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Abstract 

 

Many of the components involved in postural control are not considered while studying the body sway, 

because classified as unchangeable. Moreover, the anteroposterior (AP) and mediolateral (ML) time series 

are usually studied separately. In this work of thesis we neglected those reductionist approaches, 

investigating two main features of the Center of Pressure (CoP): 

- The effect of the cognitive component of the subject on the postural sway 

- The dimensionality of the center of pressure, through a complex- and quaternion-based 

representation 

The knowledge of the effects of the mind activity on the sway is mandatory to be able to discriminate 

between mal engineered and proper records. In fact, the attention of the subject on his postural control 

modifies the features of the CoP signal, conditioning the results of the study. This effect was evaluated 

recurring to a time-fixed and a time-dependent study of several parameters. The calculations included the 

Hurst exponent, the Fuzzy Entropy, the Delay Vector Variance and the Recurrence Quantification Analysis. 

The problem of the parameter setting was deeply evaluated mixing those methodologies in a new way, and 

our case study in the comparison Open Eyes vs Closed Eyes was reported. 

The dimensionality problem arises to obtain a deeper understanding of the structure of the postural 

fluctuations. Indeed, in many case a multidimensional representation of the data achieves better results 

than a low-dimensional multivariate representation. We evaluated the complex nature of the AP and ML 

components. The complex representation allows the use of the information taken from one component to 

improve the understanding of the other. Because of the possibility that a part of the dynamical structure of 

the system is shared in both the open-eyes and closed-eyes conditions, we analysed also a quaternion-

based representation, joining AP and ML time series recorded in both the visual conditions. To compare the 

two mathematical models, the prediction gain of a M-step ahead predictor was used. The adaptive filters 

involved in the processing were the Complex LMS, the Quaternion LMS, and their augmented versions 

ACLMS and AQLMS, designed to take in account the non-circularity of the signal. 
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1. Introduction 

 

The upright stance of the human species is an ode to instability: without a balancing process, the body 

would fall owing to the force of gravity. The study of human postural control aim to improve the 

understanding of human balance and the evaluation and rehabilitation of individuals with balance 

disorders.  The regulation of balance is an activity important for everyday life, constituted by a complex 

multisensory feedback process, involving vestibular system, vision, and somatosensation. Many works are 

focused on the creation of models of the postural control (1), (2), (3).  

If the control process gets altered or impaired (by disease or natural degeneration due to aging, for 

instance) it can have a deleterious impact on balance. In (4) and (5) is presented a comparison between 

young and elderly reaction to mechanical stimuli during quiet stance. In (6) features characterizing patients 

recovering from stroke are investigated. Differences between parkinsonians and healthy subjects are 

outlined in (7), (8). In (9) vestibular impaired people are confronted with healthy subjects. 

Together with the physiological influences, it was showed that the consciousness of postural position can 

somehow modify the control procedure of the body, (6) and (10). 

The integrity of the postural control system is typically evaluated in two ways: (3) 

- static posturography, stabilogram and statokinesigram 

- dynamic posturography 

Dynamic posturography characterizes the performance of the postural control system by measuring the 

postural response to an applied or volitional postural perturbation, while static posturography 

characterizes the performance of the postural control system in a static position and environment during 

quiet standing.  

Usually, two variables are used to study those posturographies: 

- Center of Mass (CoM), the centroid of the mass elements (corporal segments) that constitute the 

body. It reflects the actual movements of those segments.  

- Center of Pressure (CoP), the centroid of the pressions applied by the feet surface that is in contact 

with the base of support. It is the point of application of the resulting force exchanged between the 

feet and the ground, reflecting the action of the muscular forces. The position of CoP determines 

the moment arm of the reaction force (Figure 1). 

Biomechanics studies discovered two types of mechanical control: 

- On the CoP, acting through the activation of the plantaflexor muscles and the dorsal flexor of the 

ankle. That is called ankle strategy, and it is usually used for small perturbations. 

- On the CoM, through the movement of the corporal segments, in particular of the trunk. That is 

called hip strategy, it is usually used for large perturbations. 

The CoP is analysed more often of the CoM, because the estimation of the latter one by posturographic 

data it is inaccurate. The accuracy depends on the knowledge of the anthropometric and inertial  
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parameters, on the error propagation of the measures and the validity of the hypothesis of the applied 

model. 

 

Figure 1 - CoP and CoM representations on a human body (3) 

 

To reduce the computational effort and simplify the analyses, usually the CoP is studied separating the 

signal in its components anteroposterior (AP) and mediolateral (ML). The bidimensional representation of 

the CoP is called statokinesigram, while the monodimensional representation of its components is called 

stabilogram (Figure 2). 

  

 
Figure 2 - Example of anteroposterior and mediolateral stabilograms (top), together with the relative statokinesigram (bottom) 
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Postural steadiness evaluations often include different experimental conditions, stimulating the senses or 

the mind activity of the examined subject. Usually, eyes-open and eyes-closed trials are used to estimate 

the role of the visual system in maintaining standing balance, (6),(10), (11), (12). The ratio of the eyes-

closed measure to the eyes-open measure is referred to as the Romberg ratio. In some cases, haptic 

support is given to the patients, or the natural position for standing is altered to see the different behaviors 

in the control process (13).  In most recent studies, also the effect of the mental activity on the CoP was 

studied (10). 

As reported in (3), it is possible to create a block diagram of the postural control to better understand the 

effect of different perturbations or impairment: 

 

Figure 3 - Control scheme of postural movements 

 

Thus, more into detail, the components that must be considered are: 

- Sensorial system: vestibular, somatosensory and visual. 

- Orientation perception: Midbrain, Thalamus, Paretal cortex 

- Predictive skill of the central nervous system (CNS)  

- Cognitive component of the CNS 

- Motor coordination  

- Biomechanics of the muscular-skeleton system: forces production and intensity scaling 

- Adaptation to the environment 

Usually, the vestibular system, together with the orientation perception, the predictive skills and the 

cognitive component of the CNS, the motor coordination and the biomechanics of the muscular-skeleton 

systems are considered to be unchanged during the posturography. Somatosensory and visual systems are 

the only ones that are considered time-dependent, depending on the specific protocol applied in the study. 

Thus, the environmental changes are to be considered as the external stimuli that can be applied to the 

subject. 

In this work of thesis, we tried not to recur to the reductionist approach presented above, widely used in 

the literature. We decided to understand the effect of the cognitive component on the posturography, to 

be able to discriminate between mal engineered and proper records. In fact, as showed in (10), (14) and 
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argued in (6), the attention of the subject on his postural control modifies the features of the CoP signal, 

conditioning the results of the study. 

Together with the effect of the mind activity, we investigated the dimensionality of the CoP signal through 

the modeling of the AP and ML time series of the CoP in the complex ((15),(16)) and the quaternion 

domains (17). Again, the purpose was not to reduce the complexity of the signal as done in literature. 

Indeed, in most of the studies just AP time series are considered. When both AP and ML are elaborated, to 

the best of our knowledge, they were studied always as two separated signals. Furthermore, records in the 

open eyes and closed eyes conditions are always compared, but never used together to create an 

exhaustive model of the postural control. The complex- and quaternion-based representations model an 

exchange of information between the dimensions, that could be the key to better understand and 

represent the postural control system (18). 

To achieve the presented objectives, we relied on many algorithms taken from the elaboration of Chaotic 

and Stochastic systems. Thus, we investigated the fractal structure of the CoP. Indeed, fractality is one of 

the key components, shared by both the typology of systems. Because nowadays it is still difficult to 

separate the two domains, as depicted in Figure 4, we mixed the methodologies trying to create new ways 

to solve the problem of the parameters setting, to gain a deeper understanding of the phenomena 

underlying the postural control. 

 

Figure 4 - Nonlinearity and Stocasticity boundaries 

 

 

 

  



 

2. Theoretical Background

 

Fractality 

An object is said to have fractal properties when it express two features:

- Self-similarity is one of 

times at different sc

process at different scales will not be identical, but statistically similar.

- Non-integer (fractal) dimension. The fractal dimension characterizes how the object fills its space.  

In addition, it describes how the object scales. Th

Many are the example of fractal systems

models like the Koch curve, or homemade examples of contemporary art (

 

While, in the case of real fractals, many examples at different scales, can be taken from Nature

Figure 6 - A desert landscape shaped by wind (left), a 

Theoretical Background

An object is said to have fractal properties when it express two features:

similarity is one of the main features. That means that the fractal object repeats itself many 

times at different scales (i.e. the system is scale

process at different scales will not be identical, but statistically similar.

integer (fractal) dimension. The fractal dimension characterizes how the object fills its space.  

In addition, it describes how the object scales. Th

Many are the example of fractal systems. In the case of “a

models like the Koch curve, or homemade examples of contemporary art (

 
Figure 5 - A Koch curve ad different scales 

While, in the case of real fractals, many examples at different scales, can be taken from Nature

A desert landscape shaped by wind (left), a Roman Cauliflower
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Theoretical Background 
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the main features. That means that the fractal object repeats itself many 

ales (i.e. the system is scale-invariant). For real fractals, the copies of the 

process at different scales will not be identical, but statistically similar. 

integer (fractal) dimension. The fractal dimension characterizes how the object fills its space.  

In addition, it describes how the object scales. The scaling of the fractals follows a power law. 

. In the case of “artificial” systems, they can be mathematical 

models like the Koch curve, or homemade examples of contemporary art (Figure 5). 
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While, in the case of real fractals, many examples at different scales, can be taken from Nature (Figure 6). 
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Both time and space can be fractal.

Exactly as in the pictures above, where the global structures are clearly defined

randomness. An example are electrocardiographic (ECG) data, where the QRS complex structure is known, 

but there is a variability in the 

 

The Hurst exponent is a measure invented by Hurst to quantify the scaling law of the fractal. More into 

detail, H is the scaling exponent, and it can assum

time series, the value of H can define three important properties:

- If 0.5 � �

Being fractal, there is not a character
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Stochastic systems

Taking an arbitrary

(namely �), a family 

Both time and space can be fractal. In fractal time, randomness and determinism, chaos and order coexist. 

Exactly as in the pictures above, where the global structures are clearly defined

An example are electrocardiographic (ECG) data, where the QRS complex structure is known, 

but there is a variability in the time intervals between two R peaks

 
 

Figure 7 - Detail of a QRS complex (left) and example of ECG record

The Hurst exponent is a measure invented by Hurst to quantify the scaling law of the fractal. More into 

detail, H is the scaling exponent, and it can assum

time series, the value of H can define three important properties:

� � 1, the time series is persistent

Being fractal, there is not a characteristic time scale, and

with the others. 

5, the time series is an independent process,

(the model for a random walk process obtained integrating a white Gaussian noi

� 0.5 the time series is antipersistent. That means that the system covers less distance 

than a random one, reversing itself more frequently than a random process.

belonging to the antipersistent class present intermittence, the cha

periodically pass through stability and instability.

The advantages in having a fractal structure are still a topic of research. However, it is widely accepted the 

fractal structure is more stable and less prone to er

, while the local randomness induces innovation and variety.

The coexistence of both determinism and stochasticity is the most fascinating feature of fractals. Moreover, 

fractality is one of the features that can be found in both “pure” stochastic and deterministic systems. 

Stochastic systems 

n arbitrary probability space 	Ω, �, P�, composed 

, a family � of events and a measure of probability 

0 �

6 

In fractal time, randomness and determinism, chaos and order coexist. 

Exactly as in the pictures above, where the global structures are clearly defined

An example are electrocardiographic (ECG) data, where the QRS complex structure is known, 

time intervals between two R peaks (Figure 7). 

 
Detail of a QRS complex (left) and example of ECG record (right)

The Hurst exponent is a measure invented by Hurst to quantify the scaling law of the fractal. More into 

detail, H is the scaling exponent, and it can assume any real value in the range: 0

time series, the value of H can define three important properties: 

, the time series is persistent. Therefore, it is characterized by long memory effects. 

istic time scale, and theoretically, every sample is correlated 

, the time series is an independent process, belonging to the family of 

obtained integrating a white Gaussian noi

the time series is antipersistent. That means that the system covers less distance 

than a random one, reversing itself more frequently than a random process.

belonging to the antipersistent class present intermittence, the characteristic of a system to 

periodically pass through stability and instability. 

The advantages in having a fractal structure are still a topic of research. However, it is widely accepted the 

fractal structure is more stable and less prone to error. The global determinism gives a 

, while the local randomness induces innovation and variety. 

The coexistence of both determinism and stochasticity is the most fascinating feature of fractals. Moreover, 

n be found in both “pure” stochastic and deterministic systems. 

composed respectively by a set Ω  

of events and a measure of probability P  that satisfies the additivity property and

�	�� � 1 

In fractal time, randomness and determinism, chaos and order coexist. 

Exactly as in the pictures above, where the global structures are clearly defined but there is a local 

An example are electrocardiographic (ECG) data, where the QRS complex structure is known, 

 

(right) 

The Hurst exponent is a measure invented by Hurst to quantify the scaling law of the fractal. More into 

0 � � � 1. Referred to 

herefore, it is characterized by long memory effects. 

theoretically, every sample is correlated 

belonging to the family of Brownian motion 

obtained integrating a white Gaussian noise) 

the time series is antipersistent. That means that the system covers less distance 

than a random one, reversing itself more frequently than a random process. Often systems 

racteristic of a system to 

The advantages in having a fractal structure are still a topic of research. However, it is widely accepted the 

The global determinism gives a 

The coexistence of both determinism and stochasticity is the most fascinating feature of fractals. Moreover, 

n be found in both “pure” stochastic and deterministic systems.  

  of elementary events 

the additivity property and 
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�	Ω� = 1 

�	Ø� = 0 

if a function with real values �	�� is measurable, than it is called a random variable. A random variable � is 

completely described by it distribution function, defined as 

�	�� = ���	�� ≤ �� 

where � is an arbitrary value. Let’s suppose that �	�� is continuous and derivable over all �, it is possible to 

define the probability density function as 

�	�� ≜ ��	����  

The Fourier transform of �	�� is called characteristic function: 

�	�� ≜ E�� !" ��	��# = $ �	�� � !" �� 

where E%∙' is the expectation operator. 

�	�� is a complex function of the real variable �. The characteristic function completely defines the 

random variable �, and from the characteristic function it is possible to calculate the moments of the 

random variable. 

Among the various probability distribution of a random variable, only three are analytically expressible: the 

normal, the Cauchy and the Lévy distributions. All of them are stable. A random variable is called stable 

when a linear combination of two independent copies of that variable have the same distribution function 

of the original, a part for two parameters (see below). The first two are a special case of the latter. For 

these reasons the family of the Lévy distributions is really important in the analysis of stochastic systems. 

As a stable distribution, the Lévy characteristic function is defined by four parameters: 

- (, the characteristic exponent 

- ), the skewness 

- *, the scale parameter 
- +, location parameter 

Being stable, ( and  ) are preserved, while * and + can be modified. The first two parameters are the most 

important, because describe the shape of the probability distribution. ( determines the peakedness in + 

(the standard normal mean value) and the fatness of the tails of the distribution. ) determines the 

asymmetry. * determines the width of the distribution, it is a measure of dispersion. 

When ( = 2, the Levy distribution collapse into a normal distribution with variance -. = 2*. and mean 

value + () has no effect). 

The Lévy distribution is often used to model fractal systems. Indeed, it is called a fractal distribution 

because of the scale parameter *, which varying creates self-similar copies of the distribution. Using the 

point of view of fractal system, the characteristic exponent (, which can take fractional values, represents 

the fractional dimension of the probability space.  
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Let’s consider an example of stochastic fractal processes called 
/0 noise. That family is characterized by a 

power spectral density proportional to 
/01, with � the frequence and 2 the spectral exponent. Depending on 

the value of the spectral exponent, the time series have different features: 

- 2 = 0, white noise. The power spectrum of the time series is not a function of the frequency. 

- 2 = 2, brown noise. The noise belongs to the Brownian motion, and the scaling factor is a square. 

- 0 < 2 < 2, pink noise. The noise is closely related to relaxation processes. A relaxation process is a 

form of dynamical equilibrium where there is an exchange (loss) of energy between the 

components of the system. When one rises, the other lowers, and vice versa. An example is the 

turbulence, where there is an exchange between large scale and small scale structures. Systems 

with that value  

- 2 > 2, black noise. The noise is closely related to long-run cyclical systems. An example is the water 

level of the Nile river. Two are the black noise-related characteristics that Mandelbrot discovered. 

The Joseph effect, where the long memory causes the formation of trends and cycles. The Noah 

effect, where at a certain instant abrupt discontinuities arise (he called them catastrophes); these 

discontinuities cause the frequency distribution of black noise processes to have high peaks at the 

mean, and fat tails. 

There is a last feature shared by both black noise and pink noise: the mirror effect. As brown noise is the 

integrand of white noise, black noise is the integrand of pink noise. 

Depending whether it has time-dependent variance, or it is a stationary process with a constant expected 

mean value and constant variance over time, the time series belongs respectively to the family of fractional 

Brownian motion (fBm) or fractional Gaussian noise (fGn). The mirror effect is true also for these two 

families; indeed, the fBm is the integrand of a fGn. The scaling law valid for a fBm is: 

4∆�.6 ∝ ∆8.9  

with ∆�. the squared displacement and ∆8 the time interval over which the displacement was observed, 

and H the Hurst exponent.  

The velocity distribution of a fractional Brownian motion belongs to the fGn family, and its probability 

density function is modeled with a Lévy distribution function. 

Finally, we can show the link between the spectral exponent, the Hurst exponent and the scaling exponent: 

2 = 2 ∗ � + 1             ( = /9              ( = <=/.  

It is important to remember that, even if ( and �  are related, their meaning is different. The former 

describes the dimension of the probability space (related to the statistical self-similarity of the process), 

while the latter the dimension of the time series. 

These results join together everything we said about fractal systems and stochastic systems. The final 

element that unifies fractality and stochasticity is Chaos. 
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Deterministic Chaos 

Chaotic systems are deterministic, nonlinear dynamical systems. The use of the word “chaotic” refers to the 

fact that observations of the system, usually made through some measurements, have no discernable 

regularity or order. To understand what a chaotic system is, it is necessary to understand what is the Phase 

Space. 

The Phase Space is a space of representation of the measurements of the system with dimension >, with > the number of parameters that define the chaotic system. The passage from scalar observations to the 

multivariate Phase Space is allowed by the embedding theorem, developed by Takens and Mañé. Let’s 

consider a vector ?	@�, that describes the state of a dynamical system at a certain instant @, which 

evolution is defined by a certain function �, giving  

�A�	@�B = �	@ + 1� 

The theorem tells us that if we are able to observe a single scalar quantity ℎ	∙�, of some vector function of 

the dynamical variables DA?	@�B, then the geometric structure of the multivariate dynamics can be 

unfolded from this set of scalar measurements ℎ EDA?	@�BF in a space made out of new vectors with 

components consisting of ℎ	∙� applied to powers of DA?	@�B. These vectors 

G	@� = HℎA?	@�B, ℎ EDIJA?	@�BF , ℎ EDIKA?	@�BF , … , ℎ EDIMNJA?	@�BFO 

define motion in a >-dimensional Euclidean space, where > is called embedding dimension. That space is 

called the Phase Space. It was proven that under general conditions of smoothness on ℎ	∙� and D	?�, the 

evolution in time  G	@� ⟶ G	@ + 1�, follows that of the unknown dynamics ?	@� ⟶ ?	@ + 1�. 

