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prima riga

Abstract
We propose a predicative modal logic of the second order to express 
properties of the evolution of software systems. Each state of a system 
is specified as a unary algebra, and our logic allows to formalize the 
problem of verifying the properties of system evolutions by checking 
the truth of suitable formulas. The level of abstraction guaranteed by 
the algebraic presentation of system states allows the unification of 
many proposals in the literature, at the same time obtaining a greater 
level of expressiveness in terms of system representation.
Due to a different handling of the so-called “trans-world identity”, we 
consider  two  alternatives  semantics  for  our  logic:  a  “Kripke-like” 
model and a “Counterpart-like” one. Furthermore, we instantiate our 
proposal  by  considering  unary  algebras  representing  graphs,  thus 
showing the applicability of our approach to the graph transformation 
framework.
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1 Introduction
Modal logic was first discussed in a systematic way by Aristotle in “De Interpretatione” to study the 
concepts of necessity and possibility. With the modern notation, if  is a predicative formula, 
then
• the fact that “ <>” is true means intuitively that  is possibly true,

• the fact that “ []” is true means intuitively that  is necessarily true.

Where the symbol <> is called diamond box , and [] square box.

The Greek philosopher noticed not only that necessity implies possibility (and not vice versa), but 
also  that  the  notions  of  necessity  and  possibility  were  inter-definable ( []  ⇔  ¬ <>¬ ).
Aristotle also pointed out that from the separate facts that two predicates are possible, it does not 
follow that their conjunction is possible. Similarly, it does not follow from the fact that a disjunction 
is necessary that the disjuncts are necessary.

Nowadays these concepts are utilized as extensions of more standard logics. In particular, in this 
thesis  we  consider  the  case  of  the  first  order  predicative  modal  logic,  that  is  the  first  order 
predicative logic extended with the above described modal operators.  It is well-known that unary 
first order predicative logic (i.e.,� the standard logic of unary predicates)  is a formal logic used in 
computer science, mathematics, philosophy and linguistic.
Propositional logic deals with simple declarative propositions, while first-order logic additionally 
covers predicates and quantification. A predicate resembles a function that returns either True or 
False.

Consider the following sentences:
• "Socrates is a philosopher", 

• "Plato is a philosopher".

In propositional logic these are treated as two unrelated propositions, denoted for example by “p” 
and  “q”. In first-order logic, however, the sentences can be expressed in a more parallel manner 
using the predicate Phil(a), which asserts that the object represented by a is a philosopher. Thus if a 
represents Socrates then Phil(a) asserts the first proposition,  p; if  a  represents Plato then Phil(a) 
asserts the second proposition, q. A key aspect of first-order logic is visible here: the string "Phil" is 
a syntactic entity which is given semantics meaning by declaring that Phil(a) holds exactly when a 
is  a  philosopher.  An  assignment  of  semantics  meaning  is  called  an  interpretation.  Each 
interpretation of first-order logic includes a domain of discourse over which the quantifiers range.
First-order logic allows reasoning about properties that are shared by many objects through the use 
of variables. For example, let Phil(a) assert that a is a philosopher and let Schol(a) assert that a is a 
scholar. Then the formula Phil( a )Schol( a ) asserts that if  a  is a philosopher then  a  is also a 
scholar. Assertions of the form "for every a, if  a is a philosopher then a is a scholar" require both 
the use of variables and the use of a quantifier. Again, let Phil(a) assert  a is a philosopher and let 
Schol(a) assert that  a is a scholar. Then the first-order sentence ∀ x.Phil( x )Schol( x ) asserts 
that no matter what x represents, if x is a philosopher then x is also a scholar. The symbol “∀” , 
known as the universal quantifier, expresses the idea that the claim in parentheses holds for  all  
choices of a. If instead you want to express the idea that the claim in parentheses holds for at least  
a choice of x, the existential quantifier “∃” should be used instead.

As said, adding to the first order predicative logic the two modalities possible <> , and necessary
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[] , we obtain the first order predicative modal logic. If we also add the existential and universal 
quantifiers ∀ ,∃ of the second order, that is over the sets of elements, we obtain the quantified 
predicative modal logic of the second order.

Now, to complete the definition of the quantified predicative modal logic of the second order we 
could give axioms and inference rules to reason on it; however we observe that the modal logic has 
been interpreted in many ways, and the axioms and inference rules depend on the choice of the 
interpretation. As example of interpretation we mention the oldest one, based on a set of possible 
worlds: [] is true if  is true in all the possible worlds, while <> means that  is true 
in at least a possible world. Many different� interpretations have been proposed over the years. In our 
thesis,  we� focus  on possibly the  most  accepted  of  them,  often  mentioned as� the  candidate  for 
unifying most of them: the “relational interpretation of Kripke”.
The American philosopher  and logician Saul  Kripke introduced an accessibility relation on the 
possible worlds which plays an important role in the definition of “truth” for modal formulas. In the 
relational interpretation of Kripke a formula [] is true at a world w if and only if  is true at 
every  world  w'  accessible  from  w,  while <> is  true  if  is  true  in  at  least  a  world  w' 
accessible from w.
As a consequence of the  relational interpretation of Kripke, the logic is then interpreted on graphs, 
having as nodes the possible worlds, while the edges are defined by the accessibility relation: if w' 
is accessible from w, then there exists a directed edge from w to w'. This lets us say that modal logic 
reasons on graphs. This idea has many applications in Computer Science, where graphs are used to 
model the evolution over time of hardware and software systems. The idea is that a system could be 
seen as an entity with many possible states. In a graph model the states are represented through 
nodes (the worlds of the modal logic), while a directed edge which connects two nodes represents 
the action or step of execution which would move the system from the source state to the target 
state. By modeling in detail the internal structure of the individual states instead of using generic 
“nodes”, we can express interesting properties over each state. Properties such as the occurrence of 
a particular condition or the presence/absence of a certain configuration in the system after a certain 
number of steps from an initial state. The need to model states with structure suggests the use of 
algebras. Actually, we focused on unary algebras with which we can express also states as graphs. 
This way our proposal does not reject the other proposals already present in the literature, but it 
subsumes them, thus obtaining a greater level of expressiveness in terms of system representation.
Then we thought  of  a  model  as  a  graph with unary algebras  as  nodes.  The edges  express  the 
presence of a partial homomorphism between the source algebra and the target algebra.

Taking� inspiration from various sources ([GL07], [Bel06], [Zal95], [BCKL07]), we present here a 
quantified predicative modal logic of the second order with which we express and verify properties 
on algebraic models. We present two different semantics for our logic: a Kripke-like semantics and 
a counterpart-like semantics.  In both of these semantics the models on which the formulas are 
evaluated are particular graphs with some additional information and properties. In these graphs the 
nodes (representing individual states of systems) are algebras with a fixed unary signature  . In a 
Kripke-model  a  unique  domain  (an  algebra D )  of  which  all  the  worlds  are  subalgebras  is 
required, while in a counterpart model a “counterpart relation” for each pair of connected nodes is 
required. The two requirements are necessary to evaluate formulas with modal operators as main 
operators, for which, given that their true value can depend on several worlds, a method is required 
to associate elements of the carrier of a state, with elements of the carriers of other states:

• In a  Kripke model,  given that the states share the elements of the unique domain,  it  is 
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possible to identify an element of the carrier of a state in different states. This is known as 
the property of “trans-world identity”. 

• In a counterpart model these associations are made explicit by the counterpart relations, thus 
avoiding the trans-world identity.

Given a Kripke or counterpart model, we could give truth values to formulas of our logic in a world. 
The terms of our logic are variables or operators of the signature  (fixed for all the worlds) 
applied to another term. In each world “w” every term is mapped in an element of the carrier of the 
world by a variable assignments w .  The logic has two predicates:  the equivalence predicate 
between terms, and the membership predicate of a first order variable to a second order variable.
The formulas of our logic without modal operators are evaluated on individual states, namely an 
unary algebra extrapolated from the structure of the model, whilst the truth values of formulas with 
at least a modal operator depend from the interconnections and the morphisms between the states.

By modeling the evolution of a system as a Kripke or counterpart model we can express and verify 
many desirable properties on it as formulas of our logic. Our logic allows to formalize the problem 
of verifying sets of properties of a system as a problem of truth of formulas on graphs.
Even if  related approaches already exist,  with our logic we can model a larger set  of systems, 
because it has a greater expressiveness: our states (or worlds) do not need to be of any particular 
structure, but just generic of unary algebras.

Unfortunately our logic alone is too weak to express “global properties”; modal logics in general 
lacks of expression,  since they are purely local:  the value of a modal  formula with “n” modal 
operators, depends only from states distant at most  n from the state of reference. So we can not 
write a formula to express that “something bad will never happen”, however we can write a formula 
to express that “something bad will not happen in the next n steps of computation”.
The only way to express global properties is through quantification over the worlds of the models. 
In the literature it has been presented in two solutions:

1. introduce  quantifiers  of  the  second  order  over  worlds,  together  with  a  predicate  of 
membership of a world in a set of worlds.

2. introduce the operators of maximum and minimum fixed points together with second order 
variables over worlds.

We are currently working on introducing the fixed point's operators, but for the time being, they 
bring to  a  limitation in  terms of  expressiveness  of  systems.  As seen in  many proposals  in  the 
literature, these operators force us to use as models for evolutions of systems only graphs without 
cycles, thus trees. For now we have thus chosen to exclude these operators from the logic.
In any case, we believe that our semantics, which are uniform and apparently capture many of the 
proposals in the literature, can make it easier to solve this problem. This is an interesting topic for 
future research.

The structure of this thesis is as follows. In chapter 2 we first recall the basic definitions regarding 
unary algebras, then we focus on concepts necessary  for the rest of this thesis: homomorphism, 
subalgebra,  congruence,  quotient  algebra,  terms,  term-in-context,  terms  evaluation,  identity-in-
context and quotient algebras over set of identity-in-context.
To clarify these concepts we give some examples where we instantiate these concepts on  some 
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algebras  of graphs,  which as said are particular unary algebras.  Actually,  given its  well  known 
graphical representation, in this thesis we often utilize examples using algebras of graphs.

In chapter 3 we present the syntax of our predicative modal logic of the second order. We define its 
alphabet and the rules to inductively generate the set For Alf  X - X

of quantified modal formulas of the 
second order over it.  Then we define the concepts of context of a formula, and of formulas in 
context. 
Finally we give the rules to generate the set  of well-formed formulas-in-context For Alf  X - X

IC over
For Alf  X- X

and the set of terms in context relative to X .  This logic is intended to work over 
algebraic models representing the evolution of a system. Each node of a model representing a state 
of  a  system is  a  unary algebra,  while  the edges  represent  partial  homomorphisms between the 
connected states. In chapters 4 and 5 we define two semantics for our logic through two particular 
algebraic models: Kripke model and Counterpart model. These models are graphs with particular 
requirements and properties. Their greatest difference is the handling of the so called “trans-world 
identity” property: which is the problem to identify the same element in different algebras/states. To 
solve it, in Kripke models we require the presence of a unique domain for all the algebras of a 
system.  In  the  “Counterpart-like”  semantics  we  avoid  the  necessity  to  obtain  the  trans-world 
identity by introducing the concept of “counterpart” of [some] elements of an algebra into another 
algebra for all the algebras “connected” by an edge. Thus it is not required to identify an element in 
different worlds. The first solution presents a problem: it is not possible to model a system in which 
some elements are merged during its evolution, so we introduce a congruence to simulate these 
merging. In both chapters 4 and 5 we give simple examples to clarify  our proposals.
In chapter 6 we give a preliminary introduction to a -calculus obtained from our logic adding 
the operators of maximum and minimum fixed points together with second order variables over 
worlds, also known as fixed point variables.
Finally in chapter 7 we give the conclusions about the work made, the achievements, the limitations 
and some future developments.
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2 Hints of Universal Algebra
Universal algebra is the branch of mathematics which studies algebraic structures (or algebras). The 
main aim of universal algebra is to extract, whenever possible, the common elements of several 
seemingly different types of algebraic structures.  In achieving this, one discovers general concepts, 
constructions, and results which not only generalize and unify the known special situations, thus 
leading to  an economy of presentation,  but,  being at  a higher level  of abstraction,  can also be 
applied to entirely new situations, yielding significant information and giving rise to new directions.
The aim of this chapter is to recall the basic definitions regarding  unary multi-sorted algebras. The 
algebra of graphs is an example of unary multi-sorted algebra. The chapter firstly focuses on the 
basic notions of algebraic specification, namely, homomorphism, subalgebra, and quotient algebra, 
then we give notions necessary for the rest of this thesis: terms, individual variable assignment, 
terms  evaluation,  term-in-context,   equivalence  and  congruence  relations,  identity  and  quotient 
algebras over set of axioms-in-context.

2.1 Multi-sorted Unary algebras
Definition(Operations on a set). For T a nonempty set  of sorts,  and “A” a  nonempty set  of 
elements, each one of a sort 1 ,2 , ... ,n ∈T , we define a unary operation on  A as any typed 
function f :i j assigning  an  element a∈A with  sort i to  an  element b∈A with  sort
 j  . The image b of a under a unary operation f : i j has sort  j and is denoted by
f a   .

