
UNIVERSITÀ DEGLI STUDI DI PISA

DIPARTIMENTO DI INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

An Integrated Environment For Automated
Benchmarking And Validation Of XML-Based

Applications

Jinghua Gao

SUPERVISORS

Antonia Bertolino
Eda Marchetti

REFEREES

Franco Turini
Giorgio Ghelli

November 18, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14698056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to express my gratitude to all those who helped me during the writing of
this thesis. Without their encouragement and assistance, this thesis would not have been
completed.

My deepest gratitude goes first and foremost to Antonia Bertolino, my supervisor.
She gave me much inspiration and encouragement during my academic studies. In this
thesis year, she gave much time, and provided valuable guidance in every stage of thesis
writing. Without her honest support, impressive kindness and patience, I could not have
completed my thesis. Her hard-working attitude and optimistic spirit inspired me not only
in this thesis but also for my future life and study.

My great gratitude also goes to Eda Marchetti, who is my minor advisor, and Andrea
Polini. They offered great assistance in my research. When I doubted myself, they always
brought confidence and great ideas to me. The completion of my research and this thesis
can not be separated from their kindly supports.

I would like to thank Professor Pierpaolo Degano and Andrea Maggiolo Schettini
who gave me a great and kindly help when I had a difficult time finishing the thesis. I
wish to thank also Professor Giorgio Ghelli and his student Luca Pardini, who provided
me with an useful case study. I also want to thank my dear colleagues in the Software
Engineering lab, Antonino Sabetta, Francesca Lonetti, Guglielmo De Angelis, Cesare
Bertolini, Daniela Mulas and Alberto Ribolini. They are my good friends; our lab was like
a warm family. They always gave me a hand when I needed help, not only in academics,
but also in my life. I enjoyed very much my time with them.

I thank my husband Yan He, he always supports me with his love, understanding
and tolerance. Without his encouragement, I probably would never have reached this
achievement.

Finally I am grateful to my parents, for their deeply love and continuous support.

4

Abstract

Testing is the dominant software verification technique used in industry; it is a critical and
most expensive process during software development. Along with the increase in software
complexity, the costs of testing are increasing rapidly. Faced with this problem, many
researchers are working on automated testing, attempting to find methods that execute the
processes of testing automatically and cut down the cost of testing.

Today, software systems are becoming complicated. Some of them are composed of
several different components. Some projects even required different systems to work to-
gether and support each other. The XML have been developed to facilitate data exchange
and enhance interoperability among software systems. Along with the development of
XML technologies, XML-based systems are used widely in many domains. In this thesis
we will present a methodology for testing XML-based applications automatically.

In this thesis we present a methodology called XPT (XML-based Partition Testing)
which is defined as deriving XML Instances from XML Schema automatically and sys-
tematically. XPT methodology is inspired from the Category-partition method, which is a
well-known approach to Black-box Test generation. We follow a similar idea of applying
partitioning to an XML Schema in order to generate a suite of conforming instances; in
addition, since the number of generated instances soon becomes unmanageable, we also
introduce a set of heuristics for reducing the suite; while optimizing the XML Schema
coverage. The aim of our research is not only to invent a technical method, but also to at-
tempt to apply XPT methodology in real applications. We have created a proof-of-concept
tool, TAXI, which is the implementation of XPT. This tool has a graphic user interface
that can guide and help testers to use it easily. TAXI can also be customized for specific
applications to build the test environment and automate the whole processes of testing.

The details of TAXI design and the case studies using TAXI in different domains are
presented in this thesis. The case studies cover three test purposes. The first one is for
functional correctness, specifically we apply the methodology to do the XSLT Testing,
which uses TAXI to build an automatic environment for testing the XSLT transformation;
the second is for robustness testing, we did the XML database mapping test which tests the
data transformation tool for mapping and populate the data from XML Document to XML
database; and the third one is for the performance testing, we show XML benchmark that
uses TAXI to do the benchmarking of the XML-based applications.

6

Contents

1 Introduction 11
1.1 Motivations and Objectives . 12
1.2 Outline of The Thesis . 15
1.3 Publication List . 16

I Background and Related Work 19

2 Background 21
2.1 Software Testing And Related Concepts 21

2.1.1 White-box Testing and Black-box Testing 23
2.2 Category-Partition Methodology . 26
2.3 Pair-wise Testing . 27
2.4 XML Schema Fundamentals . 28

2.4.1 Brief Introduction of XML Language 28
2.4.2 Document Type Definitions . 30
2.4.3 XML Schema . 31
2.4.4 Elements and Constraints of XML Schema 32
2.4.5 XML Document Validation . 33

2.5 Summary . 34

3 Related Work 37
3.1 Related XML Testing . 37

3.1.1 XML and XML Schema Document Testing 38
3.1.2 Conformance Testing . 38
3.1.3 Using Derived XML Document or XML Schema 40
3.1.4 Adopting Perturbation Testing 41

3.2 Syntax-based Testing . 41
3.3 XML Benchmarks . 42
3.4 Summary . 44

8 CHAPTER 0. CONTENTS

II XML-based Partition Testing Methodology and Implementa-
tion 45

4 XML-based Partition Testing 47
4.1 Main Methodology of XPT . 47

4.1.1 XML Schema Analysis and Rewriting 50
4.1.2 Subschema Derivation . 52
4.1.3 Element Identification . 54
4.1.4 Element Value Determination 54
4.1.5 Constraint Determination . 55
4.1.6 Intermediate Instance Generation 55
4.1.7 Test Case Generation . 59

4.2 XPT Test Strategy Selection . 61
4.2.1 Weight Assignment . 61
4.2.2 Test Strategies . 62

4.3 Summary . 64

5 TAXI - The Implementation Of XPT 65
5.1 The Overview Of TAXI . 65
5.2 TAXI Components . 67
5.3 User interface . 68

5.3.1 XML Schema Input and Weight Assignment 68
5.3.2 Database Population . 70
5.3.3 Instance Browsing . 71

5.4 Implementation of XSA . 71
5.4.1 Preprocessor . 73
5.4.2 Subschema Generation . 79
5.4.3 Occurrence Analysis . 81
5.4.4 Intermediate Instance Derivation 83
5.4.5 Final Instance Derivation . 84

5.5 Implementation of TSS . 86
5.5.1 Application of Weights . 86
5.5.2 Strategy Selection . 87

5.6 Summary . 89

6 Cover Set Of TAXI 91
6.1 Test Cases of <element> . 91

6.1.1 <element> . 92
6.1.2 <element> With “default” Attribute 93
6.1.3 <element> With “fixed” Attribute 93

6.2 Test Cases of <SimpleType> . 94
6.2.1 <simpleType> With Child <restriction> 94
6.2.2 <simpleType> With Child <union> 95

0.0. CONTENTS 9

6.2.3 <simpleType> With Child “list” 95
6.3 Test Cases of <complexType> . 96

6.3.1 <complexType> With Child <simpleContent> 97
6.3.2 <complexType> With Child <complexContent> 98
6.3.3 Test Cases of <sequence> . 99
6.3.4 Test Cases of <all> Element . 103
6.3.5 Test Cases of <choice> Element 105

6.4 Test Cases Of <Redefine> . 109
6.4.1 Redefine The <ComplexType> Element 109
6.4.2 Redefine The <SimpleType> Element 110

6.5 Test Cases Of <any> and <anyAttribute> 110
6.5.1 Test Case Of <any> Element 110
6.5.2 <anyAttribute> Element . 110

6.6 Summary . 110

III XPT Applications 115

7 XSLT Transformation Testing 117
7.1 Introduction . 117
7.2 Automatic Validation of XSLT Stylesheet 118
7.3 Case Study . 120

7.3.1 Marc21 and Dublin Core . 120
7.3.2 Driving the Generation Process 123
7.3.3 Comparison of TAXI With Other Instance Generators 127

7.4 Summary . 128

8 XML Database Mapping Test 129
8.1 Introduction . 129
8.2 Black-Box Testing For XML-database Mapping 130
8.3 Case Study . 131

8.3.1 MySQL Database . 131
8.3.2 XML-database Mapper(myXDM) 131
8.3.3 Testing myXDM Tool . 134

8.4 Summary . 137

9 The Application Of TAXI to XML Benchmarks 139
9.1 Introduction . 139
9.2 Benchmarks for XML-based Applications 140
9.3 Case Study . 141

9.3.1 Background . 141
9.3.2 XML Schema Validation Benchmark 142

10 CHAPTER 0. CONTENTS

9.4 Advantages and Disadvantages of TAXI In Meeting The Requirements of
Benchmarks . 146
9.4.1 How TAXI Meets the Requirements of XML Benchmark 146
9.4.2 Limitations of the TAXI tool for Benchmarking 148

9.5 Summary . 148

10 Conclusion and Future Work 149

Bibliography 151

Chapter 1

Introduction

The computer is one of the greatest scientific inventions of the twentieth century. At the
beginning, the computer was just used as a calculator to solve complex figures, and deci-
pher code. As its use has developed, computer technologies have become more and more
important in our lives. They are changing our daily life, the electric appliances running
depend on computer technologies bring a lot of convenience and joy to our life. Advanced
computer technologies are changing the way of people communicate. With development
of the Internet, People can see each other with video cameras even though they are sepa-
rated by thousands of miles. Computer technologies are also changing the ways we obtain
information. Instead of book, now many people prefer to obtain information from the In-
ternet or digital libraries, using one or more key words, search engines will list all related
entries; it takes only seconds.

A reliable computer system requires not only the well-designed hardware; a well-
functioning and robust software system is also indispensable. Along with widespread use
of computer technologies, the concept of software engineering which is the application of
a systematic, disciplined, quantifiable approach to development, operation, and mainte-
nance of software [IEE90] has evolved steadily, and becomes more and more significant
during computer system development.

In this thesis we concentrate on Software Testing, which is a process, or a series of
processes, designed to make sure that computer code does what it was designed to do
and that it does not do anything unintended [Mye04]. The activities of testing could run
through the whole life cycle of software, and it is the most expensive part of software
development. As experimentation, fifty percent or even more of development resources
are spent on software testing [Bei90a]. The challenge of testing software adequately with
minimal resources, as quickly and thoroughly as possible has become the goal and dream
of testing. It has also become the drive of many researchers [Ber07]. To accomplish the
goal of testing, people are turning to automated testing, which is “the management and
performance of test activities, that include the development and execution of test scripts
so as to verify test requirement, using an automated test tool” [ED00].

12 CHAPTER 1. INTRODUCTION

1.1 Motivations and Objectives
As already presented, during development process Software Testing is the most expensive
part. But a system without testing is even more expensive. The further along in the
development process an error is found, the more costly it is to correct it.

Unfortunately, the fact is that even with ample and proper testing, we can never en-
sure that a software product is perfect, even if it has a simple structure. Along with
development of computer science, instead of traditional manual testing, Automated Soft-
ware Testing has become a new hot spot of research. People hope to reduce the costs
and increase reliability by performing the analysis by computer, which in generally much
quicker and more powerful than the human brain. This desire is good, but if Automated
Testing is not developed in a proper manner, it brings higher risks, and becomes even
more expensive than manual testing.

There are different methodologies of applying automated software testing. With the
White-box Testing strategy, model-checking is a widely-used way for applying automated
software testing; for Black-box Testing, deriving test cases from the system specifications
is a useful and common way for automated testing. Formal standard organizations such
as W3C, OMG and so on are developing standard software specifications; also there is
much research focused on the formal description of system specifications.

Since software systems are turning out to be “more and more complicated with com-
ponents developed by different vendors and using different techniques in different pro-
gramming languages and even run on different platforms”, a concern that becomes in-
creasingly crucial is interoperability. In the pursuit of working interoperability among in-
dependently developed systems, industry is increasingly adopting open specifications and
binding such specifications to standardised technologies. Such binding technologies must
be open in nature, to allow for a wide range of diverse platforms, languages, and tools
to be used, and still create compliant applications and content. The eXtensible Markup
Language (XML) [Har99] is today the predominant format for data representation and is
generally recognized as the standard way to exchange information between remote sys-
tems and to bind the specifications [W3C05b]. In few years this language has established
itself as the de facto standard form for specifying and exchanging data and documents
between almost any digital or web application. Now XML applications are in widespread
use for many areas, such as data and information preservation, data interchange, database
population and for web applications. Therefore XML testing has become an interesting
topic for many organizations and researchers. We are also enthusiastic about testing soft-
ware systems based on XML. Considering the activities of automated testing, we would
like to find a way for carrying out the testing of XML-based applications automatically.

Before starting methodology development, we first reviewed in depth the available
literature, and found there are some systems taking XML Documents as input. Sometimes
these documents must specially conform to specific rules.

The rules are usually defined by XML Schemas, which could be DTD [DTD96], RE-
LAX NG [dV04], XML Schema, or other schemas. Among these schemas, currently
XML Schema is the most powerful and flexible one. Along with the development of

1.1. MOTIVATIONS AND OBJECTIVES 13

XML, XML Schema has sprung up as a notation for formally describing what consti-
tutes an agreed valid XML Document within an application domain. Compared with
other schemas, XML Schema is more widely used by XML developers [Sri]. Also XML
Schema actually conforms to the grammar of XML, so it is a well-structured language.
XML Schema expresses the basic rules and constraints on data and parameters that di-
verse classes of systems and web applications exchange; thus it provides an accurate and
formalized representation of the input domain in a format suitable for automated process-
ing, which clearly has big potential for test automation.

Based on the characters of XML and XML Schema, we have attempted to find a
method that can automatically test XML-based systems. For systems that take XML doc-
uments as input, the corresponding XML Schema can be considered as the specification
of system input, or the grammar of system required data. Therefore, if we can get a set of
XML documents that includes all possible or at least a portion of important derived XML
documents from the XML Schema, these documents can be used as test cases to do the
Black-box Testing to validate the behavior of XML-based systems.

The first aim of our methodology is “Automation”. With the increase in software
complexity, testing needs more time to design and execute. But with the pressure of
market competition, the cycle of software development is shortening. In this case, testing
needs to be more efficient and execute within a shorter time frame.

To apply the Automation, first we need to know which activities of software test-
ing those could be applied automatically. According to the activities of normal software
testing [Ber04], there are some test activities that could be automated. Those activities
become the main activities of automated software testing [MF94].

The activities of automated testing include:

• Test Condition Identification: This activity determines the object that needs to be
tested, and the conditions of testing according to the test specification. It is the basis
of the next steps of the testing.

• Test Case Design: Test cases are designed according to the test specification, by
determining test cases which comprise specific input values, expected outcomes,
and any other information needed for testing.

• Test Case Generation: Test case generation builds the test cases by the conditions
and constraints of test case design; the test cases should cover the system input and
output domains, or the paths on which the system could be run. To cover all values
of these domains is difficult, but representative values should be included in the test
cases;

• Test Case Execution: Test case execution is to run the software under testing with
the test cases;

• Test Result Analysis: Test result analysis is to check if the actual test outcomes
conform to the expected outcomes. The system passes the testing only if all the
outcomes are consistent with the expected outcomes.

14 CHAPTER 1. INTRODUCTION

Based on these five activities of automated testing, the first step is “test condition
identification”, we have already identified the XML-based applications as the test object;
meanwhile the input domain of the application should be defined by an XML Schema.
Then the main work is design and generate the test cases.

For testing purposes, only “Automation” is not enough; the derived test cases should
be organized and must cover the representative possible inputs of the system, otherwise
the result of testing is not reliable. Therefore the second aim of our methodology is
“Systematization”.

Systematic testing is executed with a special purpose, it is ordered, planned, and test-
ing designed to be purposefully methodical in its approach. Systematic testing is useful in
initial examinations, where testing time is relatively brief, or when learning general soft-
ware behavior. Systematic testing requires an in-depth analysis of the application and the
application’s components at a very granular level. Some systematic testing approaches
include equivalence class partitioning, boundary value analysis, combinatorial analysis,
state transition testing, basis path testing, etc.

There are several tools that can generate XML Instances automatically, such as Sun
XML Generator [XML99], XMLSpy [XML05b] and Stylus Studio [Cor08], but the XML
Instances derived from these tools are not systematic. Sun XML Generator generates
random instances, XMLSpy and Stylus Studio generate only the fix numbers of instances.
It could be sufficient for some kind of testings, and for a lot of testing applications, random
generations are not suitable and the test cases are not qualified enough.

There are tools such as [XML04], [tox05] that can derive XML documents from XML
Schema systematically, but the generation is based on instructions that are designed and
written by the user. The creation of instructions requires the user to have sufficient knowl-
edge of specific XML Documents and the XML Schemas; it also depends greatly on the
experience of the user. Our aim is to create a method that can analyse structure of the
XML Schema and guide the generation totally automatically and systematically.

After the study, we found that XML Schema is well-structured with clear levels, since
it is based on XML language. So it lends itself quite naturally to the application of parti-
tion testing, in which a system is tested at its I/O interface by identifying relevant classes
of input values, and by systematically choosing some representative test input values for
each identified class. The basic assumption behind partition testing is that the input do-
main can be divided into subdomains, such that, for testing purposes, within each of them
the program “behaves the same” (and then for every point within a subdomain the pro-
gram either succeeds or fails). The subdivision of the input domain into subdomains,
according to the basic principle of partition testing, can be done automatically by analyz-
ing the XML Schema elements. By means of the elements, attributes and constraints of
the XML Schema, we first divide the schema into a set of sub-schemas; we then gradually
divide the sub-schema into sets of the elements that have the same properties of value and
other constraints. The test cases actually are the XML Documents generated by combin-
ing the values from these sets. If the values in the derived XML Documents are from the
sets defined by the XML Schema, then these documents conform to the XML Schema,
and we call them valid documents; otherwise the derived documents are invalid.

1.2. OUTLINE OF THE THESIS 15

The automation of test case execution and result analysis are not the same for different
applications. Test execution takes the derived XML Documents as input to the system
under testing; it is usually easily applied by some simple automatic file reading programs.
The automatic tool for test result analysis must be designed specifically by the output of
the applications. In our applications, which will be presented in Part III, we will show
different ways for analysing the test result automatically according to the application.

As well as automatic testing, we have another goal for our approach, which is “Usability”.
The method should be easily used in actual projects. To do this, we need not only to con-
sider the technical problem of the methodology, but also to think about how to optimize
the method and make it suitable for use in testing real software systems.

As presented before, we would like to apply partition testing to the XML Schema,
and traditional partition testing usually creates a huge number of test cases. Along with
the growth of system parameters, the test case number increases geometrically. For real
applications, the number of test cases should match the requirements of the testing, other-
wise it spends unnecessary time and resources, and increases the expense of the testing. In
order to overcome this problem, we have developed the combinational method to reduce
the number of derived test cases, and provide several strategies to make the generation
more flexible.

Traditional partition testing does not allow the tester to focus on particular parts of
the system, but in the real life testing, it is important to reduce the costs and time of
testing. Sometimes selection of relevant test cases is done by the testers manually, and
mainly depends on their intuition and experience. If they make the wrong decision, the
testing will not get satisfactory results, and additional costs will be incurred for redoing
the testing. Our goal is to provides some strategies that help the user to choose the critical
parts for testing, and select a suitable set of test cases.

In this thesis we not only provide the theory of the methodology, but also the imple-
mentation of the methodology; moreover we focus a lot on practical applications of the
methodology. These applications make our method not only a concept, but also a tool that
can readily be used to solve real problems.

1.2 Outline of The Thesis

This thesis is divided into three self-contained parts. The first part is the general intro-
duction of background and related works; the second part focuses on the description of
the approach; the third part gives case studies for our methodology; and the last part is a
description of future work.

• Part I: In the first part, we present basic information regarding Software Testing,
XML Schema and others information used in our research. We want give the reader
the basic information necessary for comprehending the approach presented in the
thesis. We also outline related works in this part.

16 CHAPTER 1. INTRODUCTION

– Chapter 2 presents a brief introduction of Software Testing from different
points of views, it also includs XML Schema fundamentals and the algorithms
Category-partition and Pairwise Testing, which are used in this thesis.

– Chapter 3 presents related works from two aspects: first is the related XML
based Testings, we classify these testing methods into different aspects. The
seond is syntax based testing in which some works are similar to our research.
In this chapter we introduce these methodologies and compare them with our
approach briefly.

• Part II: This part is the description of our algorithm XML-based Partition Test-
ing in (XPT) and the implementation of a proof-of-concept tool TAXI (Testing by
Automatically generated XML Instances).

– Chapter 4 proposes a practical and automatic approach to XPT, It applies the
Category-partition method to the XML Schema, and generates XML Instances
automatically and systematically.

– Chapter 5 presents the implementation of XPT. To verify the method XPT,
we develop a proof-of-concept tool TAXI that implements the XPT method.
TAXI has a graphic user interface, that allows the user to generate instances
by different strategies. In this chapter we give the process of TAXI implemen-
tation.

– Chapter 6 presents the cover set of the TAXI tool. The cover set is a part of
test cases of TAXI.

• Part III: In this part we present three applications of XPT methodology. For each
application we give a case study and the comparison with other tools.

– Chapter 7 presents the environment for automatically testing XML Document
transformation by XSLT.

– Chapter 8 shows the application of TAXI for doing Black-box Testing, specif-
ically, we focus on XML database mapping and population.

– Chapter 9 presents the application and a case study using TAXI to do XML
Benchmarking to evaluate the performance of XML-based systems.

Finally Chapter 10 presents the conclusion of the thesis, and the ongoing work of this
topic in the future.

1.3 Publication List
• Antonia Bertolino, Jinghua Gao, Eda Marchetti, “XML Every-Flavor Testing”,

Proc. Web Information Systems and Technologies WEBIST 2006, Setubal, Portu-
gal, April 11-13, 2006. This article is a survey of XML Testing. We summarized the

1.3. PUBLICATION LIST 17

existing XML Tests from different aspects, and organize them into a well-organized
structure.

• Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini, “Systematic Gen-
eration of XML Instances to Test Complex Software Applications”, Proc. Rapid
Integration in Software Engineering (RISE 2006) Geneve, Switzerland, September
13-15, 2006. This ariticle is the first publication about the XPT method. We de-
scribed the idea of XPT method, and evaluate the possiblity of using it for testing
complex software applications.

• Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini, “XModel-Based
Testing of XSLT Application”, Proc. Web Information Systems and Technologies,
WEBIST 2007, Barcelona, Spain 3-6 March, 2007. In this article, we presented
how to apply the XPT method for testing XSLT transformations.

• Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini, “TAXI - A Tool for
XML-based Testing”, Proc. 29th International Conference on Software Engineer-
ing, ICSE 2007, Minneapolis, USA 20-26 May, 2007. This was a demonstration
presented in the demo section of ICSE conference. It was the first time that we
showed TAXI tool.

• Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini, “Automatic Test
Data Generation for XML Schema-based Partition Testing”, Proc. 29th Interna-
tional Conference on Software Engineering, Second International workshop on Au-
tomation of Software Testing (AST’07) at 29th International conference on Soft-
ware Engineering (ICSE’07), Minneapolis, USA 26 May 2007. This article pre-
sented the details of the proof-of-concept tool TAXI, its possible application do-
mains, and the comparison between TAXI and other tools.

18 CHAPTER 1. INTRODUCTION

Part I

Background and Related Work

Chapter 2

Background

This chapter provides the background information used in this Thesis. At the beginning
of the chapter is a comprehensive overview of software testing with basic concepts and
the related methodologies that are used in the thesis. Since our research is focused on
automatic testing of XML-based system, this chapter also includes a brief introduction of
XML and XML Schema.

The chapter is structured as follows: Section 2.1 presents the concept of software
testing and a brief description of software testing classifications. Section 2.2 and Section
2.3 introduce Category-partition methodology and Pair-wise Testing respectively. Section
2.4 describes fundamentals of XML and XML Schema.

2.1 Software Testing And Related Concepts
“Software Testing consists of the dynamic verification of the behavior of a program on
a finite set of test cases, suitably selected from the usually infinite executions domain,
against the specified expected behavior.” [Ber04].

In the software life cycle, testing is an important and critical process. In software
engineering opinion, testing should start as early as possible, and continue throughout the
entire software life cycle, but due to the limitation of time, cost and experience, much
software is developed without testing, or is tested after the whole process of development
is complete. This carries a big risk, because the earlier bugs are found in the system,
the easier and cheaper it is to fix them. The costs to fix bugs rise logarithmically; they
increase tenfold as time increases.

The activities of testing depend on the process of the software under testing. Accord-
ing to [Ber04], software testing includes seven main activities:

• Planning: As stated earlier Software Testing is a process or series of processes; it
must be planned and scheduled before being applied. The most important aspect
of the test plan is the project management of testing, which includes planning for

22 CHAPTER 2. BACKGROUND

equipment, managing personnel, setting the undesirable outcomes, and establishing
the required costs in terms of time and effort to ensure the test environment and
process run property.

