
Università di Pisa
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Specialistica in Tecnologie Informatiche

Tesi di Laurea

Design of a 3D mouse using
accelerometers

Laureando: Relatore:
Lucio Davide Spano Dott. A. Cisternino

Anno Accademico 2008/2009

Ai miei genitori
To my parents

Abstract

In later years, the number of devices equipped with accelerometers has highly

increased, due to their employment in mobile devices for screen orientation

and in games for gesture recognition. This thesis debates their advantages

and limitations for the creation of a three-dimensional mouse prototype, using

a game controller equipped with these sensors. After describing their func-

tioning and highlighting which kind of applications they already support, the

work focuses on the design and the implementation of a library for managing

a three-dimensional pointer abstraction. In order to address the position drift

problem, due to the fact that an accelerometer cannot distinguish between

the gravity and input acceleration, two motion-tracking algorithms are pro-

posed: the first one is based only on a three-axial accelerometer and is able

to recognize either linear motion on three axes or rotation about two axes.

The second one, combining the input of an accelerometer and a gyroscope,

can recognize linear motion and rotation on three axes at the same time.

The abstraction is tested in a three dimensional environment where the user

can move and rotate the pointer, register and analyse movement data. In

conclusion are discussed the possible application of the results in windows

systems and for future works.

Riassunto analitico

Negli ultimi anni, il numero di dispositivi equipaggiati con accelerometri

è notevoltemte aumentato, a causa del loro impiego nei dispositivi mobili

per l’orientamento dello schermo e nei giochi per il riconoscimento di gesti.

Questa tesi discute i loro vantaggi e limitazioni per la creazione di un pro-

totipo di mouse tridimensionale, utilizzando un controller per videogames

equipaggiato con questi sensori. Dopo la descrizione del loro funzionamento e

delle applicazioni che attualmente supportano, il lavoro si concentra nella pro-

gettazione ed implementazione di una libreria per la gestione dell’astrazione

di un puntatore tridimensionale. Per risolvere il problema della deriva della

posizione, dovuta al fatto che un accelerometro non può distinguere fra

l’accererazione di gravità e quella di input, sono proposti due algoritmi: il

primo è basato solo su un accelerometro triassiale ed è in grado di riconoscere

in modo esclusivo il movimento lineare su tre assi o la rotazione su due. Il

secondo, combinando l’input di un accelerometro e di un giroscopio, può

riconoscere i movimenti lineari e le rotazioni su tre assi allo stesso tempo.

L’astrazione è stata provata in un ambiente tridimensionale dove l’utente può

muovere e ruotare il puntatore, registrando ed analizzando i dati del movi-

mento. In conclusione sono discusse le possibili applicazioni in un sistema a

finestre e gli sviluppi futuri.

Contents

Introduction and motivation 3

Introduction . 3

Motivation . 6

1 IMS technologies and applications 9

1.1 Structure and properties . 9

1.1.1 Mono-axial accelerometers 10

1.1.2 Gyroscopes . 12

1.2 Applications . 16

1.2.1 Accelerometers . 16

1.2.2 Gyroscopes . 18

1.2.3 Gesture recognition . 19

2 Prototype Hardware 25

ii

2.1 Selection criteria . 25

2.2 Wiimote description . 28

2.3 Wiimotion Plus description 30

3 Mouse 3D library design 33

3.1 Requirements . 33

3.1.1 Motivation . 33

3.1.2 Definition . 36

3.2 Components . 38

3.3 Packages . 39

3.3.1 Overview . 39

3.3.2 WiimoteAdaptor package 40

3.3.3 Mouse3D package . 42

4 Mouse 3D library implementation 45

4.1 Wiimote data reading . 45

4.2 Mouse abstraction . 49

4.3 Motion tracking algorithm . 52

4.3.1 Interpreting data . 52

4.3.2 Three axis accelerometer 56

4.3.3 Combination of accelerometers and gyroscopes 60

4.3.4 Gesture samples . 61

5 Test environment 67

5.1 Windows Presentation Foundation 67

ii

iii

5.2 Environment user interface . 70

5.2.1 Interactive 3D space 71

5.2.2 Acceleration and rotation monitoring 73

5.3 Data Recorder . 75

6 Conclusions and future works 77

6.1 Conclusions . 77

6.1.1 Requirements review 80

6.2 Future works . 82

6.2.1 Algorithm improvements 82

6.2.2 User testing . 83

6.2.3 Window manager integration 83

iii

iv

iv

List of Figures

1.1 Model of an accelerometer . 11

1.2 Single degree of freedom mechanical gyroscope 13

1.3 MEMS gyroscope categories 15

2.1 Wiimote controller . 28

2.2 Wiimote accelerometer axis orientation 29

2.3 Wiimote with the Wii Motion Plus extension 30

3.1 Mouse 3D library components 38

3.2 Class diagram of the WiimoteAdaptor component 41

3.3 Class diagram of the Mouse3D component 42

4.1 Implementation of the WiimoteAdaptor package 47

4.2 Implementation of the Mouse3D package 50

4.3 Tilt calculation with accelerometers 54

2

4.4 Change of gravity orientation with respect to the device during

motion . 55

4.5 Accelerometer motion tracking algorithm 59

4.6 Accelerometer and gyroscope motion tracking algorithm 62

4.7 Linear motion recognition on Y axis 64

4.8 Linear motion recognition on X and Y axis 64

4.9 Pitch rotation recognition using an accelerometer 65

4.10 Yaw rotation recognition using a gyroscope 65

5.1 The test environment UI for the pointer control 71

5.2 The test environment UI for data analysis 72

5.3 Linear motion along the Z axis 73

5.4 Rotation movement around the X axis (pitch) 74

5.5 Graph plotting example . 75

2

Introduction and motivation

Introduction

This thesis discusses the development of a three-dimensional mouse library,

using accelerometers as main input sensors. It is also considered the intro-

duction of a gyroscope in order to enhance their motion tracking capabilities.

A mono-axial accelerometer is a device able to recognize the acceleration

on one axis. Due to the fact that it is internally built using a damped

mass attached to an elastic component (i.e. a spring), the acceleration is

proportional to the difference between the current and the rest position of the

mass. As a result, the accelerometer senses the gravity when it is motionless.

A gyroscope exploits the conservation of the angular momentum for sens-

ing the rate of the rotations about one or two axis.

Many MEMS (Micro Electro-Mechanical Systems) implementations of

these sensors are available on the market, and they found many applications

4

in different fields. However the currently increasing usage of accelerometers is

on mobile devices: many smartphones and PDAs (Personal Data Assistant)

are equipped with them.

Due to this fact, many studies have been carried out in gesture recogni-

tion algorithms using these devices, mainly based on statistical models rather

than on the physical meaning of sensor output. The motivation is the inte-

gration process drift that affects the resulting position and the inability in

distinguish the gravity from the input acceleration when the device is moving

and rotating.

A mouse 3D prototype has been developed using the Wiimote1 con-

troller for the Nintendo Wii game console, which has the advantage of being

equipped with a three-axis accelerometer and has also the possibility to be

expanded with a gyroscope (the Wii Motion Plus2). Furthermore this device

is really cheap compared to PDA, and smartphones and is designed specifi-

cally to be used as a gesture recognition controller.

The library for supporting the 3D mouse abstraction has been designed

in order to be device independent, introducing an intermediate abstraction

layer which allows having a homogeneous representation of the input data

for many appliances.

The 3D pointer abstraction contains information about the button pressed,

the current position as a three-dimensional point and the rotation angle about

the three axes.

1http://www.nintendo.it/
2http://www.nintendo.it/

4

http://www.nintendo.it/
http://www.nintendo.it/

5

Two motion tracking algorithm are introduced, which propose a novel

approach in order to exploit the physical meaning of the sensed data. The

first one uses only the accelerometer and is able to recognize the motion on

three or the rotation about two axes. Such movements cannot be recognized

at the same time, due to the fact that the tilt recognition is performed

exploiting the gravity sensing, which can be considered only if the device is

motionless. The criterion for separating the two motion types represents the

novelty with respect to previous works. It exploits the acceleration module:

if its value is close to the mean gravity acceleration, the device is considered

motionless.

The second algorithm uses also gyroscopes in order to recognize the device

rotations. Due to the fact that the data for each type of movement comes

from a different sensor, it is possible to recognize rotations and linear motions

at the same time.

The test environment, developed using the Windows Presentation Foun-

dation technology, is able to show the movements of an arrow in a three

dimensional space, which represents the mouse pointer: it changes its po-

sition according to the linear motions and its orientation according to the

rotation. Graphs for data visualization are displayed together with together

with the current direction of the gravity acceleration, in order to have feed-

backs on the algorithm results. The program is also able to save the sensed

input in order to perform various tests on the same data.

The thesis is structured as follows: chapter 1 describes in details the

sensors and their applications in related works, chapter 2 is about the selected

5

6

hardware and its properties, chapter 3 highlights the library design principles,

chapter 4 shows how the concepts are lowered into the implementation and

discusses the details about the two gesture recognition algorithms, chapter

5 demonstrates the test environment, finally chapter 6 is about conclusions

and future works.

Motivation

Through the years of my studies in Computer Science, I gradually found out

that the thing I like most in this discipline is trying to create programs which

can simplify the way people works. Especially in later years I concentrated

on Human Computer Interaction field, and I was so excited by all the studies

about novel communication channels between a human being and a machine.

Such enhancements in interaction are represented by novels tangible user

interfaces, where is it possible to interact with real objects (cubes, spheres

etc.) in order to provide input to the applications, or the multi-touch in-

teraction which is now available with the Apple iPhone3 and through wider

screens, as in Microsoft Surface4.

A real revolution on the interaction in later years has been the introduc-

tion of the Wiimote5 controller for the Nintendo Wii game console. Using

a combination of accelerometers and an infra-red camera, the game interac-

tion is much more natural, because the player controls his avatar performing
3http://store.apple.com/
4http://www.microsoft.com/surface/
5http://www.nintendo.it/

6

http://store.apple.com/
http://www.microsoft.com/surface/
http://www.nintendo.it/

7

body motions rather than using a regular controller. This opened a new great

market for video games: also people who never considered amusing staying

in front of a screen pushing buttons, tried this modality and found it really

intuitive.

This change has not yet arrived for desktop computers, though that differ-

ent attempts have been made in order to overcome the standard interaction

techniques.

With my work I tried to deal with the problems in creating an interaction

abstraction for developers: the success of an input device is really tied to the

simplicity of both development libraries and interaction capabilities. The

main focus of my thesis, and I hope of my future work, is trying to define

such models in order to have more friendly interfaces.

7

8

8

1
Inertial Measurement Sensors:

technologies and applications

This chapter discusses the manufacturing and the properties of the sensors

exploited for the creation of the three-dimensional mouse library. After that

an overview of their application and of the related work in gesture recognition

is provided.

1.1 Structure and properties

This section will introduce the structure and the functioning of two types of

Inertial Measurement Sensors (IMU): the mono-axial accelerometer and the

gyroscope.

IMS technologies and applications 10

1.1.1 Mono-axial accelerometers

A mono-axial accelerometer is a sensor for the measurement or the recording

of accelerations along one axis. Almost all sensors on the market have the

same functioning principle: the behaviour of mass attached to a spring (or

another elastic component), forced to move only along its extension direction.

The mass is also damped in order to avoid oscillations.

When the inertial body senses an external force (i.e. gravity), the spring

lengthens or shortens according to its direction, until the elastic force bal-

ances the external one. The sensor output is proportional to the spring

displacement. As shown in figure 1.1, the mass is constrained to linear mo-

tions, so one accelerometer is needed for each dimension considered (i.e. for

measuring a three dimensional acceleration, three accelerometers are needed).

