n.
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In summary, one has for the discretization of the problem given by Eqs.
A.1 the following coupled system

−ω2M
S
u + K

S
u = Rp

−ω2M
A

p + K
A

p = −ω2RTu
(A.10)

that can be rewritten as
−ω2Mz + Kz = 0 (A.11)

with

mmn =
[

MS 0
−RT MA

]
and kmn =

[
KS R
0 KA

]
(A.12)

where now zT = [zT
Sn
, zT
An

] is the vector of the unknown nodal values referred
to the coupled system (structure and air). The meaning of the matrix R in
equation A.12 is that of a structure/air coupling.

A.2 Potential velocity–displacement formulation

The interaction between the dynamic of the fluid inside a cavity and that
of the structure that surround it, can be also formulated in terms of the
potential velocity ϕ.

The formulation in terms of the velocity potential ϕ is immediately given
from Subsection A.1, once considered that p = ϕ̇ and ∇ϕ = u̇. In particular,
one obtains:

− ω2Mz + iωGz + Kz = 0 (A.13)

where again zT = [zT
Sn
, zT
An

] is the vector of the unknown nodal values referred
to the coupled system (structure and air), whereas the mass and stiffness
matrices are respectively given by M = [mmn] and K = [kmn], with

M =
[

M
S

O
O M

A

]
K =

[
K

S
O

O K
A

]
(A.14)

In addition, it may be shown that the coupling is expressed through an
antisymmetric matrix G and hence it is of gyroscopic nature. Specifically, we
have G = [gmn] with:

G =
[

O R
−RT O

]
(A.15)
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R = [rmn] is the gyroscopic coupling matrix, that has been introduced in Eq.
A.5 of the preceding subsection.

In order to solve the linear system of Eq. A.13, consider the transforma-
tion

iωz = x (A.16)

Eq. A.13 may be rearranged in a first–order system as:{[
O −I
K G

]
+ iω

[
I O
O M

]}[
z
x

]
=
[

O
O

]
(A.17)

Then, left–multiplying the first set of equations by iK, one obtains:{[
O −iK
iK iG

]
− ω

[
K O
O M

]}[
z
x

]
=
[

O
O

]
(A.18)

Let

A =
[

O −iK
iK iG

]
; B =

[
K O
O M

]
and y =

[
z
x

]
(A.19)

so as Eq. A.18 can be written as (A− ωB)y = 0. Note that A is Hermitian,
since G is antisymmetric (and clearly, K is symmetric)2 whereas B is a real
symmetric, positive definite matrix; hence the eigenvalues are expected to be
real.

2In fact, since GT = −G and KT = K, one has

AT =

[
O iKT

−iKT iGT

]
=

[
O iK
−iK −iG

]
= A∗

being A∗ the complex conjugate of A.



Appendix B
An algorithm for geometry generation

Here, a user–friendly algorithm that allows one to generate a block, starting
from the description of the twelve edges is presented. Indeed, the geometry
preprocessor may be conceived as a collection of blocks as it is simpler and
clearer to talk about the ‘edge of the block’, rather than the ‘values of the
unknown function along the edge of the brick’. These blocks would then
constitute the building blocks of a geometry processor for complicated sur-
face geometries. The starting point is the generation of the six surfaces. For
this, an extension of the Coons patch[9] has been used (see also the work of
Paoluzzi[18]). The extension is motivated by the desire to have, at the bound-
aries, a continuous normal, at least for those patch surfaces that constitute
the boundary of the overall geometry.

The objective is obtained in two steps. In the first one, the basic surface
(i.e., the surface that goes through the edges, without imposing the condition
on the normal at the boundary), which consists of a Coons patch, has been
defined. This is presented in Section B.1, which is basically a review the
Coons patch formulation. In order to avoid slope discontinuities between
adjacent patches, we impose an additional condition on the normal at the
patch boundary. The resulting surface is referred to as the “continuous–
normal surface”, the continuity of the normal being understood at the patch
boundary (Section B.2). Finally, one can use the three–dimensional extension
of the Coons patch (see Section 4.3) to build a block, starting from the six
boundary surfaces thereby obtained.