• Test Case Generation: Test cases are generated by a particular test strategy; more-
over they should be appropriate to the test level and particular testing techniques.
The derived test cases should include the expected results for testing.

• Test Environment Development: The test environment includes test equipment,
the control of test cases, analysis of results, scripts, and other materials for testing.
It needs to be organized or created properly in preparation for future activities.

• Execution: In this active test cases are in the test environment. All actions dur-
ing testing should be documented clearly to guarantee the testing process is repro-
ducible. If other people repeat testing, they should get the same result. This is
essential for future defect correction and test result evaluation.

• Test Result Evaluation: The test result determines whether the test was successful.
It also indicates if performance of the software product conforms to the expected
design, without any undesired outcomes.

• Problem Reporting/Test Log: The testing log should contain basic information
regarding the test, which includes the time of test execution, software environment
configuration, the tester who performs the testing, and other related data. It should
also include the record of unexpected outcomes during testing and the final result.

• Defect Tracking: The defects that are caught during testing should be analysed to
find what errors in the software caused those defects.

Test Planning should start at the early stages of a software project. Testing not only
targets the code and the final product, but also analyzes the requirements, and the system
design. Testing at the design stage can correct unsuitable parts of a project before they
are implemented. This may save a lot of time in the future, since it avoids unnecessary
implementation and saves the costs of finding bugs. During the code phase, tester and
developer must cooperate properly to ensure that the behaviour of each release module
strictly conforms to the specifications and is strong enough. Also the inter-operation
between modules must execute correctly. In the software development process, the test
phase sometimes is the most expensive part. The costs are mainly for:

• the design of the test plan and test cases. This must be done very carefully since the
correctness of the test plan and the quality of test cases are directly affect the results
of testing;

• the execution of test cases. This also needs a considerable amount of time, espe-
cially for big systems;

2.1. SOFTWARE TESTING AND RELATED CONCEPTS 23

• the test result evaluation. This needs not only time but also sufficiently experienced
of testers; and

• bug correction. This is costly because it requires not only the correction but also
needs to ensure that the modification corrects the bugs without causing other prob-
lems.

Whatever testing does, the final goal is to find and fix the bugs in the software as early
as possible and assure the effectiveness of software systems. Testers always want to do
thorough testing, and find and fix all bugs to make the software perfect. Unfortunately
this is only a dream. People can not fully test even very simple programs. Usually the set
of inputs and outputs of software is very large or even unlimited; the number of possible
paths through the software is very large, too. A full test suite would have to be huge
enough to cover all cases that would occur during the software execution, but for most
software, this test case set is unlimited. By current technology, it is impossible to gen-
erate and execute unlimited test cases. So one key mission of testing is finding a way to
reduce the huge number of possible test cases, and decide which test cases are important,
and which are not. According to the software definition that is presented at the beginning
of this section, software testing needs to select a finite set of test cases from the usually in-
finite executions domain, and use dynamic verification to check the behavior of a program
against the expected behaviors.

Since software can not be tested completely, and testers can only use finite test cases
to find as many bugs as possible, how can it be done? There are two most classical test
strategies that will be explained in the next section.

2.1.1 White-box Testing and Black-box Testing
There are different ways to classify software testing, Considering how to approach the
testing for software, testing can be divided into Black-box Testing and White-box Testing.
They are also the most popular strategies for testing.

White-box Testing
A software system can be regarded as a box. In White-box Testing (sometimes called

clear-box testing) [Bei90b] [Mye04], the tester can see inside the box. Generally testing
is done by accessing the program’s code to identify all paths through the software. Based
on the paths of the software, the tester needs to choose test case inputs that ensure they
can exercise paths through the code, and to determine what outputs are acceptable.

There are a lot of coverage standards in White-box Testing. These include:

• statement coverage, which requires each statement to be executed at least once;

• decision coverage, which requires each decision branch to be executed at least one
time;

• condition coverage, which requires each condition of each decision in the software
to take all possible values;

24 CHAPTER 2. BACKGROUND

• decision/condition coverage, which needs to satisfy both the requirements of de-
cision coverage condition coverage. In this case the decision/condition coverage
needs to execute each decision branch at least once, and all conditions of each de-
cision branch must cover all possible values;

• condition combination coverage, which requires in each decision that all combina-
tions of the each condition must execute at least one time; and

• path coverage, which requires execution of all possible paths in the software.

White-box Testing strategy has lots of advantages. Firstly, with the knowledge of
the internal software structure, it is easier to find out the types of input that can help in
testing the application effectively. Also White-box Testing can check whether, within the
software, the code executes according to specification, and it can help to optimize the
code and removing extra lines to avoid bringing in hidden defects. However there are still
some risks to use White-box Testing.

As presented in the previous phase, White-box Testing guarantees all independent
paths within a module have been exercised at least once; it exercises all logical deci-
sions on the true and false sides; it executes all loops at their boundaries and within their
operational bounds; and exercises internal data structures to ensure their validity.

White-box Testing however, requires a considerable amount of time and effort. An-
other factor that causes White-box Testing to become expensive is that the number of
independent logic paths in software is often huge. To carry out test cases through each
path is usually costly. However, even if all paths pass testing, it does not ensure that they
are verified, because exhaustive path testing can not verify whether the code conforms to
the software specification. Also it is nearly impossible to look into every bit of code, so
some paths might be omitted and faults cause by these paths may not be found. Finally
exhaustive path testing may not be able to find some bugs that are related to the data.
Because of its characteristics, White-box Testing is mainly used in fields that require high
reliability, such as war industry software, aerospace and industrial control systems.

Black-box Testing
In Black-box Testing [Mye04] [Bei95], the structure of the software is not shown to

the tester, nor is it considered during testing. The tester only knows how the software is
supposed to behave, he/she can not look inside the box to see how the software operates.
The only thing the tester can do is type in certain inputs, and check if the output complies
with the expected output. The tester doesn’t know how or why to get the output, they
are only concerned with the results of comparison. Nevertheless, in order to implement
Black-box Testing, the tester needs to read through the software specification, and clearly
understand the expected behavior of the system.

The main methods of Black-box Testing includes: the equivalence class division
method, the boundary value analysis method, the wrong to speculate method, the cause-
effect graph method, and the comprehensive strategy method.

Equivalence Class Division [RML05] [Bei95]
Equivalence Class Division is a classical method of Black-box Testing. Equivalence

2.1. SOFTWARE TESTING AND RELATED CONCEPTS 25

Classes indicate a subset of an input domain in which each input value has an equal
effect on debugging, using a select a representative value from each subset as a
test case. This method can effectively reduce the quantity of test cases and reduce
the costs of testing. When partitioning the classes, care must be taken to ensure
that there are two kinds of equivalence classes: a valid equivalence class, which
refers to sets that consist of valid and acceptable values of software; and an invalid
equivalence class, which denotes sets composed of invalid or insignificant values
of the system. Usually there will be one or more valid, and at least one invalid
equivalence classes.

Boundary Value Analysis Method [Coe08] [Rei97]
The Boundary Value Analysis method takes boundary values from the input do-
main, and input values that can cause the software to issue boundary output values
as test cases. Long-term experience indicates that a high number of faults occur
at the boundary values of inputs/outputs, so that test cases aimed at the boundary
values can catch more bugs. Values that are equal or slightly greater or smaller than
the boundary are suitable to be selected as test cases. The boundary Value Analysis
method is often used as complementary to the Equivalence Class Division method.

Wrong to Speculate Method [Mye04]

The Wrong to Speculate method depends on the use of experience and intuition to
anticipate possible errors that could occur in the software system, and uses these
supposed errors to make the test suite. The basic idea of the Wrong to Speculate
method is first to list all situations that might cause errors in the software. The test
cases should be designed specifically for each of these situations. The method is
very dependent on people’s experience and could be an efficient testing method if
the test group is well organized, and gathers enough error speculations.

Cause-effect Graph Method [Elm97] [AP97]

The Cause-effect Graph method is a supplement to the Equivalence Class Division
method and the Boundary Value Analysis method, for overcoming the weakness
of these two methods, which do not analyse combinations of software input condi-
tions, so test cases for more input situations might be omitted. The adoption of the
Cause-effect Graph method can help the tester to choose an efficient test suite by
some specified steps. The Cause-effect Graph is a directed graph that maps a set of
causes to a set of effects. The tester must draw a cause-effect graph according to the
software specification, then add the constraints and conditions for the causes and ef-
fects to the graph. He/she then transforms the cause-effect graph to a determinant
form, and transforms the rows of the determinant form to test cases.

Random Method [Ham94] [KC00] [SB04]

26 CHAPTER 2. BACKGROUND

The Random method uses random data as test cases. This data can be generated
automatically to reduce the cost of the testing. Also customers will have more con-
fidence if the system passes the testing with sufficient random data. However, this
is a high risk method, as it is difficult to determine what constitute an appropriate
number of test cases that is sufficient but not too many; it is also not easy to guar-
antee that the random data generated accurately represents probable actual inputs.
Random testing may omit some parts of the system, or test some parts repeatedly.

Black-box Testing is often used to find functional errors, the bugs of interface, data
structure, system performance, and the fault of system initialization and termination.
However, Black-box Testing is not a substitute for White-box Testing, although it can
be used together with White-box Testing as an assistant to discover omitted faults.

The advantage of Black-box Testing is high automatization. The process of testing
can be done automatically; for some software the results can even be analysed by Oracle
automatically. For large software systems, it is more effective. Because the structure of
code is not considered during testing, the tester tests the software from a user’s point of
view; he/she does not need to have knowledge of implementation, and can be independent
from the developer. But Black-box Testing depends highly on the software specification;
if the specification is not clear and concise, the test cases can not be well designed. It is
also difficult to test directly the specific parts of code that are very complex and have a
higher possibility of containing errors. Another disadvantage is that Black-box Testing
may leave many program paths untested, since test cases are not generated according to
the structure of code. The final problem of Black-box Testing is bug shooting. If the
software does not have well-designed exceptions, the causes of a fault are not easy to
confirm.

While Black-box and White-box Testing are still in popular use, in order to overcome
the disadvantages of these two strategies, people have attempted to combine them, and
have invented the “gray-box testing”. Gray-box Testing is similar to Black-box Testing,
which tests the software from outside, but the internal information of software is not
strictly ”off limits”. The tester has some knowledge of the software’s internal structure,
and he/she is required to design a limited number of test cases aimed at to the internal
structures. The internal information can also helps the tester to choose appropriate test
cases from the input domain.

Our methodology is inspired from famous method Category-partition [OB88], this
method is based on Equivalence Class Division method in Black-box testing.

2.2 Category-Partition Methodology
Equivalence Class Division method is one of the most popular methods in Black-box test-
ing. Category-partition (CP)[OB88] is a well-known method for applying the Equivalence
Class Division.

Category-partition is used to create functional test suites. In this method a test engi-
neer analyzes the system specification, writes a series of formal test specifications, and

2.3. PAIR-WISE TESTING 27

then uses a generator tool to produce test descriptions from which test scripts are written.
It provides a formal way to partition the software specifications, and a method to gener-
ated a test suite from the specification automatically and systematically. The advantages
of this method are that the tester can easily modify the test specification when necessary,
and can control the complexity and number of tests by annotating the test specifications
with constraints. The Category Partition method has seven steps, the terms and the pur-
pose of each step are explained below.

1. Analyze the specifications and identify the functional units (for instance, according
to design decomposition). The functional units are the subsystems that can be tested
independently.

2. Partition the functional specifications of a unit into categories: The categories are
the environment conditions and parameters that are relevant for testing purposes.

3. Partition the categories into choices:1 these represent the significant values for each
category from the tester’s viewpoint. Choices are sets of values; that the values in each
set have the same influence on the testing result.

4. Determine constraints among choices (either properties or special conditions), this
prevents the construction of redundant, meaningless or or even contradictory combina-
tions of choices.

5. Derive the test specification: categories, choices and constraints form a Test Speci-
fication, suitable for automatic processing. It is not yet a list of test cases, but contains all
the necessary information for substantiating them by unfolding the constraints.

6. Derive and evaluate the test frames: from the test specification, a set of test frames
is derived by taking every allowable combination of categories, choices and constraints.

7. Generate the test scripts, i.e. the sequences of executable test cases.
The Category-partition method provides a great method for generating test cases from

the system systematically and automatically. Since the test cases are generated by combin-
ing the categories, the number of test cases are closely related to the number of categories.
With this method, when the system is complex, the user often gets a huge number of test
cases. Sometimes there are too many to be executed. To solve this problem, combina-
tional methods are developed. Next section will present one of these methods, Pair-wise
Testing, which is used in our methodology for test cases selection.

2.3 Pair-wise Testing

Testing approaches can be divided into two vast groups: stochastic testing (random test-
ing) and combinatorial testing. Stochastic testing does not execute all test cases, but picks
some of them randomly, The test case may locate a bug only by luck. Combinatorial test-
ing generates all possible combinations of test data. Usually this set is too huge or even
infinite, so that it can not be used to test software.

1Note the usage of the same term “choice” both in XML schema syntax (written as <choice>) and in
the CP method (written as choice). This is purely coincidental.

28 CHAPTER 2. BACKGROUND

What the tester needs is a set of finite test data that includes the selected test cases, and
is of a suitable size; the method to get this set of test data is “test case selection”. Pairwise
testing is a well-known and important method for selecting the test cases. It is a widely
popular approach to the combinatorial software testing method which for each pair of
input parameters to a system, tests all possible discrete combinations of those parameters
[THCS01]. As presented before, whether we do Black-box Testing or White-box Testing,
the combinations of system parameters are usually very huge even for a simple system.
For instance suppose a system have 3 parameters and each of them has 10 values, to do
exhaustive testing all the values in the different parameters should be combined, and result
in 310 combinations. If the system is complicated, it is impossible to do exhaustive testing
because the number of test cases will be too huge to execute. In the history of software
testing, people have found that in a software system, most of the errors are caused by
the interactions of one or two parameters. Bugs involving interactions between three or
more parameters are much less common, and it is very rare that an error is caused by
the interaction of all parameters [YL02]. Therefore if we apply pair-wise testing to test
the interaction of all pairs of parameters, we should catch most of the bugs at a greatly
reduced cost.

2.4 XML Schema Fundamentals
As presented in Chapter 1, currently software is becomeing more and more complicated.
Communication among different software components and different systems is becoming
more and more frequent. The interoperability of software needs a standard format for
data. XML [Har99] is the most popular and general standard for storing and exchanging
data. It have been widely accepted for several years. We will focus on systems based on
XML.

XML Schema is itself represented in XML, and can be easily extended. It defines the
rules of the elements, attributes and other items of XML Documents.

In this section some basic concepts of XML and XML Schema are provided.

2.4.1 Brief Introduction of XML Language
“Extensible Markup Language (XML) is a simple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of a wide
variety of data on the Web and elsewhere.” [XML96]

XML is a set of rules for defining semantic tags that break a document into parts and
identify the different parts of the document. It is a meta-markup language that defines
a syntax used to define other domain-specific, semantic, structured markup languages
[Har99].

XML language is the W3C endorsed standard for document mark-up; in simple terms,
it defines a generic syntax used to mark up data with intuitive, human-readable tags. XML

2.4. XML SCHEMA FUNDAMENTALS 29

is a cross-platform, text-based and extensible language. As a meta-markup language,
there are not any predefined tags in XML language; users make up the tags as required.
Figure 2.1 shows a simple example of XML. As shown in the example, an XML Docu-
ment must have one root element, the content of root element could be text-only or other
elements. The XML Document in Figure 2.1 presents the structure and content of an
email. All tags in the example are defined by the user. The content of the tags must ap-
pear between the start tag that is written as <tag name> and close tag that is written as
</tag name>.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< e m a i l >
< t o > A n n i e < / t o >
< f r o m > J a s e m i < / f r o m >
< t i t l e > G r e e t i n g < / t i t l e >
< b o d y > H i , h o w a r e y o u ? I m i s s y o u ! < / b o d y >
< / e m a i l >

Figure 2.1: A simple XML

XML can store and organize any kind of information in textual form. The information
is represented as an hierarchy of elements with names, optional attributes and contents,
which can be defined by the developers. XML Documents typically contain a structure
that includes text, attributes, and other elements that, in turn, may include elements, text
and attributes. This structure can be described as a tree, in which every item in the XML
Document holds a position.

XML provides a standard format for storing and exchanging documents between com-
puter applications (and not only), and it brings big advantages to the developers. XML
language gives the possibility to the user to design the specific markup languages for
different domains of the system, so that the developers can focus on the part they care
about, and reduce the complexity of the system description during communication among
developers. XML is a self-describing language; it can be written totally in ASCII text
that is easily understood by computers, and is also easily read by a person, even if he/she
does not have professional knowledge of XML. Since it is easy to read and write and it is
non-proprietary, XML is an excellent format to interchange data among different applica-
tions. The data of XML Document is well structured, so it is ideal for large and complex
documents.

With Unicode as its standard character set, the XML supports many kinds of writing
systems and symbols, and it can be edited with any kind of editor, from a standard text
editor to a visual development environment. Besides, XML is easily combined with style
sheets to create formatted documents in any desired style. Because of its many bene-
fits, XML is fast becoming the most widely used format for data interchange between a
system’s components, and on the Web.

30 CHAPTER 2. BACKGROUND

2.4.2 Document Type Definitions

Besides XML Schema, Document Type Definition (DTD) is an other well-known XML
Schema Language. Before XML Schema was developed, it was the most popular schema
language. It is not XML based schema language; it specifies the tags used to define legal
elements, attributes and constraints. Fig 2.2 shows a simple DTD example.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< ! E L E M E N T p e o p l e _ i n f o r m a t i o n (p e r s o n *) >
< ! E L E M E N T p e r s o n (n a m e , b i r t h d a t e ? , a d d r e s s ? , I D n u m b e r ?) >
< ! E L E M E N T n a m e (# P C D A T A) >
< ! E L E M E N T b i r t h d a t e (# P C D A T A) >
< ! E L E M E N T a d d r e s s (# P C D A T A) >
< ! E L E M E N T I D n u m b e r (# P C D A T A) >

Figure 2.2: A simple example of DTD “People information”

By the specification of DTD in Figure 2.2, in the conformed XML Document, “peo-
ple list” is a valid element, and it can contain any number of elements named “person”,
because “person” is followed with *; and “person” is a valid element name, because it
contains one element “name”, followed by three optional elements “birthday”, “address”
and “IDnumber”. The “?” indicates these elements are optional. All these three optional
elements should contain the parsed character data since they are followed with #PC-
DATA. In Figure 2.3 we show an XML Document that conforms to the specification of
DTD People information.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e o p l e _ i n f o r m a t i o n >
 < p e r s o n >
 < n a m e > S a m B r o o k < / n a m e >
 < b i r t h d a y > 1 5 / 1 2 / 1 9 7 0 < / b i r t h d a y >
 < a d d r e s s > 2 3 E s t e r A v e N Y < / a d d r e s s >
 < / p e r s o n >
< / p e o p l e _ i n f o r m a t i o n >

Figure 2.3: An XML Document conforms to DTD “People information”

In recent years, DTD has becomes very popular schema language in XML applica-
tions, but it does not support communication between different modules. Also it has very
basic content models that do not have enough capability to give a very clear description of
XML Document structure, the element, attribute and constraints of data types. So in May
of 2001, W3C recommended XML Schema as the standard mode of XML, and since then
XML Schema has started to replace DTD gradually.

2.4. XML SCHEMA FUNDAMENTALS 31

2.4.3 XML Schema

An XML Schema language is a formalization of the constraints, expressed as rules or a
model of structure, that applies to a class of XML Documents [vdV02]. Like other XML
Schema languages (such as DTD), XML Schema expresses the rules that can determine
whether an XML Document conforms to these rule. If it conforms, then it can be consid-
ered as “valid” to that schema. When an XML Document has the structures or elements
that are not defined in the XML Schema, then it does not conform and is invalid against
the XML Schema.

When an XML document is validated against a schema (a process known as assess-
ment), the schema to be used for validation can either be supplied as a parameter to the
validation engine, or it can be referenced directly from the instance document using two
special attributes; xsi:schemaLocation and xsi:noNamespaceSchemaLocation. (The lat-
ter mechanism requires the client invoking validation to trust the document sufficiently to
know that it is being validated against the correct schema.)

XML Schema offers a powerful set of tools for defining acceptable structures and
content of XML Documents. Technically, an XML Schema is a collection of abstract
metadata that resides within the XML format.

Schema documents are organized by namespace: all the named schema components
belong to a target namespace, and the target namespace is a property of the schema doc-
ument as a whole. A schema document may include other schema documents with the
same namespace, and may import schema documents with a different namespace.

XML Schema is based on the format of XML, and could extend and reuse the elements
and types both inside the schema and also in the other namespaces. XML Schema is
becoming more widely-used than other schemas because of its advantages:

First, XML Schema uses XML as the language to define the schema, so users who
want to use XML Schema do not need to learn a new language. Also, it inherits the
properties of XML, which is well structured and easily read both by humans and by
computers.

Further, XML Schema defined more than 44 built-in datatypes. and each of these
datatypes can be further refined for fine-grained validation of the character data in XML.

The cardinality of the elements can be defined in a fine-grained manner using the
minOccurs and maxOccurs attributes. This is a big improvement: DTD can not define the
exact number of element occurrence. XML Schema makes the element definition more
clear and conformed.

XML Schema also has other new features. It supports modularity and re-usability by
extension, restriction, import, include, and redefine constructs. This brings great flexibil-
ity in defining elements, and can also save time and avoid repeated definition of elements,
types and attributes.

XML Schema supports identity constraints to ensure the uniqueness of a value in an
XML Document, in the specified set, and it has an Abstract Data Model and therefore is
not bound to XML representation only. While schemas are powerful, that power comes
with substantial complexity.

32 CHAPTER 2. BACKGROUND

In many ways, XML Schemas act as design tools to XML Documents. There are
many uses of XML Schemas in the world of XML, but the most important and common
usage is validation.

There are two significants uses of the XML validation. One is to check if the XML
Document has the correct syntax conforming to the grammar of the XML specification;
this validation is called “XML well formed”. Being well-formed is a basic requirement
for an XML Document. Another validation is to check if the XML Document conforms
to a DTD or an XML Schema. When the XML Document conforms to the criterion
a defined in the XML Schema/DTD, then we call this XML Document valid for that
schema; otherwise it is invalid. The validation against schemas takes place at several
levels: The structural level checks if the XML element and attribute structures conform
to the specification of the schema. Data level validation makes certain that the contents of
the elements and attributes meet the rules made by the schema. In Section 2.4.5 we will
give more details about XML validation against an XML Schema.

Besides validation, XML Schemas also are frequently used to do the documentation
of XML. XML Schema provides a formal description of the structure and content of the
XML Documents; usually when a new XML vocabulary is published, there will be XML
Schemas attached to it. The XML Schema now become a part of the XML Documenta-
tion. Because it is easily understood by people and machines, it is helpful in understanding
the structure of the XML Documents.

2.4.4 Elements and Constraints of XML Schema
XML Schema is the description of a type of XML Document. It makes the rules for the
syntax constraints of these XML Documents, and defines the elements, attributes that can
appear in an XML Document, and their data types. Also it specifies the valid structure of
the XML Document. This specification includes:

* The parent elements and their child elements;

* The sequence in which the elements should appear;

* The occurrence times of the elements, and the appearance rules for attributes;

* The context of the elements;

* The predefined values for the elements and attributes, specifically the fixed and default
values.

For this purpose, XML Schema specifies a set of elements and constraints. We list the
elements that can affect and are significant to our work in Table 2.1, and give a simple
explanation of each of them. This table is taken from [W3S05]. In Chapter 6 there are
more explanations for each of the elements with a simple XML Schema as test case for
TAXI tool.

2.4. XML SCHEMA FUNDAMENTALS 33

In order to define acceptable values for elements and attributes, XML Schema also
defines a set of value restrictions. In XML Schema the restrictions for elements are called
Facets. We list the Facets in Table 2.2 [W3S05].

2.4.5 XML Document Validation

As already presented in the previous section, XML validation is the most widely-used
XML Schema application; also in our research it is an important concept. As presented
before, XML Schema files define the structure of a class of XML Documents. The process
for checking whether an XML Document matches the specification of a schema is called
XML Validation. This validation is not the same as XML’s core concept of syntactic well-
formedness. When an XML Document relates to a schema, it is considered “valid” when
it is well-formed and conforms to the associated schema.