To implement Takens’ theorem, usually it is imposed that ℎ	∙� is a measurement function of the dynamical 

system, giving  

ℎA?	@�B = Q	@� 

with Q	@� the observed variable of the system. For the general function D	?� it is usually chosen the 

operation which takes some initial vector ? to that vector one time delay R later, so that the STUV power of D	?� is 

DWXA?	@�B = �	@ + R ST� 

The components of G	@� will take the form 

G	@� = �Q	@�, Q	@ + R�, Q	@ + 2R�, … Q	@ + 	> − 1�R�� 

Even if strange to think, a single scalar contains enough information to reconstruct a >-dimensional space 

because in a nonlinear process all the variables are generically connected. Furthermore, the coordinates in 

the Phase Space hold the information of the time derivates of the signal, when R is sufficiently small, indeed 

�Q	8��8 ≈ Q	8 + R� − Q	8�R  
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�.Q	8��8. ≈ Q	8 + 2R� − 2Q	8 + R� + Q	8�R  

and so on.  

Now, having reconstructed a chaotic system in the Phase Space, what we see is that it arises a structure. 

That is one of the characteristic features of Chaos: structure in the Phase Space. An example is given in 

Figure 8. 

 

Figure 8 - Lorentz strange attractor 

There is depicted the strange attractor of the Lorentz model. The strange attractor is the element that 

characterizes a chaotic system and that resumes all its properties. Giving definitions, an attractor is a set of 

points in the Phase Space visited by a dynamical system. A strange attractor is an attractor with fractal 

dimension. In a strange attractor the points never repeat themselves and the orbits (i.e. a trip around the 

attractor) never intersect but both the points and the orbits stay within the same region of Phase Space. 

Strange attractors are characterized by nonperiodic cycles, that means that trips around the attractor has 

not an absolute frequency but an average frequency. Now we can express what makes a system chaotic. 

Two are the requirements: 

- Existence of a fractal dimension 

- Sensitivity to the initial conditions 

The strange attractor of a chaotic system shows self-similarity characteristics that fill the phase space 

according to the fractal dimension.  As shown in Figure 8, in the case of the Lorentz model, the self 

similarity is given by the repeated folding of the attractor.  This property links chaos with fractals. The 

second characteristic results when considering two nearby point or orbits: the two will separate 

exponentially with a rate of divergence given by an invariant parameter of the Phase Space, called 

Lyapunov exponent. There is one exponent for each dimension. Chaotic systems have at least one positive 

Lyapunov exponent. The sum of all the exponents will be negative for dissipative systems, otherwise the 

system should expand indefinitely in time (i.e. it should have infinite energy). Therefore, even if a chaotic 

system is deterministic, after a certain time constant given by the Lyapunov exponent the observation of 

the systems from a certain initial condition becomes incorrelated with the original nearby conditions, 

creating the illusion to being studying a stochastic system. This property links chaos with stochasticity. 

For further insights on chaos, fractals and random systems, refer to (19),(20) and(21). 
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3. Research statement 

 

We decided to follow the U-model for research (Figure 9) to structure this work of thesis. 

 

Figure 9 - U-model for research 

 

1. Objectives 

- Characterization of the CoP time series, studying the degree of non linearity, the degree of 

determinism, the complexity and the effect of the visual component 

- Identification of parameters sensitive to the effects of the cognitive component on the postural 

sway 

- Exploration of the multidimensional nature of the CoP, and investigation of the possible 

correlations between the closed-eyes and the open-eyes conditions 

 

2. Research questions 

1) Do anteroposterior and mediolateral time series of the CoP share information, needed to describe 

in a more complete way the postural control system? 

2) Is it possible to associate open-eyes and closed-eyes time series, to be able to model the body sway 

with a quaternion-based representation? 

3) Is the postural control system described in a more complete way relying on the information of both 

open-eyes and closed-eyes time series, therefore with a quaternion representation, or a complex 

representation is able to obtain the same information? 
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3. Initial hypotheses 

1) The postural control system is composed by the following components: 

- Sensorial system: vestibular, somatosensory and visual. 

- Orientation perception: Midbrain, Thalamus, Paretal cortex 

- Predictive skill of the central nervous system (CNS)  

- Cognitive component of the CNS 

- Motor coordination  

- Biomechanics of the muscular-skeleton system: forces production and intensity scaling 

- Environment interactions 

 

2) During the acquisition process of the CoP (details in 4.1), the effect of all the elements presented 

above can be classified as constant. The only exception is the cognitive component of the CNS. 
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4. Methodologies applied 

 

1. Measure protocol and data acquisition 

In the present work, two typologies of dataset were studied. 

The former is the same proposed in (22), with the following protocol. A group of eleven adults (six male, 

five female; >�[@ [\� ± Q8[@�[^� ��_`[8`a@ SD: 29.6 ± 4.7, range: 24     h 38 years, >�[@ k�`\ℎ8 ± SD: 64 ± 13 kg, range: 50     h 85 kg; >�[@ ℎ�`\ℎ8 ± SD: 1.72 ± 0.08 m, range: 1.60     h 1.86 m) was involved in 

the investigation. All subjects, with no evidence or known history of a gait, postural, or skeletal disorder, 

provided informed consent prior to participation in the testing protocol. They were instructed to stand with 

an upright posture on the force platform, with arms relaxed at the side, the feet abducted about 10°. The 

acquisitions lasted for 60, as suggested by the International Society for Postural and Gait Research (ISPGR). 

That duration is due to the research of a compromise between the need to obtain the longest time series 

possible in order to compute a consistent estimation of the dynamical parameters, and the need to obtain 

the shortest time series possible in order to avoid the tiredness and then the consequent time dependence 

of the system. Ten trials were conducted on each subject in open-eyes (OE) conditions, with the subjects 

looking straight ahead at a visual reference; ten trials were conducted with the eyes closed (CE). The order 

of testing, e.g. OE versus CE trials, was randomised for the subject population. Rest periods of 60 s and 5 

min were provided between each trial and between each set of ten trials, respectively. COP data were 

acquired at 100 Hz, using an AMTi force platform and both the ML component and the AP component were 

analysed. The first 10 s of each time series were discarded in order to avoid the influence of any transient 

on data processing (9). 

The latter dataset was recorded to test the sensitivity of certain parameters to dynamic behaviors like 

opening and closing eyes during the acquisition, and focusing and removing the attention (cognitive 

control) of the subject on postural control. The protocol details will be discussed in the proper section 

(4.4.4). 

The datasets were not filtered mainly for two reasons. As stated in (23), filtered copies of a signal cannot be 

processed using surrogate data because the null hypothesis of a monotonically rescaled Gaussian linear 

random process it is usually not true for them. Moreover, in (19), pp. 115-132, it is explained that the 

effects of linear and non-linear filtering on chaotic data still need to be explored and deeply characterized. 

Thus, at the moment we are writing, it can be valuable to rely on a well made acquisition platform to 

reduce noise, avoiding any type of filtering. 
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2. Time series model 

During the processing, those properties of the CoP were considered: 

- It is nonstationary 

- The velocity of CoP follows a Levy distribution 

- The power spectral density is of the 
/01 type, with 2 the spectral exponent 

- The CoP has fractal properties: 

- It is often modeled as a dual-correlated fractional Brownian motion (fBm) random 

process 

- It has an Hurst exponent (H) in the antipersistent range , thus it is of the pink noise type 

- Because of the properties of fBm, integrating the displacement of the CoP with time, the 

obtained time series has an H in the persistent range, thus it belongs to the black noise type 

 

3. Evaluation of the complex nature of CoP 

The first research question presented in chapter 3 was: 

Do anteroposterior and mediolateral time series of the CoP share information, needed to describe in a more 

complete way the postural control system? 

To answer, we recurred to the non-parametric test for detecting the complex-valued nature of time series 

presented in (24). In the article, the authors extend the concept of Delay Vector Variance (25) to the 

complex domain. Recurring to a Kolmogorov-Smirnoff (K-S test) of the distributions of the DVV plots of the 

surrogates created through multivariate iterative adjusted amplitude Fourier transform (MViAAFT, (23)) 

and complex iAAFT (CiAAFT, (24)), it is possible to discriminate the complex nature of the signal. 

The complex DVV was applied to the AP and ML time series of the first dataset, confirming the complex-

valued nature of the CoP (see paragraph 5.1). 

References in the chapter Algorithms: 

DVV and Complex DVV see paragraph 8.2 

MViAAFT, see paragraph 8.6.2 

CiAAFT, see paragraph 8.6.3 

 

4. Sensitivity to the cognitive component 

As explained in paragraph 3.3, we made several hypotheses on the blocks constituting the postural control. 

The only one that we classified as time-dependent was the cognitive component. 

Thus, to address the second research question 

Is it possible to associate open-eyes and closed-eyes time series, to be able to model the body sway with a 

quaternion-based representation? 
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it was needed to understand when the subjects modify the body sway through unconscious movement due 

to the focusing of their attention on the postural displacement. As proved in (10), (14) and argued in (6), 

the attention on the postural control can modify the properties of the CoP time series. Obviously, these 

alterations are related to movements that the subjects do not know to be doing, because during the 

acquisitions it is explicitly requested them to stand still (we are excluding the hypothesis that the subjects 

by purpose altered their position). 

The idea is that time series with an analogous level of alteration due to cognitive control, can be studied 

together. In that way, it is possible to associate OE and CE time series. 

The study of the effect of the cognitive component is quite new in the literature. Therefore, we mainly 

relied on (10), paper published in 2007 and (14), published in 2009. In those papers, the most important 

parameter used to detect the amount of attention was the Sample Entropy (SE). The authors explained that 

the CE condition has a lower SE of the OE condition, because during the closed-eyes recording the subjects 

focus more easily their attention on the postural control. Then, when the subjects get distracted with a task 

during the acquisition, the SE in the CE condition reaches the SE in the OE condition, because the mind is so 

busy that does not modify anymore the postural sway.  

Defined in (26), SE relies on a representation of the data in the Phase Space, with a time delay equal to the 

sampling time used during the acquisition. Many are the example of application of that methodology; see 

(27), (28), (29).  Anyway, all the cited works neglected to adopt the improvement made in (30), where the 

embedding reconstruction of the time series for the calculation of the Sample Entropy, was extended to an 

arbitrary time delay.  Recently, as a final improvement in the calculation of Sample Entropy, a new 

methodology called Fuzzy Entropy (FE) was created (31). FE eliminates the problem of discontinuity due to 

the use of the Heaviside function, substituting it with a fuzzy membership function, and adds the 

detrending of the time series to improve the estimation. 

In our study, we decided to use FE because of the proven better performances, compared to SE. 

Furthermore, we added, like in (30), the possibility to choose an arbitrary time delay for the reconstruction 

on the phase space of the time series. 

We decided to conduct two kinds of studies with the purpose to associate properly OE and CE time series: 

- Fuzzy Entropy of the whole time series 

- Fuzzy Entropy as a function of time 

The objective of the first study was to characterize our dataset. In literature many studies presented the 

evaluation of parameters in the OE and CE conditions; however, the results are often incoherent, even 

when the chosen protocols and parameters are the same. Usually each author tries to explain his results 

recurring to physiological argumentation, without justifying the difference with the results of other 

authors. We decided to create our case and analyse it, to present our point of view. 

The objective of the second study was to identify and quantify the amount of attention posed on the 

postural control, studying windows of the time series. We argued that time series with similar alteration 

from the mind activity could be studied together (i.e. with a quaternion representation).  
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References in the chapter Algorithms: 

Sample Entropy see 8.3.1 

Fuzzy Entropy see 8.3.2 

 

4.1 Parameters choice 

Before the usage of FE, it was needed to set the parameters of the algorithm. FE needs of three 

parameters: 

- The time delay for the Phase Space reconstruction, R  

- The embedding dimension for the Phase Space reconstruction, > 

- The reference radius for the membership function, ^ 

The time delay was selected recurring to the Average Mutual Information (AMI), as done in (19), (22). 

Moreover, the assessment of the final values of interest was made using two parameters that we 

extrapolated from the Delay Vector Variance scatter diagrams (DVV, (25)).  One is the maximum deviation 

from linearity (index of nonlinearity), that is the deviation from the bisector of the scatter diagram; the 

other is the minimum normalized variance (index of stochasticity), that is the minimum variance 

explainable by the delay vectors of the original time series. 

The embedding dimension was selected recurring to the two parameters taken from DVV, used to calculate 

the time delay. It was chosen the value that expressed the right compromise between the nonlinearity 

explanation and the computational load. 

The radius was selected using the Recurrence Quantification Analysis (RQA, (32)). That idea is motivated by 

the similarities between FE and the calculation of the recurrence plots, needed for the estimation of the 

RQA parameters. Indeed, the calculation of the recurrence plot can be modified to fit exactly the 

calculation used by the Sample Entropy (SE) and, therefore, the Fuzzy Entropy (FE). The explanation follows. 

SE and FE rely on a time-delay embedding reconstruction, like RQA. More into the details, the FE and SE are 

computed averaging the distances between delay vectors (DVs). The metric for the distance is the 

maximum absolute distance between DVs. RQA is based on the recurrence plot, created calculating the 

distances between the DVs. If the same metric is used to build the recurrence plots (that usually are based 

on the Euclidean distance), the result is the recurrence representation of the system studied by SE and FE. 

Then, the Sample Entropy algorithm uses the Heaviside function to discriminate the DVs distances that are 

higher or lower than a certain threshold. That is exactly the same mechanism used for the creation of the 

recurrence plots. Indeed a threshold is applied to classify the point in the recurrence plot as recurrences or 

non-recurrences. Thus, that threshold is applied to the DVs distances in both the algorithms, and the DVs 

distances are computed in the same way. Therefore, we are describing exactly the same system with two 

different methodologies. In the case of FE, the measured distance should be replaced with the relative 

membership function. Anyway, that would render impossible to estimate the RQA parameters, because FE 

does not use a threshold (it would be needed to add another threshold, but the meaning of that move 

would not be clear); it would be just possible to create a recurrence plot with the value of the membership 

functions in each element of the matrix. We then decided to use the threshold like in the SE, adding the 

detrending of the time series (like in FE), but avoiding the use of the fuzzy membership function. 
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Now, the reason why we mixed these methods is clear. RQA allows the quantification of parameters like %m�8�^>`@`Q> , index of determinism, %n�*�^^�@*� , index of nonlinear autocorrelation and %opUpqrstsur%vpw!qqptwp ,  considered to be sensitive to the state alteration of a system. Those parameters are widely 

used in the postural analysis literature (12), (8), (13) (33). For instance, in (12) the CoPs of the subjects were 

recorded under OE and CE conditions, together with the head in standard position, and the head facing the 

side, and 
%opUpqrstsur%vpw!qqptwp  was able to successfully discriminate the different conditions. We argued that the 

best threshold in the computing of the Fuzzy Entropy is the one that maximizes the degree of determinism, 

giving a low value of nonlinear autocorrelation (thus, maximizing entropy). Using this criteria, it can be 

selected a threshold that tries to minimize the stochastic component of the signal, keeping a high value of 

entropy. 

It is worth to notice that in our case, %n�*�^^�@*� is exactly the x	y� value used in the calculation of the 

SE of the detrended time series. The advantage compared with other criteria for the selection of the 

threshold (an overview is presented in the chapter 8 when SE and FE are introduced) is that this selection 

process can be extended to any kind of study, because it just relies on the knowledge of the needed 

characteristics of the time series. In our case, we are orienting the elaboration of the COP toward the 

characterization of its deterministic features, because it is well known that the stochastic base of the COP is 

a fractional Brownian motion. 

References in the chapter Algorithms: 

Average Mutual Information see 8.5.1 

Delay Vector Variance see 8.2 

Recurrence Quantification Analysis see 8.7 

 Sample Entropy see 8.3.1 

Fuzzy Entropy see 8.3.2 

 

4.2 Fuzzy Entropy of the whole time series 

During this phase, the FEs of the time series of the first dataset were computed.  

Three are the analyses made: 

In the first one, all the subjects Fes were calculated using the time delays, the radii and the embedding 

dimension selected previously (paragraph 5.5.1). The purpose was to characterize the effect of the visual 

component (i.e. OE/CE tests) to be able to confront our results with the literature ones. Indeed, many 

researches published different results on the evaluation of parameters in the OE and CE conditions, and we 

wanted to present our point of view. 

In the second one, we analysed the dependence of the FE to the radius, confronting the values of two 

specific subjects (paragraph 5.5.2). A comparison between the results obtained during the set of the 

parameters was made. 

In the third one we extended the study to all the time series, discussing the effects of the time delay and 

the relation between %n�*�^^�@*� and FE (paragraph 5.5.3). 
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4.3 Fuzzy Entropy as a function of time 

The results of the elaborations of the precedent paragraph were: we argued that the physical differences 

between subjects justify the differences found in literature. Coherence between the DVV and the RQA 

parameters was shown, together with an inverse proportionality between FE and %n�*�^^�@*�. Then, the 

sensitivity of FE to the radius was outlined, noticing that for certain radii the results obtained can be 

completely different. 

Keeping in mind considerations of the precedent paragraph, we argued that the results of (10) must be 

analysed differently. The authors explained that the CE condition has a lower SE compared to the OE 

condition, because during the closed-eyes recording the subjects focus more easily their attention on the 

postural control. Then, when the subject gets distracted with a task during the acquisition, the SE in the CE 

condition reaches the SE in the OE condition, because the mind is so busy that does not modify anymore 

the postural sway. Anyway, because of the inter-variability outlined previously, we think that this result 

should be considered more generally. Our intuition is that there should be a heightening in the entropy 

value when a subject goes from the condition of attention to the condition of disregard of the postural 

control, but that could happen even when the subject has a FE in the CE condition higher than the FE in the 

OE condition. That was the feature we looked for during the elaborations described in the present 

paragraph. 

The aim was to identify the time series with a considerable amount of distortion due to the attention, to 

avoid their use, and to find the time series with a low and similar amount of distortion, to combine them in 

the quaternion model. Two approaches were considered: 

- Study of the FE through overlapping windows of the signal 

- Study of the sequential Fuzzy Entropy (i.e. the FE at an instant 8 is calculated considering all the 

samples before) 

In the windowed case, the windows length was chosen remembering that the number of delay vectors 

used in the FE estimation need to be higher than 50, see (31). Being: 
{ − > ∗ R = @�>2�^ a� ��|[} _�*8a^Q 

with { the number of samples, > the embedding dimension and R the time delay used to reconstruct the 

time series in the phase space, for  R = 0.2 Q and R = 0.5 Q, the minimum windows length were 150 and 350 samples, respectively (because we used > = 4). 
In the sequential case, the assumption is that a proper FE calculation needs the history of the process. 

Again, the values of FE will be acceptable only for time series longer than 150 and 350 samples, as stated 

before. 