B.1 The basic surface: a Coons patch

Consider the Coons patch defined in Section 4.2. We assume the functions
x1(η), x2(ξ), x3(η), x4(ξ) to be prescribed and we want to obtain a surface
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having these lines as edges. The function x0(ξ, η), which describes the basic
surface, is a Coons patch, therefore

x0(ξ, η)

=
1 + ξ

2
x1(η) +

1 + η

2
x2(ξ) +

1− ξ
2

x3(η) +
1− η

2
x4(ξ)

− 1 + ξ

2
1 + η

2
x++ −

1 + ξ

2
1− η

2
x+− −

1− ξ
2

1 + η

2
x−+ −

1− ξ
2

1− η
2

x−−
(B.1)

For future reference we introduce the base vectors of the patch

a01(ξ, η) :=
∂x0

∂ξ
and a02(ξ, η) :=

∂x0

∂η
, (B.2)

and its normal

n0(ξ, η) =
a01 × a02

‖a01 × a02‖
. (B.3)

To be specific, we have

a01(ξ, η)

=
1
2
x1(η) +

1 + η

2
x′2(ξ)− 1

2
x3(η) +

1− η
2

x′4(ξ)

− 1 + η

2

x
++
− x

−+

2
− 1− η

2

x
+−
− x

−−

2
a02(ξ, η)

=
1 + ξ

2
x′1(η) +

1
2
x2(ξ) +

1− ξ
2

x′3(η)− 1
2
x4(ξ)

− 1 + ξ

2

x
++
− x

+−

2
− 1− ξ

2

x
−+
− x

−−

2

which may be used to evaluate n0(ξ, η) according to Eq. B.3.

B.2 The continuous–normal surface

Next, as mentioned above, we impose normal continuity between adjacent
patches (using the procedure illustrated below). The resulting surface is
denoted as the “continuous–normal surface”. We seek for a surface described
in the form

x(ξ, η) = x0(ξ, η) + ζ(ξ, η)n0(ξ, η) (B.4)

where the function ζ(ξ, η) is to be determined. To begin with, ζ(ξ, η) = 0
must be imposed at the patch boundary, so as not to alter the boundary
itself.
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Next, we want to impose that the surface x = x(ξ, η) assumes a prescribed
normal n at the boundary. Hence, n(±1, η) and n(ξ,±1) are assumed to be
known. In order to do this, note that the base vectors of the continuous–
normal surface are given by

a1(ξ, η) :=
∂x(ξ, η)
∂ξ

= a01 +
∂ζ

∂ξ
n0 + ζ

∂n0

∂ξ

a2(ξ, η) :=
∂x(ξ, η)
∂η

= a02 +
∂ζ

∂η
n0 + ζ

∂n0

∂η
.

(B.5)

In order for the surface to assume the prescribed normal n at the edges 1 or
3 (i.e., for ξ = ±1), it is sufficient to impose that

a1 · n = 0 (ξ = ±1). (B.6)

This yields, recalling that ζ = 0 along the boundary and using Eq. B.5,

a01 · n +
∂ζ

∂ξ
n0 · n = 0 (ξ = ±1) (B.7)

Similarly, for the boundaries 2 and 4,

a02 · n +
∂ζ

∂η
n0 · n = 0 (η = ±1) (B.8)

Hence, we have

∂ζ

∂ξ

∣∣∣∣
ξ=±1

= − a01 · n
n0 · n

∣∣∣∣
ξ=±1

=: F±(η) (B.9)

∂ζ

∂η

∣∣∣∣
η=±1

= − a02 · n
n0 · n

∣∣∣∣
η=±1

=: G±(ξ) (B.10)

where F±(η) and G±(ξ) are known functions.
Recall that N±(α) (for α ∈ [−1, 1]) denotes the Hermite interpolation

polynomials connected to the derivatives (see Eq. 2.2 of Section 2.1), which
are such that N+(±1) = 0, N ′+(1) = 1, N ′+(−1) = 0 and N−(±1) = 0,
N ′−(1) = 0, N ′−(−1) = 1. We seek for a distribution ζ(ξ, η) of the type

ζ(ξ, η) = f+(η)N+(ξ) + f−(η)N−(ξ) + g+(ξ)N+(η) + g−(ξ)N−(η) (B.11)

which automatically satisfies the condition ζ = 0 at the boundary. Imposing
the conditions given in Eqs. B.9 and B.10, we have