When XML Documents attach all of the specifications of XML Schema, we call the
XML Documents conform to this XML Schema, and they are “valid” documents of this
schema. The requirements typically include such constraints as:

Element and attribute, and time they are permitted to occur: XML Schema defines
the element and attribute by giving the name, structures, and rules for how they can be
included in the XML Document. There are two attributes that restrict the element oc-
currences in XML Document: “minOccurs” defines the minimum occurrence, and “max-
Occurs” defines the maximum occurrence. When the “minOccurs” of an element equals
“0”, it means this element can be absent from the XML Document; otherwise it must be
included in the XML Documents. Also the time that an element occurs must between the
values of “minOccurs” and “maxOccurs”.

In contrast to elements, attributes can not appear more than once in an element, so in
the schema, attributes have an attribute “use” to define the occurrences. This “use” has
only three values: optional, required and prohibited. When the value equals optional,
the attribute is not obliged to appear in XML Document; Required means the attribute
must occur in XML Documents; while prohibited denotes that the attribute is forbidden
to appear in XML Document.

The legal structure: The structure of elements and attributes is specified by a regular
expression syntax in specification of XML Schema. It defines the acceptable parent, child
of each specific element, and their allowable attributes and constraints. All elements in
the XML Document must be constructed according the rules, otherwise the element and
the whole XML Document are considered to be “invalid”.

The data types of the elements and attributes: XML Schema defines the data types for
each of its elements and attributes. In the associated XML Documents the element data
type must be interpreted strictly according to the XML Schema.

Along with the wide-used of XML Schema, there are many tools that can valid ate
an XML Document against a schema automatically. For instance XMLSpy [XML05b] is
a very well-known tool, that it offers a set of tools for XML applications; Stylus Studio
[Cor08] is a powerful XML integrated development environment; also the Apache Xerces

34 CHAPTER 2. BACKGROUND

Java XML Parser library provides a highly standards-conformance validator [Jav06]; it
offers very good performance for validating.

2.5 Summary
In this chapter we presented the background for this thesis. We introduced some in-
formation about Software Testing, especially Black-box Testing and White-box Testing.
After that we included a brief introduction to the Category-partition method, which forms
the basis method of our methodology and Pair-wise Testing which is also used in our
approach for selecting the test cases. Simple introductions to XML and XML Schema
foundations are also presented in this chapter as they are leading actors in our research.
With the content of this chapter, it will be easier to follow and understand this thesis.

2.5. SUMMARY 35

Element Explanation
all Specifies that the child elements can appear in any order. Each

child element can occur 0 or 1 time
any Enables the author to extend the XML Document with elements

not specified by the schema
anyAttribute Enables the author to extend the XML Document with attributes

not specified by the schema
attribute Defines an attribute

attributeGroup Defines an attribute group to be used in complex type definitions
choice Allows only one of the elements contained in the <choice> dec-

laration to be present within the containing element
complexContent Defines extensions or restrictions on a complex type that contains

mixed content or elements only
complexType Defines a complex type element

element Defines an element
extension Extends an existing simpleType or complexType element

field Specifies an XPath expression that specifies the value used to define
an identity constraint

group Defines a group of elements to be used in complex type definitions
import Adds multiple schemas with different target namespace to a document
include Adds multiple schemas with the same target namespace to a document

key Specifies an attribute or element value as a key within the containing
element in an instance document

keyref Specifies that an attribute or element value correspond to those of the
specified key or unique element

list Defines a simple type element as a list of values
redefine Redefines simple and complex types, groups, and attribute groups

from an external schema restriction
restriction Defines restrictions on a simpleType, simpleContent, or a complex-

Content
schema Defines the root element of a schema
selector Specifies an XPath expression that selects a set of elements for an

identity constraint
sequence Specifies that the child elements must appear in a sequence. Each

child element can occur from 0 to any number of times
simpleType Defines a simple type and specifies the constraints and information

about the values of attributes or text-only elements
simpleContent Contains extensions or restrictions on a text-only complex type

or on a simple type as content and contains no elements
union Defines a simple type as a collection (union) of values from

specified simple data types

Table 2.1: XML Schema elements and attributes

36 CHAPTER 2. BACKGROUND

Constraint Description
enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed. Must be
equal to or greater than zero

length Specifies the exact number of characters or list items allowed. Must be
equal to or greater than zero

maxExclusive Specifies the upper bounds for numeric values (the value must
be less than this value)

maxInclusive Specifies the upper bounds for numeric values (the value must
be less than or equal to this value)

maxLength Specifies the maximum number of characters or list items allowed.
Must be equal to or greater than zero

minExclusive Specifies the lower bounds for numeric values (the value must be
greater than this value)

minInclusive Specifies the minimum number of characters or list items allowed.
Must be equal to or greater than zero

pattern Defines the exact sequence of characters that are acceptable
totalDigits Specifies the exact number of digits allowed. Must be greater

than zero
field Specifies an XPath expression that specifies the value used to define

an identity constraint
whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage

returns) is handled

Table 2.2: XML Schema restrictions/facets

Chapter 3

Related Work

Software testing is so important that there are many groups and organizations working on
it, trying to find methods to reduce costs and improve the veracity of the testing. This
chapter covers the research that is related to our work. During the process of our research
we studied extensive literature, and conclude that the related works can be grouped into
two aspects. One is from the view of XML based testing methods which will be presented
in section 3.1. The other aspect is from the view of automatic XML generation methods,
which will be presented in section 3.2.

3.1 Related XML Testing

During our research, we not only focused on our methodology, but also studied a wide
area of literature about XML Testing. XML Testing can refer to verifying the adequacy
of an XML Document with respect to the user’s exigencies; verifying the adequacy of an
XML Instance with respect to a specific schema (DTD or XML Schema); verifying the
wellformedness of a schema structure; or even for defining methodologies for merging or
matching diverse XML Schemas.

As presented in Section 2, the DTDs and XML Schemas have largely evolved paired
with XML diffusion. DTDs and XML Schemas are used for expressing basic structural
rules and complex restrictions of the diverse data and parameters that units/components
exchange with each other; both of them can be considered as the structuring schema of
XML Documents.

The introduction of XML and XML Schemas paved the way for many tools and tech-
niques devoted to checking the most varied aspects and concerns of the produced docu-
ments. In next sections we will provide an overview of existing approaches, distinguish-
ing between approaches that are applied to XML Documents, and approaches that start
from the XML Schema. In this vast context of diverse interpretations, we have attempted
to classify the various testing approaches and structure those methodologies, and to com-
pare them with our methodology.

38 CHAPTER 3. RELATED WORK

3.1.1 XML and XML Schema Document Testing
XML and XML Schema Document testing is to verify if the elements and values of XML
or XML Schema documents are conformed to their specification; this testing can also
be called well-formedness. Over the years, XML format flexibility and its possibility to
be adapted to any kind of situation have increased the possibility of using it in diverse
customized domains, as well as for data interchange for web-sites, graphics, remote and
real time applications.

With the aim of developing successful applications which can correctly interoperate
each other, verifying the correctness and adequacy of XML or Schema data becomes
extremely important.

Due to its flexible schema, XML gives its users a certain freedom in writing their
specific documents. With the aim of interoperability, the W3C XML Core Working
Group[W3C05b] provides a sort of core infrastructure that can be used for verifying the
XML Document. This is represented by a set of XML-based guidelines that provide met-
rics for determining the conformance to the W3C recommendations [W3C05b]

Well-formedness is an essential test and a basic requirement for an XML or Schema
file. If this property is not satisfied, the tested file cannot even be classified as an XML
or XML Schema. Well-formedness can be easily verified: a simple browser generally
provides conformance validation features for thid type kind of validation. However, well-
formedness does not guarantee the quality of an XML or Schema file; it just ensures
elements and structure in these files conform to the specification of W3C.

Using as a basis this type of testing indications, different sets of test suites have been
implemented, for example [W3C05a],[Con03]. Each of them is represented by a test file
(including up to thousands of diverse tests) generally associated with a test report, which
contains all the background information for verifying a specific aspect of the conformance
of the XML Document to the basic recommendations.

Several XML Schema validators for checking the syntax and the structure of the W3C
XML Schema document are available. Among them, most widely used are SQC (Schema
Quality Checker) [SQC01], XSV (XML Schema Validator) [W3C01], and XML Spy5
[XML05b]. Recently an interesting approach has been proposed by [LM05], which de-
tects semantic errors in XML Schemas by using mutation analysis.

XML and XML Schema document testing are very basic testing for XML. In Chapter
5 we will present our proof-of-concept tool, TAXI. This tool is able to check both the
well-formedness of the input XML Schema and also the generated XML Document auto-
matically. When the XML Schema or the XML Document is not well-formed, user will
get the warning message.

3.1.2 Conformance Testing
The object under test by conformance testing is usually an XML Document. In order
to successfully complete the information exchange and transition between the different
systems, XML Documents need to conform the requirements coming from different do-

3.1. RELATED XML TESTING 39

mains. The requirements can derive from a standard or they can consist of some specific
rules defined by the developer’s community, which can include the specifications of the
input domain or other requirements of the system.

Basically the targets of the compliance test are document verification and validation.
Document verification is used to verify that the messages generated by the system con-
form to the input standard. There are some tools that verify XML Documents automat-
ically. The standard can be in the format created by the user, such as [RTTnd], which
developed strategies for automated production of requested XML Documents for posting,
to facilitate the testing of web services, and components, to facilitate the validation of
the data content of the XML Documents. The widespread diffusion of XML Schema has
increased the proliferation of many tools and methodologies for deriving XML Instances,
which represent the allowed naming and structure of data for component interaction and
for service requests. XML Instances can be generated from DTD as well. Depending
on the schema, XML Instances can be manually generated. This could be complicated
and a huge amount of work when schemas are complex, so tools for automated XML
Instance generation based on DTD or XML Schema appeared. Some of these gener-
ate the XML Instance directly, such as [Sun03], [XML99], [XML04] and [TBSK03].
Some tools generate instances in other notations, like java files [EJB03], [Jav03], C++
classes [XOM02], or .NET language such as C] and VB.NET [Obj04]. However, most of
these generate instances randomly. The disadvantage of random generation tools is that
instances cannot cover all possibilities of the schema. In [DK07] a tool that generates
instances based on DTDs, users can make their own test driver with a test script wizard,
and get an XML-based class instance. There are also integrate a graphic tools such as
[Cor08] and [XML05b], which support the multi-functions of XML testing, including
well-formed XML /XML Schema and also validate an XML Instance against a schema.
Each time they generate one conformed XML Instance from the specific XML Schema.

Document validation is used to check the conformance of the content and structure
of documents, and format the documents to the requirements. XML validation means
checking the conformance of structure and data in an XML Document against different
specifications or protocol models. For automatic verification and validation a tool has
been implemented, [XML03], which enables unit testing of XML, and compares a control
XML Document to a test document to do the validation; [XML02] and [XML05a], use
different methodologies for large, complex systems. Different XML Documents can use
different schemas (DTD or XML Schemas) to specify valid (what allowable can do) and
invalid (not allowed) documents. In this case an XML Document can be considered valid
only if everything in the document conforms to the declarations in schema. In this case
usually a schema should include all the elements, attributes and entities that can be used
in the document as well. There exist several tools to verify the XML Documents against
its DTD or XML Schema. For instance, [BdR04], [xmlndb], [xmlnda] and [easnd].

Validation is an important application of XML Schema for XML-based systems. In
our methodology and application, it is also important. At the end of XML Document
generation, we must validate and ensure the derived document conforms with the target
XML Schema. Also, for testing applications, XML Validation can often be used as an

40 CHAPTER 3. RELATED WORK

oracle to analyse the correctness of system output.

3.1.3 Using Derived XML Document or XML Schema
Many programs set their specific requirements on an XML file, and can work only if
the files conform to their specifications. Sometimes a vast amount of information must
be manipulated and organized, so methods and tools are developed using as test cases
generated XML Schemas or common structures from XML Documents and generated
XML Instances from common structures or XML Schemas.

Research on how to derive a common structure from XML Instances is going on ac-
tively and interesting results have been produced [Lev99], [STH+99], [Wid99], [GW97].
Recent applications of this technology are [ST02], [WYW00], which extract schemas us-
ing graphs according to the frequency of element occurrence in XML Documents and
[HHS04], in which the authors represent, by using the XML markup, a text type schema
definition of the structure in a scientific paper.

In parallel with these approaches, another field of research, also called instance-level
matching [RB01], tries to derive a common structure by dynamically analyzing the di-
verse XML elements and extracting from time to time the proper schema structure. For
implementing such analysis, diverse proposals have been adopted, such as rules, neu-
ral networks, and machine learning techniques [BM01], [DDL00], [DDH01], [LC94],
[LC00], [LCL00].

Currently there are two solutions for using generated XML Documents to do testing,
that are widely-used for this dilemma. One is document type definition (DTD); another
is XML Schema, which became an official W3C recommendation in May 2001. Estab-
lishing a formalized agreement on the format of data exchange supports the application
of testing strategies for checking local data structures and the interfaces used by different
components. Using a DTD or XSD allows the recipient of an XML Instance to determine
whether that instance conforms to the control document by testing the XML Instances for
conformance against control documents. DTDs and XSDs have been the first step towards
testing for the conformance of content and applications.

The tool [tox05] first needs to write the XML test instruction based on the XML
Schema and the expectation of the derived instances, then generate XML based on the
test instruction. Recently there is a new strategy that is presented in [dlR07]; it applies
the Category-partition method and uses standard Xpath as the query language to classify
the XML Schema, and give the construction of constraints for the valid XML Instances.

Compared with similar tools, our approach and method has some advantages. First our
tool does not need extra effort for test case generation; it is simple to use and understand,
and generates test cases from XML Schema directly. However, tools like Toxgene and
XMLGen first need to rewrite XML Schema into generation instructions manually; they
require deep understanding of XML Schema, otherwise the transformation may not be
totally correct. If the schema is big and complicated, then rewriting becomes hard work
and needs a lot of effort. Our method avoid random testing in the methodology, while
provide a sufficient quantity of test cases. Also our method and tool support both value

3.2. SYNTAX-BASED TESTING 41

selection and random value generation; this function is omitted by a lot of other tools,
such as [dlR07] which does not generate value for elements, and Toxgene which can not
generate random values for elements. Finally, using our method, users can obtain different
sizes of test cases from various of XML Schemas easily.

3.1.4 Adopting Perturbation Testing
In the area of using commonly adopted testing strategies for guiding the XML based test-
ing, another interesting work is [OX04], which presents a new approach to testing Web
services. The authors, taking as a basis the approach in [SCL01] which presents a tech-
nique for using mutation analysis to test the semantic correctness for XML-based com-
ponent interactions, consider the communication infrastructure of web services, typically
XML and SOAP, and develop a new approach to testing them based on data perturbation.

3.2 Syntax-based Testing
Among the process of software development, testing is very important and indispensable.
It is also the most expensive part of work. Sometimes testing takes up 50 percent of the
development costs. In order to reduce spending, people tend to find methods that can
apply a test process totally or partially automatically. The most difficult facet of testing is
the deriving of test cases, so there are a lot of methods that focus on how to automatically
generate test cases, especially methodologies that are independent of the given software
systems. That is also what our research aims to do. Partition testing provide the possibil-
ity of classifying the specification of systems formally to derive test cases automatically.
For instance Category-partition (CP)[OB88] is a classical and very well-known method
in that area of automatic software testing. In software literature there are a lot of method-
ologies applying partition testing to generated test cases automatically. The methodology
that is relevant to our research is Syntax-based Testing, or sometimes called Grammar-
based Testing. Every input domain of a software system has a syntax. The syntax could
be defined in formal or natural language; it also might not be documented or even not
specified, but it does exist. Grammars are used to define syntax, exchange formats and
other things. Grammars are omnipresent in software development [Läm01]. The grammar
can be defined in various ways. Actually, XML Schema can be considered as the gram-
mar of the input domain of XML-based systems. In the literature studied we found many
works about grammar based testing. When the grammar is defined in a formal language,
it provides the possibility for the automatic test data generation.

For example [JO06] describes a mutation method that, from the given grammar de-
scription of a software artifact, uses mutation operators to create alternate versions of
artifacts. According to the grammar, these alternate versions can be valid or invalid, and
they can be created directly from the grammar or by modifying a ground string. As pre-
sented in [Coh06], there are a lot of XML documents that can be used for testing, but they
do not conform to the specific schema. A new method of XML generation is presented

42 CHAPTER 3. RELATED WORK

in [Coh06]. Since classes of count-constraints and DTDs can identify the satisfiability
problem, these classes can be used to generate XML document that can satisfy both the
DTD and count-constraints if this document exists. With this method, the documents that
satisfy global constraints can be generated, and can be used for testing purpose. Also
[Coh08] presents a framework that uses the target DTD and an example of an XML Doc-
ument (called a GxBE Document) to generate structural XML documents automatically.
The GxBE document is an XML Document with embedded-count constraints. These
constraints allow the user to control the global properties of the document. So far the de-
rived documents only have structure, without values for the elements. [Kab08] presents a
methodology that receives a DTD as an input, relying on its associate elements’ attributed
grammars to automatically generate web form XML data. Korat [DM03] [AM07] is a
tool to enumerate all valid inputs within a certain size systematically, then evaluate the
quality of the test suite by some measurements.

These syntax-based Testing methods or tools also do the XML-based testing. They
do not take XML Schema, or only XML Schema, but also the syntaxes or grammars
for deriving XML data. These grammars could be constraints, attributes, DTDs, and so
on. Actually, XML Schema is also a grammar for a specific class of XML Documents.
Studying the related Syntax-based Testing methods opened our eyes, and inspired our
further research.

3.3 XML Benchmarks
Finally we mention XML Benchmarks, since benchmarks are one of the application do-
mains of our research. The XML Benchmark guarantees the consistency, recoverability,
performance and the usability of the XML systems, especially XML database transaction.
Along with the increasing use of XML technology, the requirements of the XML Bench-
mark are extensive in many industry domains, including government, finance, banking,
health care, insurance and so on, although to date, a recognized industrial XML database
benchmark standard is still not available. However there are many tools implemented for
XML Benchmarks that can be found in the literature and on the internet, such as: [XMa],
a XML Benchmark tool that generates well-formed, valid and meaningful XML data from
DTDs for XML database benchmarks; [Fra05], an XPath benchmark for XMark, which
consists of a Functional Test (XPath-FT) and a Performance Test (XPath-PT) for XPath
1.0 language; and [tox05] that uses TSL language to transform XML Schema to a gen-
eration instruction. Valid XML data, the number of the XML data and the value of the
XML element can be defined in the instruction. [MLL] is an XML version of the OO7
benchmark [MJC93] enriched with relational, document and navigational queries that are
specific and critical for XML databases. The XOO7 benchmark meets the four criteria:
relevance, portability, scalability and simplicity.

Comparing between TAXI and other XML Benchmark tools, such as XMarch-1 [TB01],
XMark [XMa], XPathMark [Fra05], XBench [XBe], XOO7 [SB01] and Toxgene [tox05],
we can see the advantages and disadvantages of TAXI.

3.3. XML BENCHMARKS 43

Firstly, we compare the schema types that the tools support. XMarch-1, XPathMark
and X007 support only DTD; XBench supports both DTD and XML Schema; while Tox-
gene, XMark and TAXI support only XML Schema.

For the format of schemas that these tools support, some of the tools accept only one
or several specific files. For example XMark, Xbench, X007 can accept only one fixed
XML Schema or DTD. XMarch-1 can accept a set of fixed DTDs. In contrast to those
tools, TAXI and Toxgene can accept common XML Schemas, so that they have much
more flexibility during XML Benchmarking, and suit to more applications. The different
between Toxgene and TAXI for dealing with the schema is that Toxgene needs to write
the instruction for each input schema, and generate instances based on that instruction,
while TAXI analyze the schema automatically, and does not need user to know exactly
the XML Schema before XML data generation.

With regard to the size of the documents that these tools can generate, the ranges are
quite different. XMarch-1 generates mainly small documents, range from 2KB to 100KB;
the size of documents generated from XPathMark and XMark could range from 10MB to
10GB; and the size range from XBench and X007 are 1KB to 10 GB and 4MB to 1GB;
respectively documents generated from TAXI and Toxgene do not have exact size ranges,
since they can generate XML data from various of XML Schemas; the range could be
must wider than the others. The smallest documents we used to generate from TAXI is
1KB, and the biggest one is 12GB, but it is not the upper boundary.

The requirement of using multiple namespaces in XML Schemas is common in real
world applications; it is very common to use the namespace of XML Schemas. The stor-
ing, indexing and query processing of namespaces is subject to performance optimiza-
tion and cannot be ignored.Among the tools that we are comparing here, only TAXI and
XPathMark support namespace.

The final aspect for comparison is schema validation, which is important to assure
the correctness of the XML data derivation. Of the tools that we mention in this chapter,
only Toxgene has a validation process, but it does not validate XML data against XML
Schema; the object of validation is the TSL template. This can save the cost of the time,
but not provide 100% assurance that the derived XML Documents are conformed to the
XML Schema. Also XMarch-1 could be optionally used to do the validation. On the
other hand, TAXI validates each XML Document against the XML Schema when they
are generated; it is a required process.

Based on this comparison, TAXI is more flexible as a benchmarking tool for XML
data generation, and supports various XML Schema inputs. Also it is not necessary to
have a lot of knowledge about the input schema; the analysis and the generation are to-
tally automatic. Documents generated from TAXI have sufficient variety and complexity.
Other outstanding features which are better than other tools include the supporting of
namespace and the automatic validation process for each generated XML data.

44 CHAPTER 3. RELATED WORK

3.4 Summary
In this chapter we presented works related to our research from three aspects: existing
approaches to XML-based testing, automatic syntax-based testing, finally we list some
relevant works of XML Benchmarks. After the study we found there are some strategies
or tools does something similar as our research and methodology, but compare with them,
our methodology is able to generate more systematic test cases without predefined in-
structions; it is adaptable for different applications, and it gives more flexible to the user.
Our methodology have the advantages in XML Document generation, and in generation
control aspects.

Part II

XML-based Partition Testing
Methodology and Implementation

Chapter 4

XML-based Partition Testing

This chapter presents our methodology for XML-based Partition Testing (XPT). XPT is
able to analyze an XML Schema and generate XML Instances from the schema auto-
matically and systematically. This methodology is presented in two main parts. One is
the implementation of instance generation. The other is composed of functions used to
optimize the generation to make XPT methodology more efficient and more flexible.

The chapter is organized to follow the process of our research. Firstly in Section 4.1
presents the details of the methodology by mapping from the CP method to XPT. The
component for improving XPT method is shown in Section 4.2.

4.1 Main Methodology of XPT

As presented in Chapter 2, today XML Language has established itself as the de facto
standard form for specifying and exchanging data and documents between almost any
digital or web applications. On the heels of this, the XML Schema [XML98] has become
the primary notation for formally describing what constitutes an agreed valid XML Doc-
ument within an application domain. We are presenting an XML-based Partition Testing
(XPT) approach, which is a proposal to leverage the great potential of the XML Schema
in describing input data in an open and standard form, to forward push the automation of
test data generation.

From a tester’s point of view, in fact, the XML Schema expresses the basic rules and
constraints on data and parameters that diverse classes of systems and web applications
exchange; thus it provides an accurate and formalized representation of the input domain
in a format suitable for automated processing, which clearly offers great potential for test
automation. The aim of XML-based Partition Testing (XPT) approach is to leverage this
potential.

The XPT method draws its inspiration from Category-partition (CP) [OB88]. As pre-
sented in Chapter 2, CP method uses the system specifications to do the analysis, and
generates test cases from it. The main steps of the CP method can be found also in
Chapter 2. XML Schema is very suitable for applying CP method because of its natural

48 CHAPTER 4. XML-BASED PARTITION TESTING

structure. As a XML-based language, XML Schema is well structured; it offers a great
convenience during the partitioning of the categories. Today XML Schema is already
became a part of XML Documentation. An XML-based system usually will provide a
set of XML Schemas to explain the structure of the XML Documents in the system. We
have targeted a system that takes XML Documents as input, and uses the XML Schema
to define the input documents, which are actually the specifications of the system input
domain. The idea of the XPT method is to try to find a finite number of XML Documents
that contain all possible valid structures defined by the XML Schema, This means that
those XML Documents cover most possibilities of the system input domain, so that we
can use those XML Document as test cases to apply Black-box Testing.