If the linear motion direction is not perpendicular to gravity, the accele-

rometer senses as input not only the acceleration to be measured, but also

the component of gravity which is parallel to its motion. If this component

is constant or it is possible to establish its variations during the measure-

ment, it must be subtracted from the output. Otherwise it is impossible to

distinguish it from the real input.

The mathematical model can be defined combining Hooke’s law and New-

ton’s second law of motion1:

mc = −kx− bdx
dt
, (1.1)

where c is the acceleration sensed by the mass, x the displacement measured
1for more information, please see [SJ05] p. 190 and 116

10

IMS technologies and applications 11

Figure 1.1: Model of an accelerometer

on the spring, m the hanging mass, k the elastic constant of the spring and

b the damping coefficient. The acceleration c can be expressed using two

components: the spring reaction and the input of the sensor:

c = d2x

dt2
− d2y

dt2
, (1.2)

and substituting it in 1.1 gives

m
d2x

dt2
+ b

dx

dt
+ kx = m

d2y

dt2
. (1.3)

The differential equation 1.3 represents the mathematical model for the ac-

celerometer. It is of a second order, which means that the selection of a

damping coefficient which yields to a critically damped state is important in

order to avoid oscillations.

Many MEMS (Micro Electro-Mechanical Systems) implementations of the

mono-axial accelerometer exist: the detection of the mass displacement with

11

IMS technologies and applications 12

respect to the accelerometer case can be done with many transducers capable

to sense microscopic movement or linear accelerations. The following is a

short summary of the main types, for a more detailed description see [Fra04]:

• Capacitive Accelerometers contain a plate connected to the case (which

is stationary) and another one attached to the inertial mass, which

is free to move inside the housing. The two plates form a capacitor

modulated by their distance. A circuit creates a signal proportional to

its capacitance.

• Piezoresistive Accelerometers incorporate strain gauges for measuring

the strain of the mass supporting spring, which can be correlated with

its displacement.

• Piezoeletric Accelerometers exploit the ability of some crystals and cer-

tain ceramics to produce an electric potential when compressed. In

these models, the piezoeletric crystal is both the sensor and the elastic

element. When acceleration occurs, the mass compresses the crystal

which generates directly the output signal.

1.1.2 Gyroscopes

A gyroscope is a rotating device which can keep constant the direction of its

spin axis, exploiting the fundamental principle of the conservation of angular

momentum, as defined in [SJ05]:

12

IMS technologies and applications 13

the total angular momentum of a system is conserved if the net

external torque acting on the system is zero2.

The mechanical version of a gyroscope is composed by a massive toroidal

rotor (see figure 1.2), wrapped with a framework free to rotate about one or

two axis.

Figure 1.2: Single degree of freedom mechanical gyroscope

Such device has two important properties that can be exploited for mea-

suring the torque3:

1. without the action of external forces, the spin axis of a gyroscope will

remain fixed with respect to the space;
2[SJ05] SERWAY R.A., JEWETT J.W. Principles of physics: a calculus-based text

Thomson Learning 2005 316.
3for more information, please see [SJ05] p. 350.

13

IMS technologies and applications 14

2. if the gyroscope platform rotates about a plane perpendicular to its spin

axis (the input axis in figure 1.2), it will turn the spin axis around a

third axis, perpendicular with respect to the plane defined by the others

(the output axis is figure 1.2). This phenomenon is called precession.

Those two properties and the conservation of angular momentum state

that the rate of rotation of the spin axis about the output axis is proportional

to the applied torque:

T = IωΩ, (1.4)

where T is the input torque, I the gyroscope inertia, ω the angular speed of

the rotor (supposed to be fixed) and Ω is the angular rate about the output

axis.

These type of gyroscopes are not suitable for building low cost devices:

rotors, motors, support bearing, etc. limit the possibility to reduce the di-

mension of the device and the construction is very difficult. Thus other

MEMS technologies have been developed and the most common implemen-

tations are based on a vibrating element, which replaces the rotor.

The functioning principle of such devices relies on the Coriolis accele-

ration, an apparent acceleration caused by the change of radial position of

an object in a rotating reference frame4. The device is equipped with a

suspended mass moving with a simple linear harmonic motion. When the

support of the mass is rotated around a direction perpendicular to the har-

monic motion, the sensor detects the movement of the mass caused by the
4for more information, please see [SJ05] p. 159

14

IMS technologies and applications 15

Coriolis acceleration, which is proportional to the rate of turn5

The three main types of MEMS vibrating gyroscopes are described in

[TW04] and summarized by figure 1.3:

Figure 1.3: MEMS gyroscope categories

1. Simple oscillators. They are oscillators that can be modelled as a single

vibrating mass. This type of gyroscopes has problem of mechanical

asymmetry which makes the sensor sensitive to external vibrations.

2. Balanced oscillators. A pair of test masses is driven to resonate and the

displacement from the plane of oscillation is measured to produce the

rotation rate. Such devices overcome the problems of simple oscillators.

3. Shell resonators. The mass has a form of cylinder, ring or hemisphere

which is symmetric about the axis of rotation.
5for more information, please see [Fra04] p.316

15

IMS technologies and applications 16

1.2 Applications

Accelerometers and gyroscopes have a plenty of applications, a good sum-

mary can be found at [AA.c].

1.2.1 Accelerometers

In engineering, the accelerometers are used for sensing the vibration on cars,

machine health surveillance6 (rotating equipment, gear failure etc.) and

building monitoring7(in particular for safety, i.e. seismic activity). The inclu-

sion of accelerometers in notebooks allowed the creation of a Quake-Catcher

Network8: a distributed and low cost network for earthquakes studying and

monitoring.

In Biological Sciences high frequency acceleration recording is used in

order to study the animals when they are out of sight, collecting information

about the expending energy in the wild9 10.

Such devices found application also in medicine, for example in sport

watches for runners in order to determine their speed and evaluate the dis-

6[Boy03] BOYES W. Instrumentation Reference Book Elseiver Science 2003
7[Saa06] SAAR O. S. Dynamics in the Practice of Structural Design WIT Press 2006.
8http://qcn.stanford.edu/
9 [TTR+05] SUGA et al. Method for underwater measurement of the auditory brain-

stem responce of fish Fisher Science 71 (5), 2005, 1115-1119.
10 [WWQ+06] WILSON et al. Moving towards acceleration for estimates of activity-

specific metabolic rate in free-living animals: the case of the cormorant Journal of Animal

Ecology 5 (75), 2006, 1081–1090.

16

http://qcn.stanford.edu/

IMS technologies and applications 17

tance covered(produced by Nike11, Polar12, ect.), or as steps counter to en-

courage people to walk, for instance in Belgium.

In Inertial Navigation Systems accelerometers are used as helper sensors

(i.e. used when no other system is available): also if used in combination

with gyroscopes, they have proved to be unsuitable for this purpose because

of the error growth in the integration process through the time (see [TP05]).

Certainly the raise of interest for such devices is derived by the incor-

poration into personal appliances: smartphones and PDAs (Personal Data

Assistant) includes accelerometers for different purposes, such as switch bet-

ween portrait and landscape screen mode, and for creating fancy interaction

in video-games (tilt or shake). The following is a brief list of manufactures

which includes accelerometers in their devices:

• Apple (iPhone, iPod touch and iPod nano 4G)13

• HTC (Dream, Hero, Touch Pro, Touch Pro 2, Touch Diamond, Touch

Diamond 2 etc.)14

• Nokia (5500, N95 and N82)15

• Samsung (Omnia, Omnia HD and GT-I7110)16

11http://www.nike.com/
12http://www.polaritalia.it/it/
13http://store.apple.com/
14http://www.htc.com
15http://www.nokia.com/
16http://www.samsung.com

17

http://www.nike.com
http://www.polaritalia.it/it/
http://store.apple.com/
http://www.htc.com
http://www.nokia.it/
http://www.samsung.com

IMS technologies and applications 18

• Sony-Ericsson (G705, W595, W760, W910, K850i etc.)17

Apple and Lenovo18 laptops include accelerometers to detect drops in order

to avoid hard disk data loss.

Another field where the accelerometers are recently used is the enter-

tainment. Modern consoles have controllers equipped with accelerometers

for gesture-recognition, like Nintendo’s Wiimote19 (for Nintendo Wii) or the

Sony DualShock 3 (for PlayStation 3)20. The Wiimote controller features

will be discussed more in detail in section 2.2.

1.2.2 Gyroscopes

Gyroscope sensors have been used in spacecraft orientation. For example

the Cassini-Huygens in 1997 has been equipped with small hemispherical

resonator gyroscopes, as described in [LG05].

In automotive systems, the first micro-machined yaw rate sensor was in-

troduced by [LGG+97] in 1997, for the Electronic Stability Programs (ESP).

It evolved through three generations of sensors, which allow vehicle stabi-

lization (Electronic Active Steering), roll-over mitigation (ROM), suspension

control (Active Suspension Control) and also the first tries to remove as

many mechanical components as possible from the steering mechanism of

cars (Steer by Wire). A further discussion on the structure of the sensors
17http://www.sonyericsson.com/
18http://www.lenovo.com/
19http://www.nintendo.it/
20http://it.playstation.com/

18

http://www.sonyericsson.com/
http://www.lenovo.com/
http://www.nintendo.it/
http://it.playstation.com/

IMS technologies and applications 19

employed can be found in [NGK+07].

Gyroscopes are beginning to be used also in entertainment: Nintendo

created an expansion for its Wiimote control, called WiimotionPlus21 , which

uses MEMS gyroscopes for enhancing its motion sensing capabilities. This

device will be analysed more in detail in section 2.3.

Such devices are applied also in image stabilization systems for video

or photo cameras, and also for managing the tail rotor of radio-controlled

helicopters.

1.2.3 Gesture recognition

The spread of mobile devices equipped with MEMS accelerometers caused

the raise of studies on gesture recognition in Human Computer Interaction

research area. The possibility to have such wireless equipments opens new

possibilities for interaction in many applications: for musical input, in home

environments, in augmented reality, in palmtop interfaces and also for the

classic interaction with computers.

Many experiments have been carried out, especially with only a three

axial accelerometer (which is the most common sensor included in mobile

devices). The following is a short summary of the state of the art in this

area.

In [SH97] is presented aMIDI (Musical Instrument Digital Interface) con-

troller based on a set of ten gestures. The input was collected using an acce-

21http://www.nintendo.it/

19

http://www.nintendo.it/

IMS technologies and applications 20

lerometer based system. A similar application can be found in [MP97], where

the baton for the orchestra in Brain Opera’s installations (where untrained

people interacted intuitively with the music) is implemented through inertial

components, still for managing MIDI controllers. The baton was composed

by five pressure-sensitive resistors condensed into the stick, a three axial

accelerometer in the base and an infra-red LED on the top. The resistors

measured the hand pressure, the accelerometers sensed drag movements and

beats, while the infra-red emission was received by a photo-diode sensitive

only to the signal radiated by the baton, which determines its horizontal and

vertical position. The data was sent to an host computer for processing.

Early works in palmtop interfaces started with the design of graspable

displays. In [SI97] was proposed a prototype of a virtual newspaper, able to

slide down the text if the display was tilted around its base. In [Bar00] was

introduced the Itsy research prototype from Compaq, a small PDA equipped

with a three axial accelerometer. The author designed the Rock ’n’ scroll user

interface and tested it with a photo album, controlled by device movements.