Definition(Signature). A multi-sorted unary signature (or type)  of algebras is composed by a 
set  of  sorts T ={1 , ... ,m} and  a  set  of  unary  function  symbols

F={ f 1 :i j  , ... , f n: lk } typed over T .
Usually, we write T  and F  to indicate that T  is the set of sorts in  and F  is the set 
of function symbol in  .

Example 1(Graph signature). Here we recall the signature of a well-known algebraic structure 
widely used in computer science: the algebra for representing graphs, or graph algebra.

• The set T graph of sorts is composed by the sort of the nodes N and the sort of the edges
E  .

• The  set  of  typed  unary  function  symbols F graph is  composed  by  the  function  symbol
s :EN which  determines  the  source  node  of  an  edge,  and  the  function  symbol
t :EN which determines the target node of an edge.

Definition(Multi-Sorted Algebra). If  is  a multi-sorted unary signature,  then a multi-sorted 
unary algebra A with signature  ( a −Algebra ) is an ordered pair < A , F A > where:

• A , called the carrier (or universe) of A,  is a nonempty set of elements with sorts defined 
in T   . Supposing the existence of m sorts, it is possible to individuate m distinct subsets

Ai
= {a∈A | a :i } of  A,  each  one  containing  elements  with  sort i  , for  all i

defined in T  : A=∪Ai
 , for all i ∈T  .

• F 
A is a family of typed unary operations on A indexed by the signature  , such that to 
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each  typed unary function symbol f  in F  corresponds a unary operation f 
A on A 

in F 
A : F 

A={ f 
A : Ai

 Ak
 | f  :ik  ∈  F  }. The  functions  in F 

A are  called 
fundamental operations of A. If F 

A is finite, say F ={ f 1 ,... , f k } , it could be possible 
to write < A{ f 1 , ... , f k } > for < A , F 

A > .

Example 2(Graph algebras).  In this  section we list  a few examples of graph algebras, that  is 
algebras  over  the  graph  signature.  We write  the  algebras  defining  the  graphs,  and  a  graphical 
representation of them.
In all the examples of graphs of this thesis, in the definition of their carriers we indicate with n i an 
element with sort N , that is a node, and with e i an element with sort E , that is an edge.

• G1 : G1={n1 , n2 , n3 , e1 ,e2 } , F G1={sG1e1=n1 , sG1 e2=n1 , tG1e1=n2 ,tG1e2=n3}

• G2 : G2={n1 , n2 , n3 , n4 , e1 , e2 , e3} , F G2={sG2e1=n1 , sG2e2=n1 , sG2e3=n2 ,
tG2e1=n2 , tG2e2=n3 , tG 2e3=n4 }

Algebraic models for a second-order modal logic 8
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• G3 : G3={n1 , n2 , n3 , n5, e1 , e2 , e3 , e4 } , F G3={sG3e1=n1 , sG3e2=n1 , sG3e3=n2 ,
sG3e4=n3 , tG3e1=n2 , tG 3e2=n3 ,tG3 e3=n2 ,tG3e4=n5 }

2.2 Isomorphic and homomorphic algebras
Definition(Basis on functions). A function f from a set A to a set B, written f : AB  , is:
• injective if for all the pair of elements a1 , a2 in A, f a1= f a2    a1=a2

• surjective if for every b∈B exists an a∈A with f a =b .
• bijective if it is both injective and surjective.

Definition(One-sorted Homomorphism). Suppose A and B are two algebras with unary and one-
sorted signature  . A function (or mapping)  : AB is an homomorphism  from A to  B (or
 -homomorphism ) if it preserves the operators; that is if for every f 

A ∈ F 
A  , and for every

a∈A  , we have  f 
A a = f 

B  a  . If, in addition, the mapping  is surjective, then B 
is called an homomorphic image of A, and  is called an epimorphism. If instead  is injective, 
then  is  called  a  monomorphism and  is  an  embedding  of  A into  B.  Finally,  if  is  both 
injective and surjective (bijective), then  is called an isomorphism. We say that the algebra A is 
isomorphic to the algebra B, written A ≈ B if there is an isomorphism from A to B.
If  is  an  isomorphism  from  A to  B,  then -1 is  an  isomorphism  from  B to  A,  since  an 
isomorphism is a bijective function.

Definition(One-sorted Partial Homomorphism). Suppose  A and  B are two algebras with unary 
and (one)-sorted signature  . A function  : AB , with A⊆A (where A could be empty), 
is  a  partial  homomorphism  (or  -partial-homomorphism )  from  A to  B if  it  preserves  the 
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operators;  that  is if  for every f 
A ∈ F 

A ,  and for every a∈A ,  we have that the equivalence 
 f 

Aa  = f 
B a must hold. This means that since a is mapped in B, then also f 

A a 
have to be mapped in  B, and  f 

Aa  must coincide with f 
B a  . If, in addition,  is 

surjective, then  B is said to be a partially-homomorphic image of  A, and  is called a partial-
epimorphism.  If instead  is injective, then  is called a partial-monomorphism and is a partial 
embedding of A into B.

With multi-sorted algebras, the concept of homomorphism becomes slightly more complex.
Definition(Multi-sorted Homomorphism).  Suppose A and B are two algebras with a unary and 
multi-sorted  signature  . A  set  of  functions {1 ,... ,m}

={1
,... ,m

} is  a  multi-sorted 
homomorphism from A to B if:

1. In {1 ,... ,m} there is exactly one function i
: Ai

Bi for each sort i defined in  .

2. The set {1 ,... ,m} preserves the operators:  for each  function symbol f  :ik  ∈F  , 
and element a :i   ∈  Ai

 , we have K
 f 

Aa= f 
B I

a  .

The  concepts  “epimorphism”  (homomorphic  image),  “monomorphism”  (embedding),  and 
“isomorphism” are easily extended to the multi-sorted case: all of the  i must be respectively 
surjective, injective or bijective.

Definition(Multi-sorted Partial Homomorphism). Suppose A and B are two algebras with unary 
and multi-sorted signature  . A set of functions {1 ,... ,m}

={1
, ... ,m

} is a multi-sorted partial 
homomorphism from A to B if:

1. In {1,... , m} there is exactly one function i
: Ai

Bi
 , where A i

⊆A i (so A i could 
be empty), for each sort i defined in  .

2. The set {1,... ,m} preserves the operators: for each function symbol f  :ik  ∈ , and 
element a :i   ∈  Ai , the equivalence K

 f 
A a= f 

B I
a holds. As for the one-

sorted  case,  since a is  mapped  in  B,  then f 
A a  must  be  also  mapped  in  B,  and

K
 f 

A a must coincide with f 
B I

a .

The  concepts  “partial  epimorphism”  (homomorphic  image)  and  “partial  monomorphism” 
(embedding)  are  easily  extended  to  the  multi-sorted  case:  all  of  the i must  be  respectively 
surjective or injective.

Example  2.1(Homomorphisms). An  homomorphism  between  graph  algebras  consists  of  two 
functions:

• N for the nodes,
• E for the edges.

To be an homomorphism from a graph G1 to a graph G2 , the set of functions {E , N } must 
respect the operators:

1. ∀ e :E ∈G1  ,  N
 sG1e =sG2E

e 
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2. ∀ e :E ∈G1  ,  N
tG1e=tG2E

e

Now we show some examples of homomorphisms (partial or not) between the following graphs:

• G1 : G1={na , nb , nc , ea , eb } , F G1={sG1ea=na , sG1eb=nb , tG1ea=nb ,
tG1eb=nc}

• G2 : G2={n1 , n2 , n3 , n4 , e1 , e2 , e3} , F G2={sG2e1=n1 , sG2e2=n1 , sG2e3=n2 ,
tG2e1=n2 ,tG2e2=n3 , t G2e3=n4 }

• G3 : G3={n1 , n2 , n4 , e1 , e3} , F G3={sG3e1=n1 , sG3e3=n2 , tG3e1=n2 ,
tG3e3=n4 }

Algebraic models for a second-order modal logic 11
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Example 2.1.1 The set of functions {E , N } with:

• N
na=n1  , N

nb=n2  , N
nc=n3

• E
ea=e1  , E

eb=e2

is a multi-sorted homomorphism between G1 and G2 because respect the operators:

• N
 sG1ea= sG2E

ea  , N
 sG1eb= sG2E

eb

• N
tG1ea= tG2E

ea  , N
tG1eb= tG2E

eb

Since E
 and N are injective, then {E ,N }  is a multi-sorted monomorphism or an embedding 

of G1 into G2 .

Example 2.1.2 Here we show that the set of functions {E ,N } containing the inverse functions of
E

 and N is a partial homomorphism from G2 to G1 . In detail we have:

• G 2- E
={e1 ,e2 }

• G 2- N
={n1 , n2 , n3 }

• E
e1=ea  , E

e2=eb

• N
n1=na  , N

n2=nb  , N
n3=nc

The  functions  in {E , N } are  a  multi-sorted  partial  homomorphism from G2 to G1 because 
respect both the source operator:

• N
 sG2e1= sG1E

e1  , N
 sG2 e2= sG1E

e2

and the target operator:

• N
tG2e1= tG1E

e1  , N
tG2e2 = tG1E

e2

Example 2.1.3 To conclude this brief list of examples, we give a set of functions {E ,N } which is 
not an homomorphism from G1 to G3 because does not respect the operators:
{E ,N } =

◦ N
na=n1  , N

nb=n2

◦ E
ea=e1  , E

eb=e3

To  prove  that {E ,N } is  not  an  homomorphism  it  is  enough  to  show  that
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N
 sG1eb ≠ sG3E

eb . Indeed we get n1≠ n2 .

2.3 Subalgebras
In the literature there exists several methods to construct new algebras from a given one. One of 
these is the creation of subalgebras.

Definition(Subuniverse). A sub-universe of an algebra A is a subset B of the carrier A of A closed 
under the fundamental  operations of  A;  i.e.,  if  B  is  a subuniverse of  A,  f a  fundamental  unary 
operation of A and a∈B , then f a  ∈ B  .
Considering the graphs of the example 2.1 , the carrier G3 of G3 is a subuniverse of G2 .

Definition(Subalgebra). Let A and B be two algebras with the same multi-sorted unary signature
 . Then B is a subalgebra of A if B⊆A and every fundamental operator of B is the restriction 

of the corresponding operation of  A in  B (  for each function symbol f ∈ F  , f 
B is f 

A

restricted to  B). If  B is a subalgebra of  A we write B≤A . For the definition of subuniverse, if
B≤A then the carrier B of B is a subuniverse  of A. As a consequence, referring to the examples 

in 2.1 ,  we can say that G3 is a subalgebra of G2 .

Definition(Homomorphism  and  subalgebra). If  :AB is  a  homomorphism, C≤A and
D≤B ,  then C is  the  subalgebra  of  B with  universe C  ,  and - 1D  is  the 

subalgebra of A with universe -1D  , provided -1D ≠  .

Definition (embedding and subalgebra). If  :AB is an embedding of A into B, then  A
is a subuniverse of B, and A  denotes the subalgebra of B with universe  A  .

2.4 Equivalence relations, congruences and quotient algebras
Definition(Equivalence relation). Let  A be a set, a binary relation “R” on  A is a subset of A × A
(the set of pairs of elements in A). For a ,b ∈ A , if < a , b> ∈ R we also write aRb .
A binary relation R on A is an equivalence relation on A if, for any a ,b , c ∈ A , it satisfies:

1. reflexivity: aRa
2. symmetry: aRb bRa
3. transitivity: aRb∧bRc aRc

The set of all equivalence relations on the set A is denoted by Eq(A).
Let ϱ be an equivalence relation on  A  ϱ ∈Eq A , for a∈A , the equivalence class of “a 
modulo ϱ” is the set a /ϱ = { b∈A | < b ,a > ∈  ϱ}.
The set of all equivalence classes in A modulo ϱ is indicated by A/ϱ={a /ϱ : a  ∈  A}. It is a 
set of sets.

Definition(One-sorted congruence). Let  A be an algebra with a  one-sorted unary signature 
and let ϱ be an equivalence relation on A. The equivalence relation ϱ is a congruence on A if it 
satisfies the following compatibility property:
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• For each function symbol f ∈ F  , and pair of elements  a,b in  A, if aϱb holds, then
f 

A a ϱ f 
Ab holds.

Still considering a one-sorted unary algebra A, the compatibility property is an obvious condition 
for  introducing  an  algebraic  structure  on  the  set  of  equivalence  classes: A /ϱ . A /ϱ is  an 
algebraic structure inherited from the algebra A: since “a” is an element of A and f  is a unary 
function symbol in F  , then the easiest choice of an equivalence class to be the value of f 
applied to the equivalence class of a ( a /ϱ ) would be simply f 

A a/ϱ . That is the equivalence 
class  of f 

A a modulo ϱ. This  indeed  defines  a  function  on A /ϱ if  and  only  if  the 
compatibility property holds.
As a  consequence,  selecting a  and b  in  the same equivalence class,  we have that f 

A a and
f 

A b are in the same equivalence class.

With multi-sorted algebras, the concept of congruence becomes slightly more complex.
Definition(Multi-sorted congruence).  Let  A be an algebra with a  multi-sorted unary signature
 . A set of equivalence relations ϱ{1 , ... ,m}

 =  {ϱ1
, ... ,ϱm

} is a  multi-sorted congruence  on 
A if:

1. In ϱ{1 , ... ,m} there is exactly one equivalence relation ϱi for each i defined in T 

2. The set ϱ{1 , ... ,m} satisfies  the  following “multi-sorted  compatibility property”:  for  each 
operation  symbol f  :ik  ∈F  ,  and  elements a :i , b :i ∈ A ,  if a ϱi

b holds, 
then f 

A a ϱk
f 

Ab holds. 