As presented in Chapter 2, there are several basic methodologies to do Black-box
Testing. The most popular method is equivalence class division; this is usually used
with the method boundary value analysis method. Category-partition [OB88] is a classic
method for equivalence class division. Also we have found it is suitable for applying to
an XML Schema. According to the properties of the XML Schema and the CP method,
XML Schema is partitioned equally into structures by its elements and attributes; each
structure can generate at least one XML Document. The CP method gives seven steps
for doing the Category-partition. XPT use the similar steps to partition XML Schemas.
Figure 4.1 shows the XPT applies CP method to XML Schema, and the map from CP
steps to XPT steps.

Figure 4.1: The map from Category-partition method to XPT.

Now we will explain Figure 4.1 briefly, step by step. More details will follow in the
next sections.

Preprocessor

4.1. MAIN METHODOLOGY OF XPT 49

The first step of CP method is Specification Analysis, which analyzes the specifications
of the system. The relevant step in XPT is named Preprocessor, this step is to analyse the
structure of the XML Schema, convert the complex schema structures to simple structures
and prepare for future activities. The details of the Preprocessor will be presented in
Section 4.1.1.

Functional Unit Identification
The next step of CP method is “Functional Unit Identification”, which divides the system
into a set of Functional Units; these Functional Units must equal the original system. A
Functional unit is a subsystem that can be tested independently. The Functional Units
mapped to XML Schema are the subschemas that can be sub-divided within the original
schema. The whole set of subschemas should be equivalent to the mother schema. This
step in XPT method is called “subschema identification”, which will be explained in
Section 4.1.2.

Category partition
The step “Category Partition” of the CP method corresponds to “element identification”
of the XPT method. In the CP method this step partitions the Categories that have the
significant characteristics of parameter and environment that are relevant for testing pur-
poses for each Functional Unit. Because of the properties of the XML Schema structure,
the elements, attributes and occurrence constraints are considered as Categories, because
they are the main properties of the schema. Actually, in XPT this step is not required to do
anything since the elements, attributes and occurrence constraints are naturally structured.

Choice Identification
After Category Partition, the next step of the CP method is partitioning the Categories
into Choices. Choices are the sets of values that have the same influence on the testing
result. The Categories of an XML Schema are the elements, attributes and occurrence
constraints; obviously the Choices are their value sets. The Choices can be divided into
the types and constraints of the elements and attribute, and “minOccurs” and “maxOc-
curs” attributes. This will be presented in Section 4.1.4.

Constraints Determination
The following step of the CP method is “constraints determination”, which gives con-
straints to each Choice, and generates the test cases by combining the Choices of each
category. In like manner, in XPT method there are only two constraints for Choices:
“valid” denotes that the choice contains values that satisfy the rule of the XML Schema;
and “invalid” indicates that the choice contains invalid values for the XML Schema.

Test Specification Generation and Test Case Generation
In contrast to the CP method, during the test specification generation, XPT does not com-
bine all values in the Choices. In order to reduce the number of final instances, we only
combine the values of occurrence constraints; the values of the elements and attributes
will be selected randomly during test cast generation. This may lose some combinations
of Choice values, but we have to give them up to select the most representative test cases,
otherwise the number of test cases could be so large that most computers would not have
enough capacity to handle it; also it would take too long time to generate and execute
the testing. The details of test specification generation and test case generation will be

50 CHAPTER 4. XML-BASED PARTITION TESTING

presented in Section 4.1.6 and Section 4.1.7. Figure 4.2 shows the work process of XPT
method. XPT takes an XML Schema, analyzes it and generates a set of XML Documents
that are conformed to the schema. The frames at the right side of the figure with gears
represent the main steps in XPT.

Figure 4.2: The work process of XPT method.

4.1.1 XML Schema Analysis and Rewriting
As described in Chapter 2, an XML Schema file may include not only simple elements
but also complex elements. As well both the elements and the definition of the types
can be referred from other elements. This property sometimes causes the XML Schema
file to have a very complex structure, especially when there are many layers reference.
The referred elements bring confusion to the analysis, because using only the type of the
element, it is impossible to know its really structure if the type is not a basic XML Schema
type, but refers to another user-defined type.

So the first step of XPT is to simplify the structure of the XML Schema file, extend
and rewrite the reference structure of the XML Schema, and change the XML Schema to
an XML that has the same semantics but a different syntax. This step is corresponds to
the step Specification Analysis in CP method.

The element in the XML Schema will be transferred into the corresponding XML
element structure, and all elements will tend to rewrite to simple elements or <sequence>

4.1. MAIN METHODOLOGY OF XPT 51

elements. The only exceptions are the <choice> element and the <all> element, which
are kept as before, only the ID number for each child of the <choice> element is added by
Preprocessor. The methods of rewriting are different depending on the types of elements.
XPT classifies the elements of XML Schema into Basic Element, which include simple
elements, <choice>, <all> and <sequence> elements; and referred elements in which
the type or the element itself is referred to other type definition or element. The task
of schema rewriting is to rewrite the XML Schema format to the corresponding XML
format, and transfer the referred elements to basic elements.

Rewriting of Basic Elements

There are two kinds of Basic Elements in XPT. One is a simple element, in which the only
structure that can conform to the element is an element with a specific type of value. In the
different XML Documents the element value could be different, but the structure is always
the same. Another one is the basic complex types, include <sequence>, <choice> and
<all>. <sequence> specifies an element with children that have a fixed sequence of
appearance in an XML Document. If a <sequence> element is without any attributes,
then the accepted XML structure is actually unique. Although <choice> and <all>
define more than one possibilities of XML Document structures, they are also the basic
indicators of XML Schema, therefore their structures will not be solved in this phase.

A Basic Element in the schema will change only from an XML Schema structure to
an XML structure. To describe it clearly, in Figure 4.3 we show a very simple example. A
simple XML Schema element is shown in Figure 4.3; it is an element named “Number”,
and the type of the element is “xs:integer”. After the Preprocessor the XML Schema
element is converted to a XML element, but it still has the same name and type as the
original one.

< x s : e l e m e n t n a m e = " N u m b e r " t y p e = " x s : i n t e g e r " / > < N u m b e r t y p e = " x s : i n t e g e r " / >

Figure 4.3: The transformation of Basic Element by Preprocessor.

Rewriting of Referred Elements

Referred Elements need to be rewritten; otherwise they will cause confusion in the future
processes as presented before. XPT needs to partition the XML Schema by the elements,
attributes, and element occurrences. For Referred Elements, it is difficult to understand
the whole structure without unfolding the referred parts. But the elements included the
referred part will be omitted. The way to resolve this to find the referred part in the XML
Schema, and rewrite the referred element by replacing the referenced part with its real
content. Figure 4.4 gives a sketch map of this activity.

The rewritten Referred Elements need to guarantee equivalence between the origi-
nal and new structures. After rescription, the XML Schema file is converted into a

52 CHAPTER 4. XML-BASED PARTITION TESTING

< e l e m e n t r e f = " A " / >

< e l e m e n t n a m e = " A " t y p e = " x s : s t r i n g " / >

< e l e m e n t n a m e = " B " t y p e = " B T y p e " / >

< x s : c o m p l e x T y p e n a m e = " B T y p e " >
 .
 .
 .
< / x s : c o m p l e x T y p e >

< A t y p e = " x s : s t r i n g " / >

< B >
 < x s : c o m p l e x T y p e >
 .
 .
 .
 < / x s : c o m p l e x T y p e >
< / B >

Figure 4.4: The sketch map of referred element rewriting.

XML structure, and the syntax is changed, but the semantic remains the same as orig-
inal schema. This XML structure is called an Initial Intermediate Instance.

4.1.2 Subschema Derivation

The second step of XPT is Sub-schema Identification (or Choice Analysis); this corre-
sponding to the second step of the CP method Functional Units Identification. In this
step the XML Schema is divided equally into a set of subschemas. In the CP method,
subschemas can be considered as functional units, which are sub-specifications that can
be tested independently.

In XML Schema the most suitable element for deriving the independent sub-schemas
is <choice>. In the specification of XML Schema, <choice> defines an element for
which in the conformed XML Document, only one child element of <choice> can appear.
This means that in the XML Document, these child elements are not closely related;
that may even exclude each other. Suppose an XML Schema has an <choice> element
with three children; let’s call the <choice> element “elementA” . The structures that
can be derived are equal to three schemas, each of which has a distinct child element
of “elementA”. If we divide the XML Schema into subschemas by the child elements
of <choice>, each subschema is independent and the set of them has the a structure
equivalent to the original schema. We use a simple diagram in Figure 4.5 to show the
derivation.

Thus the XML Schema is partitioned into distinct sets. Consequently, the functional
units can be derived by combining the children of the various <choice> elements. As

4.1. MAIN METHODOLOGY OF XPT 53

< S C H E M A >
 < C H O I C E E L E M E N T >

 < / C H O I C E E L E M E N T >
< / S C H E M A >

c h i l d A
< S C H E M A >

< / S C H E M A >
c h i l d C

c h i l d B c h i l d A

< S C H E M A >

< / S C H E M A >

c h i l d A

< S C H E M A >

< / S C H E M A >

c h i l d A

Figure 4.5: Subschema derivation.

a result, each functional unit is a subschema containing, for each <choice>, only one
child, (chosen from those representing the family of <choice>) and is different from
the other functional units for the chosen combination of <choice> children. We use
the method based on Depth-First Search algorithm [THCS01] called DFS-XPT, shown
in the following example, to do the combination. The derivation is based on the “initial
intermediate XML Instance” that includes only the Basic Elements; here we call it briefly
as “IIX-Tree”.

Let C is the set of child elements of <choice> n; V is the tree for subschema.
c ∈ C; v, v’,v” ∈ V; i,j are the number of child elements.

DFS-XPT-Visit(c, v)
1. ci ∈ C i ∈ [1, number of child[n]]
2. v’ ←− Copy(v)
3. Add(ci, v’)
4. if hasChild(ci) = TRUE
5. then for each s ∈ Child[ci]
6. Add(s, v’)
7. if type[s] = CHOICE
8. c’j ∈ Child[s] j∈[1, number of Child[s]]
9. v’’ ←− Copy[v’]
10. Add(c’j, v’’)
11. DFS-XPT-Visit(c’j, v’’)
12. Add(c’0, v’)
13. DFS-XPT-Visit(c’0, v’)
14. else
15. for each c’ ∈ Child[s]
16. Add(c’, v’)
17. DFS-XPT-Visit(c’, v’)
18. Add (c0, v)
19. DFS-XPT-Visit(c0, v)

G is the set of nodes in IIX-Tree; s is the root element of IIX-tree.

54 CHAPTER 4. XML-BASED PARTITION TESTING

DFS-XPT (G)
1. if ∃(s∈ G & type[s]= CHOICE)
2. New (v) ∈ V
3. ∀n ∈ Child[s]
4. if type[n] 6= CHOICE
5. Add(s, v)
6. else
7. Add(s, v)
8. ∀ c ∈ Child[s]
9. DFS-XPT-Visit(s, v)

This subschema generation is based on the “initial intermediate XML Instance” (IIX);
the algorithm will be triggered if there is a <choice> node in the IIX-tree. In the DFS-
XPT algorithm, G is the node set of IIX-tree. s is the root element of IIX-tree; usually s
is the “schema” element. V is the set of trees for derived subschemas.

The first thing the algorithm does check if the <choice> element exists in the IIX-
tree. If the result is true, and it includes a choice element, the algorithm then creates a
new subschema tree, and does a depth-first search of the tree. For each child node the
root element, if child is not a <choice> node, the child node is to added subschema, and
the DFS-XPT-Visit. Otherwise it copies the subschema tree, Then this subschema tree is
considered as the basic tree, and other subschema trees need to copy and generate based on
it. For each child element of <choice> the child nodes are added into different subschema
tree. We leave the first node, and do DFS to it at the end, because we would like this
node to use the basic tree. Finally we get a set of subtrees, each subtree representing a
subschema, and including different child element of <choice>. Let’s define the original
tree as T, and the subtrees as s. i is the number of subtrees. The relationship of those
subschema and the original schema is:

∑
s0,..., si ≡ T

4.1.3 Element Identification
Category-partition in the CP method is defined as: “To identify the environment condi-
tions and the parameters that are relevant for testing purposes” [OB88]. The Category
is:“A sub set of parameter values that determines a particular behavior or output, and
whose values are not included in any other category” [OB88]. The properties of an XML
Schema gives natural categories, which are the types of XML elements that are defined in
the specification of the XML Schema. These types define the structures, contents and the
value of the conforming elements in the XML Instances. Each element defines its own
types and range of values, and even if the elements have the same type, they are defined
independently.

4.1.4 Element Value Determination
A choice in Category-partition is a specific test value for a category (The choice in the
CP method is not the same as the <choice> element). The values in a choice have the
same influence on the system behavior. The choice concept in CP method is similar to

4.1. MAIN METHODOLOGY OF XPT 55

the equivalence class, that all values in a choice test the same thing in the system; they
can catch the same bug, and also there may be bugs that no values in a choice can not
find. In an XML Schema there are two possibilities for identifying a choice: data that
can influence the value of element and data that affect the structure of the final instances.
The former are derived by analyzing the element attributes (such as type, fixed value and
default value) and their restrictions (such as minInclusive, minLength and so on). The lat-
ter are derived by analyzing the minOccurs, and maxOccurs. Occurrence is an important
attribute that specifies the number of times an element can occur in the parent element.
minOccurs specifies the minimum occurrence, and maxOccurs specifies the maximum
occurrence, these attribute values are the boundaries of the choice. The values between
the boundaries and outside the range are considered as different choices. Similarly, for
the element value, if there is a value restriction, the choice is divided by the value of the
restriction; otherwise the choice is divided by the restriction of element data type.

The Category and the Choices of the XML Schema defined by XPT are presented in
Figure 4.6

Figure 4.6: Category and Choices in XML Schema.

4.1.5 Constraint Determination
In XPT there are only two types of constraint: “valid” and “invalid”. They are associated
with the definition of a set of valid or invalid instance respectively. Thus a “valid” con-
straint indicates that the values in this choice conforms to the specification of the XML
Schema, while an “invalid” constraint denotes that the values in the choice does not con-
form to the declaration of XML Schema.

Figure 4.7 shows the constraints with in the category and choices of XML Schema.

4.1.6 Intermediate Instance Generation
The test specification in XPT is called Intermediate Instance, which is generated by comb-
ing the values from each choice occurrence. With respect to the CP method, we added
a further refinement to the test specification generation: the application of the Boundary
Condition [Pat05] [CK99] approach to the occurrences of each element. Based on our ex-
periences, software is susceptible to bugs at the boundaries; if we choose boundary data
it is easy to find the bugs in a system.

56 CHAPTER 4. XML-BASED PARTITION TESTING

Figure 4.7: Categories, choices and constraints of XML Schema.

In XPT, combining all the possible values of minOccurs and maxOccurs defined for
each element is, in fact, unfeasible. The number of Intermediate Instances could be
extremely large or even infinite; for example, the maxOccurs could be defined as “un-
bounded”. To address this problem we could associated specific boundary values taken
from the input domains with the occurrences of each element. In this case, we would take
the extreme value for minOccurs and maxOccurs wherever specified and assign fixed val-
ues in the other cases. When the value of maxOccurs is defined as “unbounded”, it could
be assigned an integer M by XPT. Besides the values of minOccurs and maxOccurs, the
middle values could be generated by XPT automatically by calculating and obtaining the
integer midway between the boundaries.

For instance, Figure 4.8 gives an XML Schema that has occurrence attributes. From
that figure we can see that in an XML Schema file, there is a sequence element “item”
with three child elements, and all of these three elements have occurrence attributes.1 The
occurrences of these child elements are:

• The element “itemA” has a minOccurs attribute that equals “0”, this means “itemA”
is an optional element, that could be absent from the sequence element “item”.
The maximum occurrence of “itemA” is not specified, so by default it is equal to
“1”. As presented before, to apply boundary conditions, the boundary values of the
occurrence and one value between the boundaries will be selected for further test

1By default, the maxOccurs and minOccurs are equal to 1 when the occurrence attribute is not specified
for the element.

4.1. MAIN METHODOLOGY OF XPT 57

Figure 4.8: Schema “items” and the values of its element occurrences.

case generation. Therefor the values of minimum occurrence “0”, and maximum
occurrence “1” are selected. Then we need to choose a value between the minimum
occurrence and maximum occurrence (usually we take the value at the middle of
the boundaries). In this example, the value between “0” and “1” is “0.5”, but the
value of occurrence must be an integer. To solve this problem, XPT always takes
the next biggest integer if the middle value is a decimal; therefore the middle value
of “itemA” is assigned a value of “1”.

• The element “itemB” has a maxOccurs attribute that equals “unbounded”; this
means there is no boundary for the occurrence time of “itemB”. Of course, it is
impossible to take a value that is unbounded. In this case, XPT will assign a default
integer M as the value of maximum occurrence. In the example, let us set M as
“3”. The minOccurs is “1” by default, since it is not specified in the schema. The
middle occurrence is equal to the value between minOccurs and maxOccurs, which
is “2”.

• The element “itemC” has the same occurrence attributes as “itemB”, so the values
of the occurrences are same as “itemB”.

In Figure 4.8, under this schema we list the boundary values of element occurrences.
In this figure the maxOccurs is written as “max”, minOccurs as “min” and the middle
occurrence is written as “mid”. The letter following the occurrence represents the ele-
ment that the occurrence attribute belongs to, and the number in brackets is the value of
occurrence. For instance, “maxA(1)” means the maxOccurs of “itemA” is equal to “1”;
and “midB(2)” means the middle occurrence value of “itemB” is equal to “2”.

The set of Intermediate Instances is defined by combining the assigned boundary val-
ues. The Intermediate Instances have the same structure as the final instances, but the

58 CHAPTER 4. XML-BASED PARTITION TESTING

element values remain implicit. There are two types of combinations provide by XPT:
all-combination and n-wise combination.

All-combination exhausts all possible combinations of the values. For the same schema
and the boundary values of occurrences in Figure 4.8, the result of all-combination is
shown in Figure 4.9.

Figure 4.9: All-combinations of occurrence boundary values for schema “items”.

In this example there are three elements, each of them having three values of occur-
rence. Using the exhaustive method, we get 27 combinations (see Figure 4.9), which
include all combinations of the values from each occurrence. If the number of elements
having an occurrence attribute is n, then the number of all occurrence combinations is
3n. Therefore when there are more occurrence attributes in an XML Schema, the num-
ber of combinations is increase geometrically. For instance, if in a schema there are
20 elements that have occurrence attributes, as presented before, each of these attributes
will have three boundary values for use in combination. With all-combination, there are
320 =3,486,784,401 possible combinations.

Usually tests do not need billions or even millions of test cases; also, excessive num-
bers of test cases need more time to derive and execute. To solve this problem, we must
find a way to select a limited number of instances. We cannot not simply stop the process
of the exhaustive combination when the number of combinations is big enough, or just se-
lect the combinations randomly, because random strategies may select test cases that are
not relevant to the test purpose, and omit other important ones. Based on experience in
testing, most of the bugs in a system are caused by one or two features; it is very rare that
a bug is caused by all features together; so if we combine two or three features only, then
these combinations should find most of the bugs. Pairwise testing [AWW96], [YL02] is
the most well-known and popular method for 2-way combinations. The introduction of
pairwise testing can be found in Chapter 2.

For the same schema and values of occurrences shown in Figure 4.8, if we apply
pairwise testing, we can get 9 combinations, which are shown in Figure 4.10.

Pairwise testing is triggered when the expected number of test cases is smaller than
the the number of test cases that can be generated by the all-combination method. It can

4.1. MAIN METHODOLOGY OF XPT 59

Figure 4.10: Pairwise combinations of occurrence boundary values for schema “items”.

reduce the number of combinations, and ensure that each pair of occurrence values is
combined. With pairwise testing, a large number of combinations can be cut from the
all-combinations. As presented in [DMC97], the number of pairwise combinations sup-
poses that the test model had 13 parameters and each has three values. Corresponding
to the XPT, this would be an XML Schema with 13 elements that have occurrence at-
tributes. By the exhaustive method, there are 313= 1,594,323 possible combinations; with
pairwise testing, there are 15 combinations generated that cover all pair combinations of
the occurrence values.

The Intermediate Instance is generated from the Initial Intermediate Instance by giving
each element an exact number of occurrences. The value of each occurrence is taken
from the value combinations, and assigned to the corresponding elements. For instance,
with the sample schema in Figure 4.8, we try to generate an Intermediate Instance by
the results of all-combination (see the combinations in Figure 4.9). First, we take the
first combination (see the first combination in Figure 4.9). According to the values in
the first combination, the occurrence value of element “itemA” is equal to “0”, because
in the first combination, its occurrence value corresponds to “minA(0)”, which means
the value equals the minimum boundary (which is “0”), so “itemA” will not present in
this Intermediate Instance; the occurrence value of element “itemB” is “midB(2)” which
means the middle occurrence value of B is equal to “2”, therefore, in the Intermediate
Instance “itemB” will appear twice; in this combination, the occurrence value of element
“itemC” is “maxC(3)”, so in Intermediate Instance “itemC” it will occur three times.

4.1.7 Test Case Generation

This is the step for generating the final XML Instances. The instances are derived based
on the Intermediate Instances that were presented in the previous section, by applying
these occurrence values to the elements, and giving the proper value to each element.

These values could be obtained from the predefined value sets, or by using random val-

60 CHAPTER 4. XML-BASED PARTITION TESTING

ues generated automatically. Each Intermediate Instance will basically generate one XML
Instance, unless the required number of instances is larger than the number of Intermedi-
ate Instances that can be derived from the XML Schema. If there are no predefined values
for the elements, XPT will generate the values randomly according to the types and the
constraints of the elements. Otherwise, if there are the predefined element values, those
values for different elements should be combined by means of the Category-partition.
However in XPT method, as presented in the previous section, even the number of In-
termediate Instances is easy to reaches a very large number, the combination of element
values could lead to the generation of an unwieldy number of instances. In order to reduce
the number of derived XML Instances, XPT will forego element value combination, but
select predefined values randomly and assign them to the corresponding elements.

Figure 4.11 shows the XML Instances generated from the sample schema by the com-
binations of pairwise testing. There are nine instances derived by XPT. To show the
difference in value selection, we predefine the element values for “itemA” as “dress, coat,
jacket, suit, skirt” and “itemB” as “book, paper, magazine, letter, press”. We have not
defined any values for “itemC”, but have just let it use random values generated by XPT.

Figure 4.11: XML Instances derived by XPT.

4.2. XPT TEST STRATEGY SELECTION 61

4.2 XPT Test Strategy Selection

As presented before, the XPT method performs the basic function of XML automatic
generation, but the process is not controlled. The derived XML Instances depend totally
on the structure of the XML Schema and the process of generation is blind.

The XML Schema represents in a clear way the overall structure of the input domain.
Apart from the advantages mentioned in the previous subsection, this is an enormous ben-
efit for test planning. The testing phase is an expensive but essential part of development,
which must be well-organized and defined.

Generally, it is not easy to decide on which parts the testing effort should be concen-
trated and the number of test cases to dedicate to each of them. Wrong decisions could
increase the overall cost and the completion time of the testing phase. Considering to
the XML Schema representation, it is possible to implement an integrated, practical and
automatic strategy, planning a suitable set of instances.

In XPT methodology we use Testing Strategy Selection to control the test case selec-
tion. Testing Strategy Selection includes Weight Assignment, which assigns weights to
the children of the <choice> elements to denoting the parts that is more significant for
testing; and Test Strategies for instructing the methods of test case selection, controlling
the quantity of the derived XML Documents.

4.2.1 Weight Assignment

Weight Assignment is applied at the beginning of the XPT. The idea underlying the Weight
Assignment activity is that children of same <choice> may have not the same importance
for instances derivation 2. There could be options rarely used or others having critical
impact on the final instance derivation. Because according to the definition of <choice>
element, only one child per time can appear in the set of final instances, from the user’s
point of view the possibility of selecting those most important would be very attractive.
He/She can guide the automatic instance derivation, forcing it to derive more instances
including the most critical <choice> options.

An XML Schema doesn’t provide the possibility of explicitly declaring the criticality
of the diverse options; this information is often implicitly left to the sensibility and ex-
pertise of the people deriving the instances. The basic idea is to ask the XML Schema
expert or user to make this knowledge explicit. For this we provide them with a systematic
strategy in order to use such information for test planning. In particular XPT explicitly
requests the user to annotate each child of a <choice> element with a value, belonging
to the [0,1] interval, representing its relative “importance” with respect to the other chil-
dren of the same <choice>. This value, called the Weight, must be assigned in such a
manner that the sum of the weights associated with all the children of the same <choice>
element is equal to 1. The more critical a node, the greater its weight. Several criteria

2Of course if the original XML Schema did not include <choice> at this point only one structure is
available having 1 as subtree weights.