Tilt was associated to scrolling functions, fanning gesture were employed

for viewing the next or the previous photo, while holding the device on a

position changed the screen orientation from landscape to portrait and vice

versa. Event thought that the approach leads to great possibilities for PDA

interfaces, some problems rose in separating the old interaction techniques

from the new ones: for instance during a test with a video game, it was

impossible to distinguish movements of the device caused by an enthusiastic

button press from the tilt gesture.

20

IMS technologies and applications 21

The design of a new device able to perform inertial measurement is

demonstrated in [BP01]. The instrument is a 3.18 centimetres side large

cube, equipped with three single axis gyroscopes and two two-axial accele-

rometers, able to recognize basic gestures (such as line motion an twist) on

six axes. The authors made the choice of having a recognition algorithm

implemented on board, which consists of two steps. The first searches for

peaks in a reasonable timing window, in order to identify the portion of the

signal where a motion may be present, while the second determines if the

gesture is present and which type can be identified in each window. They

created also an abstraction of the device capabilities for developers, in order

to create applications on top of it.

Another experiment in dynamic gesture recognition for mobile devices

can be found in [MMST00]. Here is presented an approach for the recogni-

tion of static (display up or down, phone on left or right ear) and dynamic

acceleration (watch the caller number when alarming, answer a call etc.).

For static phone gesture recognition is suggested the exploitation of self-

organizing maps of Kohonen22 , an artificial neural network able to form

spatially organized feature maps from a n-dimensional input, with unsuper-

vised learning (the machine receives only the input, without a given cate-

gorization of the target outputs). Such networks are usually exploited for

feature extraction and pattern recognition. It is possible to extract how the

mobile is used training them with normal usage acceleration signals. For re-

22for further information please see [Gun97] p. 123

21

IMS technologies and applications 22

cognizing dynamic accelerations, the application of a Hidden Markov Model23

is proposed, a statistical representation of the random evolution of a system,

supposed to be memoryless. The adjective hidden is due to the fact that the

state of the model is not directly observable (in this case the machine cannot

directly observe the gesture), but it is visible only the output dependent on

it (the accelerometer data). The training process allows building the prob-

ability set which connects the observable states with the unobservable ones.

With those techniques, the recognition accuracy for static acceleration was

between 89.4 and 100 percent, while for dynamic acceleration was between

88 and 100 percent. The dynamic motion recognition had problems tied to

the shape of the phone and the physical traits of users. In other research

works by the same group, the Hidden Markow Model training was refined us-

ing gesture duplicates perturbed by Gaussian noise, obtaining a recognition

accuracy of 98 percent for a DVD player gesturing interface in [MKKK04]

and for a video recorder in [KKM+06].

A similar application of Hidden Markow Models was also employed by

[SPHB08], using a NintendoWiimote24 controller as input device. The frame-

work developed in this work allows the user to train the system with any kind

of gesture and, after that, the software can distinguish among the gestures

recorded. They performed also an evaluation on five gesture types (square,

circle, roll, Z, tennis smash) and obtained an averaged recognition rate of 90

percent.

23for further information please see [Alp04] p. 305
24http://www.nintendo.it/

22

http://www.nintendo.it/

IMS technologies and applications 23

Late works tried to reach a higher recognition rate, going beyond the

Hidden Markow Models. In [WPZ+09] is described a novel method for

accelerometer-based gesture recognition called FDSVM (Frame Based and

multi-class Support Vector Machine) . This approach firstly collects the

gesture data and represents it using a frame-based descriptor, and then a

multi-class gesture classifier based on a supervised learning method called

Support Vector Machine25 is used in order to recognize gesture features. The

algorithm was claimed to have a higher recognition rate compared with other

approaches.

25for further information please see [Alp04] p. 218

23

IMS technologies and applications 24

24

2
Prototype Hardware

In order to develop the three dimensional mouse library, a prototype of the

input device is needed. This chapter describes the hardware employed for its

realization and the selection criteria.

2.1 Selection criteria

In late years, various devices equipped with accelerometers were introduced

on the market, as already discussed in section 1.2. Most of them are PDAs

or smartphones from different manufacturers, with different shapes and ca-

pabilities. For this reason the choice was to select an existing device rather

than build a new one.

The following requirements were considered for its selection:

R.2.1 Availability of a three-axial accelerometer sensor.

The device has to be equipped with sensor able to recognize the acce-

leration on three dimensions.

Prototype Hardware 26

R.2.2 Availability of a three-axial gyroscope sensor.

The device has to be equipped or expanded with a sensor able to re-

cognize the angular rate on three dimensions.

R.2.3 Availability of wireless communication capabilities.

The device has to be able to send the sensed data to a desktop computer

without a wired connection. This requirement has two purposes: the

first is ensuring the possibility to establish a communication between

the device and the PC, the latter is having an instrument not limited

in its movement by a connection wire.

R.2.4 Availability of code libraries for reading the output of sensors.

The sensors output reading has to be possible, either with software

running on the device or on the connected computer.

R.2.5 Cost.

The device should be cheap in order to be affordable to as many people

as possible.

R.2.6 Ergonomics

The device should be comfortable in use.

PDAs and smartphones allow the development of software which runs on

the device. This leads the possibility to define a standard data format for

the output of different sensors. However this is not possible for equipments

designed only as input devices, such as the Nintendo Wiimote1, and it is
1http://www.nintendo.it/

26

http://www.nintendo.it/

Prototype Hardware 27

unlikely to suppose to have this feature in all devices.

The Wiimote is the device closest to the idea of three dimensional mouse.

Reviewing all the requirements in detail, its usage has no drawbacks for the

prototype creation:

R.2.1 It is equipped with a three-axial accelerometer (see section 2.2).

R.2.2 It is possible to expand it with a three-axial gyroscope (see section 2.3)

R.2.3 It is possible to connect it to a personal computer via a Bluetooth2

connection.

R.2.4 The data format of the accelerometer and gyroscope output has been

reverse-engineered. Code-libraries for reading it are available.

R.2.5 The Wiimote is cheaper than every PDA or a smartphone: it costs

about 30C, while the WiimotionPlus costs about 20C.

R.2.6 It is the only device designed for sensing hand motions, so it is really

comfortable to use.

The Nintendo’s controller has also other hardware for gesture recognition

(i.e. the infra-red camera) but, in order to maintain the compatibility with

the other devices, it is not exploited in the prototype development. Thus,

the Nintendo solution for motion tracking, based on the combination of a

triangulation on the infra-red camera output and the accelerometer data,
2Bluetooth is an industry standard for Wireless Personal Area Networks (WPAN). For

more information please see [AA.a]

27

Prototype Hardware 28

cannot be used. The following sections of this chapter describe more in

detail the Wiimote and Wii Motion Plus features.

2.2 Wiimote description

The Wii Remote, unofficially called Wiimote, is the main controller of the

Nintendo Wii game console3. Its particular design can be seen in figure 2.1:

it has the shape of a remote controller, usable with one hand, rather than

the classic two-handed form of a game controller.

Figure 2.1: Wiimote controller

The communication with the console is based on a Broadcom BCM2042 4

Bluetooth chip. It works also with a personal computer, because it relies on

the Bluetooth Human Interface Devices standard from [AA.a], a protocol for
3http://www.nintendo.it/
4http://www.broadcom.com/

28

http://www.nintendo.it/
http://www.broadcom.com/

Prototype Hardware 29

the support of devices such as joysticks, mouses and keyboards, maintained

by [AA.a]. It has a wide support in operating systems, due to its derivation

from the USB (Universal Serial Bus) Human Interface Device protocol. Its

maximum report frequency is of 100Hz.

The controller contains an Analog Devices ADXL330 5 three-axial capa-

citive accelerometer, located on the top surface of the main circuit, near the

A button (see figure 2.1). This sensor can measure accelerations in a ±3g

range6, with a sensitivity of 10%. The orientation of the axis with respect to

the device is shown in figure 2.2.

Figure 2.2: Wiimote accelerometer axis orientation

The Wiimote is equipped with a 128×96 monochrome camera, which has

5http://www.analog.com/
6g is the standard symbol for the gravity acceleration, approximately 9.8ms−2

29

http://www.analog.com/

Prototype Hardware 30

built-in image processing capabilities. Looking through the infra-red filter in

the remote casing top, it can track up to four moving objects. This camera,

used together with the Sensor Bar (a crosspiece with two infra-red clusters

at each end), is exploited in Wii games for pointing objects displayed on the

screen (buttons, menus etc.) via a triangulation algorithm.

The device has a proprietary port on its bottom, where various controller

extensions (Nunchuck, Classic Controller, Guitar Hero Guitar, Guitar Hero

Drums, Balance Board, Wii Motion Plus) can be plugged.

This and other technical information on the Wiimote can be found at

[AA.b].

2.3 Wiimotion Plus description

Figure 2.3: Wiimote with the Wii Motion Plus extension

30

Prototype Hardware 31

TheWii Motion Plus is an extension for theWiimote controller (see figure

2.3), equipped with two vibrating gyroscopes: the dual-axis InvenSense IDG-

600 7 and the single-axis EPSON TOYOCOM X3500W 8. The first one senses

the angular rate about the X and Y axis (pitch and roll), while the second

sensor recognizes it about the Z axis (yaw), as shown in figure 2.2. Their

sensitivity is on the order of 1%.

7http://www.invensense.com/
8http://www.epsontoyocom.co.jp/

31

http://www.invensense.com/
http://www.epsontoyocom.co.jp/

Prototype Hardware 32

32

3
Mouse 3D library design

This chapter discusses the design of the Mouse 3D library. The first part

describes the requirements elicitation and formalization process, while the

second and the third deeply analyse the conceptual modelling of the classes

within the library.

3.1 Requirements

3.1.1 Motivation

The project objective is the creation of an abstraction able to represent a

three-dimensional pointer over the space. The definition of a set of require-

ments is needed in order to define success criteria for the software library

development.

The requirements elicitation process has started from the observation of

interaction through the ordinary two-dimensional mouse, and from the analy-

Mouse 3D library design 34

sis of the common window tool kit development API s (Application Program-

ming Interfaces). The identification of mouse distinctive properties has been

performed relying on the author’s usage experience. The most important

aspects can be summarized as follows:

• A mouse has usually three buttons and a scroll wheel. The buttons are

exploited for selecting objects which currently contains the pointer.

• The physical device motion is not directly mapped to the pointer, but

it is scaled in order to increase or decrease its sensitivity.

• When the device is lifted and its position changes, the movement are

not sensed by the window system. This fact means that is possible to

“turn off” the mouse motion-tracking process when needed.

• The screen pointer responds immediately to user inputs, without wait-

ing for the end of a gesture. Some interaction techniques (i.e. drag and

drop) exploit this feature for direct object manipulation.

In order to compare the approaches for mouse input management, an

analysis of various windows tool kit as been performed as well. The conside-

red frameworks were Microsoft Windows Forms1 and Windows Presentation

Foundation2, Java Swing3 and the HTML 4.0 DOM 4 The API s are quite

similar to each other and they offers at least the following data:
1for more information, please see [Mac05] p. 67
2for more information, please see [Mac08] p. 171
3for more information, please see [Zuk05] p.23
4for more information, please see [Fla06] p.389

34

Mouse 3D library design 35

• A two dimensional point which corresponds to the mouse pointer rela-

tive position with respect to the target widget reference system (usu-

ally it is the distance between the top left corner of the widget and the

pointer position).

• Information about the button clicked and the number of clicks.

• Information about wheel scroll amount.

