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Abstract

Recently, the Non Orthogonal Frequency Division Multiplexing (NOFDM) systems

have attracted increased interest. They have several advantages over traditional

OFDM systems such as higher bandwidth efficiency and a reduced sensitivity to carrier

frequency offsets, oscillator phase noise and narrowband interference and a reduced

intersymbol/intercarrier interference (ISI/ICI). In particular, low ISI/ICI will be im-

portant for future systems where Doppler frequencies will be larger (equivalently,

channel variations will be faster) due to higher carrier frequencies and higher mobile

velocities.

In this work the parallelism of the multicarrier systems with the Gabor frames is

discussed and applied to the design of a Generalized MultiCarrier system based on a

filterbank structure. The efficient polyphase implementation is also discussed.

In this thesis the channel capacity of a GMC systems is evaluated through the

diagonalization of an equivalent matrix model where intersymbol and intercarrier

interferences have been included. Exploiting the majorization theory, the mutual in-

formation can be represented as a Schur-concave function and it is maximized through

a joint transceiver design adding a linear precoder at the transmitter and a LMMSE

equalizer at the receiver. The capacity is derived by the eigenvalue decomposition

of the global system matrix including the noise colored by the receiver filtering and

employing a power allocation of the transmitted power according to the well-known

water-filling solution.

This thesis investigates also the behaviour of the NOFDM systems when a power

and bit allocation algorithm is employed in order to satisfy a certain QoS constraint.

A comparison of the performances with OFDM systems is included.

Finally a simple application of the cognitive radio paradigm employing filterbank-

based multicarrier systems is developed and some interesting results are showed.

Index terms

Multicarrier system, NOFDM, GMC, filterbank, Gabor theory, pulse design, majoriza-

tion theory, transceiver design, bit loading, cognitive radio.
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Chapter 1
Introduction

The increasing demand for better spectral utilization and higher QoS requirements

motivate the design of increasingly more intelligent and agile communication systems,

able to adapt and adjust (in realtime) the transmission parameters based on the

current link quality for the ultimate goal of reaching, to the degree possible, the

inherent capacity of the underlying channel.

1.1 Non-Orthogonal Multi-Carrier Systems

The class of Non Orthogonal Multicarrier Modulations (NOMCM) was first in-

troduced in 1998 by W. Kozek and A.F. Molisch [6] as a novel approach to multi-

carrier transmissions over doubly dispersive channels affected by both time-varying

and frequency-selective fading phenomena. In such a kind of propagation scenarios,

frequency-selectivity is caused by multipath, while time variations are due to the rela-

tive motion between transmitter and receiver. In the conventional OFDM scheme the

data bit stream is divided into many (hundreds or thousands) of substreams, and each

of these substreams modulates a different carrier. Since each of these substreams has

a low data rate, the intersymbol interference (ISI) caused by the time dispersion effect

of the propagation channel is greatly reduced with respect to the single-carrier (SC)

case. However, such a big advantage comes at the expenses of interchannel interfer-

ence (ICI), which arises when the propagation channel is also frequency dispersive and

the energy from a subcarrier spills over into the adjacent ones. These two detrimental

effects, i.e., ISI and ICI, are thus influenced by two factors:

1



CHAPTER 1. INTRODUCTION

1. the time dispersion (due to multipath propagation) and frequency dispersion

(due to the Doppler effect) of the mobile radio channel;

2. the shape of the pulse that is used to transmit one symbol on one subcarrier.

Pulses that are well localized in the time domain (and thus cause little ISI) are

widely spread out in the frequency domain (and thus cause more ICI), and vice versa.

The underlying idea of NOMCM consists in finding a pulse shape that gives min-

imum distortion for a given Doppler spread (denoted as Df ) and delay spread (de-

noted as spread τspread ). In order to better clarify the question, let us consider

again a conventional OFDM system, wherein each subcarrier is modulated by pulses

having duration coincident with one symbol interval T and sinc-shaped spectrum.

Under ideal propagation conditions, i.e., without ISI (e.g., thanks to the use of the

cyclic prefix (CP)) and ICI, the pulse spectra on the subcarriers are orthogonal, as

in AWGN conditions. However, when a time-varying propagation channel induces a

frequency dispersion effect, the orthogonality condition does not hold true any longer,

because the subcarrier frequencies do not coincide with the nulls of the sinc-shaped

spectrum, thus causing ICI. In order to solve this problem, several pulse-shape op-

timization techniques have been proposed in the technical literature. For instance,

some solutions proposed the use of Nyquist pulses [7], of the CP [8], of time-limited

prolate spheroidal wave functions [9], and of Hermitian functions [10]. However, all of

these proposals suffer from a severe limitation, as they assume that the pulses must be

orthogonal, or that any deviation from orthogonality is a negligible effect. Actually,

orthogonal functions are optimum basis functions only in AWGN channels, while in

doubly dispersive channels other basis functions turn out to be optimal. The only

requirement is that these basis functions form an (incomplete) Riesz basis.

To summarize, the key advantages of non-orthogonal systems (NOFDM) when

compared to standard OFDM schemes are as follows:

• a modulation scheme based on incomplete Riesz bases tends to be more robust

against frequency-selective fading;

• NOFDM systems lead to better bandwidth efficiency, because the underlying

pulse can be chosen with sharper frequency domain decay than that of a compa-

rable OFDM system (thus the spectral efficiency, defined as η = ζ
TF

[
bit/s
Hz

]
can

2



1.1. NON-ORTHOGONAL MULTI-CARRIER SYSTEMS

be maximized; in the equation above ζ denotes the number of bits per symbol

and T and F are the time and frequency spacing, respectively);

Figure 1.1: The time-frequency representation of the generic NOFDM signal

The NOFDM systems can be treated as a general representation of all multicar-

rier (MC) systems. In such an approach, the well-known OFDM technique is only a

special case of the generic multi-carrier signalling. In OFDM systems the waveform

is chosen to be rectangular and the consecutive pulses do not overlap each other in

the time domain whereas in frequency domain they are spread over many adjacent

subband spectra whilst do not affecting them. In general, the designed pulses used in

an NOFDM system can overlap each other in time and/or in frequency domain. It

is illustrated in Figure1.1, where one circle reflects the time-frequency representation

of the non-orthogonal pulse used in the NOFDM system, T is the distance between

consecutive pulses (atoms) in time domain and F denotes the distance between ad-

jacent subcarriers in frequency domain. These pulses are called also atoms in the

time/frequency plane because every signal can be built using the atom-waveform as

the world is built with atoms.

FilterBank Multicarrier Modulation (FBMCM) was originally introduced in the

scenario of high speed wired access networks [11] and in the standard for the return

channel of terrestrial digital video broadcasting (DVB-RCT) [12]. FBMCM, which is a

particular case of NOFDM, differs from conventional OFDM in that the data symbols

are transmitted over the different subcarriers after proper pulse-shaping. The result
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is that the spectra of the subcarriers are bandlimited, bringing forth a number of

advantages, namely:

1. reduction of sensitivity to narrowband interferers;

2. frequency domain equalization without the need of the cyclic extension (thus

avoiding the consequent efficiency loss);

3. more flexibility to allocate groups of subchannels to different users in the case

of Orthogonal Frequency Division Multiple Access (OFDMA).

Moreover, similarly, as in the case of OFDM, the NOFDM transceivers can be also

efficiently implemented using the fast Fourier transform (and its inverse) but followed

by a polyphase filter.

1.2 Background of Adaptive techniques

Link adaptation to varying radio channel conditions is nowadays one of the key

technologies for fulfilling the purpose of a 4G communication system, by efficiently

making use of the available resort of the terminals. When a system does not adapt the

transmission parameters to the actual channel conditions, the designer must consider

a fixed link margin to maintain acceptable performance in the worst case channel

conditions. As apparent, the more channel state get better, this strategy leads to

a very inefficient utilization of the available resources. Of course, the basic premise

for a proper link adaptation is the simultaneous knowledge of some sort of Channel

State Information (CSI), by both the transmitter and the receiver, and this can be

accomplished, as we will see in the sequel, with an estimate of the channel at the

receiver and a feed back to the transmitter, of some link quality information based

on that estimate. There are many parameters that can be adapted, according to the

current channel status, such as:

• data rate;

• coding rate/scheme;

• power distribution among the subchannels;

• space-time coding.
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In order to further improve the link performance, these adaptive techniques can

be combined together, to design most powerful hybrid techniques which jointly adapt

multiple system parameters.

1.2.1 Adaptive modulation

In variable-rate modulation, the data rate is varied with respect to the channel

gain. This can be done by setting the symbol rate of the modulation and by using

multiple modulation schemes or constellation sizes. In this work we consider variable

rate QAM transmission, where the number of QAM levels is varied according to

the channel status and the quality criteria which we intend to optimize [13]. When

considering a GMC system, the process of varying the data rate of each subcarrier to

obtain a certain global system performance (more in general, together with the Power

allocation) is named Bit loading.

1.2.2 Power allocation

Another issue to face in adaptive transmitter design is how to distribute the avail-

able power across a set of subchannels. Among the diverse strategies that can be

invoked, a very popular criterion is based on the maximization of the input-output

mutual information. In the ideal case of parallel Gaussian channels, with Gaussian

input distribution, the solution is given by the well-known water-filling policy [14].

Since practical systems usually operate far from the theoretical capacity, or when the

target of a certain communication system does not involve directly the maximization

of the mutual information, various alternative criteria could be used instead.

1.2.3 Adaptive coding

In adaptive coding different channel codes are used to provide different amounts

of coding gain to the transmitted bits. A stronger error correction code may be

used for harsh propagation conditions, while a weaker code could be more suitable

for favorable channel conditions. The implementation of adaptive coding used in the

system considered in this work, is called Rate-Compatible Punctured Convolutional

(RCPC) codes [15], and it consists of a family of convolutional codes at different code

rates r. The basic premise of RCPC codes is to have a single encoder and decoder,

whose error correction capability can be modified by not transmitting certain coded
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bits (e.g. by puncturing the code). Moreover, RCPC codes have a rate-compatibility

constraint, so that, the coded bits associated with a high-rate (weaker protection)

code are also used by all lower-rate (stronger protection) codes. Thus, in order to

increase the error correction capability of the code, the coded bits of the weakest code

are transmitted along with additional coded bits to achieve the desired level of error

correction. The rate compatibility makes it very easy to adapt the error protection

of the code, since the same encoder and decoder are used for all codes in the RCPC

family, with puncturing at the transmitter to achieve the desired error correction.

Decoding is performed by a Viterbi algorithm, operating on the trellis associated

with the lowest rate code, with the puncturing incorporated into the branch metrics.

In this thesis we do not consider any coding (uncoded system) but its implementation

is straightforward. Adaptive coding, combined with adaptive modulation as a hybrid

technique, takes the name of Adaptive Modulation and Coding (AMC).

1.3 Cognitive Radio

Cognitive radio [16] is a paradigm for wireless communication in which either

a network or a wireless node changes its transmission or reception parameters to

communicate efficiently avoiding interference with licensed or unlicensed users. This

alteration of parameters is based on the active monitoring of several factors in the

external and internal radio environment, such as radio frequency spectrum, user be-

haviour and network state. The idea of cognitive radio was first presented officially

in an article by Joseph Mitola III and Gerald Q. Maguire, Jr in 1999 [17]. It was a

novel approach in wireless communications that Mitola later described as:

The point in which wireless personal digital assistants and the related

networks are sufficiently computationally intelligent about radio resources

and related computer-to-computer communications to detect user commu-

nications needs as a function of use context, and to provide radio resources

and wireless services most appropriate to those needs.

It was thought of as an ideal goal towards which a software-defined radio platform

should evolve: a fully reconfigurable wireless black-box that automatically changes its

communication variables in response to network and user demands.
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Figure 1.2: United States frequency allocations of the radio spectrum

Regulatory bodies in various countries (including the Federal Communications

Commission in the United States, and Ofcom in the United Kingdom) found that

most of the radio frequency spectrum was inefficiently utilized. For example, cellular

network bands are overloaded in most parts of the world, but amateur radio and paging

frequencies are not. Independent studies performed in some countries confirmed that

observation [18], and concluded that spectrum utilization depends strongly on time

and place. Moreover, fixed spectrum allocation prevents rarely used frequencies (those

assigned to specific services) from being used by unlicensed users, even when their

transmissions would not interfere at all with the assigned service. This was the reason

for allowing unlicensed users to utilize licensed bands (see Figure 1.2) whenever it

would not cause any interference (by avoiding them whenever legitimate user presence

is sensed). This paradigm for wireless communication is known as cognitive radio.

Although cognitive radio was initially thought of as a software-defined radio ex-

tension (Full Cognitive Radio), most of the research work is currently focusing on

Spectrum Sensing Cognitive Radio, particularly in the TV bands. The essential prob-

lem of Spectrum Sensing Cognitive Radio is in designing high quality spectrum sensing
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devices and algorithms for exchanging spectrum sensing data between nodes. It has

been shown that a simple energy detector cannot guarantee the accurate detection

of signal presence, calling for more sophisticated spectrum sensing techniques and re-

quiring information about spectrum sensing to be exchanged between nodes regularly.

Increasing the number of cooperating sensing nodes decreases the probability of false

detection [19].

Filling free radio frequency bands adaptively using OFDMA is a possible approach.

Timo A. Weiss and Friedrich K. Jondral of the University of Karlsruhe proposed a

Spectrum Pooling system [18] in which free bands sensed by nodes were immediately

filled by OFDMA subbands.

Applications of Spectrum Sensing Cognitive Radio include emergency networks

and WLAN higher throughput and transmission distance extensions.

Evolution of Cognitive Radio toward Cognitive Networks is under process, in which

Cognitive Wireless Mesh Network (e.g. CogMesh) is considered as one of the enabling

candidates aiming at realizing this paradigm change.

The main functions of Cognitive Radios are [20]:

Spectrum Sensing detecting the unused spectrum and sharing it without harmful

interference with other users, it is an important requirement of the Cognitive

Radio network to sense spectrum holes, detecting primary users is the most

efficient way to detect spectrum holes. Spectrum sensing techniques can be

classified into three categories:

Transmitter detection cognitive radios must have the capability to deter-

mine if a signal from a primary transmitter is locally present in a certain

spectrum, there are several approaches proposed:

• matched filter detection

• energy detection

• cyclostationary feature detection

Cooperative detection refers to spectrum sensing methods where informa-

tion from multiple Cognitive radio users are incorporated for primary user

detection.

Interference based detection recently, a new model for measuring interfer-

ence at the receiver, referred to as "interference temperature". Unlike
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the other transmitter-centric approach, the interference temperature model

manages interference at the receiver through the interference temperature

limit, which is represented by the amount of new interference that the

receiver could tolerate.

Spectrum Management capturing the best available spectrum to meet user com-

munication requirements. Cognitive radios should decide on the best spectrum

band to meet the Quality of service requirements over all available spectrum

bands, therefore spectrum management functions are required for Cognitive ra-

dios, these management functions can be classified as:

• spectrum analysis

• spectrum decision

Spectrum Mobility is defined as the process when a cognitive radio user exchanges

its frequency of operation. Cognitive radio networks target to use the spectrum

in a dynamic manner by allowing the radio terminals to operate in the best

available frequency band, maintaining seamless communication requirements

during the transition to better spectrum

Spectrum Sharing providing the fair spectrum scheduling method, one of the major

challenges in open spectrum usage is the spectrum sharing. It can be regarded

to be similar to generic media access control MAC problems in existing systems

In last part of this thesis are introduced some aspect of cognitive radio paradigm

in our filterbank systems and the advantages of the NOFDM systems compared to

the OFDM systems will be discussed.

1.4 European research projects

This work is based on the work developed by two European projects, in particular

on their theoretical work and this thesis presents some aspects in common with them.

These two research projects are the URANUS and the PHYDYAS projects and they

are funded by the European Commission. They try to overtake the OFDM limits

as the lacks flexibility and its poor spectral resolution adopting a filterbank-based
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multicarrier technique that offers high spectrum resolution and can provide indepen-

dent subchannels, while maintaining or enhancing the high data rate capability. The

filterbank-based system has the potential to fulfil the requirements of the new con-

cepts, but a major research effort is necessary for full exploitation and optimization in

all aspects of the radio context. The physical layer is the basis on which the networks

are built and, with the numerous scenarios and environments, a complex and coherent

set of techniques and algorithms has to be worked out. These are the scopes of both

the projects. They have a strong academic participation, whose mission is to deliver

the best methods and the most efficient algorithms. The industrial partners bring

instead their experience in communication infrastructure design and deployment, in

instrumentation and measurements and in circuit design. Non-profit research organi-

zations facilitate the cooperation between academic and industry partners.

1.4.1 The URANUS project

The "Universal RAdio-link platform for efficieNt User-centric accesS" (URANUS)

project it has been funded by the European Commission under the Framework Pro-

gramme (FP) 6. It started on December 2005 and finished on December 2008. The

partners of this project are the University of Oulu (Finland), the Poznan University

of Technology (Poland), CEA LETI (France), STMicroelectronics (Swiss, France and

Italy), Telefonica I+D (Spain), the Institute for Accelerating Systems and Applica-

tions (Greece) and the University of Kassel (Germany), of Kaiserslautern (Germany)

and of Duisburg-Essen (Germany).

The objective of URANUS is the investigation and the design of a universal radio

link platform as enabling technology for user-centric access in future wireless systems.

The URANUS platform will grant access to existing proprietary as well as standard-

ized wireless system in a unified way (single-mode operation), support simultaneous

usage of links in different types of air interfaces (multi-mode operation) and, in partic-

ular, ease the introduction of future personalized communications (user-defined mode
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operation) and reconfigurable air interfaces.

Figure 1.3: Goals of URANUS platform project

URANUS is based on a novel and efficient parametric approach to describe wireless

transceivers (TRXs) in the complex baseband using a Generic Multicarrier represen-

tation (GMC), where a specific signalling format or mode is uniquely represented by a

corresponding set of parameters. The approach is referred to as Canonical Parametric

Description (CPD), since the proposed overall transceiver structure (unlike software-

defined radio) is independent of the specific choice of the parameter set. The CPD can

be used to describe any mode, given that the parameters are properly chosen, which

in turn translates to corresponding TRX requirements. The anticipated benefits for

the user include better coverage, adaptivity in different environments, and selection

of air interfaces matching the user/service/cost requirements. The main motivation

to choose a GMC for the CPD is the limited complexity of multi-carrier transceivers

and the fact that recent wireless standardization proposals are already based on or-

thogonal multi-carrier signals. The baseband architecture of the CPD approach being

inherently scalable with respect to the achievable data rate has been identified and

implemented in software and hardware validation platforms. In order to quantify the

system level benefits of multi-mode operation in relevant metrics such as spectrum
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usage, coverage, throughput and load-balancing, the performance of the URANUS

platform has been simulated at system level for a small number of predetermined sce-

narios. URANUS provided recommendations for standardization bodies in the area

of broadband, wireless and mobile radio communications.

More information about URANUS project can be found on the official website

http://www.ist-uranus.org/.

1.4.2 The PHYDYAS project

The "PHYsical layer for DYnamic spectrum AccesS and cognitive radio" (PHY-

DYAS) project has been started on January and it will end on June 2010. The

members involved in this project are the Conservatoire National des Arts et Métiers

(France), the Technishe Universität München (Germany), the Tampere University

of Technology (Finland), the Université Catholique de Louvain (Belgium), SINTEF

(Norway), the Centre Tecnologic de Telecomunicacions de Catalunya (Spain), the Re-

search Academic Computer Technology Institute (Greece), the University of Napoli

Federico II (Italy), CEA-LETI (France), Agilent (Belgium), Alcatel-Lucent (UK, Ger-

many) and COMSIS (France).

The main objective is to propose FBMC (FilterBank Multi Carrier) physical layer

for future radio systems that is more efficient than the present OFDM physical layer

and better suited to the new concepts of DASM (Dynamic Access Spectrum Manage-

ment) and cognitive radio.

PHYDYAS proposes an advanced physical layer, using filterbank-based multi-

carrier transmission, for the new concepts in radiocommunications: dynamic access

spectrum management and cognitive radio. It shows that the performance and oper-

ational flexibility of systems are enhanced by exploiting the spectral efficiency of filter

banks and the independence of subchannels. Combining with offset quadrature ampli-

tude modulation (OQAM), no cyclic prefix is needed, all the radiated power is used
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and gains in maximum throughput compared to OFDM are achieved. Robustness

to the Doppler spread phenomenon and jammers is obtained and new functionali-

ties are possible. The high resolution spectrum analysis capability is exploited for

DASM and cognitive radio and a single device can do spectrum sensing and reception

simultaneously.

Research in signal processing is carried out to complete the knowledge in filter

banks for transmission and satisfy requirements of new radio systems: fast initializa-

tion, optimum transmit-receive processing for single and multiple antenna (MIMO)

systems, scalability. Research in communications concerns dynamic access and cross-

layer aspects, and compatibility with OFDM. In cognitive radio, research deals with

radio scene analysis and channel identification and the impact of the independence

of subchannels on transmit power control and dynamic spectrum management. A

simulation software is developed for a typical WiMAX configuration and scenario

and performance comparison with OFDM is carried out. A real time soft/hardware

demonstrator is built to complete simulation results and show efficient architectures.

The expected impact of PHYDYAS is the migration of wireless systems to a phys-

ical layer that is more efficient and better responds to the needs of dynamic access and

cognitive radio. The consortium consists of leading academic research groups across

Europe, teamed with world leading companies in infrastructures, circuit design and

instrumentation.

More information about PHYDYAS project can be found on the official website

http://www.ict-phydyas.org/.
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Chapter 2
The filterbank multicarrier systems

Some of today’s common air interfaces adopt single carrier schemes, whereas oth-

ers rely on multicarrier transmission. Conventional OFDM signals are generated by

concatenating the outputs of IFFTs. A few parameters, including the number of sub-

carriers, the FFT and guard period lengths, and of course the subcarrier modulation

scheme, completely define the OFDM modulation. Performing the IFFTs in signal

windows with non-rectangular shapes leads to alternative, more general multicarrier

modulation methods. Known as filterbank (FB)-based or generalized multicarrier

(GMC) transmission, the freedom in the pulse design can be taken advantage of to

reduce the vulnerability to phase noise or frequency-selective channels, for instance.

This multicarrier concept using arbitrary window functions is adopted to facilitate

the representation of a wide range of modulation schemes. Conventional OFDM

and alternative multicarrier signals can be represented by their window function in

addition to the number of subchannels, etc., provided a regular grid-like spacing of the

elementary pulses in the time-frequency plane. Single carrier signals can be viewed as a

special case of multicarrier, with one subcarrier. The major advantage of multicarrier

signalling is the narrowband character of the subcarriers, which simplifies dealing

with multipath propagation. Employing a multicarrier approach in the receiver can

be advantageous even if the actual signal to be decoded is single carrier. Moreover,

appropriate signal expansion and processing in a time-frequency (TF) domain, rather

than in frequency domain, facilitates simple channel estimation and demodulation

similar as in OFDM receivers even when the channels are doubly dispersive.

We start our discussion from the mathematical framework that establishes the
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basis for the development of the filterbank structure, i.e. the Gabor theory, both in a

continuous time domain and in a sampled discrete domain for digital application [3].

2.1 Gabor Expansion and

Weyl-Heisenberg Systems

The Gabor signal expansion is a special case of the more general frame signal

expansion [21], [22] which refers to expressing an arbitrary signal s(t) ∈ L2 (i.e. a

function that is square integrable [23]) as

s(t) =
∑

m∈Z

∑

n∈Z

cm,ngm,n(t) (2.1.1)

where (gm,n) is a sequence of functions in L2, and (cm,n) are the so called frame

coefficients ((cm,n) ∈ l2(Z×Z) i.e. they are square summable). The signal expansion

(2.1.1) resembles the well-known signal expansion on a basis sequence. However,

(gm,n) consists, in general, of linearly depended components, with the property that

they are complete in L2(R). The case of (gm,n) being a basis can be considered as a

special case of frame expansion.

A well known fact from frame theory is that an arbitrary system of functions

(gm,n) cannot constitute a frame, i.e., the functions in (gm,n) are not complete in

L2. The formal definition of a sequence (gm,n) to be a frame is that there exist two

constants 0 < A ≤ B <∞ such that [24]

A‖s‖2 ≤
∑

m,n∈Z

|〈s, gm,n〉|2 ≤ B‖s‖2 (2.1.2)

where 〈·, ·〉 denotes the inner product. If (2.1.2) holds then an arbitrary signal can

be expressed as in (2.1.1) with a proper choice of coefficients (cm,n). Constants A,

B, are the frame bounds. For A = B the frame is called tight, whereas for A ≈ B

the frame is called snug. A major problem in frame theory is the specification of the

frame coefficients (cm,n). Since (gm,n) consists of linearly dependent elements, (cm,n)

are not uniquely specified. One valid value for (cm,n) is provided by the concept of the

frame operator. The frame operator F of (gm,n) is defined in terms of the operators
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T : s→ (〈s, gm,n〉)m,n∈Z (2.1.3)

called the analysis operator, and its conjugate

T ∗ : (cm,n) →
∑

m,n∈Z

cm,ngm,n (2.1.4)

called the synthesis operator. The frame operator is defined as

F = T ∗T : s→ Fs =
∑

m,n∈Z

〈s, gm,n〉 gm,n (2.1.5)

It can be shown that the frame operator is invertible and can be used to define

the so called (canonical) dual frame sequence (γm,n) = (F−1gm,n) with frame bounds

B−1, A−1. Using the dual frame (γm,n), coefficients (cm,n) can be found as

cm,n = 〈s, γm,n〉 (2.1.6)

It can be shown that all valid (cm,n) values can be produced by an inner product

operation, as in (2.1.5), using any (non-unique) dual frame to (cm,n). Using the

canonical dual in (2.1.5) results in the minimum norm coefficients. It is also noted

that the roles of (gm,n) and (γm,n) can be exchanged, i.e.,

s(t) =
∑

m∈Z

∑

n∈Z

〈s, gm,n〉 γm,n(t) =
∑

m∈Z

∑

n∈Z

〈s, γm,n〉 gm,n(t) (2.1.7)

The Gabor (frame) expansion of s(t) has the same form as (2.1.1), with the func-

tions of (gm,n) having the special form [24], [25]

gm,n(t) = g(t− nT )ej2πmF with m,n ∈ Z (2.1.8)

where g ∈ L2(R) is the prototype function or Gabor atom. This is called a Weyl-

Heisenberg or Gabor system (frame) and, as can be seen, it is generated by shifting
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the atom uniformly in time by T (time spacing) and in frequency by F (frequency

spacing). This observation leads to the interpretation of the (Gabor) coefficients

(cm,n), as reflecting the signal’s behavior in the time-frequency plane, at the regular

grid defined by T , F , as shown in Figure 2.1 [25].

Figure 2.1: Gabor expansion sampling grid in the time-frequency plane [3]

The lattice size of the time/frequency grid, given by the product TF , plays a

crucial role for the completeness and linear independence of the (gm,n) [21]. The

elements of (gm,n) are complete in L2 if and only if TF ≤ 1. This constraint is only

a necessary but not sufficient condition for (gm,n) being a Gabor frame [21]. It can

be shown that for TF = 1 (critical sampling), a Weyl-Heisenberg system is, in fact,

a basis of L2. In contrast, for TF ≤ 1 (overcritical sampling) the elements of (gm,n)

become linearly dependent. A major result of Gabor frame theory is that for TF = 1,

the atom γ cannot be well concentrated in time/frequency, e.g., a Gaussian γ cannot

generate a complete Gabor frame in L2. This is one of the major reasons for choosing

overcritical Gabor representations, as well-localized atoms can be found in this case.