The behavior we expected was a bi-stability, for both open-eyes and closed-eyes time series. The 

assumption was that the “attention-on” and “attention-off” time series had two values of FE more or less 

fixed. During the elaborations, the correlation between the entropy of the AP and the ML components was 

pointed. It was assumed sensible to find a coherent effect of the cognitive component on both the time 

series.  
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4.4 Study of a specific dataset 

The precedent study did not allow a proper classification of the cognitive component, therefore we created 

a second specific dataset to characterize the dynamical properties of the CoP. The signals were recorded at 

140 Hz. 

A male adult (25 years, 63 kg, 1.69 m) with no evidence or known history of a gait, postural, or skeletal 

disorder was involved in the investigation. He provided informed consent prior to participation in the 

testing protocol. The subject was instructed to stand with an upright posture on the force platform, with 

arms relaxed at the side, the feet abducted about 10°. Seven time series were recorded under single-blind 

condition (i.e. the subject did not know the purpose of the experiments): 

1 Open-eyes, total concentration of the subject on its body 

2 Closed-eyes, total concentration of the subject on its body 

3 Alternated open-eyes/closed-eyes conditions 

4 Alternated dual-task/single-task, in the CE case 

5 Alternated dual-task/single-task,  in the OE case 

6 Complete dual-task, in the OE case 

7 Complete dual-task, in the CE case 

Details of tests 1-3: 

The subject was asked to totally concentrate on his body, feeling the sensations created by the postural 

sway. In the third acquisition every 10 seconds the subject was ask to change the visual condition, starting 

with the OE. The first two time series were recorded for 60 seconds, the last for 120 seconds. The purpose 

of those acquisitions was to check the sensitivity of the parameters involved in the evaluation of the 

cognitive component to the changes of the visual component. 

Details of tests 4-5: 

The dual-task was inspired by (10) and consisted in listening to a word, reversing its letters and uttering 

back them. Because the speech can modify the CoP, the following procedure was implemented: the subject 

listened to the word and then waited for 10 seconds; then, 10 seconds were given to him to utter back the 

reversed word; after those 10 seconds, he had to interrupt is speech or just keep quiet for 20 seconds 

(single task). The acquisitions started with 10 seconds of single task (that were eliminated during the 

elaborations to avoid transient, as for the first dataset), then a word was told to the subject and the 

procedure started. The succession dual-task/single-task was alternated for 120 seconds. 

Details of tests 6-7: 

The dual-task consisted in listening to the words and reversing them, as before, but this time the subject 

was asked to remember those words to report them all together at the end of the acquisition (in this way 

the CoP was not influenced by the speech movements). The acquisitions lasted 120 seconds. 

In general: 

Words of eight letters were used. The length was chosen by empirically trying to find a right compromise 

between a difficult and an achievable task. Indeed, it was needed a difficult task to completely deviate the 

attention of the subject from the postural sway, but an easy one to avoid the subject to get “disappointed”, 
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because his concentration on the task could have been compromised. The sole aim of the presented dual-

tasks was to withdraw attention from the postural task. Therefore, the participant was instructed to 

perform the task to the best of his ability. No feedback on the accuracy with which he performed his task 

was provided. 

 

The presented dataset was studied with the same time-dependent approach proposed in paragraph 4.4.3. 

The studied parameters were inspired by (10). Therefore, we first evaluated the use of the embedding 

parameters found for the precedent dataset, and then we calculated the standard deviation, the sway-path 

length, the Fuzzy Entropy and the Hurst exponent of the time series. Because of the specificity of the 

dataset, we studied those parameters also for the differential time series (i.e. velocity of the CoP). 

The calculation of the Hurst exponent has been widely discussed in literature, and many are the ways to 

estimate it. In (10) it was calculated through Detrended Fluctuation Analysis (DFA), while we used the 

Scaled Windowed Variance (SWV). That choice was due to the results achieved in (34), where a detail 

procedure explains how to estimate the Hurst exponent. The first step was to calculate the power spectral 

density (PSD) to assess the limit frequency from which the signal information is mainly due to noise. As a 

second step, an improved version of the PSD created by the author (the lowPSDwe) is used to classify the 

signal as a fractional Gaussian noise or a fractional Brownian motion. Then a specific algorithm is used to 

calculate the Hurst exponent, depending on the family of the signal. Essentially, because the DFA is more 

suited for fractional Gaussian motion, while the CoP is a signal of the fractional Brownian motion family, we 

used the SWV (more specifically, we used the linear detrended SWV, an improved version of SWV). A 

detailed explanation of the procedure is described in 8.0. 

 

5. Dimensionality of postural sway 

The final purpose of this work was to deepen the understanding of the CoP nature through a dimensionality 

study. 

In literature it can be often found a reductionist approach, where AP and ML time series are studied 

separately. However the centre of pressure is a bi-variate signal and, as proven during this work, at least a 

complex representation is needed to create a more accurate model of the postural sway. The complex-

based representation introduces statistics that characterize an exchange of information between the 

dimensions that could represent the key to better model the postural control system (18). Another 

possibility to create an even more accurate model of postural sway could be to fuse the information taken 

from both the open-eyes and the closed-eyes condition, recurring to a four dimensional variable.  

The components of a biological system or process usually are in a homeostasis state, where a dynamic 

equilibrium between the different parts guarantees to the being the best allowable performances. Usually, 

when one of the components is defective or is completely not working, the others adapt to compensate the 

system. Now, looking at the postural control system, we have that the visual component it is just one of the 

blocks composing it. There are other proprioceptive and exteroceptive paths that affect the postural sway. 

It is sensible to argue that when the visual condition is missing (i.e. the closed-eyes condition), the 

relevance of the other components that regulate the process of equilibrium will be strengthened. 

Therefore, a study of both the visual conditions together, could take advantage of the different 

information. For this reason a quaternion-based model of postural sway was investigated. 



 

Here arises the last research question we posed.

Is the postural control system described in a more complete way re

eyes and closed-eyes time series, therefore with a quaternion representation, or a complex representation is 

able to obtain the same information

 

To answer the question, we decided to confront the result

representation of the data

10). 

The proposed classical scheme for prediction was implemented using four types of adaptive filters:

- Complex Least Mean Square (CLMS)

- Augmented Complex Least Mean Square (ACLMS)

- Quaternion Least Mean Square (QLMS)

- Augmented Quaternion Least Mean Square
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eyes time series, therefore with a quaternion representation, or a complex representation is 

able to obtain the same information? 

To answer the question, we decided to confront the result

representation of the data, obtained through a prediction scheme recurring to adaptive filtering (

Figure 10 - Scheme for the prediction of a signal using an adaptive f

The proposed classical scheme for prediction was implemented using four types of adaptive filters:

Complex Least Mean Square (CLMS) 

Augmented Complex Least Mean Square (ACLMS)

Quaternion Least Mean Square (QLMS)
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Is the postural control system described in a more complete way relying on the information of both open

eyes time series, therefore with a quaternion representation, or a complex representation is 

To answer the question, we decided to confront the results from a complex- 

, obtained through a prediction scheme recurring to adaptive filtering (

Scheme for the prediction of a signal using an adaptive filter 

The proposed classical scheme for prediction was implemented using four types of adaptive filters:

Augmented Complex Least Mean Square (ACLMS) 

Quaternion Least Mean Square (QLMS) 

Augmented Quaternion Least Mean Square (AQLMS) 

belong to the LMS family, part of the stochastic gradient descent 

LMS take into account the so-called augmented statistics 

valid for complex and hypercomplex random variables. As extensively described in paragraph 9.

covariance of the signal, avoiding to assume its circularity. 

recurred to the statistical test for circularity of non

on, each time series was normalized to zero mean to improve the training and test 

The variances were not normalized to avoid unwanted effects on the circularity/noncircularity of 

To evaluate the performances of the different adaptive filters, we recurred to the prediction gain used in 
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The proposed classical scheme for prediction was implemented using four types of adaptive filters: 

the stochastic gradient descent 

called augmented statistics 

valid for complex and hypercomplex random variables. As extensively described in paragraph 9.2, the aim is 

 To assess whether the 

the statistical test for circularity of non-gaussian 

on, each time series was normalized to zero mean to improve the training and test 

The variances were not normalized to avoid unwanted effects on the circularity/noncircularity of 

filters, we recurred to the prediction gain used in 

the variance of the error (output of the filter minus desired 

nion filter were calculated 

the prediction gains for the OE and CE components separately, to allow a direct comparison with the 
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To avoid the possible effect of the cognitive component on the single trial, we decided to analyse the mean 

time series of a subject of the first dataset. Therefore, we calculated the mean value over all the ten trials, 

obtaining four mean time series: AP and ML, in both OE and CE conditions. Doing so, we implicitly assumed 

the ergodicity of the signal. Even if to be proven, this was the only sensible approach to join OE and CE time 

series. Moreover, in (3) it is explained that Collins and De Luca for the Stabilogram Diffusion Analysis made 

the same assumption of ergodicity to calculate the mean displacement of the time series. 

References in the chapter Algorithms: 

Adaptive filters 8.1 

Circularity test  8.2 
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5. Results obtained 

 

1. Evaluation of the complex nature of CoP 

Anteroposterior (AP) and mediolateral (ML) time series of the CoP were studied together creating a 

complex signal with AP as the real part, and ML as the imaginary part.  

The null hypothesis was that the signal has a bi-variate nature. The alternative hypothesis was that the 

signal has a complex-valued nature. The significance level of the Kolmogorov-Smirnov test was set to 5%.  

Below are presented two tables with the numbers of rejection of the null hypothesis, in the case of time 

series of 3 and 15 seconds (it was preferred to study shorter time series to reduce the computational time), 

and under the OE and CE conditions. 

The first one presents the total amount of rejected null hypothesis 

Condition 3 seconds 15 seconds CE 94/110 102/110 OE 92/110 100/110 
Table 1 - Total results of the complex nature test 

 

The second one presents the amount of rejected null hypothesis per subject /10 

Subject number CE – 3 s CE – 15 s OE – 3 s OE – 15 s 1 9/10 10/10 7/10 10/10 2 8/10 10/10 8/10 9/10 3 10/10 9/10 10/10 10/10 4 7/10 9/10 8/10 8/10 5 9/10 9/10 10/10 10/10 6 9/10 10/10 8/10 8/10 7 8/10 8/10 9/10 9/10 8 9/10 10/10 9/10 9/10 9 7/10 9/10 7/10 10/10 10 10/10 9/10 8/10 8/10 11 8/10 9/10 8/10 9/10 
Table 2 - Results per subject of the complex nature test 

 

From the two tables can be argued that the CE and the OE time series share a complex nature in the same 

way (i.e. similar number of rejected cases), that longer time series are considered complex more easily, and 

that for long time series for almost all the subjects is preferable a complex representation of the data. 

After all, the results answered our research question, demonstrating that anteroposterior and mediolateral 

time series of the CoP share information needed to describe in a more complete way the postural control 

system. 
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2. Time lag with Average Mutual Information 

In Figure 11 are represented the trends of the obtained Average Mutual Information (AMI) functions. 

Figure 11 - AMI function for the AP time series (left) and ML time series (right) 

 

Each graph represents the mean of the AMI function for each of the subjects. The mean value was 

computed by processing together the time series recorded in the closed eyes condition, with the ones 

recorded in the open eyes condition. 

It is established in literature (19), pp. 28-37, to choose the time lag corresponding to the first minimum of 

the Average Mutual Information. That value represents a delay for which the correlation of the signal and 

the shifted copy is low enough to reduce redundancy of information, but high enough to avoid 

incorrelation of the two time series. 

Two time delays were selected, for both AP and ML time series, because of their analogous trend. The first 

one, used in (22) with the same dataset, was R = 0.05 Q (it will be used as a reference). The second was R = 0.20 Q.  

The latter choice was due to a qualitative analysis of the COP frequential characteristics. Indeed, it is well 

known that postural control is characterized by frequencies mainly minor than ~5 Hz (5). Choosing R = 0.20 Q, means to create delay vectors that correspond to windowed part of the original time series 

sampled at 5 Hz. Thus, it is reasonable to choose that time delay. A shorter time delay would suffer of the 

oversampling of the time series. 

 

3. Embedding parameters with DVV scatter diagrams 

To reduce the computational load, only 30 seconds after the first 10 seconds of one of the COP time series 

was studied. That choice allowed us to compute the DVV using all the delay vectors (DVs). The other 

parameters used for the computation were @_[|�ℎ[ = 25  and @_Q`\ = 3  (for a reference on those 

parameters, see paragraph 8.2). 
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The results for three embedding dimension and the two time lags chosen with the AMI are reported in 

Figure 12. 

R = 0.20 Q R = 0.05 Q  

  

> = 2 

  

> = 4 

  

> = 6 

Figure 12 - Dvv scatter plots at different time delays and embedding dimensions 

 

As shown by the DVV scatter diagrams, that look really similar, it is confirmed that DVV is a methodology 

robust to the change of parameters (25). 

However the results obtained for those parameters were misleading, because of a noticeable low degree of 

non linearity in the COP time series. Because different embedding dimensions gave similar results, two new 

time delays were chosen from the AMI plots. In the next table are reported the relative DVV scatter 

diagrams. 
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> = 2 > = 6  

  

R = 0.5 Q 

  

R = 1 Q 

Figure 13 - Dvv scatter plots with higher time delays 

 

An increase in R or an increase in > corresponds to an increase in the non linearity degree. To certify this 

trend, a quantitative study was made computing the mean values for each subject’s time series of two DVV 

scatter diagram parameters presented in chapter 4: 

- Maximum deviation from linearity (index of nonlinearity) 

- Minimum normalized variance (index of stochasticity)  

OE and CE time series were studied together. 

R = 0.5 Q 

Figure 14 - Nonlinearity and stochasticity indexes as a function of the embedding dimension 
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The trends confirmed the augmentation of the nonlinearity degree and the determinism together with the 

embedding dimension. The latter effect is well known, and it is usually due to the displacement of the noisy 

samples in points far from the attractor of the dynamics. The former effect is the one used to select the 

proper embedding dimension.  

The DVV is a methodology created to assess the degree of determinism and nonlinearity of a time series. 

We already know of the nonlinear nature of the COP (35).Therefore, we used this methodology as a 

reference to find a proper embedding dimension. Because of the slow rising trend, > = 4 was chosen as 

the right compromise between the nonlinearity explanation and the computational load. Together with 

that, it is accepted not to exceed the embedding dimension because of the possible introduction of false 

determinism (as noticeable from the decreasing trend in the stochasticity index). That value fits the ones 

used normally in the postural sway literature (22), (7), (33). 

A high inter-subject variability was noticed. 

To confirm the choice of the time delays, the two parameters were studied as a function of R. 

> = 4 

Figure 15 - Nonlinearity and stochasticity indexes as a function of the time delay 

 

In the plots it is shown a trend similar to the one found in the AMI curves. After R = 0.5 Q , there is a 

plateau for stochasticity, followed for R = 1 Q by nonlinearity. 

Those results confirmed the necessity not to follow the standard time delays used in literature, usually near 

to R = 0.05 Q, but to explore longer delays, as the AMI function suggested (the real minimum of the curves 

was near to R = 0.5 Q). The final set of parameters that was used for all the following studies was: 

> = 4, R = �0.2, 0. 5� Q 
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4. Radius through Recurrence Analysis 

In the following, the results of %n�*�^^�@*�, %m�8�^>`@`Q> and 
%opUpqrstsur%vpw!qqptwp  are shown for R = 0.2 Q 

and R = 0.5 Q. In both the cases, an embedding dimension of four and a minimum line length of two were 

used. The minimum line length it’s a parameter used for the computation of %m�8�^>`@`Q>, see 

paragraph 8.0 for references. The results were obtained averaging the RQA parameters of the AP 

detrended time series for each subject, with the conditions OE and CE analyzed separately. Only 30 seconds 

of the signal were studied (neglecting the first 10 seconds recorded), because of the memory usage that is 

needed for the creation of a recurrence plot (huge matrixes are created, and a high number of samples can 

easily let the elaborating system run out of memory). The radius ^ (i.e. the threshold) was multiplied by the 

standard deviation of the signal before being applied for normalization purposes.   

Starting with the closed eyes condition. 

> = 4,  R = 0.2 Q 

 
Figure 16 - RQA as a function of the threshold in the CE condition, time delay of 0.2 seconds 

 

As expectable, the determinism degree and the nonlinear autocorrelation increase with the radius. 

However, they follow different trends. In fact, the degree of determinism rises much quicker than the 
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autocorrelation. When %m�8�^>`@`Q>  reaches the 100%, all the recurrence points are part of a diagonal. 

Under that condition, when %n�*�^^�@*�  rises, all the added recurrence points are part of a diagonal.  

 
%opUpqrstsur%vpw!qqptwp  converges to one for radius bigger than one standard deviation of the signal: the trend is 

qualitatively similar to the one of  %m�8�^>`@`Q>. That result confirms that the information it takes is 

redundant (12) when it is not used to reveal changes in the studied system, for instance using windowed 

analysis.  

Now the open eyes condition. 

> = 4,  R = 0.2 Q 

 
Figure 17 - RQA as a function of the threshold in the OE condition, time delay of 0.2 seconds 

 

The obtained result seems comparable for the shape of the curves and the values with the one in the CE 

condition.  

To better analyze the differences, a differential analysis between the two cases was made. 
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> = 4,  R = 0.2 Q 

Subject %n�* %m�8 
%m�8%n�* 

1 0.748 0.380 0.502 
2 9.146 0.376 1.812 
3 0.848 0.473 0.901 
4 4.620 0.636 0.631 
5 11.227 0.819 4.6574.6574.6574.657    
6 4.368 1.5841.5841.5841.584    2.357 
7 4.451 0.258 1.320 
8 0.229 0.540 0.021 
9 6.604 0.823 1.508 

10 11.47211.47211.47211.472    1.072 4.528 
11 7.527 0.223 1.939 

 

Figure 18 - RQA differential analysis as a function of the threshold, time delay of 0.2 seconds. In the table (bottom-right) are 

reported the mean values of the curves. The number in bold represent the higher differences 

 

All the three graphs show that the inter-subject trends are different. There are subjects like number 10 that 

express a high difference between the two conditions in %n�*�^^�@*�. Others like number 8 show almost 

equal trend in both the conditions. It is important to notice that the subjects with highest difference in %n�*�^^�@*� are not the ones with the highest difference of %m�8�^>`@`Q> or 
%opUpqrstsur%vpw!qqptwp  . 

In general, OE is more nonlinearly autocorrelated than CE, and is more deterministic for small radius (it is 

not just for three subjects).  

The same analysis was made for the case  R = 0.5 Q. Starting with the CE condition. 
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> = 4,  R = 0.5 Q 

 
Figure 19 - RQA as a function of the threshold in the CE condition, time delay 0.5 seconds 

 

Now the rising trend for both %n�*�^^�@*� and %m�8�^>`@`Q> is slower, compared with the case  R = 0.2 Q. Only 
%opUpqrstsur%vpw!qqptwp  seems to follow a trend similar to the one obtained in the case  R = 0.2 Q. 

Then the open eyes condition was elaborated.  
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> = 4,  R = 0.5 Q 

 
Figure 20 - RQA as a function of the threshold in the OE condition, time delay 0.5 seconds 

 

Again, it was needed to make a differential analysis to understand the differences of the visual conditions. 
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> = 4,  R = 0.5 Q 

Subject %n�* %m�8 
%m�8%n�* 

1 4.225 0.380 1.132 
2 13.697 0.307 7.968 
3 0.544 0.628 0.870 
4 4.677 0.620 2.594 
5 15.25815.25815.25815.258    0.609 13.69713.69713.69713.697    
6 6.048 1.8161.8161.8161.816    6.074 
7 7.174 0.245 4.616 
8 0.353 0.695 0.725 
9 7.753 0.705 6.561 

10 13.468 0.846 10.158 
11 10.200 0.297 5.870 

 

Figure 21 - RQA differential analysis as a function of the threshold, time delay of 0.5 seconds. In the table (bottom-right) are 

reported the mean values of the curves. The number in bold represent the higher differences 

 

As seen before, OE is more nonlinearly autocorrelated than CE. Now five subjects show that their CE time 

series are more deterministic than the OE. 