The concept of equivalence class remains unchanged with respect to one-sorted congruences, in fact 
two elements with different sorts never belongs to the same equivalence class. Then we talk about 
equivalence  classes  with  sort “ a /ϱi

” for  all i defined  in T  . With A/ϱ{1 ,... ,m} we 
indicate the set of all the equivalence classes with sort in A over ϱ{1 , ... ,m}

 .

Definition(Quotient  algebra).  The set  of all  congruences  on a multi-sorted unary algebra  A  is 
denoted  by M−Con A .  Let ϱ{1 , ... ,m}

 ∈ M−Con A ,  then  the  quotient  algebra  of  A by
ϱ{1 , ... ,m} , written A/ϱ{1 ,... ,m} , is the algebra whose universe is:
• A/ϱ{1 ,... ,m} (that  is  a  set  of  equivalence  classes  in  A modulo  the  congruences  in

ϱ{1 , ... ,m} ) 
and whose fundamental operations satisfy:

• f 
A/ϱ{ 1, ... ,m}a /ϱ{1 ,... ,m}

  =  ( f 
A a  )/ϱ{1 ,... ,m} ;  where a∈A and f  is a unary function 

symbol in F   .

Note that the quotient algebras of A has the same signature of A.

Example 2.2(Quotient algebra). In this example we give a graph algebra G and a multi-sorted 
congruence ϱ{E ,N } over its carrier. Then we give the quotient algebra G /ϱ{E ,N } .

G : G={na , nb , nc , ea , eb} , F G={sG ea=na , sG eb=na ,tG ea=nb ,t Geb=nc}
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The multi-sorted congruence ϱ{E ,N } consists of a congruence between nodes, and a congruence 
between  edges: ϱ{E ,N }

= {ϱE
 , ϱN

} where ϱE contains  only  the  pair < ea ,eb > and ϱN

contains only the pair < nb , nc > :

• ϱE
={<ea , eb > }

• ϱN
={< nb , nc > }

The set ϱ{E ,N } is a multi-sorted congruence over G because:
1. contains exactly an equivalence relation for each sort defined in the signature of G
2. satisfies the “multi-sorted compatibility property”:

a) s ea ϱN
s eb that corresponds to na ϱN

na holds for the reflexivity property of the 
equivalence relations.

b) t ea ϱN
t eb that corresponds to nb ϱN

nc holds for the definition of ϱN .

The quotient algebra of G by, ϱ{E ,N } written G /ϱ{E ,N } , is the algebra whose universe is:
• G /ϱ{E ,N }

and whose fundamental operations are defined as:

• s ea/ϱ{E ,N }
  =  ( s ea ) /ϱ{E ,N }

• s eb/ϱ{E ,N }
  =  ( s eb ) /ϱ{E ,N }

• t ea/ϱ{E ,N }
  =  ( t ea) /ϱ{E , N }

• t eb/ϱ{E ,N }
  =  ( t eb )/ϱ{E ,N }

We can give a graphical representation of G /ϱ{E ,N } drawing the equivalence class of the edges
ea  and eb with a single edge ea - b , and the equivalence class of the nodes nb  and nc with a 

single node nb -c .
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Note that the quotient algebra G /ϱ{E ,N } maintains the graph signature.

2.5 Variables and terms
Given an algebra A there are usually many functions besides the fundamental operations which are 
compatible  with  the  congruences  on  A and  which  “preserve”  the  subalgebras  of  A.  The  most 
obvious functions of this type are those obtained by compositions of the fundamental operations. 
This leads us to the study of terms.

Definition(Term).  Let  be  a  multi-sorted  unary  signature  of  algebras,  and  let
X  i
={ x1

i , x2
 i , ... } be  a  denumerable  infinite  set  of  distinct  objects  with  sort i∈ T  called 

individual  variables.  A  multi-sorted  denumerable  infinite  set  of  individual  variables  is
X=∪{ X 1

,... , X m
} for all the sorts i defined in T  (where the sets of individual variables 

are disjoint). The signature X is obtained extending the signature  with the elements in  X. 
The  denumerable  infinite  multi-sorted  set T  X ={ 1 ,... ,m } of  terms  obtained  from  the 
signature X ( X− terms ) is the smallest set such that:

1. X⊆TX 

2.
 :i∈ T X   , f :i j∈ F 

f : j∈ TX 

For  ∈T  X  we often write  as x i to indicate that the variable x i appears in  .

Example 2.3(Terms). Let  be the graph signature, and let X=∪{{n1 , n2 , n3} ,{e1 , e2 , e3}}.  
Then n1  , n2  , n3  , e1  , e2  , e3  , se1  , t e1  , se2  , t e2  , s e3  , t e3 are   the  terms  in

T  X  .

Definition(Individual variable assignment). An  assignment for first order variables (iv-a) A , 
relative  to  a X−algebra A,  is  a  function  that  maps,  for  every sort ∈ T   , the  individual 
variables with sort  of X to an element with sort  of A. An individual variable assignment is 
also known as “environment”.

Definition(Variant  of  an  individual  variable  assignment).  For  A a X−algebra  , x : an 
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individual variable  in  X and a :∈ A , the  variant A
a
x
 of the iv-a A is  an iv-a  which 

does not coincide with A at most on x , and assigns the element a of the carrier of A to x.

It  is  possible  to  utilize  the  concept  of  iv-a A (where  A is  a X−algebra )  to  define  the 
evaluation of a term for A: “ VA ”.
Definition(Evaluation of terms). Given a term  over a multi-sorted unary signature  and 
over a set  X of  individual variables, and given an algebra  A with signature  , we define the 
evaluation of terms VA as a function based on the iv-a A  , which goes from a term  to 
the elements of the carrier of  A. Recalling that the set T  X  of X− terms is composed by 
first order variables or operations of A with argument another term, the evaluation VA of terms 
induced by A is defined such that:

• for each first order variable x, V A x =A x 

• for each name of operation f  : ' in F  and for each term  : , V A  f 
A =

f 
A V A 

Definition(First order context  ). A first order context  (or individuals context) is a finite 
list [ x1 :1 , .. . , xn:n ] of  (first  order  variable,  sort)-pairs,  subject  to  the  condition  that

x1 , . .. , xn are distinct. We write var   for the finite set { x1 ,. .. , xn } of individual variables 
in  . By saying that a first order context is based on a set X of first order variables, we mean that 
it can contain only variables in X.
We  write  , x : to  indicate  the  result  of  extending  by  adding  the  first  order  variable

x ∉ var  with sort  . Similarly, the result of appending two first order contexts whose sets 
of variables are disjoint is indicated by  , ' .

Definition(Term-in-context). A unary term-in-context  takes  the  form  : [ ] where  is  a 
unary term over a given signature   ,  is a sort in F   , and  is a first order context over a 
signature X  . The set of well-formed terms-in-context T IC  X  over T  X  is inductively 
generated by the two rules:

1. x : [ , x : , ' ] ∈T IC X 

2.
 :i [ ]∈ T IC X   , f  :i j∈ F 

f : j [ ] ∈T IC  X 

It is easy to see that each unary term  could have an infinite number of contexts. It is possible to 
define the minimal context of a unary term as the variable appearing in it.

2.6 Identities in context
In universal algebra it is common to encounter identities (or equations). For example, one of the two 
most famous definition of lattices, a widely used algebraic structure in computer science, says: “A 

Algebraic models for a second-order modal logic 17



nonempty  set  L together  with  two  binary  operations ∨ ,∧ on  L is  called  a  lattice  if,
for x , y , z ∈ L , it satisfies the following identities:

• Commutative laws: x∨ y ≈ y∨ x and x∧ y ≈ y∧ x

• Associative laws: x∨ y∨z  ≈  x∨ y∨ z and x∧ y∧z  ≈  x∧ y∧ z

• Idempotent laws: x∨ x ≈ x and x∧ x ≈ x

• Absorption laws: x ≈ x∨x∧ y  and x ≈ x∧x∨ y 

As made for the terms, in this section we give the concept of context for an identity hence that of 
identity-in-context.  Then  we  introduce  the  concept  of  quotient  algebra  defined  over  a  set  of 
identities-in-context.

Definition(identity-in-context). Given two [unary] terms-in-context 1[ ] ,2 [ ]  ∈ T IC  X  ,
both  with  a  certain  sort i  , an  identity-in-context  (abbreviated  iic)  over T IC X  is  an 
expression of the form 1  ≈  2  [ ] : ;  where  is a context,  is a sort and 1  , 2 are 
terms satisfying 1[ ] :  and 2 [ ] :  . Since  T IC X  is constructed over X , we could 
also say that an identity-in-context over T IC X  is also constructed over X .
The identities-in-context are also known as “equations-in-context”. The set of identities-in-context 
over X is indicated with Id IC  X .
An  algebra  A with  signature  satisfies  an  identity-in-context 1  ≈  2  [ ] :  ∈

Id IC  X  if  for  every  individual  variable  assignment A ,  thus  for  every  derived  terms 
evaluation V A , we have: 

• V A 1 [ ]=V A2[ ] .

If a −algebra A satisfies the identity in context 1  ≈  2  [ ] : we say that the identity in 
context is true in A, abbreviated by A|= 1  ≈  2  [ ] : . A class K of algebras with signature
 satisfies 1  ≈  2  [ ] :   ( K |= 1  ≈  2  [ ]: ) if  each algebra  of  the  class  satisfies  the 

identity.

Definition(Variety). Let  be a set of identities-in-context over X , and define M( ) to be 
the class of algebras satisfying  . A class K of algebras is a variety or an “equational class” if 
there  is  a  set  of  identities-in-context  such that K=M( ). In  this  case  we say that  K is 
defined, or axiomatized, by  , so we could talk about  axioms-in-context instead of identities-in-
context.
Intuitively, a variety is the class of all algebras satisfying a given set of axioms (or identities) in 
context  .

Definition(quotient algebra over a set of identities-in-context  ). For a given set of axioms-
in-context  defined  over X (where  is  a  unary  signature),  and  a −algebra A we 
denote by  = the smallest  congruence between elements of the carrier of  A  induced by the 
following rule:
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•
1 ≈ 2 [ ] :  ∈  , A  a variable assignment for A

V A 1 = V  A2

The  quotient  algebra A /= is  defined  as  the −algebra whose  carrier  consists  of  the 
equivalence  classes  of  elements  of  the  carrier  of  A modulo = ,  while,  for  each  operator

f ∈ F  , f 
A /=/=  =  ( f 

A  ) /= (where /= is the equivalence class associated to 
the term  ).
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QUESTA DEV'ESSERE LA PRIMA RIGAprima

Part II

Logics
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3 Quantified modal logic of the second order, and its syntax
In this chapter we define the syntax of a predicative quantified modal logic of the second order on 
algebras. We give its alphabet and the rules to inductively generate the set For Alf  X - X

of quantified 
modal formulas of the second order over it.  Then we define the context of a formula,  and the 
concept  of  formulas  in  context.  Finally  we  give  the  rules  to  generate  the  set  of well-formed 
formulas-in-context For Alf  X - X

IC over For Alf  X- X
and the set of terms in context relative to X .

3.1 The logic
In this chapter we define a quantified modal logic of the second order based on a given multi-sorted 
unary  signature X - X  , that  is  the  multi-sorted  unary  signature  “extended”  with  a  multi-
sorted set of first order variables X and a multi-sorted set of second order variables X .
Starting from X - X we define the alphabet and the formulas of the logic. We have already defined 
what a signature X is, later in this chapter we define what a signature X - X is. As explained in 
chapter  2,  a  signature  defines  all  the  possible  sorts T ={1 ,… ,m } of  the  elements 
contained in  the carrier  of  all −algebras , and a set  of  multi-sorted unary function symbols

F  which index the set of fundamental operators of the −algebras . In the chapters about the 
semantics of the logic (4,5) we see that the “worlds” of the logic are −algebras . Indeed we 
could call the logic a “−Logic ” .
In the chapter about Kripke-like semantics (4) we see that, in order to simulate the merger of several 
items  into  one,  the  worlds  of  the  models  of  the  logic  are slightly  more  complex   structures

( < w , =
w > ). However, for now, just think of a world of a model as a −algebra.

The transitions between worlds are modeled by multi-sorted partial homomorphisms between the 
algebras  representing  them,  that  is  multi-sorted  partial  homomorphisms  between  multi-sorted 
algebras.

Before presenting the syntax of the logic,  it  could be useful to make some clarifications about 
second order quantifiers. While first  order quantifiers quantify over individual elements, second 
order quantifiers quantify over sets of elements. We model a set of elements of the same sort i

through second order variables with sort i  . The second order variables may be seen as monadic 
predicates, that is unary predicates: the concept of membership of a term  : to a second order 
variable : could be represented as a predicate . However for now it suffices to think of 
a second order variable with sort i as a set  of elements with sort i :  later,  in the chapters 
relative to the semantics of the logic, we see how effectively the second order variables are mapped 
in a set of elements. In the formulas of the logic, the first order quantifiers quantify over terms , 
while the second order quantifiers over second order variables (which are not terms).
We indicate  a  second order  variable  with sort i with “ :i ” ,  and a  set  of  second order 
variables with sort i with X i

={1 :i ,2:i , ...} . A multi-sorted denumerable infinite set of 
second order variables is X = ∪{ X 1

,... , X m
} , for a certain set of sorts {1 ,... ,m } .