In order to specify the Gabor coefficients (cm,n), the dual frame (γm,n) = (F−1gm,n)

must be computed. It turns out that (γm,n) is actually a Gabor frame, generated by

the atom γ = F−1g, i.e.,

γm,n(t) = γ(t− nT )ej2πmF with m,n ∈ Z (2.1.9)

with the same parameters T , F as (gm,n). Function γ is often referred as the

(canonical) dual atom of g. This is an important property of Gabor frames, since

only the dual atom γ must be specified for the computation of the dual frame. For

18



2.2. DISCRETE GABOR EXPANSION AS FILTERBANK

the special case of tight frames, i.e., A = B, the dual atom can be shown to be readily

specified as

γ(t) = c g(t) (2.1.10)

where c is a normalization constant. It is noted that the canonical dual frame

(2.1.9) is not the only choice of valid dual frames to (gm,n). As a matter of fact, not

every dual frame of (gm,n) has the Weil-Heisenberg structure. The family of functions

(atoms) that can be used to generate a valid dual Weil-Heisenberg frame (including

the canonical dual atom) is specified by the so called Wexler-Raz identity [24].

2.2 Discrete Gabor Expansion as filterbank

In digital signal processing applications, the concept of Gabor expansion has to

be translated to the discrete-time domain. The discrete Gabor expansion [26] of a

signal s[n] ∈ l2(Z) refers to

s[k] =
∑

n∈Z

M−1∑

m=0

cm,ngm,n[k] (2.2.1)

where

cm,n = 〈s, γm,n〉 (2.2.2)

are the Gabor coefficients of the signal and (gm,n) and (γm,n) are dual (discrete-

time) frames, obtained by uniform shifts in time and frequency of the (real valued)

Gabor atoms g[k] and γ[k] respectively. Specifically,

g[k] = g[k − nN ]ej2πkm/M with n ∈ Z,m = 0, . . . ,M − 1 (2.2.3)

and

γ[k] = γ[k − nN ]ej2πkm/M with n ∈ Z,m = 0, . . . ,M − 1 (2.2.4)
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where N and 2π/M are the time spacing and frequency spacing of the elementary

functions, respectively. Similarly to the continuous-time Gabor expansion, the time-

frequency lattice of the discrete Gabor expansion cannot be chosen arbitrary. A

necessary requirement for completeness of the Gabor frames is

N ≤M (2.2.5)

For N = M the expansion corresponds to a critically sampled time-frequency

plane, whereas N < M corresponds to overcritical sampling. Although overcritical

sampling results in a redundant signal expansion, i.e., the number of Gabor coeffi-

cients is greater than the number of signal samples, it is usually preferred since the

Gabor atoms can be chosen with desirable properties such as good time-frequency

localization, which is not possible in the case of critical sampling [25]. A significant

advantage of the discrete Gabor transform is its efficient implementation. This can

be seen by relating the Gabor transform to the concept of a perfect reconstruction

(PR) Discrete Fourier Transform (DFT) filter bank [27] usually employed in signal

processing sphere.

2.2.1 The biorthogonality property

In almost every signal processing application where filter bank is used, the PR

property is mandatory. However, in order to achieve the PR property, γm[k], gm[k],

M , N must be properly selected, satisfying specific constraints [28]. Usually, the

number of channels M and analysis filters γm(f) are first selected according to some

criterion depending on the specific application. Selection of the remaining filter bank

parameters (gm[k], N) leading to PR of the input signal is done based on these. The

problem of imposing the PR property (exactly or approximately) has been studied

intensively in the signal processing literature (e.g., [29] and references therein) and is

closely related to problem of filter design.

A fundamental condition leading to the PR property is the biorthogonality be-

tween the synthesis prototype pulse and the analysis one. The biorthogonality is

equivalent to the completeness relation proved by Wexler and Raz in [30]:
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∑

m∈Z

∑

n∈Z

γ∗m,n[k
′]gm,n[k] = δ[k − k′] (2.2.6)

Substituting (2.2.3) and (2.2.4) in (2.2.6), we obtain

∑

m∈Z

∑

n∈Z

γ∗[k′ − nN ]e−j2πmk′/Mg[k − nN ]ej2πmk/M = δ[k − k′] (2.2.7)

∑

m∈Z

∑

n∈Z

γ∗[k′ − nN ]g[k − nN ]ej2πm(k−k′)/M = δ[k − k′] (2.2.8)

where δ[k] is the Kronecker delta operator, defined as

δ[k] =

{
1 if k = 0

0 otherwise
(2.2.9)

Using the Poisson summation formula, (2.2.8) can be written as

1

M

∑

m∈Z

∑

n∈Z

γ∗[k′ − nN ]g[k − nN ]δ[k − k′ +mM ] = δ[k − k′] (2.2.10)

∑

m∈Z

γ∗[k − nN −mM ]g[k − nN ] =Mδ[n] (2.2.11)

Formula (2.2.11) is the starting point to devise algorithms evaluating the dual

prototype pulse γ[k] used in the analysis filterbank. Two algorithms (one is fast

version of the other) that allow to calculate the dual atom given the synthesis one,

are discussed in Section 2.5.

2.2.2 DFT filterbank

A typical example of perfect reconstruction (PR) filterbank [29] is depicted in

Figure 2.2. A (complex valued) signal s[k] is input to M filters, possibly non-causal,

whose frequency transform is denoted by Γm(f). These filters can be either FIR or

IIR and, in general, have passband characteristics. Ideally, their passband regions
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do not overlap. Since the output sequence of Γm(f) is frequency limited, it can

be downsampled by a factor N . The cascade of filters Γm(f) and the decimators

constitute the analysis filterbank, with output sequences (subband signals) cm[k].

Signal s[k] is reconstructed by processing the subband signals by the subsequent

synthesis filterbank. Each signal is first upsampled by a factor N and input to a

filter Gm(f), with passband frequency response. The M resulting output sequences

are then summed in order to reconstruct the original signal s[k]. If the reconstructed

signal has no distortion, i.e. ŝ[k] = s[k], the structure of Figure 2.2 is referred to as

perfect reconstruction (PR) filterbank.

Figure 2.2: M-channel filter bank

By contrasting the operation of a PR filter bank, as described above, with the

discrete Gabor expansion formula in (2.2.1), many commonalities can be readily iden-

tified. In both cases, the signal is analyzed to a set of coefficients which are combined

in order to reconstruct the signal. In fact, as will be demonstrated in the following, a

PR filter bank can actually be employed in order to efficiently implement the Gabor

expansion.

A well known special case of PR filter bank is the DFT filter bank, which is

obtained by selecting the analysis and synthesis filters as

γm[k] = γ[k]ej2πkm/M

gm[k] = g[k]ej2πkm/M
with m = 0, . . . ,M − 1 (2.2.12)
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where g[k], γ[k] are the real-valued, prototype filters of finite duration (possibly

non-causal) equal to L. It follows from (2.2.12) that

Γm(f) = Γ
(
f − m

M

)

Gm(f) = G
(
f − m

M

) with m = 0, . . . ,M − 1 (2.2.13)

i.e., the filters are obtained as uniform shifts in frequency of the prototype filters.

In general, due to the finite filter duration there is overlapping among the subbands but

its effect is completely eliminated by an appropriate synthesis filter bank. However,

the overlapping is an important aspect in data communication systems and it will be

analyzed later (cfr. §2.3.1).

The subband signals generated by the DFT analysis filterbank are equal to

cm[n] =
∑

k∈Z

s[k]γm[nN − k] =

=
∑

k∈Z

s[k]γ[nN − k]e−j2πm(nN−k)/M (2.2.14)

and the reconstructed signal is

s[k] =

M−1∑

m=0

∑

n∈Z

cm[n]gm[n] =

=
M−1∑

m=0

∑

n∈Z

cm[n]g[k − nN ]ej2πm(k−nN)/M (2.2.15)

Comparing (2.2.14), (2.2.15) to (2.2.1), (2.2.2) it follows that the DFT filterbank

implements a Gabor expansion of the signal s[n], employing the dual Gabor frame

sequences

gm,n[k] = g[k − nN ]ej2πm(k−nN)/M with n ∈ Z,m = 0, . . . ,M − 1 (2.2.16)
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and

γm,n[k] = γ[−(k − nN)]ej2πm(k−nN)/M with n ∈ Z,m = 0, . . . ,M − 1 (2.2.17)

The frames of (2.2.16), (2.2.17) differ from the Gabor frame definition in (2.2.3),

(2.2.4) by a multiplicative scalar, which is however irrelevant. Therefore, the Gabor

expansion defines a DFT filterbank and viceversa, with the correspondences shown in

Table 2.1 [31]. Of course, since non-causal filters can not be implemented in practice,

delayed versions of the prototype filters are employed.

Gabor expansion DFT filterbank

Gabor (synthesis) atom: g[k] Synthesis prototype: g[k]

Gabor (analysis) atom: γ[k] Analysis prototype: γ[−k]
Gabor coefficients: (cm,n) Subband signals: cm[n]

Time spacing: N Downsampling factor: N

Frequency spacing: 2π/M Number of channels: M

Table 2.1: Parameter correspondence between Gabor expansion and DFT filter bank

The importance of identifying the Gabor expansion as a DFT filterbank is that

the efficient implementation of DFT filterbanks can be employed to perform the ex-

pansion, resulting in significant computational gains compared to a straightforward

implementation of (2.2.1), (2.2.2).

2.3 Multicarrier signaling with filterbank structure

Constraining the signal to be multicarrier in order to achieve mode flexibility is

not a severe constraint. Actually, it is well known that multicarrier signals are optimal

for broadband applications, where the channel is time invariant and introduces severe

inter-symbol interference (ISI). This observation has led to the high utilization of

OFDM signaling by current and future broadband standards. However, conventional

multicarrier schemes are inferior, compared to other signaling formats (e.g., single

carrier), in communication aspects such as transmission under channel with high
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dynamics, peak to average power ratio and sensitivity to synchronization errors [32],

[33].

A multicarrier communication system based on a filterbank structure is slightly

different from the one show in Figure 2.2 used in signal processing. The main difference

is that the order of the analysis and synthesis filterbanks has been interchanged from

the subband coding arrangement discussed in Section 2.2.

Figure 2.3: Direct realization of an M-band communication system using filterbank

modulation

The analog multicarrier transmitted (baseband) signal is

s (t) =
∑

n∈Z

M−1∑

m=0

cm,ng(t− nT )ej2πmFt (2.3.1)

where T , F are respectively time and frequency shifts of Gabor atoms. In a data

communication systems these parameters become the GMC symbol1 interval and

subcarriers spacing in frequency domain, respectively. Moreover cm,n are the source

QAM symbols (at the rate Ru = 1/Tu = 1/MT ), m is the index of the symbol within

each block (0 ≤ k ≤M−1) and n is generic block index. Each subcarrier is spectrally

shaped with G(f) filter and the center frequency of the mth subcarrier is mF .

It is well-known that the sampling of a continuous-time signal entails the origin of

the repetitions of the spectrum of the analog signal translated in the frequency domain

1In this work we define a "GMC symbol" each block of N samples obtained by the filterbank

modulation of M QAM symbols.
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by the multiples of the sampling frequency. If the sampling frequency is badly chosen

the spectrum repetitions can interfere with the original one (aliasing). According to

the Nyquist sampling theorem the sampling frequency must be greater or equal than

the overall bandwidth of the transmitted signal, i.e. fs ≥ BTOT , in order to avoid

any interference. The spectrum of an complex bandbased analog multicarrier signal

is illustrated in Figure 2.4. In such example the overall bandwidth is about BTOT = 2

MHz. The spectrum of the same sampled signal is shown in Figures 2.5 and 2.6. In

the first on these two figures the repetitions (red lines) of the original spectrum (blue

lines) are far from the bandbased spectrum because the sampling frequency has been

chosen greater than the overall bandwidth, i.e. fs > BTOT . In Figure 2.6, instead the

sampling frequency satisfies the Nyquist constraint with the equality and the spectrum

repetitions are adjacent to the original one. In such case we can consider only the

frequency f ∈ [0, BTOT ] without any loss of information because the spectrum of the

subcarriers is even.
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Figure 2.4: Spectrum of the analog multicarrier signal
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Figure 2.5: Spectrum of the digital multicarrier signal with fs > BTOT

In the remainder of this document we assume to work at Nyquist sampling fre-
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Figure 2.6: Spectrum of the digital multicarrier signal with fs = BTOT

quency and the presence of an anti-aliasing filter (i.e. a low-pass filter with bandwidth

equal to the bandwidth of the analog signal) at the beginning of the receiver is as-

sumed in order to avoid the aliasing and it will be no longer mentioned.

Thus assuming a sampling frequency equal to fs = 1/Ts and because every GMC

symbol has to be composed by N samples according to the Gabor expansion (i.e.

consecutive atoms are separated by N samples, see 2.2.3) the duration of each GMC

symbol is T = Ts · N . Consequently the overall bandwidth (and the sampling fre-

quency) can be expressed as

fs = BTOT =
N

T
(2.3.2)

Moreover the overall available bandwidth is divided equally into M subbands and

hence the subcarrier spacing F results

F =
BTOT

M
=

N

MT
(2.3.3)

If G(f) has limited bandwidth smaller than subcarrier spacing, i.e. BG < F (and

hence there is no overlaping among the subcarriers in frequency domain), the signal

will not be affected by inter-carrier interference (ICI). The digitalized signal is thus

[34]
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s (kTS) = s

(
k
T

N

)
=

∑

n∈Z

M−1∑

m=0

cm,ng

(
k
T

N
− nT

)
ej2πmFk(T/N) =

=
∑

n∈Z

M−1∑

m=0

cm,ng

[
(k − nN)

T

N

]
ej2πm(N/MT )k(T/N)(2.3.4)

Figure 2.3 shows an M -subchannel filterbank communication system, also referred

to as a multicarrier communication system. The complex-valued modulation symbols

cm,n with m = 0, 1, . . . ,M − 1, chosen from a not necessarily identical QAM constel-

lations, are provided at the GMC symbol rate 1/T . After upsampling by a factor of

N , indicated by the notation ↑ N , each symbol stream is filtered by a baseband fil-

ter, referred to as a synthesis prototype filter, with frequency characteristic G(f) and

impulse response g[k]. The transmit signal s[kT/N ] is obtained at the transmission

rate of N/T by adding the M filter-output signals properly shifted in frequency. At

the receiver, the analysis prototype filter is chosen to be biorthogonal to the synthesis

prototype filter and it is followed by subsampling by a factor of N , indicated by the

notation ↓ N .

Figure 2.7: Efficient realization of the filterbank system for the case N =M

Bellanger et Al. [35] have shown that for the critically sampled case N = M the

filterbank transmitter and receiver can equivalently be realized as depicted in Fig-

ure 2.7. The M -branch filters with transfer functions G(0)(f), G(1)(f), . . . , G(M−1)(f)
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and respective impulse responses g(0)[k], g(1)[k], . . . , g(M−1)[k] are baseband filters that

represent the M polyphase components of the synthesis prototype filter G(f). Essen-

tially, to obtain the impulse responses of the polyphase filter components, regularly

T -spaced samples (or M -spaced for the discrete model) are extracted from the proto-

type filter impulse response g[k] having T/M -spaced samples, i.e.

g(m)[k] = g[kM +m] with m = 0, . . . ,M − 1 (2.3.5)

Each polyphase filter component is then applied to a different time domain point

of the IDFT output. The use of IDFT (and its fast version IFFT) is possible because,

starting for (2.3.4),

s

(
k
T

N

)
=

∑

n∈Z

M−1∑

m=0

cm,ng

[
(k − nN)

T

N

]
ej2πm(N/MT )k(T/N) =

=
∑

n∈Z

g

[
(k − nN)

T

N

]M−1∑

m=0

cm,ne
j2πmk/M

︸ ︷︷ ︸
IDFT

(2.3.6)

This M -branch polyphase filterbank structure is attractive because the required

filtering operations are performed at the symbol rate 1/T instead of the transmission

rate M/T . It has been noted that a trade-off between processing speed and parallelism

is generally allowed in systems where the filterbanks are employed.

Moreover, in this structure it can be used the (I)FFT algorithm in order to speed

up the calculation of (I)DFT blocks output. The efficient polyphase implementation

introduced by Bellanger et Al. can be also employed for the non-critically sampled

case N > M . In that case the synthesis modulator is composed by N -branch filters

represented by the N polyphase components of the synthesis prototype filter G(f).

Moreover, a further improved implementation will be discussed in Section 2.4.

The structure shows previously in Figure 2.3 represents a particular case of the

filterbank structure. In fact the most general scheme for a multicarrier communication

system based on filterbank modulation is depicted in Figure 2.8 [36].

The serial data stream c[k] is first converted to M -parallel substreams cm[n] =

c[nN+m] where cm[n] denotes the mth symbol in the nth block of M QAM symbols.
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Figure 2.8: General multirate discrete-time filterbank system

With N > M , the ratio (N −M)/N represents the amount of redundancy introduced

per transmitted GMC symbol. At the receiver, the rate is reduced by the same amount

such that the overall rate remains unchanged. From an input-output (I/O) point of

view, our transmit filterbank takes size-M blocks of c[k], filters them, and maps them

to size-N at the end of the synthesis section. The QAM symbol rate in the serial data

stream c[k] is 1/Tu while the rate of the transmitted data is 1/Ts = (N/M)(1/Tu).

The generality of this scheme is given by the fact the every filter Gm(f) and

Γm(f) can be arbitrarily choosen, each one independently from the others. In this

case the usual Discrete Gabor Expansion is no longer enough to well describe the

system and it is necessary to adopt a DGE improvement, such as the Discrete Multi-

Gabor Expansion, introduced for the first time in [37]. In order to obtain the schemes

analyzed previously and adopted in this work, we have to apply (2.2.12). Because the

filters have all the same baseband frequency response (they differ only for the different

frequency shift) the DGE is sufficient.

2.3.1 The overlapping factor β

Figure 2.9 illustrates how the parameters N , M and 1/T determine the spectral

characteristic of the transmitted signal.

In the case illustrated in Figure 2.9 the subcarrier spacing is given by F = N/MT ,

as previously mentioned, while the bandwidth of every single subcarrier is determined

by the GMC symbol interval T . By resorting to the non-critically sampled filterbanks,
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Figure 2.9: Transmit signal spectrum without subcarriers overlapping

the multicarrier modulation is feasible and ensures total spectral containment within

a subchannel with an excess bandwidth of α = N/M − 1. By letting N → M , the

penalty in bandwidth efficiency becomes vanishingly small (α → 0) at the price of

an increased implementation complexity because the filters with increasingly sharper

spectral roll-off must be realized in order to minimize ICI. Otherwise a certain level

of overlapping between adjacent subcarriers must be tolerated and the level of inter-

carrier interference affecting the transmitted signal will obviously increase as the over-

lapping grows. That situation is depicted instead in Figure 2.10.

Figure 2.10: Transmit signal spectrum with subcarriers overlapping

In order to quantify this effect, we can define a new parameter β as

β
∆
=
N

M
(2.3.7)

called overlapping factor or oversampling factor since it is the ratio between the
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number of samples and the number of QAM symbols carried by every single GMC

symbol. In order to vary the overlapping factor β, it is generally changed the number of

samples per block N while the number of subcarriersM is usually given. Consequently

even the duration of the GMC symbol is changed because T = NTs while the overall

bandwidth remains constant. In fact it is given by BTOT = N
T = N

NTs
= 1/Ts. So the

subcarrier spacing can be expressed as

F =
N

MT
=
β

T
(2.3.8)

Therefore in the spectrum of the transmitted signal, the bandwidth of each sub-

carrier changes whereas the subcarriers spacing is kept constant for each value of β.

This fact can be easily understood looking Figure 2.10.

Thus the overlapping factor is a fundamental parameter because it determines the

degree of the overlapping but also because it is the lattice size of the time/frequency

grid, given by the product TF , that plays a crucial role in the discrete Gabor expan-

sion. In fact, substituting (2.3.8) in the product TF , we obtain

TF = T
N

MT
=
N

M
= β (2.3.9)

2.3.2 OFDM as particular FB polyphase case

Orthogonal Frequency Division Multiplexing (OFDM), the technology at the heart

of digital broadcast television and radio, and also now accepted as the current gener-

ation standard for wireless LAN systems, solves the difficult inter-symbol interference

problem encountered with high data rates across multipath channels. By dividing

the bandwidth into many small orthogonal frequencies (efficiently achievable using

the fast Fourier transform), the data can be transmitted across multiple narrowband

channels, which suffer only from flat fading. We pay that in term of spectral efficiency

caused by the introduction of the so-called cyclic prefix (CP), i.e. some redundancy

in order to contrast ISI and ICI.

The block scheme of a general OFDM system is depicted in Figure 2.11.

In OFDM systems it was assumed that each symbol is transmitted by means of

one rectangular pulse of length T so that the associated spectrum for one subcarrier is

32



2.3. MULTICARRIER SIGNALING WITH FILTERBANK
STRUCTURE

Figure 2.11: OFDM system

a sinc(f) function. The subcarriers are spaced F = 1/T apart so that each subcarrier

is in the zeros of the other subcarriers. This ensures that each bit-substream can be

transmitted (over an ideal channel) without interference from the other subcarriers

[8], i.e. that the subcarriers are orthogonal. So the absence of ICI is true only if

F = N/MT = β/T = 1/T that entails N =M and β = 1.

Therefore, starting from the general form (2.3.4), the transmitted OFDM signal

is

s[k] =
∑

n∈Z

M−1∑

m=0

cm[n]g[k − nM ]ej2πkm/M =

=
1√
M

∑

n∈Z

M−1∑

m=0

cm[n]ej2πkm/M (2.3.10)

where

g[k] =

{
1/
√
M if 0 ≤ k < M

0 otherwise
(2.3.11)

and it is illustrated in Figure 2.12. The analysis and synthesis filter banks reduce

to DFT and IDFT operations (no polyphase filtering) up to a multiplicative constant.

Figure 2.13 shows the spectral subchannel characteristics obtained with an OFDM

system.

If n = 0, i.e. we consider only the first OFDM symbol, we obtain

s[k] =
1√
N

M−1∑

m=0

cm[0]ej2πkm/M (2.3.12)
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Figure 2.12: Prototype pulse for OFDM systems with M=8
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Figure 2.13: Subchannels frequency response for OFDM systems with M=8
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that is the M -point inverse discrete Fourier transform of cm[0], m = 0, . . . ,M −1.

Let now discuss about the reasons why the cyclic prefix is introduced [38]. ISI

arises from the fact that the channel performs a linear convolution of its impulse

response with the time-domain waveform. By this time, the symbols have been mir-

rored, IFFT’d and concatenated. At the intersection of adjacent symbols, the linear

convolution of the signal with the impulse response (whose support Lch is assumed to

be less than the symbol length but greater than unity) overlaps parts of both symbols.

This means that independent symbols affect each other, i.e. one symbol "bleeds" into

another. The addition of a prefix provides a buffer between symbols that prevents

this.

ICI comes from the fact that the carrier frequencies for OFDM lose their orthog-

onality due to the frequency response of the channel. The frequency response of the

channel has the effect of attenuating certain frequencies more than others, so each of

the sincs is changed by a different amount. Since the inner product is a measure of the

similarity of two vectors, two previously "completely dissimilar" sinc functions now

have at least some degree of similarity, i.e they are no longer orthogonal. Without

orthogonal carriers, the FFT cannot exactly recover the correct spectral coefficients.

Cyclic padding solves this problem by turning the linear convolution of the channel

impulse response with the signal into a circular convolution.

The addition of a cyclic prefix to each symbol solves both ISI and ICI. In our

system, we assume the channel impulse response has a known length Lch. The prefix

consists simply of copying the last Lcp = Lch − 1 values from each symbol and ap-

pending them in the same order to the front of the symbol. By having this buffer of

essentially junk data in the front, the convolution of the impulse response with the

signal at the end of a symbol does not affect any of the actual data at the beginning of

the next symbol. In addition, by repeating the last elements at the beginning, the first

real "data" elements of each symbol experience overlap with the "end" of the symbol,

just as in cyclic convolution. This means the linear convolution of the channel impulse

response with the concatenated symbols becomes concatenated cyclic convolutions of

the impulse response with the individual symbols. Since cyclic convolution directly

corresponds to multiplication in the frequency domain, this has great import with

respect to equalization. After the time-domain signal passes through the channel, it

is broken back into the parallel symbols and the prefix is simply discarded.
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The cyclic prefix can so be considered as a kind of guard interval, so that the

part of the received bit where the most ISI occurs is thrown away. This can be

interpreted in the time/frequency plane by saying that we do not use a critical grid,

where TF = 1, but an undercritical one (TF > 1). It is intuitively clear that such a

grid is less sensitive to time dispersion [39], [40].

The introduction of the cyclic prefix of length Lcp gives a constant capacity loss,

since the channel does no longer carry data for short periods of time. As such,

one would like to minimize the length of the cyclic prefix, preferably maintaining

performance. Common wisdom is to choose the cyclic prefix to be of roughly the

same length as the channel (or system) impulse response, thus eliminating ISI and

ICI.

One of the main advantage of filterbank systems is the capability to avoiding the

cyclic prefix, in order to combat ISI and ICI, and the capacity loss. In fact with the

filterbank-based modulation the GMC symbols transmitted can last less than OFDM

symbols with CP, i.e. N < M +Lcp, and in spite of this the interferences are equally

contrasted as the CP-OFDM systems do and any capacity loss appears. We discuss

this aspects in next chapter.

2.3.3 Choice of β

Parameters T , F and β define the spacing of the sampling points of the TF plane

(packing of the various shifts of the atom). Depending on this spacing, three different

operating regions can be identified [41], each of them with different properties that

affect waveform design [6].

Critical region. This region corresponds to a time and frequency spacing with the

property TF = β = 1, i.e. M = N . For this choice of TF sampling, there exist

pulse shapes that result in the set of functions of (2.1.8) and (2.2.3), in the con-

tinuous and discrete time domain respectively, constituting an orthogonal set for

the space of time and bandlimited functions. Conventional multicarrier schemes

(with no cyclic prefix) are actually based on an orthogonal Weyl-Heisenberg set

derived from a rectangular pulse. Unfortunately, there do not exist pulses that

are well localized in time and frequency in the critical region of the TF plane

as established by the Balian-Low theorem [24]. Well localized pulses are prefer-

able as they are more robust to doubly-selective channels compared to pulses
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that are well-localized in frequency but not in time, as in OFDM. Moreover the

Balian-Low theorem shows that in the case of critical sampling, "nice" Gabor

windows do not have "nice" biorthogonal dual windows [42] and performances

can be affected by computational and numerical problems.

Undercritical region. This region corresponds to a time and frequency spacing with

the property β > 1. This sampling corresponds to a more distant placing of con-

secutive shifts of the atom in the time/frequency space. In this case there do not

exist Weyl-Heisenberg sets that span the whole space of time and bandlimited

functions (however, their elements may still be chosen to be orthogonal). This

equivalently means that some portion of the available degrees of freedom is lost

in transmission, i.e., smaller bandwidth utilization. However, one can find pulses

with desirable properties that may outweigh the loss in efficiency. One such no-

table example is the cyclic prefixed OFDM where the original rectangular pulse

is extended appropriately so that the effect of a linear time variant channel can

be easily compensated at the receiver. However, as mentioned above this pulse

choice is susceptible to channel variations. Therefore one can design the pulse

in order to obtain robustness to channel variations [6]. A typical example is

to design well localized pulses in order to reduce energy leakage to neighbour

subcarriers due to time and frequency dispersion introduced by the channel.