62 CHAPTER 4. XML-BASED PARTITION TESTING

for assigning importance factors could be adopted. Obviously this aspect in the proposed
approach remains highly subjective, but here we are not going to provide a quick solution
for how numbers should be assigned. We only suggest expressing in quantitative terms the
intuitions and information about the peculiarity and importance of the different options,
considering that such weights will correspondingly affect the testing stage.

For instance there is an XML Schema, let’s call it “Example schema”, which has a
<choice> with three child elements, “childA”, “childB”, and “childC”. By default the
weights of these child elements will be assigned by XPT as the same weight “0.333”
since the total weight should equal to “1” (here 1/3 is indivisible number, so XPT use the
approximate value). Weight Assignment allows the modification of the element weights.
Suppose we change the weight of: “childA” to w1, “childB” to w2, and “childC” to w3,
and ensure w1+w2+w3 = 1. After the Subschema Derivation we get three subschemas;
the weight of each subschema is equal to the weight of the child element it includes. The
details of the weight recalculation of the subschemas can be found in Chapter 5.

4.2.2 Test Strategies
Following the steps described so far, each set of substructures has been defined and a
specific subtree weight assigned to each of them. Now it is necessary to determine a test
strategy to adopt for test case derivation. For this we consider four different situations:
either a certain number of instance to be derived is fixed, or the percentage of functional
coverage is chosen, or the method consider with both the instance number and the func-
tional coverage, or all possible instances are generated. The first is the case in which a
fixed number of instances must be derived from a specific XML Schema.

A practical application of these strategies is shown as below:

• Applying XPT with a fixed number of instances
If a number NI of final instances is fixed (this could be in practice a case in which
a finite set of test cases must be developed) XPT strategy can be used to develop
NI final instances out of the many that could be conceived starting from the orig-
inal XML Schema. Using the subtree weights associated with each substructure,
the number of instances that will be automatically derived from each of them is
calculated as NI times the subtree weight.

Let’s use the same example as in the previous section. The XML Schema “Exam-
ple schema” has a <choice> element with three child elements: “childA” with
weight w1, “childB” weighted as w2, and “childC” weighted as w3. So there
are three subschemas generated from the “Example schema”; we call them “sub-
schemaA”, “subschemaB” and “subschemaC” according to the different <choice>
child elements they include. By means of this test strategy the required numbers of
instances from the subschemas are:
the instance number from subschemaA = NI ∗ w1;
the instance number from subschemaB = NI ∗ w2; and
the instance number from subschemaC = NI ∗ w3.

4.2. XPT TEST STRATEGY SELECTION 63

• Applying XPT with a fixed functional coverage
As presented before, the weights of the <choice> children represent their impor-
tance for testing, the heavier ones should be paid more attention. Here the coverage
means the total weight that is relevant for testing. Of course, the sum of the weight,
or here we call it the test coverage is “100%”, but this test strategy provides the
possibility that the coverage could be less. If a certain percentage of functional test
coverage C is established as an exit criterion for testing, and it is less than “100%”.
XPT will start the subschema selection by ordering their weights in a decreasing
manner, multiplying them times 100, and starting the selection from the heaviest
ones. The weight of the selected subschemas are added together until the sum of
the weights is greater than or equal to C. Then XML Instances are generated only
from the selected subschemas. By this test strategy we can specifically focus on
certain functions of the testing.

Using the same example used in the description of the first test strategy, suppose
w1 > w3 > w2, and w1 + w3 > C, then in this case, only “subschemaA” and
“subschemaC” are selected and used for generating the XML Instances, and “sub-
schemaB” is ignored.

• Applying XPT with a fixed functional coverage and number of instances
In this case the above mentioned strategies are combined. XPT first selects the
proper substructures useful for reaching a certain percentage of functional coverage
(as described above). Then XPT considers the subtree weights of these selected
subschemas and normalizes them so that their sum is still equal to 1. The newly
derived subtree weights are finally used for distributing among the selected sub-
structure, the fixed number of instances to be automatically derived.

Still using the same example that has already been used in the previous strategies,
if the required number is NI , and the test coverage is C, w1 > w3 > w2, and
w1 + w3 > C, therefore “subschemaA” and “subschemaC” are selected. Then
XPT redistribute the weight w1 and w3 to w1′ and w3′, which w1′ + w3′ = 1. It
then distributes the number of instances to the selected subschemas as: the instance
number from subschemaA = NI ∗w1′; and the instance number from subschemaC
= NI ∗ w3′.

• Applying XPT with all possible combinations
By this test strategy XPT will generate all possible XML Instances. In other words,
XPT will apply all-combination of the occurrence values to all subschemas. For
an XML Schema, if the number of derived subschemas is I , and the number of
elements that have the occurrence attribute in the subschemas is OVi(i ∈ (0, I]),
then the number of all possible combinations is: Σi∈[1,I]3

OVi

64 CHAPTER 4. XML-BASED PARTITION TESTING

4.3 Summary
In this chapter, we have described the methodology of XML-based Partition Testing,
which is a partition testing methodology of XML Schema.

In additional, we have improved the basic methodology by using a set of test strategies
that gives the user the possibility of guiding the process of generation, and distributing
the number of instances among the subschemas. This methodology was inspired by the
Category-partition method, and improved to fit the characters of the XML Schema.

Chapter 5

TAXI - The Implementation Of XPT

In order to prove the XPT methodology, we have implemented a proof-of-concept tool
called TAXI (Testing by Automatically generated XML Instances). TAXI is a java-based
tool with a graphic user interface, with this tool a user can easily apply XML Instance
generation, this tool also allows a user to configure and control the process of generation.

This chapter presents the details of implementation and the improved architecture
adopted to increase the performance of the tool. Section 5.1 gives an overview of the
TAXI tool, and Section 5.4 presents the implementation of the TAXI tool.

5.1 The Overview Of TAXI
TAXI is programmed by Java, and implemented according to the methodology of XPT;
additionally, by means of the requirements of the application for real projects, TAXI pro-
vides functions that allow the user to focus on specific fragments of a schema, and gen-
erate more instances from the critical parts of the schema. Figure 5.1 shows the use case
diagram of TAXI.

• Input an XML Schema: To select and input an XML Schema to TAXI, the schema
could be a new one from a local folders, or a schema that has already been used for
generating instances, because TAXI records the used XML Schemas. There are two
places that perform the schema upload, from the buttons on the tool bar or from the
icons on the information bar. Figure 5.4 shows the main interface of TAXI.

• View the XML Schema: As shown in Figure 5.4, in the main window of TAXI, an
XML Schema file is shown with its tree structure; each element is presented as a
node on the tree. The user can view the structure of the schema tree from the main
interface of TAXI. The children of the nodes can be extended or retracted, so that
the user can focus on the most important part of the schema.

• Assign weights for the children of <choice>: As presented in Chapter 4, weight is
defined by XPT; it refers to the child elements of <choice>. If there is a <choice>

66 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Figure 5.1: TAXI Use case diagram

element, initially the default (uniform) weight values for the corresponding ele-
ments are given by TAXI automatically. The user can modify the value of weights
using the TAXI interface.

The value of the weight is shown at the right side of the TAXI main interface, as in
Figure 5.4; the values of weight can be found under the “weight value” line.

• Set the value of element occurrence: In XML Schema, the occurrence of elements
is defined by “minOccurs” and “maxOccurs”. The value of “maxOccurs” could be
“unbounded” when it does not have an exact boundary value. This does not make
sense for instance generation, because we can not generate a schema with unlimited
number of elements. Therefore, in this case we must give a number of our own. By
default TAXI assigns an integer N as the value of unbounded “maxOccurs”, for
instance “3”. However this is not fixed; the user can modify it before instance
generation.

• Select test strategy: As described in Chapter 4, there are four test strategies that
can be selected by the user. The window of test strategy selection is shown in
Figure 5.22. The test strategy can control the number of instances, and distribute

5.2. TAXI COMPONENTS 67

the number to subschemas. Each test strategy can guide the different processes of
test case derivation, so that the result instance sets are different.

• Terminate the generation process: The process of generation can be shut down
even if it is not finished. The user can control the process of instance generation, to
break it as needed for his/her purposes.

• View XML Instances: TAXI has a simple XML editor; the user can use it to view
the generated XML Instances. Currently it does not support XML file modification.

5.2 TAXI Components
In this section we will present details of the TAXI tool, the structure and its implementa-
tion. The tool is structured by four components:

XML Schema analyzer (XSA) implements the XPT method. It is the core component
of TAXI. All other components sever for XSA. It expands and preprocesses the XML
Schema, prepares the Intermediate Instance frames and provides a set of final instances.
The details of XSA implementation will be presented in Section 5.4.

Test Strategy Selector (TSS) implements a set of test strategies for selecting the final
XML Instances. The test strategies use different methods for XML Instance selection,
which gives the user the possibility of focusing on and obtain more XML Instances from
the critical part of an XML Schema. By each test strategy, the user can get a different set of
instances. This component also includes the management of element weight assignment.

Values Storage (VS) manages the values used in the element of final XML Instances.
The values include the element value and the boundary value of the element occurrences.
During the generation of final instances, the selection of the element value and the assign-
ment of the occurrence value are also carried out by the VS component.

User Interface (UI) is the graphic interface, which handles user interaction, allows
the user to load an XML Schema, and applies the activities of instance generation.

The relation between these components is shown in Figure 5.2.
Each component includes the set of activities shown in Figure 5.3. We use different

types of frames to distinguish which component these activities belong to. From the figure
we can see:

The activities with white background belong to the XSA component; they are: Prepro-
cessor, which is used to rewrite the structure of the XML Schema into an equally simple
XML, and prepare for the future generation; Choice Analysis, which divides the XML
Schema into a set of subschemas; Occurrence Analysis, which assigns the value of occur-
rence to the corresponding element; Intermediate Instance Generation, which generates
sets of Intermediate Instances from the subschemas; and Final Instance Derivation, which
derives XML Instances from the intermediate instances.

The shaded activities belong to the TSS component. There are two activities: Weight
Assignment allows the user to modify the weight value of elements; and Test Strategy
Selection lets the user choose their preferred strategy for instance generation.

68 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Figure 5.2: Component diagram of TAXI

Those activities with dashed borders facilitate the user interaction and value stor-
age components. Reading Input and Instance Browsing help the user to input the XML
Schema and view the derived instances; Database Population is used to populate the value
database; and Value Management selects element values during the final instance genera-
tion.

5.3 User interface

TAXI has a graphic interface to communicate with the user, Figure 5.4 shows the main
interface of TAXI. This interface includes the main window, tool bars, operation buttons
and the information bar. The main window lays out the XML Schema file; tool bar and
application buttons are used for browsing the schema, assigning the weight to the elements
in the schema, and executing the instance generation.

In the activity diagram in Figure 5.3, the component of user interface includes XML
Schema Input, Database Population and Instance Browsing. We also present Weight As-
signment in this section, because it is a parallel activity with Database Population when
the XML Schema is read by the user with the interface.

5.3.1 XML Schema Input and Weight Assignment

There are two ways to input the XML Schema, from a local folder, or by reloading a file
that has already been used to generate instances by TAXI. The input schema will first be
stored in the XML database automatically. In TAXI we use the open source database eXist
[exi]. Next, TAXI will illustrate the XML Schema with a graphic DOM tree, and show
it in the main window, so that the user can easily browse the XML Schema, and assign
weights to the XML Schema elements. Figure 5.4 shows the main interface of TAXI. The
tree of the XML Schema is shown on the left side of the main window. Initially TAXI
assigns equal default weights automatically to the <choice> children, but this value can

5.3. USER INTERFACE 69

Figure 5.3: TAXI activities

be modified by the user. In Figure 5.4 the default values of the weights are shown on the
right side of the <choice> child elements.

To modify the value of weights, the user just clicks the button “Start modifying”,
changes the weight values, and then clicks the button “Stop modifying” when the mod-
ification is finished. For each <choice> element, the total weight of its child elements
must equal “1”. If the user changes only some of the child elements, when they finish
the assignment, TAXI will calculate automatically and make the sum of weights equal to
“1”. For example, if a <choice> element has three children, then at the beginning they
have the same default weight ‘0.333” (1/3). If the user changes the weights of first two
child elements to N and M (N+M < 1), and leaves the last one as before, when he/she
clicks the icon “stop modifying”, TAXI will automatically assign (1-N-M) as the value of
weight to the last child element, so that the sum weight of these three child elements still
equal to “1”. If the user wants to reset all weights, he/she must ensure the total weight of
the new values is “1”, otherwise TAXI will send a warning message, and refuse to accept
those weight values. With the interface, the user can also see the value of “minOccurs”
and “maxOccurs”; they are shown at the right side of the weight values. In the current

70 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Figure 5.4: TAXI Main interface

version of TAXI, the occurrence of each element can not be changed individually.

5.3.2 Database Population

The user can assign values to the element by Database Population. There are three ways
to obtain element values in TAXI: if there is a value definition in the schema, for example
an <enumeration> element, values are automatically generated by TAXI in accordance
with the definition; from user-defined values, the user must input values for the elements;
lastly, random values can be generated by TAXI automatically. For each element, the
last two ways can not occur together. By default, TAXI will first check if there is the
predefined value for each element. If these exist in the database, these values will be used
in the derived XML Instances; otherwise TAXI will generate random values according to
the type and constraints of the element automatically, and use these random values in the
XML Instance.

Database Population asks the user to insert predefined values of the elements. We
use eXist database [exi] to store and manage the predefined values. eXist database is an
open source database management system entirely built on XML technology. It stores
XML data according to the XML data model and features efficient, index-based XQuery
processing [exi], [Mei02]. TAXI performs value collection in the database automatically.
For each element the user needs to create a value file with a specific format: first, the value
file is XML Document; the name of the value file must the same as the related element.
For example the value file of element “cat” must be named “cat.xml”; second, in a value
file the root element must be the element <value>; the content of <value> is the string
list of values, each value separated by a specific symbol, for instance the specific symbol

5.4. IMPLEMENTATION OF XSA 71

could be “,”, “;” or other symbol defined by user.
There are three options for Database Population:

Manually Insert Values: the user could create a value file with the same name as the
element in the value collection. For example, if we want to set the value of an element
“year” in an XML Schema, first we open the Value Collection in the database, and create
an XML file named “year.xml”. Then create the element <value> in “year.xml”, and
insert the values into the element. For example we use “,” as a separation symbol, and
insert the years from 1990 to 2000. Then the content of the value file should look like:
<value>1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000</value>

Specify The Source Of values: The user could also specify the source from which the
data can be downloaded or the paths to files containing specific values; they could have a
remote or local address, but the files must conform to the format presented before. The
user must load these files to the value collection of the database.
Collect Schema-defined Values: Additionally, as stated before, TAXI can also collect
values from the schema elements. The values could be obtained from the <enumeration>
restriction or the “default” and “fixed” attributes of the XML Schema. As is well known,
<enumeration> defines a list of acceptable values of an element. TAXI creates the value
files for the elements that have the <enumeration> restriction automatically with the
values listed inside <enumeration>. For elements with “default” or “fixed” attributes,
TAXI does not create a value file, but records the value inside the initial Intermediate
Instance, and attaches it to the corresponding element in the remaining instances.

5.3.3 Instance Browsing
There is a simple XML tool for browsing and visualizing generated instances. When the
generation is finished, the user can click the button “Show Instances” at the right side of
the interface to see the derived instances. Currently this XML tool does not support XML
writing; the user can only read, but not modify, the XML Instance.

The following section we presents the component XSA, which is the main implemen-
tation of XPT.

5.4 Implementation of XSA
As presented before, TAXI is composed of four components, we will present TAXI im-
plementation according these components.

XSA is the most important component; the XPT method is implemented in XSA. The
main classes include:

• Preprocessor which analyses and rewrites the XML Schema into a file with simple
structures; we call that file Initial Intermediate Instance;

72 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

• Choice Solver derives subschemas from the Initial Intermediate Instance. The sub-
schemas are derived by the combination of <choice> children elements;

• Occurrence Combination combines the boundary values of the element occurrence;

• Intermediate Instance Generation generates the Intermediate Instances from the
subschemas by assigning an exact occurrence value to the elements. Elements in
the Intermediate Instance have a fixed number of occurrences, but they do not have
specific element values;

• Value Management gets and assigns element values to the elements; the value could
be selected from user-defined or schema-defined value sets or generate randomly
according to the type and constraints of the elements;

• Final Instance Generation derives XML Documents from Intermediate Instances.
The relationship of these classes is shown in Figure 5.5

Figure 5.5: Class diagram of TAXI core

In the following sections, we will describe the implementation of each class in the
order to the they occur in the XSA component.

5.4. IMPLEMENTATION OF XSA 73

5.4.1 Preprocessor
As presented in Chapter 4, we already know Preprocessor is relevant to the first step of
CP method Specification Analysis. In XML Schema, an element or type can refers from
other element or type definition, to clarify the XML Schema structure, we need to unfold
these elements or types to know exactly of their structures. Preprocessor is implemented
for this purpose, it changes only the syntax of the XML Schema, and keep its semantics
as before. This step transforms the elements in the XML Schema into simple structures.
The class diagram of Preprocessor is shown in Figure 5.6.

Figure 5.6: Class diagram of Preprocessor
In the class diagram, we can see Preprocessor has different functions for different

types of elements in XML Schema. As already presented in Chapter 4, we classify the
XML Schema elements into Basic Element which includes simple elements and <sequence>;
“special element” which includes <all> and <choice>; and “referred element” which
includes elements referred from other defined elements, and the type refers from a type
definition. There are different methods for dealing with these elements.

For A Multiple Schemas Element

Namespace is one of the core standards of XML; since XML Schema is based on the
XML, it also supports the namespace very well. Like any other XML Document, an
XML Schema is constructed of elements and attributes, and all these elements and at-
tributes must come from the namespace “http://www.w3.org/2001/XMLSchema”. Also,
there is a targetNamespace in the schema to specify that the elements, attributes and types
defined in an XML Schema all belong to that target namespace. TAXI searches for the
namespace that brings the elements and attributes out of the schema. If there is an im-
ported namespace in the XML Schema, TAXI will first get the address provided in the
schema, and then try to find the schema of the namespace. Actually, the address defined
by the namespace is not always the real address of the XML Schema; therefore if TAXI
does not find the schema, it will give a warning message. Otherwise TAXI will down-
load the XML Schema of the imported namespace, and save it into the database with the
corresponding namespace prefix.

74 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Besides the imported namespace, the <include> element is also used to add multiple
schemas, but it adds schemas with the same target namespace. With the <include> ele-
ment, the schema could come from the local disc or from the Internet. TAXI first attempts
to get the address of the schema from the <schemaLocation> attribute; if it is from the
local disc it will be put into the database. Otherwise TAXI will first download the schema,
then put it into the database.

For A Basic Element

A Basic Element does not need to use the Preprocessor, because in a Basic Element there
is only one possible structure of the XML Document that can be derived. For theses
elements, the only thing that needs to be done in the Preprocessor is rewriting them from
XSD format to XML. If it is a <sequence> element, then at the beginning of element, a
tag “ISTI et CNR sequence” should be attached to annotate the type of the element, so
that in the future process this tag will lead the generation to the correct function. Figure
5.7 shows the XML Schema with a <sequence> element, and the Initial Intermediate
Instance after the Preprocessor.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ s e q u e n c e >
 < f i r s t N a m e t y p e = " x s : s t r i n g " >
 < / f i r s t N a m e >
 < l a s t N a m e t y p e = " x s : s t r i n g " >
 < / l a s t N a m e >
 < / I S T I _ e t _ C N R _ s e q u e n c e >
< / n a m e >

X M L S c h e m a w i t h < s e u q n c e > I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.7: Preprocessor of <sequence>

For A Special Element

As presented before, there are two special elements, <choice> and <all>. They are
special because these elements contain more than one possible structure. For example,
from element the <all>, the derived XML element could be different from the distinct
child orders. To distinguish special elements, there are tags which need to be attached
at the beginning of the element. For example, in Figure 5.8, in the schema after the
Preprocessor element “petShop” is <all> element, so in the Initial Intermediate Instance,
this element is tagged with “ISTI et CNR all”.

On the other hand, with a <choice> element, not only does the element need to be
tagged with “ISTI et CNR choice”, but also the children of the <choice> element must
be attached with a tag that includes information on the node’s weight and the ID num-
ber of the child nodes. The weight tag is written as “ISTI et CNR pesi”, which has two
attributes; one is named “peso” for recording the value of the weight; another is named
“modificato”, which marks whether the weight of this node has already been modified

5.4. IMPLEMENTATION OF XSA 75

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ a l l >
 < C a t t y p e = " x s : s t r i n g " >
 < /Ca t>
 < D o g t y p e = " x s : s t r i n g " >
 < / D o g >
 < B i r d t y p e = " x s : s t r i n g " >
 < /B i rd>
 < / I S T I _ e t _ C N R _ a l l >
< / p e t S h o p >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " p e t S h o p " >
 < x s : c o m p l e x T y p e >
 <xs :a l l>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < /xs :a l l>
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

X M L S c h e m a w i t h < a l l > I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.8: Preprocessor of <all>

by user or is the default value assigned by TAXI. Figure 5.9 shows a simple example of
<choice> transformation by Preprocessor. In this figure, we can see that for the prepa-
ration of the subschema derivation, the <choice> element and its children are assigned
numbers. In the sample schema, the weight does not change, so in the weight tag, the
modification attributes are “false” and the values of the weight are the same and set by
TAXI automatically.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " A n i m a l " >
 < x s : c o m p l e x T y p e >
 <xs : cho i ce>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ c h o i c e c h o i c e I D = " 0 " >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 0 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " f a l s e " p e s o = " 0 . 3 3 3 " / >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 1 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " f a l s e " p e s o = " 0 . 3 3 3 " / >
 < D o g t y p e = " x s : s t r i n g " > < / D o g >
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 2 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " f a l s e " p e s o = " 0 . 3 3 3 " / >
 < B i r d t y p e = " x s : s t r i n g " > < / B i r d >
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < / I S T I _ e t _ C N R _ c h o i c e >
< / A n i m a l >

X M L S c h e m a w i t h < c h o i c e > I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.9: Preprocessor of <choice>

For A Referred Element

A referred element means that an element or some parts of the element are referred from
other definitions of the schema or namespace. In order to make the schema analyze more
easily, we want to use this kind of element to fill the referred part with its real content.
For referred elements, Preprocessor not only needs to rewrite them from XML Schema
format to XML format, but also needs to find the referred part, and fill it into the schema
properly. In Table 5.1 we show the referred elements of the XML Schema.

With referred elements, TAXI first checks if the referred element is from the same
schema or namespace. If it is, then TAXI gets name and type of the referred element,
attribute or type, and searches it from the database; otherwise if the referred element
comes from another namespace, then the information for searching should also include

76 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Element Explanation
attributeGroup Defines an attribute group to be used in complex type definitions
complexType Defines a complex type element
simpleType Defines a simple type and specifies the constraints and information

about the values of attributes or text-only elements
simpleContent Contains extensions or restrictions on a text-only complex type

or on a simple type as content and contains no elements
complexContent Defines extensions or restrictions on a complex type that contains

mixed content or elements only
field Specifies an XPath expression that specifies the value used to define

an identity constraint
extension Extends an existing simpleType or complexType element

group Defines a group of elements to be used in complex type definitions
redefine Redefines simple and complex types, groups, and attribute groups

from an external schema restriction
selector Specifies an XPath expression that selects a set of elements for

an identity constraint
union Defines a simple type as a collection (union) of values from

specified simple data types

Table 5.1: Referred elements in XML Schema

the prefix of the namespace. If the referred item can not be found, the content will not be
filled, and TAXI will give a warning at the end of the Preprocessor.

The rewrite methods for a referred element and a referred type are different. For an
element, the result of database searching is an element that has the same name as the
target element and is from the required namespace. The element found in the database
will replace the original referred element. For example if elementA refers to elementB,
then after Preprocessor, elementA is replaced by elementB. A simple example can be
found in Figure 5.10.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
	 < x s : e l e m e n t n a m e = " p e r s o n I n f o " >
	 	 < x s : c o m p l e x T y p e >
	 	 	 < x s : s e q u e n c e >
	 	 	 	 < x s : e l e m e n t r e f = " f i r s t N a m e " / >
	 	 	 	 < x s : e l e m e n t r e f = " l a s t N a m e " / >
	 	 	 	 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
	 	 	 < / x s : s e q u e n c e >
	 	 < / x s : c o m p l e x T y p e >
	 < / x s : e l e m e n t >
	 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
	 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ s e q u e n c e >
 < f i r s t N a m e t y p e = " x s : s t r i n g " >
 < / f i r s t N a m e >
 < l a s t N a m e t y p e = " x s : s t r i n g " >
 < / l a s t N a m e >
 < g e n d e r t y p e + " x s : s t r i n g " >
 < / g e n d e r >
 < / I S T I _ e t _ C N R _ s e q u e n c e >
< / p e r s o n I n f o >

X M L S c h e m w i t h < r e f > I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.10: Preprocessor of <ref>

In another case, the XML Schema defines an element, but its type may refer to a type
definition. In this case the result of the database search is a type definition, which could be

5.4. IMPLEMENTATION OF XSA 77

<complexType> or <simpleType>. Only the content of the type will be used to replace
the type of the element; the name of the element remains the same. For example the type
of elementA refers to typeA, which is a <sequence> type; after Preprocessor, elementA
becomes a <sequence> element that has the same children as typeA, The example is
shown in Figure 5.11.

< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : c o m p l e x T y p e n a m e = " a d d r e s s T y p e " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " s t r e e t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " c i t y " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " c o u n t r y " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " p o s t c o d e " t y p e = " x s : t o k e n " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
 < x s : e l e m e n t n a m e = " a d d r e s s " t y p e = " a d d r e s s T y p e " / >
< / x s : s c h e m a >

< a d d r e s s x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ s e q u e n c e >
 <s t ree t t ype="xs : s t r i ng " />
 <c i t y t ype="xs :s t r i ng " />
 <coun t r y t ype= "xs : s t r i ng " />
 < p o s t c o d e t y p e = " x s : t o k e n " / >
 < / I S T I _ e t _ C N R _ s e q u e n c e >
< / a d d r e s s >

X M L S c h e m a w i t h < c o m p l e x T y p e > I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.11: Preprocessor of <complexType>

For Datatype Restrictions/Facets

In addition to the elements, there are also restrictions of the datatype in an XML Schema
that need to be rewritten by Preprocessor. Restrictions are used to define acceptable values
for XML elements or attributes. Restrictions on XML elements are called facets. The
facets in an XML Schema are shown in table 5.2.

In Preprocessor, special tags are defined and attached to the elements in the initial
intermediate instance. The tag is written as “ISTI et CNR ” + facet name; it records the
type and value of the facet. Figure 5.12 shows a simple example of a Preprocessor of
datatype facet.

< x s : e l e m e n t n a m e = " a g e " >
 < x s : s i m p l e T y p e >
 < x s : r e s t r i c t i o n b a s e = " x s : i n t e g e r " >
 < x s : m i n I n c l u s i v e v a l u e = " 0 " / >
 < x s : m a x I n c l u s i v e v a l u e = " 1 0 0 " / >
 < / xs : res t r i c t i on>
 < / x s : s i m p l e T y p e >
< / x s : e l e m e n t >

< a g e t y p e = " x s : i n t e g e r "
 I S T I _ e t _ C N R _ m i n I n c l u s i v e = " 0 "
 I S T I _ e t _ C N R _ m a x I n c l u s i v e = " 1 0 0 " >
< / a g e >

E l e m e n t w i t h f a c e t I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.12: Preprocessor of datatype facet

For An Occurrence Attribute

Occurrences of an element also need to be rewritten in Preprocessor. In an XML Schema,
element occurrences are defined by “minOccurs” and “maxOccurs”. For example, <xs:element

78 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Constrains and restrictions Explanation
enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of
decimal places allowed

length Specifies the exact number of characters
or list items allowed

maxExclusive bounds for numeric values
(the value must be less than this value)

maxInclusive Specifies the upper bounds for numeric values
(the value must be less than or equal to this value)

maxLength Specifies the maximum number of characters
or list items allowed

minExclusive Specifies the lower bounds for numeric values
(the value must be greater than this value)

minInclusive Specifies the lower bounds for numeric values
(the value must be greater than or equal to this value)

minLength Specifies the minimum number of characters
or list items allowed.

pattern Defines the exact sequence of characters
that are acceptable

totalDigits Specifies the exact number of digits allowed
whiteSpace Specifies how white space (line feeds,

tabs, spaces, and carriage returns) is handled

Table 5.2: Restrictions/Facets of XML Schema datatype

name=“address” type=“xs:string” minOccurs=“0” maxOccurs=“unbounded”>. The per-
fect solution is get all possible values between the “minOccurs” and “maxOccurs”, so
that we can cover all possibilities of the element occurrences. However, the “maxOc-
curs” value may be assigned as “unbounded”; this means there is no exact boundary of
the maxOccurs value. In this case it is impossible to get all values. Furthermore, even
when “maxOccurs” has an exact value, generating the instances which include all possible
values sometimes may cost too much.

In experiments with testing, boundary values easily cause errors, and the values inside
the boundary often have the same probability of causing errors. Therefore there is a
method called Boundary Condition [Coe08], which takes the boundaries of the values as
the main test cases. In TAXI, in order to reduce the number of derived instances, we
apply the Boundary Condition method for selecting values for element occurrences. In
Preprocessor, TAXI analyzes and obtains the boundaries for element occurrence. The
boundaries include the maximum value and minimum value defined by the “minOccurs”
and “maxOccurs” attributes. When “maxOccurs” is assigned with “unbounded”, TAXI
will give a integer value “N” as its default value, for example the value could be “3”.

5.4. IMPLEMENTATION OF XSA 79

Additionally, TAXI also takes a middle value between boundaries, and generates two
invalid occurrence values; one is a maximum value that is smaller than the minimum
boundary, and another is a minimum value that is bigger than the maximum boundary.
All these values will be included in the “ISTI et CNR occurs” element, and written in
the Initial Intermediate Instance. An example of occurrence rewriting is shown in Figure
5.13.

 < x s : c o m p l e x T y p e n a m e = " S e q " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " A " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " / >
 < x s : e l e m e n t n a m e = " B " t y p e = " x s : s t r i n g " m a x O c c u r s = " u n b o u n d e d " / >
 < x s : e l e m e n t n a m e = " C " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >

< I S T I _ e t _ C N R _ s e q u e n c e >
 < A t y p e = " x s : s t r i n g " >
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 0 " >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m a x _ i n v a l i d v a l u e = " 2 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < /A>
 < B t y p e = " x s : s t r i n g " >
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 1 " >
 < I S T I _ e t _ C N R _ m i n _ i n v a l i d v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 2 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 3 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < / B >
 < C t y p e = " x s : s t r i n g " >
 < / C >
< / I S T I _ e t _ C N R _ s e q u e n c e >

< s e u q n c e > e l e m e n t w i t h o c c u r r e n c e a t t r i b u t e I n i t i a l I n t e r m e d i a t e I n s t a n c e

Figure 5.13: Preprocessor of <minOccurs> and <maxOccurs>

After the Preprocessor, XML Schema is transformed to Initial Intermediate Instance,
which is in XML format, and includes only basic and special elements. From then, all
following operations are based on this Initial Intermediate Instance.

After the Preprocessor, the schema “Pets.xsd” become “Pets.xml”; we show this trans-
formation in Figure 5.14. Since we changed the weight of the child element of “Pets”, the
attributes “modificato” are all equal to “true”, and the value of “peso” equal the weight
value that we assigned at the beginning.

5.4.2 Subschema Generation
Subschema Generation is the implementation of Functional Unit Derivation in Category-
partition. As explained in Chapter 4, children of <choice> are independent from each
other, because only one of them can occur in a particular XML Instance. Originally the
probability of their occurrence in an XML Document is the same.

In particular, in the Functional Unit Derivation implementation, a set of subschemas
are derived by selecting a different child from each <choice> element. When there are
more than one <choice> elements presented in an XML Schema, a combination method-
ology of <choice> children is performed to ensure the set of subschemas represents all
possible structures derivable from <choice>.

Subschema Generation takes the Initial Intermediate Instance as input, and does DFS
first to find the <choice> elements in it, and then combines the children of all <choice>

80 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " P e t s " >
 < x s : c o m p l e x T y p e >
 <xs : cho i ce>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " m a x O c c u r s = " u n b o u n d e d " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ c h o i c e c h o i c e I D = " 0 " >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 0 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 3 " / >
 <Ca t t ype= "xs : s t r i ng ">
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 0 " >
 < I S T I _ e t _ C N R _ m i n _ i n v a l i d v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 2 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 3 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < /Ca t>
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 1 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 2 " / >
 <B i r d t ype= "xs : s t r i ng ">< /B i r d>
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 2 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 5 " / >
 < D o g t y p e = " x s : s t r i n g " > < D o g >
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < / I S T I _ e t _ C N R _ c h o i c e >
< / P e t s >

X M L S c h e m a " P e t s . x s d " I n i t i a l I n t e r m e d i a t e I n s t a n c e " P e t s . x m l "

Figure 5.14: Example “Pets.xsd” - From XML Schema to Initial Intermediate Instance

elements. The algorithm of combinations can be found in Chapter 4.
If there is no <choice> in the Initial Intermediate Instance, this step will be skipped,

and the whole schema is considered as one large functional unit. The class diagram of
<choice> analysis is shown in Figure 5.15.

Figure 5.15: Class diagram of <choice> analysis

From the class diagram we can see that Choice Analysis class depends on the Weight
Assignment class, because during the implementation, Weight Assignment needs to be
completed in this step. Weight is defined in TAXI to denote the importance of each el-
ement. The idea behind this is that the children of the same <choice> might not have
the same importance with respect to instances derivation, and therefore the most impor-
tant ones from the tester’s point of view should be emphasized. TAXI explicitly requires

5.4. IMPLEMENTATION OF XSA 81

the user to annotate each child of a <choice> element with a value (called the weight),
belonging to the [0,1] interval, representing its relative “importance” with respect to the
other children of the same <choice>. (Clearly the sum of the weights associated to all
the children of the same <choice> element must be equal to 1.) The default assignment
is that all children have the same weight. For each option TAXI then derives the so-called
“final weight”, as a product of the weights of all nodes on the complete path from the root
to this node. Such value expresses roughly the idea of how risky that child is and how
much effort should be put into the derivation of instances containing it.

Going back to the example “Pets.xml”, there are three children of the element “Pets”,
so three subschemas can be generated. The subschemas of “Pets.xml” are shown in Figure
5.16.

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < I S T I _ e t _ C N R _ c h o i c e c h o i c e I D = " 0 " >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 0 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 3 " / >
 <Ca t t ype= "xs : s t r i ng ">
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 0 " >
 < I S T I _ e t _ C N R _ m i n _ i n v a l i d v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 2 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 3 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < /Ca t>
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 1 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 2 " / >
 <B i r d t ype= "xs : s t r i ng ">< /B i r d>
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < I S T I _ e t _ C N R _ c h o i c e _ c h i l d c h i l d I D = " 2 " >
 < I S T I _ e t _ C N R _ p e s i m o d i f i c a t o = " t r u e " p e s o = " 0 . 5 " / >
 < D o g t y p e = " x s : s t r i n g " > < D o g >
 < / I S T I _ e t _ C N R _ c h o i c e _ c h i l d >
 < / I S T I _ e t _ C N R _ c h o i c e >
< / P e t s >

I n i t i a l I n t e r m e d i a t e I n s t a n c e " P e t s . x m l " S u b s c h e m a s o f " P e t s . x m l "

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " >
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 0 " >
 < I S T I _ e t _ C N R _ m i n _ i n v a l i d v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 2 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 3 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d t y p e = " x s : s t r i n g " > < / B i r d >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g t y p e = " x s : s t r i n g " > < / D o g >
< / P e t s >

Figure 5.16: Example “Pets.xsd” - From Initial Intermediate Instance to Subschema

5.4.3 Occurrence Analysis
This activity focuses on the occurrence manipulation and specifically on the definition of
the boundary values of element occurrences.

The class diagram of Occurrence Analysis is shown in Figure 5.17
In Preprocessor, occurrences in XML Schema have already been rewritten to XML

format with exact boundary values; a middle value between boundaries, and two invalid
values. In the current version of TAXI, only valid instances can be generated automati-
cally; the invalid values are generated in case they are necessary for the future develop-
ment of TAXI.

Occurrence Analysis combines the values of each occurrence attribute, and gets value
combinations that can be used for the Final Instance Generation. The method of com-
bination has already been presented in Chapter 4. In a perfect situation, TAXI should

82 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Figure 5.17: Class diagram of occurs analysis

generate XML Documents with all possible combinations of the occurrences, but in the
most cases, this is exorbitant. When the XML Schema is large and complex, with a lot
of elements, the number of Occurrence Combinations increases geometrically. It is very
easy to reach a huge number, and this huge number will lead to a huge number of derived
XML Documents. For testing purposes, when there are too many test cases, executing
these test will be costly. To avoid this problem, TAXI applies a method to reduce the
number of occurrence combinations.

According to our experience in software testing, we know most bugs only require one
or two features to be used together, so first the Pairwise combination [AWW96], [YL02]
is used. We apply this to the boundary values of occurrences. The introduction of pairwise
combination can be found in Chapter 2. Using this method a huge number of combina-
tions are eliminated. But then a new problem occurs. When the number of instances is
really huge, for example when there are 40 occurrences in a XML Schema, the number of
exhaustive combination is 340, but after pairwise combination, there are only 21 combina-
tions that can be generated. Sometimes this quantity can not satisfy the requirements of
testing. When the pairwise combinations are not sufficient for use as test cases, and in or-
der to avoid random selection from the exhaustive combinations, we use a method which
can also apply the triangle-wise, quadrangle-wise or even n-wise, (2≤n≤number of oc-
currences) combinations in an XML Schema or subschema. The method of using n-wise
combinations is presented in Chapter 2. During the generation, TAXI will compare the
expected number of instances with the number of applied exhaustive combinations and
n-wise combinations. Let’s call the expected number as E, the number of the exhaustive
combinations as T , the number of pairwise combinations as P , and the number of n-wise
combinations as N . The strategy for combination method selection is shown below:

5.4. IMPLEMENTATION OF XSA 83

1. Compare E with T
2. if E ≥ T or E ∼ T
3. apply exhaustive combination
4. else if E ∗ 10 < T
5. apply pairwise combination
6. if E ≤ P
7. break
8. else
9. do n-wise combination (n ∈ [3, number of
occurrence in the XML Schema])
10. until P + N ≥ E

As shown in this strategy, for each subschema, TAXI first compares the expected
number with the number of all possible combinations, if the required number is equal or
greater, then all combinations of occurrence values are applied. Otherwise TAXI com-
pares the required number with the number of combinations after pairwise; if the required
number is equal or less than the number of pairwise combinations, then TAXI applies
pairwise. Otherwise TAXI applies n-wise combinations until the generated combinations
equals the required number.

After Occurrence Analysis, the combinations of occurrence values are derived that
will be used for Intermediate Instance Generation. For instance, there is only one sub-
schema of “Pets.xsd” with the element “cat” requiring Occurrence Analysis. “Cat” has
an attribute “maxOccurs” and has already been assigned a value in the Preprocessor, (see
Figure 5.14). Since there is only one occurrence attribute in the schema, the combina-
tion is simple, and three combinations are derived, which are 1, 2, 3. This means the
occurrence value of “Cat” can be any one of these three values.

5.4.4 Intermediate Instance Derivation

This activity completes the implementation of the Test Specification Generation step. A
set of Intermediate Instances is derived based on Initial Intermediate Instance by assigning
values to the occurrences of the elements. Each Occurrence Combination generates one
Intermediate Instance; if there are subschemas, Intermediate Instances are generated from
all subschemas.

Element occurrence attributes in Intermediate Instance have exact values. These val-
ues have been defined by combinations that are derived during the Occurrence Analysis
activity. The Intermediate Instance is similar to the Initial Intermediate Instance, but el-
ements in the Intermediate Instance have exact values of occurrence. These are the basis
of the Final Instance Generation.

For example, there are five Intermediate Instances derived from the schema “Pets.xsd”,
because one of its subschemas with the element “Cat” has an occurrence attribute, so there
are three Intermediate Instances generated from it, and another two instances are gener-
ated from the subschemas with the elements “Bird” and “Dog”. Figure 5.18 shows these
five Intermediate Instances.

84 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

S u b s c h e m a s o f " P e t s . x s d " I n t e r m e d i a t e I n s t a n c e s o f " P e t s . x s d "

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d t y p e = " x s : s t r i n g " > < / B i r d >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g t y p e = " x s : s t r i n g " > < / D o g >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " >
 < I S T I _ e t _ C N R _ o c c u r s o c c u r s I D = " 0 " >
 < I S T I _ e t _ C N R _ m i n _ i n v a l i d v a l u e = " 0 " / >
 < I S T I _ e t _ C N R _ m i n v a l u e = " 1 " / >
 < I S T I _ e t _ C N R _ m i d d l e v a l u e = " 2 " / >
 < I S T I _ e t _ C N R _ m a x v a l u e = " 3 " / >
 < / I S T I _ e t _ C N R _ o c c u r s >
 < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d t y p e = " x s : s t r i n g " > < / B i r d >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g t y p e = " x s : s t r i n g " > < / D o g >
< / P e t s >

Figure 5.18: Example “Pets.xsd” - From Subschema to Intermediate Instance

5.4.5 Final Instance Derivation
This is the last step of the generation process. The XSA component contacts TSS and VS
to confirm the number of Final Instances, and the method for getting the element values.
The class diagram of Final Instance Derivation is shown in Figure 5.19

Figure 5.19: Class diagram of Final Instance Derivation
The Final Instance is generated based on the Intermediate Instance by assigning a

value to the element. There are three ways to get the element value: it could be generated
randomly by TAXI according to type and facet of the element; or picked from a user-
defined value set in the database; or if the element value has already been defined by the
XML Schema, TAXI will get it and assign to the corresponding element.

If the element does not have a schema-defined value, by default TAXI first checks the
database, and finds if there is a value file that has the same name as the corresponding el-
ement. If a value file is found, then TAXI gets the values from the value file and takes one

5.4. IMPLEMENTATION OF XSA 85

of those predefined values randomly. Otherwise if there is no correspond value file for an
element in the database, TAXI then generates a random value automatically. For random
value generation, TAXI takes into consideration the elements type and facet specified in
the XML Schema definition. For example, if the element type is “integer” constrained
by minInclusive=“100”, TAXI will select an integer from the interval [100, 2147483647].
Although in its current version, TAXI can generate only valid instance, for the future ex-
tension, there is also an invalid value set [-2147483648,100) built in TAXI for applying
invalid instance generation, for valid test cases generation, TAXI will not select values
from the invalid set.

In order to reduce the number of derived instances, in TAXI, the combination of ele-
ment values is omitted, even if there are the predefined values in the database; TAXI takes
those values by random selection. Figure 5.20 shows all Final Instances with distinct
structures from “Pets.xsd”. In order to show the different between database value selec-
tion and random value generation by TAXI, we set values for the element “Cat” as “Sin-
gapura, Exotic, Ragdoll, Ocicat, Somali, Chartreux, Burmese, Korat, Maine, Chartrux,
Laperm”, and use random values for the elements “Dog” and “Bird”.

I n t e r m e d i a t e I n s t a n c e s o f " P e t s . x s d " F i n a l I n s t a n c e s o f " P e t s . x s d "

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
 < C a t t y p e = " x s : s t r i n g " > < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d t y p e = " x s : s t r i n g " > < / B i r d >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g t y p e = " x s : s t r i n g " > < / D o g >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > R a g d o l l < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > B u r m e s s < / C a t >
 < C a t > K o r a t < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t t y p e > L a p e r m < / C a t >
 < C a t t y p e > R a g d o l l < / C a t >
 < C a t t y p e > S o m a l i < / C a t >
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 <B i rd> i r j t k I h td< /B i r d>
< / P e t s >

< P e t s x m l n s : x s i = " h t t p : w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > i O F l j i f < / D o g >
< / P e t s >

Figure 5.20: Example “Pets.xsd” - Final Instances

TAXI has an embedded XML Schema validator, so when an instance is generated, it
will be validated against the input XML Schema immediately. If it does not conform to the
input XML Schema, TAXI will write the details of the validation information into the log
file, and give an error message at the end of the generation. The XML Schema validator
ensures that the instances derived by TAXI are valid. If there is an invalid instance, the
user will also get a clue from the log file, which helps to find the bugs in TAXI.

86 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

5.5 Implementation of TSS
A common problem with methodologies like Category-partition is explosion of generated
test case numbers. Similarly, the XPT methodology suffers from the same problem. As
described before, to partially overcome this explosion in TAXI, we have implemented a
set of weight-based strategies that permit the user to focus on the most important parts of
the Schema.

5.5.1 Application of Weights
Because XML Schema can refer and redefine elements flexibly, there are some cases
where we need recalculate the weights.

Recalculation For <choice> Combination

When there is more than one <choice> element in a schema, then there will be a combi-
nation for their children.

For example, let’s consider two <choice> elements in an XML Schema, each of
them having two child nodes. The first <choice>, choiceA, has two children, choiceA1
assigned with a weight of 0.3, and choiceA2 with weight of 0.7. The second <choice>
element is choiceB, and its children are called choiceB1, with an assigned weight of 0.2,
and choiceB2, with a weight of 0.8.

When we combine these two elements, we get four subschemas, each of them in-
cluding one <choice> child combination. So we need to recalculate the weight for the
subschemas according to the child elements they include. The weight of each subschema
is equal to the product of the weights of its including <choice> child elements, as shown
in Figure 5.21. So the weight of these four trees are: 0.3 ∗ 0.2 = 0.06; 0.3 * 0.8 = 0.24;
0.7 * 0.2 =0.14; 0.7 * 0.8 = 0.56. The sum of for subschemas’ weights is still equal to 1.

Recalculation For <choice> Rewriting

XML Schema gives the possibility of rewriting an element by <extension> or <restriction>
and <redefine>, a <choice> could be referred and a node added or deleted. In that case,
we need to recalculate to keep the weight of the redefined <choice> element as 1. If there
is a new node added to the original <choice> element, we give the new node a default
weight of “0.5”, and distribute the remaining weight to each node according to their pro-
portion in the <choice> element. We will use the above choiceA to do an example: if we
add a new node choiceA3, assigned the default value “0.5”. the weight of choiceA is 0.3
+ 0.7 + 0.5 =1.5. The total weight of choiceA now is 1.5, but we know it is required to be
always 1, so we recalculate the weight of each node in proportion its to original weight.
As result the new weights of each child node is: choiceA1: 0.3 /1.5 = 0.2; choiceA2: 0.7 /
1.5 = 0.47; and choiceA3: 0.5 / 1.5 = 0.33. After the recalculation the weight of choiceA
returns to 1, and the proportion of each node is not changed.

5.5. IMPLEMENTATION OF TSS 87

Figure 5.21: Weight recalculation

If a child node is deleted from <choice>, the distribution method is similar to the
previous case. We just assign the lost weight to the nodes that are still in the <choice>
element. For instance, suppose a <choice> element has three children, the weight of them
being: 0.3, 0.3, 0.4, but in another element that refers to this <choice>, one child element,
weighted 0.4, is deleted. In this case the weight of this <choice> element becomes 0.6.
What Weight Assignment does is just redistribute the weight of the <choice> according
to the original children’s weights, so that finally the weights of the two remaining children
become: 0.3 / 0.6 =1.5; 0.3 / 0.6 = 0.5, and the total weight remains 1.

5.5.2 Strategy Selection
As presented in Chapter 4, TAXI provides four test strategies to formulate the results of a
derived instance set. These are: are:

generate with a fixed number of instances

In particular this strategy could be a case in which a finite set of test cases must be derived.
The instances are generated from all subschemas according to their final weights. For
implementation, first read the number input by the user; let’s call it N . As presented
in the previous section, each subschema has its weight calculated by TAXI according to
the weights of the <choice> child elements it contains. TAXI then distributes N to the
subschemas according to their weights. For instance, if there are three subschemas, and
the weights are weightsubschema1=“0.3”, weightsubschema2=“0.5”, weightsubschema3=“0.2”;
and N = 100, then the number of instances from subschema1 should be 100 * 0.3 = 30;
the number of instances from subschema2 should be 100 * 0.5 = 50; and the number of
instances from subschema3 should be 100 * 0.2 = 20;

88 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Figure 5.22: Interface of Test Strategy Selection

So in this first test strategy, for each subschema, the expected number of instances
times the subschema weight is equal to the number of instances that should generate from
that subschema.

generate with fixed functional coverage

When a certain percentage of functional test coverage is established as an exit criterion
for instance generation (and then subsequently for testing), the subschemas are selected
from the heaviest to the lightest by their weight, until the sum of weights is equal to
or greater than the coverage established. Then all instances from these subschemas are
generated. Using the same example as in the first strategy, there are three subschemas
with the weights “0.3”, “0.5”, and “0.2”; the coverage input by user is “80%”. Therefore
subschema2 will be first selected since it is the heaviest one of these three subschemas,
but the total weight does not reach 80%. As the second heaviest subschema, subschema1

will be selected next. Now the total of the weights is 0.5 + 0.3 = 0.8, so TAXI stops the
subschema selection, and the instances will be generated. Using only subschema1 and
subschema2. When this strategy is selected, be aware that TAXI will generate all possible
instances from each selected subschema. Sometimes this will leads a very huge number
of instances. To avoid this situation, it is better to use the third strategy that combines the
first two strategies together.