To make an easier evaluation of the cases R = 0.2 Q and R = 0.5 Q, the same tables shown before were 

represented and compared.  
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R = 20 R = 50 

Subject %n�* %m�8 
%m�8%n�* 

1 0.748 0.380 0.502 

2 9.146 0.376 1.812 

3 0.848 0.473 0.901 

4 4.620 0.636 0.631 

5 11.227 0.819 4.657 

6 4.368 1.584 2.357 

7 4.451 0.258 1.320 

8 0.229 0.540 0.021 

9 6.604 0.823 1.508 

10 11.472 1.072 4.528 

11 7.527 0.223 1.939 

    
 

Subject %n�* %m�8 
%m�8%n�* 

1 4.225 0.380 1.132 

2 13.697 0.307 7.968 

3 0.544 0.628 0.870 

4 4.677 0.620 2.594 

5 15.258 0.609 13.697 

6 6.048 1.816 6.074 

7 7.174 0.245 4.616 

8 0.353 0.695 0.725 

9 7.753 0.705 6.561 

10 13.468 0.846 10.158 

11 10.200 0.297 5.870 
 

Table 3 - RQA mean values of the differential analysis OE-CE, computed with a time delay of 0.2 seconds (left) and 0.5 seconds 

(right) 

 

Because of the shape of the curve, it can be argued that the lowest mean scores of %m�8�^>`@`Q> own to 

the subjects that present a higher %m�8 in the CE condition (the mean values were taken down by the 

starting negative values obtained for small radius). 

In the following table the ranking of the different subjects was represented. 

Rank %n�* 
R = 20 10     5     2    11     9     4     7     6     3     1     8 R = 50 5      2    10    11     9     7     6     4     1     3     8 

Rank %m�8 
R = 20 6    10     9     5     4     8     3     1     2     7    11 R = 50 6    10     9     8     3     4     5     1     2    11     7 

Rank 
%opU%vpw 

R = 20 5    10     6    11     2     9     7     3     4     1     8 R = 50 5    10     2     9     6    11     7     4     1     3     8 
   

Table 4 - Ranking of the subjects RQA. The higher values are on the left, the lower on the right 

 

The subjects placed at the same position for both the values of time delays are underlined in yellow. From 

the table it can be noticed that the ranking is preserved in most of the cases, if a translation of one place is 

accepted (blue underlining). The most variable results 
%opUpqrstsur%vpw!qqptwp . 

From the graphs shown until now, it can be argued that for small radius the degree of determinism mainly 

depends on the characteristics of the subject. For higher radius, the determinism in CE and OE conditions 

gets similar, even if the nonlinear autocorrelation is higher for the OE time series. These results are true for 

both the time delays. What changes are the score and the order between the subjects.  

A differential analysis between the two time delays differential series was made to understand which time 

delay explains the higher difference between OE and CE conditions. 
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R = 0.5 Q and  R = 0.2 Q 

 

Subject %n�* %m�8 
%m�8%n�* 

1 3.547 0.060 0,629 
2 7.6357.6357.6357.635    0.253 6,155 
3 0.842 0.245 0,045 
4 2.464 0.318 1,962 
5 7.028 0.5300.5300.5300.530    9,0399,0399,0399,039    
6 2.117 0.235 3,717 
7 3.441 0.187 3,296 
8 0.254 0.273 0,703 
9 3.359 0.439 5,052 

10 6.332 0.468 5,630 
11 5.796 0.220 3,930 

 

Figure 22 - Differential analysis of the absolute differential series OE-CE for the evaluation of the time delay differences 

 %n�*urrence shows that time series for R = 0.2 Q holds more information about the differences between 

OE and CE, in an interval ^ = �0.01, 0.7�. For the other values of ^, it is R = 0.5 Q that shows a higher 

difference of nonlinear autocorrelation between the open eyes and closed eyes conditions. The degree of 

determinism is more variable, even if the dynamics is mainly compressed in the range ^ = �0.01, 1�. For 

higher values of the radius, the difference in the determinism is almost zero. 

The following set of parameters will be used for the Fuzzy Entropy analysis: 

> = 4, R = 20, ^ = �0.5, 1.5� > = 4, R = 50, ^ = �0.5, 1.5� 

 

Given the fact that to a higher nonlinear autocorrelation corresponds to a lower degree of entropy, what 

we do expect is that: 

• For both the parameter’s sets, the OE entropy will be lower than the CE for the subjects with an 

high differential %n�*�^^�@*� 

• The FE ranking of the subjects will be the same one of %n�*�^^�@*�, for both the time delays 



36 

 

5. Fuzzy entropy of the whole time series 

5.1 Initial evaluation 

The FEs score of the subject time series were studied using the values of the threshold identified in the 

latter paragraph. 

Starting from ^ = 0.5, in the following table are showed the mean values and the standard deviations of all 

the time series for each subject. 

Subject 
CE-AP R = 0.2 Q, ^ = 0.5 

OE-AP R = 0.2 Q, ^ = 0.5 

CE-AP R = 0.5 Q, ^ = 0.5 

OE-AP R = 0.5 Q, ^ = 0.5 

1 0.39±0.07 0.34±0.11 0.61±0.09 0.53±0.14 
2 0.32±0.03 0.21±0.07 0.53±0.05 0.38±0.12 
3 0.35±0.07 0.37±0.07 0.54±0.10 0.55±0.08 
4 0.25±0.06 0.24±0.05 0.43±0.10 0.44±0.08 
5 0.42±0.10 0.22±0.09 0.63±0.11 0.36±0.13 
6 0.39±0.11 0.32±0.09 0.54±0.14 0.49±0.14 
7 0.39±0.09 0.34±0.10 0.59±0.13 0.48±0.14 
8 0.25±0.05 0.23±0.07 0.45±0.08 0.42±0.11 
9 0.37±0.06 0.28±0.07 0.59±0.08 0.49±0.11 

10 0.37±0.09 0.21±0.07 0.56±0.11 0.35±0.11 
11 0.32±0.04 0.21±0.04 0.51±0.06 0.38±0.07 

     
Table 5 - Values of the Fuzzy Entropy with different visual conditions and time delays, radius 0.5 

 

The differences between OE-CE are preserved for different time delays. That is not true for subject four. 

The standard deviations, as the mean values are always higher for R = 0.5 Q than for R = 0.2 Q. Usually CE 

entropy is higher than OE entropy, the only exceptions are subjects with similar values OE-CE, like subjects 

three and four. 

The next table reports the Fuzzy Entropy values for ^ = 1.5 . 

Subject 
CE-AP R = 0.2 Q, ^ = 1.5 

OE-AP R = 0.2 Q, ^ = 1.5 

CE-AP R = 0.5 Q, ^ = 1.5 

OE-AP R = 0.5 Q, ^ = 1.5 

1 0.09±0.02 0.07±0.03 0.17±0.04 0.12±0.04 
2 0.08±0.01 0.04±0.02 0.14±0.02 0.08±0.03 
3 0.08±0.02 0.09±0.03 0.13±0.03 0.14±0.03 
4 0.06±0.02 0.05±0.01 0.11±0.04 0.13±0.03 
5 0.10±0.03 0.04±0.02 0.16±0.04 0.07±0.03 
6 0.09±0.03 0.06±0.02 0.13±0.04 0.11±0.04 
7 0.09±0.02 0.07±0.03 0.14±0.04 0.10±0.04 
8 0.05±0.01 0.05±0.02 0.12±0.02 0.10±0.04 
9 0.09±0.02 0.06±0.02 0.15±0.03 0.12±0.04 

10 0.08±0.02 0.03±0.01 0.13±0.04 0.07±0.02 
11 0.07±0.01 0.04±0.01 0.13±0.03 0.08±0.02 

     
Table 6 - Values of the Fuzzy Entropy with different visual conditions and time delays, radius  1.5 

The same consideration of the case ^ = 0.5  can be made. Anyway, the mean values in this case are much 

lower. 
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The obtained values confirm that the CE-OE confront gives often different results. Our results are 

incoherent with the ones proposed by other authors, like(10) and (29), where the SE is higher in the OE 

case, or (6), where the SE values are equal in the OE and CE conditions. Many are the possible reasons of 

those differences. Just to give an example, in (10) the differences could be due to the parameters choice 

(> = 3 and R = 0.01 Q), together with the approach chosen for the elaboration. Indeed, the authors 

presented the results of the mean values of Sample Entropy calculated over 30 subjects, including AP and 

ML time series together.  

In our opinion, it is important to consider what shown in (13), where a group of athletes and a group of 

ballet dancers are confronted using RQA. One of the results was: 

%n�*�^^�@*� �� �8ℎ|�8�Q >  %n�*�^^�@*� �� �8ℎ|�8�Q 

%n�**�^^�@*� �� x[||�8 �[@*�^Q >  %n�*�^^�@*� �� x[||�8 �[@*�^Q 

Also for other parameters, it was shown that different training leads to different parameters. Another 

example of a similar study is given in (14). Those results underline the importance to consider the inter-

variability of the physical characteristics and the motor skills of the subjects. 

 

5.2 Confront of two subjects 

To improve the characterization of the FEs an extensive study of two specific subjects out of the eleven 

used for the creation of the dataset was made. 

Subject 4 and 11 were chosen, because of the most similar and the most different entropy values in the OE-

CE conditions, respectively. 

The result obtained for them during the estimation of the parameter is represented in the table below. 

 Subject 4 Subject 11 R = 0.2 Q R = 0.5 Q R = 0.2 Q R = 0.5 Q {a@|`@�[^`8} 0.050 0.096 0.051 0.103 �8a*ℎ[Q8`*`8} 0.053 0.086 0.060 0.088 %n�* 
OE 83.635 66.086 84.303 71.676 
CE 79.015 61.408 76.775 61.475 %m�8 
OE 97.876 97.225 98.372 97.927 
CE 97.240 96.605 98.185 98.035 

Table 7 - DVV and RQA values for subjects 4 and 11 

 

The nonlinearity and stochasticity indexes were taken from the plots reported in 5.3. Subject 11 expresses a 

higher nonlinearity and stochasticity. Regarding the RQA parameters, for both the subjects it is true that: 

%n�* �� R�.� <  %n�* �� R�.� <  %n�* �� R�.. <  %n�* �� R�.. 

%m�8 �� R�..  >  %m�8 �� R�.. >  %m�8 �� R�.� >  %m�8 �� R�.� 

Subject 11 has an higher %n�*�^^�@*� and %m�8�8�^>`@`Q>, compared to subject 4. It is worth to point 

out that %m�8�8�^>`@`Q>  is coherent with nonlinearity, because when one rises, the other lowers.  
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In the next graphs the trends of FE for both AP and ML time series were reported, for both R = 0.5 Q and R = 0.2 Q. To uniform the elaboration with the one of the RQA in paragraph 5.0, only 30 seconds after the 

initial 10 seconds were studied. That allowed us to confront the two results. 

R = 0.5 Q 

AP ML 

Figure 23 - AP (left) and ML (right) trends of the FE of subject 4 (top) and 11 (bottom) as function of the radius. Both OE and CE 

conditions were reported. Time delay was 0.5 seconds 

 

It is confirmed that CE entropy is higher than OE entropy. Looking carefully, it can be noticed that subject 

11 has mean values higher than subject 4 for radius less than ^ = 1. That is the opposite of what expected, 

because he had a %n�*�^^�@*� higher than subject 11. The reason is explainable thinking that the value 

of %n�*�^^�@*� proposed in Table 7 it is only a mean value of the curves. Indeed, if we look at the curves 

of %n�*�^^�@*�, it is possible to notice the coherence of the results (Figure 24). 
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Figure 24 - Detail of the %Recurrence curves of subject 4 and 11 

 

Thus, it is confirmed the inverse proportionality between %n�*�^^�@*� , index of nonlinear 

autocorrelation, and the Fuzzy Entropy. Now to the case R = 0.2 Q. 

R = 0.2 Q 

AP ML 

Figure 25 - AP (left) and ML (right) trends of the FE of subject 4 (top) and 11 (bottom) as function of the radius. Both OE and CE 

conditions were reported. Time delay was 0.2 seconds 
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The shape of the obtained curves is qualitatively similar to the precedent case. The main exception is the 

profile of the ML time series of subject 11. For R = 0.2 Q OE entropy is higher than CE entropy, while for R = 0.5 Q the opposite is true. It is clear that, to assess the relation between FE values and %n�*�^^�@*�, 

the same study need to be extended to all the time series. 

 

 

5.3 Final evaluation 

The comparison between FE and %n�*�^^�@*� was made using the results obtained in paragraph 5.0, and 

computing the values of entropy as a function of ^. In Figure 26 the results of  %n�*�^^�@*�  are reported 

again. It was added the relative number of the subject and a different color, just to allow an easier 

discrimination of the curves. 

> = 4,  R = 0.2 Q > = 4,  R = 0.5 Q 

Figure 26 - Figure 18 (left) and Figure 21 (right) trends of %Recurrence. For each profile the number of the relative subject was 

added 

 

What presented in Figure 26 allows to argue that subject 8 will have FE values higher in the OE case when 

the threshold is approximately between 0.5 and 1, in the case of  R = 0.2 Q. Together with subject 8, for  R = 0.5 Q there will be radius values for which subject 3 will have a higher FE in the OE case. Comparing the 

results with the ones for FE entropy (Figure 27), similar trends can be noticed.  
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> = 4,  R = 0.2 Q > = 4,  R = 0.5 Q 

Figure 27 - Trends of the AP Fuzzy Entropy of each subject, as functions of the radius. For each profile the number of the relative 

subject number was added 

 

The first thing to notice is that for small radii, almost all the subjects present different results than the ones 

obtained for higher values. In particular, taking subject 6 as example, a radius of 0.2 would lead to a FE 

higher in the OE case, but a radius of 0.5 would lead to the opposite result. Avoiding small radii, the 

distinction between the CE and OE conditions for some subjects are radius-dependent, see subject 8 and 3, 

while for others this is not the case. 

For both the time delays, the results achieved through FE are similar to the ones of %n�*�^^�@*�. 

Three are the main features of Figure 26 and Figure 27: 

- The peak of the OE-CE difference is function of R; this is particularly true for %n�*�^^�@*�   

- The order of the subject differences is approximately maintained, for both the methodologies and 

the time delays 

- For radii higher than a certain value, FE and %n�*�^^�@*�  give coherent results in the 

discrimination between OE and CE. 

For completeness , the same study was extended to the ML time series. 
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> = 4,  R = 0.2 Q > = 4,  R = 0.5 Q 

Figure 28 - Trends of the ML Fuzzy Entropy of each subject, as functions of the radius. For each profile the number of the relative 

subject number was added 

 

The trends in Figure 28 have a similar decay to the one shown for the AP time seris. However, in this case 

many subjects present a FE higher in the OE case (as seen in Figure 25 for subject 11). Again we find the 

peaks that translate according to the time delay, and a variable behavior for small values of the radius. 

 

6. Fuzzy entropy as a function of time 

The purpose of the elaborations was to find temporal intervals where the subjects focused their attention 

on the postural control. Two kinds of studies were conducted: 

- With overlapping windows 

- Sequential 

Starting with the former case, in are reported the result for > = 4, ^ = �0.5, 1.5� and R = �0.2, 0.5� Q of 

subject 11, the one that showed the higher differences in the entropy for those values of the radius. The 

chosen windows length was 350 samples (i.e. 3.5 seconds) for both the time delays. The overlap was of 349 

samples. 
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^ = 0.5, OE 

^ = 1.5, OE 

Figure 29 - Subject 11, AP and ML time series of FE obtained with windowed part of the signal (350 samples each) 

 

The behavior we expected was a bi-stable one, assuming that the “attention-on” and “attention-off” had 

two values of FE more or less fixed. Only the case R = 0.5 Q recalls that trend, but the number of changes is 

high, maybe too much and in too less time.  It is difficult to argue whether those oscillations are really 

describing the mind control of the subject, or not. Furthermore, the AP and ML spikes are almost 

uncorrelated (Table 8), while we argued that the cognitive component should have a coherent effect on 

both the AP and ML time series (i.e. correlated fluctuations). 

 R = 0.2 Q R = 0.5 Q ^ = 0.5 0.00 0.16 ^ = 1.5 0.06 0.24 
Table 8 - Correlation coefficients between AP and ML time series, windowed case 

 

The sequential analyses were reported in Figure 30. 
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^ = 0.5, OE 

^ = 1.5, OE 

Figure 30 - Subject 11, AP and ML profiles of the sequential FE 

 

Again, both AP and ML profiles are quite different (see Table 9), especially in the initial part. The FE in the 

ML case is always higher than in the AP case. That features was not noticed for the windowed FE.  More or 

less in all the presented graphs, both AP and ML have a transient and then a sort of plateau. Because of the 

length of the transient and the property of FE to handle short time series, it must be due to the intrinsic 

characteristic of the time series (thus, it is not related to a numerical problem). 

 R = 0.2 Q R = 0.5 Q ^ = 0.5 0.24 0.41 ^ = 1.5 0.01 0.77 
Table 9 - Correlation coefficients between AP and ML time series, sequential case 

 

The impossibility to understand the cognitive involvement of the subjects led us to the creation of a new 

dataset, expressly created with that purpose. 
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7. Study of a specific dataset 

7.1 Embedding parameters 

To extend the approach used for the first dataset, the AMI function was studied, together with the 

dependence of the FE to the radius. In Figure 31 the relative graphs are reported. 

Figure 31- AMI function (left) and FE differential analysis (right) for the choice of the proper parameters 

 

In the case of the AMI function, test 3 was studied because it held the information of both the CE and OE 

conditions. The FE graph was made using test 1 and 2. Only the AP time series were used. 

It can be noticed that the AMI has a trend similar to the one presented in Figure 11. The values are 

different because of the different sampling frequency (140 Hz for this dataset, 100 Hz for the other one). 

Therefore, it is reasonable to adopt the same values found previously, considering that R = 0.2 Q is placed 

at 28 samples, and R = 0.5 Q is placed at 70 samples. 

The embedding dimension was directly extended to this dataset because it was proven during the 

precedent elaborations that it is not a sensitive parameter. 

The study of the proper radius supports the theory of the dependence of the results to the physical 

features of the subjects. Indeed, in this case the FE is higher in the OE condition. 

 

7.2 Dynamical study of the visual condition 

The elaborated parameters were:  

- Standard deviation, index of variability 

- Sway-path length, index of curviness 

- Fuzzy Entropy, index of complexity 

- Hurst exponent, index of scaling behavior 
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The obtained results are directly compared with the ones achieved in the article describing the effect of the 

attention on the CoP (10). That study was made averaging the results of 30 different subjects, taking 

together AP and ML time series. Being a inter-subject study, we think that It can be a useful reference to 

our results. The single-task condition involved just staying in OE or CE condition. The dual-task involved a 

cognitive exercise to reduce the attention of the subjects on the postural control. 

 

Standard deviation 

As reported in Figure 32, the standard deviation of the time series is a sensitive parameter to the eyes 

condition. 

 

 
Figure 32 - Legend of the results achieved in (10) (left), graph resuming the standard deviation (right) 

 

We checked that, actually, test 1 and test 2 show the same result of the single-task case, with the values 

reported in Table 10. 