Overcritical region. This region corresponds to a time and frequency spacing with

the property β < 1. This sampling corresponds to a tight packing of the various

time-frequency shifts of the atom in the time/frequency space. In this case the

resulting Weyl-Heisenberg set spans the space of time and bandlimited functions,

however, it is always composed of linearly dependent elements (also referred to

as an overcomplete basis). Employing an overcomplete Weyl-Heisenberg set for

data transmission should take into account the fact that loading independent

data onto each elementary pulse will make the data retrieval at the receiver a

singular problem. In fact, mapping M QAM symbols in the N < M samples

of the GMC symbol, will make impossible to recover the data transmitted at

the receiver without adopting coding. Note that the pulse shape can also be

optimized according to the channel conditions.
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2.4 Efficient implementation of FB structure

Now we describe an efficient, fast-Fourier-transform (FFT)-based transmitter and

receiver implementation of filterbank communication systems that employ noncritical

sampling [11]. The general structure is illustrated in Figure 2.14 where the filtering

elements g(i)[n] of the transmitter polyphase filterbank are given by polyphase com-

ponents (with respect to N) of a synthesis prototype filter g[n], while the filtering

elements γ(m)[l] of the receiver polyphase filterbank are given by polyphase compo-

nents (with respect to M) of a analysis prototype filter γ[l].

Figure 2.14: Efficient implementation of the polyphase filterbank system

At time kT/N , the signal input to the channel is given by (2.3.4)

s

(
k
T

N

)
=
∑

n∈Z

M−1∑

m=0

cm,ng

[
k
T

N
− nT

]
ej2πm(N/MT )k(T/N) (2.4.1)

With the change of variables k = lM + i with i = 0, . . . ,M − 1, we get

s

(
lM

T

N
+ i

T

N

)
=

∑

n∈Z

M−1∑

m=0

cm,ng

(
lM

T

N
+ i

T

N
− nT

)
ej2πm(N/MT )i(T/N) =

=
∑

n∈Z

Ci,ng

(
lM

T

N
+ i

T

N
− nT

)
(2.4.2)

where

Ci[n]
∆
=

M−1∑

m=0

cm,ne
j2πmi/M (2.4.3)
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Clearly, Ci[n], i = 0, . . . ,M − 1 are obtained from cm,n, via an inverse discrete

Fourier transform (IDFT). Furthermore, by adopting the general expression for signal

interpolation where a "filter index" q = ⌊(lM + i)/N⌋ − n, a "basepoint index"

ηl,i = ⌊(lM + i)/N⌋, and a "fractional index" νl,i = ⌊(lM + i)/N⌋−ηl,i are introduced

[43], the transmit signal can be expressed as

s

(
lM

T

N
+ i

T

N

)
=

∞∑

q=−∞

Ci [ηl,i − q] g [(νl,i + q)T ] =

=

∞∑

q=−∞

Ci [ηl,i − q] g(νl,iN)(qT ) (2.4.4)

with i = 0, . . . ,M − 1

where 0 ≤ νl,i < 1 and νl,iN = (lM + i) mod N . Hence, it can be found that the

transmit signal at time kT/N is computed by convolving the signal samples stored

in the (k mod M)th delay line at the IDFT output with the (k mod N)th polyphase

component (with respect to N) of the prototype filter. In other words, the inte-

ger number νl,iN provides the address of the polyphase component that needs to be

applied at the (k mod N)th output of the IDFT to generate the transmitted signal

s(kT/N). Therefore, each element of the IDFT output frame is filtered by a peri-

odically time-varying filter with period equal to [lcm(M,N)]T/N , where [lcm(M,N)]

denotes the least common multiple ofM andN . This transmitter structure is depicted

in Figure 2.15.

For a critically sampled system with N = M , the efficient realization shown in

Figure 2.15 becomes equivalent to that obtained in Figure 2.7 [35]. In that case each

element of the IDFT output frame is processed by a filter that is no longer periodically

time varying.

We now turn to the efficient implementation of the filterbank demodulator, where

it has been assumed for the received signals the same sampling rate as for the transmit

signals. The received signal is, thus, denoted by x(kT/N) and the filtering elements on

theM branches are given by polyphase components (with respect toM) of a prototype

filter γ(kT/N) with T/N -spaced coefficients, defined as γ(m)[l] = γ(m)[(MT/N)l] =

γ[(lM +m)T/N ], m = 0, . . . ,M − 1, as illustrated in Figure 2.14. The ith output

signal of the filterbank demodulator at time n′T is given by
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Figure 2.15: Efficient implementation of the polyphase filterbank modulator

ĉi
(
n′T

)
=

∞∑

k=−∞

x

(
k
T

N

)
γ

[
(n′N − k)

T

N

]
e−j2πi(N/MT )k(T/N) (2.4.5)

Letting k = lM +m with m = 0, . . . ,M − 1, we obtain

ĉi
(
n′T

)
=

M−1∑

m=0

∞∑

l=−∞

x

[
(lM +m)

T

N

]
γ

[
(n′N − lM −m)

T

N

]
e−j2πim/M (2.4.6)

which can be expressed as

ĉi
(
n′T

)
=

M−1∑

m=0

um
(
n′T

)
e−j2πim/M (2.4.7)

where

um
(
n′T

) ∆
=

∞∑

l=−∞

x

[
(lM +m)

T

N

]
γ

[
(n′N − lM −m)

T

N

]
(2.4.8)
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Clearly, ĉi(n
′T ) with i = 0, . . . ,M − 1 , are obtained from um(n′T ) with m =

0, . . . ,M − 1, via a discrete Fourier transform (DFT). Furthermore, if we define the

polyphase components (with respect to M) of the received signal as x(m)[l(MT/N)] =

x[(lM + m)T/N ], m = 0, . . . ,M − 1 and introduce a "filter index" q′ = ⌊(n′N −
m)/M⌋ − l, a "basepoint index" η′n′,m = ⌊(n′N −m)/M⌋, and a "fractional index"

ν ′n′,m = ⌊(n′N −m)/M⌋ − η′n′,m, we obtain

um
(
n′T

) ∆
=

∞∑

q′=−∞

x(m)

[
(η′n′,m − q′)

MT

N

]
γ(ν

′
n′,mM)

[
q′
MT

N

]
(2.4.9)

In general, a new DFT output frame at time kT/N is obtained by the following

method (see Figure 2.16): the commutator is circularly rotated N steps from its

position at time (n′− 1)/T , allowing a set N of consecutive received signals x(kT/N)

to be input into the M delay lines. The content of each delay line is then convolved

with a polyphase component (with respect to M) of the receive prototype filter. The

integer number ν ′n′,mM provides the address of the polyphase component that needs

to be applied at the mth branch. The resulting signals are then input to the DFT to

finally yield the signals ĉi(n
′T ), i = 0, . . . ,M − 1. Note that the DFT output frames

are obtained at the rate of 1/T .

Figure 2.16: Efficient implementation of the polyphase filterbank demodulator
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We consider in this work linear-phase FIR prototype pulses of length L = N ·N (Tx)
f

(i.e., g[k] = 0 for k < 0 and k > L − 1). Hence, at the transmitter, each of the N

polyphase filter components has N
(Tx)
f coefficients, while at the receiver each of the

M polyphase filter components has N
(Rx)
f coefficients. So

L = N ·N (Tx)
f =M · β ·N (Tx)

f =M ·N (Rx)
f (2.4.10)

and

N
(Rx)
f = β ·N (Tx)

f (2.4.11)

Moreover N
(Tx)
f , N

(Rx)
f represent respectively the number of points in the time/fre-

quency grid along the time axis and the number of samples in the TF grid between two

adjacent atoms in the frequency domain. In general, greater values of N
(Tx)
f , N

(Rx)
f

allow a better approximation of pulses with transfer function that exhibit sharp spec-

tral roll-off (and so impulse responses longer in time domain) and high attenuation

of out-of-band energy, but lead to an increase in system latency. The choice of proto-

type filter allows various trade-offs between number of subchannels, level of spectral

containment, signal latency, transmission efficiency, and system complexity.

2.5 Finding the dual prototype pulse

In literature many algorithms have been proposed with the intent to find the dual

analysis window γ[k] for a given synthesis prototype pulse g[k]. In order to verify

the duality property, i.e. the biorthogonality between the synthesis and the analysis

prototype pulses, (2.2.5) should hold true. Unfortunately we work in the critical or

undercritical region, i.e. with β ≥ 1. Hence, the biorthogonality cannot perfectly be

verified but only partially, as mentioned previously in Section 2.3.3.

Now we discuss the mathematical procedure to find dual pulse and then we present

a fast-version algorithm that simplifies and speeds up the calculation of the synthesis

window introduced for the first time by Pritz in [42].

Since the detailed derivation has appeared elsewhere [44], only the final formulas

will be reviewed here. For a given synthesis window g[k] with length L, the discrete
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Gabor transform (2.5.1), and the discrete Gabor expansion (2.5.2), of the discrete-time

signal s[k] are defined in the same way as before as

cm,n =

∞∑

k=0

s[k]γ∗[k − nN ]e−j2πmk/M (2.5.1)

s[k] =
M−1∑

m=0

∞∑

n=−( L
N
−1)

cm,ng[k − nN ]ej2πmk/M (2.5.2)

where L
N = N

(Tx)
f (see 2.4.10). In all this work the synthesis window g[k] is

assumed to be normalized and it has unit energy. If the length of the analysis window

γ[k] is defined to be L, then γ[k] is a solution of a linear system given by

L−1∑

k=0

ḡ[k + nM ]e−j2πmk/Nγ∗[k] = δnδm (2.5.3)

where ḡ[k] is a periodic sequence constructed by the synthesis window g[k] with

zero-padding, i.e.

ḡ[k] =

{
g[k] 0 ≤ k < L

0 L ≤ k < 2L−M
(2.5.4)

For the sake of simplicity, (2.5.3) often is written in the matrix form

Gq×L γ̄
∗ = µ̄ (2.5.5)

where

µ̄ =
[
1 0 0 · · · 0

]T
(2.5.6)

where the number of rows q = N(2LM − 1). The matrix G is constructed by

GnN+m,k = ḡ[k + nM ]e−j2πmk/N (2.5.7)

with 0 ≤ n < 2L
M − 1, 0 ≤ m < N , 0 ≤ k < L
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From elementary matrix analysis, the existence of solution of (2.5.5) depends on

whether the vector µ̄ belongs to the range of the matrix G, that is the span of columns

of the matrix G. If so, and the rank of G is less than the number of columns, the

system described by (2.5.5) could have an infinite number of solutions. In this case,

it has been suggested finding the analysis window that is most similar to the given

synthesis window, in the sense of least square error (LSE) and it has been called the

"canonical" dual pulse:

Γ = min
γ̄:Gγ̄∗=µ̄

∥∥∥∥
γ[k]

‖γ[k]‖ − g[k]

∥∥∥∥
2

(2.5.8)

where g[k] is normalized. When γ[k] is closer to g[k], the Gabor expansion has

a form similar to an orthonormal representation though the elementary functions

gm,n[k] even are not linear independent, i.e.

s[k] ≈ α
∞∑

n=−( L
N
−1)

M−1∑
m=0

{
∞∑
i=0

s[i]g∗m,n[i]

}
gm,n[k] (2.5.9)

α = ‖γ[k]‖

In this case, the Gabor coefficient could be considered as the measure of similarity

between the sequence s[k] and the individual elementary function gm,n[k]. Conse-

quently, Gabor coefficients well reflect signal local behaviours as long as the synthesis

window g[k] is well-localized. The resulting expansion was named the orthogonal-like

discrete Gabor expansion [45]. If the matrix has a full row rank, the solution of (2.5.8)

is

γ̄∗ = GT
(
GGT

)−1
µ̄ (2.5.10)

Digressing the above subject, it has pointed out that a main topic in implementing

the Gabor expansion is to have both the synthesis function and the Gabor coefficients

localized. The Zak transform approach [46] presents many interesting features, but
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generally it is not known to what extent the resulting coefficients represent the ana-

lyzed signal. cm,n evaluated by the iteration approach originally proposed by Gabor

may also lead to the orthogonal-like representation (if the initial window is properly

selected), but the convergence of the iteration is not always guaranteed [47].

In real applications, the synthesis window matrix G is not always of full row rank.

In some applications one may intentionally seek γ[k] that differs from g[k]. A more

general method to find the biorthogonal analysis window function is discussed in [45]

2.5.1 Efficient algorithm to find biorthogonal pulses

In the following sections, we discuss a different method to determine the dual

window γ[k] from a given pulse g[k]. It has been shown that the computational effort

of such algorithm mainly depends on the structure and size of the sampling set G.

We assume that G has full rank and that the synthesis window g[k] is considered to

be L-periodic2, i.e., if the index exceeds N , the vector is defined as g[k] = g[k + L]

for all n ∈ Z. This algorithm was proposed for the first time by Pritz in [42].

In this section we have to define two new operator: the time shift operator Tn,

n ∈ Z and the frequency shift operator Mm, m ∈ Z, defined as

Tn(x) = Tn(x[0], . . . , x[L− 1])

, [x[n], x[n + 1], . . . , x[L+ n− 1]] (2.5.11)

Mn(x) ,
[
x[0], x[1]ej2πm/L, . . . , x[L− 1]ej2πm(L−1)/L

]
(2.5.12)

With this notation our synthesis matrix G becomes

2Note that in this case the starting prototype pulse g[k] is no zero-padded unlike previous math-

ematical procedure.

45



CHAPTER 2. THE FILTERBANK MULTICARRIER SYSTEMS

G =




Mm0Tn0g

Mm1Tn1g
...

Mmq−1Tnq−1g




(2.5.13)

(2.5.14)

m ∈ {0, N (Rx)
f , 2N

(Rx)
f , . . . , L−N

(Rx)
f }

n ∈ {0, N, 2N, . . . , L−N}

where q is the number of sampling points on the time/frequency grid and it is

defined as q =M ·N (Tx)
f . Let F be the Fourier matrix of size (M ×M), i.e. Fm,n =

e−j2πmn/M . The (q × q) matrix F is defined as

F =




F 0 · · · 0

0 F . . .
...

...
. . .

. . . 0

0 . . . 0 F




(2.5.15)

Let the matrix B be defined as B = FG, and GM denotes a (M × L) matrix

containing the first M rows of G. Since the matrix F is block diagonal (with blocksize

M), we examine the first M rows of B separately:

Bm,n =
{
FGM

}
m,n

for m = 0, . . . ,M − 1

=
M−1∑

i=0

e−j2πinMej2πimMg[m] =

=

M−1∑

i=0

ej2πi(m−n)Mg[m] =

=

{
Mg[m] if (m− n) is a divisor of M

0 otherwise
(2.5.16)

The next M rows of B differ from the first ones in the way that only the non-

vanishing values are different. Here, the mth entry of Bm,n is not just Mg[m], but
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the index m is decreased by N , which is the time-shift gap. This leads to the general

result for the matrix B:

Bm,n =

{
Mg

[
m−N

⌊
n
M

⌋]
if (m− n) is a divisor of M

0 otherwise
(2.5.17)

where
⌊

n
M

⌋
denotes the greatest integer not greater than n/M . More precisely, B

looks as in (2.5.18).

B =M




g[0] 0 · · · 0 g[M ] 0 · · · g[L−M ]

0 g[1]
. . .

... 0 g[M + 1]
...

. . .
. . . 0

...

0 · · · 0 g[M − 1] 0

g[L−N ] 0 · · · 0 g[M −N ]

0 g[M −N + 1]
...

. . .

g[N ] g[N −M ]




(2.5.18)

To make use of the sparse structure of B, we need two permutation matrices: Pr is a

(q × q) matrix that rearranges the rows of a (q × ·) matrix in the following order3:

Pr {0, 1, . . . , q − 1} →{
0, N

(Tx)
f , 2N

(Tx)
f , . . . , (M − 1)N

(Tx)
f , 1, N

(Tx)
f + 1, . . . , N

(Tx)
f M

} (2.5.19)

and Pc, is a (L×L) matrix that rearranges the columns of a (·×L) matrix in the following

order:

Pc {0, 1, . . . , L− 1} →{
0,M, 2M, . . . , (N

(Rx)
f − 1)M, 1,M + 1, . . . , L−N

(Rx)
f − 1, L− 1

} (2.5.20)

Multiplying the matrix B from the left and the right side by Pr, and Pc, rearranges the

rows and columns and results in a blockdiagonal matrix W

3The meaning of (2.5.19) is the following: row #0 becomes row #0, row #N
(Tx)
f becomes row

#1, row #2N
(Tx)
f becomes row #2, ... etc.
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W = PrBPc = PrFGPc =




W0 0 · · · 0

0 W1
. . .

...
...

. . .
. . . 0

0 . . . 0 WM−1




(2.5.21)

where

Wi =M




g[i] g[i+M ] · · · g[i+ L−M ]

g[i−N ] g[i+M −N ] · · · g[i+ L−M −N ]
...

...

g[i− (L−N)] g[i− (L−N) +M ] · · · g[i+N −M ]




(2.5.22)

Now we use the two following matrix properties:

Lemma 1 If Q is an unitary matrix, then the following formula holds true for every matrix

A4:

(AQ)† = QHA† (2.5.23)

Lemma 2 If W is a blockdiagonal matrix, then the pseudoinverse W† is also blockdiagonal

in the following way:

W† =




W1 0 · · · 0

0 W2
. . .

...
...

. . .
. . . 0

0 · · · 0 Wn




†

=




W1
† 0 · · · 0

0 W2
† . . .

...
...

. . .
. . . 0

0 · · · 0 Wn
†




(2.5.24)

4
A

† denotes the pseudoinverse of matrix A

48



2.5. FINDING THE DUAL PROTOTYPE PULSE

For a proof of these two lemmata, see, e.g., [48]. Since the matrices Pr, Pc, and F are

unitary and W is block diagonal, the pseudoinverse of G, is easily calculated:

W = PrFGPc

m
G = FHPH

r WPH
c

m
G† = PcW

†FPr (2.5.25)

Substituting the window function g in (2.5.25) by the dual window function γ[k] gives

Γ = FHPH
r W̃PH

c (2.5.26)

where W̃ is similar to W in (2.5.21) and (2.5.22), replacing the g[k] by γ[k]. Now we

exploit the following theorem discussed and proofed in [49] and [50].

Theorem 1 Let G, be a Gabor frame matrix defined as in (2.5.13); then, there is a so-called

dual Gabor frame matrix Γ satisfying

x = x ΓHG for all x ∈ C
L (2.5.27)

which is of the same structure as G, i.e. Γ = {MmTnγ}m,n

From Theorem 1, it is easy entails that G† = ΓH , which implies that

ΓH = PcW̃
HPrF = PcW

†PrF = G†

⇒ W̃H = W† (2.5.28)

The calculation of the dual Gabor window is thus reduced to the calculation of the

pseudoinverse of the blockdiagonal matrix W. This is, according to Lemma 2, the calculation

of the pseudoinverses of M matrices of size (N (Tx)
f ×N

(Rx)
f ). Equation (2.5.22) shows that

every element of the matrix Wi, uniquely determines one element of the vector g[k]. Theorem

1 and (2.5.28) lead to the fact that every element of γ[k] is uniquely represented by a matrix

W
†
i (for some i). Therefore, the number of matrices Wi for which we have to calculate the
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pseudoinverse depends on the number of different matrices Wi necessary to represent each

element of the window function g[k] at least once. The following proposition shows that this

number is given by the greatest common divisor of (N ,M).

Proposition 1 Let W0,W1, . . . ,W(N
(Rx)
f − l) be the family of matrices as defined in (2.5.22).

The minimal number of Wi, required to recover the window g[k] is given by the greatest com-

mon divisor (gcd) of (N ,M).

Proof: According to (2.5.22), each element of the matrix Wi, can be represented in the

following way:

Wi(n,m) = g[i+mM − nN ] (2.5.29)

where (n,m) denotes the row-column position. It has been shown how many different

indices (i +mM − nN) of g[k] in the Wi, are possible for given L, N , N (Rx)
f . Since g[k] is

L-periodic (or finite), any index i equals an index q if q = i + dL for some d ∈ Z. In our

notation, we will write q =L i. Let c be the greatest common divisor of (N ,M). Then

g[i+m1M − n1N ] = g[i+m2M − n2N ]

⇒ i+m1M − n1N =L i+m2M − n2N

⇒ (n1 − n2) =L (m1 −m2)
M
c

/
N
c

(2.5.30)

This leads to the fact that (m1 −m2) is a multiple of N
c , and (n1 − n2) is a multiple of

M
c . Hence, there are m = N

c columns (or m = M
c rows), where each two elements out of

these columns (or rows) are pointwise different, i.e.,

Wi(n1,m1) 6= Wi(n2,m2)

for all n1, n2 ∈ {0, 1, . . . , N (Tx)
f } if |m1 −m2| ≤

N

c
,

Wi(n1,m1) 6= Wi(n2,m2)

for all m1,m2 ∈ {0, 1, . . . , N (Rx)
f } if |n1 − n2| ≤

M

c
.

If the size of Wi, is greater or equal to (Mc × N
c ), i.e.

L

N
≥ M

c
and N

(Rx)
f ≥ N

c
(2.5.31)

every matrix Wi, contains L
N

N
c = N

(Rx)
f

M
c = L

c mutual different elements. Hence,

we need c matrices to represent an L-dimensional vector. Finally, it has been shown that

inequality (2.5.31) always holds true:
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L

N
≥ N

c
⇒ Lc ≥MN

L

M
= N

(Rx)
f ≥ N

c
⇒ Lc ≥MN

L ≥ M
c N (2.5.32)

If
∏

q∈Q pq is the prime factorization of L, then N and M
c can be uniquely represented

by a product of these pq’s. Since N and M
c are relative prime, no prime number pq can be a

part of the prime factorization of N and M
c . This proves inequality (2.5.32).

Summing up, the calculation of the dual Gabor window can be obtained by calculating

the pseudoinverses of gcd(N,M) matrices of size (N (Tx)
f ×N

(Rx)
f ).

At the end of the algorithm, the dual prototype pulse is normalized in order to be with unit

energy because the filtering have to be passive. That normalization will entail an attenuation

of the demodulated signal (the energy of the not-normalized dual pulse is usually greater

than 1) and consequently a decrease of the signal-to-noise ratio because the noise does not

experience this attenuation. This behavior is equivalent to the increase of the noise power

caused by the not-normalized analysis filterbank in the receiver. In fact in this case the

not-unit energy of the dual pulse amplifies the noise increasing its power and decreasing the

signal-to-noise ratio.

Finally the algorithm scheme is exposed in Table 2.2. Note that in the algorithm is

present a check in order to guarantee that N (Rx)
f , N (Tx)

f are natural numbers, otherwise the

algorithm cannot work. If the check failed, the algorithm exits and the parameters M ,N or

the length of synthesis prototype window g[k] must be changed.

2.6 Prototype pulses

The pulse shape g[k] is of critical importance in every linear modulation scheme. It

has a major impact on essential properties of the transmitted signal such as bandwidth and

complexity of signal construction but also affects overall system performance (robustness to

channel impairments, ISI and ICI level, timing errors, etc.) [51]. Designing an appropriate

pulse is therefore a crucial procedure for every successful communication scheme. However, al-

though transmitted signal properties can be easily accomplished by a variety of pulse shapes,

designing a pulse shape that allows for good performance under a wide range of channel

conditions is a difficult (if not impossible) task. The typical example is the pulse employed

by OFDM. It is well known that OFDM employs a long rectangular pulse (possibly slightly

smoothed for spectral sidelobe reduction). This type of pulse is actually optimal for trans-

mission under a channel with large delay spread. Ideally, the pulse length is large enough so
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EFFICIENT ALGORITHM

Input : g[k],M ,N

Output : γ[k]

1. Set L = length(g[k]);

2. Compute N
(Tx)
f = L

N ;

3. Compute N
(Rx)
f = L

M ;

4. If N
(Rx)
f , N

(Tx)
f /∈ N, then Exit;

5. For i = 0 to (gcd(N,M) − 1);

6. For n = 0 to (N
(Tx)
f − 1);

7. For m = 0 to (N
(Rx)
f − 1);

8. Set W(n,m) = g[i+mM − nN ];

9. end;

10. end;

11. Compute W̃ = 1
M

(
W†

)H
;

12. For n = 0 to (N
(Tx)
f − 1);

13. For m = 0 to (N
(Rx)
f − 1);

14. Set γ[i+mM − nN ] equal to W̃(n,m);

15. end;

16. end;

17. end;

18. Normalize γ[k];

Table 2.2: Efficient algorithm to calculate the dual Gabor window
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that ISI is negligible. However, when the channel is varying during the pulse duration, or

there are nonlinearities present in transmission, e.g., phase noise, OFDM waveform severely

suffers from increased ISI/ICI [32], [33]. A robust pulse shape that would allow for acceptable

performance in a larger range of channel dynamics is certainly desirable.

In this section we talk about the performance with three different type of pulses:

• Root Raised Cosine pulse

• Gaussian pulse

• Hermite pulse

For each one of these pulses, it will be shown how the pulse shape and the performance can

change for the different values of the particular parameter chosen and the relative biorthogonal

pulse5. In the last subsection we will briefly discuss about optimization techniques in order

to minimize some objective functions and hence improve the performances.

2.6.1 Root raised cosine pulse

The raised cosine (RC) [52] filter is a filter frequently used for pulse-shaping in digital

modulation due to its ability to minimize inter-symbol interference (ISI). Its name stems from

the fact that the non-zero portion of the frequency spectrum of its simplest form (α = 1) is a

cosine function, ’raised’ up to sit above the f axis. The root raise cosine (RRC) is simply the

square root (in frequency domain) of the raised cosine pulse. Hence we start our discussion

talking about this last pulse.

The raised cosine filter is an implementation of a low-pass Nyquist filter, i.e., one that

has the property of vestigial symmetry. This means that its spectrum exhibits odd symmetry

about 1
2T , where T is the symbol period of the communications system.

Its frequency-domain description is a piecewise function, given by

Grc(f) =





T, |f | ≤ 1−α
2T

T
2

[
1 + cos

(
πT
α

[
|f | − 1−α

2T

])]
, 1−α

2T < |f | ≤ 1+α
2T

0, otherwise

0 ≤ α ≤ 1 (2.6.1)

and characterized by two values α, the roll-off factor, and T , the reciprocal of the symbol

rate. As mentioned before, the description in frequency domain of the root raised cosine pulse

is the square root of the frequency response of the raised cosine filter [53], i.e.

GRC(f) = GRRC(f) ·GRRC(f) (2.6.2)

5All analysis prototype pulses are found with fast algorithm described in Section 2.5.1.
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or, equivalently,

|GRRC(f)| =
√

|GRC(f)| (2.6.3)

The impulse response of raised cosine filter is given by

g(t) = sinc

(
t

T

)
cos
(
παt
T

)

1− 4α2t2

T 2

(2.6.4)

in terms of the normalized sinc function. The impulse response of root raised cosine filter

instead is

g(t) =





1− α+ 4
α

π
, t = 0

α√
2

[(
1 +

2

π

)
sin
( π
4α

)
+

(
1− 2

π

)
cos
( π
4α

)]
, t = ± T

4α

sin

[
π
t

T
(1− α)

]
+ 4α

t

T
cos

[
π
t

T
(1 + α)

]

π
t

T

[
1−

(
4α

t

T

)2
] , otherwise

(2.6.5)

The roll-off factor, α, is a measure of the excess bandwidth of the filter, i.e. the bandwidth

occupied beyond the Nyquist bandwidth of 1
2T . If we denote the excess bandwidth as ∆f ,

then:

α =
∆f(
1
2T

) =
∆f

R/2
= 2T∆f (2.6.6)

where R = 1
T is the symbol-rate.

Figure 2.18 shows the amplitude frequency response when the roll-off factor α is between

0.1 and 0.5, while their relative impulse responses6 are depicted in Figure 2.17. As we can

see, the time-domain ripple level increases as α decreases.

This shows that the excess bandwidth of the filter can be reduced, but only at the

expense of an elongated impulse response. The overall bandwidth of a raised cosine filter is

most commonly defined as the width of the non-zero portion of its spectrum, i.e.:

B =
1 + α

T
(2.6.7)

6Remember that all the prototype pulses are normalized, i.e. they have unit energy.
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Figure 2.17: Root raised cosine pulses in time domain for different α values
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Figure 2.18: Amplitude of root raised cosine pulses in frequency domain for different α

values
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As α approaches 0, the roll-off zone becomes infinitesimally narrow, hence limα→0G(f) =

rect(fT ), where rect(·) is the rectangular function, so the impulse response approaches

sinc
(

t
T

)
. Hence, it converges to an ideal rectangular filter in this case. When α = 1, the

non-zero portion of the spectrum is a pure raised cosine.