5.6. SUMMARY 89

generate with a fixed functional coverage and number of instances

This is a strategy that combines the two strategies mentioned before. TAXI first selects the
proper substructures useful for reaching a certain percentage of functional coverage just
as in the second test strategy, then derives the proper number of instances, considering the
selected subschemas weights. The rules for the combined method selection are the same
as for the first strategy.

generate all possible instances

With this strategy, the user can get all possible instances from all the all subschemas.
Sometimes the number is very large, even unreasonable. In this case TAXI will suggest a
number to avoid huge time costs for the generation.

On one hand the application of weight-based strategies might decrease the overall
effectiveness of the test cases, but on the other hand, by these strategies the test effort can
focus on the most critical parts of the schema, and omit the instances affecting those parts
that have only marginal impact on the overall system behavior, and the functionalities that
are considered as trustable.

5.6 Summary
In this chapter we presented the implementation of TAXI, which use XPT methodology.
TAXI is graphical tool, written in Java. In the chapter we described the tool by its compo-
nents: XSA (XML Schema Analysis) which is the core part of the tool, used to apply the
XPT methodology; TSS (Test Strategy Selector), which applies to the selection of three
test strategies, VS (Value Storage) which stores and manages the values in a database for
generating the final instances; and UI (User Interface) which provides a graphic interface
for communicating with users. We presented in detail the implementation of TAXI by a
sequence of activities. Using this tool it is possible to prove XPT methodology by doing
case studies. We have also tried to improve the tool, to make it meet the requirements for
application in the industry.

90 CHAPTER 5. TAXI - THE IMPLEMENTATION OF XPT

Chapter 6

Cover Set Of TAXI

This chapter presents the test suite that is used to test the TAXI tool.
As already presented in Chapter 2, XML Schema defines a set of element and at-

tributes. In order to guarantee the correctness of TAXI implementation, we have created
a set of test cases to test TAXI. We firstly created the basic XML Schemas for each type
of elements depending on the specification of element, which includes only elements, not
any attributes. The specification of XML Schema gives a very clear description of what
attributes and constraints can be involved in an element. According to the specification,
we have created a set of XML Schema files based on the basic schema, which can present
possible structures for the target element.

In the following, the test case schemas will be presented; the test cases are designed
by the syntax of XML Schema elements. For almost every for each possible child of
the element we create a test case; a road map of the test cases is shown in Table 6.1. In
this chapter, for each test point (the test points include the element, attribute and facets
specified in the definition of XML Schema), we show first a simple schema as a test case
without any constraints and attributes, and then show several extended schemas depending
on the possible structures that can be included in this element.

For clarity, the XML Schema for each test case will be shown, but not all the derived
XML Instances will be shown in the thesis. We will select and show several representative
ones from the derived set. Because even though for some test cases we ask TAXI to
generate less then fifty test cases, it takes a lot of space to list all of them, and it would
make the test cases difficult to read.

6.1 Test Cases of <element>

As the syntax of XML Schema, <element> could include some specific attributes, for
instance “ref”, “type”, “abstract” and so on. We can not test all of them with a single
element, because some of these attributes can be used only if the parent of the element is
not the schema element. Therefore in this section we give test cases for the single element
and for the attributes that can be used for the root single element.

92 CHAPTER 6. COVER SET OF TAXI

Element Children of the elements No.
Single element TC1

<element> default TC2
fixed TC3

<restriction> minInclusive, maxInclusive TC4
<simpleType> <union> restriction, enumeration TC5

<list> TC6
<simpleContent> extension TC7

restriction TC8
<complexContent> restriction TC9

extension TC10
element TC11

minOccurs, maxOccurs TC12
attribute TC13

<complexType> <sequence> attributeGroup TC14
element with “ref” attribute TC15

group TC16
sequence TC17

choice TC18
<all> element TC19

element TC20
minOccurs, maxOccurs TC21

group TC22
<choice> choice TC23

sequence TC24
two parallel choice elements TC25

apply test strategies TC26
<redefine> <complexType> extension TC27

<simpleType> enumeration TC28
<any> TC29

<anyAttribute> TC30

Table 6.1: Road map of the test cases

6.1.1 <element>

<element> is used to define an element in the schema; it is the most important element
in the schema. The simplest schema can include only one simple element, for instance
XML Schema 1 that is shown in Figure 6.1. This schema includes only one element
named “name”; the element type is “xs:string”. We predefine some values of the element
“name”, which are “Mary, Michael, Tom, Brook, John, Sissy, Smith, Jack”.

XML Schema 1 has only one element; it is one of the simplest structures of XML
Schema, and there is only one possible XML structure that can be generated. In order to

6.1. TEST CASES OF <ELEMENT> 93

test the value selection as well, we want TAXI generate to more than one test case. We
have decided to get 30 instances from TAXI, because it is almost three times than the
number of element values, although it is not a big number, but enough for testing this
simple schema. We have picked three instances randomly from the derived set since the
structure of these instances is same and the value of the element is selected randomly (see
XML Instance 1 in Figure 6.1).

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " / >
< / x s : s c h e m a >

1 . < ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
 < n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 Jack
 < / n a m e >

2 . < ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
 < n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 M ichae l
 < / n a m e >

3 . < ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
 < n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 Tom
 < / n a m e >

X M L S c h e m a 1 X M L I n s t a n c e s 1

Figure 6.1: Test Case 1 single <element>

6.1.2 <element> With “default” Attribute

XML Schema 2, as shown in Figure 6.2, is similar to XML Schema 1, but the element
“name” has an attribute “default”, which means if the value of “name” is null, then the
processor will assign the value of the default attribute to the element. But as presented
in Chapter 5, TAXI always provides a value to the element from the predefined value set,
or generates it randomly, so that in XML Instances generated from TAXI, the value of a
“default” attribute will not be used.

With regard to the test case, we still use the same predefined values of the element
name in Test Case 1, which are “Mary, Michael, Tom, Brook, John, Sissy, Smith, Jack”.
XML Schema 2 is very simple, and the derived XML Instances will have the same struc-
ture, so it is not necessary to generate the huge number of instances, used in Test Case 1.
We have decided to let TAXI generate 30 instances. In these 30 instances, all values are
selected, but the default value “Henry” dose not appear. We have selected three instances
with different values and have shown them in the Figure 6.2.

6.1.3 <element> With “fixed” Attribute

The < element > could also have the attribute “fixed”, which means the fixed value of
the element. When the element appears in the instance, then its value must equal the fixed
one. XML Schema 3 shown in Figure 6.3, is a schema with an element “name” and an
attribute “fixed”. In this case, the value of “name” element should be always fixed and
equal to “Henry”.

94 CHAPTER 6. COVER SET OF TAXI

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " d e f a u l t = " H e n r y " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 T o m
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 M a r y
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 S m i t h
< / n a m e >

X M L S c h e m a 2 X M L I n s t a n c e s 2

Figure 6.2: Test Case 2 single <element> with “default” attribute

We still use the same predefined values as in Test Case 1, which are “Mary, Michael,
Tom, Brook, John, Sissy, Smith, Jack”. And since the XML Schema 3 is quite similar to
XML Schema 2, we also let TAXI generate 30 instances. After the generation, we found
the element “name” in all of these 30 instances has the same value; they are all equal to
“Henry”. We have selected 3 instances randomly and shown them in Figure 6.3.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " f i x e d = " H e n r y " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 H e n r y
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 H e n r y
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 H e n r y
< / n a m e >

X M L S c h e m a 3 X M L I n s t a n c e s 3

Figure 6.3: Test Case 3 single <element> with “fixed” attribute

6.2 Test Cases of <SimpleType>
In XML Schema the user can define a simple type element by using the tag <simpleType>.
The simple type element specifies a simple type element, and the restrictions and infor-
mation about the values of attributes or text-only elements. The child of the simple type
element can be <restriction>, <union> or <list>.

6.2.1 <simpleType> With Child <restriction>

XML Schema 4 (see in Figure 6.4) is a schema that has a simple type element “age”. This
simple type element includes a child with tag <restriction>. In the tag of <restriction>
there are restrictions that are used to define the acceptable values of the XML elements
or attributes. Here in Test Case 4, the restrictions are “maxInclusive” which defines the
upper boundary of the numeric element values; and “minInclusive”, which specifies the

6.2. TEST CASES OF <SIMPLETYPE> 95

smallest value that the element value could be. In this definition, the valid values of
element “age” must between “0” to “100”, and these boundary values can be included.
We did not set the predefined values before generation; and the values in the instances
are generated by TAXI automatically. The generated XML Documents have the same
structure, and different values. We have asked TAXI to generate 200 instances, because
we wanted to test the generation of <simpleType> with restrictions; also we wanted to
test if TAXI could generate the random integers correctly. The results are good; all 200
instances have the expected structure, and the value of their elements are random but all
in the range of “0” to “100”. Since the structures of the instances are the same, and the
values are random, we have just selected two instances randomly, and shown them in
Figure 6.4.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " a g e " >
 < x s : s i m p l e T y p e >
 <xs : r es t r i c t i on base= "xs : i n t ege r ">
 < x s : m i n I n c l u s i v e v a l u e = " 0 " / >
 < x s : m a x I n c l u s i v e v a l u e = " 1 0 0 " / >
 < /xs : res t r i c t i on>
 < / x s : s i m p l e T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< a g e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 8 7
< / a g e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< a g e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 6
< / a g e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< a g e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 4 8
< / a g e >

X M L S c h e m a 4 X M L I n s t a n c e s 4

Figure 6.4: Test Case 4 <simpleType> with child “restriction”

6.2.2 <simpleType> With Child <union>

The <union> element in XML Schema defines a collection of element values, which
could be obtained from more than one specified simple data type. When the simple type
element contains a <union> child element, it means the value of the simple type ele-
ment must be selected from the collection of value data types. As shown in Figure 6.5,
XML Schema 5 has an element “jeans size” with a child <union>, which specifies that
the value of “jeans size” should come from the collection of the values defined by the
elements “sizebyno” and “sizebystring”. So the XML Document generated from XML
Schema 5 should have the same structure, only the element “jeans size”. The value of
the element comes from the definition of the simple type elements, “sizebyno” or “size-
bystring”. The values of the element “sizebyno” in the instances are generated by TAXI;
while the values of the element “sizebystring” are taken from the enumeration restrictions
by TAXI. We have selected four derived instances in 6.5.

6.2.3 <simpleType> With Child “list”
The list element defines a simple type element as a list of values of a specified data type.
In the current version of TAXI, the number of list items (which represents how many

96 CHAPTER 6. COVER SET OF TAXI

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " j e a n s _ s i z e " >
 < x s : s i m p l e T y p e >
 < x s : u n i o n m e m b e r T y p e s = " s i z e b y n o s i z e b y s t r i n g " / >
 < / x s : s i m p l e T y p e >
< / x s : e l e m e n t >

< x s : s i m p l e T y p e n a m e = " s i z e b y n o " >
 < x s : r e s t r i c t i o n b a s e = " x s : p o s i t i v e I n t e g e r " >
 < x s : m a x I n c l u s i v e v a l u e = " 4 2 " / >
 < / xs : res t r i c t i on>
< / x s : s i m p l e T y p e >

< x s : s i m p l e T y p e n a m e = " s i z e b y s t r i n g " >
 < x s : r e s t r i c t i o n b a s e = " x s : s t r i n g " >
 < x s : e n u m e r a t i o n v a l u e = " s m a l l " / >
 < x s : e n u m e r a t i o n v a l u e = " m e d i u m " / >
 < x s : e n u m e r a t i o n v a l u e = " l a r g e " / >
 < / xs : res t r i c t i on>
< / x s : s i m p l e T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< j e a n s _ s i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 sma l l
< / j e a n s _ s i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< j e a n s _ s i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 3 8
< / j e a n s _ s i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< j e a n s _ s i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 3
< / j e a n s _ s i z e >

X M L S c h e m a 5 X M L I n s t a n c e s 5

Figure 6.5: Test Case 5 <simpleType> with child “union”

values could be included in the list element) can not be controlled by user. Instead, TAXI
will generate a random number for list items from 1 to 10. If there are predefined values
in the database, then the value of the list will be selected from the database, otherwise
TAXI will generate random values for list elements. In Test Case 6, shown in Figure 6.6,
XML Schema 6 have an element “sentence”, which is a string list element. Here we add
some values for the sentence; the values are “How, Are, You, It, Is, A, Good, Day”.

For XML Schema 6 we want to check if the item number and the list items gener-
ate correctly. With regard to the structure of the schema, we ask TAXI to generate 30
instances, which can be generated in a very short time and are enough for this simple
schema. In Figure 6.6, we select two of the instances randomly. We can see in these
two instances, the values of the “sentence” elements are different both in length and in
content. But these strings are meaningless because the words are selected randomly.

< ? x m l v e r s i o n = " 1 . 0 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >

< x s : e l e m e n t n a m e = " s e n t e n c e " t y p e = " s t r i n g L i s t " / >

< x s : s i m p l e T y p e n a m e = " s t r i n g L i s t " >
 < x s : l i s t i t e m T y p e = " x s : s t r i n g " / >
< / x s : s i m p l e T y p e >

< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s e n t e n c e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 Y o u H o w G o o d G o o d
< / s e n t e n c e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s e n t e n c e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 A r e I s D a y Y o u G o o d Y o u
< / s e n t e n c e >

X M L S c h e m a 6 X M L I n s t a n c e s 6

Figure 6.6: Test Case 6 <simpleType> with child “list”

6.3 Test Cases of <complexType>
Complex type is written within the tag <complexType>; it defines an XML element
that contains other elements, and/or attributes. We have designed the test cases of <
complexType > according to the relationship among the contained elements.

6.3. TEST CASES OF <COMPLEXTYPE> 97

6.3.1 <complexType> With Child <simpleContent>
The <simpleContent> element contains extension or restriction on a text-only complex
type or on a simple type as content and contains no element. The parent of <simpleContent>
can only be <complexType>. If the <simpleContent> is based on an XSD data type, it
can be extended, but not be restricted.

<simpleContent> With <extension>

In the XML Schema 7 of Test Case 7 (see Figure 6.7), the type of element “JeansSize”
is an integer, and it has an attribute “country”, which has a fixed value “Canada”. We
use a <complexType> with a <simpleContent> child to present this structure, (see the
schema in Figure 6.7). In this test case, we set the accepted values of “JeansSize” as
“34, 36, 38, 40, 42, 44 46, 48”, and for attribute “country” we set the values as “US,
China, Italy, France, Spain”. Since the structure of the Schema 7 is simple, we do not
need a huge number of instances for testing. But we want to check if the values can be
assigned properly, we let TAXI to generate 30 instances, it is more than three times of the
“JeansSize” values and 10 times the value of “country”. After generation, all the instances
are valid, and therefore TAXI performed correctly. In Figure 6.7 we show four instances;
three of them have the same structure, but the values of “JeanSize” are different, and
the values of “country” are the same since the “country” attribute is fixed with the value
“Canada”. Another instance has a different structure, because the “country” attribute is
not a required attribute, so it appears randomly; for example in this instance, it does not
occur.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " J e a n s S i z e " >
 < x s : c o m p l e x T y p e >
 < x s : s i m p l e C o n t e n t >
 < x s : e x t e n s i o n b a s e = " x s : i n t e g e r " >
 < x s : a t t r i b u t e n a m e = " c o u n t r y " f i x e d = " C a n a d a " / >
 < / xs :ex tens i on>
 < / x s : s i m p l e C o n t e n t >
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< J e a n s S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 4 6
< / J e a n s S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< J e a n s S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " c o u n t r y = " C a n a d a " >
 1 2
< / J e a n s S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< J e a n s S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " c o u n t r y = " C a n a d a " >
 3 4
< / J e a n s S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< J e a n s S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " c o u n t r y = " C a n a d a " >
 4 8
< / J e a n s S i z e >

X M L S c h e m a 7 X M L I n s t a n c e s 7

Figure 6.7: Test Case 7 <simpleContent> with <extension>

<simpleContent> With <restriction>

Test Case 8 (in Figure 6.8) shows the restricted simple content element “SmallSizeType”,
which is based on another simple content element “SizeType”. In this test case, no prede-
fined values will be given, besides the < simpleContent> structure generation; we want
to test the random value derivation of TAXI. Considering XML Schema 8 there is one pos-
sible structure that could be generated. So we ask TAXI to generate 50 XML Instances,

98 CHAPTER 6. COVER SET OF TAXI

which is five times the value number of element “SmallSizeType”; it is a proper number
in order to catch the error if the value generation of TAXI does not work properly.

In Figure 6.8 we select four XML Instances, each of them with a different value of
“SmallSize”. All of these values are in the range from “0” to “11”, none of them reach
the boundaries, and the values of “itemName” are the meaningless strings generated by
TAXI randomly.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : c o m p l e x T y p e n a m e = " S m a l l S i z e T y p e " >
 < x s : s i m p l e C o n t e n t >
 < x s : r e s t r i c t i o n b a s e = " S i z e T y p e " >
 < x s : m i n E x c l u s i v e v a l u e = " 0 " / >
 < x s : m a x E x c l u s i v e v a l u e = " 1 1 " / >
 < x s : a t t r i b u t e n a m e = " i t a m N a m e " t y p e = " x s : t o k e n " u s e = " r e q u i r e d " / >
 < /xs : res t r i c t i on>
 < / x s : s i m p l e C o n t e n t >
 < / x s : c o m p l e x T y p e >

 < x s : c o m p l e x T y p e n a m e = " S i z e T y p e " >
 < x s : s i m p l e C o n t e n t >
 < x s : e x t e n s i o n b a s e = " x s : i n t e g e r " >
 < x s : a t t r i b u t e n a m e = " i t e m N a m e " t y p e = " x s : t o k e n " / >
 < / xs :ex tens ion>
 < / x s : s i m p l e C o n t e n t >
 < / x s : c o m p l e x T y p e >

< x s : e l e m e n t n a m e = " S m a l l S i z e " t y p e = " S m a l l S i z e T y p e " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< S m a l l S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 i t e m N a m e = " d I y T 4 O " > 2
< / S m a l l S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< S m a l l S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 i t e m N a m e = " N F d 0 " > 7
< / S m a l l S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< S m a l l S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 i t e m N a m e = " 0 d 8 7 e " > 1
< / S m a l l S i z e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< S m a l l S i z e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 i t e m N a m e = " 8 7 D F i " > 9
< / S m a l l S i z e >

X M L S c h e m a 8 X M L I n s a n c e s 8

Figure 6.8: Test case 8 <simpleContent> with <restriction>

6.3.2 <complexType> With Child <complexContent>
The <complexContent> element defines extensions or restrictions on a complex type that
contains mixed content or elements only. <complexType> is the only possible parent of
the <complexContent> element, and it can include <restriction> or <extension> as
child.

<complextContent> With <restriction>

Test Case 9 shows the schema with a <comlexContent> element that includes a <restriction>
child (see Figure 6.9). The type of element “address” is based on “USAddress”, but it has
an attribute “countryCode”. So the “address” should have the same elements as “USAd-
dress”, and the attribute “countryCode”. We set the values for the elements in the schema,
in which the values of element “street” are “Pennsylvania Ave, Hollywoodvine Road, Mis-
sion & Valencia Street, Shady Prairie View”; the values of “city” are “London, New York,
Sydney, Beijing, Rome”; the values of “zipcode” are “M2J2C6, 2806, 3455, C7D8K9,
35838”. The instance generated by TAXI is shown in the frame at the right side of Figure
6.9.

<complexContent> With <extension>

In Figure 6.10, XML Schema 10 shows a schema with <complexContent> and <extension>
child. The schema of Test Case 10 has an element “Staff”; its type is “staffinfo”. The

6.3. TEST CASES OF <COMPLEXTYPE> 99

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : c o m p l e x T y p e n a m e = " a d d r e s s T y p e " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " s t r e e t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " c i t y " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " z i p c o d e " t y p e = " x s : i n t e g e r " / >
 < x s : e l e m e n t n a m e = " c o u n t r y " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
< / x s : c o m p l e x T y p e >

< x s : c o m p l e x T y p e n a m e = " U S A d d r e s s T y p e " >
 < x s : c o m p l e x C o n t e n t >
 < x s : r e s t r i c t i o n b a s e = " a d d r e s s T y p e " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " s t r e e t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " c i t y " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " z i p c o d e " t y p e = " x s : i n t e g e r " / >
 < x s : e l e m e n t n a m e = " c o u n t r y " t y p e = " x s : s t r i n g " f i x e d = " U S " / >
 < / x s : s e q u e n c e >
 < / xs : res t r i c t i on>
 < / x s : c o m p l e x C o n t e n t >
< / x s : c o m p l e x T y p e >

< x s : e l e m e n t n a m e = " U S A d d r e s s " t y p e = " U S A d d r e s s T y p e " / >
< / x s : s c h e m a >

< U S A d d r e s s x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 <s t r ee t>
 H o l l y w o o d v i n e R o a d
 < / s t ree t>
 <c i t y>
 N e w Y o r k
 < /c i t y>
 < z i p c o d e >
 C 7 D 8 K 9
 < / z i p c o d e >
 < c o u n t r y >
 US
 < / c o u n t r y >
< / U S A d d r e s s >

X M L S c h e m a 9 X M L I n s t a n c e 9

Figure 6.9: Test Case 9 <complexContent> element with <restriction> child

“staffinfo” is a complex type that extends two more elements based on another complex
type “basicinfo”. For the value of element “firstName” and “lastName”, we set the values
of “birthday” as “10-03-1987, 20-12-1976, 08-10-1977” and “gender” with the values
“male, female”. We required TAXI to generate all possible instances. There is one in-
stance generated by TAXI, which is shown in the Figure 6.10.

< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " S t a f f " t y p e = " s t a f f i n f o " / >

< x s : c o m p l e x T y p e n a m e = " b a s i c i n f o " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
< / x s : c o m p l e x T y p e >

< x s : c o m p l e x T y p e n a m e = " s t a f f i n f o " >
 < x s : c o m p l e x C o n t e n t >
 < x s : e x t e n s i o n b a s e = " b a s i c i n f o " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " b i r t h d a y " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < / x s : e x t e n s i o n >
 < / x s : c o m p l e x C o n t e n t >
< / x s : c o m p l e x T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< S t a f f x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e >
 Jack
 < / f i r s t n a m e >
 < l a s t N a m e >
 Chen
 < / l a s t n a m e >
 < b i r t h d a y >
 0 8 - 1 0 - 1 9 7 7
 < / b i r t h d a y >
 < g e n d e r >
 f ema le
 < / g e n d e r >
< / S t a f f >

X M L S c h e m a 1 0 X M L I n s t a n c e 1 0

Figure 6.10: Test Case 10 <complexContent> element with <extension> child

6.3.3 Test Cases of <sequence>

The <sequence> element means that in the related XML Documents, the children of the
<sequence> elements must appear in the specific sequence, and the occurrence time of
its child elements can be 0 or any number.

100 CHAPTER 6. COVER SET OF TAXI

Single <sequence> Element

Here we give a simple test case that has a <sequence> element “name”. The children of
“name” are “firstName” and “lastName”, and their type is “xs:string” (see XML Schema
11 in Figure 6.11).