In all considered tool kits, the occurrence of a mouse input is notified

using the observer pattern from [GHJV95]. The common modelled events

are:

• Mouse move. It occurs in case of a mouse motion. Usually the notifi-

cation contains the information about the current position.

• Mouse down. It occurs when a mouse button has been pressed. The

notification contains information in order to identify the button.

• Mouse up. It occurs when a button has been released. The notification

contains information in order to identify the button.

• Mouse over. It occurs when the mouse pointer is over the widget area

(sometimes it is called also Mouse enter).

• Mouse out. It occurs when the mouse pointer has just leaved the widget

area (sometimes it is called also Mouse exit).

35

Mouse 3D library design 36

In order to support such notifications, it is sufficient to represent the

pointer abstraction with its absolute position in a three dimensional space,

reporting also button-related information. The calculation of the widget-

relative mouse position, the mouse-over or mouse-out notifications etc. is

performed by the window system and do not belong to the pointer represen-

tation.

Another trivial requirement, which is also the main hardware selection

criteria as described in section 2.1, is that the user input has to be sensed

using accelerometers and gyroscopes. The prototype should be exploited in

order to find out the possibilities and limitations in employing accelerometers

for creating a three dimensional mouse, with or without coupling them with

gyroscopes.

3.1.2 Definition

The following is a formalization of the requirements for the 3D mouse library.

R.3.1 Definition of gestures using a 3D accelerometer.

The library realization must have a set of recognizable gestures, ex-

ploiting only the data coming from a three-axial accelerometer.

R.3.2 Definition of gestures using a combination of a 3D accelerometer and

a 3D gyroscope.

The library realization must have a set of recognizable gestures exploit-

ing a combination of a 3D accelerometer and a 3D gyroscope.

36

Mouse 3D library design 37

R.3.3 Definition of an abstract 3D mouse pointer.

The library realization must define a consistent abstraction of a 3D

mouse pointer. It must include at least its position in space and infor-

mation about pressed or released buttons.

R.3.4 Sensitivity control.

It must be possible to modify the device sensitivity with respect to its

motion.

R.3.5 Device independence.

Even though that the prototype will be created using a specific device,

the library must be designed in order to easily support the integration

of other similar appliances.

R.3.6 Status change notification.

The library must have an interface in order to allow the notification of

the pointer abstraction status changes.

R.3.7 Real-time response.

The user must not notice delays on gestures elaboration. It should be

possible for an application built on top of the 3D mouse abstraction to

give feedback also during the gesture, according to the current pointer

status.

R.3.8 Stop tracking.

It must be possible to stop the gesture tracking in order to move the

device without changing the pointer state.

37

Mouse 3D library design 38

3.2 Components

After the requirements elicitation process, the library design continued with

the definition of its components and their relations.

The structure of the identified components is shown in figure 3.1. The

analysis of the accelerometer data and the gesture recognition is done by

the Mouse3D component, which contains all the classes for the mouse state

management. It is responsible for the gesture recognition and for the de-

finition of all details regarding the pointer abstraction provided: the state

representation, the possible input gestures, its sensitivity and its change no-

tification mechanism. This component is the core of the library and all the

requirements will be evaluated against it.

Figure 3.1: Mouse 3D library components

The Mouse3D component relies on an interface, the Device3D, as its

generic input provider. If one specific device has to be supported, the data

must be exchanged through this interface definition, in order to let the com-

ponent to be agnostic of the data reading details, according to the require-

ment R.3.5.

38

Mouse 3D library design 39

All components which provide the Device3D interface are responsible to

deal with the specific data representation of a particular device, separating

the concerns of data reading and analysis: the generic adaptor component

decodes the data from the specific device-dependent format and encodes it

according to the Device3D interface, while the Mouse3D component analyses

it in order to produce changes on the pointer status.

In Figure 3.1 is shown the WiimoteAdaptor, which is tied to the Wiimote

data reading. The GenericAdaptor component represents all other possible

adaptor for similar appliances.

The Mouse3D component provides also the Mouse3DPointer interface,

exploited by a generic user interface (represented by the UI component in

figure 3.1) in order to receive notifications about pointer state changes.

3.3 Packages

3.3.1 Overview

The next step was the refinement of the component definition in software

packages and classes.

The package structure reflects the components organization. The pro-

totype consists of three packages: WiimoteAdaptor, Mouse3D and a UI (a

test user interface for the library). This chapter does not focus on the last

package, which is discussed later in chapter 5.

First of all, it was decided to include all the interfaces for inter-component

39

Mouse 3D library design 40

data exchange into the Mouse3D package, in order to gather all the classes

shared by the components in a single place. However, a Mouse3D cannot be

used without a concrete device adaptor. This means that a working set of

classes which correspond to the component interface cannot be completely

defined in this package. For this reason the Device3D class must be abstract

(it cannot be directly instantiated).

The Mouse3DPointer can be a concrete class indeed, since it does not

depend on package-external inputs.

The following sections discuss in detail the class design for all packages.

3.3.2 WiimoteAdaptor package

The WiimoteAdaptor package contains the classes responsible to read data

from the Wiimote and adapt it to the format expected from the Mouse3D

component, hiding device dependent characteristics, in order to meet the

requirement R.3.5. The involved classes for solving this problem are shown

in figure 3.2.

The Mouse3D package contains the abstract Device3D class, which rep-

resents the generic device adaptor. It has operations for attaching and de-

taching Device3DListeners and an operation for notifying the occurrence of

device state change. The latter is represented by the DeviceState class and

contains the generic information provided by an three-axial accelerometer

and gyroscope: the acceleration (AccX, AccY and AccZ attributes) and the

angular rate (Yaw, Pitch and Roll) on three dimensions.

40

Mouse 3D library design 41

Figure 3.2: Class diagram of the WiimoteAdaptor component

When a change of state in the generic device occurs, the Device3D exe-

cutes the StatusChanged operation. It contains the invocation of the OnDe-

viceStateChanged operation for all the attached Device3DListeners, which

are the abstract observer of a Device3D.

The WimoteAdaptor package contains two concrete Device3D: the Wi-

imoteDevice3D and the WiimotionPlusDevice3D. Both read data from the

same device, but the first one adapts only the accelerometer related data,

41

Mouse 3D library design 42

while the second one extract also the angular rate from the Wii Motion Plus

extension.

3.3.3 Mouse3D package

The three dimensional pointer abstraction is contained in the Mouse3D pac-

kage. Its structure is outlined by figure 3.3. The entire class design relies

on polymorphism and on the observer pattern from [GHJV95], both for data

reading and providing. The Device3DSampleSource class is a subtype of De-

Figure 3.3: Class diagram of the Mouse3D component

42

Mouse 3D library design 43

vice3DListener, which is the abstract observer of a concrete Device3D (see

section 3.3.2), the super-class of all accelerometer-enabled appliances. The

Device3DSampleSource is also a subtype of the SampleSource abstract class,

the generic data provider for the pointer abstraction. Such modelling distin-

guishes the pointer data providing concept from the generic device manage-

ment, opening the possibility to attach data sources which are not directly

tied to a device. This feature has a practical rather than theoretic motivation:

the possibility to repeat different test on previous recorded data, emulating

the real device.

The pointer is represented by theMouse3DPointer abstract class, which is

an observer of the generic data source SampleSource. The latter class contains

the regular operations of the subject in the observer pattern. It can Attach

or Detach a Mouse3DPointer and, through the NewSample operation, notify

the arrival of a new Sample, which is the generic input of a Mouse3DPointer.

The pointer class is also a data source, observed by a generic abstract

Mouse3DListener, which is the super-type of all classes interested on Mouse-

3DPointer status changes (i.e. the user interfaces). The notification of

such variations is performed by the Mouse3DStatusChanged operation of the

Mouse3DPointer class, which consist of the invocation of the OnMouse3D-

StatusChanged operation for all attached Mouse3DListeners (another ob-

server pattern application).

The pointer state is represented by the Mouse3DState class which at de-

sign stage includes, according to the requirement R.3.3, at least the Position

and the Buttons information.

43

Mouse 3D library design 44

It is worth pointing out that the data flow from the Device3D to the

Mouse3DListener is a pipeline (it can be seen in figure 3.2 and 3.2 following

the observe relations), where each subsequent stage may buffer some data.

Thus, in order to meet the R.3.7, it is sufficient to make the condition

that the time duration corresponding to buffed data must be lower than the

gesture extent, at least of an order of magnitude, though that a movement

least about one second.

The concrete classes which refineMouse3DPointer areAccMouse3DPointer

and AccGyroMouse3DPointer. The first is designed for recognizing gestures

relying only on accelerometer data, while the second exploits the combination

of both accelerometers and gyroscopes. Internally they contain a workflow

based on concrete subtypes of SampleFilter. This class is a generalization

of all basic analysis that can be done on Sample attributes, represented as

a generic function, which has a Sample as parameter and as output. Their

output may depend either only on a single Sample or on a certain number

of samples received before. The modelling of this generic class allows defin-

ing reusable operations such as means, integration etc. and combining them

quickly, in order to define the behaviour of the pointer abstraction. All the

SampleFilters implemented to create the prototype are described in section

4.3.

44

4
Mouse 3D library implementation

This chapter describes the implementation of the Mouse 3D library, develo-

ped for the Microsoft .Net framework in C#1 for Windows.

4.1 Wiimote data reading

The Wiimote, as already explained in section 2.2, can communicate with a

personal computer through a Bluetooth connection. First of all, the pairing2

process must be completed. This operation must be performed using the

operating system interface. After that, the Wiimote is listed as a Human

Interaction Device and it is possible to open a handle for the device using

the HID and Device Management Win32 APIs. Once this handle has been

opened, the computer can start to send and receive reports (the communica-

1for more information, please see [Tro07]
2in the Bluetooth protocol, the pairing is the process of a relationship between two

devices encrypting data using a shared secret. For more information, please see [AA.a]

Mouse 3D library implementation 46

tion unit in HID) from the Wiimote.

The report data format has been reversed engineered by [AA.b] and the

WiimoteLib, a .Net library for the communication management is available

at [Pea].

This library allows the developer to:

• Send a command to the device in order to specify which data is needed

from the application. For instance, the developer can use only the

accelerometer data, without caring about the infra-red camera output.

• Receive notifications (events) about the current output of the desired

sensors and buttons.

• Receive notifications on the hardware plugged into the expansion port.

At the time of writing, the reading of the accelerometer data, the infra-

red camera output and the notifications about the state of buttons work

smoothly. Due to the fact that the Wii Motion Plus is a relatively new

device, the support is not yet complete (some device behaviours have not

been reversed engineered yet). However the gyroscope data is accessible and,

also if the library is not stable, the prototype development has not been

invalidated.

TheWiimoteAdaptor package implementation is represented in figure 4.1.

The WiimoteLib provides the Wiimote class, which contains methods for

initializing the device and its state. The state change notification mecha-

nism is quite simple, since the .Net framework has a built-in support for the

46

Mouse 3D library implementation 47

observer pattern: the event3 keyword specifies a multicast delegate4 which

can be called only within the defining class (the event notification) and na-

tively supports attaching and detaching operations. A delegate is an object

representing a set of methods with the same signature. The same mechanism

is used by the Device3D class in order to notify the state change.

Figure 4.1: Implementation of the WiimoteAdaptor package

The WiimoteDevice3D receives the accelerometer raw data for each axis

from the Wiimote class, represented as a byte (the value is between 0 and

255). In order to have more precise acceleration values, the class maintains

calibration data such as the zero value (which is near to 127) and the factor
3for more information, please see [Tro07] p. 362
4for more information, please see [Tro07] p. 341

47

Mouse 3D library implementation 48

used to convert the sensor output into an acceleration in meters per second

squared.