As for the first order variables, we can also extend a signature  with a set of multi-sorted second 
order set of variables X , obtaining X  . Extending a signature  with a set of multi-sorted 
first order variables X and a set of multi-sorted second order variables X , we obtain the signature
X - X .

The logic consider the transitions between worlds only in the evaluation of formulas with the modal 
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operators “possible” and “necessary”, indicated respectively with “ <> ” and “ []” .

3.2 Syntax
Given a unary multi-sorted signature   , a multi-sorted denumerable infinite set of individuals 
variables  X,  and  a  multi-sorted  denumerable  infinite  set  of  second  order  variables X , both 
relative to the sorts defined in   , the formulas of the relative X - X  - logic are defined over an 
alphabet Alf X - X , containing:

• the terms   ∈ T X  obtained from the signature X  ,

• the second order variables in X ,
• the binary equivalence predicate “ = i ” between terms for all sorts i in T   ,

• the membership predicate “ ∈i ” for all sorts i in T   , to indicate the membership of 
[the evaluation of] a term with sort i to [the evaluation of] a second order variable with 
the same sort i  ,

• the propositional connectives ¬  and ∨  ,
• the existential quantifier ∃  ,
• the modal operator “possible” <> .

The set For Alf  X - X
of quantified modal formulas of the second order is inductively generated from 

the alphabet Alf X - X applying iteratively the following rules:

 ::=   tt  |   | ¬  | ∨  | ∃ x : .  | ∃ : .  | <>
 ::=   := :  |  :∈:

  ::= f  :  | x :

where x :∈ X , :∈ X and f   ∈  F  .

From the grammar of the logic defined in BNF (Backus Naur Form), we can read that:
• The symbol  represents the predicates of the logic, while  represents the terms,
• The truth “tt” is in For Alf  X- X

,
• If <1,2 > is an ordered pair of terms with sort  , then 1=2 is in For Alf  X - X

,
• If  is a term with sort  and  is a second order variable with the same sort, then

 : ∈ : is in For Alf  X - X
,

• If  is in For Alf  X -Y

 , then ¬ is in For Alf  X - X
,

• If 1 ,2 are in For Alf  X -Y

 , then 1∨2 is in For Alf  X - X
,

• If  is in For Alf  X - X
and x is an individual variable with sort  , then ∃ x : is in

For Alf  X- X
,

• If  is in For Alf  X- X
and  is second order variable with sort  , then ∃: is in

For Alf  X - X
,
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• If  is in For Alf  X - X
, then <> is in For Alf  X - X

,
• Nothing else is in For Alf  X- X

.

Notational conventions:
1. ∧ , ,⇔ ,∀ are defined in the usual way, by means of ¬ , ∨ , ∃  ,
2. The modal operator “necessary” [] is defined as []⇔ ¬ <>¬  .

3.3 Quantified modal formulas-in-context of the second order
In chapter 2 we talked about first order context  for terms: a finite list [ x1 :1 , .. . , xn:n ] of 
(individual variable, sort)-pairs, subject to the condition that x1 , . .. , xn are distinct. We also have 
seen how to define a set of terms in context from a set of terms. Since a formula  could be seen 
as a “composition of terms”, each one with the same contexts, we could talk about the context of a 
formula,  and formulas-in-context.  In a formula,  besides first  order variables,  even second order 
variables could appear, so, prior to define the set For Alf  X - X

IC of quantified modal formulas of the 
second order “in-context”, it is necessary to define the concept of “second-order context” and then 
the “context of a formula”.

Definition(Second  order-context  ).  A second-order  context  over  a  multi-sorted  set  of 
second order  variables X is  a  finite  list [1:1 , .. . ,n :n] of  (second  order  variable,  sort)-
pairs,  subject  to the condition that 1 , .. . ,n are distinct.  We write var  for the finite  set

{1 ,. .. ,n} of second order variables in  . By saying that a second order context is based on 
a set X of second order variables, we mean that it could contain only variables in X .
We write  , : to  indicate  the  result  of  extending  by adding  the  second order  variable
∉ var  with sort  to   .

Similarly, the result of appending two second order contexts whose sets of variables are disjoint is 
indicated by  , ' .

Definition(Context  of  a  formula).  Finally  we  can  define  the  context  of  a  formula as  a  pair
“  ,” where  is a first order context, and  is a second order context.

Definition(Formula-in-context). A formula-in-context takes the form  [ ; ] , where  is 
a formula in For Alf  X - X

, and  ;  is a context of  over the given signature X - X  . As 
for the case of the terms-in-context,  an infinite set of contexts could be associated to a formula
 , each one of them have to contain at least the variables in the union of the minimal context of 

the terms in  .
Remembering that the set T IC  X  , defined in the chapter 2, contains the terms-in-context over 
the set of terms T  X   , the set of well-formed formulas-in-context For Alf  X - X

IC over For Alf  X - X

and T IC  X  are inductively generated by the rules:

1. tt [ ;  ]  ∈  For Alf X - X

IC

Algebraic models for a second-order modal logic 24



2.
1 : [ ]∈ T IC X   , 2 : [ ] ∈T IC  X 

1= 2[ ;  ]  ∈ For Alf  X - X

IC

3.
 :[ ]∈ TIC X 

 : ∈ :[ ;  , : , ' ]  ∈  For Alf  X - X

IC

4.
 [ ; ]

¬[ ; ]  ∈ For Alf  X - X

IC

5.
1 [ ;  ]  , 2[ ;  ]

1∨2[ ;  ]  ∈ For Alf  X - X

IC

6.
 [ , x ;  ]

∃ x : .[ /{ x} ;  ]  ∈ For Alf  X - X

IC

7.
 [ ; ,]

∃: .[ ;/{} ]  ∈  For Alf X - 

IC

8.
 [ ; ]

<>[ ;  ]  ∈ For Alf  X - X

IC

Noteworthy is the fact that in the rules relative to the formulas with a quantifier as main operator we 
require that the inner formula contains the quantified variable in its context, thus avoiding formulas 
like ∃ x .∃ x . where  we have  a  variable  associated  to  more  than  one  quantifier.  In  fact  the 
introduction o a quantifier over a variable causes its removal from the context of the formula.

In  both  the  Kripke-like  and  Counterpart-like  semantics  we  give  semantics  to  the  formulas-in-
context  in For Alf  X- X

IC .  Without explaining any further  we only say that  giving semantics to  the 
naked formulas (not in context) leads to the loss of some important axioms of the modal logic, for 
example the distribution axioms:

• []12    []1 []2

To  further  discuss  this  concept  is  not  of  our  concern,  we  only  say  that  the  axiom  could  be 
invalidated by its instantiations in which the subformula 2 contain less free variables then the 
entire formula. For example in an instantiation of the axiom in which 1 contains x1 and x2

as free variables, and 2 contains only x2 .
The reason of this is intuitive. In the usual semantics of modal logics the evaluation in a world “w” 
of a formula with a modal operator as main operator under an assignment w takes into account 
only the worlds “accessible” from w which, in brief, contains all the elements associated to the free 
variables  of  the  formula.  This  is  to  grant  that  in  the  worlds  accessible  from  w the  formula  is 
evaluated assigning to the free variables the same elements that w assigns to them.
In particular, a formula with the operator of necessity as main operator, like [] , is true in a 
world w under an assignment w if  is true in all the worlds accessible from w that contain all 
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the  elements  associated  by w to  the  free  variables  of  the  formula.  If  there  are  no  worlds 
accessible from w with these characteristics, then the modal formula [] is vacuously satisfied in 
w, because there are no worlds which could falsify  .
Now it  is intuitive that []2 ,  having less free variables than []12 and []1 could 
takes into consideration a greater set of worlds respect to that of []12 and []1 . Thus 
it could happen that in a world  w the formulas []12 and []1 are true, while []2 is 
false, because [only] 2 takes into consideration a world that falsifies it, falsifying []2 , thus 
invalidating the distribution axiom.

In the section 4.3,  after the definition of our Kripke-like semantics, we give an example (example 
4.4) that clarify this concept. There we evaluate the formulas:

1. []( x1
N= x2

N   ¬ x1
N= x1

N  )

2. []x1
N= x2

N 

3. []¬x1
N= x1

N 
and we show that without the concept of context of a formula it could happen that in a world w and 
under a certain assignment w , the first two are true, while the third is false, invalidating so the 
distribution axiom, that in the example is instantiated as:

[]( x1
N=N

x2
N   ¬ x1

N=N
x1
N  )        ( []x1

N=N
x2
N   []¬x1

N=N
x1
N  )   [ ; ]

With the formulas-in-context we avoid this problem: in the evaluation of a formula with a modal 
operator as main operator, in a world “w”, we consider only the worlds “accessible” from w, which 
have assignment “equal to” (or better contained in) that of  w for the variables in the context. For 
definition of the formulas in context, all the sub-formulas of a formula-in-context have the same 
context of the main formula.  So there can not be any subformula with less variables in its context. 
Thus our semantics satisfy the axiom of distribution.

We  can  now  define  the  algebraic  quantified  modal  language  of  the  second  order  as
= < Alf X−X

 , For Alf X−X

IC > .
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4 Kripke-like semantics
In the introduction of this thesis we mentioned the Kripke-interpretation of modal logic, in this 
chapter we  further discuss this concept and introduce our Kripke-like semantics. We have seen that 
Kripke introduced an accessibility relation on the possible worlds, and that this accessibility relation 
played a role in the definition of truth for modal sentences. The definition of Kripke was: [] is 
true at a world w if and only if  is true at every world w' accessible from w. Then the logic is 
interpreted on graphs, that is, has we have seen, sets with [accessibility] relations.
In defining the semantics of our logic we define every world as an algebra, all with the same given 
signature  . In the section 4.1 we see that if we want to give a meaning to a formula with a 
modal operator as main operator ( like [] or <> ) in a world “w” under a certain assignment
w , we need to grant that  is evaluable in w', that is we need to grant that the assignments for 

the free variables of  in  w' must coincide with that in w . This is made giving a method to 
“identify” in w' the elements of w in which w maps the free variables of [] .

4.1 A unique domain of reference for the models of the logic
To give a meaning to modal formulas with a modal operator as main operator, like <>  or [] , 
in a world w under an assignment w , we need to give a truth value to the formula  in the 
worlds  w'  accessible  from  w.  So  we  need  a  way to  grant  that  is  evaluable  in  the  worlds 
accessible from w. Take as example the case in which a term of  in w is evaluated in an element 
“a” of the algebra w. Then the formula  is evaluable in an accessible world w' if it is possible to 
identify “a” in w'. Thus we need a way to “identify” in w' the elements of w in which w maps the 
free variables of [] . This problem is known as trans-world identity. In section 4.2, where we 
show our approach to solve this problem, we see that, formally, this correspondence is given by a 
partial homomorphism between worlds: with ww ' we indicate the partial homomorphisms from 
the  world  w to  the  world  w',  and  with ww' a  we identify  the  element  of  the  carrier  of  w' 
correspondent to the element a in w. If a world w' is accessible from a world w, then there must 
exist a possibly empty partial homomorphism ww '  .
Obviously we still have not granted the trans-world identity property because we still have to clarify 
how the  are defined. The definition of these partial homomorphisms is what distinguishes the 
our Kripke-like and counterpart-like semantics. In the rest of this section we define the Kripke-like 
solution.

In the literature many methods to grant the trans-world identity are been presented:

1. the property of “increasing outer domain” in [Bel06], where, in brief, it is required that the 
carrier of an algebra w must be included in the carriers of the worlds accessible from it, 

2. the introduction of a unique domain of reference for all the worlds of a model of the logic as 
in [Zal95].

We have chosen and adapted the second solution:
• we suppose the existence of a unique domain of reference for all the algebras representing 

the worlds of a model. It is obvious to think to this domain as a −Algebra D .

Every world w of a model contains a subalgebra “d(w)” of D : that is D define the domain of 
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the carriers of the worlds, and the operations over the elements of the carriers.
Being a subalgebra of D , every algebra d(w) has a monomorphism (injective homomorphism) 
with D . In fact two elements of d(w) can never be mapped in the same element of D .

Since the worlds share the same items defined in D , the property of “trans-world identity” is 
granted:
• we can interpret the trans-worlds sameness as strict identity. If there exists an accessibility 

relation from w to w', and both contain the element a of D , then ww ' a = a .

Unfortunately having a unique domain of reference for the worlds brings a problem:
• It is not possible to merge two or more items of D into one element of another world 

without modifying D itself. 

This  is  because,  given  that  every  world  has  a  monomorphism  into D ,  also  the  partial 
homomorphisms between the worlds must be injective, so two distinct elements of d(w) can not be 
mapped in the same element of d(w').
This limitation is  not  acceptable if  the logic  is  utilized to describe the evolution of a  software 
system over the time, because we could not simulate the merging of variables.
We  avoid  this  limitation,  giving,  for  all  the  sorts ∈ T  ,  as  semantics  of  the  equivalence 
predicate = the congruence =

w over elements of  d(w), thus making the predicate relative to 
each single world w. If two or more elements of d(w), obviously with the same sort  , are in

“ =
w -relation ” , then we consider them “merged” into one.