∂ζ

∂ξ

∣∣∣∣
ξ=±1

= f±(η) + g′+(±1)N+(η) + g′−(±1)N−(η) = F±(η)

∂ζ

∂η

∣∣∣∣
η=±1

= g±(ξ) + f ′+(±1)N+(ξ) + f ′−(±1)N−(ξ) = G±(ξ)
(B.12)
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Next, note that the corner values of F ′±(η) and G′±(ξ) are not independent.
Indeed, using Eqs. B.9 and B.10, we have:

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=+1,η=+1

= F ′+(+1) = G′+(+1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=+1,η=−1

= F ′+(−1) = G′−(+1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=−1,η=+1

= F ′−(+1) = G′+(−1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=−1,η=−1

= F ′−(−1) = G′−(−1)

On the other hand, Eq. B.12 implies

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=+1,η=+1

= f ′+(+1) + g′+(+1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=+1,η=−1

= f ′+(−1) + g′−(+1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=−1,η=+1

= f ′−(+1) + g′+(−1)

∂2ζ

∂ξ∂η

∣∣∣∣
ξ=−1,η=−1

= f ′−(−1) + g′−(−1)

Thus, we have, for instance

g′+(1) = F ′+(+1)− f ′+(+1)

g′−(1) = F ′+(−1)− f ′+(−1)

and the first of Eqs. B.12 becomes

F ′+(η)

= f ′+(η) + (F ′+(1)− f ′+(1))N+(η) + (F ′+(−1)− f ′+(−1))N−(η)

or

F ′+(η)− F ′+(1)N+(η)− F ′+(−1)N−(η) = f ′+(η)− f ′+(1)N+(η)− f ′+(−1)N−(η)

which is satisfied by F+(η) = f+(η). Similar results are obtained from the
other equations. Thus, we have, finally (combining with Eq. B.11):

ζ(ξ, η) = F+(η)N+(ξ) + F−(η)N−(ξ) +G+(ξ)N+(η) +G−(ξ)N−(η) (B.13)
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with F±(η) and G±(ξ) defined in Eqs. B.9 and B.10. Once determined
ζ = ζ(ξ, η), combining with Eq. B.4 one obtains x(ξ, η), along with a1 and
a2 from Eqs. B.5 as well as n(ξ, η) from n(ξ, η) = a1 × a2/‖a1 × a2‖.

Next, recall that aα are given by Eqs. B.5. In order to make use of these
expressions, we need ∂ζ/∂ξ and ∂ζ/∂η as well as ∂n0/∂ξ and ∂n0/∂η. The
first two are obtained from Eq. B.5 which yelds

∂ζ

∂ξ
= F+(η)N ′

+
(ξ) + F−(η)N ′−(ξ) +G′

+
(ξ)N+(η) +G′−(ξ)N−(η) (B.14)

∂ζ

∂η
= F ′

+
(η)N+(ξ) + F ′−(η)N−(ξ) +G+(ξ)N ′

+
(η) +G−(ξ)N ′−(η) (B.15)

Therefore, we need F ′±(η) and G′±(ξ) which, according to Eqs. B.9 and B.10
are given by

F ′±(η) = − ∂

∂η

(
a01 · n
n0 · n

)∣∣∣∣
ξ=±1

= −
(a01 · n)/η(n0 · n)− (a01 · n)(n0 · n)/η

(n0 · n)2

∣∣∣∣
ξ=±1

G′±(ξ) = − ∂

∂ξ

(
a02 · n
n0 · n

)∣∣∣∣
η=±1

= −
(a02 · n)/ξ(n0 · n)− (a02 · n)(n0 · n)/ξ

(n0 · n)2

∣∣∣∣
η=±1

(B.16)

where

(a01 · n)/η =
∂a01

∂η
· n + a01 ·

∂n
∂η

(n0 · n)/η =
∂n0

∂η
· n + n0 ·

∂n
∂η

(B.17)

and

(a02 · n)/ξ =
∂a02

∂ξ
· n + a02 ·

∂n
∂ξ

(n0 · n)/ξ =
∂n0

∂ξ
· n + n0 ·

∂n
∂ξ

(B.18)