In an ideal RRC filter, there should not be any ripple in the amplitude frequency response

while the pulses depicted in Figure 2.18 show some ripple due to the truncation of the impulse

responses in time domain. In fact, these frequency response have been compute by FFT of

RRC pulses lasting 16T , i.e. N (Tx)
f = 16.

Obviously the main feature that make RRC pulses desirable is the limited bandwidth

that make ICI weaker than other pulses. We can even guarantee the absence of interference

between adjacent subcarriers if we impose no overlapping. Under this constraint, the subcar-

riers spacing, i.e. β
T , must be greater than subcarriers bandwidth 1+α

T , thus the ICI-absence

constraint become

β ≥ α+ 1 (2.6.8)

The partially frequency response of two transmitted signal are illustrated in Figure 2.19.

They are obtained with two different β values with the same roll-off factor. The other

parameters are set to M = 64, N (Tx)
f = 16, Ts = 50 nsec and α = 0.25. In 2.19(b) β =

1+α = 1.25 and we obtain no overlapping among the subcarriers, while in 2.19(a) we choose

β = 1 (critical sampling) and the overlapping is maximum.
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Figure 2.19: Amplitude of frequency response for different β values

From a biorthogonal point of view, if there is no overlapping, then the analysis prototype

pulse becomes equal to the synthesis one. The synthesis and relative analysis pulse for four

different β values are depicted in Figure 2.20. It can be notice that when β = 1, we have
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many spikes in the dual pulse, caused by the critical sampling.
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Figure 2.20: RRC synthesis and analysis prototype pulse for different β values

Now we can show how perfect biorthogonality is not achieved for β ≥ 1. According to

(2.2.7), the biorthogonality property can be represented by a matrix RBIO where row and

column indices are the k an k′ indices of the left-hand side of the expression (2.2.7). If (2.2.7)

holds true then the matrix must be an identity matrix IL of size (L × L) according to the

right-hand side of the expression (2.2.7). In Figure 2.21 the biorthogonality matrices are

shown for the same four β values used previously in Figure 2.207.

We can observe that the biorthogonality matrix RBIO is very similarly to the identity

matrix only for critical sampling even if there are small spikes out of the diagonal caused by

the not-so-perfect biorthogonalization of the synthesis window. This effect increases with the

growth of β. The dual window and the biorthogonality matrix for a value of β smaller than

1, i.e. β = 0.875, are depicted in Figure 2.22. In this case the biorthogonality is fully checked

7The matrices depict in this thesis have the element (0, 0) in the bottom left corner.
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Figure 2.21: Biorthogonality matrices for different β values with RRC pulses
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and the matrix is almost8 equal to the identity matrix but we cannot transmit any data.
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Figure 2.22: Synthesis and analysis pulse and biorthogonality matrix for β = 0.875

The BER and MSE values of a 4-QAM mapping employing different β values are shown

in Table 2.3. These values have been obtained under ideal channel conditions, i.e. with no

fading and no noise. The other system parameters are M = 64, N (Tx)
f = 16, Ts = 50 ns and

α = 0.25.

β Biorthogonality (%) BER MSE

0.500 99.5692 0.493307 0.103174

0.750 99.7203 0.495805 0.102357

0.875 99.7456 0.493988 0.116789

1.000 99.5101 1.11898e-05 0.0586892

1.125 88.6939 0 3.86745e-05

1.250 79.8482 0 1.36359e-05

1.500 66.5717 0 2.65725e-06

1.750 57.0786 0 1.89101e-06

2.000 49.9539 0 1.70430e-06

Table 2.3: Performances with ideal channel for different values of β

As expected, for β < 1, the data transmission is impossible and the BER is always about

1/2, while, when β > 1, we have no errors. Only for critical sampling (β = 1) we have some

errors caused by the dual window (see Figure 2.20(a)) that, as mentioned in previous chapter,

8The "almost" is due to the pulse truncation in time domain.
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is not so "nice", i.e. it presents many spikes that worsen the performances. This effect is

vanishing as the number of subcarriers grows and the prototype pulse is sampled thickly. The

"Biorthogonality" parameter is calculated as

Biorthogonality (%) =
1

L2

L−1∑

k=0

L−1∑

k′=1

∣∣∣{IL −RBIO}k,k′

∣∣∣
2

· 100 (2.6.9)

where {A}m,n denotes the element of mth row and nth column of matrix A. This param-

eter represents the mean square error between the identity matrix IL and the biorthogonality

matrix RBIO. It can be notice from the table 2.3 that the biorthogonality is almost perfect

for β ≤ 1, while it decreases as the overlapping factor β increases. This is in keeping with

what we have seen in Figure 2.21. In spite of this growing lack of biorthogonality, the BER

still be equal to zero.

In order to choose the better value of the roll-off factor α we can make reference to

the curves in Figure 2.23. These curves have been obtained with an AWGN channel for

Eb/N0 = 10dB. When α is chosen, such that β > 1 + α, we have better performances

because we have no overlapping among the subcarriers. However this good performances are

limited by the truncation of the prototype pulse. In fact, the number of errors caused by

truncation increases as the roll-off factor decreases. We can avoid this phenomenon choosing

a prototype pulses longer than before. This entails an increase of the system complexity.

When the α value increases, the BER raises because of the normalization of the dual pulse.

In fact, the energy of the not-normalized dual pulses grows as α increases. Hence the data

signal suffers an attenuation as stronger as the roll-off factor increases.

2.6.2 Gaussian pulse

The FIR Gaussian pulse-shaping filter design is done by truncating a sampled version of

the continuous-time impulse response of the Gaussian filter which is given by:

g(t) =

√
π

α
e−

π2t2

α2 (2.6.10)

The parameter α is related to 3dB bandwidth-symbol time product (B ·T ) of the Gaussian

filter as given by:

α =
1

BT

√
log 2

2
(2.6.11)

There are two approximation errors in the design: a truncation error and a sampling

error. The truncation error is due to a finite-time (FIR) approximation of the theoretically
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Figure 2.23: BER curves with RRC pulse for different β values in function of roll-off

factor α

infinite impulse response9 of the ideal Gaussian filter. The sampling error (aliasing) is due to

the fact that a Gaussian frequency response is not really band-limited in a strict sense (i.e.

the energy of the Gaussian signal beyond a certain frequency is not exactly zero). This can

be noted looking at the transfer function of the continuous-time Gaussian filter (that is still

a Gaussian function), which is given as below:

G(f) = e−α2f2

As f increases, the frequency response tends to zero, but never is exactly zero, which

means that it cannot be sampled without some aliasing occurring.

Hence the main parameter of these pulses is BT that determines his behaviour in time

and frequency domain. As we can see in Figure 2.24, when BT increases his value, then the

function decays quicker and the truncation error can be neglected. The respective amplitude

frequency response of the curves illustrated in Figure 2.24, are depicted in Figure 2.25. Ob-

viously they have the opposite trend than in time domain, i.e. the spectra decays quicker

when BT is smaller.

From a time/frequency point of view, we have to choose an optimal value for BT given

9Even the RRC and Hermite pulses suffer this approximation.
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Figure 2.24: Gaussian pulses in time domain for different BT values
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Figure 2.25: Gaussian pulses in frequency domain for different BT values
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by the trade-off of ICI and ISI level. In fact the greatest BT values generate narrow pulses

in time domain (small ISI) and large spectra (great ICI), while the smallest BT values entail

pulses narrow in frequency domain (small ICI) but large in time domain (great ISI). Moreover

this trade-off is affected by β value. A first advantage of the Gaussian pulses against the RRC

ones is the smallest extension of pulses in time domain because of its rapidly decay. In fact

the curves in Figure 2.24 go from −2T to 2T while for the RRC pulse time axis goes from

−8T to 8T and it entails that with the Gaussian pulses N (Tx)
f can be choose smaller than

the RRC pulses, i.e. the filters are shorter in the filterbank modulator and demodulator.

A second advantage is the good localization of the base functions in the sense of a small

dispersion, i.e. the product of frequency dispersion ∆W and time dispersion ∆T , necessary

to avoid that the symbol energy "smears out" over the dispersive channel. In general the

dispersion product is lower bounded by the uncertainty principle:

∆W∆T ≥ 1

4π
(2.6.12)

which is satisfied with equality just only for the Gaussian pulse.
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Figure 2.26: Amplitude of frequency response for different BT values with β = 1.125

The partial amplitude frequency response of two transmitted signals are illustrated in

Figure 2.26. They have been obtained using two different BT values for a given β. The other

parameters are set to M = 64, N (Tx)
f = 4 and Ts = 50 ns. We will now repeat the same

biorthogonality analysis made for the RRC pulse. Let see first the dual windows with various

β values and BT = 0.5 in Figure 2.27. Even for the Gaussian pulse some spikes appear at

critical sampling. The relative biorthogonality matrices are illustrated in Figure 2.28.

In confirmation of perfect biorthogonality when β < 1 we show the dual window of a

Gaussian pulse and their biorthogonality matrix when β = 0.875 in Figure 2.29.
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Figure 2.27: Gaussian synthesis and analysis prototype pulse for different β values
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Figure 2.28: Biorthogonality matrices for different β values with Gaussian pulses
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Figure 2.29: Synthesis and analysis pulse and biorthogonality matrix for β = 0.875

Some atoms on the time/frequency grid for different values of β and BT are depicted in

Figure 2.30 in order to show how these two parameters affect the transmitted signal on the

TF grid. The other parameters are set to M = 64, N (Tx)
f = 8 and Ts = 50 ns. The atoms

depicted in the figure are the first three in time (n = 0, 1, 2) and the subcarriers m = 7, 8, 9

in frequency domain.

The BER and MSE results obtained for 4-QAM mapping with different β values are

shown in Table 2.4. The channel is assumed ideal such as we have previously made for the

RRC pulse. The other system parameters are M = 256, N (Tx)
f = 8, Ts = 50 ns and BT = 1.

β Biorthogonality (%) BER MSE

0.500 100.0000 0.492908 0.734708

0.750 100.0000 0.494303 0.852269

0.875 100.0000 0.498421 0.908879

1.000 99.0723 0 0.010150

1.125 88.8889 0 1.53349e-21

1.250 80.0000 0 1.83885e-21

1.500 66.6667 0 2.66238e-21

1.750 57.1429 0 3.71179e-21

2.000 50.0000 0 4.91300e-21

Table 2.4: Performances with ideal channel for different values of β

As for the RRC pulse, when β < 1, the data transmission is impossible and the BER is

always about 1/2, while, when β > 1, we have no errors. For critical sampling (β = 1) we
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Figure 2.30: Gaussian atoms on TF grid for different β and BT values
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have no errors too even if the dual window presents the spikes. This fact is caused by the

high number of subcarriers and by the negligible truncation of the Gaussian pulse. This is

confirmed be the MSE values that are lower than RRC pulse.
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Figure 2.31: BER curves with Gaussian pulse for different β values in function of BT

In order to choose the better BT value we can look at Figure 2.31. These curves have

been obtained with an AWGN channel and an Eb/N0 = 10dB. As stated before, when the

BT value decreases, the ISI is dominating and the dual prototype pulse increases its energy in

order to contrast the interference. Thus the data signal suffers attenuation and BER grows.

When the BT increases, the interference decreases and BER improves until the ICI comes

out worsening the performances. The optimum value is obviously depending from β.

2.6.3 Hermite pulse

Another approach is to adopt an Hermite pulse [1]. This pulse is obtained combining

Hermite functions, i.e.

g(t) =
∑

k

akφk(t) (2.6.13)

where φk(t) is the kth Hermite function. The main motivation behind employing Hermite

functions is that the first Hermite function is the Gaussian function given by (2.6.10) and

kth Hermite function is the kth best localized function that is orthogonal to the Gaussian
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and k − 1 other Hermite functions. In [1], Kurt et Al. tried to optimize the coefficients’ set

{ak} by brute force approach, using exhaustive search in order to maximize the localization.

There are three main results that are obtained from the simulations:

• The coefficients {ak} decrease exponentially with increasing k, hence only 5 coefficients

were satisfactory for convergence.

• Only the Hermite functions whose frequency transforms are the same as themselves,

hence time-frequency symmetric Hermite functions give good localization performance.

These Hermite functions are the ones where k(mod 4) = 0.

• When we set a0 = 1, all other coefficients {ak} should be real. In general all complex

coefficients must have the same phase for optimum localization with the exception of

a 180 degree phase shift.

Keeping these conditions in mind, the Hermite functions that are employed are given by

[54]

φk(t) =
1√

n! 2k
√
π
e−t2/2Hk(t) = gG(t)Hk

(
t

σ

)
, k = 0, 4, 8, 12, 16 (2.6.14)

where sigma is derived from (2.6.11) as σ = α√
2π

, gG(t) is given by (2.6.10) and Hk(x)

are the Hermite (physicists) polynomials employed

H0(t) = 1

H4(t) = 16t4 − 48t2 + 12

H8(t) = 256t8 − 3584t6 + 13440t4 − 13440t2 + 1680

H12(t) = 4096t12 − 135168t10 + 1520640t8 − 7096320t6 +

+13305600t4 − 7983360t2 + 665280

H16(t) = 65536t16 − 3932160t14 + 89456640t12 − 984023040t10 +

+5535129600t8 − 15498362880t6+ 19372953600t4−
−8302694400t2 + 518918400

(2.6.15)

The optimum coefficients of these functions are given in Table 2.5. Instead in [2], the

set of coefficients used are different in order to satisfy other design criteria involving the

ambiguity function and they are shown in Table 2.6.

The synthesis and the relative analysis Hermite pulses are depicted in Figure 2.32. In

2.32(a) it has been used the coefficients set in Table 2.5 proposed by Kurt et Al. in [1], while
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ak

a0 1

a4 −1.5 · 10−3

a8 −3 · 10−6

a12 −2 · 10−10

a14 −2 · 10−13

Table 2.5: Coefficient used for Hermite pulse in [1]

ak

a0 1.1850899

a4 −1.9324881 · 10−3

a8 −7.3110588 · 10−6

a12 −3.1542096 · 10−9

a14 9.6634138 · 10−13

Table 2.6: Coefficient used for Hermite pulse in [2]

in 2.32(b) it has been used the coefficients set in Table 2.6 proposed by Haas et Al. in [2].

This pulses have been obtained for BT = 0.35, β = 1.125 and N (Tx)
f = 8.
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Figure 2.32: Synthesis and relative analysis pulses with Hermite pulses

The two pulses seem identical but it can be notice the differences looking at the Figure
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2.33 where it have been used a log scale for y-axis.
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Figure 2.33: Comparison between the two different coefficients’ sets {ak}

2.6.4 Numerical pulse optimization

In this subsection we will discuss about some numerical criteria in order to optimize the

analysis and/or the synthesis pulses according to a particular objective function that has to

be minimized or maximized subject to some constraints in the form of equality constraints

and/or inequality constraints.

In PHYDYAS project [55], the researchers adopt three well-known design criteria, i.e.

least-squares (LS), minimax, and peak-constrained least-squares (PCLS) criteria. For this

purpose the magnitude response of the real-valued prototype filter is divided into three types

of regions: the passband region is [0, ωp], the stopband region is [ωp, π], and the gap between

these two is called as the transition band. G
(
ejω
)

represents the transfer function of the

prototype filter.

• The goal of the LS criterion is to minimize the stopband energy of the prototype filter.

The objective function can be written as follows

F (x) =

∫ π

ωs

∣∣G
(
ejω
)∣∣2 dω (2.6.16)

The magnitude response of the resulting filter is shaped in such a manner that the

attenuation increases steadily when going further from the stopband edge. The atten-

uation is rather low at the stopband edge, but it increases very rapidly to the level of

the first stopband ripple.
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• The goal of the minimax criterion is to minimize the maximum stopband ripple instead

of the stopband energy. In minimax design, the objective function is

F (x) = max
ω∈[ωs,π]

∣∣G
(
ejω
)∣∣ (2.6.17)

The magnitude response of the resulting filter is shaped in such a manner that the at-

tenuation is equiripple on the overall stopband region. The attenuation at the stopband

edge is much higher than in the case of LS criterion, but this results in significantly

increased total stopband energy.

• The PCLS criterion offers a trade-off between the LS and minimax criteria. The objec-

tive function is the stopband energy subject to maximum stopband ripple that is less

than or equal to some prescribed value δ, i.e.,

F (x) =

∫ π

ωs

∣∣G
(
ejω
)∣∣2 dω s.t.

∣∣G
(
ejω
)∣∣ ≤ δ for ω ∈ [ωs, π] (2.6.18)

If δ is large enough, then this criterion reduces to the LS criterion. When decreasing

δ, this criterion approaches the minimax criterion. Logically, this additional constraint

increases total stopband energy.

Now, we discuss in detail a pulse optimization procedure that aim at low global interfer-

ence and capitalizes on the design freedom existing for redundant MC systems. This pulse

procedure optimization has been presented for the first time by Matz et Al. in [56] and it

has been designed for filterbank-based multicarrier systems that transmit over doubly disper-

sive fading channels. This algorithm uses the mean intersymbol and intercarrier interference

power as a cost function and thus performs an explicit minimization of ISI/ICI.

For low ISI/ICI, a multicarrier system should be almost orthogonal and use pulses that

are jointly well localized in time and frequency. In [56], Matz et Al. demonstrate that for

β > 1 there are other biorthogonal receive pulses besides the canonical one that can be found

with the efficient algorithm described in Section 2.5.1. The pulse optimization procedure

exploits this design freedom to improve on the canonical biorthogonal receive pulse in terms

of ISI/ICI. The symbol period T and subcarrier spacing F will be assumed fixed. Parts

of the results below have previously been obtained in [6]. The pulse optimization method

uses a prescribed transmit pulse g(0)(t) and calculates the receive pulse γ(t) minimizing the

ISI/ICI power σ2
I subject to the biorthogonality condition. Fixed g(0)(t) and TF = β > 1,

any biorthogonal receive pulse γ(t) can be written as [57]

γ(t) = γ(0)(t) + ψ(t) (2.6.19)
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Here, γ(0)(t) is the canonical biorthogonal pulse associated to g(0)(t) and ψ(t) is an arbi-

trary element of the orthogonal complement space G⊥ of G = span(g(0)m,n(t)), i.e.
〈
ψ, g

(0)
m,n

〉
=

0 for all m,n. Hence, ψ(t) can be written as

ψ(t) =
∑

i

ciui(t) (2.6.20)

where ui(t) is an orthonormal basis of G⊥ and ci = 〈ψ, ui〉 denotes the corresponding

coefficient of ψ(t). Using (2.6.19), the minimization of σ2
I with respect to γ(t) under the

biorthogonality constraint can be formulated as an unconstrained minimization with respect

to the coefficients ci.

In this subsection the channel is assumed to satisfy the wide-sense stationary uncorrelated

scattering (WSSUS) property and can be modeled as a random time-varying system H with

time-varying impulse response h(t, τ). The second-order statistics of H can alternatively be

described by the scattering function defined as

CH(τ, ν) =

∫

∆t

RH(∆t, τ)e
−j2πν∆t d∆t (2.6.21)

where ν denotes Doppler frequency and RH(t, τ) is the time-delay correlation function

of the channel. It will be convenient to use the following expression for power of the global

interference σ2
I (see [6], [56])

σ2
I =

∫

τ

∫

ν

Q
(0)
H

(τ, ν) |Aγ,g(τ, ν)|2 dτ dν (2.6.22)

where Aγ,g(τ, ν) is the cross-ambiguity fuction (CAF) of the synthesis and the analysis

prototype pulses that is defined as

Aγ,g(τ, ν)
∆
=

∫

t

γ(t)g∗(t− τ)e−j2πνt dt (2.6.23)

and

Q
(0)
H

(τ, ν)
∆
=

∑

m,n6=(0,0)

CH(τ − nT, ν −mF ) (2.6.24)

is a periodized version of CH(τ, ν) with the term at the origin suppressed. Inserting

(2.6.19) in (2.6.22), it is seen that σ2
I depends quadratically on the coefficients ci. The

(unconstrained) minimization of σ2
I with respect to the ci then amounts to solving the linear

equation Bc = −b with {c}i = ci and
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{B}i,k =

∫

τ

∫

ν

Q
(0)
H

(τ, ν)A∗
ui,g(0)(τ, ν)Auk ,g(0)(τ, ν) dτ dν (2.6.25)

{b}i =
∫

τ

∫

ν

Q
(0)
H

(τ, ν)A∗
ui,g(0)(τ, ν)Aγ(0),g(0)(τ, ν) dτ dν (2.6.26)

Thus the optimal biorthogonal receive pulse associated to the given transmit pulse g(0)(t)

is obtained as

γopt(t) = γ(0)(t) +

i∑
copti ui(t) with copt = −B−1b (2.6.27)

The same approach can be used to optimize the transmit pulse g(t) for a prescribed

receive pulse γ(0)(t). The linear optimization method discussed above has the drawback that

one of the two pulses must be chosen beforehand and is not optimized. Therefore, Matz et

Al. propose a joint optimization of g(t) and γ(t). As a cost function, they use the reciprocal

of the signal-to-interference ratio (SIR) σ2
D/σ

2
I given by [56]

J(g, γ)
∆
=
σ2
D

σ2
I

=

∫
τ

∫
ν Q

(0)
H

(τ, ν) |Aγ,g(τ, ν)|2 dτ dν∫
τ

∫
ν
CH(τ, ν) |Aγ,g(τ, ν)|2 dτ dν

(2.6.28)

The goal is to minimize J(g, γ) simultaneously with respect to g(t) and γ(t). For the

sake of increased design freedom, this minimization is performed without the biorthogonality

constraint. Thus, the resulting pulses are not necessarily exactly biorthogonal. While this

allows for lower ISI/ICI power in the case of dispersive channels, there will be some residual

ISI/ICI (typically below the noise level) for an ideal (nondispersive) channel. However, this

is not a problem because an ideal channel rarely occurs in practice. Moreover, it is observed

that the jointly optimized pulses tend to be almost biorthogonal (in fact, almost orthogonal).

The minimization of J(g, γ) has to be done by means of numerical techniques. In general,

the resulting pulses correspond to a local minimum of J(g, γ) and they depend on the pulses

used for initializing the minimization procedure.
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Chapter 3
Joint Tx-Rx transceivers design

The presence of the frequency-selective fading channel destroys the biorthogonality be-

tween synthesis and the analysis prototype pulses of the transmitter and the receiver filter-

bank and it introduces correlation among the "atoms" of the transmitted signal. Hence the

performances suffer the multipath channel and they consequently worsen. Through a joint

transceiver design and exploiting the majorization theory and a new equivalent model, we

are able to contrast the channel effects and improve the performance of a NOFDM system.

In next section, hence we have to introduce the new equivalent model in order to describe

the global interference affecting the system based on the model developed by Matz et al.

in [56]. We will define a new equivalent channel matrix H including the channel and the

transmitter and receiver filterbanks. Thanks to this new model we will be able to calculate

the mutual information and to provide a procedure to evaluate the capacity of a filterbank-

based communication system. Finally we will present and discuss the joint transceiver design

that improves the system performances.

3.1 The equivalent system model

The complete block scheme of the communication system chain in presence of blockfading

channels is depicted in Figure 3.1. The blocks "Precoder" and "Equalizer" will be considered

in Section 3.3 and they are ignored for the moment. The remainder of the scheme is the

same presented in Section 4.1.1 but the presence of the multipath channel generating the

frequency-selective fading.

Now we concentrated our attention on signals involved in filterbank modulation, fading

and filterbank demodulation. According to the scheme depicted in Figure 3.2 and the systems

discussed in Chapter 2, the transmitted signal is
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Figure 3.1: Block scheme for the filterbank communication system in presence of fading

channel

s[k] =

L/N−1∑

n=0

M−1∑

m=0

cm,ngm,n[k] =

=

L/N−1∑

n=0

M−1∑

m=0

cm,ng[k − nN ]ej2πkm/M (3.1.1)

where

gm,n[k] = g[k − nN ]ej2πkm/M (3.1.2)

is the (m,n)th atom on the TF grid and m ∈ {0, 1, . . . ,M − 1} is the index in frequency

domain while n ∈ {0, 1, . . . , L/N − 1} is the index in time domain. cm,n is the QAM symbol

at the IDFT input transmitted on (m,n)th atom. M and N are the number of subcarriers

and the time gap in samples between adjacent atoms, respectively. L is the total length of

the prototype pulse. From now on we assume frames composed by NGMC = L/N = N
(Tx)
f

consecutive GMC symbols (see 2.4.10).

The received signal is given by1

x[k] = s[k]⊗ h[k] + n[k] (3.1.3)

1The operator ⊗ represents the convolution operator.
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Figure 3.2: Core of filterbank system communication with fading channels and additive

noise

where h[k] is a (Lch + 1)-dimensional vector representing the channel impulse response

sampled at Nyquist frequency fs = N/T and n[k] is the zero-mean additive white gaussian

noise (AWGN) with variance σ2 defined in (4.1.1). Thus, exploiting (3.1.1) we obtain

x[k] = s[k]⊗ h[k] + n[k]

=

Lch∑

l=0

s[k − l]hl[k] =

=

L/N−1∑

n=0

M−1∑

m=0

cm,n

[
Lch∑

l=0

g[k − l − nN ]hl[k]e
j2π(k−l)m/M

]
+ n[k] =

=

L/N−1∑

n=0

M−1∑

m=0

cm,nηm,n[k] + n[k] (3.1.4)

where

ηm,n[k] =

Lch∑

l=0

g[k − l− nN ]hl[k]e
j2π(k−l)m/M (3.1.5)

and hl[k] denotes the lth sample of channel impulse response at time k. In this thesis we

assume blockfading, i.e. the channel is static long all the frame. Hence hl[k] → hl. After the

filtering made by receiver filterbank, with substitution (3.1.1), we have the soft symbols
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zm,n =
∑

k

x[k]γ∗m,n[k] =

=
∑

k

x[k]γ∗[k − nN ]e−j2πkm/M =

=
∑

k



L/N−1∑

n′=0

M−1∑

m′=0

cm′,n′ηm′,n′ [k]


 γ∗[k − nN ]e−j2πkm/M + wm,n

=

L/N−1∑

n′=0

M−1∑

m′=0

cm′,n′

[
∑

k

ηm′,n′ [k]γ∗[k − nN ]e−j2πkm/M

]
+ wm,n =

=

L/N−1∑

n′=0

M−1∑

m′=0

cm′,n′

[
∑

k

ηm′,n′ [k]γ∗m,n[k]

]
+ wm,n (3.1.6)

where {wm,n} are the noise samples on (m,n)th received atom. After the filtering, the

noise is no more white but colored, i.e. the noise samples are now dependent each other. So

the system is affected by additive colored gaussian noise (ACGN). They are defined as

wm,n =
∑

k

n[k]γ∗[k − nN ]e−j2πkm/M (3.1.7)

From (3.1.6) we can define the tensor

{H(g, γ,h)}m,n,m′,n′ =
〈
ηm′,n′ , γ∗m,n

〉
=
∑

k

ηm′,n′ [k]γ∗m,n[k]

=

Lch∑

l=0

hl

[
∑

k

g[k − l − n′N ]γ∗[k − nN ]ej2πk(m
′−m)/M

]
e−j2πlm′/M

(3.1.8)

and (3.1.6) can be rewritten as

zm,n =

L/N−1∑

n′=0

M−1∑

m′=0

cm′,n′{H}m,n,m′,n′ + wm,n (3.1.9)

Now, letting

{
µ = nM +m

µ′ = n′M +m′ (3.1.10)
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we can map the original tensor into a ( L
NM × L

NM)-dimensional matrix denoted by H.