More precisely, for every world “w” we have a  multi-sorted congruence =T 

w  =  {=1

w ,... ,=m

w }
over the algebra d(w). So, for all the worlds w and for all the operations f  : ' ∈ F we have 
that:
• if two elements “ a :” and “ b :” in d(w) are in the same class of equivalence modulo

=
w  , then f a  and f b are also in the a class of equivalence modulo ='

w  .

With  the  introduction  of =T 

w ,  every  world w does  not  contain  anymore  just  a  subalgebra
d w of D , but a structure < d w , =T 

w > with =
w  ⊆ d w×d w for all ∈ T   .

Let “”=  “ =T 

w ” , with = we indicate the minimal congruence induced by the identities in
 over the elements of d(w), as defined in chapter 2. With d w / = we indicate the quotient 

algebra of  d(w)  modulo  the  multi-sorted  congruence = as  defined  in  the  chapter  2.  If  the 
elements would be actually merged, we had as worlds of the a Kripke model the quotient algebras

d w / = .

4.2 Kripke-like semantics for the language =< Alf X−X
 , ForAlf X−X

IC >
In this section we define the concepts of:

• Kripke-model (K-model),
• World variable assignment (w-va) for K-models,
• Evaluation of terms in a world, induced by a w-va for K-models,
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• Satisfaction of the quantified modal formulas-in-context of the second order in For Alf  X- X

IC .

In our Kripke-like semantics we assign truth values to the formulas in For Alf  X- X

IC through Kripke-
models (K-models).
Definition(Kripke-model). A  K-model M is  an  ordered  quintuple  <W ,  R , D , =T

W ,  d> 
where:

1. “W” is a non-empty set of worlds,
2. “R” is a binary relation, called accessibility relation over W. Then R⊆W × W   ,

3. “ D ” is the domain of reference for the algebras of the worlds of a model,

4. “ =T 

W ” is a set of multi-sorted congruences =T 

w for all w ∈W ,

5. “d” is  a  function  which  assigns  to  each  world w ∈W an  algebra  d(w),  subalgebra  of
D  .

The set  W is intuitively interpreted as the set of worlds of the model, while  R is the accessibility 
relation between worlds: R(w,w') or wRw' means “w can access to w' ”, or “w' is accessible from w”.
As previously defined, every d(w), the algebra of the world w, is a subalgebra of D  .
The pair <W , R> is a graph where the nodes are the worlds w ∈W and the edges are defined by 
R: if wRw' , then there exists a directed edge from w to w'. If there exists a directed edge from w to 
w'  ,  then there exists  also a  multi-sorted partial  homomorphism from d w to d w ' . More 
precisely,  since  both d w and d w '  are sub-algebras  of D ,  we  have  a  partial 
monomorphism (or partial embedding) from  d(w) to  d(w'). In fact since  d(w) and  d(w') have an 
identity  morphism  with  the  elements  in D the  partial  morphisms  between  worlds  must  be 
injective.

We define =T 

W such that it has the “trans-world persistence” property:

• ∀ w∈W    a :∈d w  =
w  b :∈d w  ∧  wRw i      wwi

a :  =
w i  wwi

b:

The property says that if two elements a  , b of d w are merged, then in all the worlds w i

accessible from w :

i. either  a  and  b  are  not  mapped  in w i ,  that  is  both wwi
a :  and wwi

b :  are 
undefined

ii. or the elements wwi
a  ,wwi

b of w i are defined and merged

Intuitively, passing from world in world through R (and  ), two merged elements can not be 
divided after being merged, while instead new mergers can be created. If  were not partial, we 
had wRw i      =

w  ⊆  =
wi ,  but given that  is a partial homomorphism,  it could happen that 

some elements of d(w) are not mapped in w i  . A function  which maps only partially merged 
elements (i.e.  either  only a or only b when a : =

w b : )  does not respect the property of 
trans-world persistence.
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Before defining the truth conditions of the formulas-in-context in For Alf  X - X

IC , we need the notion of 
world-variable assignment (w-va) w for a Kripke-model. In chapter 2, precisely in the section 
about  terms,  we introduced the  concept  of  “individual  variables  assignment” A ,  that  is  the 
assignment of a set of individual variables X in an algebra A. Now we extend this concept to have 
the assignment for the second order variables, thus obtaining a world-variable assignment w , 
where w is world of a K-model, that as we defined is an algebra.
Definition(World-variable-assignment for a Kripke-model). A world variable assignment w

for a Kripke-model is a function relative to a world w that maps the first and second order variables 
of every sort  , respectively 

• either in an element with sort  of d(w) ,

• or in a set of elements with sort  of d(w) closed on =
w .

Many different world-variable assignments can be created for a world, depending on the elements 
in its carrier.

From a w-va w we can obtain an individual variable assignment w | IV restricting w to the 
first order variables only.

Definition(Variant of a world variable assignment for a Kripke-model). For x : a variable of 

the  first order in  and a :∈ d w  , the  variant w 
a
x
 of a w-va w is a w-va which 

does not coincide with w at most on x, and assigns the element a to x. For : variable of the 

second order in  and B⊆ d w  a set of elements with sort  , the variant w 
B

 of the 

w-va w is a w-va which does not coincide with w at most in  , and assigns to  the set
B+⊆d w , for B+ the set B of elements with sort  closed over =

w  .

As  made  in  the  chapter  2,  precisely  in  the  section  about  terms,  for  the  individual-variable 
assignment,  it  is possible to utilize the concept of world-variable assignment w to define the 
evaluation of a term "" : “ Vw , w ' ”.
Definition(Evaluation  of  terms). The  evaluation  of  terms V w  , w '  ,  where  w is  not 
necessarily equal to  w', is a function based on the w-va w which goes from a term  and a 
world ( w ' ), to the elements of the carrier of the world w ' . Recalling that the terms are first 
order variables or operations of D with argument another term, the evaluation V w of terms 
induced from w in a world w ' , is defined such that:

• for each first order variable x, V w x ,w ' = w  x

• for  each  operation f  : ' of D and  for  each  term  : , V w  f  , w ' =
f V

w ,w ' 
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4.2.1 Instantiation of a Kripke model using as signature  the graph signature.
In this section we give a simple Kripke model “KM1” using the signature of graphs to clarify our 
proposal. As previously said, this thesis does not want to address the problem of the construction of 
models from system specifications, so here we just give an example of a Kripke model without 
specifies the system of which we model the evolution. We also give a graphical representation of 
the model to make clearer the concepts explained in this chapter.

As  previously  defined,  a  K-model is  an  ordered  quintuple  <W,  R, D , =T
W ,  d>.  The 

components of the K-model KM1 are:

1. W : { w1  , w2  , w 3  , w4  , w5  , w6}

2. R :{< w1,w2 >  , < w2 ,w3 >  , < w3 ,w 4 >  , <w1,w5 > , <w2 ,w6 >  , <w 5,w 6 >}

3. D :

◦ has carrier D={n1 , n2 , n3 , n4 , e1 , e2 ,e3 } , 

◦ has the set of operations F D={sD e1=n1 , sDe2=n1 , sDe3=n2 , tD e1=n2 ,
tD e2=n3 , tD e3=n4 }

4. =T
W  :

◦ =T 

w1  :

▪ =E

w1  : {∅ } , =N

w1  : {∅ }
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◦ =T 

w2  :

▪ =E

w2  : {∅ } , =N

w2  : {<n2 , n3> }

◦ =T 

w3  :

▪ =E

w3  : {< e1 , e2 > } , =N

w3  : {< n2 , n3> }

◦ =T 

w4  :

▪ =E

w4  : {< e2 , e3 >  , < e1 ,e2 >  , < e1 , e3> } ,  =N

w4  : {<n2 , n3>  , < n1 , n2 >  , 
< n1 , n3 > }

◦ =T 

w5  :

▪ =E

w5  : {∅ } , =N

w5  : {∅ }

◦ =T 

w6  :

▪ =E

w6  : {∅ } , =N

w6  : {∅ }

It is important to notice that since =E

w4 associates < e1 , e2 >  and < e1 , e3 > , while w6 contains 
in its carrier  only e1 ,  if w6 would be accessible from w4 ,  then =T

W would not verify the 
“trans-world persistence” property.

5. d :  Since d w1 , d w2 , d w3 , d w4 , d w5 , d w6 are  subalgebras  of  the  domain
D , their operations are that of D restricted to the elements contained in them.

◦ d w1  :

▪ has carrier {n1 , n2 , n3 , e1 , e2}

▪ has  the  set  of  operations F d w1={sd w1e1=n1 , sd w1e2=n1 , td w1e1=n2 ,
t d w1e2=n3}

◦ d w2  :

▪ has carrier {n1 , n2 , n3 , e1 , e2}

▪ has  the  set  of  operations F d w2 ={sd w2 e1=n1 , sd w2 e2=n1 , t d w2 e1=n2 ,
t d w2 e2=n3 }

◦ d w3  :

▪ has carrier {n1 , n2 , n3 , e1 , e2}

▪ has  the  set  of  operations F d w3={sd w3e1=n1 , sd w3e2=n1 , t d w3e1=n2 ,
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t d w3 e2=n3}

◦ d w4  :

▪ has carrier {n1 , n2 , n3 , e1 , e2 , e3}

▪ has  the  set  of  operations F d w4 ={sd w4 e1=n1 , sd w4 e2=n1 ,t d w4e1=n2 ,
t d w4 e2=n3 }

◦ d w5  :

▪ has carrier {n1 , n2 , n4 , e1 , e3 }

▪ has  the  set  of  operations F d w5={sd w5e1=n1 , sd w5e3=n2 , t d w5e1=n2 ,
t d w5e3=n4 }

◦ d w6  :

▪ has carrier {n1} ,

▪ Since d w6 does not contain edges, the operations sd w6  , t d w6  are undefined 
for every possible node

Now we give a graphical representation of the Kripke-model  we just  defined.  For economy of 
presentation, we draw the quotient algebras d wi/=T 

w i , thus representing at the same time both 
the graphs d wi and the congruences =T 

w i over them.
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4.2.2 Satisfaction of the formulas-in-context in ForAlf  X - X

IC evaluated in a world w of a K-
model M
Now we can finally define the truth conditions of the formulas-in-context  [ ;  ]  ∈  ForAlf X - X

IC

in a world  w of  a K-model  M, given a terms evaluation V w ,  that  is  given a  world variable 
assignment w .

Definition(Satisfaction of a modal formula-in-context in a world given V w ). In a K-model 
M, with an evaluation of terms V w (based on a given w-va w ) for the language  ,  the 
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satisfaction of a formula  [ ;  ]∈ ForAlf X - X

IC in a world w is defined as:

• V w ,w |=  tt [ ; ]

• V w ,w |=  ( 1 :=2: ) [ ; ] if V w 1, w  =
w  V w 2 ,w

• V w , w |=  (  : ∈  : ) [ ; ] if V w  ,w  ∈ w 

• V w ,w |=  ¬[ ; ] if ¬  V w ,w |= [ ;  ]

• V w ,w |=  1∨2[ ;  ] if V w ,w |=1[ ; ]   or  V w ,w |=2 [ ;  ]

• V w ,w |=  ∃ x : . [ ;  ] if ∃b :  ∈  d w   .  V
w 

b
x  , w |= [ , x ;  ]

• V w ,w |=  ∃: . [ ;  ] if ∃B:⊆d w  .  V
w 

B


,w |=[ ;  , ]

• V w ,w |=  <>[ ;  ] if ∃w '∈W  ∃w'  .  (  wRw '   ∧   ∀ x∈ .w x =w '  x
∧  ∀∈ . w ⊆w '    ∧   V w' ,w '   |=  [ ;  ]  )

Where:
•  ,1,2 are terms-in context over X

• x : is a first order variable with sort  ,
• : is a second order variable with sort  ,
• b is an element with sort  of the carrier of d(w),
• B is a set of elements with sort  of the carrier of d(w), closed over =

w ,
• w  and w ' are worlds in W ,

•  is a formula-in-context in For Alf  X - X

IC  ,

• w is an assignment on d(w) and w ' is an assignment on d(w').

In the semantics of formulas with first or second order quantifiers we extend the contexts of the 
formulas with the variable quantified. This is always a correct operation since for the construction 
rules of the formulas in context, a bounded variable never belongs to the context of a formula.

It is noteworthy that in the truth conditions relative to the formulas-in-context with a modal operator 
as main operator, like <> [ ;  ] , we consider only the worlds w' accessible by w for which 
there  exists  an  assignment w ' “equivalent”  to w for  the  variables  in [ ;  ] . This  is 
because in  w' the variables in the context of <> [ ; ] must refer to the same elements that 
they refer into w.

Truth conditions and validity for the formulas-in-context. 
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A formula-in-context  [ ;  ] is: 
• True in a world w if and only if it is satisfied by every evaluation, V w ,
• True in a K-model M if and only if it is true in every world w∈W of M.