Note that n along the four edges is assumed to be prescribed. Hence, its
derivatives along the edges are prescribed as well. The only quantities that
are still missing are thereby ∂n0/∂ξ and ∂n0/∂η which are needed in Eqs.
B.17 and B.18 (as well as in Eqs. B.5, as mentioned above). We can obtain
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the ∂n0/∂ξ and ∂n0/∂η components from the fact that n0 · n0 = 1 and
n0 · a0α = 0.1 In particular, the former yields

∂n0

∂ξ
· n0 = 0

∂n0

∂η
· n0 = 0 (B.19)

whereas the latter yields

∂n0

∂ξ
· a01 = −n0 ·

∂a01

∂ξ
= −n0 ·

∂2x0

∂ξ2

∂n0

∂ξ
· a02 = −n0 ·

∂a02

∂ξ
= −n0 ·

∂2x0

∂ξ∂η

∂n0

∂η
· a01 = −n0 ·

∂a01

∂η
= −n0 ·

∂2x0

∂ξ∂η

∂n0

∂η
· a02 = −n0 ·

∂a02

∂η
= −n0 ·

∂2x0

∂η2

(B.20)

Finally, the expressions for ∂2x0/∂ξ
2, ∂2x0/∂ξ∂η and ∂2x0/∂η

2 are easily
obtained from Eq. B.1 (or more directly from Eq. B.4) as

∂2x0

∂ξ2
=

1 + η

2
x′′2(ξ) +

1− η
2

x′′4(ξ)

∂2x0

∂ξ∂η

=
x′1(η)− x′3(η)

2
+

x′2(ξ)− x′4(ξ)
2

− 1
4

(x++ − x+− − x−+ + x−−)

∂2x0

∂η2
=

1 + ξ

2
x′′1(η) +

1− ξ
2

x′′3(η)

(B.21)

Note again that x1(η),x2(ξ),x3(η),x4(ξ) are assumed to be prescribed along
the respective edge and hence their first and second derivatives are assumed
to be prescribed as well.

B.3 From surfaces to blocks

Finally, akin to Section 4.3, the function x(ξ, η, ζ), which describes the block
is obtained as the sum of three linear interpolations between opposite bound-
ary patches, minus the sum of three bilinear interpolations through parallel
edges, plus a trilinear interpolation through the eight vertices.

1This may be obtained from the fact that, for a generic vector v, we have v = v1a
1 +

v2a
2 + v3n where a1 and a2 are the so–called contravariant base vectors

a1 =
a2 × n

‖a1 × a2‖
and a2 =

a1 × n

‖a1 × a2‖

whereas vα = v · aα (α = 1, 2) and v3 = v · n.



Appendix C
Differential Geometry

In this Appendix, the problem of a layer that surrounds a surface has been
addressed. Of course, the general differential–geometry results obtained thus
far apply to this case as well. However, it is convenient to express them
explicitly for the case under consideration. Before considering the geometry
of a layer around a surface it is convenient to address the geometry of the
surface itself. This is done in Subsection C.1. Then, in Subsection C.2 we
address the differential geometry of a layer.

C.1 Differential geometry of a surface

Consider x = x(ξσ). If we assume ξ3 to be constant, say ξ3 = ξ3
∗ , this

mapping defines a surface – the coordinate surface ξ3 = ξ1
∗ . Specifically,

setting x(ξ1, ξ2, ξ3
∗) = p(ξ1, ξ2), we have that

x = p(ξ1, ξ2) (C.1)

defines a surface S.
In the following, we obtain some results, utilizing exclusively Eq. C.1.
We begin with the following

Definition C.1 (Covariant base vectors for a surface) The covariant base vec-

tors for the surface S defined by Eq. C.1 are given by1

aσ =
∂x
∂ξσ

(σ = 1, 2) (C.2)

1 An important notice on notations: in this section, the Greek subscripts σ, τ , and ρ
range from 1 to 2 (even when not explicitly stated), the others from 1 to 3.
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Note that aσ lie in the tangent plane to S at (ξ1, ξ2).2

The vector a1 × a2 is clearly normal to a1 and a2, and hence normal the
surface. Thus, the unit normal to the surface is given by

n =
a1 × a2

‖a1 × a2‖
(C.3)