 Test1 - OE Test2 - CE 

AP 1.64 mm 2.85 mm 

ML 3.33 mm 6.41 mm 
Table 10 - Standard deviation of the AP and ML time series, in the OE and CE conditions 

 

The graphs of the sequential standard deviation of the CoP for test 1 and 2 are reported in Figure 33. 

Figure 33 - Sequential standard deviation for test 1 (left) and test 2 (right) 
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As already known, the CoP is not a stationary signal, and this is proved by the obtained results. The 

standard deviation for the velocity of the CoP is reported below. 

Figure 34 - Sequential standard deviation for the differential time series of test 1 (left) and test 2 (right) 

 

Both AP and ML time series get stable after nearly four seconds. To decide the windows length for the 

windowed analysis, we used the precedent results. The idea is that, if a parameter is not stable looking at 

the sequential analysis, it cannot be used for the time-dependent evaluation. In the case of the standard 

deviation, the CoP displacement is too variable, while the velocity is stable enough after four seconds. 

Therefore, we studied the velocity of the CoP recurring to a windows length of ten seconds. 

Figure 35 – Test 1(left) and test 2 (right) differential time series, studied with windows of 10 seconds 

 

It can be noticed that there is a fluctuation of the values for Test 1, for both the AP and ML time series. We 

will discuss this result in the following.  

These are the results obtained for test 3. The black background stands for closed-eyes, while the white for 

open-eyes condition. 
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Figure 36 - Standard deviation of the displacement time series of test 3, studied with windows of 10 seconds 

 

We remember that the value at a certain instant 8 is computed analyzing the interval �8, 8 + 10� Q. That 

must be considered when associating a certain condition (given by the background color) to the specific 

values. Looking at the trends, it seems not possible to recognize whether the subject was in open or closed 

eyes condition. The same parameters were used for the windowed study of the velocity of the CoP (Figure 

37).

 

Figure 37 - Differential time series of test 3, studied with windows of 10 seconds 
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Sway-path length 

The results of (10) are reported in Figure 38. In their case, it is not a parameter sensitive to the visual 

condition. 

 

Figure 38 - Graph resuming the sway-path length 

 

In our case, the results in Table 11 show a higher sensitivity. 

 Test1 - OE Test2 - CE 

AP 1.6 Q=/ 0.8 Q=/ 

ML 0.6 Q=/ 0.2 Q=/ 
Table 11 - Sway-path length of the AP and ML time series, in the OE and CE conditions 

 

The subject did not present similar values in the OE and CE conditions. Furthermore, our values are more 

distant than five standard deviations from the ones of Figure 38. This could be due to a different 

normalization factor. Indeed, in (10) the exact formula to calculate SP was not reported, thus we used the 

one reported in (5). 

In the following are presented the results of the analysis for the displacement and the velocity time series 

(Figure 39). 
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Figure 39 - Sway-path length sequential analysis of the displacement (top) and velocity (bottom) time series. Test 1 is presented 

on the left, test 2 on the right 

 

Both the velocity and the displacement time series seem more or less stable, especially after ten seconds. 

Because a higher value of window could not be used (the visual condition changed every 10 seconds), we 

selected that windows length. In Figure 40 are reported the results for the windowed analyses. 
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Figure 40 - Sway-path length windowed analysis of the displacement (top) and velocity (bottom) time series. Test 1 is presented 

on the left, test 2 on the right 

 

In the displacement time series the trends present oscillations that are much clearer for the velocity. The 

period in the latter case seems the same one obtained for the standard deviation of the velocity time series 

(Figure 35). A peculiar characteristic related to the visual condition is that the SP of the velocity in the case 

OE follows a negative trend, while in the CE case follows a positive trend. 

Below are reported the result for the windowed analysis of test 3, for both the displacement (Figure 41) 

and the velocity (Figure 42). 
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Figure 41 - Sway-path length of the displacement time series of test 3, studied with windows of 10 seconds 

 

 

Figure 42 - Sway-path length of the velocity time series of test 3, studied with windows of 10 seconds 

 

It can be noticed that during the CE phase (black column) the SP rises, while in the OE phases it decreases. 

This is exactly the same trend found in Figure 40, analyzing separately test 1 and test 2. 
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Representing the slope of the regression line within each interval of 10 seconds, and rescaling the values, it 

is possible to achieve an oscillatory behavior.  

 

Figure 43 - Slope values of the regression line calculated within each interval of 10 seconds of the SP time series obtained from 

the study of the velocity of the CoP 

 

From the presented result, it seems sensible to argue that SP is a sensitive parameter for the dynamical 

study of the visual condition. In this case, the AP time series seemed more reliable compared to the ML 

time series, that missed the proper trend in the interval from 60 to 70 seconds. Anyway, that could be due 

to the simplicity of the calculation method or simply the physical characteristics of the subject. 

 

Sample Entropy 

As already found also in our case, the SE (for us FE) is a sensitive parameter to the visual condition. 

 

Figure 44 - Graph resuming the sample entropy 
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Using the set of parameters > = 4, R = 0.5 Q and ^ = 0.5, the following values were calculated for test 1 

and 2. 

 Test1 - OE Test2 - CE 

AP 0.53 0.30 

ML 0.43 0.31 
Table 12 - Fuzzy Entropy of the AP and ML time series, in the OE and CE conditions 

 

As reported in both the results, the entropy is a sensitive parameter to the visual condition. It appears 

again that the results are strictly dependent on the characteristics of the subjects. Indeed, the precedent 

dataset outlined exactly the opposite result. 

The sequential analyses are showed in Figure 45 and Figure 46. 

Figure 45 - Sequential Fuzzy Entropy of test 1 (left) and test 2 (right), for both displacement AP and ML time series 

 

Figure 46 - Sequential Fuzzy Entropy of test 1 (left) and test 2 (right), for both differential AP and ML time series 
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All the four trajectories are non-stationary. This is particularly true for the displacement time series, while 

the velocity ones, even if changing with time, maintain a similar trend. 

We extended the study to test 3, reporting the results in Figure 47 and Figure 48. 

 

Figure 47 - Fuzzy Entropy of the displacement time series of test 3, studied with windows of 10 seconds 

 

Figure 48 - Fuzzy Entropy of the velocity time series of test 3, studied with windows of 10 seconds 
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Both the displacement curves present an oscillatory behavior that could seem dependent to the visual 

condition for certain time intervals, but appear incoherent in others. Roughly speaking, it seems that during 

the closed-eyes phase, the entropy lowers, while in the opened-eyes phase it rises. That would be coherent 

with the results obtained analysing separately OE and CE conditions (i.e. what resumed in Table 12). 

 

Hurst exponent 

We followed the procedure presented in (34) for the estimation of the Hurst exponent (resumed in 8.0).  

The Power Spectral Density (PSD) of test 1 AP time series (Figure 49) outlined that frequencies higher than 

8-10 Hz are principally due to noise. Exactly the same trend was found for the ML time series and for tests 

2. 

 

Figure 49 - PSD of test 1 AP time series 

 

In Table 13 the Hurst exponents calculated through lowPSD were reported. 

 Test1 - OE Test2 – CE 

AP 0.67 0.64 

ML 0.91 0.98 
Table 13 - Hurst exponent through lowPSDwe of the AP and ML time series, in the OE and CE conditions 

 

Because the results outlined the fractional Brownian motion nature of the CoP, and we had  0.2 < � < 1, 

the best algorithm for the evaluation of the Hurst exponent was the Scaled Windowed Variance (SWV). In 

particular, we used the linear detrended Scaled Windowed Variance (ldSWV), an improved version of SWV. 

As showed in (34), and reported in Figure 50, this algorithm is really accurate in the estimation. 
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Figure 50 - SWV analysis. Plots of mean estimated Hurst exponent versus the true H (left), and estimated H standard deviation 

versus true H (right). The different symbols refer to the length of the used time series 

 

Because of the high number of samples of our time series (> 2048), it is reasonable to expect that the 

Hurst exponent estimations are reliable (for the sensitivity to noise of SWV, see the details in (34)). 

In the following tables are resumed the results of (10) (Table 14) and ours (Table 15). 

 

Table 14 - Scaling exponent results 

 

 Test1 - OE Test2 - CE 

AP 0.26 0.21 

ML 0.49 0.52 
Table 15 - Hurst exponent through SWV of the AP and ML time series, in the OE and CE conditions 

 

 It is worth to remember the relation between the scaling exponent ( obtained through DFA, reported in 

Table 14, and the Hurst exponent: 

� = ( − 1 

Therefore, in both the cases the Hurst exponent is higher in the OE condition. Moreover in both the cases 

the Hurst exponent is in the persistent range. 
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Now studying the sequential time series: 

Figure 51 - Sequential Hurst exponent of test 1 (left) and test 2 (right), for both displacement AP and ML time series 

 

Within the first ten seconds the AP time series is in the persistent range, while after it is in the anti-

persistent range. This is true for both OE and CE time series. The true difference, in this case, stands 

between AP and ML time series. Indeed, the ML time series is almost always in the persistent range. 

In the following the results for test 3. 

 

Figure 52 - Hurst exponent of the displacement time series of test 3, studied with windows of 10 seconds 

The Hurst exponent of the velocity time series was not studied because it is the same of the displacement 

time series (34). That is due to the mirror effect, introduced in chapter 2. The differences can only be due to 

a numerical inaccuracy from one or both the estimations. 
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7.3 Dynamical study of the cognitive condition 

Here are presented the results for test 4 of the specific dataset. In test 4 the single-task and dual-task 

conditions were alternated, recording the time series with eyes closed.  

For problems related to a data transfer, the other test could not be studied. 

From now on, we will depict the graphs using three colors: 

 Dual-task condition, spelling the inverted word 

 Dual-task condition, listening to word, trying to invert it 

 Single-task condition 

 

Each time series was studied with the windowed approach, analyzing windows of 10 second. The length 

was chosen taking as a reference the study of the incremental time series, proposed in the precedent 

paragraph. 

Our results were confronted, as already made for the visual condition, with the ones obtained in (10), 

reported in Figure 53 and . 

 

Figure 53 - Report of the results achieved in (10) 

 

We recall that the scaling exponent ( obtained through Detrended Fluctuation Analysis, used in (10), it is 

linked with the Hurst exponent we calculated through Scaled Windowed Variance, by the relation: 

� = ( − 1 
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Standard deviation 

Beginning with the standard deviation, the results for both displacement and velocity are depicted 

respectively in Figure 54 and Figure 55. 

 

Figure 54 - Standard deviation of the displacement time series of test 4, studied with windows of 10 seconds 

 

 

Figure 55 - Standard deviation of the velocity time series of test 4, studied with windows of 10 seconds 
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The trends look similar to the ones proposed in the study of the visual condition. Especially in the 

displacement time series, it can be seen an oscillatory behavior hardly due to the cognitive condition. 

Furthermore, in (10) the standard deviation during the dual-task is lower than the standard deviation 

during the single task, in the closed eyes condition (see Figure 32), but we do not notice a similar behavior 

(it seems completely uncorrelated to the cognitive condition). 

 

Sway-path length 

Below the same study was extended to the sway-path length. Only the AP time series of the displacement 

time series seems somehow correlated with the dual task. In particular, it seems that while listening to the 

word and trying to invert it (green background) the value increases. Then, depending on the amount of 

time involved to spell out the name, the SP stays high until there is a sudden drop (yellow background).  

 

Figure 56 - Sway-path length of the displacement time series of test 4, studied with windows of 10 seconds 

 

In (10) the SP in the dual-task is higher than the one in the single-task (Figure 38). Their result is compatible 

with ours.  

Nothing in particular arises from the analyses of the velocity (Figure 57). We recall that the SP analysis of 

the velocity was the only one which gave a good result in the dynamic recognition of the visual condition 

(Figure 43). 
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Figure 57 - Sway-path length of the velocity time series of test 4, studied with windows of 10 seconds 

 

Fuzzy Entropy 

As already seen for the visual condition, the Fuzzy Entropy appears as a highly variable signal. The 

qualitative analysis of the obtained results does not allow any particular consideration. 

 

Figure 58 - Fuzzy Entropy of the displacement time series of test 4, studied with windows of 10 seconds 
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In (10) the Sample Entropy gets higher when the subjects are in the dual-task condition. Our results seem 

to point in the opposite direction, if we look at the trends in the green and yellow backgrounds. However it 

seems also the contrary if we consider that the value at the beginning of the green background is the one 

that better describes the mental activity due to the inversion, because it was computed considering the 

first 10 seconds of mental activity, and two values out of three (60 seconds and 90 seconds) have the 

lowest values of entropy. That is mostly true for the AP time series. 

 

Hurst exponent 

The analysis of the Hurst exponent was the only one capable to show a form of correlation with the dual-

task. In Figure 59 are reported the trends for both AP and ML displacement time series, while in Figure 60 

the AP time series alone was represented. To explain more clearly our position, only the values at the 

beginning of each interval was represented, and plotted in the middle of the intervals. 

 

Figure 59 - Hurst exponent of the displacement time series of test 4, studied with windows of 10 seconds 

 

In (10) the values of the scaling exponent lower during the dual-task. That is exactly what happens in our 

case. Most interestingly, we noticed that during the single-task the Hurst exponent of the AP time series is 

mainly in the persistent region, while during the dual-task, it is in the antipersistent region. Figure 60 

reports that trend, outlining the value � = 0.5, that is the boundary between the persistent and the 

antipersistent region (for details on the meaning of �, see chapter 2). 
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Figure 60 – Hurst exponent values calculated within each interval of 10 seconds of the  AP displacement time series 

 

8. Dimensionality of postural sway 

The statistical test revealed that the complex signals created joining the AP with the ML time series, 

respectively as the real and imaginary part of the complex signal, are non-circular. That was true for each 

trial of each subject in each visual condition. This result is not outstanding, thinking at the definition of 

circularity. Indeed, circularity can be due to two reasons: being � = � + �} a sample of the complex signal, � and } must have equal variances and � and } must be uncorrelated. Looking at the precedent results 

showed on this thesis, it is clear that none of these statements are true. Correlation between samples was 

shown with the complex-nature test, while the differences in the variances was proven with the time-

dependent study of the CoP. 

Proved the non-circularity of the CoP, we implemented the M-step ahead prediction algorithm recurring to 

CLMS, ACLMS, QLMS and AQLMS. Because of the non-circularity of the signal, we expected better 

performances in the case of the augmented version of the adaptive filters. Below we reported the results. 

On time series of 5000 samples (the first 10 seconds, i.e. 1000 samples, were neglected as always), we used 

3900 samples for the training and 1000 samples for the test. To avoid any possible help in the prediction, 

we separated training and test time series with 100 not used samples. 

 

Complex case: OE 

Starting with the open-eyes case, in Figure 61 are reported the prediction gains for both the training and 

the test phases. The prediction gain was set to 0.14 seconds (14 samples). 
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Figure 61 - OE case: CLMS and ACLMS performances as function of the stepsize and filter length, for both the training (left) and 

test (right) phases. The prediction horizon was set to 14 samples (0.14 seconds) 

 

Because of the prediction horizon, the values of the gain are not so high, especially in the training phase. 

Starting  from the latter, we see that the gain rises with the value of the stepsize and lowers with the order 

of the filter. The rises in the stepsize allows the filter to follow more quickly the desired signal, while the 

augment of the order probably causes problems in the convergence of the algorithm. It can be noticed that 

the ACLMS performs better in this phase, as reasonable because of the non-circular nature of CoP. During 

the test, unexpectedly, the CLMS performed much better than the ACLMS, especially for filter of high order. 

For the ACLMS the performamces worsened with the rising of the order of the filter. That could be due to 

an overfitting of the model arising only in the case of the augmented filter, maybe because of the higher 

information it handles. Another possibility, looking at the results on the wind velocity elaborated in (17), it 

is that a higher number of samples for the test it is needed to let the augmented filters converge (usually 

they are slower than their non-augmented counterparts). 

Studying the dependence to the prediction horizon, we achieved the results reported below. 

Figure 62 - OE case: CLMS and ACLMS performances as function of the prediction horizon and filter length, for both the training 

(left) and test (right) phases. The stepsize was set to �. � ∗ J�=� 
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As reasonable, the prediction gain lowers as the prediction horizon augments. Again the ACLMS performs 

slightly better than the CLMS during the training, but worst in the test phase. Filters of higher order 

perform better in the test phase for lower prediction horizon. For the other values, and in the training 

phase, the performances remain almost the same at every filter length. 

 

Complex case: CE 

In Figure 63 and Figure 64 are reported the performances as function of stepsize and filter length, and 

prediction horizon and filter length, respectively. 

Figure 63 - CE case: CLMS and ACLMS performances as function of the stepsize and filter length, for both the training (left) and 

test (right) phases. The prediction horizon was set to 14 samples (0.14 seconds) 

 

Figure 64 - CE case: CLMS and ACLMS performances as function of the prediction horizon and filter length, for both the training 

(left) and test (right) phases. The stepsize was set to �. � ∗ J�=� 

 

In both the cases, the considerations are the same presented in the open-eyes case. The only two 

differences are the values of the gain, generally higher in the CE case.  
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Quaternion case and confront with the complex case 

During the study of the quaternion model, we separated the results in OE and CE, to compare them with 

the ones achieved in the complex domain. In Figure 65 the results for test and training are reported. Again, 

during the training phase the augmented filter performs better than the non-augmented, while the 

contrary is true for the test phase. We find smoother profiles of the gain compared with the ones achieved 

before, especially for the training. There is a slightly improvement of the performances with the filter 

length in all the cases but the test for the AQLMS. As a final remark, the closed-eyes case confirms to 

achieve higher prediction gains, in both training and test. 

Figure 65 - QLMS and AQLMS performances as function of the stepsize and filter length, for both the training (left) and test 

(right) phases. The prediction horizon was set to 14 samples (0.14 seconds). In the top are reported the results for the OE case, 

while in the bottom for the CE case 

 

To better compare the results of the different adaptive filters, we collapsed the results in four unique plots, 

two for the training OE and CE, and two for the test OE and CE. Starting with the training (Figure 66). 
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Figure 66 - CLMS, ACLMS, QLMS and AQLMS performances as function of the stepsize and filter length, for the training phase, in 

the OE (left) and CE (right) case. The prediction horizon was set to 14 samples (0.14 seconds) 

 

The presented results are similar to the ones achieved in (17) for a completely different type of data, a part 

for the ACLMS, that was not included in their simulations. The order of the performances sees AQLMS, 

QLMS, ACLMS and CLMS. From these results it is clear that, at least in the training phase, the information 

shared between OE and CE (quaternion model) and the non-circularity of the signal (augmented statistics) 

is useful to achieve higher prediction gains.  In Figure 67 the results for the test phase were reported. 

Figure 67 - CLMS, ACLMS, QLMS and AQLMS performances as function of the stepsize and filter length, for both the test phase, in 

the OE (left) and CE (right) case. The prediction horizon was set to 14 samples (0.14 seconds) 

 

The test phase offers controversial results. The augmented statistics seems to suffer from the overfitting of 

high order models, obtaining low values of gain with the increase of the filter length. In the OE case the 

CLMS obtain better performances for a certain range of values of stepsize and filter length, while the QLMS 

filter performs much better in the CE case. The AQLMS performs better than ACLMS, demonstrating again 

that in every case, the quaternion models are better than the complex counterparts. 