4.3 Evaluations of formulas-in-context in a Kripke model
In this section we give a few examples of modal formulas, and their evaluation over the Kripke 
model KM1 defined in section 4.2.1.
In these examples we give some world variable assignments. Since this is just a simple example to 
clarify our proposal, in the definitions of the world variable assignments w i we focus only in a 
small number of first and second order variables. We  consider only three first order variables for 
each sort, and one second order variable for each sort. The variables that we take in consideration 
are:
• the first order variables with sort E x1

E , x2
E , x3

E ,

• the first order variables with sort N x1
N , x2

N , x3
N ,

• the second order variable with sort E E ,
• the second order variable with sort N N ,

Example  4.1.  Equivalence  predicate. We  first  give  a  simple  formula  composed  only  by  an 
equivalence predicate:

• s x1
E =N

t x1
E [ ;  ]

With this formula we can check if there exists a world w i and a world variable assignment w i  
in which the edge assigned by w i to the edge variable x1

E generates a cycle of length one. Even 
if the model does not contain an edge with source equal to its destination, in the world w4 the 
nodes  s e1= n1 and t e1 = n2 are  in =N

w4 -relation ,  so,  as  example,  given  an  assignment 
like:

w4 : w4
x1
E=e1  , w4

x2
E=e2  , w4

x3
E=e3  , w4

x1
N =n1  , w4

x2
N=n2  , 

w4
x3
N=n3  , w4

E
={e1 , e2 , e3} , w4

N
={n1 , n2 , n3}

which assigns the edge e1 to the edge variable x1
E , we have that:

• V w4 ,w4 |=  s x1
E =N

t x1
E [ ;  ]

Example 4.2. First order existential quantifier. Now we give a formula in which we check the 
existence of a world in which an edge belongs to the set result of the evaluation of the second order 
variable E :
• ∃ x :E . x ∈E

E
[ ; ]
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Except for the worlds with no edges (like w6 ), where the formula is false regardless from the 
assignment utilized, the truth value of this formula depends exclusively on the assignments.

Given the assignments for w1  , w2  , w3  , w 4  ,w5 assigning at least an edge to the second order 
edge variable E like:

w1 : w1
 x1

E=e1  , w1
x2
E=e2  , w1

x1
N=n1  , w1

 x2
N =n2  , w1

x3
N =n3  , 

w1
E

={e1 , e2} , w1
N

={n1 , n2}

w2 : w2
x1
E=e1  , w2

x2
E=e2  , w2

 x1
N=n1  , w2

x2
N =n2  , w2

x3
N =n3  , 

w2
E

={e1 , e2} , w2
N

={n1 , n2 , n3}

w3 : w3
 x1

E=e1  , w3
x2
E=e2  , w3

x1
N=n1  , w3

x2
N=n2  , w3

 x3
N=n3  , 

w3
E

={e1 , e2} , w3
N

={n2 , n3}

w4 : w4
x1
E=e1  , w4

x2
E=e2  , w4

x3
E=e3  , w4

x1
N =n1  , w4

x2
N=n2  , 

w4
x3
N=n3  , w4

E
={e1 , e2 , e3} , w4

N
={n1 , n2 , n3}

w5 : w5
 x1

E=e1  , w5
x3
E=e3  , w5

x1
N=n1  , w5

x2
N =n2  , w5

x3
N=n4  , 

w5
E

={e1 } , w5
N

={n1 , n2 }

we have that for i={1,2,3 ,4 ,5 }

• V wi , wi |=  ∃ x :E . ( x : ∈  : ) [ , x ;  ]

Given instead an assignment like  ' w5 for w5 which does not assign any edge to E like
 ' w5 :  'w5

x1
E =e1  ,  ' w5

x3
E=e3  ,  ' w5

 x1
N =n1  ,  ' w5

x2
N=n2  ,  'w5

x3
N=n4  , 

 'w5
E

={∅ } ,  ' w5
N

={n1 , n2}

we have that

• V  ' w5 , w5 |≠   ∃ x :E . ( x :∈ : ) [ , x ; ]

Example 4.3. Modal operator of possibility. In this example we give a formula with the modal 
operator of necessity as main operator. We give a formula that is true in the worlds from which, 
after a step of computation, the system can switch to a state with a particular configuration. Taking 
the formula and the assignment w4 of the example 4.1, we consider the case of a state where the 
edge associated to the edge variable x1

E generates a cycle with length one:

• <>  s x1
E =N

t x1
E[ ; ]

In the evaluation of V w ,w |=  <>[ ;  ] we take into account the only worlds w' accessible 
from w for which could exists an assignment w ' which coincide with w for the variables in 

Algebraic models for a second-order modal logic 37



the context of the formula (actually for the second order variables the condition is of inclusion from 
the  assignments  for  w to  that  for  w').  As  seen  in  the  example  4.1,  the  only  world  in  which

s x1
E =N

t x1
E [ ;  ] can  be  true  is w4 ,  for  example  utilizing  the  assignment w4

previously defined.  So the only world in which <>  s x1
E  =N

t x1
E[ ; ] could be true is

w3 ,  that  is  the  only  world  from which w4 is  accessible.  Given  that w4 contains  all  the 
elements  in w3 ,  then  there  exists  always  an  assignment w4 for  which
∀ x∈ .w3

x =w4
 x  ∧  ∀∈ . w3

⊆w4
 regardless  to  the  assignment w3 . 

So we have that if w3
 x1
E=e1 , then V w3 , w3 |=  <>  s x1

E =N
t  x1

E[ ; ] .
It is noteworthy that given that w4 contains all the elements in w3 ,  then there is always an 
assignment w4 which coincides  with an  assignment  for w3 for  the  variables  in  the  context, 
regardless of the context itself. 
If instead w3 has at least an element not in w4 , for example n4 , and the context contains a 
variable  which  the  given w3 assigns  to n4 ,  then  we  have  that
V w3 , w3 |≠ <>  s x1

E =N
t x1

E[ ;  ] because does not exists a world accessible from w3

that respect the assignment.
We remember that for the definition of the context of a formula, the context of our formula must 
contain at least x1

E because it is the only free variable in the formula. 

Example 4.4. The distribution axiom. In this example we give as formula an instantiation of the 
axiom of  distribution  of  the  modal  logic: []12      []1 []2 .  We  instantiate  the 
axiom with the following example:

[]( x1
N=N

x2
N   ¬ x1

N=N
x1
N  )        ( []x1

N=N
x2
N   []¬x1

N=N
x1
N  )   [ ; ]

We give this example to justify the need for a context to be associated to a formula. In fact, giving 
semantics to the naked formulas (not in context) leads to the loss of some important axioms of the 
modal  logic,  like  this  distribution  axiom.  The  distribution  axiom  can  be  invalidated  by  its 
instantiations with the following characteristic:

• the sub-formula 2 contains less free variables then the formula in which it belongs.

This is the case of formula of this example, where 2 does not contains x2
N .

In the usual semantics of modal logics, the evaluation in a world “w” of a formula with the modal 
operator   “necessary”  as  main  operator  under  an  assignment w takes  into  account  only  the 
worlds “accessible” from w which, in brief, contains all the elements associated to the free variables 
of  the formula.  This  is  to  grant  that  in  the worlds  accessible  from  w the  formula  is  evaluated 
assigning to the free variables the same elements that w assigns to them.
In particular, given an assignment w , [] is true in a world  w under an assignment w if
 is true in all the worlds accessible from w that contain all the elements associated by w to 

the free variables of the formula. If there are not accessible worlds with these characteristics, then
[] is vacuously satisfied in w.

Now  it  is  intuitive  that []2 ,  having  less  free  variables  than []12 and []1 could 
takes into consideration a greater set of worlds respect to that of []12 and []1 . Thus 
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it could happen that in a world  w the formulas []12 and []1 are true, while []2 is 
false, because [only] 2 takes into consideration a world that falsifies it, falsifying []2 , thus 
invalidating the distribution axiom.

In our semantics, the rule to evaluate a formula with the modal operator “necessary” in a world w is 
not given directly, but can be extrapolated from that for the modal operator possible and that for the 
negation;  since  we  have  that []   =   ¬<> ¬ ,  then V w ,w |=  ¬ <> ¬ [ ; ] is 
equivalent to ¬  V w ,w |=  <> ¬ [ ;  ] .

So the rule relative to the modal operator necessary can be written as:

V w ,w |= ¬<> ¬ [ ;  ] if ¬( ∃w '∈W ∃w '  .  (  wRw '   ∧   ∀ x∈ .w  x=w ' x 
∧  ∀∈ . w ⊆w '    ∧   V w' ,w '   |= ¬ [ ;  ]  )  ) .

In other words, given an assignment w , a formula [] [ ;  ] is true in a world w if there is 
not a world w i accessible from w where exists an assignment contained in the given w for the 
variables in the context of the formula,  in which the negation of the formula is true.

If  we do not  consider  the context  of  the formulas,  but  we limit  only to  consider  the variables 
appearing in the formula that we are evaluating, then we lose the axiom of distribution.
Consider the world w5 of the model KM1 and the assignment w5 defined in the example 4.2. 
The world has only one accessible world: w6 . Since w5

 x1
N =n1  and w5

x2
N=n2 but w6

does  not  contain n2 in  its  carrier,  then  in w6 does  not  exist  an  assignment  such  that
w5
 x1

N =w6
x1
N  ∧  w5

x2
N=w6

x2
N  , then in KM1 does not exist a world w i such that:

w5 Rw i   ∧   w5
x1
N =w i

x1
N    ∧  w5

x2
N=w i

x2
N ,  so w5 vacuously  satisfies  both 

[]( x1
N= x2

N   ¬ x1
N= x1

N  ) and []x1
N= x2

N  :

• V w5 , w5 |=  []( x1
N= x2

N   ¬x1
N= x1

N  )

• V w5 , w5 |=  [] x1
N= x2

N 

On the contrary, the subformula “ []¬x1
N= x1

N” is not vacuously satisfied in w5 with the 
assignment w5 because  the  subformula []¬x1

N= x1
N  contains  only x1

N ,  and  the  node
n1 that w5 assigns to the variable is in the carrier of w6 . Thus in w6 exists an assignment
w6 such that w5

 x1
N =w6

x1
N .  Since  obviously V w6 , w6 |=   x1

N=N
x1
N  (that  is w6

satisfies the negation of the formula), then we have that:

• ¬V w5 , w5 |=   []¬x1
N= x1

N 

So the distribution axiom is falsified.

With the formulas-in-context we avoid this problem: in the evaluation of a formula with a modal 
operator  as main operator,  we do not  consider the variables appearing in the formulas,  but  the 
variables in their contexts. For the definition of the formulas in context, all the sub-formulas of a 
formula-in-context have the same context of the main formula, so there is not a subformula with 
less variables in its context then in that of the main formula.  Thanks to the contexts the meaning of 
the free variables of a formula can be fixed at the beginning of the evaluation, and preserved respect 
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to the transitions without losing the axiom of distributivity.
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5 Counterpart-like semantics
In  chapter  4  we  discussed our Kripke-like semantics for a quantified  modal  logic of the second 
order. In this chapter we focus on a counterpart semantics for the same logic.

Counterpart theory was introduced by David Lewis [Lew68] as a first-order calculus. The key point 
of his proposal is the notion of counterpart, which is a consequence of Lewis’ refusal to interpret the 
relation of trans-world sameness as strict identity. Lewis’ counterpart theory - CT in short - was 
developed by Allen Hazen [Haz79] to provide semantics for first-order modal logic; in this chapter 
we  give a counterpart-like semantics for our algebraic quantified modal logic of the second order.

5.1 From Kripke-like to Counterpart-like semantics
In the Kripke-like models presented in chapter 4 we assume the existence of a unique domain of 
reference (the −Algebra  " D "  ) for all the algebras representing the worlds of a model. We 
need this constraint to evaluate formulas with a modal operator as main operator, otherwise the first 
order  variables ( x ) or  the  second  order  variables ( ) such  that
w x ∈ d w   and w ⊆ d w could not have denotation in the algebras of the worlds  w' 

accessible from w. With counterpart semantics we can release this assumption.