Next, we introduce the covariant components of the surface metric tensor
(also referred to as the first fundamental quadratic form of the surface)

aστ = aσ · aτ (σ, τ = 1, 2) (C.4)

In addition, we may introduce the contravariant components of the metric
tensor, so that

aσρ aρτ = δτσ (σ, τ = 1, 2) (C.5)

which implies a11 = a22/a, a22 = a11/a, and a12 = a21 = −a12/a, where

a =
∣∣aστ ∣∣ = a11a22 − a2

12. (C.6)

The contravariant base vectors are defined by

aσ = aστ aτ (C.7)

Note that aσ also lie in the tangent plane to S at (ξ1, ξ2). Note also that

aσ · aτ = δτσ (σ, τ = 1, 2) (C.8)

as you may easily verify, by using Eqs. C.7 and C.5. Therefore, we have

a1 =
a2 × n
‖a1 × a2‖

a2 =
n× a1

‖a1 × a2‖
(C.9)

as you may easily verify from Eq. C.8, and using a1 × a2 · n = ‖a1 × a2‖
(from Eq. C.3).

In addition, we have

aσ · n = aσ · n = 0 (σ, τ = 1, 2) (C.10)

Thus, for any vector, v, we can write

v = vσ aσ + vn n = vτ aτ + vn n (C.11)

2 Note also the analogy with the base vectors gσ = ∂x/∂ξσ. Indeed, we have aσ =
gσ
∣∣
ξ3=ξ3∗

. A deeper analysis of this and similar issues is presented in the next subsection.
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where, using Eqs. C.8 and C.10 as well as Eq. C.4 and ‖n‖ = 1, we have

vσ = v · aσ = aστv
τ vτ = v · aτ = aτσvσ vn = v · n (C.12)

Next, consider the surface element, which is given by dS =
∥∥a1 dξ1×a2 dξ2

∥∥.
Note that, we have

‖a1 × a2‖2 = a1 · a1 a2 · a2 −
(
a1 · a2

)2 = a11a22 − a2
12 = a, (C.13)

Hence,

dS = ‖a1 × a2‖ dξ1 dξ2 =
√
a dξ1 dξ2 (C.14)

Also, consider the arclength of an element of a curve, which is defined
over the surface by x = x

(
ξ1(t), ξ2(t)

)
. We have

ds =
∥∥∥dx

dt

∥∥∥dt =
√
aστ ξ̇σ ξ̇τ dt (C.15)

where ξ̇σ = dξσ/dt.
Finally, consider the quantities

bστ :=
∂aσ
∂ξβ
· n =

∂2x
∂ξσ∂ξβ

· n (C.16)

Note that aσ · n = 0. Hence, ∂aσ/∂ξβ · n + aσ · ∂n/∂ξβ = 0. Therefore, we
have also

bστ = −aσ ·
∂n
∂ξβ

(C.17)

It is apparent that the quantities bστ are related to the curvature of the
surface. Thus, the tensor

B = bστ aσ ⊗ aτ = b τσ aσ ⊗ aτ = bστ aσ ⊗ aτ (C.18)

(where b τσ = bσρ a
ρτ and bστ = aσρ b τρ ) is called the curvature tensor.

C.2 Differential geometry for a layer

In this section, we study the differential geometry of a thin layer surrounding
a given surface, and described by

x(ξ1, ξ2, η) = p(ξ1, ξ2) + η n(ξ1, ξ2)
(
η ∈ [−δ/2, δ/2]

)
(C.19)
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where δ is the layer thickness, which is assumed to be sufficiently small so as
to avoid singularities (such as the crossing of η−lines).

Of course, we are now back to a three–dimensional continuum, as you
may easily convince yourself by setting η = ξ3. In particular, we have

g3 =
∂x
∂η

= n (C.20)

It is convenient to examine what happens in this case, because now the vector
g3 is orthogonal to g1 and g2.