The device zero for one axis can be found positioning the device in a way

that gravity is perpendicular to the axis.

The conversion factor can be indeed calculated simply meaning an ad-

equate number of samples, when the device senses the gravity only along

the considered axis. The mean has to be repeated two times, one for each

direction. The result will be two mean values, mmin and mmax, where

mmax > mmin. The conversion factor is

c = mmax −mmin
2g . (4.1)

Once the raw acceleration is converted, a DeviceState object is filled with

the conversion results, the buttons state and the time interval, calculated as a

difference between the arrival time of the current and of the previous sample.

After that, the object is used for the notification.

The WiimotionPlusDevice3D applies the same conversion for the acce-

lerometer value, but it reads also the Wii Motion Plus extension output.

First of all, the gyroscope has to be plugged and the class must receive

a new extension notification. After that, it can be initialized (sending a

command in order to inform the Wiimote that the gyroscope data is needed),

and finally the application can start reading the sensor output.

The angular rate on one axis is represented as an integer. Depending on

the value of a “fast” flag for each axis, the output is different:

48

Mouse 3D library implementation 49

• Slow mode (fast flag set to zero). Measuring 20 on the raw data means

turning about one degree per second.

• Fast mode (fast flag set to one). Measuring 20 on the raw data means

turning about five degrees per second.

In order to convert the raw data to an angular rate in degrees per second, it

is sufficient to divide by 20 in slow and by 4 in fast mode.

This sensor should be calibrated to find the zero rate value for each axis.

It is enough meaning the gyroscope output values when it is motionless.

4.2 Mouse abstraction

This section discusses the implementation of the pointer abstraction. The

details about the algorithms used for extracting the motion data are described

in section 4.3.

The implementation structure for the packageMouse3D is shown in figure

4.2 and reflects the one discussed in section 3.3.3.

The C# event5 property type, already presented in the previous section,

allows having an implicit representation of the generic listener class for all

observer patterns used in the model. The Sample class contains information

about the acceleration and the torque sensed by the device. It maintains

also information on the raw data measured by the Device3D class, in order

5for more information, please see [Tro07] p. 362

49

Mouse 3D library implementation 50

Figure 4.2: Implementation of the Mouse3D package

50

Mouse 3D library implementation 51

to allow repeating tests on the same input (see section 5.3). Such data should

be removed when the prototyping phase is over.

The Mouse3DPointer abstract class properties describe the current state

of the pointer abstraction: the acceleration, the rotation angle about the

three axes and the pointer position. The acceleration is not really needed,

but it is maintained for debugging purposes.

The state change notification is performed by the following events:

• mouse3DMoved. This event occurs when the pointer position changes.

• mouse3DAccelerationChanged. This event occurs when the pointer

acceleration changes.

• mouse3DTiltChanged. This event occurs when the pointer has been

rotated along one or more axes

• mouse3DButtonPressed. This event occurs when a button is pressed.

• mouse3DButtonReleased This event occurs when a button is released.

Each event is parametric with respect to the Mouse3DEventArgs class, which

is a snapshot of pointer abstraction status at notification time.

The set of possible notifications has been selected according to the gesture

recognition algorithm, discussed in section 4.3

51

Mouse 3D library implementation 52

4.3 Motion tracking algorithm

4.3.1 Interpreting data

Before entering into the proposed motion tracking algorithm details, it is

worth pointing out which kind of information can be extracted from the

acceleration data analysis.

First of all, for the implementation of the tracking algorithm it is not

possible to use a buffer with the complete gesture data. This is due to the

need of a real-time user feedback, as stated in the requirement R.3.5. For

this reason the algorithm cannot wait until the gesture ends for recognizing

it, which means that pattern recognition cannot be applied on the movement

as a whole.

The proposed approach is more “physical” rather than “probabilistic”: it

tries to extract in real time the physical meaning of the received data and

consequently updates the pointer abstraction.

Usually the direct manipulation of the physically sensed acceleration is

not considerable in motion tracking, for two main reasons: the first is the

error growth in the double integration process through the time, while the

second is the inability to separate the input and the gravity acceleration from

the sensed one, when the device is translated and rotated at the same time.

However these points have a lower influence than usual on the creation

of a mouse pointer abstraction. The motion duration is very short and the

integration error should remain low. The proposed approach indeed, assumes

that the user indicates when the gesture tracking starts, pulling the trigger-

52

Mouse 3D library implementation 53

like button (see figure 2.1), and releasing it when the gesture is finished. This

supposition has also another motivation, which is the requirement R.3.8:

when the trigger-button is not pressed, the device can be moved without

changing the pointer state.

Furthermore, it is not really necessary to track the position with a high

precision: it will be scaled with a constant factor in order to set the movement

sensitivity (requirement R.3.4), so it is sufficient that the tracked position

changes according to the real motion direction of a “convincing” but not

really precise amount.

The gravity measuring at stay has an advantage and a drawback. The

advantage is the chance to obtain tilt information on two axes, without having

a gyroscope. Assuming that a device should be grasped in a predefined

position, it can be defined a rest axis for the gravity acceleration. For example

the Wiimote in figure 2.2 is at rest position when the Z axis senses all the

gravity on its negative direction. The tilt around one of the two not-rest

axes can be calculated using a combination of the arccosine function. The

rest axis coordinate is exploited to choose between the two angles with the

same cosine. In order to have the rotation amount, the rest angle has to be

subtracted from the calculated one. The tilt around the rest axis cannot be

determined.

For example in order to calculate the tilt around the Y axis for the

Wiimote (the red angle in figure 4.3), the rest angle can be considered 3
2π.

Suppose that the current normalized sensed acceleration is (x, y, z).

The current angle α is

53

Mouse 3D library implementation 54

Figure 4.3: Tilt calculation with accelerometers

α =

 arccos(x) if z ≥ 0

2π − arccos(x) if z < 0
(4.2)

The sensed tilt around the Y axis (roll) is

roll = α− 3
2π. (4.3)

The disadvantage of sensing the gravity acceleration is that, when the ro-

tation and the linear movement are composed at the same time, it is impossi-

ble to distinguish it from the input acceleration when the gravity orientation

changes with respect to the device.

An example of this situation can be seen in figure 4.4: at the beginning

of the movement (1), the gravity is sensed along the negative direction of

54

Mouse 3D library implementation 55

Figure 4.4: Change of gravity orientation with respect to the device during motion

55

Mouse 3D library implementation 56

the Z axis. If, during the motion, the output of the sensor lowers along the

Z axis (in module) and raise on the X axis, the acceleration measurement is

like the one represented in (2). This change can be the result of two different

motions. The first one is a rotation around the Y axis, which distributes

part of the gravity acceleration along the Z axis and the reminder along the

X axis, represented in (3). Supposing that the user has not changed the

applied acceleration direction, also a part of the input is sensed along the

Z axis, thought that in figure 4.4 it is not shown for the sake of clarity (it

is small with respect to redistributed part of gravity). The second one (4)

is due to a change on the user input acceleration: at a certain time in the

motion, s/he applies a greater acceleration along the X axis and starts to

move also in the positive direction of the Z axis. The result is that on the

Z axis is sensed the difference between gravity and the input acceleration,

while the value on X axis raises. The two motions are really different, but

the accelerometer measures them with the same values.

To summarize the discussion, using only accelerometers either linear mo-

tions on three axes or tilt on two axes can be tracked, while using a combi-

nation of accelerometers and gyroscopes, both motion and rotation can be

detected.

4.3.2 Three axis accelerometer

Before beginning any computation, the data coming from the device must

be filtered in order to reduce the noise that affects the samples. For this

56

Mouse 3D library implementation 57

purpose, two representations of the same sample are maintained.

The first one is calculated using a low pass filter: its output is obtained

adding the 90% the previous value and the 10% of the current. This leads

having a representation with low influences by sudden changes, good for

representing gravity, which is nearly constant when the device is motionless.

The second has the opposite purpose: it is the output of a high pass filter,

able to highlight sudden changes on data. This is suitable for representing

the motion part of the input.

As discussed in the previous section, the gravity can be used for roll and

pitch rotations recognition (yaw is about the Z axis and cannot be sensed),

while the motion component can be exploited in order to find linear motions.

However is not possible to recognize the two types of movements at the same

time.

The proposed criteria for separating the two types of motion, which is

a novelty with respect to previous works, is a test on the module of the

low passed acceleration vector: if it corresponds (with an adequate range of

tolerance) to g6, then the acceleration sensed is only gravity and the device

must be stationary7. In order to increase the effectiveness of the criteria, the

condition should hold on a certain number of samples in order to declare the

device motionless.

6g is the standard symbol for the gravity acceleration, approximately 9.8ms−2

7This sentence assumes that it is not possible for a user to give an acceleration that

could be mistaken for gravity: the occurrence of such situation means that the user has

accelerated the device exactly 2g along the current gravity direction

57

Mouse 3D library implementation 58

If the module tolerance range is adequate, the rotation motion should not

drift the module of the acceleration for too long, and its change will not be

recognized as a linear motion.

The values for the tolerance and the number of samples for declaring

the device stationary were chosen trying to use the device with the test

environment (see section 5). A tolerance of 0.49ms−2 and 20 samples worked

fine.

Figure 4.5 represents the motion tracking algorithm, supposing that the

trigger-like button is pressed. Once a sample is received, it is filtered using by

a LowPassFilter, a subclass of the generic SampleFilter (see section 3.3.3).

After that the module m of the filter output is calculated: if |m − g| ≤ ∆,

where ∆ is the tolerance, the device is moving and the sample counter state

is set to NSAMPLE. This parameter is a heuristic evaluation of the time to

wait for assuming that the device is motionless. Otherwise it is supposed

that the device is moving: indeed, if the state counter is greater than zero,

the module value may be due to noise during a motion tracking. In this case

the counter is decreased.

After the state counter update, two cases are possible:

1. state > 0. The device is moving, so the original sample passes in a se-

quence of two filters: the HighPassFilter and the PositionIntegra-

tionFilter. The first one is an implementation of the previously dis-

cussed high-pass filter, used for extracting the sudden changes in the

acceleration due to its motion, while the second performs a double inte-

gration on the high-passed value, in order to calculate the new position

58

Mouse 3D library implementation 59

Figure 4.5: Accelerometer motion tracking algorithm

59

Mouse 3D library implementation 60

of the pointer abstraction.

2. state = 0. The device is stationary. The low-passed sample is filtered

by a TiltFilter which performs the roll and the pitch calculations, as

already explained in section 4.3.1.

After that the notification of the events related to the pointer state change

is performed (if needed).

The module testing technique solves the position drift problem when the

device is motionless. However the gravity may still bias the position measure-

ment: that situation happens when, during a motion, the device is rotated

and the gravity changes its direction with respect to the device.

The problem is that, from the algorithm point of view, the two scenarios

discussed section 4.3.1 and represented in figure 4.4 cannot be distinguished.

The position changes always assuming the (4) situation in figure 4.4: the

pointer changes its X coordinate moving right and its Z coordinate moving

up.

4.3.3 Combination of accelerometers and gyroscopes

The prototype equipment with a gyroscope leads the possibility to separate

the rotation about three axes from the motion sensing, due to the fact that

the values are provided by different sensors.

In the same way as accelerometers, also the gyroscope output is affected

by noise. A low pass filter is again exploited in order to narrow its impact

on the sensed data.