Now we examine the performances as function of the prediction horizon and the filter length. Starting with 

the analyses of the quaternion filters (Figure 68). 
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Figure 68 - QLMS and AQLMS performances as function of the prediction horizon and filter length, for both the training (left) and 

test (right) phases. The stepsize was set to �. � ∗ J�=�. In the top are reported the results for the OE case, while in the bottom 

for the CE case 

 

It is confirmed also in the quaternion domain that the CE time series achieve a higher prediction gain 

compared to the OE, in both training and test. The augmented filters perform slightly better in the training 

phase, and slightly worse in the test phase. We found the same results in the complex domain. 

We compared all the results achieved in this type of study (Figure 69). 
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Figure 69 - CLMS, ACLMS, QLMS and AQLMS performances as function of the prediction horizon and filter length, for the training 

(top) and the test (bottom) phase, in the OE (left) and CE (right) cases. The stepsize was set to �. � ∗ J�=�. 

 

The achieved results in the training phase follow the same consideration made in the study with the 

prediction horizon fixed. The AQLMS performs better for both OE and CE (more in the latter case), than 

there are the QLMS, the ACLMS and the CLMS. The test phase offers different results. Indeed, the OE case 

follows the precedent study but for the fact that for high prediction horizons the ACLMS performs better 

than the AQLMS. That would result in the conclusion that for high prediction horizons the complex model is 

better than the quaternion one. That is not true only in the case of low order filters, indeed in that case the 

augmented statistics filters perform better than their counterparts.  In the CE case, the QLMS performs 

better, as seen in Figure 67. However, the situation changes for the other filters. Indeed, for high prediction 

horizons, the AQLMS is the second one to perform better, while previously it was the CLMS. Then the order 

CLMS, ACLMS is preserved. Therefore for high prediction horizons the quaternion model is better than the 

complex, and the non-augmented filter are better than the augmented ones. 
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6. Discussion of the results 

 

The experiments made during the development of this work covered several aspects of the postural sway 

analysis, reported in the following list 

- Evaluation of the complex nature of the CoP time series 

- Choice of the best parameter setting for the calculation of the entropy 

- Confront between entropy and regularity indexes 

- Characterization of the differences related to the visual condition 

- Dynamical study of the visual condition 

- Dynamical study of the cognitive condition 

- Final evaluation of the dimensionality of CoP 

 

Complex nature of CoP 

To the best of our knowledge, no one before tried to model postural sway recurring to a complex model. 

Usually the AP and ML time series are studied separately, or together through the definition of variables 

like the “resultant distance” (5), that is nothing else than the amplitude of the complex signal obtained 

studying AP and ML time series together, thus not considering the phase information. As outlined Mandic 

et al. in (18), the drawback in studying a real bi-variate variable it is exactly to lose the information brought 

from the phase of the signal, that sometimes could result essential to model properly the system object of 

the study. The results obtained clearly showed that a CoP model created in the complex domain is 

statistically different by the real bi-variate model.  This study did not allow to qualify which representation 

is more suited for a certain application. That point was analysed with the study on dimensionality, that will 

be discuss later. 

 

Choice of the parameters 

One of the main problems in nonlinear signal processing is the need to set parameters. Parameter 

estimation can be solved through optimization methods, but sometimes it is even hard to know which 

should be the cost function to minimize. In the literature of postural sway, in particular in the computation 

of the entropy, many are the possible approaches to follow. As outlined during the thesis, the methodology 

depends on the specific parameter. Three are needed: the time delay, the embedding dimension and the 

radius. Usually the first one is calculated through the AMI function and the second one through the False 

Nearest Neighbors (19), the third one relies on different approaches (6), (29). Let’s discuss one by one each 

parameter. We followed a standard approach for the choice of the time delay, using the AMI function. 

However, we did decide not to choose a value in the interval �0.01, 0.1� Q, as made by many authors ((13), 

(22), (12)), to explore the effect of larger time delays. Two were the main reasons. The former was the 

presence of long vertical and horizontal lines in the recurrence plots (not presented in the thesis), that 

outlined the oversampling of the time series for values within the �0.01, 0.1� Q interval (even if we used as 

many authors a sampling rate of 100 Hz). The latter was given by the fractal nature of CoP: expressing 
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fractality in time, our belief is that the fractal nature of CoP imposes to explore time delays in a wider way, 

not focusing just on short delays. That led us to the choice of  0.2 and 0.5 seconds. The time delays final 

values and the embedding dimension were assessed through Delay Vector Variance (DVV). We decided not 

to recur to False Nearest Neighbors, because in literature the values of the embedding dimensions applied 

to CoP are nearly the same, usually in the interval �2,6� ((22), (29), (6)). Therefore we wanted to explore 

different ways to solve the parameter settings, keeping the interval �2,6� as a reference. We introduced 

two parameters linked to DVV that allowed us to better understand the trade-off in the choice of the 

embedding dimension. Indeed, we found a compromise between the computational load and the values of 

nonlinearity and stochasticity. The idea under this approach is to choose the embedding dimension to look 

for a certain property of the time series. Mathematical models are always an approximation of reality, thus 

it could be wrong to think that a certain parameter could fit for a certain type of dataset: we could have 

chosen either a small value of the embedding dimension to strengthen the stochasticity and minimize the 

nonlinearity of the signal, or a large value to strengthen the nonlinearity and minimize the stochasticity. It 

all depends on the type of study and the researched features of the signal. We recurred to the same 

approach for the estimate of the radius. Recurring to Recurrence Quantification Analysis we have been able 

to associate at each radius the relative properties of the time series on which the fuzzy entropy was 

calculated. 

We believe that this approach feature-oriented, even if not optimal, at least it can help to better 

understand the signal object of study, and its properties.  

 

Confront entropy vs regularity indexes 

It is quite tautological that the family of the Approximate Entropy, like Sample Entropy (SE) and Fuzzy 

Entropy are indexes of complexity (31). In that article, it is explained that complexity is a concept that has 

multiple descriptions. The complexity of a signal can refer to the unpredictability of a signal, and it can also 

refer to the difficulties one has in describing or understanding a signal. For example, irregular signals are 

more complex than regular ones because they are more unpredictable; and regular signals varying quickly 

appear to be more complex than those varying slowly because quick-varying ones present more variations 

in a given period of time. This description of complexity means that random numbers are more complex 

than periodical sinusoidal signals, and that periodical signals with higher frequencies are more complex 

than those with lower frequencies. With the discover of deterministic chaos, the word “chaotic” stopped to 

be used to express that a certain phenomenon appeared stochastic, to be replaced exactly by the term 

“complex”. Therefore, complexity and regularity express the opposite concept. %n�*�^^�@*� of the 

Recurrence Quantification Analysis (32) is an index of regularity.  

It can happen in literature to find studies where there is a direct comparison between two different works 

recurring to different methodologies. In (14), for instance, the sample entropy of the CoP of ballet dancers 

was compared with the ones of the controls (i.e. non-dancers), and the results were confronted with the 

ones achieved in (13) through recurrence analysis in a similar study (in that case, the controls where track 

athletes). The authors argued a coherence between the achieved results, because in both the studies it was 

proven that ballet dancers have respectively higher Sample Entropy (complexity) and lower %n�*�^^�@*� 

(regularity) compared with the controls. However they neglected to cite that the results were discordant 

respect to the visual condition. Indeed, in both the studies SE and %n�*�^^�@*� of ballet dancers were 
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found higher in the OE case. Those considerations proved that there cannot be a direct comparison 

between two indexes, even if they describe the same features of a system.  

In this work of thesis Recurrence Quantification Analysis and Fuzzy entropy (FE) were both used to 

characterize the first dataset. It was proved that for a certain range of the radius parameter there is an 

inverse proportionality between %n�*�^^�@*� and FE (we compared just AP time series), even if we used 

different metrics than the ones used in (13) and (14). Thus, we believe that it should be given more 

attention to the fact that algorithms that calculate a same feature of the signal (entropy, regularity, 

nonlinearity, etc..) should be not compared without applying them to the same dataset. Indeed, the 

algorithms rely on mathematical models that could be not so accurate to catch the real essence of the 

abstract feature of the signal, object of the study. 

 

Considerations on OE vs CE 

Recurring to the elaborations with the Fuzzy Entropy we have been able to express our point of view in the 

evaluation of the entropy of CoP. Precedent studies showed how the estimation of the complexity can lead 

to opposite results. In (6) the entropy values were found equal in both OE and CE conditions, while in (10) 

and (29) the entropy was higher in the OE case. Other examples can be taken drawing on the literature of 

recurrence analysis applied to the postural sway, even if we already discussed that this kind of comparison 

should be taken as absolutely qualitatively and at high risk of fault. In the RQA literature, there are studies 

like (12) where %n�*�^^�@*� is equal in both the visual conditions, or again in (13) it was shown that track 

athletes have higher %n�*�^^�@*� in the CE case. Interestingly, in the latter article it was demonstrated 

that using a foam platform instead of a standard one, the %n�*�^^�@*� rised for both athlets and ballet 

dancers in all the visual conditions. What arises from those examples is the dependence of 

complexity/regularity and other parameters to the physical characteristics of the subjects. Not only. Also 

the particular conditions of the acquisition, for instance using a foam platform instead of a rigid one, it 

modifies the value of those parameters.   

In our study, we showed the sensitivity of the estimation of complexity/regularity to parameters, 

presenting the profiles of Fuzzy Entropy and %n�*�^^�@*� as functions of the radius for each subject. 

Those plots demonstrated also that certain subjects have different characteristics compared to the other, 

no matter which value the radius was. Therefore, some of them had a FE higher in the CE case, while others 

had similar values of FE in both CE and OE. The situation changed completely when we studied the ML time 

series. In that case we obtained also examples of FE higher in the OE case than in the CE. The meaning of 

these results must be contextualized with the considerations made above looking at the literature. It is 

clear that there is not a specific value for a specific condition. Depending on the physical characteristics of 

the subject, the training and the conditions of the acquisition, really different values can be obtained. In 

literature only the conditions of acquisition are considered. The training is considered only when a specific 

study is being made, like for (13) and (14). Even in our dataset, we did not ask people for their training 

background. However, we think that for a better understanding of the obtained values, an improvement in 

the selection process of the sample of study should be made, and specified in the relative article (to allow 

an easier comparison). 
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Dynamical study of the visual condition 

To the best of our knowledge, no one before tried to study a signal acquired while opening and closing the 

eyes. Maybe the reason is that it could be somewhat weird: there is actually no need to understand when 

the subject is in the OE and CE condition, because you can see it. But that is not the real reason to make 

such a study. The main objectives were the validation of certain parameters as biomarker of the visual 

condition and the exploration of the changes in the control mechanism under a non stationary regime. 

Before assessing the sensitivity of the parameters with a traditional windowed study of the time series, we 

decided to study the sequential correspondence of those parameters. Two are the reasons for that choice. 

The sequential study is able to show whether a certain parameter can be considered stationary or not, and 

it can be used to evaluate a minimum number of samples needed for the mathematical convergence of the 

estimation (there is always an initial transitory due to the small number of samples used in the early stage). 

We evaluated the standard deviation (variability), the sway-path length (curviness), the fuzzy entropy 

(complexity) and the Hurst exponent (scaling behavior). Our reference was (10). The results of the standard 

deviation, the entropy and the scaling exponent of case only-OE and only-CE were coherent in both our 

study and (10). The sway-path length showed different values, probably due to physical differences 

between our subject and their sample. When we analised the time series with dynamical changes of the 

visual condition (test 3), we surprisingly found out that parameters that were able to properly classify the 

visual condition in the long run (for instance after 60 seconds of records), were not capable to dynamically 

track it. The only parameters that showed to be more reasonably linked to the visual changes was the 

sway-path length of the velocity.  

Many are the possible interpretation of these results. We would like to differentiate between signals that 

revealed their stationarity with the sequential study, and signals that did not. In the former case, it would 

be expected, chosen a proper window length correlated with the transient time of the estimation, to easily 

track the dynamic changes. Actually that did not happen always. The reason could be due to a 

differentiation in the control mechanism, that allowed the parameter to converge to a solution in the only-

CE or only-OE condition, but did not in the case of OE-CE alternation. In the latter case, it is more 

reasonable to find something that have problems in tracking the changes. A better approach could be to 

investigate the time-dependency of those parameters not considering a dynamic scenario, and then 

contextualize that time-dependency in it. 

 

Dynamical study of the cognitive condition 

The final aim of the time-dependent evaluations was to find whether the subjects were altering their 

postural sway focusing the attention on their body. Again, we used the results of (10) as a reference, even 

because the only one exploring this type of problem. The authors outlined the entropy as a marker of the 

attention on the postural control. At the first stages of the work, we tried to find a correlation between 

their results and a time-dependent study of the Fuzzy Entropy. More precisely we looked for a bistable 

behavior that could somehow give the impression of a change in the attention/disregard of the body. We 

found out that entropy was quite far from being stationary (sequential analysis) and used to change 

presumably too often and within too short intervals (windowed analysis). We argued that a change in the 

attention could have result in both AP and ML time series, but the correlation coefficient we found, were 

too small. Because we could not properly understand the meaning of the obtained results, essentially 

because our dataset was not the most suited to understand the effect of the cognitive component, we 
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created a new one. The parameter which gave the most confident results was the Hurst exponent. In (10) 

almost all the parameters showed a sensitivity to the cognitive component, but in our case the Hurst 

exponent was the only one capable to track the cognitive involvement of the subject. In the CE case, it 

seems that the focusing on the postural sway could be correlated with the presence of the time series in 

the persistent range. That would be justified by the sensation of oscillation enhancement and 

memorization that is felt when a person stands still with the eyes closed. With memorization we mean that 

there is a strong sensation that the movement in a certain direction is amplified, and that sensation is felt 

for a certain amount of time. Obviously these statements are empirically motivated, but not proven at all. It 

is a way to interpret the obtained trend. 

In this study, the Fuzzy Entropy revealed itself again as the most variable parameter. Those results make us 

argue that complexity could be a parameter oversensitive to changes. With oversensitive we mean that 

many changes of the postural system could affect it. Indeed, from the achieved results, Fuzzy Entropy 

resulted somewhat correlated with both the visual and the cognitive changes. 

 

Quaternion vs Complex based representation of CoP 

The result on the complex nature of the CoP obtained at the beginning of the present work motivated the 

exploration of a dimensionality study. We argued that when the visual condition is missing (i.e. closed-eyes 

condition), the relevance of the other components that regulate the process of equilibrium is strengthened, 

as it would happen for a defective system. Indeed biological systems are full of complex regulatory 

feedback processes that act to maintain their functionality. Therefore, we evaluated the possibility to 

consider together the information of open-eyes and closed-eyes time series to model more properly the 

postural control system. To quantify this study, we decided to test whether there was an improvement or 

not in the prediction gain of an M-sample predictor through adaptive filters. Dependence on filter length, 

stepsize and prediction horizon was investigated. We recurred to Complex Least Mean Square (CLMS), 

Quaternion LMS and their Augmented version, ACLMS and AQLMS. The latter two were introduced to take 

in account the non-circularity of the CoP time series, proved through a specific statistical test. Five are the 

types of possible considerations: 

- Training vs Test 

- OE vs CE 

- Dependence to the parameters 

- Augmented vs non-augmented 

- Complex vs Quaternion 

Probably because of the short length of the test time series, the training revealed itself as more accurate 

(i.e. higher prediction gain). Actually we tried to shorten the training time series, and we noticed that the 

prediction gain is proportional to the length of the time series. We anyway decided to maintain the training 

with more samples because of the results presented in (16), where it was shown that the ACLMS needs 

more iterations to converge because of the double number of weights, compared to CLMS. Obviously the 

reason was to compare the results at the steady state of the different filters, as made in (17) for wind data.  

The different visual conditions outlined higher performances of the filters for the closed-eyes case. The CE 

prediction gains were found higher for both training and test, in all the studies. In particular, the gain 
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differences from OE to CE case for QLMS and AQLMS were small compared to those noticed for CLMS and 

ACLMS. Those results outlined that a FIR model could be more suitable for the CE case than for the OE one. 

Moreover, the OE features were not caught by the complex filters, giving poorer results compared to the 

quaternion filters. Therefore, the CE information helped the adaptive filter to model more properly the OE 

case, resulting in slight gain differences from OE to CE for quaternion filters, but not for complex ones. This 

result could be motivated by the fact that in the OE condition the postural sway it is not mainly controlled 

by the visual information, causing the CE information to improve the prediction. 

Apart from the standard considerations in the variation of the parameters, already reported in the Results 

chapter, the most interesting phenomenon was the improvement for the test dataset of the CLMS gain in 

the OE case, for both the Filter Length-Stepsize and Filter Length-Prediction Horizon studies. That 

improvement arises when the filter length surpasses the 5
th

 order, and it causes CLMS and ACLMS to 

perform better than QLMS and ACLMS, respectively. The reason could be due again to the problem of the 

time of convergence of the quaternion filters, which is slower of the complex one. Obviously, that effect 

rises with the order of the filter, motivating the obtained trends. Another possibility could be that the high 

order quaternion filters overfit the signal because of the high number of weights, causing a high training, 

but low test prediction gain. None of these explanations, anyway, explain why it happened only in the OE 

case. 

The non-circularity of the CoP motivated a higher prediction gain of the augmented statistics, as the one 

reported in the training case. However, during the test the augmented filters performed poorly compared 

to their counterparts (unless for the case of high order filters). Again, the reason could be one of those 

explained previously, related to the difference in the number of weights. 

Excluding the case presented above, the quaternion filters outperformed their complex counterparts, 

always. Therefore, as we argued, the hypercomplex model allows the creation of a more accurate model of 

the postural control system. This result should motivate the passage from a monodimensional bivariate to a 

multidimensional study of the center of pressure. The introduction of new parameters in the 

complex/quaternion domain would be needed. 
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7. Conclusions 

 

During this work of thesis we focused on many aspects related to the study of time series of the Center of 

Pressure. 

 We evaluated the setting of the parameters for the reconstruction in the Phase Space of the time series 

and the calculation of the entropy of the signal. In both the cases, a feature-oriented approach was 

presented. Thus, we used the Delay Vector Variance and the Recurrence Quantification Analysis to assess 

the features we were looking for in the time series,  to be used in the following elaborations. The decisions 

were taken considering the, degree of nonlinearity, stochasticity and regularity of the time series. 

We studied the differences in the complexity, calculated through Fuzzy Entropy, of the time series under 

the open-eyes (OE) and closed-eyes (CE) visual conditions. The results obtained motivated the idea that 

physical differences of the subjects justify different trends in the complexity, explaining that it is wrong to 

think that complexity should be higher in the OE than in the CE, or vice versa. 

A novel dataset was recorded to test particular conditions of stress. In particular we evaluated time series 

recorded under changes in the visual condition and the cognitive involvement of the subject. We found 

that the sway-path length is able to classify whether the subject in a certain instant was in the OE or in the 

CE condition. The Hurst exponent was found as a marker for the cognitive involvement, showing that in the 

case of distraction from the body sway, the CoP is in the antipersistent range, while in the case of attention 

on the body sway, it is in the persistent range. 