In order to show this, we want to obtain the expression for the covariant
base vectors gσ. With this aim, we first derive the expression for ∂n/∂ξσ.
Note that n · n = 1, and hence ∂(n · n)/∂ξσ = 2n · ∂n/∂ξσ = 0. Therefore,
∂n/∂ξσ has zero component in the direction n. Thus, recalling Eq. C.17,
Eqs. C.11 and C.12 yield

∂n
∂ξσ

= −bστ aτ = −b τσ aτ (C.21)

with b τσ = bσρ a
ρτ . We are now in a position to evaluate gσ. From Eqs. C.19

and C.21, we have

gσ =
∂x
∂ξσ

=
∂p
∂ξσ

+ η
∂n
∂ξσ

= aσ − η b τσ aτ (C.22)

or

gσ =
(
δ τσ − η b τσ

)
aτ (C.23)

Note that gσ
∣∣
η=0

= aσ.
Note also that gσ · n = 0. Hence,

[
gαβ
]

=

g11 g12 0
g12 g22 0
0 0 1

 =
[
gβα
]

(C.24)

Note that

[
gαβ
]
η=0

=

a11 a12 0
a12 a22 0
0 0 1

 (C.25)

Moreover we have, using Eq. C.22,

√
g = J = g1 × g2 · n =

(
a1 − η bσ1 aσ

)
×
(
a2 − η bτ2 aτ

)
· n

=
[
1−

(
b11 + b22

)
η +

(
b11 b

2
2 − b21 b12

)
η2
]√

a (C.26)
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Similar results are obtained for the contravariant base vectors, gα, and
the contravariant components of the metric tensor, gαβ. In particular we
have

g3 = n. (C.27)

In addition, in analogy with Eq. C.9, we have

g1 =
1
√
g

a2 × n g2 =
1
√
g

n× a1 (C.28)

Note that the base vectors gσ and gσ are all perpendicular to the normal
n. Therefore, for any vector, v defined on the layer, we can write

v = vσ gσ + vn n = vτ gτ + vn n. (C.29)
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Appendix D
Moving the hinge of a hinged plate

A final consideration concern a strange phenomenon, totally unexpected, that
has been uncovered by examining the mode shapes of a square plate hinged
at its edges. Specifically, contrary to the expectations, the way in which the
boundary condition is implemented makes a big difference in the results for
the mode shape.

Consider the hinged square plate introduced in Section 7.4.3 (i.e., with
` = 1, h = 0.01, E = ρ = 1, and ν = .225).

For the sake of clarity, one may introduce a distinction between a simply–
supported plate and a hinged plate. In the first case, we naturally think of
the boundary condition, u = 0, as being imposed at the edge of the lower
surface of the plate, whereas in the hinged–plate boundary condition, the
hinge may be located anywhere between the upper and the lower surface.

If the hinge is located along the mid–surface, one obtains the expected
results, here proposed for the first mode, in FIg. D.1 (thus, this solution for
the constraints application has been considered throughout Section 7.4.3).

On the contrary, if a simply–supported boundary condition is imposed,
one obtains the results presented in Fig. D.2, which depicts the first mode, for
h/` = .01, and N = 8, 12, 14. It is apparent that the issue is not attributable
to lack of convergence.

What is even more startling is the fact that the results are independent of
the ratio h/`, as apparent from in Figure D.3, which depicts the first mode,
for h/` = .001, .01, .05, with N = 14.

Finally, Figs. from D.4 to D.6 depict higher modes (the second, the third
and the fourth) as obtained using a simply–supported boundary condition
with a subdivision of N = 6 for a Hermite 3–rd order 8 nodes.
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Figure D.1: Hinged plate: 1st mode (N = 6; h = .01)
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Figure D.2: Simply–supported plate: 1st mode (N = 8, 12, 14; h = .01)
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Appendix E
Reduced Order Model

A Finite Element reduction is a technique which is used in the dynamic
solution of very large problems (that is, with a large number of DOFS) to
reduce the computational efforts or when only a small percentage of the
frequency and mode shapes are desired. In particular, referring to the first
intent, because of the cost of generating computer solutions for a dynamic
analysis, it is often desirable to reduce the size of the problem by performing a
reduction on the mass and stiffness matrices of the governing set of equations
of motion. The well-known reduction proposed by Guyan[19] is the technique
used by most of the large structural codes.

Next sections have the aim to give the mathematical background of the
Guyan reduction technique,[19] as well as its basic extension proposed by
O’Callahan,[20] with reference to the pros and cons in relation to the present
work.