60

Mouse 3D library implementation 61

The algorithm is shown on figure 4.6. After having received the cur-

rent sample, the computation of the low passed value is performed by the

LowPassFilter class, which filters not only the accelerometer data, but also

the gyroscope output. The acceleration module value is used again in order

to establish if the device is moving, with the same tolerance and number of

samples as in section 4.3.2.

If the device is moving, the instantaneous motion component is extracted

using the HighPassFilter. The position is then integrated through the

PositionIntegrationFilter.

Unlike the previous algorithm, the fact that the device is moving does not

affects the tilt recognition, performed using directly the integration of the an-

gular rate about the three axes, performed by the AngularIntegrationFilter.

Thus the motion tracking procedure has no more need for performing a

motion separation and the gyroscope sensor output can replace the TiltFilter

discussed in 4.3.2. This algorithm can recognize also yaw rotations, complet-

ing the six degrees of freedom for the movement.

It is worth pointing that the gravity orientation change problem during

the motion, as discussed in section 4.3.1, affects also this version of the

algorithm.

4.3.4 Gesture samples

This section completes the presentation of the motion tracking algorithm

showing four movement sample data:

61

Mouse 3D library implementation 62

Figure 4.6: Accelerometer and gyroscope motion tracking algorithm
62

Mouse 3D library implementation 63

1. Linear motion on one axis

2. Linear motion on two axes

3. Roll rotation sensed using only accelerometers

4. Yaw rotation sensed using the gyroscope.

For linear motions is reported a graphical representation of the device out-

put, the low passed data and the changes of the position over time. For

the rotation sensed with the accelerometers, the position is replaced by the

rotation angle calculated.

The gyroscope sensed rotation is displayed through the sensor raw output,

the low passed data and the resulting rotation angle.

In figures 4.7 and 4.8 the low passed acceleration is complemented by the

module change over time, in order to show the point where the algorithm

begins to sense the motion: where it starts to increase or decrease the start

of a movement is recognized.

The opposite is shown in figure 4.9, the module is more or less constant,

but the accelerations along the X and Z axis respectively decreases and in-

creases approximately of the same amount. This is recognized as a rotation

about the Y axis (roll).

Figure 4.10 represents the recognition of a rotation about the Z axis

(yaw), which is not possible using only accelerometers. The low-passed data

is integrated in order to obtain the angle covered.

63

Mouse 3D library implementation 64

Figure 4.7: Linear motion recognition on Y axis

Figure 4.8: Linear motion recognition on X and Y axis

64

Mouse 3D library implementation 65

Figure 4.9: Pitch rotation recognition using an accelerometer

Figure 4.10: Yaw rotation recognition using a gyroscope

65

Mouse 3D library implementation 66

66

5
Test environment

This chapter describes the test environment developed for the Mouse3D li-

brary. It consists mainly in a monitoring part where charts for sensed and

calculated values are plotted, together with a 3D world where it is possible

to move an arrow, representing the mouse pointer.

5.1 Windows Presentation Foundation

Before discussing the test application features, the technology used to realize

the application deserves to be discussed.

The Windows Presentation Foundation (WPF) is a revolutionary graphi-

cal display system for Windows. The core features of WPF can be summa-

rized as follows:

• Declarative user interface definition. According to the web pages design

experience, the definition of the layout for a user interface is no longer

Test environment 68

based on pixel coordinates, but it can be performed in a declarative

manner using the Extensible Application Markup Language (XAML,

pronounced “zammel”) and has a hierarchical tree representation. The

behaviour of the user interface can be defined procedurally in a code-

behind file. The XAML document content is not directly interpreted

by the graphic system, but it is compiled in a binary format which,

together with the code-behind methods, will be re-compiled as a .Net

application.

• DirectX painting. WPF renders the interface controls using Microsoft

DirectX 1 API, a fast graphical engine which exploits the capabilities

of most video cards. This library is usually adopted for games and

3D graphics. This allows having a native support for transparency,

gradients, 3D rendering and many other graphical capabilities.

• Vector Graphics. The drawing model is no more the control paint pro-

cedure, where the developer specifies an algorithm for drawing it from

scratch. In WPF the developer creates graphical primitives (as lines,

rectangles etc.) and adds them inside the user interface component.

The graphical system will render them until they will be removed.

Such mechanism is called retention and allows having a resolution in-

dependent painting process in WPF.

• Observable properties. Dependencies for controls can be expressed using

the dependency properties, which enables the notification of their state
1http://www.microsoft.com/

68

http://www.microsoft.com/

Test environment 69

change, in order to update the rendering. For example the background

can be defined as a dependency property and, when it is changed, the

drawing is updated without invoking any refresh procedure.

• Control and containers. The tree representation of the user interface

allows using standards controls (i.e. buttons) as containers of other

widgets, allowing an easy layout configuration: if a button with an

image and a text label is needed, it not necessary to define a subclass

of the Button class. It is sufficient to define a stack panel within the

button definition containing an image and a label.

• Animations. WPF has a native support for animations, which can be

defined declaratively using frames and a time line, without the need of

a timer control.

• Styles and templates. The user interface appearance can be defined

using styles, which allow easy changes to layout, separating it from its

structure.

• Commands. The application features (such as opening or saving a file,

undo, redo, etc.) can be accessed using different controls (a button, a

menu, a keyboard short cut etc.). WPF as a native support for defining

the command in one place and binding it to different controls.

It is really likely that this graphic system model will become more and

more popular. Certainly it fits very well for the usage of a three dimensional

69

Test environment 70

mouse: it is really easy to mix 2D and 3D graphics within the same inter-

face, enabling the design of applications which exploits three dimensional

movements.

5.2 Environment user interface

In order to validate the library design and the motion tracking algorithms,

the test application contains both an analysis and an interactive part.

The analysis part contains different plot areas where the raw sensor data

can be compared with the motion tracking algorithm output, in order to have

an idea of the underlining process. Such comparison is helpful for debugging

the motion tracking procedures.

The interactive part contains a three dimensional space where an arrow,

which represents the Mouse 3D pointer, can be moved and rotated according

to the device motions and rotations.

The environment can be initialized in order to use the Wiimote, with or

without the Wii Motion Plus. If the extension is plugged, then the applica-

tion creates an AccGyroMouse3DPointer instance, otherwise a AccMouse3D-

Pointer is exploited in order to sense the movements (see section 4.3.2 and

4.3.3).

The application contains also a calibration wizard. The user is requested

to put the Wiimote in the same position as the picture displayed and to wait

until the next step is reached. The procedure consists of six steps and, at

the end of it, the application uses the new calibration values which are the

70

Test environment 71

acceleration zero of each axis, the conversion factor in order to obtain meters

for second squared and the zero value for the angular rate (if the Wii Motion

Plus is connected).

Figure 5.1 and 5.2 show the two parts of the user interface: the interactive

3D space and the analysis charts, which will be discussed more in detail in

following sections.

Figure 5.1: The test environment UI for the pointer control

5.2.1 Interactive 3D space

The three dimensional space is the interactive part of the test environment.

It simulates a mouse pointer with an arrow that can be moved in three

directions, according to the linear motions recognized by the library.

71

Test environment 72

Figure 5.2: The test environment UI for data analysis

Depending on the motion tracking algorithm, the arrow can be rotated

about two or three axes (see section 4.3.1), showing the result of the recog-

nition of a rotation gesture.

Figure 5.3 shows the effect of a linear motion along the Z axis. The arrow

is motionless (1) until the device is moved upward (2). The arrow starts

moving as soon as the algorithm senses the peak on the acceleration and

ends the path when the Wiimote stops (3).

The effect of a rotation gesture is shown in figure 5.4: from the current

position (1), the Wiimote rotates around the X axis (2), and arrow rotates

around the same axis too, using as centre the sphere at its end (3).

The other motions are variations of these basic movements, changing the

72

Test environment 73

axis or combining two or three of them.

Figure 5.3: Linear motion along the Z axis

5.2.2 Acceleration and rotation monitoring

An accurate analysis of motion data can be performed using five different

graphs, split in two tabs (acceleration and rotation). The plotted quantities

are:

1. Acceleration

2. Raw accelerometer data

3. Position

73

Test environment 74

Figure 5.4: Rotation movement around the X axis (pitch)

4. Rotation

5. Raw gyroscope data (not used if theWii Motion Plus is not connected).

The functions are plotted when a gesture ends, displaying the flow of the

measured quantity. Is it possible to zoom in and out the graph, adding also

circular markers in order to highlight each sample calculated or received by

the device. If the mouse pointer is over one of these points is displayed a tool

tip containing the X and Y coordinate.

Figure 5.5 shows a plot example. On the left part is displayed the accele-

ration with markers for the module line graph. The tool tip below the mouse

pointer shows the value for the selected sample. On the right part a portion

of the raw data can be deeply analysed using the zoom function.

74

Test environment 75

Figure 5.5: Graph plotting example

5.3 Data Recorder

During the development of the library, it was important to repeat tests on

the same data especially for the motion tracking algorithm. However is not

possible to repeat exactly the same movement and the sensor output will be

always different. Another drawback in testing the algorithm directly was the

inability of performing a step by step debugging, due to the fact that the

time between samples is calculated by the WiimoteAdaptor (see section 4.1)

as the difference between the arrival time of the current one and the previous

one. As a result, the samples cannot be delayed.

To overcome these problems, the test application contains a data recor-

ding feature. If the user pushes the record button on the analysis part of the

user interface each gesture performed will be saved in an XML file. The ges-

ture can be categorized in different folders, in order to remember the recorded

gesture type.

The XML contains the list of samples with the raw acceleration data,

75

Test environment 76

the angular rate (if the gyroscope is not connected, the elements are set

to zero) and the arrival time. However saving this data is not sufficient in

order to have the exact reproduction of the movement, because it depends

also on the state of the filters contained within the AccMouse3DPointer or

AccGyroMouse3DPointer class. For instance the low pass filter needs the

value calculated for the previous sample (see section 4.3.2) in order to calcu-

late the new one.

For restoring the pointer state, the Mouse3DPointer class was provided

with two methods for setting and getting its state, represented by an instance

of the PersistPointerState. It contains the parameters of the low and high

pass filter, the value of the state variable (see section 4.3.2 and 4.3.3) the

current value for the acceleration, position and rotation.

Before the application starts writing the sample values, the value of this

object is persisted in the XML file. It is worth pointing out that this operation

is not really needed for the pointer abstraction, and it should be internal to

the Mouse3D package when the prototyping phase will be finished.

The user can replay a previous recorded gesture double clicking one of

the XML file listed on the left part of the interface (see figure 5.1). The red

arrow in the interactive part moves according to the recorded data, which is

plotted in the analysis tabs.

76

6
Conclusions and future works

6.1 Conclusions

This thesis describes the design and the implementation of a three dimen-

sional mouse library, which uses accelerometers and gyroscopes in order to

recognize the device movements.

Due to internal manufacture, the accelerometers sense the gravity, which

is impossible to distinguish from the input acceleration if the sensor is trans-

lated and rotated. In addition, the double integration process of the acce-

leration data in order to obtain the position is subject to drift caused by

the amplification of measurement errors. The same problem affects also the

gyroscope when the angular rate is integrated in order to obtain the rotation.

The use of the physical meaning of the accelerometer data was not con-

sidered in previous works due to these problems and statistical models were

adopted. This approach was not suitable for the development of the library,

because they relies on having the whole gesture data, while the pointer ab-

Conclusions and future works 78

straction should give an immediate feedback to the user, also when s/he is

still performing the motion.

However, thanks to the a novel approach for establishing when the device

is moving, which consists on testing the module of the sensed acceleration

vector and comparing it to gravity, the drift problem has a low impact on

the proposed motion tracking algorithms.