5.1.1 The unique domain of reference D

In chapter 4 we presented our Kripke-like semantics for algebraic quantified modal language of the 
second order  . We briefly recall the evaluation clause for formulas-in-context in which <> is 
the  main  operator.  The  relation  of  satisfaction  in  a  world  w for  a  formula-in-context

<> [ ;  ]  ∈   with respect to an evaluation of terms V w is defined as follows:

• V w ,w |= <>[ ;  ] if ∃w '∈W  ∃w'  .  (  wRw'   ∧  ∀ x∈ .w x =w '  x
∧  ∀∈ . w ⊆w '    ∧   V w' ,w '   |=  [ ;  ]  )

We  consider  only  the  worlds  w'  for  which  there  exist  an  assignment (w ' ) respecting  the 
assignment w for the variables in the context [ ;  ] . Thus we could somehow say that the 
same   assignment  is  used  to  evaluate  both <>  and  . This  means  that  the  statement

<> [ ;  ] is true in a world w, where the set (as an example with cardinality m) of  variables 
of the context of  [ ; ] is assigned to the elements { a1 ,. .. , am }⊆ d w   , if and only if, in 
at least a world w' accessible from w, the statement  [ ; ] is true for the same a1 , . .. , am  .
Thus  in  order  to  evaluate  a <>-formula in  a  K-model,  we  have  to  identify  the  elements

{ a1 ,. .. , am }⊆ d w   , in a world w' accessible from w. The present definition lead to the already 
mentioned problem of trans-world identity, that is the problem of identifying the same elements into 
different worlds. In the Kripke section we solved this problem requiring the existence of a unique 
common domain of elements for all the worlds: all the algebras representing worlds of a model are 
sub-algebras of a unique domain algebra D  . This way the trans-world identity becomes trivial 
because all of the worlds share the elements of D .
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5.1.2 Denial of the trans-world identity and of D

When we want to check whether <> [ ;  ] is true we need a method to recognize the same 
elements  across  accessible  worlds.  As already mentioned,  this  is  equivalent  to  the  well-known 
problem of trans-world identity. In this chapter we consider the (negative) solution to this problem 
given by Lewis [Lew68]: Lewis denies the possibility of identifying the same individual across 
its possible worlds.  He even rejects that an individual may exist in different worlds by an axiom of 
its counterpart theory:

• ∀ w1 , w2∈W  a∈d w1  ∧  a∈d w2    w1=w2

Lewis substitutes the notion of trans-world identity with a “counterpart relation” C, that - he claims- 
need to be just reflexive (anything in a world is counterpart of itself). By denying the characters of 
equivalence relation to C, Lewis is able to maintain that his proposal does not differ from Kripke 
semantics just verbally.
The translation into the language of the counterpart theory of a formula <> with free variables

x1 , . .. , xm , with respect to  world w, goes as follows:

(<> )w :=∃w ' | ∀ x1 , ... , x m   ∈ f n  ( wRw'∧ ∧1≤i≤m C  xi , z i  ∧ [z 1/ x1 ,... , zm/ x m]  )

Truth conditions for <>-formulas assert that the statement <> is true in a world  w with an 
assignments of the free variables x1 , . .. , xm to the elements a1 , . .. , am of d(w) if and only if, in 
at least a world w' accessible from w, the statement [ z1/ x1 ,... , zm/ xm] is true with an assignment 
of the free variables z1 ,. .. , zm to the counterparts b1 ,. . . , bm  in w '  of a1 , .. . , am  . In the next 
sections  we  see  how  we  formally  define  our  notion  of  counterpart  and  how  to  modify  the 
assignments and truth conditions defined for the Kripke-like semantics, in order to apply Lewis’ 
ideas to modal languages, thus developing a counterpart-theoretic semantics for algebraic quantified 
modal logic of the second order.

5.2 Counterpart-like semantics for 
In  this  section  we  first  present  counterpart  models,  then  we try  to  define  truth  conditions  for 
formulas-in-context reflecting those in Lewis’ Counterpart Theory.
In detail we define the concepts of:

• Counterpart-model (CT-model)

• World variable assignment “w-va” for CT-models

• Counterpart between worlds, relative to the context of a formula

• Evaluation of terms in a world, induced by a w-va for CT-models

• Satisfaction of the quantified modal formulas-in-context of the second order in For Alf  X- X

IC

In order to assign a  meaning to the formulas in  context  in  according to  Lewis’ counterpart 
theory, we refer to the definition of K-model in the paragraph 4.2 enriched by a function C which 
assigns to all the pairs of worlds of the model < w ,w ' > a “Counterpart” function Cw ,w ' from 
d(w) to d(w').
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Definition(Counterpart-model). A CT-model M is an ordered quadruple <W, R, d, C>  where:

• W, R are defined as for K-models,
• “d” is a function which assigns an algebra d w to each world w∈W ,
• C is a function assigning to every pair of connected worlds <w,w'> a “Counterpart” function

Cw ,w ' from d(w) to d(w').

The set  W is intuitively interpreted as the set of worlds of the model, while  R is the accessibility 
relation between worlds. Every d w is the algebra of the world w. As anticipated in the previous 
section, our counterpart-like semantics do not requires a unique domain of reference for the worlds. 
Finally C assigns to every couple <w,w'> the counterpart relation

• Cw ,w '  : a partial homomorphism which associates the elements in d(w) to the elements in 
d(w'). More than one element of d(w) could be associated to the same element of d(w'), but it 
is not possible to associate an element of d(w) to more than one element of d(w'). In other 
terms it is possible to merge two or more elements of d(w) into one of d(w').

The pair <W,R> is a graph where the nodes are the worlds w∈W and the edges are defined by R: 
if wRw' , then there exists a directed edge from w to w' . If there exists a directed edge from w to w' , 
then there exists also a (possibly empty) counterpart relation Cw ,w ' .

Before defining the truth conditions of the formulas-in-context in For Alf  X - X

IC , we need the notion of 
world-variable assignment (w-va) w for counterpart models. In the chapter 2, precisely in the 
section  about  terms,  we  introduced  the  “individual  variables  assignment” A relative  to  an 
algebra  A and  a  set  X of  individual  variables.  Then in  chapter  5  we extended it  to  obtain  the 
assignment  for  second  order  variables,  in  the  Kripke-like  case.  Now,  instead,  we  extend  the 
“individual variables assignment” for the counterpart case, obtaining a world-variable assignment 
for CT-models w , where w is world of a CT-model.
Definition(World-variable-assignment for CT-models). A world variable assignment w for a 
CT-model is a function relative to a world/algebra w that maps the first and second order variables 
of every sort  , respectively 

• either in an element with sort  of d(w) 
• or in a set of elements with sort  of d(w).

From a w-va w we can obtain an individual variable assignment w | IV restricting w to only 
the first order variables.

Definition(Variant of a world variable assignment). For x : variable of the first order in 

and a :∈ d w , the variant w 
a
x
 of the w-va w is a w-va which does not coincide with

w at most on x, and assigns the element a to x . For : variable of the second order in

 and B⊆d w a set with elements with sort  , the variant w 
B

 of the w-va w is a 

w-va which does not coincide with w at most in  , and assigns to  the set of elements 
with B.
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Definition(Counterpart from w to w' relative to the context of a formula: ctww '
[ ; ]  ). In a CT-

Model M, a world variable assignment w ' for a world w' is a ctww'
[  ;] of an assignment w for 

the world w, that is a counterpart from w to w' relative to  [ ; ] if:

1. for all the [first order] variables x i in  , we have that the elements assigned to x i by
w and by w ' in counterpart relation:

∀ xi∈  . <w x i ,w ' x i> ∈C w , w'

2. for  all  the  [second  order]  variables i in  ,  we have  that  each  element  of  d(w)  in
w i is in Cw ,w ' relation with an element of d(w') in w ' i :

∀i∈ ∀ e∈w i ∃e '∈w ' i  . < e , e ' > ∈C w , w'

We write ctww '
[  ;] w ,w '  to indicate that w ' is a counterpart of w relative to [ ;  ] .

Utilizing  the  concept  of  world  variable  assignment w we  define  the  evaluation  of  terms  “
Vw , w  ” as done in chapter 4.

5.2.1 Instantiation of a Counterpart model using as signature  the graph signature.
In this section we give a simple Counterpart model “CTM1” using the signature of the graphs to 
clarify our proposal. As previously said, this thesis does not address the construction of models 
from systems, so here we just give a simple Counterpart model without specify the system modeled. 
We also give a graphical representation of the model to make clearer the concepts explained in this 
chapter.

Remembering that a CT-model is an ordered quadruple <W,  R,  d, C>, the components of the CT-
model CTM1 are:

1. W : { w1  , w2  , w 3  , w4  , w5  , w6}

2. R :{< w1 , w2 >  , < w2 ,w3 >  , < w3 , w 4 >  , <w1 , w5 > , <w2 ,w6 >  , <w 4 , w6 >  , 
< w5 ,w6 > }

3. d :

◦ d w1  :

▪ has carrier {n1 , n2 , n3 , e1 , e2}

▪ has  the  set  of  operations F d w1={sd w1e1=n1 , sd w1e2=n1 , td w1e1=n2 ,
t d w1e2=n3}

◦ d w2  :
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▪ has carrier {ni , n j , ei , e j}

▪ has  the  set  of  operations F d w2 ={sd w2 e i=ni , sd w2e j=n i , t
d w2 e i=n j ,

t d w2 e j=n j }

◦ d w3  :

▪ has carrier {np , nq , e p }

▪ has the set of operations F d w3={sd w3e p=n p , t d w3 e p=nq}

◦ d w4  :

▪ has carrier {nr , er }

▪ has the set of operations F d w4 ={sd w4 er=nr , t d w4 er=nr }

◦ d w5  :

▪ has carrier {na , nb , nd , ea , ec }

▪ has  the  set  of  operations F d w5={sd w5ea=na , sd w5ec =nb , t d w5ea=nb ,
t d w5ec=nd }

◦ d w6  :

▪ has carrier {nk } ,

▪ Since d w6 does not contain edges, the operations sd w6  , t d w6  are undefined 
for every possible node

4. C:

• Cw1 , w2
={< n1 , n i >  , <n2 , n j >  , < n3 , n j >  , <e1 , e1 >  , <e2 , e j > }

• Cw1 , w5
={< n1 , na >  , < n2 , nb >  , < e1 , ea > }

• Cw2 ,w3
={< ni , n p > , <n j , nq >  , < e i , e p >  , <e j , e p > }

• Cw2 ,w6
={< ni , nk > }

• Cw3 ,w4
={< n p , nr >  , < nq , nr >  , <e p , er > }

• Cw4 ,w6
={< nr , nk > }

• Cw5 , w6
={< na , nk > }

Now  we  give  a  graphical  representation  of  the  defined  Counterpart-model,  where  we  do  not 
represent C in order to not make the graphical representation too heavy.
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Comparing this example with the Kripke model of section 4.2.1,  we note that,  in this case, the 
accessibility relation is not influenced by the elements present in the individual algebras (or by the 
congruences =T

W ). Indeed, in this example we have deliberately made w6 accessible by w4 to 
evidence a contrast with the Kripke-model where this accessibility relation is not correct.
Even the evaluations for the second order variables of our counterpart semantics are influenced by 
the absence of =T

W :  they no longer have to be sets closed with respect to it.
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5.2.2 Satisfaction of the formulas in ForAlf  X - X

IC evaluated in a world w of a CT-model M
Now we can finally define the truth conditions of the quantified modal formulas of the second order 
in For Alf  X - X

IC in a world w of a CT-model M, given the evaluation V w .

Definition(Satisfaction  of  a  modal  formula-in-context  of  a  language  based  on  a  terms 
evaluation V w ). In  a  world  w of  a  CT-model  M, with an  evaluation of  terms V w for  the 
language  , the satisfaction of a formula-in-context in For Alf  X - X

IC in w is defined as:

• V w ,w |=  tt [ ; ]

• V w ,w |=  (1 := 2: ) [ ;  ] if V w 1, w  =  V w2 ,w

• V w ,w |=  ( :∈ : ) [ ; ] if V w  ,w  ∈ w 

• V w ,w |=  ¬[ ; ] if ¬V w ,w |=[ ;  ]

• V w ,w |=  1∨2[ ;  ] if V w ,w |=1[ ; ]   or  V w ,w |=2 [ ;  ]

• V w ,w |=  ∃ x : . [ ;  ] if ∃b :  ∈  d w   .  V
w 

b
x  , w |= [ , x ;  ]

• V w ,w |=  ∃: . [ ;  ] if ∃B:⊆d w  .  V
w 

B


,w |=[ ;  , ]

• V w ,w |=  <>[ ;  ] if ∃w '∈W  ∃w'  . wRw '∧ ctww '
[ ; ] w ,w'  ∧

∧ V w ' ,w '  |= [ ;  ]

Where:
•  ,1 ,2 are terms-in-context of  ,
• x : is a first order variable with sort  ,
• : is a second order variable with sort  ,
• b  is an element with sort  of d(w),
• B  is a set of element of d(w) with sort  ,
• w  and w ' are worlds in W .

Since we  aimed  at  developing  a  lewisian  treatment  of  the algebraic quantified  modal  logic, 
we  give  truth  conditions  for  formulas-in-context  with  modal  operators  as  main  operators

(like <> [ ;  ]) which reflects those for its translation <>w in Counterpart Theory.
Since we give semantics to formulas in context, then we have that the axiom of distribution holds 
even in the Counterpart-like semantics.

Truth conditions and validity for the formulas-in-context  [ ;  ] . 
A formula-in-context  [ ;  ] is: 
• True in a world w if and only if it is satisfied by every evaluation V w ,
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• True in a CT-model M if and only if it is true in every w∈W of M,

5.3 Evaluations of formulas-in-context in a Counterpart model
In  this  section  we  give  a  few  examples  of  modal  formulas  and  their  evaluations  over  the 
Counterpart model CTM1 defined in the section 5.2.1. We especially focus on formulas with the 
predicate of equivalence, the predicate of membership and the modal operator of possibility; that is 
the formulas for which the two semantics presented in this thesis differs the most.
In these examples we give some world variable assignments. Since this is just a simple example to 
clarify our proposal, in the definitions of the world variable assignments w i we focus only in a 
small number of first and second order variables. We  consider only three first order variables for 
each sort, and one second order variable for each sort. The variables that we take in consideration 
are:
• the first order variables with sort E x1

E , x2
E , x3

E ,

• the first order variables with sort N x1
N , x2

N , x3
N ,

• the second order variable with sort E E ,
• the second order variable with sort N N ,

Example 5.1. Equivalence predicate, and first order quantifier. We first give a simple formula 
with the first order quantifier and the equivalence predicate:

• ∃ x :E  .  s x =N
t x [ ;  ]

With this formula we can check if there exists a world w i in which there is an edge that generates 
a  cycle  of  length  one.  Differently  from  the  Kripke-like  case,  here  we  have  not  the  set  of 
congruences =T

W , so two terms are equivalent with respect to a terms evaluation and a world w, 
only if they are evaluated in the same element of the carrier of d(w).
The world w4 of the model contains the edge er with the same node as target and source, so, 
given  that  in  the  formula  there  are  no  free  variables,  we  have  that
V w4 ,w4 |=  ∃ x :E .  s x =E

t x [ ;  ] for any assignment for w4 .