E.1 Guyan’s quasi–static reduction

Guyan reduction is essentially a substructuring method which reduces the
problem to a smaller one by relating certain degrees of freedom to certain
others by means of constraint equations, thereby reducing the size of the
problem. The first step in the method consists in the subdivision of the de-
grees of freedom between those to be retained and those to be eliminated.
The degrees of freedom that are retained in the final solution are called mas-
ters whereas those that are eliminated are named slaves and are associated
with large amounts of mass and inertia concentrations. Accuracy of the dy-
namic solution (natural frequencies and mode shapes) is largely dependent
on the selection of the master degrees of freedom both in terms of number
and direction.
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If no force is applied and the damping is negligible, the governing equation
of motion in frequency for the structure becomes

ω2Mx + Kx = 0 (E.1)

Pre–multiplying by x one obtains

ω2xTMx + xTKx = 0 (E.2)

According to the Guyan’s procedure, the unknowns in Equation E.2 can be
subdivided in the two sets: x1, that holds to the master degrees of freedom
and x2, that regards the slave degrees of freedom. Hence, one has the following
equation:

ω2
(
xT1 xT2

)(M11 M12

M21 M22

)(
x1

x2

)
+
(
xT1 xT2

)(K11 K12

K21 K22

)(
x1

x2

)
= 0

that is equivalent to the following two sets of equations:

ω2(xT1 M11x1 + xT1 M12x2) + (xT1 K11x1 + xT1 K12x2) = 0

ω2(xT2 M21x1 + xT2 M22x2) + (xT2 K21x1 + xT2 K22x2) = 0 (E.3)

Neglecting the inertia terms in the second set of Eqs. E.3, one has

xT2 (K21x1 + K22x2) = 0

that gives

x2 = −K−1
22 K21x1 = Tx1 (E.4)

Eq. E.4 relates, through the matrix T = −K−1
22 K21, the slave state variables

to the master ones. Hence, the complete vector of state variables can be
rewritten as:

x =
(

x1

x2

)
=
(

I
T

)
x1 = TGx1 (E.5)

where

TG =
(

I
T

)
(E.6)

The transformation matrix TG is used to rearrange the complete vector
of the state variables from the master sub–set (that is the only retained in
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the reduced formulation). The reduced mass and stiffness matrices are then
given by

MR = TTGMTG and KR = TTGKTG (E.7)

From a computational point of view, it is better to obtain the reduced ma-
trices explicitly, by using the partitions of them (defined preliminarly at the
beginning of the procedure and therefore available), in terms of masters and
slaves components. Considering that

MR = TTG

(
M11 M12

M21 M22

)
TG and KR = TTG

(
K11 K12

K21 K22

)
TG (E.8)

one has:

MR = M11 + M12T + TTM21 + TTM22T

KR = K11 + K12T + TTK21 + TTK22T (E.9)

Note that the symmetry of the reduced matrices MR and KR is ensured by
the symmetry of the complete matrices M and K. In fact, the terms M11, K11

and M22, K22 are symmetric. The terms M12T + TTM21 and K12T + TTK21

are also symmetric because M21 = MT
12 and K21 = KT

12.
Also, note that this technique has an error of order ω4. In fact one has,

from the second set of Eqs. E.3

x2 = −K−1
22

[
ω2M21x1 + ω2M22x2 + K21x1

]
(E.10)

Substituting Eq. E.10 in the first set of Eqs. E.3 that is hereafter rewritten

ω2(xT1 M11x1 + xT1 M12x2) + (xT1 K11x1 + xT1 K12x2) = 0

one obtains

ω2(xT1 M11x1 + xT1 M12

[
−K−1

22

[
ω2M21x1 + ω2M22x2 + K21x1

]]
) +

xT1 K11x1 + xT1 K12

[
−K−1

22

[
ω2M21x1 + ω2M22x2 + K21x1

]]
= 0

Substituting Eq. E.10 once again and neglecting those terms that are multi-
plied by ω4 one obtains ω2xT1 MRx1 + xT1 KRx1 = 0.