We evaluated the correlation among the anteroposterior (AP) and mediolateral (ML) components of the 

CoP. We discovered that a complex-based representation of the data is statistically different from a real 

bivariate. Assuming that the postural control system could have been described more accurately using the 

information taken from both the OE and CE conditions, we recurred to a quaternion-based representation 

of the data. Therefore, we joined together the AP and ML time series recorded under the different visual 

conditions, and we evaluated the prediction gain of a M-steps ahead predictor made through adaptive 

filters. We evaluated the Complex LMS, the Quaternion LMS, and their augmented versions ACLMS and 

AQLMS, designed to take in account the non-circularity of the signal, proved through a specific statistical 

test. We discovered that quaternion filters outperformed their complex counterparts, demonstrating that 

the information enclosed in the OE records helps the prediction of the CE records, and vice versa. The 

augmented version of the filters performed better than their counterparts during the training phase, 

confirming the non-circularity of the signal. However during the test the results were worse, presumably 

because of the insufficient data length. Indeed, having twice the number of weights, the augmented filters 

need more iterations to converge to an optimal solution. The CE condition obtained high prediction gains 

with both complex and quaternion adaptive filters, while the OE condition obtained good results only with 

the quaternion model. We argued that this result is motivated by the fact that in the OE condition the 

postural sway it is not mainly controlled by the visual information, causing the CE information to be 

somewhat correlated with the OE time series, allowing improved predictions. 

To conclude, the hypercomplex approach allowed the creation of a more accurate model of the postural 

control system. This result should motivate the passage from a monodimensional bivariate to a 
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multidimensional study of the center of pressure. The introduction of new parameters in the 

complex/quaternion domain would be needed. 
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8.  Algorithms 

 

The present chapter explains the different algorithms used during this work, reporting the main concepts 

and the references for further details. 

 

1. Adaptive Filters 

The idea is that the filter adapts its coefficients to obtain certain features. There are mainly four uses of 

adaptive filtering (36): 

- Prediction 

- System identification (modeling) 

- Equalization (deconvolution, inverse filtering, inverse modeling) 

- Interference cancellation 

 

Figure 70 - Example diagram of an adaptive filtering 

 

Usually, the information that updates the coefficients of the filter is the error between a desired value and 

the actual value. Taking as an example the system identification, reported in Figure 70, we have that the 

error information is given by: 

�	@� = �	@� − ℎ 	@��	@� 

 

where �	@� is the instantaneous output error, �	@� is the desired value (the sum of the input processed by 

the unknown system and a term of interference) and �	@� is the input data vector of length ¡. 

The update rule used to change the filters weights depends on the strategy used. There are mainly two 

categories: 

- Stochastic gradient descent 

- Recursive least-square estimation 
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In the first case the statistics of the input and between the input and the desired signal are used. In the 

second case, the actual values of the signals are used. 

The Least Mean Square (LMS) belongs to the stochastic gradient descent methods. 

 

1.1 LMS 

The LMS update rule can be expressed as 

ℎ 	¢ + 1� = ℎ 	¢� + £ �	¢� �	¢� 

where k	¢� is the adaptive weight vector and £ is the step size, the parameter that describes the trade-off 

between accuracy of the value and response time of the filter and ¢ is the time instant. 

The formula arises from the partial derivative of the following cost function 

�	¢� = �%|�	¢�|.', with �% ' denoting the expected value 

∇�	¢� = ∇�%�	¢��∗	¢�' = 2��∇A�	¢�B�∗	¢�# = −2�%�	¢��∗	¢�' 

and its combination with the descent gradient method 

ℎ 	¢ + 1� = ℎ 	¢� − £2 ∇�	¢� = ℎ 	¢� + £ �%�∗	¢� �	¢�' = ℎ 	¢� + £ �	¢� �	¢� 

In general, the step size can be selected within the following ranges: 

Effect Range 

Stable (convergent) 0 < £ < 1¦ 

Overdamped 0 < £ < 12¦ 

Critically damped £ = 12¦ 

Underdamped 
12¦ < £ < 1¦ 

Unstable (not convergent) £ ≥ /̈
 and £ ≤ 0 

  
Table 16 - Effect of © on the convergence of the single-weight gradient search process 

 

¦ is the trace of the input correlation matrix, defined as ª = E��	¢� �	¢�W�. 

The learning-curve time constant, that is the number of iterations that the filter needs to follow the input, 

is given by 

Srup ≈ /«¬¨­, with @ = 0, 1, … , ¡ 
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1.2 CLMS 

LMS was extended to the complex domain (37) to study bi-variate signals. Complex–valued signals can be 

either complex by design (communications) or by convenience of representation (radar, sonar). In fact 

representations in the complex domain provide a natural processing platform, for example processing real 

domain signals in ℂ allows the inclusion of phase components, resulting in multidimensional solutions with 

benefits over real domain solutions (18). 

The CLMS algorithm is described by 

�	¢� = �	¢� − �W	¢� k	¢� 

k	¢ + 1� = k	¢� + £ �	¢� �∗	¢� 

Anyway, it does not take into account the differences between the statistics in ℝ and ℂ. Indeed, the CLMS 

does not use the pseudo-covariance matrix, assuming implicitly that the input complex signal is circular (for 

details on the concept of circularity, see 9.2). For this reason the CLMS was improved to ACLMS. 

 

1.3 ACLMS 

The Augmented CLMS was created to take into account the statistical properties of non-circular signals. For 

an example of application to wind forecasting and a comparison with the CLMS, see (38). The improvement 

stands in the definition of a new input, the augmented complex vector: 

�° = H  �    �∗O 

Having �° the covariance matrix will be 

�"±"± = ²    �""     �""    �""∗      �""∗    ³ 

where �"" is the covariance matrix �"" = �%� �9', while �"" is the pseudo-covariance matrix �"" =�%� �W'. For the sake of simplicity the time instant ¢ was omitted.  

Note: 	∙�W , 	∙�9 , 	∙�∗ represent respectively the transpose, the Hermitian and the conjugate operator.  

Considering the new input, the update rules for the ACLMS are: 

}	¢� = �°W	¢� k°	¢� 

k°	¢ + 1� = k°	¢� + £ �°	¢� �°∗	¢� 

where 

�°	¢� = �	¢� − �°W	¢� k°	¢� 

k°	¢� = �ℎW	¢�, \W	¢��W 

with 



82 

 

ℎ	¢ + 1� = ℎ	¢� + £ �	¢� �∗	¢� 

\	¢ + 1� = \	¢� + £ �	¢� �	¢� 

At the end, the system is 

}	¢� = �°W	¢� k°	¢� = ℎW	¢��	¢� + \W	¢��∗	¢� 

 

For the adaptive filtering of three- and four-dimensional processes, the quaternion least mean square 

(QLMS) algorithm was introduced. 

 

1.4 QLMS 

The Quaternion LMS Algorithm was created for the adaptive filtering of hypercomplex processes (17). By 

processing data directly in the multidimensional domain where they reside, it is possible to exploit the 

correlation and coupling between each dimension and therefore provide enhanced modeling. Quaternions 

can be regarded as a noncommutative extension of complex numbers, and comprise at most four variables 

(for an introduction, see 9.1). 

The explanation is alike the ones seen before: 

�	¢� = �%�	¢��∗	¢�' = �°. + �<. + �w. + �.́ 

�	¢� = �	¢� − kW	¢��	¢� 

where [, 2, *, � refer to the four dimensions. 

Doing the derivative of the cost function, and adjusting, it results 

k	¢ + 1� = k	¢� + £	2�	¢� �∗	¢� − �∗	¢��∗	¢� � 

The term 2�	¢� �∗	¢� can be found in the complex LMS (see 8.1.2), but �∗	¢��∗	¢� is proper of the 

quaternion domain.  

It is worth to notice that QLMS does not converge to CLMS in the case of null j and k components. This 

happens just if quaternion data are in the “isomorphic” form 

µ = µ° + ¶`q    where    ¶ = ·µ<. + µw. + µ.́     and    `q = ¸1s¹¸º ¹¸»T¼  

 

1.5 AQLMS 

As for the ACLMS (see 8.1.3), the Augmented QLMS was created to process noncircular data (17). 

Recurring to a quaternion-valued widely linear model, like 

}	¢� = kW	¢��	¢� + \W	¢��∗	¢� 
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it is possible to incorporate both the information contained in the covariance and pseudo-covariance. 

The update rules will be: 

k	¢ + 1� = k	¢� + £	2�	¢� �∗	¢� − �∗	¢��∗	¢� � 

\	¢ + 1� = \	¢� + £	2�	¢� �	¢� − �	¢��∗	¢� � 

Thus, the augmented forms of the update and the input: 

ℎ°	¢� = �kW	¢�\W	¢��W 

�°	¢� = ��W	¢�  �9	¢��W 

Finally, the augmented error and the augmented update can be expressed as: 

�°	¢� = �	¢� − ℎ°W	¢��°	¢� 

ℎ°	¢ + 1� = ℎ°	¢� + £�2�°	¢� �°∗	¢� − �°∗ 	¢��°∗	¢� � 

 

2. Delay Vector Variance 

The idea behind this method is to characterize the time series predictability and then compare it with a 

linearised version of the signal (surrogates data).  

Given an embedding dimension m and a time delay R, a time series � can be represented in the Phase 

Space, as stated by the Takens’ theorem. That transformation creates an >-dimensional representation of 

the time series, where the coordinates of each point represent a delay vector (DV). 

The method can be resumed with the following three steps: 

- Mean value £´, and standard deviation -´  are computed over all pairwise distances between DVs, ½�	`� − �	��½. 

- A set Ω¾ is generated by grouping all the DVs following the relation 

Ω¾ = %�	`�| ½�	`� − �	��½ ≤ R´' 

where R´  is a threshold given in the interval �£´ ± @_Q`\ ∗ -´�. The number of possible sets  Ω¾ is 

given by the number of thresholds R´  used. The parameter @_[|�ℎ[ defines them, by dividing the 

interval �£´ ± @_Q`\ ∗ -´� in @_[|�ℎ[ equal intervals. 

- The mean target variance -∗¿
 is computed over all the sets Ω¾  , giving a measure of the 

unpredictability of the series, that is considered valid by the authors if those sets contain at least 30 

DVs. 

-∗¿ = 1{ ∑ -T.ÁTÂ/-".  
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Two plots can be created: 

- The DVV plot, were the mean target variance is function of R´  and is calculated for a range of 

values dependent on the parameter @_[|�ℎ[ and @_Q`\ 

- The DVV scatter diagram, were the horizontal axis corresponds to the DVV plot of the original time 

series, and the vertical to that of the surrogate time series (obtained averaging the DVV plots of a 

certain number of surrogates) 

 

Interpretation 

About the DVV plot. The presence of a strong deterministic component leads to small target variances for 

small spans. At the extreme right, the DVV plots smoothly converge to unity, since for maximum spans, all 

DVs belong to the same set, and the variance of the targets is equal to the variance of the time series. If this 

is not the case, the span parameter, @_Q`\, should be increased. 

About the DVV scatter diagram. If the surrogate time series yield DVV plots similar to that of the original 

time series, the DVV scatter diagram coincides with the bisector line, and the original time series is likely to 

be linear. The deviation from the bisector line is, thus, an indication of nonlinearity, and can be quantified 

by the root mean square error (RMSE) between the -∗¿
 of the original time series and the -∗¿

 averaged 

over the DVV plots of the surrogate time series (note that while computing this average, as well as with 

computing the RMSE, only the valid measurements are taken into account). In this way, a single test 

statistic is obtained, and traditional (right-tailed) surrogate testing can be performed (the deviation from 

the average is computed for the original, and surrogate time series). In the DVV scatter diagrams, the effect 

of increasing nonlinearity as described above, corresponds to a stronger deviation from the bisector line. T 

he span on the horizontal axes of the DVV scatter diagrams becomes smaller as the noise increases. 

An example of the two graphs is given in Figure 71. 

 

Figure 71 - Example of a DVV plot (left) and a DVV scatter diagram (right), obtained studying a Henon map 

 

2.1 Complex value DVV 

The computation of the Euclidean distance between complex-valued DVs is equivalent to considering real 

and imaginary parts as separate dimensions. Since for bivariate time series, a delay vector is generated by 
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concatenating time delay embedded versions of the two dimensions, the complex-valued and bivariate 

versions of the DVV method are equivalent. 

 

3. Entropy 

3.1 Sample 

The Sample Entropy (SE) is a modified form of the Approximate Entropy (39). It is used to characterize the 

complexity of a time series. Basically, SE is the negative natural logarithm of the conditional probability that 

a dataset of length N, having repeated itself for > samples within a tolerance y, will repeat itself for > + 1 

samples, without allowing self matches. Sensitivity to oversampling and the choice of the time delay are a 

drawback of SE, even if has been proven, according to (29), that SE produces more consistent results than 

the Approximate Entropy, because it is less sensitive to the length of data. The present algorithm takes into 

account the improvement of (30), where the time delay was added to the calculation of SE. 

After the standard reconstruction in the State Space of the time series }, as specified by the Takens’ 

theorem, the following quantities are calculated 

ÃÄ
ÄÅ
ÄÄ
Æxsr	y� = 1{ − > ∗ R − 1 Ç Θ	y − ½}s	>, R� − }s	>, R�½É�Á=r∗Ê

 Â/, Ës
xr	y� = 1{ − > ∗ R Ç xsr	y�Á=r∗Ê

sÂ/x	y� = 12 	{ − > ∗ R − 1�	{ − > ∗ R�xr	y�
Ì 

 

ÃÄ
ÄÅ
ÄÄ
Æ�sr	y� = 1{ − > ∗ R − 1 Ç Θ	y − ½}s	> + 1, R� − }s	> + 1, R�½É�Á=r∗Ê

 Â/, Ës
�r	y� = 1{ − > ∗ R Ç �sr	y�Á=r∗Ê

sÂ/�	y� = 12 	{ − > ∗ R − 1�	{ − > ∗ R��r	y�
Ì 

with: 

} the time series > the embedding dimension R the time delay y the radius { the time series’ length Θ is the Heaviside function ½∙½É the maximum norm 
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The Sample Entropy is defined as: 

�[>��@	>, R, y, {� = −|a\ Í�	y�x	y�Î 

 

Choice of the parameters 

It is suggested in (29) to use an auto regressive (AR) fitting of the data to chose the > value and then select 

the y value so that it minimizes the quantity ¶	>, y�, defined by the following system of equations: 

ÃÄÄ
Å
ÄÄÆ ��	>, y� = �r	y�xr	y�

-ÏÐ. 	>, y� = ��	>, y�A1 − ��	>, y�Bxr	y� + 1Axr	y�B. �ÑÒ − ÑÓ��	>, y�.�
¶	>, y� = >[� Í-ÏÐ	>, y���	>, y� , -ÏÐ	>, y�−|a\A��	>, y�B��	>, y�Î

Ì 

 

where �� is the conditional probability, ÑÒ and ÑÓ are the number of pairs of vectors of dimension > + 1 

and > that are overlapping, respectively in �	y� and x	y�, and ¶	>, y� is the maximum relative error. 

The choice of the radius y is based on a ¶	>, y�  that is lower than 0.05. This guarantees that the 95% 

confidence interval of the entropy estimate is about 10% of its value. The authors outlined that this 

algorithm is not perfectly applicable to the COP time series, because it overestimates the embedding 

dimension >. Indeed, estimating entropy of relatively short time series in high-dimensional reconstructed 

state spaces is difficult and unreliable. 

As an alternative method, the authors proposed an empirical approach, developed in two steps: 

1. SE is computed for different values of > and y. The embedding dimension is chosen referring to 

the SE curves (the study is restricted for the minor values that causes a convergence of the 

different SE). 

2. The median of all the maximum relative errors ¶	>, y� is computed as a function of y and the > 

found at the first step. The final choice of > and y is given by the minimum error curve. 

 

3.2 Fuzzy 

Fuzzy Entropy (FE) is an improved version of the sample entropy, presented in (31). Two are the main 

changes: 

- The time series get detrended, subtracting the mean value from each delay vector 

- The Heaviside function is substituted with a fuzzy membership function 
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Therefore, being } the detrended time series, it is:  

ÃÄ
ÄÅ
ÄÄ
Æ xsr	y� = 1{ − > ∗ R − 1 Ç DÔÕÖ,×Á=r∗Ê

 Â/, Ës
xr	y� = 1{ − > ∗ R Ç xsr	y�Á=r∗Ê

sÂ/x	y� = 12 	{ − > ∗ R − 1�	{ − > ∗ R�xr	y�
Ì 

 

ÃÄ
ÄÅ
ÄÄ
Æ �sr	y� = 1{ − > ∗ R − 1 Ç DÔÕÖ¹/,×Á=r∗Ê

 Â/, Ës
�r	y� = 1{ − > ∗ R Ç �sr	y�Á=r∗Ê

sÂ/�	y� = 12 	{ − > ∗ R − 1�	{ − > ∗ R��r	y�
Ì 

 

DÔÕÖ× = £A�s r,Ê , yB 

with: 

} the detrended time series > the embedding dimension R the time delay y the radius μ the fuzzy membership function � the maximum absolute difference of the components of the DVs (as ½∙½É for the SE) { the time series’ length 

 

The fuzzy membership function can be any function with these two properties: 

- Being continuous so that the similarity does not change abruptly 

- Being convex so that the self-similarity is the maximum 

In our elaborations, we used the same suggested in the article: 

£A�s r,Ê , yB = �=Í´ÙÚÛÜq Î¿
 

 

We added the use of the time delay in the presented relations. 
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4. Stationary Process Parameters 

For a nice list of parameters to characterize the CoP, refer to (5). 

 

4.1 Sway-path length 

It is defined as 

SPÝ = ∑|AP�n + 1� − AP�n�|σàá ∆t  

where ∆t is the time involved in the acquisition. 

 

5. Chaotic and Fractal Time Series Parameters 

5.1 Average Mutual Information 

The Average Mutual Information (AMI) is an important tool to find the proper time delay for the 

reconstruction of a time-series in the Phase Space, according to Takens’ theorem. 

It is defined as (19): 

â	S� = Ç �AQ	@�, Q	@ + S�B log. ã �AQ	@�, Q	@ + S�B�AQ	@�B �AQ	@ + S�Bäu	t�,u	t¹W�  

where S is the time delay, Q	@� the time series we are studying, �AQ	@�, Q	@ + S�B the joint probability 

density and �AQ	@�B  and �AQ	@ + S�B  the individual probability densities of Q	@�  and its translated 

version. 

The idea is to use â	S� as a kind of nonlinear autocorrelation function to determine when the values of Q	@� and Q	@ + S� are independent enough to be useful as coordinates in a time delay vector, but not so 

independent to have no connection with each other at all. Usually the first minimum of â	S� is selected as 

the best time delay. 
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5.2 Hurst exponent 

The approach proposed to calculate the Hurst exponent is taken from (34). The estimation can be resumed 

using a block diagram Figure 72. 

 

Figure 72 - Block diagram for the estimation of the Hurst exponent 

 

There are mainly three steps: 

- The power spectral density (PSD) of the time series is calculated to detect noise in the time series 

- A modified version of the PSD, namely lowPSDwe, is used to understand the nature of the time 

series: if it belongs to the fractional Gaussian noise (fGn) or fractional Brownian motion (fBm) 

family. 

- The proper algorithm is selected depending on the previously obtained Hurst exponent 

Below the algorithms used for this work of thesis are resumed. In the article it can be found the 

characterization of their biases in the estimation, the dependence to the time series length and the 

sensitivity to noise. 
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PSD 

The power spectral density is calculated using the Wiener-Khinchin theorem, which states that the PSD of a 

wide-sense stationary process is the Fourier transform of the corresponding autocorrelation function. 