Thus

zµ =

L
N

M−1∑

µ′=0

cµ′Hµ,µ′ + wµ (3.1.11)

where Hµ,µ′ denotes the generic element of the matrix H in µth row and µ′th column.

For the sake of simplicity, (3.1.11) can be written in the matrix form

z = Hc+w (3.1.12)

We have so defined a new matrix H that connects the QAM soft symbols {zm,n} received

after the filterbank filtering with the transmitted QAM symbols {cm,n}. Figure 3.3 outlines

a simple procedure to evaluate the equivalent channel matrix H.

Figure 3.3: Procedure to derivation of equivalent channel matrix H

Now, let us analyze the equation (3.1.12) by re-writing it as
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zµ = cµHµ,µ︸ ︷︷ ︸
Data

+

L
N

M−1∑

µ′=0
µ′ 6=µ

cµ′Hµ,µ′

︸ ︷︷ ︸
Interference

+ wµ︸︷︷︸
ACGN

(3.1.13)

The soft channel symbols zµ = zm,n are given by the summation of the relevant trans-

mitted symbol cµ = cm,n multiplied by the µth element on the diagonal of the equivalent

channel matrix H, plus the colored noise wµ and an interference contribution. The latter is

given by the sum of all the symbols of the transmitted frame (except the µth) element-wise

multiplied by the µth row (obviously except the µth element) of matrix H. So we can state

that all the elements of equivalent channel matrix out of the diagonal determine the quantity

of interference affecting the whole frame.

Let us note that with an AWGN channel, the tensor Hm,n,m′,n′ can be mapped into a

diagonal matrix of size ( L
NM × L

NM) if and only if the synthesis and analysis pulses are

calculated according to the biorthogonal condition (even not perfectly).
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Figure 3.4: Example of equivalent channel matrix H
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Figure 3.5: 3D version of the equivalent channel matrix H

We now discuss the structure of matrix H determined by the mapping (3.1.10). An

example of equivalent channel matrix obtained with gaussian pulse (BT = 0.5) is illustrated

in Figure 3.4 where the indices (µ, µ′) are respectively the row and the column indices. The

system parameters are M = 16, β = 1.125, N (Tx)
f = 8 and Ts = 50 ns. A 3D version of the

matrix is also illustrated in Figure 3.5.

Figure 3.6: Normalized amplitude of the channel realization’s frequency response
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The amplitude frequency response of the channel realization affecting matrix depicted in

Figures 3.4 and 3.5 is shown in Figure 3.6.

Figure 3.7: Blocks division of equivalent channel matrix H

It can be notice that H is a not-symmetric Toeplitz block matrix, i.e. the blocks are the

same on every diagonal block of the matrix. So it can be represented as

Hµ,µ′ =




H0 H1 · · · H
N

(Tx)
f

H−1 H0
. . .

...
...

. . .
. . . H1

H−N
(Tx)
f

· · · H−1 H0




(3.1.14)

The block division of the matrix in Figure 3.4 is shown in Figure 3.7. Each block on the

diagonal represents a different GMC symbol of the frame and they are pointed out by the

index n = 0, 1, . . . , L
NM − 1. Considering the nth block on the diagonal, the blocks on the

same row on its left represent the interference suffered by the nth GMC symbols caused by

previous GMC symbols while these blocks on its right represent the interference brought by
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the GMC symbols after the nth. In other words we can say that blocks out of the diagonal

on the nth row carry information about ISI suffered by nth GMC symbol of the frame under

analysis. All the blocks are square matrices of size (M × M) and elements inside every

diagonal block represent the ICI between the mth subcarrier and the m′th one inside a same

GMC symbol. Broadening the discussion to the whole matrix H we can say that µ′th element

is the interference affecting the µth QAM symbol cµ = cm,n, i.e. the symbol carried by the

mth subcarrier of the nth GMC symbol caused by the the µ′th QAM symbol c′µ = cm′,n′

carried by the m′th subcarrier of the n′th GMC symbol of the same frame.

Looking at the Figure 3.5, we can notice that the profile of the main diagonal of matrix

H is just the frequency response of the channel repeated in each diagonal block L
N times, i.e.

the number of GMC symbols in the frame.

The channel matrix can be approximated considering only the interference caused by

the neighboring atoms both in frequency and time domain. In this case the only non-null

elements of approximated equivalent matrix H̃ are H̃µ,µ′ = {H}m,n,m′,n′ with |m′ −m| ≤ 1

and |n′ − n| ≤ 1, i.e.

H̃µ,µ′ =





{H}m,n,m′,n′ if

{
|m′ −m| ≤ 1

|n′ − n| ≤ 1

0 otherwise

(3.1.15)

In this case H̃ is a tridiagonal block matrix and each block becomes a tridiagonal matrix.

The approximated version of H depicted in Figure 3.4 is shown in Figure 3.8. The mean

square error between HAPPROX and H is about 10−3 ÷ 10−4.

In presence of flat fading channel, the channel impulse response is hl = h0 = 1 and the

tensor H becomes

Hm,n,m′,n′ =
∑

k

g[k − n′N ]γ∗[k − nN ]ej2πk(m
′−m)/M

⇓
Hµ,µ′ = χI L

N
M (3.1.16)

where

χ =
∑

k

g[k]γ∗[k] (3.1.17)

In this case we obtain the absence of any interference, i.e. (3.1.13) becomes

zµ = cµHµ,µ +wµ (3.1.18)
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Figure 3.8: Approximated version of H shown in Figure 3.4 according to (3.1.15)

It means that elements out of diagonal of equivalent matrix are all zeros. Finally we

show the equivalent matrix channel H in presence of an ideal flat channel in Figure 3.9. The

system’s parameters are the same of previous example. The absence of interference is clearly

visible coherently with what have been stated in (3.1.18) and (3.1.16).

In this situation every atom is independent of other atoms, i.e. zm,n is only given by

the right cm′,n′ = cm,n transmitted QAM symbol, and the parallelization of the channels is

allowed. Moreover it can be notice that the maximum of the matrix is not unitary because

the dual pulse at the receiver is normalized. Without the normalization we exactly obtain

the identity matrix. In Section 3.3 we will discuss about a technique used to transform any

equivalent matrix H affected by frequency-selective fading into an ideal identity matrix and

thus clear all the interference affecting the frame. In this way we can calculate the capacity of

a filterbank-base communication system and evaluate the benefits of these systems compared

with OFDM systems.

Finally we show how biorthogonality between synthesis and analysis is mandatory. In
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Figure 3.9: Equivalent channel matrix H with ideal channel

Figure 3.10 is illustrated the equivalent matrix H under ideal channel assumption for a

filterbank system that uses the same prototype pulse both at the transmitter and at the

receiver, i.e. g[k] = γ[k]. The pulse chosen is a Gaussian one with BT = 0.5. It is evident

from Figure 3.10 that the absence of biorthogonality creates both ISI and ICI even without

frequency-selective fading channel.

3.1.1 Colored noise covariance matrix

In order to complete the presentation of the new equivalent channel model, we have to

describe the covariance matrix NC of the colored noise w[k]. The covariance matrix of AWGN

n[k] is simply NW = σ2I L
N

M , i.e. it is a diagonal matrix with elements on the diagonal σ2

NW =




σ2 0

σ2

. . .

0 σ2




(3.1.19)
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Figure 3.10: Equivalent matrix with flat channel and g[k] = γ[k]

For the calculation of NC we apply the definition of the covariance matrix

{NC}µ,µ′ = E
{
wµw

∗
µ′

}
(3.1.20)

Substituting (3.1.7) in (3.1.20) we obtain

E
{
wµw

∗
µ′

}
= E

{
wm,nw

∗
m′,n′

}
=

= E

{
q−1∑

k=0

n[k]γ∗[k − nN ]e−j2πkm/M

q−1∑

k′=0

n∗[k′]γ[k′ − n′N ]ej2πk
′m′/M

}
=

=

q−1∑

k=0

q−1∑

k′=0

E{n[k]n∗[k′]}γ∗[k − nN ]γ[k′ − n′N ]e−j2πkm/M ej2πk
′m′/M

(3.1.21)
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where q = L
NM is the size of the square matrix and E{n[k]n∗[k′]} represents the covari-

ance between the two white noise sample n[k] and n[k′]. Thus, recalling that

E{n[k]n∗[k′]} = σ2δ[k − k′] =

{
σ2 if k = k′

0 otherwise
(3.1.22)

and substituting (3.1.22) into (3.1.21) we have

NCm,n,m′,n′ = σ2

q−1∑

k=0

γ∗[k − nN ]γ[k − n′N ]ej2πk(m
′−m)/M (3.1.23)

We can observe from equation (3.1.23) that the covariance matrix NC depends only from

analysis prototype pulse. An example of covariance noise matrix normalized to σ2 is shown

in Figure 3.11. The system parameters are M = 16, β = 1.125, N (Tx)
f = 8 and Ts = 50 ns as

before. The prototype pulse is a Gaussian pulse with BT = 0.5 and the channel realization

is the same of Figure 3.6.
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Figure 3.11: Normalized covariance matrix of colored noise w[k]

It can be notice that the matrix NC has a symmetric block diagonal Toeplitz structure

whose relevant blocks presents a symmetric diagonal Toeplitz structure again.
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3.1.2 OFDM systems with equivalent model

This model is suitable even for OFDM systems. Assuming the cyclic prefix longer than the

maximum delay of the channel impulse response (i.e. Lcp ≥ Lch) and remembering that g[k]

and γ[k] are rectangular pulses with length equal to M , the product g[k− l−n′N ]γ∗[k−nN ]

in (3.1.8) is non-null only if2 n′ = n. Moreover
∑

k e
j2πk(m′−m) = δ[m′ −m] because of the

orthogonality condition. Thus (3.1.8) becomes

H
(O)
µ,µ′ = Hm,n,m′,n′ =





Lch∑
l=0

hle
−j2πlm/M if m = m′ and n = n′

0 otherwise
(3.1.24)

that is the DFT of the channel impulse response. So the structure of the equivalent

channel matrix is strongly simplified by the time-limited prototype pulses and by the orthog-

onality condition that assures H(O) to be diagonal. In this way the absence of interference

in OFDM systems adopting CP is confirmed. In Figure 3.12 is depicted H(O) in presence of

the channel realization in Figure 3.6.
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Figure 3.12: Equivalent channel matrix for an OFDM system

For an OFDM communication system the noise does not suffer the receiver filterbank

2In this case N is given by M + Lcp.
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filtering and it preserves its AWGN characteristics. This fact can be easily understand looking

at (3.1.23) and making the same considerations made previously in the derivation of the

matrix H(O).

3.2 Mutual information evaluation

Once a simplified input-output relationship for the GMC system has been defined, in

this section, we follow the procedure described in [14] to evaluate the input-output mutual

information.

The mutual information between the output symbols z = {zµ}q−1
0 and the input symbols

c = {cµ}q−1
0 is given by [14]

IM (c; z) = h (z)− h (w) (3.2.1)

where q = L
NM = NGMCM is the number of the QAM symbols and of the atoms into

the whole frame and h (z) is the entropy of the symbols {zµ} while h (w) is the entropy of

the colored noise samples. In case of Gaussian sources, this two values are equal to3 [58]

h (z) = log2 ((πe)
q |RZ |) (3.2.2)

h (w) = log2 ((πe)
q |RC |) (3.2.3)

where RC = NC is the covariance matrix of the noise (in this case colored) and RZ is

the covariance matrix of the output symbols {zµ}. Since {xµ} and the noise samples are

independent, the covariance of the output is RZ = RX +NC . In order to determine RX , we

can apply the definition of the covariance matrix, i.e.

RX = E
{
xxH

}
=

= E
{
HccHHH

}
=

= HE
{
ccH

}
HH =

= HRCH
H (3.2.4)

where RC is the covariance matrix of the input symbols {xµ}. Since they are independent

and with zero-mean and unit variance, we have RC = Iq. Thus (3.2.4) becomes

3The notation |A| represents the determinant of matrix A.
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RX = HHH (3.2.5)

Now we can write the mutual information IM (c; z) as

IM (c; z) = log2 ((πe)
q |RZ |)− log2 ((πe)

q |NC |) =

= log2

(
(πe)q |RZ |
(πe)q |NC |

)
=

= log2

( |NC +RX |
|NC |

)
=

= log2

(∣∣NC +HHH
∣∣

|NC |

)
=

= log2
(∣∣I+HN−1

C HH
∣∣) [bits] (3.2.6)

In order to make fair comparison with OFDM systems we normalized the mutual infor-

mation with respect to the overall bandwidth BTOT and the GMC symbol interval T . Since

the mutual information is calculated on the entire frame we will normalized even with respect

to the number of GMC symbols per frame NGMC . Thus, we obtain the normalize mutual

information as

IM =
IM (c; z)

BTOT · T ·NGMC
=

=
IM (c; z) · Ts
Ts ·N ·NGMC

=

=
IM (c; z)

NGMC ·N =

=
1

NGMC ·N log2
(∣∣I+HN−1

C HH
∣∣)

[
bit/s
Hz

]
(3.2.7)

The calculation of the mutual information of an OFDM system is simplified by the di-

agonal structures of the matrices HOFDM and NC . In fact considering (3.1.24) and the fact

that RN = σ2I, (3.2.6) becomes
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I
(O)
M = log2

(∣∣∣I+H(O)R−1
C H(O)H

∣∣∣
)

= log2

(∣∣∣∣I+
1

σ2
H(O)H(O)H

∣∣∣∣
)

=

= log2

(
q−1∏

µ=0

(
1 +

ρ2µ
σ2

))
=

=

q−1∑

µ=0

log2

(
1 +

ρ2µ
σ2

)
[bits] (3.2.8)

where ρ2k =
∣∣∣
{
H(O)

}
µ,µ

∣∣∣
2

is the square modulus of the µth element on the diagonal of

H(O). This time the normalization has to consider the length of cyclic prefix. Thus the

normalized mutual information is

I
(O)

M =
1

NGMC(M + Lcp)

q−1∑

µ=0

log2

(
1 +

ρ2µ
σ2

) [
bit/s
Hz

]
(3.2.9)

In Figure 3.13 are depicted the normalized mutual information curves with different β

values employing a Gaussian pulse (BT = 0.5). It is shown even the normalized mutual

information of an OFDM system (black line). It is evident how the mutual information grows

as β decreases. This is caused by the fact that the duration of a GMC symbol decreases with

the overlapping factor β at a given value of overall bandwidth. Regarding the OFDM system,

its mutual information has been evaluated employing a cyclic prefix 4 samples4. Hence for

M = 16, the length of the OFDM symbols is 20 samples. In that case, the OFDM system

has the same spectral efficiency of a NOFDM system with the overlapping factor set to

β = 1.25. Comparing the normalized mutual information curves of these two system, it can

be notice that the OFDM system works better than NOFDM one because of the orthogonality

condition and the presence of the cyclic prefix. But for β <
M+Lcp

M = 1.25 the FB-based

systems overtake the OFDM one. Hence we can state that a filterbank-based multicarrier

system allows to receive more information bits than an OFDM system using less time. In

fact we can decrease the duration of the GMC symbols and avoid the employment of the

cyclic prefix that worsens the spectral efficiency of the system. Unfortunately the gain of

the mutual information given by the decreased redundancy does not automatically entail an

improvement of the performances. In order to obtain satisfactory performances we have to

take account of the introduction of further data processing through a better design of both

the transmitter and the receiver.

4When Ts = 200 ns the channel impulse response lasts 4 samples.
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Figure 3.13: Normalized mutual information curves for different β values with gaussian

pulse

In Figure 3.14 we show the normalized mutual information for a NOFDM system em-

ploying a Gaussian pulse with different values of BT and β = 1.125. We can observe that

the mutual information gain given by decrease of the signaling interval can be easily lost if

the BT is not wisely chosen. In fact a wrong choice of BT can entail a huge increase of the

interference (in practice it decreases the signal-to-noise ratio) yielding to the lost of received

information.

3.3 Capacity evaluation with diagonalization

In [36], Scaglione et Al. present a procedure to the determination of the synthesis and

analysis filterbanks in order to achieve the maximization of the mutual information. They as-

sume that the number of samples into a GMC symbol N satisfies the constraintN =M+Lch,

i.e. that the channel impulse response affects only a GMC symbol at once. In this way

the interference between adjacent symbols is avoided. Moreover the algorithm developed

by Scaglione et Al., entails different filters onto each branch of the filterbanks. Thus the

polyphase implementation is not possible and the complexity of the modulator and the de-
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Figure 3.14: Normalized mutual information curves for different BT values with gaussian

pulse

modulator considerably increases. In this work we do not assume the constraint on N in

order to do not limit β to a narrow range depending on the channel selectivity. Moreover, as

we will discuss, the introduction of a precoder out of the modulator and of an equalizer out

of the demodulator allows to employ the efficient polyphase implementation.

The technique presented in this section, allows to decompose the channel into a certain

number of parallel AWGN channels. Since the equivalent model can be considered similar

to a MIMO model we can exploit the joint tx-rx beamforming design for multicarrier MIMO

systems discussed by Palomar et Al. in [59]. In this article, the joint design adds a linear

precoder at the transmitter and an equalizer at the receiver. The authors of [59] consider

different design criteria based on optimizing the MSE, the SINR, and also the BER directly.

Instead of considering each design criterion in a separate way, Palomar et Al. develop a

unifying framework and generalize the existing results by considering two families of objective

functions that embrace most reasonable criteria to design a communication system: Schur-

concave and Schur-convex functions that arise in majorization theory [60]. For Schur-concave

objective functions, the channel-diagonalizing structure is always optimal, whereas for Schur-

convex functions, an optimal solution diagonalizes the channel only after a very specific

rotation of the transmitted symbols. One of the main goal of this thesis is the capacity
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evaluation, i.e. the mutual information maximization through an MSE-based optimization

criteria.

According to the Hadamard’s inequality [14], (3.2.7) is maximized when the matrix I +

HN−1
C HH is diagonal. In order to realize that we have to introduce the "Precoder B" and

the "Equalizer AH" as depicted in Figure 3.1. Hence the equivalent model becomes that

depicted in Figure 3.15.

Figure 3.15: Equivalent capacity-achieving model with introduction of B and AH

The vector s is given by the processed vector c through the precoder B, i.e. s = Bc.

Then it experiences the transmitter filterbank, the fading channel and the receiver filterbank.

The received vector y (containing the colored additive noise w) is finally equalized by matrix

AH in order to return the vector z.

This time we will use the new equivalent matrix HTOT = AHHB given by the chain

composed by the precoder, the channel (with the filterbanks) and the equalizer. These two

matrices are square of same size (q×q). As stated before, the mutual information is maximized

when this new matrix is diagonal. Now our goal is to determine the matrices AH and B

realizing the diagonalization.

In order to design the system, we first derive the optimum receive matrix A, assuming

the transmit precoder B fixed, and then deal with the difficult part, which is the derivation

of the optimal transmit matrix B. The MSE matrix is defined as the covariance matrix of

the error vector (given by e
∆
= z− c)
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E(B,A)
∆
= E

{
(z − c)(z− c)H

}
=

= AHRyA+ I−AHHB−BHHHA (3.3.1)

where Ry
∆
= E{yyH} = HBBHHH+NC is the covariance matrix of the received symbols

y. The MSE of the µth atom is the µth diagonal element of E, i.e.,

MSEµ(B, aµ) = {E}µ,µ = (3.3.2)

= aHµ Ryaµ + I− aHµ Hbµ − bH
µ HHaµ (3.3.3)

where aµ (respectively bµ) is the µth column of A (respectively B). Expression (3.3.2) is

mathematically intractable since it is nonconvex in (B, aµ). However, for a given B, MSEµ is

convex in aµ and independent of the other columns of A and of the other atoms, which means

that each aµ can be independently optimized. To obtain the optimal receive matrix Aopt in

a more direct way, it suffices to find A such that the diagonal elements of E are minimized.

Alternatively, we can obtain Aopt so that E(B,Aopt) ≤ E(B,A), which in particular implies

that the diagonal elements are minimized (in fact, both criteria are equivalent as shown in

[61]). In other words, we want to solve

min
A∗

cHE(B,A)c, ∀c (3.3.4)

Setting the gradient of5 cHEc = Tr(EccH) to zero

∇A∗Tr(EccH) = RyAccH −HBccH = 0, ∀c (3.3.5)

and particularizing c for all the vectors of the canonical base, it follows that

Aopt =
(
HBBHHH +NC

)−1
HB (3.3.6)

Formula (3.3.6) is the linear minimum MSE (LMMSE) receiver. Later we will express

A(ZF ) for a zero-forcing receiver. Using the optimal receive matrix Aopt, we obtain the

following concentrated error matrix

5The function Tr(A) denotes the trace of matrix A.
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E(B) = E(B,Aopt) =

= I−BHHH
(
HBBHHH +NC

)−1
HB =

=
(
I+BHRHB

)−1
(3.3.7)

where we have used the matrix inversion lemma6, and we have defined RH

∆
= HN−1

C HH

(note that the eigenvectors and eigenvalues of RH are the right singular vectors and the

squared singular values, respectively, of the whitened channel RH
−1/2H).

To obtain the transmit matrix B, we now consider the minimization of an arbitrary

objective function f0 of the diagonal elements of (3.3.7) using a theorem proposed by Palomar

(for the proof see [59])

Theorem 2 Consider the following constrained optimization problem

min
B

f0 (d (E (B)))

s.t. Tr
(
BBH

)
≤ PTOT

(3.3.8)

where d (E (B)) is the vector of diagonal elements7 of the MSE matrix E(B) =
(
I+BHRHB

)−1
,

the matrix B ∈ Cq×q is the optimization variable, RH ∈ Cq×q is a positive semidefinite Her-

mitian matrix, and f0 : Rq −→ R is an arbitrary objective function (increasing in each vari-

able). It then follows that there is an optimal solution B of at most rank p
∆
= min(q, rank(RH))

with the following structure

• if f0 is Schur-concave, then

B = UHΣB (3.3.9)

where UH ∈ Cq×p has as columns the eigenvectors of RH corresponding to the p largest

eigenvalues in increasing order, and ΣB = [0 diag({δµ})] ∈ Cp×q has zero elements,

except along the rightmost main diagonal (which can be assumed real w.l.o.g.).

• if f0 is Schur-convex, then

B = UHΣBVB
H (3.3.10)

where UH and ΣB are defined as before, and VB ∈ Cq×q is a unitary matrix such

that
(
I+BHRHB

)−1
has identical diagonal elements. This rotation can be computed

using the algorithm given in [62] or with any rotation matrix Q that satisfies
∣∣∣{Q}i,k

∣∣∣ =∣∣∣{Q}i,l
∣∣∣ , ∀i, k, l such as the discrete Fourier transform (DFT) matrix or the Hadamard

matrix.

6(A+BCD)−1 = A
−1 −A

−1
B
(

DA
−1

B+C
−1

)−1
DA

−1

7The diagonal elements of E (B) are assumed in decreasing order without loss of generality

(w.l.o.g.).
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PTOT is the power in units of energy per frame and PTOT = P · q = q.

For Schur-concave objective functions (as the mutual information), the global commu-

nication process including pre- and post-processing AHHB is fully diagonalized as well as

the MSE matrix. Among the atoms, only p are associated to nonzero channel eigenvalues,

whereas the remainder are associated with zero eigenvalues. But in our case p is always equal

to q because of the diagonal structure of the matrices H and NC (they are always full rank

matrices) and all the eigenvalues are nonzero.

So the global communication process is8

z =
(
I+ΣH

BDHΣB

)−1
ΣH

BD
1/2
H

(
D

1/2
H

ΣBc+w
)

(3.3.11)

where DH = diag(λH,µ), λH,µ are the eigenvalues of RH in increasing order and w is the

normalized equivalent noise. The eigenvalues and the eigenvector can be calculated from RH

with one of the many numerical techniques discussed in literature.

Now it is left to determine the set {δµ}. In order to do that we have to choose the mutual

information function as objective function f0. With the introduction of B and A the mutual

information of the system (3.2.6) becomes (see Figure 3.15)

c = max
B

IM = log2

(∣∣∣I+HTOTN
′−1
C HH

TOT

∣∣∣
)

[bits] (3.3.12)

where N′
C = ANCA

H is the covariance matrix of the colored noise w′ resulting from

the filtering made by the equalizer on noise vector w. (3.3.12) can be rewritten as [59], [14]

c = max
Rs

IM = log2
(∣∣I+N−1

C HRsH
H
∣∣) [bits] (3.3.13)

where Rs is the the transmit covariance matrix. Using the fact that Rs = BBH (remem-

ber that s = Bc) and that |I+XY|= |I+YX|, the mutual information can be expressed

(see [61] for detailed connections between the mutual information and the MSE matrix) as

max
Rs

IM = − log2 (|E|) (3.3.14)

and therefore, the maximization of IM is equivalent to the minimization of |E|. The

minimization of the determinant of the MSE matrix was considered in [63]. Using the fact

that9 X ≥ Y ⇒ |X| ≥ |Y|, it follows that |E| is minimized for the choice of the receive matrix

8Note that A =
(

HBB
H
H

H+NC

)−1
HB = N

−1
C HB

(

I+B
H
H

H
N

−1
C HB

)−1

9By A ≥ B, we mean that A−B is positive semidefinite.
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given by (3.3.6). From (3.3.7), it is clear that |E| does not change if the transmit matrix B is

post-multiplied by a unitary matrix (a rotation). Therefore, we can always choose a rotation

matrix so that E is diagonal without loss of optimality (as we already knew from [63]), and

then

|E| =
∏

k

{E}j,j (3.3.15)

Therefore, the minimization of |E| is equivalent to the minimization of the product of

the MSE. This problem has a water-filling solution (from the Karush-Kuhn-Tucker (KKT)

optimality conditions). Hence, the minimization of the product of the MSE, the minimization

of the determinant of the MSE matrix and the maximization of the mutual information are

all equivalent criteria with the same solution given by a channel-diagonalizing structure and

the classical capacity-achieving water-filling solution for the power allocation10 [59], i.e.

δ2µ =
(
K − λ−1

H,µ

)+
(3.3.16)

where K is the water-level chosen to satisfy the power constraint with equality. The

term "water-filling" (or, equivalently, water-pouring) seems to have been coined by Fano

[64]. Its interpretation is straightforward, in fact, looking at Figure 3.16, the PSD of the

noise represents the profile of the base of a 2D vessel, and the total average power of the

transmitted signal plays the role of the water which is poured into that shaped vessel, up to

reach the level K.

Figure 3.16: Water-filling

10The notation (x)+ represents max(0, x)
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Following this criterion, in order to get the maximum input-output mutual information

from a system composed of q parallel Gaussian channels, we should allocate on each subchan-

nel an amount of power, such that, the received signal be frequency-flat, with PSD equal to

K.

It is clear that the channels wherein the noise level is low will be allocated a bigger

amount of power than those more noisy. And it is also possible that, sometimes because of

the scarce transmission power, the water level K be lower than the PSD of the noise of some

subchannels, as shown in Figure 3.17. In this situation, no power will be allocated on such

subchannels and subsequently they will not be used for the transmission.

Figure 3.17: Water-filling - bad channel.

Once the power is allocated following the water-filling policy, the capacity would be

achieved by transmitting on the active atoms while no bits will be transmitted on the sub-

channels with no power allocated.

In Table 3.1 the procedure to diagonalize the filterbank-based system is summed up. It

is important to highlight that is necessary the knowledge of the channel state information

(CSI) at both ends of the link, i.e. both at the transmitter and at the receiver.

The global matrices HTOT after the diagonalization with (3.18(b)) and without (3.18(a))

the water-filling process are showed in Figure 3.18. In the latter case we must set ΣB = I.

The diagonalization is anyway guaranteed but not the mutual information maximization.