The Guyan’s method for matrix reduction is often called static since the
reduction equations are developed using only the stiffness matrix. Therefore,
the Guyan technique produces an exact reduction of the stiffness matrix but
only an approximate reduction of the mass matrix if any DOF with mass
are omitted. The loss of mass accuracy that is introduced using the Guyan
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reduction technique can sometimes be unacceptably large and improved tech-
niques are required. The solution to this issue has been deeply analyzed and
extensions of the Guyan’s technique have been developed (see, for instance,
Refs. [21] and [22]). One of the simplest modified version of the Guyan’s
technique is described in the following section.

E.2 O’Callaghan’s IRS technique

Any frequency response functions generated by the Guyan’s reduced matri-
ces of Eq. E.7 are exact only at zero frequency. As the excitation frequency
increases the inertia terms neglected in Eq. E.3 become more significant.
O’Callaghan[20] improved the static reduction method by introducing a tech-
nique known as the Improved Reduced System (IRS) method. The method
perturbs the transformation from the static case by including the inertia
terms as pseudo–static forces. Obviously it is impossible to emulate the
behaviour of a full system with a reduced model and every reduction trans-
formation sacrifices accuracy for speed in some way. O’Callaghan’s technique
results in a reduced system which matches the low frequency resonances of
the full system better than static reduction.

This section shows the fundamental mathematics of the IRS technique.
Use the Guyan’ subdivision in master and slave state variables itself. From
the second set of Eqs. E.3 one obtains(

K22 + ω2M22

)
x2 = −

(
K21 + ω2M21

)
x1

and

x2 = −
(
K22 + ω2M22

)−1 (
K21 + ω2M21

)
x1 (E.11)

Rearranging Eq. E.11 and using the Binomial Theorem gives:1

x2 = −K−1
22

(
I + ω2M22K−1

22

)−1 (
K21 + ω2M21

)
x1

= −K−1
22

(
I− ω2M22K−1

22 + o(ω4)
) (

K21 + ω2M21

)
x1

= −K−1
22

(
K21 + ω2M21 − ω2M22K−1

22 K21 + o(ω4)
)

x1

=
[
−K−1

22 K21 − K−1
22 ω

2
(
M21 −M22K−1

22 K21

)]
x1

Recalling that T = −K−1
22 K21, one has:

x2 =
[
T− K−1

22 ω
2 (M21 + M22T)

]
x1 (E.12)

1Recall that the Binomial Theorem can be used to manipulate the inverse of the sum
of two matrices A and B. It gives: (A + B)−1 = A−1 − A−1B(B + BA−1B)−1BA−1. Thus,(
I + ω2B

)−1
= I− ω2B + o(ω4).
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The first set of Eqs. E.3 can then be used to have:

ω2x1 = −M−1
11 K11x1 (E.13)

Substituting Eq. E.13 in Eq. E.12 one obtains:

x2 =
[
T + K−1

22 (M21 + M22T) M−1
11 K11

]
x1 = Sx1 (E.14)

Eq. E.14 relates, through the matrix S, the slave state variables to the master
ones. Hence, the complete vector of state variables can be rewritten as:

x =
(

x1

x2

)
=
(

I
S

)
x1 = TIRSx1 (E.15)

where

TIRS =
(

I
S

)
(E.16)

The transformation matrix TIRS now obtained, can used to rearrange
the complete vector of the state variables from the master sub–set (that, also
here, is the only retained in the reduced formulation). The reduced mass and
stiffness matrices are then given by

MR = TTIRSMTIRS and KR = TTIRSKTIRS (E.17)

It is apparent that the Guyan’s procedure and the IRS one are implemented
in the same way and that it is possible to shift from a technique to each
other just changing the transformation matrix to be used (i.e. TG that is the
Guyan’s one, defined in section E.1 and TIRS).

The method is also computationally effective, since it is generally more ac-
curate than Guyan. Nevertheless, some weaknesses have been proved (Gordis,
1992) like inaccuracy in case of a poor choice of the master unknowns. Also,
it has been proved (see the works of Gordis[23] and Friswell[21]) that the IRS
reduced stiffness matrix will be stiffer than the Guyan reduced matrix and
the reduced mass matrix is less suitable for othogonality checks than the
reduced mass matrix from Guyan reduction.

Finally, the combination of these two procedures has been revealed enough
accurate limiting to the scope of this work.
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