Example 5.2. Predicate of membership. We give here a simple formula with the predicate of 
membership applied to a first order edge variable and a second order edge variable:

• ( x2
E ∈E

E
) [ ;  ]

With this formula we check the existence of a world w i and an assignment w i in which the 
node result of the evaluation of the node variable x2

N is in the set of nodes result of the evaluation 
of the second order node variable N . 
In the worlds without edges like w6 this formula is false regardless to the assignment utilized 
because there exists no assignment  such that  x2

E ∈ E
 .

In the worlds with at  least  an edge the truth value of this formula clearly depends only on the 
assignment utilized. In fact, considering the world w1 , given an assignment w1 like:
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• w1
 x1

E=e1  , w1
x2
E=e2  , w1

x1
N=n1  , w1

 x2
N =n2  , w1

x3
N =n3  , 

we have that V w1 , w1 |=  ( x2
N ∈N

N
) [ ;  ] .

On the contrary, given an assignment like:

• w1
 x1

E=e1  , w1
x2
E=e2  , w1

x1
N=n1  , w1

 x2
N =n2  , w1

x3
N =n3  , 

w1
E

={e1 , e2} , w1
N

={n1}

we have that V w1 , w1 |≠   ( x2
N ∈N

N
) [ ;  ]

Example 5.3. Modal operator of possibility. In this example we give a formula with the modal 
operator of possibility as main operator. We give a formula that is true in the worlds from which, 
after a step of computation, the system can switch to a state with a particular configuration. Taking 
the formula of the example 5.1, a state where there exists an edge which generates a cycle with 
length one:

• <> (∃ x :E .  s  x =E
t x ) [ ;  ]

In the evaluation of V w ,w |=  <>[ ;  ] we take into account the only worlds w' accessible 
from  w for which exists a world variable assignment w ' that is a ctww'

[ ;] of the given w , 
relative to the context [ ;  ] of the formula.

As  seen  in  example  5.1,  the  only  world  in  which  we  can  have
V wi ,wi |=  ∃ x :E .  s x =E

t x [ ; ] is w4 . Actually we have seen that the formula is 
true  in w4 regardless  to  the  assignment  associated  to  it.  Thus  the  only  world  in  which

<> (∃ x :E .  s  x =E
t x ) [ ;  ] could be true is w3 (the only world from which w4 is 

accessible). Since the formula does not contain any free variable, the context has not to contains any 
particular variable. It could even be empty.
Given  that  all  the  elements  of w3 have  a  counterpart  in w4 (

Cw3, w4
={<n p , nr >  , <nq , nr >  , < e p , er > } ), then there always exists an assignment w4  that is 

a  counterpart ctw3 , w4

[  ;] of w3 regardless  of w3 and  the  context.  So  we  have  that
V w3 , w3 |=  <> (∃ x :E .  s x  =E

t x  ) [ ;  ] regardless  to w3 ,  thus  the  formula
<> (∃ x :E .  s  x =N

t  x ) [ ; ] is true in w3 .

It is noteworthy that given that w4 contains the counterpart of all the elements in w3 , then there 
is always an assignment w4 which coincides with an assignment for w3 for the variables in the 
context, regardless of the context itself. 
If instead w3 has at least an element with no counterpart in w4 , for example n, and the context 
contains  a  variable  which  the  given w3 assigns  to n ,  then  we  have  that
V w3 , w3 |≠  <>(∃ x :E .  s x =E

t x ) [ ;  ] .
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5.4 Comparison between the two semantics proposals
In this section we further highlight the main differences between our two proposals. As already 
mentioned the main differences between them comes from the unique domain of reference present 
only in the Kripke case. The existence of a unique domain of reference equips our Kripke models 
with the trans-world identity property, giving a way to evaluate formulas with a modal operator as 
main operator, but at the same time brings some strong constraints.  There are many situations in 
which it is unacceptable to assume to know in advance all  the possible elements involved in a 
system. We have also seen that the unique domain prevents the merging of elements in a state. We 
eliminated this limitation introducing the congruences =

w in each world, and for each sort.  But 
these congruences bring another constraint: the “trans-world persistence” property, which, as seen, 
restricts the set of eligible accessibility relations, thus restricting the set of representable systems. 
For example, considering the Kripke model KM1 of the section 4.2.1, we have seen that the world

w4 can  not  have  accessibility  to w6 because  the  first  has  the  nodes n1 , n2 , n3 in
=N

w4 -relation , while the latter contains only the node n1 .
In the Counterpart semantics we give up both the unique domain of reference and the trans-world 
identity property. Instead we introduce a partial homomorphism Cw ,w ' for each pair of connected 
nodes. These mappings associates zero, one or more elements of the source node to each element of 
the destination node. The only property required in the definition of these partial homomorphisms 
are  the  respect  of  the  sorts,  and  the  reflexivity:  each  element  is  counterpart  of  itself.  The 
accessibility relation is  thus  not  influenced at  all  by the structure of the model  for  which it  is 
defined.
It is clear that having fewer constraints we obtain a greater expressiveness in terms of systems 
expressiveness. In order to show the  representation of the same system changes in the two models, 
in sections 4.2.1 and 5.2.1, we defined the two models KM1 and CTM1 trying to keep them as 
similar as is possible. To make clearer the comparison, in the Kripke case we chose to graphically 
represent  the  quotient  algebras  of  the  worlds  over  the  congruences,  instead  of  the  algebras 
themselves.  In  the  counterpart  case  we  appositely  added  the  accessibility  from w4 to w6 to 
highlight the greater expressiveness of the CT-models respect to the K-models.
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6 Preliminary introduction to the mu-Calculus
In this section we give a preliminary introduction to the benefits that the −calculus could bring 
to our proposals.
The idea is to start from the algebraic modal logic of the second order we defined, and add two 
operators  and v , characterizing the minimal and maximum fixed point, respectively.
As previously anticipated, these operators let us express “global properties” on the evolution of a 
system. Consider these examples:

• liveness: “something good will definitely happen”. If an user requests the access to a printer, 
sooner or later s/he will obtain it.

• safety: “something bad will never happen”. In a shared printer two requests will never be 
served simultaneously.

• fairness: “something good will happen countless times”. If an operating system serves two 
users, the control should pass from one to another an infinite number of times.

• cyclic properties: “something good happen every time unit”. These properties are required 
for  the constructions of timer, watches, and everything else that has a cyclical behavior.

Fixed point operators are well known since a long time. Consider P(A) as the powerset of a set A, 
that is the set of all subsets of A. In our case we identify A with the set of worlds W of a K-Model or 
of a CT-Model. Consider a function f from P(A) to P(A), that is a function from a subset of W to a 
subset of  W.  In our case,  we can think of f  as a function f( )=|| ||M [/Z ] ,  for ∈P W  , 
which maps a given formula  to the set of worlds that satisfies  , given the set of worlds
 as the interpretation of Z. We assume f to be monotone with  respect to the inclusion, that is for 

X and Y subsets of A, X⊆Y    f  X ⊆ f Y  .
We call a fixed point of f a set E such that E = f(E) and pre-fixed point of f a set E such that

E⊆ f E  .  For  a  theorem of  Tarski,  f  has  a  minimal  fixed  point,  denoted  as Z . f Z 
evaluated  as  the  intersection  of  all  its  pre-fixed  points  and  a  maximal  fixed  point  denoted  as

v Z . f Z  evaluated as the union of all its pre-fixed points. Thus we can evaluate the minimal 
fixed  point  of  f  as: ∩ { |⊆|| ||M [/Z ]} ,  and  its  maximal  fixed  point  as
∪ { |⊆|| ||M [ /Z ]} .

We obtain a −calculus by adding to our logic:

• the variables of fixed point Z, that is a second order variables over worlds.
• the operators Z .Z  and v Z .Z  where Z  is  formula syntactically positive 

in Z, that is each occurrence of Z must occur within an even number of negations.
The clause of positivity grants the monotony, and it is necessary because not positive formulas can 
bring to operators without fixed point. For example the function F X =¬ X has no fixed points 
in the power set of any non-empty set.

The  usefulness  of  the  operators  and v follows  from the  fact  that  many properties  on  the 
evolution of processes can be represented as fixed point of certain functions.
We show now how to express property of liveness, safety, fairness and cyclic:

1) Liveness:
◦  X.∨<> X 
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2) Safety:
◦ v X.∧[] X 

3) Fairness:
◦ v X.Y.∧<> X ∨<> Y

4) Cyclic properties:
◦ v X.∧<><> X 

Unfortunately, in the models of graph logic presented so far in the literature, like [GL07] and in 
[BCKL07], problems arise due to the interaction between the structure of states and the semantics 
of fixed points, forcing the use of trees instead of graphs as Kripke models. We believe that our 
semantics, which are uniformly defined and capture many of the current proposals thanks to the 
generalization given by the unary algebras, can make it easier to solve this problem. 
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7 Conclusions and future works
In this thesis we propose a  modal logic of the second order to express properties of the evolution of 
software systems. The use of unary algebras to represent the structure of individual states gave our 
proposal a level of expressiveness greater than those of alternative proposals found in the current 
literature. In particular, the abstraction guaranteed by the algebraic structure allows the unification 
of many of these proposals.

We have introduced two different semantics to give meaning to the formulas of our logic: a Kripke-
like one, and a Conuterpart-like one. Both semantics do not evaluate naked formulas but formulas-
in-context, that is formulas with associated, a set of first order variables and a set of second order 
variables. The context of a formula is defined such that it must contain at least the free variables 
appearing in the formula.  The introduction of the context of a formula is  needed to ensure the 
validity of some axioms of modal logic, such as distributivity: []12    []1 []2.

In both the proposed semantics, in the process of evaluation of formulas containing modal operators 
in a world  w and with an assignment w  the evaluation of the free variables of the formula is 
fixed by w in all the accessible worlds that come into play in the evaluation of the formula. It is 
therefore necessary to introduce a way to identify the elements occurring in the algebra of a world 
in the algebras of the worlds accessible from it. The method adopted is what most differentiates the 
two semantics.
In the Kripke-like semantics we require a “global” algebra that acts as a domain for the algebras of 
the worlds of a model. The algebras of the worlds are thus subalgebras of the domain. In this way 
the worlds share the same elements and the same operators of the domain.
In the counterpart  semantics we do not identify elements through different algebras,  but on the 
contrary we define a function Cw ,w ' for each pair <w,w'> of connected worlds. The task of these 
functions is to associate elements of the world origin to elements of the world destination. More 
than one element of the world origin could be associated to an element of the world destination.

In the first semantics the presence of the global domain prohibits to map multiple elements of a 
world into one element of another world, thus denying the merging of elements. This led us to 
introduce  a  congruence  for  each  world  to  simulate  the  merging.  These  congruences  give  the 
semantics  of  the  equivalence  predicate  in  our  logic,  with  the  further  requirement  that  what  is 
merged in a world can not be divided in another world. We expressed this concept by requiring that 
the  set  of  congruences  of  a  model  respect  a  “transworld-persistence”  property.  Intuitively,  this 
property says that if  two elements  a ,  b of a world  w are merged,  then in all  the worlds w i

accessible from w we have that either  a and  b are not mapped in w i , or the elements are both 
mapped and in congruence in  w i .  Indeed, given that we have partial homomorphism between 
worlds, it could happen that some elements of a world are not mapped in an accessible world. An 
homomorphism between worlds which maps only partially merged elements (i.e. either only a or 
only b when a and b are in congruence) would not respect the property of trans-world persistence.
Counterpart semantics does not have this problem because the counterpart functions allow to map 
multiple elements into one. Therefore the counterpart semantics is more expressive than the Kripke-
like one, because it does not have the constraint that the trans-world persistence introduces in the 
accessibility relation.  We highlighted this difference in expressiveness in the examples KM1 of 
Kripke model (section 4.2.1) and CTM1 of Counterpart model (section 5.2.1), where we see that 
CTM1 have an accessibility from w4 to w6 that KM1 cannot have.

In all the examples in this thesis we instantiated our proposal utilizing a signature capturing graphs, 
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thus showing the applicability of our approach to the graph transformation framework.
We showed that the current version of our logic allows us to express only local properties, that is 
properties for which  the evaluation process takes into account only the worlds within a defined 
distance. Modal logics in general lacks of expressiveness, since they are purely local: the value of a 
modal formula with “n” modal operators, depends only from states distant at most n from the state 
of  reference.  So  the  current  version  of  our  logic  alone  is  too  weak  to  express  properties  like 
“something bad will never happen”, while we can write a formula to express that “something bad 
will not happen in the next n steps of computation of the system”.
We could express  global  properties introducing the operators  of  maximum and minimum fixed 
points  together  with  second  order  variables  over  worlds,  also  known as  fixed  point  variables. 
Actually we are currently working on introducing these operators, but for the time being, they bring 
to a limitation in terms of expressiveness of systems: as seen in other proposals in the literature, 
these operators would force us to use as models for the evolution of systems only trees. For now we 
have thus chosen to exclude these operators from our logic.
In any case, we believe that our semantics, which are uniform and apparently capture many of the 
proposals in the literature, can make it easier to solve this problem. We consider this an interesting 
topic for future research.
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