In both cases the starting channel matrix is illustrated in Figure 3.4. Comparing the two

matrices we can see how the water-filling turn off the last atoms, i.e. those suffering the

strongest noise due to deepest notch in the frequency response of the channel realization (the

eigenvalue decrease sorting puts the worst atoms at the end of the diagonal of the matrix).

The channel capacity curves are depicted in Figure 3.19. These curves have been obtained

from the diagonalized system with 16 subcarriers shaped with a gaussian pulse and using the

99



CHAPTER 3. JOINT TX-RX TRANSCEIVERS DESIGN

DIAGONALIZATION

Input : g[k], γ[k], hl

Output : A, B

1. Calculate the equivalent channel model H;

2. Calculate the covariance matrix NC of the colored

noise;

3. Find the eigenvalues {λH,µ} and the eigenvectors of

the matrix HN−1
C HH ;

4. Sort eigenvalues in decreasing order and the eigenvec-

tor consistently (in matrix UH);

5. Evaluate the water-level K according to power con-

straint;

6. Calculate the power
{
δ2µ
}

according to the water-

filling criterion;

7. Make the matrix ΣB = diag ({δµ});

8. Calculate the precoder matrix as B = UHΣB;

9. Calculate the optimum LMMSE equalizer as

A =
(
HBBHHH +NC

)−1
HB;

Table 3.1: Capacity-achieving procedure for filterbank systems
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Figure 3.18: Matrices HTOT after the diagonalization with (b) and without (a) the

water-filling process

water-filling power allocation solution as described in this section. The capacity curves can

be compared with the relative mutual information curves before the diagonalization of the

NOFDM system (dashed lines).

As we can see, the mutual information evaluated with the diagonalization and the water-

filling increases compared to the case without diagonalization. At high signal-to-noise ratio

the mutual information curves approach the relative capacity curves. It can be notice that

even for the capacity, the relationship among the curves relative to different β values and the

OFDM system are similar to the ones relative to the mutual information evaluated without the

diagonalization, i.e. until β < M+Lcp

M the filterbank capacity overtakes the OFDM capacity.

The channel capacity curves for a GMC system with RRC pulse are showed in Figure

3.20. The previous remarks are valid for the RRC pulse too. It can be notice that the

capacity of a GMC system with β = 1.25 and the capacity of an OFDM system are almost

the same because in this case β = 1.25 = 1+ α and hence there is no overlapping among the

subcarriers. Hence the orthogonality constraint is satisfied even for the GMC system and the

capacities achieved by the two systems are identical.

As said before, it is possible to use a zero-forcing equalizer instead of a MMSE one. In this

case, we lose the MSE optimality but we can contrast the interference in a better manner.

The disadvantage of this technique is obviously the strong amplification of the noise that

every ZF equalizer suffers. Moreover the water-filling process cannot be used in order to

obtain the channel diagonalization. Thus the equalizer matrix becomes

A(ZF ) =
(
HBBHHH

)−1
HB (3.3.17)
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Figure 3.19: Capacity and normalized mutual information curves for different β values
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Figure 3.20: Capacity curves for different β values with RRC pulse
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In this case the matrix resulting from diagonalization of the matrix illustrated in Figure

3.4, is shown in Figure 3.21. The perfect compensation of the interference is clear, in fact

using (3.3.17) we obtain

H
(ZF )
TOT = A(ZF )HHB = I (3.3.18)

Thus the symbols returned by the equalizer are

z = H
(ZF )
TOT c+A(ZF )Hw = c+w′ (3.3.19)
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Figure 3.21: Global system matrix HTOT with zero-forcing equalization

We can make some different approximations in order to simplify the signals processing, in

particular the equalization. First of all we can use only the diagonal elements of the matrix

H. So the matrix A becomes diagonal and we can consider only its diagonal as a vector a

diag(A(diag)) = a(diag) (3.3.20)

and the µth element of a(diag) is given by

{
a(diag)

}
µ
=

Hµ,µ

|Hµ,µ|2 + σ2
(3.3.21)
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This is the canonical single-tap equalization technique used by the OFDM systems. It is

clear that this equalizer does not take in count the interference generated by the frequency-

selective channel. Hence we can approximate the interference as an additive gaussian noise

with variance σ2
I . As mentioned previously the interference affecting the µth symbol is given

by the whole µth row of equivalent matrix H. So the interference power on the µth symbol

(that is the µth element of equalizer vector) can be calculated as

σ2
I =

q∑

µ′=0
µ′ 6=µ

|Hµ,µ′ |2 (3.3.22)

The equivalent interference noise is independent from the thermal noise affecting the

system, so the variance of the global disturb is σ2
I + σ2. Thus the new equalizer is given by

{
a(int)

}
µ
=

Hµ,µ

|Hµ,µ|2 + σ2 + σ2
I

(3.3.23)

With these two approximation the receiver can avoid the calculation of the entire matrix

H because its main diagonal is just the frequency response of the channel repeated L
N times,

i.e. the number of GMC symbols in the frame, as previously said. The MSE curves obtained

for the different approximations discussed are depicted in Figure 3.22. Moreover are shown

the MSE curve obtained with the optimum equalizer Aopt (blue curve) and two different

MSE curves gotten without the diagonalization, i.e. without employing any precoding at the

transmitter. These two curves are calculated the first assuming the perfect knowledge of CSI

(red curve) and the other with an estimation of the channel through a preamble made by the

first GMC symbol of every transmitted frame (orange curve).

As we can see, the worst performance are obtained with the CSI estimated without

diagonalization because the symbol used as preamble is affected by interference which make

difficult the recover of the channel impulse response. The approximations made with the

diagonalization give similar results except at high Eb/N0 values, where the noise is weaker and

the interference approximation as additive noise gives better results. The best performance

are obviously given by the optimum equalizer. We pay this improvement with an high system

complexity caused by the calculation of an high number of matrices, each one composed by

(M ·NGMC)
2 complex numbers.
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Figure 3.22: MSE evaluation with different approximations
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Chapter 4
Performances on gaussian channels

In this chapter, we will present the results obtained from the simulations. We will assume

to work with a fixed number of subcarriers M and with fixed overall bandwidth BTOT , i.e.

assuming the same sampling interval Ts. We will observe the behavior of the system for

different values of the overlapping factor β. Hence the data-rate Rb will change with β

because the GMC symbol interval changes with β. In fact the data-rate can be expressed as

the ratio between the number of bits carried by a GMC symbol and the duration of the GMC

symbol in sec, i.e.

Rb =
M log2MQAM

T
=
M log2MQAM

Ts M β
=

log2MQAM

Ts β

[
bit
s

]
(4.0.1)

where T = 50 ns is the duration of a GMC symbol and MQAM = 2m is the order of the

QAM modulation and it usually is a power of 2. In this chapter we will show performances

for a 4-QAM modulation. The performances will be analyzed for GMC systems employing

the three different pulses previously discussed in Section 2.6. We will first discuss the results

for a white noisy Gaussian channel and then for a frequency-selective channel caused by the

multipath plus Gaussian noise.

4.1 AWGN channel

4.1.1 Model description

With reference to the block diagram depicted in Figure 4.1, Nb independent information

bits {bj} are Gray mapped ontoNQAM = Nb/MQAM QAM symbols {ck}, whereMQAM = 2m

is the order of the QAM modulation and it usually is a power of 2. Then they are transmitted

through NGMC consecutive GMC symbols which form a GMC frame (or block) after that
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they have been modulated by transmitter filterbank onto M subcarriers. Each GMC symbols

is made up by N samples for every block of M QAM symbols as known.

Figure 4.1: Complete FB-based system model with AWGN channel

At the receiver, the signal received x[k] is given by the signal transmitted s[k] plus white

noise (AWGN) w[k] with zero-mean and variance σ2. The variance is calculated as a function

of the SNR (Signal-to-Noise Ratio) Eb/N0 where Eb = Es/MQAM = 1/MQAM is the energy

per bit1 and Es is the energy per symbol. Thus

σ2 =
P · β

log2MQAM ·Eb/N0
(4.1.1)

where P represents the amount of power allocated on each atom in case of uniform

distribution. In this chapter we assume P = 1. It can be notice that the noise power increases

with the overlapping factor β because the duration of the GMC symbols increases and hence

every GMC symbol contains more samples affected by the noise. The receiver demodulates

the signal x[k] through the receiver filterbank. Then, the soft-demodulated metrics are hard-

decoded by a classic QAM threshold decisor in order to obtain the estimated QAM symbols

{ĉk}. Finally, the ML estimation of the information bits, {b̂j}, are obtained from the QAM

symbols by the QAM demapper.

4.1.2 Performances

In Figure 4.5, the BER is evaluated for a filterbank system employing a RRC pulse with

roll-off factor α = 0.25 and M = 64 subcarriers. The BER curves have been obtained for

different values of the overlapping factor β. The theoretical AWGN performance of a single

carrier 4-QAM system is depicted for comparison.

1Es = 1 because the considered prototype pulses are all normalized and with unit energy.
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Figure 4.2: BER curves with RRC pulses for different β values

It can be notice the poor performances of the critical sampling β = 1 caused by the

presence of the spikes in the normalized dual prototype window. These spikes decrease signif-

icantly the signal-to-noise ratio worsening the performances because they increase significantly

the energy of the not-normalized dual pulses. As stated in Chapter 2.5.1 the normalization

of the analysis pulse at the receiver will entail an attenuation of the demodulated signal and

consequently a decrease of the signal-to-noise ratio because the noise does not experience

this attenuation. When β is chosen greater than 1, then the spikes disappear and the BER

curves improve approaching (but not reaching) the theoretical performance given by the sin-

gle carrier system. When the β grows, the performances worsen because of the noise power

σ2 increases with β according to Formula (4.1.1).

The BER curves in Figure 4.3 have been obtained with a RRC pulse for different values of

the roll-off factor α. The other parameters of the filterbank system are M = 64 subcarriers,

overlapping factor β = 1.125 and N (Tx)
f = 16. The theoretical AWGN performance of a single

carrier 4-QAM system is depicted for comparison.

It can be notice that the BER curves are poorly influenced by the changing of the roll-off

factor. As said in Section 2.6.1, the SNR decreases as the roll-off factor grows because the

energy of the not-normalized dual pulse increases. But this increase of the energy is in the

order of 10−3 ÷ 10−4 and hence the BER curves are poorly affected by the worsening of the
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Figure 4.3: BER curves with RRC pulses with different α values

signal-to-noise ratio.

Now, we will discuss the performances of a filterbank-based system employing a Gaussian

prototype pulse. The performances obtained for β = 1.125 and different BT values are

depicted in Figure 4.4.

It can be notice how much the choice of the BT influences the performances of the

systems. In fact the BT value determines the amount of the interference affecting the atoms

on the TF grid. The ICI is dominating when the BT is high while the ISI replaces the ICI

when the BT is low. As stated in Section 2.6.2, the energy of the biorthogonal pulse increases

with respect to the amount of the interference in order to contrast it. Thus even the noise

power grows with respect to the amount of the interference worsening the performances. In

fact the worst results are obtained for high and low BT values. The best performances are

obtained when the BT is chosen about 0.3÷ 0.5 according to Figure 2.31.

The BER curves obtained for two BT values (0.35 and 0.50) at different β values are

depicted in Figure 4.5.

It can be notice that with the critical sampling the performances are very poor because

when β = 1, the not normalized dual pulse has a very large energy and the decrease of the

SNR due by the pulse normalization is very strong. Moreover when BT = 0.35 a performance

floor appears because the synthesis and analysis pulses are too short and they are not able
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Figure 4.4: BER curves with Gaussian pulses with different BT values

to compensate all the interferences.

In other cases we can observe how the performances depend on the joint choice of the β

and the BT . In fact for BT = 0.35 the best performance is obtained when β = 1.125 while for

BT = 0.50 we can obtain the best performance when β = 1.25. When we choose BT = 0.50

and β = 1.125 the performances worsen because the increase of the ICI is stronger than the

decrease of the power noise caused by a β lower. It can be even notice that the performances

given by β = 1.125 and β = 1.25 are almost identical when BT = 0.35. In this case the

increase of noise power is almost fully absorbed by the decrease of the ICI caused by the less

overlapping between the adjacent subcarriers.

Thus we can observe the importance of the investigation of a trade-off between the β

and the BT , i.e. between the increase of the noise power (caused by high β values) and the

amount of interference (given by the BT ) in order to reach the best performances.

In Figure 4.6 the BER curves obtained with Hermite pulses are showed for different values

of the overlapping factor β. The BT value of the Gaussian pulse employed in order to get

the Hermite pulse is 0.35. The dashed lines have been achieved with the Hermite prototype

pulse proposed by Kurt et Al. in [1], while the continuous lines have been obtained with

the Hermite prototype pulse with the coefficients proposed by Haas et Al. in [2]. It can

be notice that the latter pulse gives slightly better performances, especially when β value is
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Figure 4.5: BER curves with Gaussian pulses for different β values

low. Moreover we can observe that the best performances are given when β = 1.125 like the

performances obtained with the Gaussian pulse.

Finally we can observe a comparison of the performance obtained with the different pulses

discussed up to now in Figure 4.7. In Figure 4.7(a) the overlapping factor is set to β = 1.125,

in Figure 4.7(b) it is β = 1.25 and in Figure 4.7(c) it is β = 1.5. The critical sampling case

is not discussed because of the too poor performances. The Hermite pulse used is given by

the Haas coefficients [2] with BT = 0.35.

We can observe the best performances have been reached when the RRC prototype pulse

is employed, while Hermite pulse gives better performances than the Gaussian one. As the

overlapping factor β increases, the performances of the three pulses approach to be the same.

4.2 Fading channel

4.2.1 Model description

The model used to obtain the simulations is depicted in Figure 4.8. In this section the

precoder, the multipath channel and the equalizer are introduced. Thus the whole frame is

linearly precoded before it is modulated by the transmitter filterbank. Uniform bit and power
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Figure 4.6: BER curves with Hermite pulses for different β values

allocation is assumed in this section, i.e. ΣB = I.

The transmitted GMC signal experiences a frequency-selective fading channel which will

be assumed stationary for whole frame duration, i.e. blockfading is considered [65], [66], [67],

[68].

Path Delay [ns] Relative Power [dB]

1 0 -3.3

2 50 0

3 100 -0.99

4 200 -1.5

5 250 -3

6 600 -9.40

Table 4.1: Delays and power channel profiles values

Each multipath channel realization is modeled as a 6-taps independent Rayleigh RVs and

it will be assumed stationary for the whole frame duration. The power and delay profiles
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Figure 4.7: Performance comparison with different prototype pulses and different β values
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Figure 4.8: Block scheme for the filterbank communication system in presence of fading

channel

are presented in Table 4.1 and depicted in Figure 4.9. The coherence bandwidth, i.e. the

bandwidth where the frequency response can be assumed flat, defined as BC = 1/(10 · τmax),

is about BC = 166.7 kHz.

Figure 4.9: Channel profile used in simulations

Before the demodulation, the white Gaussian noise is added to the signal filtered by the

frequency selective-channel. Thus the signal received is demodulated by the receiver filterbank

and then post-processed by the equalizer.
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4.2.2 Results

The BER curves depicted in Figure 4.10 are given by a filterbank-based system employing

a RRC pulse and its dual as synthesis and analysis prototype pulse, respectively and they

are evaluated with different values of the overlapping factor β. The other parameters of the

filterbank system are M = 64 subcarriers, the roll-off factor α = 1.125 and N (Tx)
f = 16. The

performance of a CP-OFDM system is shown as comparison (black line). The latter employs

a cyclic prefix lasting Lcp = 13 samples in order to completely avoid the ISI generated by the

frequency-selective channel. In the cases presented, the performances are poor because the

system is uncoded.

It can be notice that the diagonalized NOFDM system give better performances than

OFDM system when the signal-to-noise ratio is lower than 14 dB. The performances are

almost the same for all the three β values employed. Moreover we can observe that with the

diagonalization the performances with the critical sampling, i.e. β = 1 are no longer poor

such as in the AWGN case and it can be take in count as a valid β value. This achievement

holds true for all the pulses discussed so far.

0.001

2

4

6

8
0.01

2

4

6

8
0.1

2

4

6

8
1

B
E

R

20181614121086420

Eb/N0 [dB]

Fading channel
RRC pulse 
64 subcarriers
α = 0.25
TS = 50 ns
BTOT = 20 MHz

 OFDM 
        (LCP = 13) 

 β = 1
 β = 1.125
 β = 1.25

Figure 4.10: BER curves with RRC pulses for different β values

The BER curves obtained with a filterbank-based system employing a Gaussian pulse are

depicted in Figure 4.11 for different BT values. As in the AWGN case the performance are

strongly influenced by the BT chosen and the performances become poor when the BT is

chosen too low or too high because of the decrease of the SNR.
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Figure 4.11: BER curves with Gaussian pulses for different BT values

The BER curves for different β values with the Gaussian pulse are showed in Figure

4.12. Unlike the RRC pulse, the performances with the Gaussian pulse do not reach the CP-

OFDM performances. Obviously the optimum value of the overlapping factor β giving the

best performances, depends on the value of the BT chosen. As previously stated, the critical

sampling is no longer poor as in the AWGN case and the performances are satisfactory.

Moreover this time the performances are more influenced by the value of the overlapping

factor β chosen than the RRC pulse.
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Figure 4.12: BER curves with Gaussian pulses for different β values
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Chapter 5
Bit and power allocation strategies

In last years various techniques for wisely allocating bits and powers among a set of parallel

frequency-flat channels have been studied. The way we will manage this process, which is

called in general bit loading, is directed at the optimization of a certain objective function.

This criterion was also used in IEEE 801.11a wireless LAN, to adaptively select the best

physical layer mode, and it is meaningful in all the applications (like data file transmission)

where in the end, all the bits must be received correctly.

However, in many power constrained communication systems, other optimization strate-

gies are commonly used, for instance:

• the maximization of the bit rate under a bit error rate (BER) constraint;

• the minimization of the BER under a bit rate constraint;

• the maximization of the input-output mutual information.

These strategies are appropriate for applications like speech or video transmissions which

do not require a null BER due to the user’s limited sensitivity [69].

In this chapter we will review and analyze some solutions proposed in the literature for the

bit loading problem and the implementation problems that arise when the theory is applied

to actual communication systems like Asymmetric Digital Subscriber Line (ADSL) or in our

filterbank-based multicarrier systems.

Then, in Sections 5.2 and 5.3, two greedy algorithms based on the water-filling policy,

for allocating bits and power under different constraints are analyzed: the Hughes-Hartogs

algorithm [70] and the Campello algorithm [71], [72]. About the last algorithm, there has been

obtained the closed-form expression for some iterative formulas involved in the procedure.

119



CHAPTER 5. BIT AND POWER ALLOCATION STRATEGIES

5.1 The "SNR gap" concept

The water-filling solution found in Chapter 3 is the optimal solution to the problem of

allocating a constrained average power among a set of parallel independent Gaussian channels

in order to get the maximum of the input-output mutual information of the system. In

Chapter 3, we evaluate the capacity of our filterbank-based system and it is given by

c = log2
(∣∣I+N−1

C HBBHHH
∣∣)

=
∑

µ

log2 (1 + SNRµ) [bits] (5.1.1)

where SNRµ is the µth diagonal element of the matrix N−1
C HBBHHH and it represents

the signal-to-noise ratio experienced by the µth transmitted symbol. The matrix B = UHΣB

is the precoder introduced to diagonalize the system and maximize the mutual information.

The matrix ΣB is a diagonal matrix whose element on the diagonal {δµ} are given by the

water-filling solution (3.3.16). Hence cµ = log2 (1 + SNRµ) is the Shannon capacity of the

µth stream. In our system we have µ = 0, 1, . . . , q with q = L
NM parallel subchannel and the

average power allocated on the µth channel P is assumed unitary.

The water-filling solution is optimum from a mutual information standpoint, but it is

actually a tough task to be realized in practice, because the (5.1.1) requires the input signal

to be Gaussian, which can never be realized in practice. Rather, the inputs are usually

drawn from discrete constellations (often with very limited peak-to-average ratios), which

may significantly depart from the Gaussian idealization [64]. For specific coding schemes,

or even in the absence of coding, the allocation of power (and bits) in order to maximize

the throughput with discrete constellations at some target error probability is tackled with

a heuristic strategy which consists of applying the water-filling policy, except with the gain

of each channel reduced by a gap Γ that quantifies the deficit of the corresponding class of

constellations (e.g., m-QAM) with respect to a Gaussian signal operating at the same rate

[64].

Hence, the SNR gap takes into account the fact that, the Shannon capacity is the theoretic

upper limit of achievable data rate, for a channel with BER that tends to zero. In practical

analysis, the BER of a communication system can never be zero; instead, we expect an

acceptable BER at some practical data rate [73]. The Shannon capacity formula including

the SNR gap is the following

cµ = log2

(
1 +

SNRµ

Γ

)
[bits] (5.1.2)
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with µ = 0, 1, . . . , q. When Γ = 1 (0 dB), cµ becomes the channel capacity. The selection

of Γ depends on the BER and coding scheme. Higher BER requires larger Γ. Complex coding

scheme that guarantees reliable transmission can reduce the Γ. For the two-dimensional QAM

system with BER = 10−7, the gap Γ is computed using the following formula [73], [74]

Γ = 9.8 + γm + γc [dB] (5.1.3)

where γm is the performance margin and γc is the coding gain. For an uncoded system,

as in our case, (γc = 0 dB) with the performance margin equal to 0 dB, the gap is 9.8 dB.

At the end of this section it is worth pointing out that, (3.3.16) regarding the power

allocation, and (5.1.1) or in case (5.1.2) concerning the bit allocation, are the chief criterions

which all of the practical bit loading algorithms, whose objective function involves somehow

the input-output mutual information, are based on. The next sections of the chapter are

proper dedicated to two of these procedures, very popular especially for the ADSL systems

and suitable for our system. The output of the algorithms is the vector of the allocation

power on the subchannels p = {pµ}. The elements of this vector will be used to determine

the elements of the matrix ΣB as δµ =
√
pµ. Hence, with the power allocation the transmitted

signal is given by

s[k] =
∑

m

∑

n

√
pm,ncm,ngm,n[k] =

∑

µ

δµcµgµ[k] (5.1.4)

where µ = nM+m as stated in previous chapter. The QAM symbols {cm,n} are assumed

with unit energy. Thus the total transmitted power is given by PTOT =
∑

µ pµ and it is

assumed to be equal to the number of atoms into the frame (PTOT = q) because the average

power on the µth atom of the frame is unitary.

5.2 The Hughes-Hartogs algorithm

A finite-granularity constellation size, iterative, greedy algorithm for variably allocating

data and power among a set of parallel channels, in order to compensate the equivalent

noise and to maximize the data rate is presented in this section. It was proposed as an

approximation to the water-pouring solution and achieves the optimal solution for the discrete

problem [72].

The "greedy principle" underlying the procedure claims that: at every iteration, ev-

ery incremental power to transmit one or more additional bit(s) must be allocated to the

subchannel that can use it most economically [73] The Hughes-Hartogs algorithm was first

invented for voice-band modem in 1987, [70], but unfortunately for the modern DSL systems,
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the number of subchannels is usually much larger than the voice-band modems. The slow

convergence rate of Hughes-Hartogs algorithm and some other constraints, such as the fixed

SNR assumption, make this algorithm impractical in DSL systems. But it is still a good

starting point for later improved algorithms.

5.2.1 Description of the algorithm

Assuming to deal with a system composed of q parallel subchannels, such as the OFDM,

where in each subchannel it is possible to allocate a number of bits

m ∈
{
0, 2β, 2 · 2β , ..., k · 2β

}
, k, β ∈ N (5.2.1)

Considering for example a scheme which includes a set of m-QAM constellations together

with 0

m ∈ {0, 2, 4, 6} (5.2.2)

In this case k = 3 and β = 1, as for m-QAM constellations.

Let us assume to have the knowledge, thanks to the aid of a return channel for example,

of the equivalent power of the noises all over the subchannels

[σ2
1 , σ

2
2 , ..., σ

2
q ] (5.2.3)

the following procedure claims to allocate bits and powers to the various subchannels in

order to maximize the overall data transmission rate.

Carrying forward our example, let us imagine to have a multicarrier system with q = 3

and that the vector of the equivalent noises be

[
σ2
1 , σ

2
2 , σ

2
3

]
= [2.51 (4 dBW ), 0.16 (−8 dBW ), 1 (0 dBW )]

The maximum power which can be allocated among the subchannels, P , is constrained.

If we want to maintain the BER of the system below a specified level, we could use the

concept of the "SNR gap" previously introduced, and consider the equivalent noise over all

the subchannels equals to

[Γσ2
1 ,Γσ

2
2 , ...,Γσ

2
q ], (5.2.4)

with Γ accurately calculated in order to guarantee a determined performance.
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In the example we want to maintain the BER under the value BER = 10−5, thus we

introduce an SNR gap Γ|dB = 3, so that

[
Γσ2

1 ,Γσ
2
2 ,Γσ

2
3

]
= [5.02 (7 dBW ), 0.32 (−5 dBW ), 2 (3 dBW )]

Given the set of the transmission constellation, it is possible to pre-calculate, the value

of the SNRs needed to maintain a certain the BER level, under a value BER. We call such

SNRs

[γ1, γ2, ..., γk]. (5.2.5)

In the example

[γ1, γ2, γ3, γ4] = [0, 6.31 (8 dBW ), 25.12 (14 dBW ), 316.23 (25 dBW )].

The 0 corresponds to the no transmission.

Then, we multiply each SNR for the equivalent noise (including the gap) of each µth

subchannels, obtaining the powers required for transmitting all the possible data rates over

all the subchannels

p
(µ)
j = γ

(µ)
j · Γσ2

µ, j = 1, 2, ..., k, µ = 1, 2, ..., q (5.2.6)

obtaining:

[p
(µ)
1 , p

(µ)
2 , ..., p

(µ)
k ], µ = 1, 2, ..., q (5.2.7)

It is convenient saving all this power levels in a table, like in the example (see Table 5.1).

Sub 1 Sub 2 Sub 3

0 bits/sub 0 0 0

2 bits/sub 31.62 (15 dBW) 2 (3 dBW) 12.59 (11 dBW)

4 bits/sub 125.89 (21 dBW) 7.94 (9 dBW) 50.12 (17 dBW)

6 bits/sub 1584.89 (32 dBW) 100 (20 dBW) 630.96 (28 dBW)

Table 5.1: H.H. Powers

From this power levels, the marginal required power levels to increase the data rate

complexity over each subchannels of one unit, for every possible data rate, are determined.
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This levels are the difference in transmission power, divided by the difference between the

constellation complexity involved. If the data rate of the lth subchannel is b bits, and this is

obtained by transmitting a power p(l)b , the marginal power required to increase the data rate

to its closest element in complexity is

∆p
(l)

b+2β
=
p
(l)

b+2β
− p

(l)
b

2β
(5.2.8)

As before, we can save all this marginal power values and their respective data rates,

in a new table, which can be obtained from the previous, simply subtracting two rows and

dividing from the difference between the corresponding data rates.

In the example (see Table 5.2), it is showed the table corresponding to the marginal

powers multiplied by the difference between the constellation sizes. This will help for the

implementation of the follows algorithm.

Sub 1 Sub 2 Sub 3

0-2 bits/sub 31.62 (15 dB) 2 (3 dB) 12.59 (11 dB)

2-4 bits/sub 94.27 (19.74 dB) 5.95 (7.74 dB) 37.53 (15.74 dB)

4-6 bits/sub 1459 (31.64 dB) 92.06 (19.64 dB) 580.84 (27.64 dB)

Table 5.2: H.H. Marginal powers

At this point in time, the preliminary operations have been concluded and the iterative

greedy algorithm works this way: starting from the null bit and power configuration, it

allocates, at each iteration 2β bits and the required amount of power, on the subchannel

corresponding to the minimum marginal powers, until the available power P is not exceeded.