å��m	�� = $ "̂"	R� �= .æ0Ê  �R¹É
=É"̂"	R� = E��	8� �∗	8 − R�� Ì 

where �	8� is the studied signal and "̂"	R� its autocorrelation function. 

The negative slope of the log-log represents the spectral exponent of the signal, ) (it is important to recall 

that for fractal time series, ��m	�� ∝ /0ç). Then it is needed to check the obtained value: 

- If −1 < ) < +1, the signal belongs to the fGn family, therefore � = è¹/.  

- If +1 < ) < +3, the signal belongs to the fBm family, therefore � = è=/.  

 

lowPSDwe 

It is an improved version of the standard PSD. It is characterized by three pre-processing steps: 

- The mean value is subtracted from the time series 

- A parabolic window is applied to the data:  é	�� = 1 − E . Á¹/ − 1F.
, for � = 1,2, … , { 

- A bridge detrending is performed by subtracting from the data the line connecting the first and the 

last point of the series 

Then, during the computation of the slope of the log-log plot, the frequencies higher than 
/ê of the maximal 

frequency are excluded. 

 

SWV 

The procedure for the calculation of the Scaled Windowed Variance follows. 

For all the possible interval lengths is repeated: 

- The time series �	@� is divided into non-overlapping intervals of length | 

- The standard deviation (SD) of each interval is computed, using the mean value of the interval 

- The average value �mëëëë of all the SDs of the intervals of length | is calculated 

For a fractal time series, the standard deviation is related to | by a power law: 

�mëëëë ∝ |9 
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Therefore, the Hurst exponent is expressed as the slope of the log-log plot of �mëëëë as a function of |. 

There are two main improvements to SWV. 

- Linear detrended SWV: it is removed the regression line within each considered interval 

- Bridge detrended SWV: the line connecting the first and the last points of the interval is removed 

 

6. Surrogate Data 

The procedures reported below are extensively described in (23). For the CViAAFT, refer to (24). 

First, a residual probability ( of a false rejection, corresponding to a level of significance 	1 − (� × 100%, 

is selected. Then, for a one-sided test (e.g. looking for small prediction errors only), are generated í = îï − 1 surrogate sequences, where K is a positive integer. Thus, including the data itself, we have 
îï 

sets. Therefore, the probability that the data by coincidence has one of the K the smallest, say, prediction 

errors is exactly (, as desired. For a two-sided test (e.g. for time asymmetry which can go both ways), are 

generated í = .îï − 1 surrogates, resulting in a probability ( that the data gives either one of the K 

smallest or largest values. Larger values of K give a more sensitive test than Ñ = 1. That value is mostly 

used in order to minimise the computational effort of generating surrogates. Thus, for a minimal 

significance requirement of 95%, at least 19 or 39 surrogate time series for one-and two-sided tests are 

needed, respectively.  

 

6.1 iAAFT 

Null hypothesis: The time series is generated by a Gaussian linear process, and the only nonlinearity is 

contained in the measurement function. 

The procedure for the creation of the iterative Amplitude Adjusted Fourier Transform (iAAFT) is reported 

below: 

- Computation of the desired number of surrogate time series ^, obtained by the permutation of the 

samples of the original signal, therefore with signal distribution identical. 

Then, at every iteration �: (until error convergence) 

- Computation of the phase spectrum of the surrogate time series: ^ → %�' 

- Computation of Q	 � as the inverse transform of %|�T|���	`�T�' 

- Rank-ordering of ^	 � to match %*T' 

Example of rank ordering: 

If ^ = �1.1   3.4   − 1.3   4.5�, then ^[@¢	^� = �2   3   1   4�, and represents the indexes of the elements of r 

if they were ordered in ascending order. 
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6.2 MViAAFT 

Null hypothesis: The time series are generated by a multivariate Gaussian linear process, and the only 

nonlinearity is contained in the measurement function. 

The procedure for the creation of the Multivariate iterative Amplitude Adjusted Fourier Transform 

(MViAAFT) is: 

- Computation of the desired number of surrogate time series ^, obtained by the permutation of the 

samples of the original multivariate signal, therefore with signal distribution identical. 

Then, at every iteration �: (until error convergence) 

- Computation of the phase spectrum of the surrogate time series:  /̂ → %ñ/' and .̂ → %ñ.' 

- Preservation of the cross correlation between the variates, the phases ñ are replaced by the 

phases �, by doing: 

o Calculating the phases of the original time series ò/ and ò. 

o Calculating the parameter common to both the time series: 

(T = tan=/ Í∑ sin 	ñT,r − òT,r�ôrÂ/∑ cos 	ñT,r − òT,r�ôrÂ/ Î 

�T,r = òT,r + (T 

- Computation of Q	 � as the inverse transform of %|�T|���	`�T�' 

- Rank-ordering of /̂	 �
  and .̂	 �

 to match respectively �*Tõ# and �*T¿# 

 

6.3 CiAAFT 

Null hypothesis: The time series are generated by a multivariate Gaussian linear process, and the only 

nonlinearity is contained in the measurement function.  

The procedure for the creation of the Complex-valued iterative Amplitude Adjusted Fourier Transform 

(CiAAFT) is reported below.  The idea behind the Complex-Valued iAAFT is to extend iAAFT to complex 

signals. 

- Computation of the desired number of surrogate time series ^, obtained by the permutation of the 

samples of the original signal, therefore with signal distribution identical. 

Then, at every iteration �: (until error convergence) 

- Computation of the phase spectrum of the surrogate time series: ^ → %�' 

- Computation of Q	 � as the inverse transform of %|�T|���	`�T�' 

- Rank-ordering of the real and imaginary parts of ^	 � to match the real and imaginary parts of %*T' 

- Rank ordering of the moduli of ^	 � to match the modulus distribution of %*T' 
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Note that a rejection of the null hypothesis that the signal is complex-valued and linear, could be due to a 

deviation from either of the two properties. For this reason  a statistical test for the complex nature of the 

time series was created (see 8.8.1). 

 

7. Recurrence Quantification Analysis 

Recurrence quantification analysis (RQA) is a nonlinear and multi-dimensional technique which do not 

assume data stationarity, which places no restrictions on the statistical distribution of data or on data set 

length, and which allows the characterization of a variety of features of a given time series. 

The basis of RQA is the construction of the time series recurrence plot. A recurrence plot is a matrix created 

using the following procedure: 

- The time series is reconstructed in the Phase Space, according to Takens’ Theorem 

- A certain metric of interest is selected and then used to calculate the distances between the delay 

vectors, creating the matrix of the distances 

- A certain threshold is selected; the distances within that threshold will be classified as recurrences, 

the others as non-recurrences  

Having the recurrence plot, it is possible to study its features. There is the division in two groups: 

 

Large-scale typologies Small-scale textures 

  

- Homogeneity 

- Drift 

- Periodicity 

- Isolated points 

- Short line segment 

- Checkerboard 

 

Homogeneity expresses the uniform coverage of the plot of recurrence points. In that case there is the lack 

of a dynamical structure (an example is noise). 

Drift is represented by a trend where the number of recurrence points decreases with the distance from 

the main diagonal. It expresses nonstationarity in the form of a gradual trend, and in the case of a sudden 

change in the density of recurrence points, it expresses a rapid change in the level of the dynamics. 

Periodicity is represented by diagonal lines parallel to the main diagonal. 

Isolated points reflect stochastic behavior. 
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Short line segments express: 

- If diagonal and parallel to the main diagonal, determinism. The length of the segments is inversely 

proportional to the magnitude of the largest Lyapunov exponent of the signal. 

- If diagonal and perpendicular to the main diagonal, there are sequences that are mirrors of other 

sequences in the time series. Often, this effect is related to the use of a too little embedding 

dimension. 

- If horizontal or vertical: 

o If the distance is high, the short segments are placed at a certain distance that is more or 

less the same for the whole dynamic 

o If the distance is low, the short segments represent a local stationarity of the process 

Checkerboard is represented by a mosaic-like appearance of the recurrence plot. It expresses cyclic 

trajectories of the attractor: Thus, the system passes through near regions of the phase space, and 

periodically switches between them (as in the Lorentz system, where there is the alternation between the 

two lobes of the attractor). 

As an example the recurrence plots of the AP time series of a CoP, and of a sine wave are reported in Figure 

73. 

Figure 73 - Example of recurrence plots. AP time series of a CoP (left) and a sine wave (right) 
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7.1 RQA parameters 

%n�*�^^�@*� represents the number of recurrences among the total number of possible recurrences. It is 

calculated as: 

%n�* = 1{. Ç ns 	y�Á
s,  

where: 

{ is the number of delay vectors ns 	y� is the recurrence point `, � of the recurrence matrix. The value is 1 if there is a recurrence, 0 

otherwise 

 y is the threshold to select the recurrences  
%m�8�^>`@`Q> represents the number of recurrence points that are part of a diagonal of at least |rst 

elements, divided by the number of recurrences. It is calculated as: 

ÃÄÅ
ÄÆ�	y, |� = Ç E1 − ns=/, =/	y�F E1 − ns¹ö, ¹ö	y�F ÷ ns¹T, ¹T	y�ö=/

TÂ�
Á
s, %m�8 = ∑ | �	y, |�ÁöÂöÛÙ­∑ ns 	y�ÁöÂ/

Ì 
where �	y, |� is the histogram of the diagonal lines of length |. 

 

%opUpqrstsur%vpw!qqptwp  is a ratio often used to detect transitions of the dynamics. It is calculated as: 

%m�8%n�* = {. ∑ | �	y, |�ÁöÂöÛÙ­A∑ ns 	y�ÁöÂ/ B.  

 

7.2 Much more 

Recurrence plot and, consequently, RQA can be used also for the elaboration of the joint recurrences 

between different signals and many others applications. For a complete overview refer to (32).  
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8. Statistical Test 

8.1 Complex-valued nature 

The surrogates generated under the null hypotheses of a linear and bivariate time series, and that of a 

linear and complex-valued time series are compared. The respective surrogates are generated using the 

bivariate iAAFT (8.6.2) and the CiAAFT (8.6.3). The number Ns of surrogates will depend on the 

considerations made in 8.6. All time series are characterised using the DVV method (8.2), and a significant 

difference between the two sets of surrogates is an indication that the original time series is complex-

valued.  

The proposed methodology is reported below:  

- Generate Ns CiAAFT surrogates and the average DVV plot → D0  

- Generate Ns BViAAFT surrogates and corresponding DVV plots → {Db}; 
- Generate Ns CiAAFT surrogates and corresponding DVV plots → {Dc}; 
- Compare (D0 − {Db}) and (D0 − {Dc}). 

 

To perform the final step in a statistical manner, the (cumulative) empirical distributions of root-mean-

square distances between {Db} and D0, and between {Dc} and D0, are compared using a Kolmogorov-

Smirnoff (K-S) test. This way, the different types of linearisations (bivariate, {Db}, and complex-valued, {Dc}) 
are compared to the “reference” linearisation given a complex-valued nature of the time series, D0. If the 

two distributions of test statistics are significantly different at a certain level α, the original time series is 

complex-valued. Therefore, assumptions regarding the possible nonlinearity of the signal are avoided. 

 

8.2 Circularity 

The test is presented in (40) and extended to complex non-normal samples (41). The complex-valued 

measure of circularity based on second-order moments of a complex random variable, called the circularity 

quotient, is studied (to address the notion of circularity, see 9.2). 

Given a zeromean complex random variable � = � + �}, we have that � is completely defined by its 

variance and pseudo-variance, respectively 

-ø. ≜ ��|�|.� = -". + -ù. 

Rø ≜ ���.� = -". − -ù. + �2-"ù 

It is possible to introduce the circularity quotient úø ≡ *`^	�� ∈ ℂ, defined as: 

úø ≜ *a_	�, �∗�ý_[^	�� ý_[^	�∗� = Rø-ø. 

úø can be described as a measure of correlation between � and �∗. The polar representation of the 

circularity quotient is 

úø = ø̂ � þ 
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with ø̂ the circularity coefficient of � (i.e. the canonical correlation between � and �∗), and � the circularity 

angle of �. 

 

Properties and geometrical interpretation of ��  

Let’s consider the composite real random vector obtained by the union of the real and imaginary part of �, _ ≜ 	�, }�W. 

The covariance matrix of  _ is defined as 

Σ ≜ � HE�}F 	� }�O = ã -". -"ù-"ù -ù. ä 

Its eigenvalue decomposition (EVD) will be determined by the triplet 	(, ¦/, ¦.�, respectively the coefficient 

describing the two eigenvectors �/ = �cos	(�sin	(�� and �. = �− sin	(�cos	(� �, with ( ∈ H− æ. , æ.O, and the two 

eigenvalues. 

Those parameters define the ellipse where úø stands. Indeed, for a positive definite covariance matrix, it is 

possible to consider the ellipse 

Ε�	*.� ≜ %_ ∈ ℝ.: ∆	_� ≤ *.' 

with ∆	_� ≜ _WΣ=/_, being 

In this ellipse, ( defines the orientation, * the size,  ¦/ and ¦. define the end points of the major and minor 

axes. If _ has a complex normal distribution, it will be 

�^ E_ ∈ Ε�A	.,~. BF = �, where p is the pth-quantile of 	..-distribution 

The eccentricity of the ellipse will be given by  

y ≜ 
¦/ − ¦.¦/ + ¦. ∈ �0,1� 
The relationship between the circular quotient and the ellipse parameters is 

ø̂ = y. 

� = 2( 

It is possible to link the circularity quotient with the correlation coefficient: (finite nonzero variances are 

assumed) 

ò ≡ *a^	�, }� ≜ *a_	�, }�ý_[^	�� ý_[^	}� ≡ -"ù-" -ù = Im�úø�ý1 − Re�úø�. 

If ò ≠ 0, then Q`\@��� = Q`\@�ò� and ò ≤ ø̂ Q`\@��� ≡ y. Q`\@�(�. Hence the circularity quotient lies 

inside or on the unit circle. The relationships between ò and úø are depicted in Figure 74. 
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Figure 74 - Pictorial presentation of the properties of �� 

 

Resuming the results of these analyses, the modulus and phase of the principal square-root of úø are equal 

to the eccentricity and angle of orientation of the ellipse defined by the covariance matrix of the real and 

imaginary part of �. Hence, when the eccentricity approaches the minimum zero (ellipse is a circle), the 

circularity quotient vanishes; when the eccentricity approaches the maximum one, the circularity quotient 

lies on the unit complex circle. A connection with the correlation coefficient was established and bounds on ò  given the circularity quotient (and vice versa) are derived. 

The test 

Assuming that %�s = �s + �}s , ` = 1, … , @' is a random normal sample, the Generalized Likelihood Ratio 

Test (GLRT) of circularity is given by: 

|t ≜ 	1 − ^̂ø.�t.  

Under the null hypothesis ��: Rø = 0 (i.e. the pseudo-variance is null, and the sample is circular), we have 

that 

−@ ln |t ⟶ 	.. 

 

Non-Gaussian random variables 

Assuming that %�s = �s + �}s , ` = 1, … , @'  is a random sample distributed with a circular Complex 

Elliptically Symmetric (CES) distribution with finite 4
th

-order moments. If the null hypothesis is true, there 

will be: 

−@ ln |t ⟶ �3	.. 
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with � being the moment of the 4
th

-order of �. It is therefore possible to define the adjusted GLRT test 

statistic 

ℓt ≜ −3	@ − 2� ln |t�  
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9. Appendix 

 

1. Introduction to quaternions 

Sir William Rowan Hamilton discovered the quaternions. They are characterized by a scalar part, and a 

three-imaginary component vector part, defined as 

µ ∈ ℍ, µ = %Re	µ�, Im	µ�' = �µ° ,�� = µ° + ` µ< + � µw + ¢ µ´         %µ° , µ< , µw , µ´' ∈ ℝ 

The quaternion vector space ℍ  forms a noncommutative normed division algebra. Their properties are 

resumed with the following equations: 

ÃÄÅ
ÄÆ       `� = ¢   �¢ = `   ¢` = �   `�¢ = `. = �. = ¢. = −1

Ì 
A quaternion composed by only its scalar part is said scalar quaternion, while if it has only its imaginary 

part, then  it is called right quaternion (or vector). 

Their applications comprehend three-dimensional rotations, robotics, molecular modeling. Many are the 

applications also in signal processing, like the spectral estimation with quaternions (Fast complexified 

quaternion Fourier transform) and the quaternion singular valued decomposition (QSVD).  

For references, see (17). 

 

1.1 Quaternions Algebra 

The multiplication is given by 

µ/µ. = �µ°/µ°. − �J ∙ �K + µ°/�K + µ°.�J + �J × �K� 
where ∙ represents the scalar-product, and × the cross-product. 

The conjugate is given by 

µ∗ = �µ° ,��∗ = �µ° , −�� 

Therefore, it can be used to extract the scalar and vector parts of a quaternion, according to 

Re	µ� = 	¸¹¸∗�.              Im	µ� = 	¸=¸∗�.  

The p-norm is defined as 

½µ½~ = 	µ µ∗�/~ = 	µ∗µ�/~ = 	|µ°|~ + |µ<|~ + |µw|~ + |µ´|~�/~ 
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An important property is that  	µ/µ.�∗ = µ.∗µ/∗ 

In the quaternion algebra, the square root of -1 is a vector (i.e. pure imaginary) with norm one. The set of 

all this kind of vectors form the unit sphere. 

 

2. On circularity 

A complex random variable � = � + �}  is completely defined by its variance and pseudo-variance, 

respectively 

-ø. ≜ �%|� − >ø|.' = -". + -ù. 

Rø ≜ �%�.' = -". − -ù. + �2-"ù 

Where >ø is the mean value of �, defined as the sum of the mean values of the real and imaginary parts  

>ø ≜ �%�' = >" + �>ù 

For circular random variables Rø = 0 (i.e. -". = -ù.  and -"ù = 0); in that case � would be called proper. 

Therefore non-circularity can be due to two reasons: or � and } have unequal variances and/or � and } are 

correlated.  

 

Let � = �+ � be a random vector of ℂr. The covariance and pseudo-covariance matrixes are given by 

�ø ≜ �%� �9' 

�ø ≜ �%� �W' 

where 	∙�W , 	∙�9 , 	∙�∗,  �%∙' represent respectively the transpose, the Hermitian, the conjugate and the 

expectation operator.  

The random vector � is said to be circular if  

�ø = 0 

Now, assume that � is normal, that is � and � are jointly normal random vectors. Circularity gives many 

properties to �: 

- Rotation invariance: the probability distribution of � is the same of the probability distribution 

obtained by �� þ, for any � ∈ ℝ 

- Given a complex vector k = � + �_, the characteristic function is �	�, _� = �%�����	�W�+ _W���' = ��� ²− 14 k9�øk³ 

- The odd moments of � are zero, and the even too if the number of variables involved in the 

calculation there is not an equal number with of variable with the complex conjugate and variables 

without it. Indeed, the general form for a moment of order ¢is 
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>T = � ��sõ�õ ,�s¿�¿ , … ,�sX�X� 
with ` the indexes of the variables of �, and y a parameter which values are ±1. 

Relaxing the assumption of normality, the property of rotation invariance leads to the following property: 

- Being � and Φ respectively the amplitude and the phase of �, the condition of circularity causes � 

and Φ to be independent, that Φ is uniformly distributed, and therefore the probability density 

function of � is �	�,Φ� = 12� �	�� 

with �	�� arbitrary. 

For an insight on circularity and other properties see (42). 
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