In order to create the prototype for the library development a Nintendo

Wiimote1 controller has been used, because it is equipped with a three-axis

accelerometer and can be expanded with a gyroscope. It has also other hard-

ware which can be used for motion tracking, but it has not been used to

maintain the library compatibility with other devices (i.e. PDA and smart-

phones) which are equipped only with accelerometers. Due to this fact, the

gesture recognition cannot be performed as in Nintendo games.

The result of the work is the creation of the library, which has the follow-

ing characteristics:

• Mouse 3D abstraction. The library make available to developers an

abstraction of a 3D pointer, with a set of gestures for controlling it. The

abstraction is represented by the current position over the space and

the rotation angle around three axes. The user interface components

can subscribe to its status change events.

• Device independence. The library has an abstraction layer between the

device and the pointer abstraction. The support for a new device can
1http://www.nintendo.it/

78

http://www.nintendo.it/

Conclusions and future works 79

be added simply creating a data reader class with a given interface.

• Motion tracking algorithms. A novel approach to the motion tracking is

proposed in order to recognize the device movements. Two algorithms

have been designed and developed: the first one recognizes either the

linear motion along three axes or the rotation about two axes using

accelerometers, while the second can sense also the rotation about the

third axis coupling accelerometers and gyroscopes.

The main idea is to establish a criteria for assuming that the device is

motionless, which is testing the acceleration vector module. If it cor-

responds to the gravity acceleration the device is stationary, otherwise

the device is moving. Only in the latter case the acceleration is double

integrated in order to obtain the position change. Thought that the

motion considered lasts about a second, the drift is marginal. The ro-

tation is calculated measuring the angles defined by the gravity vector

and the axes for the version which uses only accelerometers, while when

also gyroscopes are exploited the angles are calculated integrating the

angular rate.

Due to limitations inherent to accelerometers, if the device is translated

and rotated at the same time, changing also the gravity vector orien-

tation with respect to the device, the movement may be incorrectly

interpreted.

Together with the library is provided also a test environment which allows

the user to move the pointer in a three dimensional space.

79

Conclusions and future works 80

In order to spread the usage and to improve the development of the

library, it will be distributed as an open source project.

6.1.1 Requirements review

In section 3.1.2, a set of requirements has been defined in order to establish

a success criteria for the library development. The following is a review of

these requirement in order to validate the objectives.

R.3.1 Definition of gestures using a 3D accelerometers.

The library recognizes five gestures in order to control the mouse pointer

using an accelerometer equipped device. These gestures are linear mo-

tions along X, Y and Z axis, and the rotation about the X and Y axis

(pitch and roll). The two gesture groups cannot be combined together:

the motion tracking algorithm senses either linear motions or rotations.

R.3.2 Definition of gestures using a combination of a 3D accelerometer and

a 3D gyroscope.

The library recognizes six gestures in order to control the mouse pointer,

using a combination of accelerometers and gyroscopes. These gestures

are linear motions and rotations along the X, Y and Z axis. The two

gesture groups can be combined together.

R.3.3 Definition of an abstract 3D mouse pointer.

The library defines an abstraction of a three dimensional mouse pointer,

represented as a point with X, Y and Z coordinates, pitch, roll and

80

Conclusions and future works 81

yaw rotation angles. It contains also information about the pressed or

released buttons.

R.3.4 Sensitivity control.

Is it possible to set the scale factor for the calculated position in order

to increase or decrease the motion sensitivity.

R.3.5 Device independence.

The library relies on an abstraction layer between the position calcu-

lation and the data reading. Each supported device has a data reader

class which translates the device specific data into the format expected

from the library.

R.3.6 Status change notification.

The mouse pointer abstraction has a set of events related to its status

change. If a user interface is interested in such notification, it can

subscribe the event notifications.

R.3.7 Real-time response.

The library is able to update the pointer position for each sample re-

ceived and, in order to recognize the beginning of a motion, at maxi-

mum 20 samples are needed. Thought that a gesture contains about

100 samples, the position is updated also during the motion.

R.3.8 Stop tracking.

By default the motion is tracked only if the trigger-like button of the

Wiimote is pressed (in other devices either a software or hardware

81

Conclusions and future works 82

button can be used). In this way the motion tracking can be stopped

simply releasing the button.

6.2 Future works

The thesis work can be considered as the end of my master degree studies or

as the starting point of my future works. This section is about the possible

further developments of the project.

6.2.1 Algorithm improvements

The motion tracking algorithm exploits the acceleration data in a novel man-

ner, establishing a criteria to consider the device motionless in order to defeat

the drift deriving from the gravity sensing. This approach has been demon-

strated to work well for linear motions.

However if the device is translated and rotated at the same time, the

motion can be detected and the rotation too (if a gyroscope is used), but

with the current implementation is not possible to distinguish the input ac-

celeration from the gravity which, during the rotation, can have changed its

direction with respect to the device. This leads to recognition of a motion

different from the real one.

A possibility to overcome this problem is the exploitation of the gyroscope

data in order to maintain a representation of the device orientation.

A quaternion2 representing the device orientation transform for the gra-
2an extension of complex numbers which can be represented as a 4x4 matrix

82

Conclusions and future works 83

vity can be maintained. If the representation is accurate, it can be used

in order to subtract it from the sensed acceleration during the movement.

However this needs a very precise measurement of the rotation angles and,

thought that the angular rate integration is subject to drift, can result in an

output far away from the real motion. However at least for pitch and roll

the error can be controlled updating the quaternion each time that the de-

vice is motionless (and the module computation here should be still crucial)

exploiting the accelerometer data as described in 4.1.

6.2.2 User testing

Though that different tests have been performed by the author and other

people at the CVS lab at the Computer Science Department, the library

needs a user evaluation, in order to understand if the interaction model can

be accepted by common people.

The analysis should propose different application contexts and evaluate

if the gestures are suitable for creating usable and intuitive applications,

collecting both quantitative ratings on the interaction effectiveness and also

qualitative data, such as suggestions or critics about the prototype function-

ing.

6.2.3 Window manager integration

Another further improvement for the library will be the extension of the

operating system window manager in order to support the notification of the

83

Conclusions and future works 84

Mouse3D events not only within the current frame, but also to share the

same mouse pointer between two or more windows.

In order to realize such application, a good understanding of the user

interface manager (also called window manager) of the host operating system

is needed. It manages the input and the output devices in order to share them

between all the running applications.

For instance in Windows operating systems, the events related to the

input devices are notified to the applications using messages. The user in-

terface manager has a queue for each application and is in charge to deliver

the messages to the application that registered for listening the events.

It is also possible to define the so called Registered Windows Messages,

which are user defined notifications (the user in this case is the developer)

which are guarantee to be unique in the system.

Using them is it possible to define a Windows application which notifies

the status of the mouse 3D abstraction: for each event related to it, a new

Registered Window Message should be enlisted. Such messages can be for

instance the followings:

1. WM_MOUSE3DMOVE: the 3D pointer has moved within the window client

area (the window viewport).

2. WM_NCMOUSE3DMOVE: the 3D pointer has moved within the window non-

client area (the window borders).

3. WM_MOUSE3DENTER: the 3D pointer entered within the window client

area.

84

Conclusions and future works 85

4. WM_NCMOUSE3DENTER: the 3D pointer entered within the window non-

client area.

5. WM_MOUSE3DLEAVE: the 3D pointer leaved within the window client area.

6. WM_NCMOUSE3DLEAVE: the 3D pointer leaved within the window non-

client area.

7. WM_MOUSE3DROTATED: the mouse 3D pointer has been rotated.

8. WM_MOUSE3DBTN1DOWN: The button one has been pressed.

9. WM_MOUSE3DBTN2DOWN: The button two has been pressed.

10. WM_MOUSE3DBTN1UP: The button one has been released.

11. WM_MOUSE3DBTN2UP: The button two has been released.

12. WM_MOUSE3DBTN1CLK: The button one has been clicked.

13. WM_MOUSE3DBTN2CLK: The button two has been clicked.

14. WM_MOUSE3DBTN1DCLK: The button one has been double clicked.

15. WM_MOUSE3DBTN2DCLK: The button two has been double clicked.

The messages should contain a parameter depending on the message type:

if it is related to the mouse position, it should contain the position represented

as a three-dimensional point expressed in the target window coordinate sys-

tem, otherwise if it is related to the rotation pitch, roll and yaw should be

listed.

85

Conclusions and future works 86

The Mouse3D manager application is in charge to invoke a broadcasting

of the status changes notifications.

Such implementation will allow sharing the pointer resource among dif-

ferent applications.

86

Acknowledgements

First of all, I would like to thank my parents who, with their care and trust,

allowed me to come in Tuscany for attending one of the most valuable Uni-

versities in Computer Science. This achieved goal belongs in large part to

them. I hope that to see me arriving at the end pays them back for all their

efforts.

Special thanks go to Andrea and Emanuele, who always support their

“continental” brother from a distance. Your love makes me feel that you’re

always close to me, though that unfortunately we can meet each other only

few times.

At the top of the list of persons who have contributed to my education

and that I want to thank, there is the supervisor of this thesis, Antonio Cis-

ternino. His example at CVS lab taught me to have passion for what I am

doing, and that with dedication it is possible to finish also very challenging

works. I want to mention here all the people from the laboratory and the

Conclusions and future works 88

members of the Cinque&Cinque team, which are always ready for collabo-

ration and for offering their useful ideas: Cristian Dittamo, Marco Mura,

Stefano Simula, Nicola Andrenucci, Davide Morelli, Davide Carfì, Donato

Ferrante, Sara Berardelli.

Many thanks also to the HIIS laboratory at ISTI CNR, where I work since

two years. Thanks to the head Fabio Paternò, the researchers Barbara Lep-

orini and Carmen Santoro and all the other people: Claudio Porta, Giuliano

Pintori, Mauro Lisai, Ariel Kuri, Giulio Galesi, Antonio Scorcia, Antonello

Calabrò, Elia Contini, Giuseppe Ghiani.

I want to thank Nicola Addis, my best childhood friend, and all my

gang from Perfugas: Gavinuccio Deiana, Nicoletta Pani, Barbara Solinas,

Maura Maiorca, Roberta Damiano. A credit should be given to all members

of my “Casa del Popolo” (in English it sounds like “People’s Home”) in

Pisa: Agostino Leoni, Giancarlo Dore, Antonio Virdis, Pier Miscali, Federica

Scintu, Marta Scintu, Alessandra Lai.

Dulcis in fundo, many, many thanks to my girlfriend Pinuccia Flore. She

helped me, she pampered me, she supported me, she encouraged me, she

advised me and she did many other things for me. I am not as good as she is

writing words, but I want to say to her that I would never achieved this goal

without having her by my side, and I hope that she would like to stand to me

for a long time. You are really the most beautiful thing that the experience

at the Pisa University gave to me.

Thank you.

88

Ringraziamenti

Il primo ringraziamento va ai miei genitori, che con il loro impegno e fiducia

mi hanno consentito di venire in Toscana per frequentare una delle migliori

Università nel campo dell’Informatica. Questo traguardo è in gran parte loro.

Spero che vedermi arrivare alla fine del percorso li ripaghi di tutti gli sforzi.

Un ringraziamento speciale lo devo ad Andrea ed Emanuele, che sosten-

gono sempre il loro fratello “continentale”. Il vostro affetto mi fa sentire

sempre di avervi vicino, anche se purtroppo ci vediamo poco.