Let us assume in the example, to have a total available transmitting power P = 200 (23

dBW), with the help of the Table 5.2, the sequence of step is:

1. Allocate 2 bits and a marginal power of 2 (3 dB) on the 2nd subcarrier,

the allocated power is Pa = 2 < 200,

save the configuration [0, 2, 0];

go to step 2;

2. Allocate 2 bits and a marginal power of 5.95 (7.74 dB) on the 2nd subcarrier, the

allocated power is Pa = 7.95 < 200,

save the configuration [0, 4, 0];

go to step 3;
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3. Allocate 2 bits and a marginal power of 12.59 (11 dB) on the 3rd subcarrier,

the allocated power is Pa = 20.54 < 200,

save the configuration [0, 4, 2];

go to step 4;

4. Allocate 2 bits and a marginal power of 31.62 (15 dB) on the 1st subcarrier,

the allocated power is Pa = 52.16 < 200,

save the configuration [2, 4, 2];

go to step 5;

5. Allocate 2 bits and a marginal power of 37.53 (15.74 dB) on the 3rd subcarrier,

the allocated power is Pa = 89.69 < 200,

save the configuration [2, 4, 4];

go to step 6;

6. Allocate 2 bits and a marginal power of 92.06 (19.64 dB) on the 2nd subcarrier,

the allocated power is Pa = 181.75 < 200,

save the configuration [2, 6, 4];

go to step 7;

7. Allocate 2 bits and a marginal power of 94.27 (19.74 dB) on the 1st subcarrier,

the allocated power is Pa = 276.02 > 200,

Exit and return the configuration at the previous step.

Given this configuration, with the help of Table 5.1, it is possible to determine the vector

of the powers associated. In the example it is [31.62 100 50.12]. In this case, part of the

available transmitting power (Pna = 18.25) has not been allocated, and this fact very often

happens in practice, due to the integer bits constellations.

The process described leads to the optimum bit loading, in the sense that the overall bit

rate, under the BER and power P constraint, is maximized, whether for each cth subchannel

stands the following condition:

∆p(c)s > ∆p
(c)
t , ∀s > t (5.2.9)

The above condition means that, the marginal power needed to switch between two more

complex constellation, must be bigger than the marginal power required to step up two less

complex constellation, on an arbitrary subchannel subject to a certain noise level.

Before analyzing the algorithm, it is worth focusing on the "greedy choice" that has been

made step by step. In fact, at every iteration, two incremental bits and an amount of power

have been allocated on the subchannel which required the less cost in term of power. This

choice left the largest amount of available power for the next allocation.
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The complexity of the algorithm is quite high, in fact it requires O (q log q) steps in order

to sort all the marginal power levels into monotonically increasing order, plus O (q) operations

for scanning these ordered values. This running times leads the Hughes-Hartogs algorithm to

be too slow [74], also for applications like ADSL, where a large number of bits (in the range

of 400 to 2000+) will be contained in each modulated symbol and transmitted over a large

number of subchannels (typically 256).

5.3 The Campello algorithm

In the last section of the chapter, an efficient bit loading algorithm for multicarrier mod-

ulation will be described, the "Campello algorithm". This procedure is based on the afore-

mentioned water-filling principle, but as ever, it must take into account the fact that the bit

rate assignments are constrained to be integer. This optimization method is suitable to be

used in the Discrete MultiTone (DMT), the modulation scheme selected by the American

National Standardization Institute (ANSI), for a number of Digital Subscriber Line (DSL)

[72]. Depending on the kind of traffic that must be conveyed, different optimization strate-

gies can be employed, for example, for the voice, the constraint has represented by the delay,

which must be minimized; while for other application like the Pay-Per-View, the demanding

requirement to be respected is a certain Quality of Service, which can be a BER constraint.

This algorithm is suitable even for our GMC filterbank-based multicarrier system in order to

guarantee a certain QoS.

Hereafter, we will introduce a couple of problem of interest: the first one concerns the

maximization of the overall bit rate to be transmitted among a set of parallel subchannel,

given a fixed amount of power P , while the second one aims to minimize the total power,

required to transmit a determined number of bits B. For the latter problem we will see how

the Campello algorithm works.

5.3.1 Problem formulation

In this work, we will use the gap concept (see Section 5.1) to approximate the performance

of the coding scheme in use on an AWGN Channel. For a gap Γ, corresponding to the target

probability of error and the coding scheme in use, the number of bits that can be transmitted

on a given subchannel as a function of the normalized power, pµ = δ2µ, allocated to that

subchannel, for example using m-QAM modulation, is given approximately by

bµ = log2

(
1 +

pµP |αµ|2
Γσ2

µ

) [
bit

symb

]
, (5.3.1)
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where αµ is the complex scalar gain of the µth subchannel, P is the portion of power

allocated on the µth channel, when the total available transmitting power, qP , is uniformly

distributed among the q parallel subchannels, and Γσ2 represent the equivalent noise power.

In the application discussed in this thesis, the square of the complex scalar gain are the

eigenvalues of the matrix RH

∆
= HN−1

C HH , i.e. |αµ|2 = |λµ|. The eigenvalues include the

noise power on the subchannels and the σ2
µ must be removed from (5.3.1). In order to be

avoid cumbersome notation in the sequel, we will define

γµ =
|λµ|
Γ

(5.3.2)

as the signal to noise ratio (SNR) (with the gap incorporated), when the normalized

power allocation is uniform (pµ = 1, µ = 1, 2, ..., q).

Hence, we can write

bµ = log2 (1 + pµγµ)

[
bit

symb

]
. (5.3.3)

Given the γµ for all the q subchannels, the two problems of interest to be solved will

be addressed as "the Bit Rate (or Throughput) Maximization Problem (BRMP)" and the

"Margin Maximization Problem (MMP)".

Bit Rate Maximization Problem (BRMP)

The goal is to distribute a fixed amount of power, among a set of subchannels, such

that the overall bit rate is maximized. The optimal solution to the problem as stated will

invariably lead to a non-integer bit allocation. However, in practice we are restricted to

integer allocations, and furthermore, we are always limited to a maximum number of bits,

b, per subchannel. Introducing the following notation: Za = {0, 1, ..., a− 1} being a set of

integer value from "0" to "a−1", and b ∈ ZM
b+1

representing any possible bit allocation vector

with each element in Z
q

b+1
, the BRMP is stated as

bBRM = argmax
b∈Z

q

b+1

{
q∑

µ=1

bµ

}
, (5.3.4)

s.t.

1

q

q∑

µ=1

pµ ≤ 1. (5.3.5)
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Margin Maximization Problem (MMP)

This time, the problem requires to transmit a total number of bits among the subcarriers

fixed and equal to the integer B. The goal is to determine (when possible, because the

problem is innately power constrained) the bit allocation that requires the least amount

of power, leaving the maximum amount of power for system margin, which may be wisely

redistributed to strengthen the transmission system. The MMP is stated as follows

bMM = argmin
b∈Z

1
b+1

{
1∑

µ=1

pµ

}
, (5.3.6)

s.t.

q∑

µ=1

bµ = B. (5.3.7)

The two problems above and several variations of them (e.g. by limiting the amount of

power allocated to each subchannels) can be solved by similar algorithms. In what follows,

we will concentrate on the MMP, but the algorithms presented can be readily modified to

solve the BRMP and the variations of both problems [72].

5.3.2 Description of the algorithm for the MMP

It was postulated in [71], that for a discrete bit allocation b ∈ ZM
b+1

satisfying (5.3.7) to

be a solution to the MMP optimization problem, it must satisfy

∆psµ > ∆ptµ , ∀sµ > tµ, ∀µ ∈ 1, 2, ..., q (5.3.8)

where, likewise in Section 5.2.1, we have defined

∆pbµ+2β =
pbµ+2β − pbµ

2β
(5.3.9)

and pbµ is the power that must be allocated on the µth subchannel in order to transmit

bµ bit/symb at a certain target BER (determined by Γ), using the chosen coding scheme.

As stated in [71], discrete bit allocations satisfying (5.3.8) are called efficient and alloca-

tions satisfying (5.3.7) are called B-tight.

For the problem we are considering, by inverting (5.3.3), we obtain for each subchannel

pbµ =

(
2bµ − 1

)

γµ
(5.3.10)
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and then, by using δ = 2β

∆pbµ =
2βbµ

γµ
=
δbµ

γµ
. (5.3.11)

Now, before stating the two theorems which are at the base of the low complexity optimum

discrete bit loading algorithm, let us introduce a few of notations. We will call bµ(i) the

number of bits allocated on the µth subchannel at a certain iteration i ∈ Z, where "i"

can assume also negative values. Moreover, we will denote as b(i) an arbitrary discrete bit

allocation at the iteration "i" and with |b(i)| =∑q
µ=1 bµ(i). Eventually, we will define

[x]ba =





b if x > b

x if a ≤ x ≤ b

a if x < a

Theorem 3 The discrete bit allocation, b(i), given by

bµ(i) = [⌊logδ γµ⌋+ i]
b
0 , µ = 1, 2, ..., q (5.3.12)

is efficient for all i ∈ Z.

Hence, assuming that 0 < B < qb, what we have to do is to find a value of i, such that

the resulting allocation be as tight as possible, that is

iB = max {i ∈ Z : |b(i)| ≤ B} (5.3.13)

Theorem 4 The solution to the MMP satisfies b(iB) ≤ bMM ≤ b(iB + 1), where the

inequalities must be intended component-wise.

The proof of both the theorems is stated in [72]. The problem now is to find an efficient

method for determining iB.

We could come up with the idea of starting with some value, for instance i = 0, and go on

incrementing (or decrementing) i until iB is found. But, as we will see shortly, this method

turns out to be too computationally expensive because for each i tested, we have to perform

O(q) operations. So, even an efficient binary search would be too expensive, resulting in an

O(qlogq) algorithm.

The efficient procedure for determining iB, starts by drawing attention at theorem 3,

and noticing that two or more channels corresponding to the same ⌊logδ γµ⌋, will always be
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allocated the same amount of bits. Such a subchannels can be gathered together, so the entire

set of subchannels can be divided into L groups (L < q) with the same bit allocation. Let us

define

πk = {µ ∈ {1, 2, ..., q} : ⌊logδ γµ⌋ = k} , k = 0, 1, 2, ..., L− 1 (5.3.14)

and let Nk = |πk|, the |b(i)| values can be calculated thanks to the following iterative

equation

|b(i)| = |b(i− 1)|+ Si, (5.3.15)

where

if b ≤ L :

Si =





Si−1 +Ni−1 , 1− L ≤ i ≤ b+ 1− L

Si−1 +Ni−1 −Nb+1−i , b+ 1− L < i ≤ 1

Si−1 −Nb+1−i , 1 < i < b

0 , b < i

(5.3.16)

else if b > L :

Si =





Si−1 +Ni−1 , 1− L ≤ i ≤ 1

Si−1 , 1 < i ≤ b + 1− L

Si−1 −Nb+1−i , b+ 1− L < i < b

0 , b < i

(5.3.17)

with the initial condition

S1−L = |b (1− L)| = 0.

Hence, starting from i = 2 − L we go through incrementing i until |b (i)| > B and then

by setting iB = i− 1. Finally, in order to obtain a bit rate equal to B, we have to increment

the group of subchannels that have not yet reached b, which corresponds to the smallest

incremental power ∆pbµ(i)+2β . This last step corresponds to the selection of the minimum,

from a set of N elements, in the worst case, so it requires O(q) complexity. In total, since the

first part of the algorithm requires O(q) operations to find the M ′
ks and a constant number
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of operations, as 3L+ b− 2, the total running time of the Campello algorithm for solving the

MMP has O(q) complexity.

The algorithm presented here has also the advantage of only using simple operations.

With the exception of the logδ, calculation the algorithm only uses additions (most of the

time simple increments), compares and index swapping.

Anyway, looking at the iterative form of (5.3.16) which makes use of (5.3.16) and (5.3.17),

in order to properly perform the algorithm, we are obliged to starting from the index i = 2−L,

and go incrementing i until |b (i)| > B.

The following "closed form" of (5.3.15) will instead allow to start from any index i =

2− L, 3− L, ..., b.

if b ≤ L :

|b (i)| =





i+L−1∑
u=1

u ·Nu−1 , 1− L ≤ i ≤ 1− L+ b

i+L−1∑
u=1

u ·Nu−1 −
(i−b)+L−1∑

u=1
u ·Nu−(i−b) , 1− L+ b ≤ i ≤ 1

L∑
u=1

u ·Nu−1 −
L−b∑
u=1

u ·Nu−1+b +
i−1∑
v=1

·
b−1−v∑
u=0

Nu , 1 ≤ i ≤ b

(5.3.18)

else if b > L :

|b (i)| =





i+L−1∑
u=1

u ·Nu−1 , 1− L ≤ i ≤ 1

L∑
u=1

u ·Nu−1 − (i− 1)
L−1∑
u=0

Nu , 1 ≤ i ≤ b+ 1− L

L∑
u=1

u ·Nu−1 +
(
b− L

) L−1∑
u=0

Nu +
i−(b+1−L)∑

v=1
·
L−1−v∑
u=0

Nu , b+ 1− L ≤ i ≤ b

(5.3.19)

It is clear that the cost of a single iteration, by using one of the latter expression is higher

compared to the cost of an iteration using (5.3.15), (5.3.16), (5.3.17), but the fact that we

could start from any index we want, does not forbid the possibility of shortening the number

of iteration, for example by selecting a starting index as a function of the channel gains.

However, we have only derived the "closed form expression" from the respective iterative

ones by induction; the issue of how to use them has only been supposed and it has not been

faced in this thesis.
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5.4 Concluding remarks

It is important to emphasize how the water-filling principle play a fundamental role in

the design of a bit and power allocation strategy. Its greedy principle of "loading more" those

channel which are in a better condition concerning the level of the noise, in order to maximize

the mutual information, is often the core issue also when the objective function changes.

Furthermore, it is worth stressing the theoretical aspect of the water-filling, which, aiming

at obtaining the Shannon capacity of a multichannel system, it assumes Gaussian inputs and

error probability tending to zero, both infeasible requirements. Anyway, by introducing an

SNR gap, as seen in Section 5.1, we were able to slightly modify the initial problem in order

to, approximately, take into account the real conditions of integer input constellations and

finite BER.

An optimal solution to the problem of the input distribution differing from the Gaussian,

when wanting the power allocation policy that maximizes the mutual information over parallel

channels, is the mercury/waterfilling [64], [75]. However, its coverage is wide, complicated

and it uses tools, like the nonlinear input-output estimation MMSE [76], which would need

more than a chapter for their description.

Instead, we have preferred focusing on two practical techniques: the Hughes-Hartogs

algorithm and the Campello algorithm, which, although they are both too slow for modern

wireless mobile communication systems.
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Chapter 6
Campello algorithm with cognitive

implementation

With the increase in the demand for radio frequency (RF) spectrum, and with the non-

availability of "prime" spectrum, the expansion of the existing services or the allocation of

spectrum for additional services was an important technical challenge identified by the sci-

entific community. The traditional spectrum allocation techniques rely on segmenting the

available spectrum and assigning the fixed blocks to the licensed users. In such a spectrum

allocation scenario, unlicensed users are not permitted to access the already licensed bands

since strict regulations are imposed on their access. As a result of the prohibition on the unli-

censed access to licensed spectrum, heavily populated and highly interference-prone frequency

bands have to be accessed. Clearly, this results in reduced system performance.

Nowadays most of the radio frequency spectrum is mainly inefficiently used and we can

exploit the fact that at any given time and place, a significant part of spectrum is unused by

existing legacy systems. For example, channel occupancy measurements in the range 30MHz

- 3GHz conducted in 2005 at six locations in USA revealed an average occupancy rate of only

5.2% [77]. The measured average occupancy rate ranges from 1% at Radio Astronomy site

to 13.1% in New York City.

Figure 6.1 shows a measurement campaign conducted at the Information Technology and

Telecommunications Center (ITTC) on 8/31/2005 [4]. The spectral occupancy from 9 kHz

to 1 GHz is shown. From this figure, it is observed that there are several spectral white

spaces in the licensed portions of the spectrum demonstrating that allocated spectrum is

under-utilized. Thus, what was basically thought of, as an apparent scarcity of spectrum is

actually the result of the under-utilization caused by existing spectrum allocation policies.

Hence, the need for a novel spectrum allocation policy has been identified.
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Figure 6.1: Spectrum occupancy measurements from 9 kHz to 1 GHz (8/31/2005,

Lawrence, KS, USA) [4]

The basic objective of the recent spectrum allocation policy is the promotion of secondary

utilization of unused portions of the spectrum in the form of spectrum pooling, wherein, unli-

censed users rent licensed portions of the spectrum from a common pool of spectral resources

from different owners [18]. This improves the utilization of the spectral resources while po-

tentially generating additional revenue to the licensed users. However, the implementation of

a spectrum pooling system raises many technological, economic and political questions, that

need to be answered for the successful coexistence of the legacy1 and rental systems. Efficient

pooling of the radio spectrum is achieved by using a cognitive radio, which is a multi-band,

spectrally agile radio that employs flexible communication techniques and detects the pres-

ence of primary user transmissions over different spectral ranges to avoid interference to the

licensed users.

Thus these white spaces can change in time their position in frequency spectrum and their

width. In Figure 6.2 we can see primary users (dark colors) transmitting in a discontinuous

manner according to their needs. So the secondary user can take advantage by the parts of

1The terms legacy systems and primary systems are used to refer to the licensed owners of the

RF spectrum whereas the terms rental systems and secondary systems are used to refer to the users

that utilize the idle licensed portions of the spectrum.

134



the spectrum left free by primary users in order to increase its bandwidth and to establish

transmissions at an increased data-rate. In this chapter we will consider transmissions with

constant data-rate. Hence we will assume that the number of subcarriers and the duration

of the multicarrier symbol are given parameters.

Figure 6.2: Application of cognitive radio paradigm

A filterbank-based cognitive system must continually sense the spectrum in order to detect

the free parts of the spectrum and it must set its transmission parameters (as the number

of subcarriers and/or the overlapping factor) according to the bandwidth availability in the

current time slot to avoid or minimize the interference with active transmissions in adjacent

spectrum.

When the OFDM technique is employed by cognitive radio systems, new challenges ap-

pear, raising recently interesting research topics [5]. One of the main challenges in OFDM

cognitive radio systems is spectrum shaping. In OFDM-based systems, spectrum shaping

means determining the subcarriers to be used by the OFDM system while keeping the inter-

ference to and from primary users at a negligible level. Once spectrum sensing information

is acquired, this knowledge should be utilized to select the subcarriers to be used by the sec-

ondary/cognitive users. This problem is addressed in [78] by using energy detectors over each

subcarrier. Moreover, a detection criterion is used to determine used subcarriers. Spectrum

sensing is directly related to the sensing problem for spectrum hole identification. However,

cognitive radio might prefer to skip some opportunities depending on the power and network

traffic requirements.

Moreover OFDM system can adjust its waveform by turning off some subcarriers in order

to exploit the available spectrum holes. The receiver, however, should be informed about

subcarriers that are deactivated and that are to be used. Signaling of this information should

be performed carefully in order to prevent interference to primary users while keeping the

bandwidth loss at minimum. Detection of those unused subcarriers can also be performed
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blindly. However, to the best knowledge of the authors, no work in this area has been

done yet. One method to reduce the overhead due to signaling is proposed in [79]. The

activation/deactivation of subcarriers is performed over a block of subcarriers instead of

each individual subcarrier. Hence, the signaling overhead can be reduced by a factor of each

blockŠs size. Moreover, depending on the channel quality and available resources, parameters

like FFT size, CP size, etc. can be changed and this information should also be conveyed to

the receiver.

Synchronization is another important issue that needs to be addressed in OFDM system

design. With the introduction of cognitive radio, new aspects are introduced to the problem.

The narrow band interference, which can interfere with the preamble, is one of the problems

[80]. Furthermore, the incomplete subcarrier set might be an issue for preambles, and pilots

might fall into unused subcarriers if used. Moreover, if multiple user accessing is employed,

the subcarriers can be assigned to different users. To keep the orthogonality between subcar-

riers and avoid interference, all users should be synchronized to the receiver as illustrated in

Figure 6.3(a) where the subcarriers of the primary users are plotted with blue lines while the

subcarriers of the cognitive system are plotted with red lines. If the synchronization fails (see

Figure 6.3(b)) then the orthogonality condition does not hold true any longer, because the

subcarrier frequencies of the secondary users do not coincide with the nulls of the sinc-shaped

spectrum of the primary users and the mutual interference appears. A zoomed version of

spectrum depicted in Figure 6.3 are shown in Figure 6.4 in order to appreciate the differences

between the spectrum obtained with and without the frequency synchronization. In [80], it is

shown that longer preambles are needed in CR-OFDM systems as compared to conventional

systems. Moreover, new preamble structures are introduced and their performance for time

and frequency synchronization is investigated.

Finally the mutual interference between the secondary user and the primary ones should

be carefully considered when designing cognitive radio systems. The side lobes of modulated

OFDM subcarriers are known to be large as shown in Figure 6.5. As a result, there will be

power leakage from used subcarriers to nulled subcarriers which causes interference to the

licensed users. Various methods are proposed in the literature to reduce this leakage and

to enable co-existence of cognitive-OFDM systems with primary license owner systems. One

method is to make the sinc function (see 6.5) decay faster by windowing the time domain

OFDM samples [81]. Similar techniques have already been investigated to reduce ICI and

out-of-band radiation in OFDM systems [82], [83]. In [81], a raised-cosine window is applied.

By changing the roll-off factor of the raised-cosine window, interference reduction of up to 6

dB has been achieved. The drawback of this method is the reduction of system throughput

due to the temporal extension of time domain signal to maintain orthogonality. Another

method for reducing the interference is to adaptively deactivate the subcarriers that are

adjacent to the subcarriers occupied by licensed users [81]. This way the interference can be
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(b) Lack of frequency synchronization with primary user

Figure 6.3: Cognitive OFDM system

greatly reduced as most of the interference comes from the neighboring subcarriers. However,

the obvious disadvantage of this method is the reduction of spectral efficiency. Instead of

deactivating the neighboring subcarriers, their values can be determined actively in order

to cancel the interference in the deactivated bands. This technique is proposed in [84], [85]

and referred to as active interference cancellation and cancellation carriers, respectively. It

is shown that the performance can be improved, however, determination of the values for

cancellation subcarriers is complex as it requires optimization. One last method for reducing

the interference to and from the narrowband primary users is subcarrier weighting [86], [87].

In this method, the subcarrier weights are determined in such a way that the sidelobes of the

transmission signal are minimized according to an optimization algorithm which allows several

optimization constraints. This way, more than 10 dB reduction in the sidelobes of OFDM

signal can be achieved. Note that subcarrier weighting requires constant envelope modulation

such as BPSK or QPSK. Moreover, the receiver does not need to know the weighting sequence

as the phase information is not changed. In addition to the aforementioned challenges, there
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(b) Lack of frequency synchronization

Figure 6.4: Cognitive OFDM system (zoom)

are other issues for practical implementation of OFDM cognitive radio systems.

Figure 6.5: Power spectrum density of a single OFDM subcarrier [5]

Some of the challenges just mentioned can be avoided adopting a NOFDM modulation

scheme such as the synchronization with the licensed users because the orthogonality con-

straint must no longer satisfied. Employing a NOFDM system we can shape the subcarriers

in order to decrease or even avoid any interference with primary users choosing pulses with

very low (or null) out-of-band sidelobe levels such as the RRC or the Gaussian pulse. An

other advantage of adopting the filterbank-based NOFDM systems relies on its flexibility.
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These systems can wisely adapt the transmitted signal shrinking the subcarriers, i.e. chang-

ing simply the overlapping factor according to the available bandwidth. OFDM systems

cannot shrink the subcarriers because of the orthogonality constraint. In Figure 6.6 we can

observe the behavior of a cognitive NOFDM system. In Figure 6.6(a) the available bandwidth

is about Bmax = 2 MHz and the overlapping is maximum according to the given signaling

interval, i.e. β = 1. In Figure 6.6(b), the available bandwidth is instead about Bmax = 4

MHz. Thus the GMC system is able to relax the overlapping among the subcarriers and β is

increased.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 a

m
pl

itu
de

frequency [MHz]

(a) Bmax ≈ 2 MHz

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 a

m
pl

itu
de

frequency [MHz]

(b) Bmax ≈ 4 MHz

Figure 6.6: Cognitive NOFDM system adopting gaussian shaping with two different

values of available bandwidth

Unfortunately the NOFDM technique presents even some drawbacks such as the high

amount of computational complexity
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6.1 Cognitive algorithm for filterbank-based systems

We will presents a very simple procedure that varies only the overlapping factor β while

the number of subcarriers is kept constant. As said before, the other given parameters are

the GMC symbol duration T and the length (in signalling intervals) of the prototype pulses

N
(Tx)
f . In this way the data-rate is kept constant. First of all we calculate the starting

sampling interval as Tsmin = 1
Bmax

. This value is even the minimum sampling interval that

we can employ according the available bandwidth and the Nyquist theorem. At the first

iteration of the algorithm we set Ts = Tsmin. Then we have to determine the number of

samples per GMC symbol according to the given GMC symbol duration. Thus

N = N =

⌊
T

Ts

⌋
(6.1.1)

The floor operator2 guarantees that N ∈ N and the overall bandwidth constraint is

checked. Then we can determine the overlapping factor β = N
M . However this value must

satisfy two constraints at the same time: the first one is that β must be equal or greater than

1 (otherwise the data transmission is impossible); the second constraint allows the efficient

filterbank implementation, i.e.

{
L = kN with k ∈ N

L = iM with i ∈ N
(6.1.2)

where L is the length (in samples) of the synthesis and analysis prototype pulses. The

constraint (6.1.2) means that the length of prototype pulse must be divisible both for the

number of subcarriers M and the number of samples per GMC symbols N . According to

(6.1.1, the constraint on N is automatically verified. Moreover because of L = β ·M ·N (Tx)
f =

N ·N (Tx)
f , (6.1.2) becomes

β ·N (Tx)
f ∈ N (6.1.3)

If β < 1 the algorithm fails because the constraints are "too strong". It means that the

starting parameters are ill-posed in particular T (too small) and/or Tsmin (too big), i.e. the

available bandwidth is not enough to put the M subcarriers with fixed bandwidth 1/T . In

this case the starting parameters have to be change in order to transmit. If the constraint

(6.1.3) is not checked, we have to decrease N of an unit and the new β value is re-calculate

until the constraint is checked.

This algorithm is summed up in Table 6.1.

2The floor operator ⌊·⌋ maps a real number to the next smallest integer.
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COGNITIVE ALGORITHM

Input : Bmax, M , T , N
(Tx)
f

Output : β

1. Calculate the sampling interval Ts = 1/Bmax;

2. Calculate the number of samples per GMC symbol as

N = ⌊T/Ts⌋;

3. Calculate the overlapping factor β = N/M ;

4. If β < 1, then "Error: constraints too strong";

5. If β ·N (Tx)
f ∈ N, then Exit;

6. else

7. N −−;

8. Go to point 3;

Table 6.1: Cognitive algorithm for the choose of β

6.2 Simulations and results

In this section we will show the results obtained with a filterbank-based GMC system

adopting the Campello algorithm as bit and power allocation algorithm and the cognitive

implementation in order to choose the β according to the available bandwidth. The Campello

algorithm works according to the Margin Maximization Problem (MMP) (see Section 5.3.2).

Hence these results will be compared with OFDM performances and with a NOFDM system

adopting an uniform bit allocation algorithm.

The simulations have been obtained with a filterbank-based multicarrier system with

M = 16 subcarriers and a Gaussian pulse and its dual as synthesis and analysis prototype

pulse. The pulse duration (in signaling interval) and the number of GMC symbols in each

frame is NGMC = N
(Tx)
f = 8. The GMC symbol last 4µsec because the simulations are

compared to an 16-subcarrier OFDM system working with a cyclic prefix of 4 samples and
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a sampling interval of Ts = 200 nsec. Thus the minimum bandwidth required by the (CP-

)OFDM system is equal to 5 MHz. The frame duration of both the NOFDM and OFDM

system is consequently 32µsec. The SNR gap is set to Γ = 2.5 dB in order to obtain a BER

constraint equal to BER = 10−2. The data-rate is set to 8 Mbit/s and hence the uniform bit

loading allocates 2 bits per each atom.

Two different approximations of the channel state information will be considered:

Partial CSI TX and full CSI RX. In this case the LMMSE equalizer A is calculated

using all the equivalent matrices H and NC , while at the transmitter the precoder B

is calculated employing only the main diagonal of the matrices H and NC . With this

approximation the transmitter does not consider the interference affecting the received

frames when it has to calculate the allocation of the transmitted power.

Partial CSI TX/RX. Both the LMMSE equalizer A and the precoder B are calculated

using only the main diagonal of the matrices H and NC . This time both the transmitter

and the receiver do not consider the interference.

In Figures 6.7, 6.8 and 6.9, the normalized average required transmitted power and the

BER curves are depicted when the overall available bandwidth Bmax is 5 MHz, 4.5 MHz and

4 MHz, respectively. The dashed lines refer to the simulations employing the uniform bit

loading algorithm, while the dashed black line is obtained with the OFDM system employing

the Campello algorithm and the minimum bandwidth. The overlapping factors β chosen by

the cognitive algorithm are shown in Table 6.2 for the different values of available bandwidth.

Bmax β

5 MHz 1.25

4.5 MHz 1.125

4 MHz 1

Table 6.2: The overlapping factors β chosen by the cognitive algorithm

The normalized average required transmitted power is the power required to satisfy the

BER constraint and the margin maximization and it is normalized with respect to the power

transmitted when any power allocation algorithm is employed, i.e. PTOT = q.

Looking at the Figures 6.7(a), 6.8(a) and 6.9(a), it can be notice that the BER constraint

is always checked except when the "Partial CSI TX/RX" approximation is assumed (green

lines). The loss of performances is mainly caused by the suboptimal LMMSE receiver that is

not able to perfectly compensate the interference affecting the received signal and it generates

more errors than other approximation where optimum equalization is assumed. When the
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available bandwidth decreases such as in Figures 6.8(a) and 6.9(a), the overlapping factor is

decreased by the cognitive algorithm and the subcarriers are compressed. Hence the global

interference grows and the performances given by suboptimal LMMSE equalizer worst.

The normalized average transmitted powers are depicted in Figure 6.7(b) when the avail-

able bandwidth is Bmax = 5 MHz. We can observe that the optimal assumption, i.e. full

CSI at the transmitter and at the receiver, the transmit power allocated is the same as the

OFDM system. When the "partial CSI TX" assumption is adopted (red and green lines)

the required power increases of about 1 dB because of the lack of information about the

interference during the bit allocation at the transmitter. Moreover the uniform bit allocation

requires about 10 dB more than Campello bit allocation. As stated previously, when the the

available bandwidth decreases such as in Figures 6.8(a) and 6.9(a) the interference increases.

Hence even the required power increases when the suboptimal bit allocation is adopted. In

fact when the maximum available bandwidth is Bmax = 4 MHz, the transmitted power is

about 4 dB greater than the optimum case.

In spite of that, the optimum bit allocation and the optimum equalizer (blue line) guar-

antee at any value of available bandwidth the same performances and the same required

transmitted power as the OFDM system, even when the available bandwidth is 20% less than

the minimum bandwidth required by the OFDM system.

In this scenario, the NOFDM system is no longer able to transmit when the available

bandwidth is less than 4 MHz, because the overlapping factor becomes smaller than 1. In

such a case we have to relax the constraint on the duration of the GMC symbol in order to

transmit.

Thus we can say that the NOFDM system is able to guarantee the same performances of

an OFDM system assuming the perfect knowledge of the channel state both at the transmitter

and at the receiver saving bandwidth and increasing the spectral efficiency according to the

spectrum occupancy. Moreover in a cognitive application where the available bandwidth can

change with time, this flexibility becomes a strong benefit compared to the OFDM systems.

In order to keep the BER constraint holding true when the "Partial CSI TX/RX" ap-

proximation is assumed we have to increase the SNR gap Γ. Hence the required transmitted

power increases in order to compensate the interference and the BER constraint holds true.

It can be notice, from Figure 6.10, that the SNR gap, employed to obtain BER = 10−2 when

the available bandwidth is Bmax = 4.5 MHz, becomes 3.8 dB. Instead, when Bmax = 4 MHz,

the SNR gap required is Γ = 7.5 dB (see Figure 6.11).

The results of the simulation depicted in Figures 6.12, 6.13 and 6.14 have been obtained

using a RRC prototype pulse with the roll-off factor α = 0.25 and N
(Tx)
f = NGMC = 16

GMC symbols per frame and assuming the available bandwidth equal respectively to 5 MHz,

4.5 MHz and 4 MHz. We can observe that the performances with the RRC pulse are better

than the performances obtained with the Gaussian pulse. The required transmitter power
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does not increase both when the available bandwidth decrease and when the approximations

on the channel state information are assumed. It can be notice only a slightly worsening of

the BER obtained when the available bandwidth decreases. We can compensate this loss of

performances given by the suboptimal bit allocation with an increase of the SNR gap.

In order to keep the BER constraint holding true when the "Partial CSI TX/RX" ap-

proximation we have to increase the SNR gap to Γ = 3.3 dB when the overall available

bandwidth is Bmax = 4 MHz (see Figure 6.15). Hence the RRC pulse is able to satisfy

the BER constraint transmitting less power than the Gaussian pulse when the "Partial CSI

TX/RX" approximation is assumed. The drawbacks are an higher computational complexity

than Gaussian pulse given by the increased length of the prototype pulse and consequently

an higher global latency of the system given by the doubled length of the frames.
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Figure 6.7: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 5 MHz and comparison with OFDM performances - Gaussian pulse
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Figure 6.8: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 4.5 MHz and comparison with OFDM performances - Gaussian pulse
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Figure 6.9: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 4 MHz and comparison with OFDM performances - Gaussian pulse
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Figure 6.10: SNR gap increase - Gaussian pulse
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Figure 6.11: SNR gap increase - Gaussian pulse

149



CHAPTER 6. CAMPELLO ALGORITHM WITH COGNITIVE
IMPLEMENTATION

0.001

2

4

6

8
0.01

2

4

6

8
0.1

2

4

6

8
1

B
E

R

20181614121086420

Eb/N0 [dB]

RRC pulse (α = 0.25)
Frame Length = 64 µsec
GMC Symbol Lenght = 4 µsec
Bmax = 5 MHz
16 subcarriers

 Uniform full CSI TX/RX
 Campello full CSI TX/RX
 Uniform full CSI RX - partial CSI TX 
 Campello full CSI RX - partial CSI TX 
 Uniform partial CSI TX/RX
 Campello partial CSI TX/RX
 Campello OFDM (5 MHz)

(a)

60

40

20

0

-20

N
or

m
al

iz
e 

A
ve

ra
ge

 P
ow

er
 [d

B
]

20181614121086420

N0
-1

 [dB]

RRC pulse (α = 0.25)
Frame Length = 64 µsec
GMC Symbol Lenght = 4 µsec
Bmax = 5 MHz
16 subcarriers

 Uniform full CSI TX/RX
 Campello full CSI TX/RX
 Uniform full CSI RX - partial CSI TX 
 Campello full CSI RX - partial CSI TX 
 Uniform partial CSI TX/RX
 Campello partial CSI TX/RX
 Campello OFDM (5 MHz)

(b)

Figure 6.12: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 5 MHz and comparison with OFDM performances - RRC pulse
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Figure 6.13: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 4.5 MHz and comparison with OFDM performances - RRC pulse
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Figure 6.14: Normalized average transmitted power and BER when the available

bandwidth is Bmax = 4 MHz and comparison with OFDM performances - RRC pulse
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Figure 6.15: SNR gap increase - RRC pulse
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Chapter 7
Conclusion

In this thesis, we have provided a general overview about generalized multicarrier systems

based on a filterbank structure. The main aspects discussed and the results obtained in this

work are:

• The complexity of the system is significantly decreased when the efficient polyphase

implementation is employed. Moreover a fast algorithm to find the dual prototype pulse

is presented. The pulse shaping and the overlapping among the subcarriers give newer

degrees of freedom than the OFDM modulation scheme. These degrees of freedom can

be exploited in the design of the system in order to improve the spectral efficiency and

increase the input/output mutual information.

• A new equivalent channel model is introduced in order to describe jointly the transmit-

ter filterbank, the frequency-selective channel and the receiver filterbank. The model

results well-suited and it allows to apply a joint transceiver design that adds a lin-

ear precoder at the transmitter and a LMMSE equalizer at the receiver. The joint

design allows to optimize different function objective as the mutual information. The

capacity-achieving design diagonalizes the model and it allocates the transmitted power

according to the well-known water-filling solution. In this case the optimum solution

minimizes the MSE. It has been showed as a NOFDM system can reach a better spec-

tral efficiency than the canonical CP-OFDM system because the presence of the cyclic

prefix cannot allow to decrease the signaling interval.

• The use of efficient end effective AMC algorithms is discussed in order to further

increase the achievable rates. The diagonalization of the GMC channel allows to apply

AMC algorithms originally designated to orthogonal multicarrier systems as Hughes-

Hartogs algorithm and the Campello algorithm.
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• In a cognitive radio scenario the filterbank-based system shows a better ability to

adapt its transmissions than the traditional CP-OFDM system thanks to the ability of

shrinking the subcarriers according to the available bandwidth. The OFDM systems

cannot shrink the subcarriers because of the orthogonality constraint. Moreover a

NOFDM system does not suffers frequency synchronization errors as the OFDM system

where a bad frequency synchronization can produce high level of interferences with

other users. It has been showed as the well-localized pulses like the Gaussian pulse

allows to decrease or to avoid the interferences with the transmissions of the primary

users. Finally some approximations on the channel state information knowledge of the

transmitter and the receiver is discussed and the relative performances are presented.

In this cases the loss of performances can be compensate increasing the transmitted

power.

7.1 Future work

There exist a number of areas for future work related to what has been presented in this

thesis.

• A fast algorithm have to be studied in order to decrease the computational complexity

of the joint transceiver design. The joint design presented in this thesis is based on

the perfect knowledge of the channel impulse response and in a time-varying scenario

the precoder and the equalizer have to be re-calculated every frame according to the

current channel state. Exploiting the Toeplitz block structure of the equivalent model

matrix and the approximations presented in the thesis, the research of a fast procedure

can be studied.

• It is possible to study the joint transceiver design in order to optimize other objective

function as the BER [88] or the SINR [59]. In these case the objective function results a

Schur convex and the optimum solution is achieved by adding a further rotation matrix

at the transmitter and by a different power allocation. Moreover the majorization

theory allows to study and optimize the nonlinear transceiver employing, for example,

a DFE equalizer [89], [90].

• Other bit and power loading algorithms can be implemented and discussed exploiting

the diagonalized structure as the Fisher-Huber and the Chow algorithm. Moreover the

performances can be studied with bit and power loading algorithm modified [91] and

adapted to the TF analysis and recently developed in order to be directly applicable

on the not diagonalized model.

• In a cognitive scenario, other algorithms can be develop in order to improve the per-

formances and the sharing of the frequency spectrum with primary users. It can be
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exploit the several degrees of freedom given by the filterbank-based system.

157



CHAPTER 7. CONCLUSION

158



Bibliography

[1] T. Kurt, M. Siala, and A. Yongaçoglu, “Multi-carrier signal shaping employing her-

mite functions,” in Proc. European Signal Processing Conference, (Antalya, Turkey),

EUSIPCO, Sep. 2005.

[2] R. Haas and J. C. Belfiore, “Mutliple carrier transmission with time-frequency well-

localized impulses,” IEEE Second Symposium on Communications and Vehicular Tech-

nology in the Benelux, pp. 187–193, 1994.

[3] IST-027960 URANUS Deliverable 3.1, GMCR transceivers for air interfaces in single-

mode operation, Jan. 2007.

[4] R. Rajbanshi, OFDM-based cognitive radio for DSA networks. Ph.d dissertation, Uni-

versity of Kansas, Lawrence, KS, USA, May 2007.

[5] H. Arslan, H. A. Mahmoud, and T. Yücek, “OFDM for cognitive radio: Merits and

challenges,” in Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems,

ch. 11, pp. 325–353, Springer Netherlands, 2007.

[6] W. Kozek and A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communica-

tions in doubly dispersive channels,” IEEE Journal on Selected Areas in Communica-

tions, vol. 16, pp. 1579–1589, Oct. 1998.

[7] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data trans-

missions,” Bell Systems Technical Journal, vol. 45, pp. 1775–1796, 1966.

[8] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time

has come,” IEEE Commun. Mag., pp. 5–14, May 1990.

[9] A. Vahlin and N. Holte, “Optimal finite duration pulses for OFDM,” IEEE Transactions

on Communications, vol. 44, pp. 10–14, 1995.

[10] R. Haas and J. C. Belfiore, “A time-frequency well-localized pulse for multiple carrier

transmission,” Wireless Personal Communications, vol. 5, pp. 1–18, 1997.

159



BIBLIOGRAPHY

[11] G. Cherubini, E. Eleftheriou, and S. Ölçer, “Filtered multitone modulation for very high-

speed digital subscriber lines,” IEEE journal on selected area in communications, vol. 20,

pp. 1016–1028, Jun. 2002.

[12] ETSI EN 301 958, Digital Video Broadcasting (DVB): Interaction channel for Digital

Terrestrial Television (RCT) incorporating Multiple Access OFDM, Mar. 2002.

[13] W. T. Webb and R. Steele, “Variable rate QAM for mobile radio,” IEEE Transactions

on Communications, pp. 2223–2230, Jul. 1995.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley,

1991.

[15] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their

applications,” IEEE Transactions on Communications, vol. 36, pp. 389–400, Apr. 1988.

[16] Wikipedia, “Cognitive radio — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Cognitive_radio.

[17] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,”

IEEE Personal Communications, vol. 6, pp. 13–18, Aug. 1999.

[18] T. A. Weiss and F. K. Jondral, “Spectrum pooling: an innovative strategy for the en-

hancement of spectrum efficiency,” IEEE Communications Magazine, vol. 42, pp. 8–14,

Mar. 2004.

[19] J. Hillenbrand, T. A. Weiss, and F. K. Jondral, “Calculation of detection and false

alarm probabilities in spectrum pooling systems,” IEEE Communications Letters, vol. 49,

pp. 349–351, Apr. 2004.

[20] R. V. Prasad, P. Pawelczak, J. A. Hoffmeyer, and H. D. Berger, “Cognitive functionality

in next generation wireless networks: Standardization efforts,” IEEE Communications

Magazine, Apr. 2008.

[21] C. Heil and D. Walnut, “Continuous and discrete wavelet transforms,” SIAM Review,

vol. 32, pp. 628–666, 1989.

[22] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,”

IEEE Trans. Information Theory, vol. 36, pp. 961–1005, Sept. 1990.

[23] W. MathWorld, “L2-Funciton — Wolfram MathWorld.” http://mathworld.wolfram.

com/L2-Function.html.

[24] O. Christensen, An Introduction to Frames and Riesz Bases. Birkhauser, 2002.

[25] S. Qian and D. Chen, “Joint time frequency analysis,” Signal Processing Mag., pp. 52–67,

Mar. 1999.

160



BIBLIOGRAPHY

[26] J. M. Morris and Y. Lu, “Discrete Gabor expansion of discrete time signals in l2(Z) via

frame theory,” Signal Processing Mag., vol. 40, pp. 155–181, 1994.

[27] H. Bölcskei and F. Hlawatsch, “Equivalence of DFT filter banks and gabor expansions,”

Proc. SPIE, vol. 2569, 1995.

[28] Z. Cvetkovic and M. Vetterli, “Oversampled filter banks,” IEEE Trans. Signal Processing,

vol. 46, pp. 1245–1255, May 1998.

[29] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice-Hall, 1993.

[30] J. Wexler and S. Raz, “Discrete Gabor expansion,” Signal Processing Mag., vol. 21, no. 3,

pp. 207–220, 1990.

[31] H. G. Feightinger and T. Strohmer, Gabor Analysis and Algorithms: Theory and Appli-

cations. Birkhauser, 1998.

[32] Y. S. Choi, P. J. Voltz, and F. A. Cassara, “On channel estimation and detection for mul-

ticarrier signals in fast and selective Rayleigh fading channels,” IEEE Trans. Commun.,

vol. 49, pp. 1375–1387, 2001.

[33] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terestial TV

broadcasting,” IEEE Commun. Magazine, pp. 100–109, Feb. 1995.

[34] G. Cherubini, E. Eleftheriau, S. Ölçer, and J. M. Cioffi, “Filter bank modulation tech-

niques for very high-speed digital subscriber lines,” IEEE Commun. Magazine, vol. 38,

pp. 98–104, May 2000.

[35] M. G. Bellanger, G. Bonnerot, and M. Coudreuse, “Digital filtering by polyhase network:

Application to sample-rate alteration and filter banks,” IEEE Trans. Acoustics, Speech,

and Signal Processing, vol. 24, pp. 109–114, Apr. 1976.

[36] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filterbank transceivers optimizing

information rate in block transmissions over dispersive channels,” IEEE Transaction on

Information Theory, vol. 45, pp. 1019–1032, Apr. 1999.

[37] S. Li, “Discrete multi-Gabor expansions,” IEEE Transaction on Information Theory,

vol. 45, pp. 1954–1967, Sep. 1999.

[38] “DMT: Cyclic prefix.” http://cnx.org/content/m11762/latest/.

[39] R. Hleiss, P. Duhamel, and M. Charbit, “Oversampled OFDM systems,” in Proc. Int.

Conf. on DSP, (Santorini, Greece), pp. 329–332, July 1996.

[40] M. Sandell, Design and analysis of estimators for multicarrier modulation and ultrasonic

imaging. PhD thesis, Lulea Univ. Technol., Lulea, Sweden, 1996.

161



BIBLIOGRAPHY

[41] IST-027960 URANUS Deliverable 3.1, User-defined air interfaces based on a generalized

multicarrier representation, Aug. 2008.

[42] P. Prinz, “Calculating the dual Gabor window for general sampling sets,” IEEE Trans-

actions on Signal Processing, vol. 44, pp. 2078–2082, Aug. 1996.

[43] F. Gardner, “Interpolation in digital modems: Part I: Fundamentals,” IEEE Trans.

Commun., vol. 41, pp. 501–507, Mar. 1993.

[44] S. Qian and D. Chen, “Discrete Gabor transform,” IEEE Trans. Signal Processing,

vol. 41, pp. 2429–2439, Jul. 1993.

[45] S. Qian, “Optimal biorthogonal analysis window function for discrete Gabor transform,”

IEEE Transactions on Special Processing, vol. 42, pp. 694–697, Mar. 1994.

[46] L. Auslander, I. C. Gertner, and R. Tolimieri, “The discrete Zak transform application

to time-frequency analysis and synthesis of nonstationary signals,” IEEE Trans. Signal

Processing, vol. 39, no. 4, 1991.

[47] T. Genossar and M. Porat, “Can one evaluate the Gabor expansion using Gabor’s iter-

ative algorithm?,” IEEE Trans. Signal Processing, vol. 40, pp. 1852–1861, Aug. 1992.

[48] S. L. Campbell and C. D. M. Jr., Generalized Inverses of Linear Transforms. New York

Dover, 1991.

[49] O. Christensen, Atomic decomposition via projective group representations. Rocky Moun-

tain J. Math, to appear.

[50] H. G. Feichtinger, O. Christensen, and T. Strohmer, “A group-theoretical approach to

gabor analysis,” Opt. Eng., vol. 34, pp. 1697–1704, 1995.

[51] J. G. Proakis, Digital Communications. Mc-Graw Hill, 4th ed., 2002.

[52] Wikipedia, “Raised-cosine filter — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Raised-cosine_filter.

[53] Wikipedia, “Root-raised-cosine filter — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Root-raised-cosine_filter.

[54] Wikipedia, “Hermite polynomials — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/wiki/Hermite_polynomials.

[55] ICT-211887 PHYDYAS Deliverable 5.1, Prototype filter and structure optimization, Jan.

2009.

[56] G. Matz, D. Schafhuber, K. Gröchenig, M. Hartmann, and F. Hlawatsch, “Analysis, op-

timization, and implementation of low-interference wireless multicarrier systems,” IEEE

Transactions on Wireless Communications, vol. 6, pp. 1921–1931, May 2007.

162



BIBLIOGRAPHY

[57] K. Gröchenig, Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001.

[58] N. Al-Dhahir and J. M. Cioffi, “Block transmission over dispersive channels: Transmit

filter optimization and realization and MMSE-DFE receiver performance,” IEEE Trans.

Inform. Theory, vol. 42, pp. 137–160, Jan. 1996.

[59] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint tx-rx beamforming design for mul-

ticarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans-

actions on Signal Processing, vol. 51, pp. 2381–2401, Sep. 2003.

[60] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications.

New York: Academic, 1979.

[61] J. M. Cioffi and G. D. Forney, Communications, Computation, Control and Signal Pro-

cessing, ch. 4. Generalized decision-feedback equalization for packet transmission with

ISI and Gaussian noise. MA: Kluwer: Eds. Boston, 1997.

[62] P. Viswanath and V. Anantharam, “Optimal sequences and sum capacity of synchronous

CDMA systems,” IEEE Trans. Inform. Theory, vol. 45, pp. 1984–1991, Sep. 1999.

[63] J. Yang and S. Roy, “Joint transmitter-receiver optimization for multiinput multi-output

systems with decision feedback,” IEEE Trans. Inform. Theory, vol. 40, pp. 1334–1347,

Sep. 1994.

[64] A. Lozano, A. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian

channels with arbitrary input distributions,” IEEE Transaction on Information Theory,

vol. 52, no. 7, 2006.

[65] R. Hoshyar, S. H. Jamali, and A. R. S. Bahai, “Turbo coding performance in OFDM

packet transmission,” Proc. VTC 2000, vol. 2, pp. 805–810, May 2000.

[66] E. Malkamki and H. Leib, “Coded diversity on block-fading channels,” IEEE Trans.

Inform. Theory, vol. 45, pp. 771–781, Mar. 1992.

[67] E. Malkamki and H. Leib, “Rate 1/n convolutional codes with interleaving depth of n

over a block fading rician channel,” in Proc. IEEE Veh. Technol. Conf., (Phonix, AZ),

pp. 2002–2006, May 1997.

[68] R. Knop and P. A. Humblet, “Maximizing diversity on block fading channels,” in Proc.

IEEE Int. Conf. Commun. ’97, (Montreal, Quebec, Canada), pp. 647–651, Jun. 1997.

[69] B. Devillers, J. Louveaux, and L. Vandendorpe, “Bit and power allocation for goodput

optimization in coded parallel subchannels with ARQ,” IEEE Transactions on Signal

Processing, Aug. 2008.

[70] D. Hughes-Hartogs, “Ensemble modem structure for imperfect transmission media.” U.S.

Patents Nos. 4,679,227 (July 1987), 4,731,816 (March 1988), and 4,833,706 (May 1989).

163



BIBLIOGRAPHY

[71] J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in Proc.

Int. Symp. Information Theory (ISIT’98), (Cambridge, MA), p. 193, Aug. 1998.

[72] J. Campello, “Practical bit loading for DMT,” in Proc. Int. Conf. Communications

(ICC’99), vol. 56, (Vancouver, BC, Canada), pp. 801–805, Jun. 1999.

[73] W. Bednorz, Advances in Greedy Algorithms. I-Tech, 2008.

[74] P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver

loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans-

actions on Communications, vol. 43, pp. 773–775, Feb./Mar./Apr. 1995.

[75] A. Lozano, A. M. Tulino, and S. Verdu, “Mercury/waterfilling for fixed wireless OFDM

systems,” in Proc. IEEE Radio and Wireless Symp. (RWS’06), (San Diego, CA), pp. 211–

214, Jan. 2006.

[76] D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum mean-square error

in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, pp. 1261–1283, Apr. 2005.

[77] M. McHenry, “NSF spectrum occupancy measurements,” Technical report, The Shared

Spectrum Company, Aug. 2005. http://www.sharedspectrum.com/?section=nsf_

measurements.

[78] T. A. Weiss, J. Hillenbrand, and F. K. Jondral, “A diversity approach for the detection

of idle spectral resources in spectrum pooling systems,” in Proc. 48th Int. Scientific

Colloquium, (Ilmenau, Germany), pp. 37–38, Sep. 2003.

[79] A. M. Wyglinski, “Effects of bit allocation on non-contiguous multicarrier-based cognitive

radio transceivers,” in Proc. IEEE Veh. Technol. Conf., Sep. 2006.

[80] T. Weiss, A. Krohn, F. Capar, I. Martoyo, and F. Jondral, “Synchronization algorithms

and preamble concepts for spectrum pooling systems,” IST Mobile & Wireless Telecom-

munications Summit, Jun. 2003.

[81] T. A. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, “Mutual interference in

OFDM-based spectrum pooling systems,” in Proc. IEEE Veh. Technol. Conf., vol. 4,

2004.

[82] C. Muschallik, “Improving an OFDM reception using an adaptive Nyquist windowing,”

IEEE Trans. Consumer Electron., vol. 42, pp. 259–269, Aug. 1996.

[83] S. H. Muller-Weinfurtner, “Optimum Nyquist windowing in OFDM receivers,” IEEE

Trans. Commun., vol. 49, pp. 417–420, Mar. 2001.

[84] H. Yamaguchi, “Active interference cancellation technique for MB-OFDM cognitive ra-

dio,” in Proc. IEEE European Microwave Conf., vol. 2, (Amsterdam, the Netherlands),

pp. 1105–1108, Oct. 2004.

164



BIBLIOGRAPHY

[85] S. Brandes, I. Cosovic, and M. Schnell, “Sidelobe suppression in OFDM systems by

insertion of cancellation carriers,” in Proc. IEEE Veh. Technol. Conf., vol. 1, (Dallas,

TX), pp. 152–156, Sep. 2005.

[86] I. Cosovic, S. Brandes, and M. Schnell, “A technique for sidelobe suppression in OFDM

systems,” in Proc. IEEE Global Telecommunications Conf. (Globecom), vol. 1, (St. Louis,

MO), pp. 204–208, Nov./Dec. 2005.

[87] I. Cosovic, S. Brandes, and M. Schnell, “Subcarrier weighting: a method for sidelobe

suppression in OFDM systems,” IEEE Commun. Lett., vol. 10, pp. 444–446, Jun. 2006.

[88] L. G. Ordonez, D. P. Palomar, A. Pagès-Zamora, and J. R. Fonollosa, “Minimum BER

linear MIMO transceivers with adaptive number of substreams,” IEEE Transactions On

Signal Processing, vol. 57, pp. 2336–2353, Jun. 2009.

[89] A. A. D’Amico and M. Morelli, “Joint Tx-Rx MMSE design for MIMO multicarrier

systems with Tomlinson-Harashima precoding,” IEEE Transactions On Wireless Com-

munications, vol. 7, pp. 3118–3127, Aug. 2008.

[90] S. Bergman, D. P. Palomar, and B. Ottersten, “Joint bit allocation and precoding for

MIMO systems with decision feedback detection,” IEEE Transactions On Signal Pro-

cessing, vol. 57, pp. 3118–3127, Nov. 2009.

[91] A. Kliks and H. Bogucka, “New adaptive bit and power loading policies for general-

ized multicarrier transmission,” in Proc. 17th European Signal Processing Conference,

(Glasgow, Scotland), pp. 1888–1892, EUSIPCO, Aug. 2009.

165