In cima alla lista dei ringraziamenti alle persone che hanno collaborato

alla mia formazione, c’è sicuramente il relatore di questo lavoro di tesi, An-

tonio Cisternino. Il suo esempio al CVS lab mi ha insegnato a guardare con

passione quello che faccio e che con l’impegno si possono portare a termine

lavori che sembrano delle imprese. Voglio ricordare qui tutti i componenti del

laboratorio ed i membri del team Cinque&Cinque, sempre pronti a collabo-

rare ed offrire le loro preziose idee: Cristian Dittamo, Marco Mura, Stefano

Conclusions and future works 90

Simula, Nicola Andrenucci, Davide Morelli, Davide Carfì, Donato Ferrante,

Sara Berardelli.

Un grosso ringraziamento va anche al laboratorio HIIS all’ISTI CNR, dove

lavoro da più di due anni. Grazie al capo Fabio Paternò, alle ricercatrici

Barbara Leporini e Carmen Santoro e tutti gli altri componenti: Claudio

Porta, Giuliano Pintori, Mauro Lisai, Ariel Kuri, Giulio Galesi, Antonio

Scorcia, Antonello Calabrò, Elia Contini, Giuseppe Ghiani.

Voglio ringraziare Nicola Addis, il mio più caro amico d’infanzia, e tutta

la mia combriccola perfughese: Gavinuccio Deiana, Nicoletta Pani, Barbara

Solinas, Maura Maiorca, Roberta Damiano. Una menzione al merito va data

anche ai componenti della mia “Casa Del Popolo” a Pisa: Agostino Leoni,

Giancarlo Dore, Antonio Virdis, Pier Miscali, Federica Scintu, Marta Scintu,

Alessandra Lai.

Dulcis in fundo, un grazie di cuore va alla mia ragazza, Pinuccia Flore.

Lei mi ha aiutato, coccolato, sostenuto, incoraggiato, consigliato e chi più ne

ha più ne metta. Non sono bravo con le parole come lei, ma voglio dirle che

questo traguardo non l’avrei mai raggiunto se non mi fosse stata accanto e

spero che scelga di sopportarmi ancora per tanto tempo. Sei veramente la

cosa più bella che l’esperienza all’Università di Pisa mi abbia regalato.

Grazie.

90

Bibliography

[AA.a] AA.VV. Bluetoot special interest group. http://www.

bluetooth.org.

[AA.b] AA.VV. A wiki dedicated to homebrew on the nintendo wii.

http://wiibrew.org/wiki/Main_Page.

[AA.c] AA.VV. Wikipedia, the free encyclopaedia. http://en.

wikipedia.org.

[Alp04] Ethem Alpaidin. Introduction to machine learning. MIT Press,

2004.

[Bar00] Joel F. Bartlett. Rock ’n’ scroll is here to stay. IEEE Comput.

Graph. Appl., 20(3):40–45, 2000. doi:http://dx.doi.org/10.

1109/38.844371.

http://www.bluetooth.org
http://www.bluetooth.org
http://wiibrew.org/wiki/Main_Page
http://en.wikipedia.org
http://en.wikipedia.org
http://dx.doi.org/http://dx.doi.org/10.1109/38.844371
http://dx.doi.org/http://dx.doi.org/10.1109/38.844371

BIBLIOGRAPHY 92

[Boy03] Walt Boyes, editor. Instrumentation Reference Book. Elseiver

Science, 2003.

[BP01] Ari Y. Benbasat and Joseph A. Paradiso. Compact, configurable

inertial gesture recognition. In CHI ’01: CHI ’01 extended ab-

stracts on Human factors in computing systems, pages 183–184,

New York, NY, USA, 2001. ACM. doi:http://doi.acm.org/

10.1145/634067.634178.

[Fla06] David Flanagan. Javascript: the definitive guide. O’Reilly, 2006.

[Fra04] Jacob Fraden. Handbook of Modern Sensors. Springer, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-

side. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[Gun97] Kevin N. Gunrey. An introduction to neural networks. CRC

Press, 1997.

[KKM+06] Juha Kela, Panu Korpipää;, Jani Mäntyjärvi, Jani, Sanna

Kallio, Giuseppe Savino, Luca Jozzo, and Di Marca.

Accelerometer-based gesture control for a design environment.

Personal Ubiquitous Comput., 10(5):285–299, 2006. doi:http:

//dx.doi.org/10.1007/s00779-005-0033-8.

92

http://dx.doi.org/http://doi.acm.org/10.1145/634067.634178
http://dx.doi.org/http://doi.acm.org/10.1145/634067.634178
http://dx.doi.org/http://dx.doi.org/10.1007/s00779-005-0033-8
http://dx.doi.org/http://dx.doi.org/10.1007/s00779-005-0033-8

BIBLIOGRAPHY 93

[LG05] Edward C. Litty and Lennor L. Gresham. Hemispherical res-

onator gyro: an iru for cassini. Proceedings of SPIE, 2803:299,

2005.

[LGG+97] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer,

S. Mahler, H. Munzel, and U. Bischof. A precision yaw rate

sensor in silicon micromachining. In Solid State Sensors and

Actuators, 1997. TRANSDUCERS ’97 Chicago., 1997 Interna-

tional Conference on, volume 2, pages 847–850 vol.2, Jun 1997.

doi:10.1109/SENSOR.1997.635234.

[Mac05] Mattiew MacDonald. Pro .NET 2.0 Windows Forms and custom

controls in C#. Apress, 2005.

[Mac08] Mattiew MacDonald. Pro WPF in C# 2008: Windows Presen-

tation Foundation with .Net 3.5. Apress, 2008.

[MKKK04] Jani Mäntyjärvi, Juha Kela, Panu Korpipää, and Sanna Kallio.

Enabling fast and effortless customisation in accelerometer based

gesture interaction. In MUM ’04: Proceedings of the 3rd in-

ternational conference on Mobile and ubiquitous multimedia,

pages 25–31, New York, NY, USA, 2004. ACM. doi:http:

//doi.acm.org/10.1145/1052380.1052385.

[MMST00] V. M. Mäntylä, J. Mäntyjärvi, T. Seppänen, and E. Tuulari.

Hand gesture recognition of a mobile device user. In Internation

IEEE Conference on Multimedia and Expo, pages 281–284, 2000.

93

http://dx.doi.org/10.1109/SENSOR.1997.635234
http://dx.doi.org/http://doi.acm.org/10.1145/1052380.1052385
http://dx.doi.org/http://doi.acm.org/10.1145/1052380.1052385

BIBLIOGRAPHY 94

[MP97] T. Marrin and J. Paradiso. The digital baton: a versatile per-

formance instrument. In International Computer Music Confer-

ence. Computer Music Association, 1997.

[NGK+07] R. Neul, U.-M. Gomez, K. Kehr, W. Bauer, J. Classen, C. Dor-

ing, E. Esch, S. Gotz, J. Hauer, B. Kuhlmann, C. Lang,

M. Veith, and R. Willig. Micromachined angular rate sensors

for automotive applications. Sensors Journal, IEEE, 7(2):302–

309, Feb. 2007. doi:10.1109/JSEN.2006.888610.

[Pea] Brian Peak. Managed library for nintendo’s wiimote. http:

//wiimotelib.codeplex.com/.

[Saa06] O. S. Saar. Dynamics in the Practice of Structural Design. WIT

Press, 2006.

[SH97] H. Sawada and S. Hashimoto. Gesture recognition using an

acceleration sensor and its application to musical performance

control. Electronics and Communications in Japan, Part III,

80(5):9–17, 1997.

[SI97] David Small and Hiroshi Ishii. Design of spatially aware gras-

pable displays. In CHI ’97: CHI ’97 extended abstracts on Hu-

man factors in computing systems, pages 367–368, New York,

NY, USA, 1997. ACM. doi:http://doi.acm.org/10.1145/

1120212.1120437.

94

http://dx.doi.org/10.1109/JSEN.2006.888610
http://wiimotelib.codeplex.com/
http://wiimotelib.codeplex.com/
http://dx.doi.org/http://doi.acm.org/10.1145/1120212.1120437
http://dx.doi.org/http://doi.acm.org/10.1145/1120212.1120437

BIBLIOGRAPHY 95

[SJ05] Raymond A. Serway and John W. Jewett. Principles of physics:

a calculs-based text. Thomson Learing, fourth edition, 2005.

[SPHB08] Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Su-

sanne Boll. Gesture recognition with a wii controller. In TEI ’08:

Proceedings of the 2nd international conference on Tangible and

embedded interaction, pages 11–14, New York, NY, USA, 2008.

ACM. doi:http://doi.acm.org/10.1145/1347390.1347395.

[TP05] Chin-Woo Tan and Sungsu Park. Design of accelerometer-based

inertial navigation systems. Instrumentation and Measurement,

IEEE Transactions on, 54(6):2520–2530, Dec. 2005. doi:10.

1109/TIM.2005.858129.

[Tro07] Andrew Troelsen. Pro C# 2008 and the .NET 3.5 platform.

Apress, 4 edition, 2007.

[TTR+05] Suga T., Akamatsu T., Kawabe R., Hiriashi T., and Yamamoto

Y. Method for underwater measurement of the auditory brain-

stem responce of fish. Fisher Science, 5(71):1115–1119, 2005.

[TW04] David H. Titterton and John L. Weston. Strapdown inertial

navigation technology. Institution of Electrical Engineers, second

edition, 2004.

[WPZ+09] Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shi-

jian Li. Gesture recognition with a 3-d accelerometer. In UIC

95

http://dx.doi.org/http://doi.acm.org/10.1145/1347390.1347395
http://dx.doi.org/10.1109/TIM.2005.858129
http://dx.doi.org/10.1109/TIM.2005.858129

BIBLIOGRAPHY 96

’09: Proceedings of the 6th International Conference on Ubiq-

uitous Intelligence and Computing, pages 25–38, Berlin, Hei-

delberg, 2009. Springer-Verlag. doi:http://dx.doi.org/10.

1007/978-3-642-02830-4_4.

[WWQ+06] Rory P. Wilson, Craig R. White, Flavio Quintana, Lewis G.

Halsey, Nikolai Liebsch, Graham R. Martin, and Patrick J.

Butler. Moving towards acceleration for estimates of activity-

specific metabolic rate in free-living animals: the case of the cor-

morant. Journal of Animal Ecology, 75(5):1081–1090, Septem-

ber 2006. http://dx.doi.org/10.1111/j.1365-2656.2006.

01127.x, doi:10.1111/j.1365-2656.2006.01127.x.

[Zuk05] John Zukowski. The definitive guide to Java Swing. Apress,

2005.

96

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02830-4_4
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02830-4_4
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x
http://dx.doi.org/10.1111/j.1365-2656.2006.01127.x

	Introduction and motivation
	Introduction
	Motivation

	IMS technologies and applications
	Structure and properties
	Mono-axial accelerometers
	Gyroscopes

	Applications
	Accelerometers
	Gyroscopes
	Gesture recognition

	Prototype Hardware
	Selection criteria
	Wiimote description
	Wiimotion Plus description

	Mouse 3D library design
	Requirements
	Motivation
	Definition

	Components
	Packages
	Overview
	WiimoteAdaptor package
	Mouse3D package

	Mouse 3D library implementation
	Wiimote data reading
	Mouse abstraction
	Motion tracking algorithm
	Interpreting data
	Three axis accelerometer
	Combination of accelerometers and gyroscopes
	Gesture samples

	Test environment
	Windows Presentation Foundation
	Environment user interface
	Interactive 3D space
	Acceleration and rotation monitoring

	Data Recorder

	Conclusions and future works
	Conclusions
	Requirements review

	Future works
	Algorithm improvements
	User testing
	Window manager integration