As already presented in Chapter 4, we know from XML Schema 11 that there is one
valid XML structure that can be generated. Of course with TAXI you can get as many
XML Instances as expected, but all of them will have the same structure. We set the values
for the elements before generation. For “firstName” we set the content of the value file as
“Mary, Maggie, Michael, Tom, Ivy, Brook, John, Sissy, Eva, Smith, Jack, Randey”; for the
element “lastName” we set the values as “Smith, Brook, Wolf, Chen, He, Zhang, Johnson,
Brown, Gao, Julie, Fisher, Hans”. In XML Schema 11 there is one possible structure
that can be generated, but we want more XML Instances to check if TAXI can handle
<sequnce> element correctly. Since XML Schema 11 is a simple schema, we ask TAXI
to generate 30 instances, which is thirty times the possible structure. This is sufficient for
testing the valid structure generation. The results are good; all of these XML Instances
are valid. In Figure 6.11, we select and show three instances randomly, because all these
thirty instances have the same structure, and their values are also selected at random by
TAXI.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

X M L S c h e m a 1 1

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > S i s s y < / f i r s t N a m e >
 < l a s t N a m e > W o l f < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > T o m < / f i r s t N a m e >
 < l a s t N a m e > C h e n < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > M i c h a e l < / f i r s t N a m e >
 < l a s t N a m e > Z h a n g < / l a s t N a m e >
< / n a m e >

X M L I n s t a n c e s 1 1

Figure 6.11: Test Case 11 <sequence> element

<sequence> Element With “minOccurs” and “maxOccurs”

The children of <sequence> element can occur from 0 to any numbers of times. Test
Case 12 shows a schema similar to Test Case 11, but the child elements have occurrence
attributes. This schema is shown in the first half of Figure 6.12. According to the com-
bination method mentioned in Chapter 4, from the schema of Test Case 12 there are nine
Intermediate Instances that can be generated, so that there are nine different structures of
the derived instances. We have used the same values as in Test Case 11, and required 50
instances from TAXI. In Figure 6.12, we select nine XML Instances that all of them are
from the different structures, and show them in Figure 6.12.

6.3. TEST CASES OF <COMPLEXTYPE> 101

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > S i m t h < / f i r s t N a m e >
 < f i r s t N a m e > M a r y < f i r s t N a m e >
 < f i r s t N a m e > J a c k < / f i r s t N a m e >
 < l a s t N a m e > J a c k < / l a s t N a m e >
 < l a s t N a m e > G a o < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > B r o o k < / f i r s t N a m e >
 < f i r s t N a m e > J a c k < f i r s t N a m e >
 < f i r s t N a m e > M i c h a e l < / f i r s t N a m e >
 < l a s t N a m e > H a n s < / l a s t N a m e >
 < l a s t N a m e > Z h a n g < / l a s t N a m e >
 < l a s t N a m e > J u l i e < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < l a s t N a m e > C h e n < / l a s t N a m e >
 < l a s t N a m e > B r o o k < / l a s t N a m e >
 < l a s t N a m e > R a y n < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > T o m < / f i r s t N a m e >
 < l a s t N a m e > B r o o k < / l a s t N a m e >
 < l a s t N a m e > G a o < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < l a s t N a m e > Z h a n g < / l a s t N a m e >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > M i c h a e l < / f i r s t N a m e >
 < l a s t N a m e > B r o o k < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > S i s s i < / f i r s t N a m e >
 < f i r s t N a m e > S m i t h < f i r s t N a m e >
 < f i r s t N a m e > J a c k < / f i r s t N a m e >
 < l a s t N a m e > H e < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e > M a r y < f i r s t N a m e >
 < l a s t N a m e > Z h a n g < / l a s t N a m e >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
 < l a s t N a m e > J u l i e < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " m i n O c c u r s = " 0 " m a x O c c u r s = " u n b o u n d e d " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " m a x O c c u r s = " u n b o u n d e d " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

X M L S c h e m a 1 2

X M L I n s t a n c e s 1 2

Figure 6.12: Test Case 12 <sequence> element with occurrence attributes

<sequence> Element With “attribute”

In Figure 6.13, the XML Schema 13 has a <sequence> element “name”, and it has an
attribute “ID”. The type of “ID” is integer. Before the instance generation we had not
established any values for this attribute, so the values of “ID” are generated randomly by
TAXI. For the child element of the element “name” we set its value as “Mary, Michael,
Tom, Brook, John, Sissy, Smith, Jack”, and asked TAXI to generate 30 instances. Because
XML Schema 13 is simple, 30 instances can cover the possible instances. We selected
three from the derived instances randomly, and show them in Figure 6.13.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " n a m e " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < x s : a t t r i b u t e n a m e = " I D " t y p e = " x s : i n t e g e r " u s e = " r e q u i r e d " / >
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " I D = " 2 8 7 6 " >
 < f i r s t N a m e > T o m < / f i r s t N a m e >
 < l a s t N a m e > W o l f < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " I D = " 3 4 5 6 7 5 " >
 < f i r s t N a m e > J a c k < / f i r s t N a m e >
 < l a s t N a m e > C h e n < / l a s t N a m e >
< / n a m e >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< n a m e x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " I D = " 2 3 " >
 < f i r s t N a m e > I v y < / f i r s t N a m e >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
< / n a m e >

X M L S c h e m a 1 3 X M L I n s t a n c e s 1 3

Figure 6.13: Test Case 13 <sequence> element with “attribute”

102 CHAPTER 6. COVER SET OF TAXI

<sequence> Element With “attributeGroup”

In Figure 6.14, the XML Schema 14 has a <sequence> element “personType”, and it has
an “attributeGroup” that includes “ID”. The type of “ID” is integer and “gender”. Before
generating the instance we used the same values for “firstName” and “lastName”, and
“female, male” for the attribute “gender”, and “00,01,02,03,04,05,06,07,08,09” for the
attribute “ID”. Because XML Schema 14 is simple, 30 instances can cover the possible
instances. We have selected two of the derived instances, one with the attribute “gender”,
and one without, because it is not required. The two instances are shown in Figure 6.14.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : a t t r i b u t e G r o u p n a m e = " i n f o " >
 < x s : a t t r i b u t e n a m e = " I D " t y p e = " x s : i n t e g e r " u s e = " r e q u i r e d " / >
 < x s : a t t r i b u t e n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
< / x s : a t t r i b u t e G r o u p >

< x s : c o m p l e x T y p e n a m e = " p e r s o n I n f o T y p e " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < x s : a t t r i b u t e G r o u p r e f = " i n f o " / >
 < / x s : c o m p l e x T y p e >
 < x s : e l e m e n t n a m e = " p e r s o n I n f o " t y p e = " p e r s o n I n f o T y p e " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 I D = " 0 1 " g e n d e r = " f e m a l e " >
 < f i r s t N a m e > J u l i e < / f i r s t N a m e >
 < l a s t N a m e > z h a n g < / l a s t N a m e >
< / p e r s o n I n f o >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " I D = " 0 9 " >
 < f i r s t N a m e > J a c k < / f i r s t N a m e >
 < l a s t N a m e > z h a n g < / l a s t N a m e >
< / p e r s o n I n f o >

X M L S c h e m a 1 4 X M L I n s t a n c e 1 4

Figure 6.14: Test Case 14 <sequence> element with “attributeGroup”

<sequence> With <ref> Element

In XML Schema 15, shown in Figure 6.15, the element “personInfo” is a <sequence>
element, and two of its children are referred from other elements. Since in this test case
we want only to test if TAXI can deal with <ref> correctly, we asked TAXI to generate
all instances, then one valid instance is generated. We show this instance on the right side
of Figure 6.15.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
	 < x s : e l e m e n t n a m e = " p e r s o n I n f o " >
	 	 < x s : c o m p l e x T y p e >
	 	 	 < x s : s e q u e n c e >
	 	 	 	 < x s : e l e m e n t r e f = " f i r s t N a m e " / >
	 	 	 	 < x s : e l e m e n t r e f = " l a s t N a m e " / >
	 	 	 	 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
	 	 	 < / x s : s e q u e n c e >
	 	 < / x s : c o m p l e x T y p e >
	 < / x s : e l e m e n t >
	 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
	 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e >
 Tom
 < / f i r s t N a m e >
 < l a s t N a m e >
 He
 < / l a s t N a m e >
 < g e n d e r >
 f ema le
 < / g e n d e r >
< / p e r s o n I n f o >

X M L S c h e m a 1 5
X M L I n s t a n c e 1 5

Figure 6.15: Test Case 15 <sequence> element with <ref> element

<sequence> In <group> Element

The <group> element defines a group of elements to be used in complex type definitions.
The XML Schema 16 shown in Figure 6.16 defines an element “student”. The type of the

6.3. TEST CASES OF <COMPLEXTYPE> 103

element refers to a <group> element “infoGroup”. Using TAXI we first set the values
of the elements in the schema. For the elements “firstName” we set the values as “Mary,
Maggie, Michael, Tom, Ivy, Brook, John, Sissy, Eva, Smith, Jack, Randey”; for the “last-
Name” the values are “Smith, Brook, Wolf, Chen, He, Zhang, Johnson, Brown, Gao, Julie,
Fisher, Hans”. There are two values “male, female” for element “gender”, and the values
of “birthday” are “10-03-1987, 20-12-1976, 08-10-1977” the same as test case 13. We
let TAXI to generate all different instances. Finally we obtained one instance, which is
shown on the right side of Figure 6.16. Moreover, TAXI could generate more instances
from this schema, and all of them would have the same structure, but with the different
values for the elements.

< ? x m l v e r s i o n = " 1 . 0 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : g r o u p n a m e = " i n f o G r o u p " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " b i r t h d a y " t y p e = " x s : d a t e " / >
 < / x s : s e q u e n c e >
< / x s : g r o u p >

< x s : e l e m e n t n a m e = " s t u d e n t " t y p e = " s t u d e n t T y p e " / >

< x s : c o m p l e x T y p e n a m e = " s t u d e n t T y p e " >
 < x s : g r o u p r e f = " i n f o G r o u p " / >
< / x s : c o m p l e x T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t N a m e >
 Magg ie
 < / f i r s t N a m e >
 < l a s t N a m e >
 B rook
 < / l a s t N a m e >
 < g e n d e r >
 ma le
 < / g e n d e r >
 < b i r t h d a y >
 1 0 - 0 3 - 1 9 8 7
 < / b i r t h d a y >
< / s t u d e n t >

X M L S c h e m a 1 6 X M L I n s t a n c e 1 6

Figure 6.16: Test Case 16 <sequence> in <group> element

<sequence> Within a <sequence>

The <sequence> element could also include a complex type, such as in XML Schema
17, shown in Figure 6.17. The child <sequence> element has occurrence attributes. We
have used the same value as in Test Case 16, and let TAXI generate all possible instances.
We show the instances in Figure 6.17.

<choice> within a <sequence>

The <sequence> element could also include the <choice> as child element, as in XML
Schema 18 in Figure 6.18. We have used the same value as in Test Case 16, and let TAXI
generate all possible instances. We show the instances in Figure 6.18.

6.3.4 Test Cases of <all> Element
The element <all> defines an element in which each of its child elements can occur zero
or one time in any sequence. By the specification of element <all>, the occurrence value
could be only “0” or “1”, but the order of the child elements are not prescribed. As already
presented, TAXI gives a random sequence of <all>’s child elements in each generated

104 CHAPTER 6. COVER SET OF TAXI

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " p e r s o n I n f o " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
	 < x s : s e q u e n c e m a x O c c u r s = " u n b o u n d e d " >
	 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
	 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
	 < / x s : s e q u e n c e >
	 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < g e n d e r > m a l e < / g e n d e r >
	 < f i r s t N a m e > R a n d e y < / f i r s t N a m e >
	 < l a s t N a m e > S m i t h < / l a s t N a m e >
< / p e r s o n I n f o >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < g e n d e r > m a l e < / g e n d e r >
 < f i r s t N a m e > E v a < / f i r s t N a m e >
 < l a s t N a m e > C h e n < / l a s t N a m e >
 < f i r s t N a m e > R a n d e y < / f i r s t N a m e >
 < l a s t N a m e > W o l f < / l a s t N a m e >
< / p e r s o n I n f o >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < g e n d e r > m a l e < / g e n d e r >
 < f i r s t N a m e > M a r y < / f i r s t N a m e >
 < l a s t N a m e > W o l f < / l a s t N a m e >
 < f i r s t N a m e > I v y < / f i r s t N a m e >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
< f i r s t N a m e > S i s s y < / f i r s t N a m e >
< l a s t N a m e > H e < / l a s t N a m e >
< / p e r s o n I n f o >

X M L S c h e m a 1 7 X M L I n s t a n c e s 1 7

Figure 6.17: Test Case 17 <sequence> within <sequence> element

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " p e r s o n I n f o " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 <xs :cho ice>
 < x s : e l e m e n t n a m e = " g e n d e r " t y p e = " x s : s t r i n g " / >
	 < x s : e l e m e n t n a m e = " b i r t h d a y " t y p e = " x s : d a t e " / >
	 < / x s : c h o i c e >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < f i r s t N a m e > T o m < / f i r s t N a m e >
	 < l a s t N a m e > J o h n s o n < / l a s t N a m e >
	 < g e n d e r > f e m a l e < / g e n d e r >
< / p e r s o n I n f o >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e r s o n I n f o x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < f i r s t N a m e > F i s h e r < / f i r s t N a m e >
	 < l a s t N a m e > J o h n s o n < / l a s t N a m e >
	 < b i r t h d a y > 2 0 - 1 2 - 1 9 7 6 < / b i r t h d a y >
< / p e r s o n I n f o >

X M L S c h e m a 1 8 X M L I n s t a n c e s 1 8

Figure 6.18: Test Case 18 <choice> within <sequence> element

XML Document to reduce the number of test case, and cover as many different structures
as possible. XML Schema 19 in Figure 6.19 is schema with a <all> element. The
schema describes the animal types in a pet shop, which include cat, dog and bird. We set
the values for the element “Dog” as “Bandog, Leonberger, Huntaway, Pekinese, Puggy,
Rottweiler, Puli”; for element “Cat” we set the values as “Singapura, Exotic, Ragdoll,
Ocicat, Somali, Chartreux, Burmese, Korat, Maine, Chartrux, Laperm”; and the values
for “Bird” are “Partridges, Cockatiels, Rosellas, Mynahs, Kakapo, Budgerigars”. We let
TAXI generate 30 instances, which is 10 times the element, enough to see if the children
of <all> occur with a random sequence. The results are good, and we have selected three
instances of <all>’s children sequence, and show them in Figure 6.19. In each of them
the children of the “petShop” occur in a different sequence.

The children of <all> element can occur only 0 time or once, and the combination of
occurrence rules is the same as <sequence>, so we do not show that test case here.

6.3. TEST CASES OF <COMPLEXTYPE> 105

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > C h a r t r e u x < / C a t >
 < D o g > L e o n b e r g e r < / D o g >
 < B i r d > C o c k a t i e l s < / B i r d >
< / p e t S h o p >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " p e t S h o p " >
 < x s : c o m p l e x T y p e >
 <xs :a l l>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < /xs :a l l>
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

X M L S c h e m a 1 9 X M L I n s t a n c e 1 9

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > P e k i n e s e < / D o g >
 < C a t > S o m a l i < / C a t >
 < B i r d > C o c k a t i e l s < / B i r d >
< / p e t S h o p >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > B u d g e r i g a r s < / B i r d >
 < C a t > C h a r t r u x < / C a t >
 < D o g > B a n d o g < / D o g >
< / p e t S h o p >

Figure 6.19: Test Case 19 <all> element

6.3.5 Test Cases of <choice> Element
<choice> element specifies an element that could contain more than one child element,
but only one of them can appear within the corresponding element of the generated XML
Documents.

<choice> Element

As shown in the Figure 6.20, XML Schema 20 has a <choice> element “Animal”, and
the child elements “Cat”, “Dog” and “Bird”. Using TAXI three different Intermediate
Instances can be generated, each of them containing one different child element of “An-
imal”. We have used the same values as in Test Case 19 for these three elements in the
schema, and ask TAXI to generate 30 instances, which is ten times the intermediate in-
stances, so that we can check if TAXI can deal with all the instances correctly. In Figure
6.20, we show three instances, each of them containing a different <choice> child.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " A n i m a l " >
 < x s : c o m p l e x T y p e >
 <xs : cho i ce>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > S i n g a p u r a < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > B a n d o g < / D o g >
< / A n i m a l >

X M L S c h e m a 2 0 X M L I n s t a n c e 2 0

Figure 6.20: Test Case 20 <choice> element

<choice> With “minOccurs” and “maxOccurs”

Test Case 21 presents the <choice> element with occurrence attributes. In contrast to
<sequence> and <all>, the occurrence combinations of <choice> elements are not

106 CHAPTER 6. COVER SET OF TAXI

based on the whole schema, but on the derived subschemas (The process of how to gen-
erate subschemas is presented in Chapter 4). The XML Schema 21 shown in Figure 6.21
is based on Test Case 20; the difference is that the child elements “Cat” and “Bird” have
the occurrence attributes. We have still used the same values as in Test Case 20, and let
TAXI to generate all different instances. Seven instances are generated by TAXI, and are
shown in Figure 6.21.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < C a t > B u r m e s e < / C a t >
 < C a t > R a g d o l l < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " A n i m a l " >
 < x s : c o m p l e x T y p e >
 <xs : cho i ce>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " m a x O c c u r s = " u n b o u n d e d " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " m a x O c c u r s = " u n b o u n d e d " / >
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < C a t > O c i c a t < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
X M L S c h e m a - i n s t a n c e " >
 < D o g > B a n d o g < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < C a t > C h a r t r e u x < / C a t >
 < C a t > S i n g a p u r a < / C a t >
 < C a t > E x o t i c < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < B i r d > K a k a p o < / B i r d >
 < B i r d > P a r t r i d g e s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 /
 X M L S c h e m a - i n s t a n c e " >
 < B i r d > K a k a p o < / B i r d >
 < B i r d > M y n a h s < / B i r d >
 < B i r d > B u d g e r i g a r s < / B i r d >
< / A n i m a l >

X M L S c h e m a 2 1

X M L I n s t a n c e s 2 1

Figure 6.21: Test Case 21 <choice> element with occurrence attributes

<choice> In a <group>

Figure 6.22 shows the test case of a <choice> element in a <group>. From the XML
Schema 22, TAXI can generate 3 instances which are shown in Figure 6.22.

Two Nested <choice>s

As already known, TAXI will combine the children of <choice> elements to generate the
subschemas. When there is only one <choice> element, it is easy. TAXI only separates
the child elements of <choice> into different instances, and we have already shown this
in Test Case 20. On the other hand if there are more than one <choice> in a schema, the
combination becomes complicated.

In Test Case 23 shown in Figure 6.23, the element “Animal” in XML Schema 23
has three child elements, the first two are simple elements that have the type “xs:string”.
The last child element “Bird” is also a <choice> element, which has two child elements

6.3. TEST CASES OF <COMPLEXTYPE> 107

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " p e t S h o p " t y p e = " a n i m a l T y p e " / >

< x s : g r o u p n a m e = " g r o u p O f A n i m a l " >
 < x s : c h o i c e >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " t y p e = " x s : s t r i n g " / >
 < / x s : c h o i c e >
< / x s : g r o u p >

< x s : c o m p l e x T y p e n a m e = " a n i m a l T y p e " >
 < x s : g r o u p r e f = " g r o u p O f A n i m a l " / >
< / x s : c o m p l e x T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < D o g > L e o n b e r g e r < / D o g >
< / p e t S h o p >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < C a t > O c i c a t < / C a t >
< / p e t S h o p >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< p e t S h o p x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
	 < B i r d > P a r t r i d g e s < / B i r d >
< / p e t S h o p >

X M L S c h e m a 2 2 X M L I n s t a n c e s 2 2

Figure 6.22: Test Case 22 <choice> element within a <group>

“Parrot” and “Sparrow”. We have used the same values for element “Dog” and “Cat” as
in Test Case 19, and set the values of “Parrot” as “Kakapo, Macaw”, and the values of
“Sparrow” as “Seaside, Canary”, and let TAXI generate all possible instances. From this
schema, four instances are derived, which are shown in Figure 6.23.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " A n i m a l " / >
 < x s : c o m p l e x T y p e >
 <xs : cho i ce>
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " B i r d " >
 < x s : c o m p l e x T y p e >
 <xs :cho ice>
 < x s : e l e m e n t n a m e = " P a r r o t " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " S p a r r o w " t y p e = " x s : s t r i n g " / >
 < /xs :cho ice>
 < / x s : c o m p l e x T y p e >
 < / xs :e l emen t>
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > L e o n b e r g e r < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > K o r a t < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d >
 < S p a r r o w > S e a s i d e < / S p a r r o w >
 < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d >
 < P a r r o t > K a k a p o < / P a r r o t >
 < / B i r d >
< / A n i m a l >

X M L S c h e m a 2 3 X M L I n s t a n c e s 2 3

Figure 6.23: Test Case 23 <choice> within a <choice> element

<sequence> Within a <choice> Element

This test case is used for testing if TAXI can work well when a <sequence> element
within a <choice>. In XML Schema 24 (see Figure 6.24), the element “shipForm” is
a <choice> element in which one of its children is a <sequence> element. In this test
case, we did not predefine any values for the elements, but just let TAXI generate all
possible instances. As a result, there are two instances derived, and the elements in the
instances have random values that generate from TAXI automatically. We show them in
XML Instances 24 in Figure 6.24.

108 CHAPTER 6. COVER SET OF TAXI

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : c o m p l e x T y p e n a m e = " s h i p F o r m T y p e " >
 <xs : cho i ce>
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " n a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " p r i c e " t y p e = " x s : d e c i m a l " / >
 < / x s : s e q u e n c e >
	 < x s : e l e m e n t n a m e = " i n f o " t y p e = " x s : s t r i n g " / >
 < / xs : cho i ce>
 < / x s : c o m p l e x T y p e >
 < x s : e l e m e n t n a m e = " s h i p F o r m " t y p e = " s h i p F o r m T y p e " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s h i p F o r m x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < n a m e > I F n l e i s f < / n a m e >
 < p r i c e > 9 9 5 . 3 4 6 4 5 4 < / p r i c e >
< / s h i p F o r m >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s h i p F o r m x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < i n f o > S o I r l I F e 3 4 I F d g < / i n f o >
< / s h i p F o r m >

X M L S c h e m a 2 4 X M L I n s t a n c e s 2 4

Figure 6.24: Test Case 24 <sequence> within a <choice> element

Parallel <choice> Elements

When an XML Schema contains more than one <choice> elements, their child elements
will be combined in the generated XML Documents. As shown in Figure 6.25, XML
Schema 25 has the root element “BiologyType”, which is a <sequence> element, and
two <choice> element children “Animal” and “Plant”. For the children of “Animal”,
we have used the same values as in Test Case 19, for the children of “Plant”, the values
for “Tree” are “Apple, Cherry, Baldcypress, Lemon, Maple”, and the values of “Flower”
are set as “Rose, Lily, Lotus, Hydrangea, Tulip”. We have asked TAXI to generate all
possible instances. There are four XML Instances generated. From the XML Instances
25 in Figure 6.25 we can see that each of the instance includes a combination of the
<choice> child elements.

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / x m l S c h e m a " >
 < x s : e l e m e n t n a m e = " B i o l o g y " t y p e = " B i o l o g y T y p e " / >
 < x s : c o m p l e x T y p e n a m e = " B i o l o g y T y p e " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " A n i m a l " >
 < x s : c o m p l e x T y p e >
 <xs :cho ice>
 < x s : e l e m e n t n a m e = " D o g " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " C a t " t y p e = " x s : s t r i n g " / >
 < /xs :cho ice>
 < / x s : c o m p l e x T y p e >
 < / xs :e l emen t>
 <xs :e l emen t name="P lan t ">
 < x s : c o m p l e x T y p e >
 <xs :cho ice>
 < x s : e l e m e n t n a m e = " F l o w e r " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " T r e e " t y p e = " x s : s t r i n g " / >
 < /xs :cho ice>
 < / x s : c o m p l e x T y p e >
 < / xs :e l emen t>
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< B i o l o g y x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < A n i m a l >
 < C a t > S o m a l i < / C a t >
 < / A n i m a l >
 <P lan t>
 < T r e e > B a l d c y p r e s s < / T r e e >
 < /P lan t>
 < / A n i m a l >
< / B i o l o g y >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< B i o l o g y x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < A n i m a l >
 < D o g > P u l i < / D o g >
 < / A n i m a l >
 <P lan t>
 < T r e e > C h e r r y < / T r e e >
 < /P lan t>
 < / A n i m a l >
< / B i o l o g y >

X M L I n s t a n c e s 2 5X M L S c h e m a 2 5

Figure 6.25: Test Case 25 two parallel <choice> elements

With Test Strategies

Test Case 26 checks if TAXI can perform test strategies correctly. In this test case, we
have used the same schema as in Test Case 20, which is simple, with a <choice> element.

6.4. TEST CASES OF <REDEFINE> 109

For this generation we have also used the same values for the elements as in Test Cast 20.
However, we have used the different test strategies. To do the testing, we needed to assign
the weights for the child elements of “Animal” first. In this test case we set the weight of
“Cat” as 0.2, the weight of “Dog” as 0.3, and the weight of “Bird” as 0.5. In order to show
the schema and the weight clearly, we present the XML Schema 20 as a tree structure.

First we tried the first test strategy, which generates the instances by the given instance
number. We set the instance number as 10 (the fact that we set the number as ten does
not have particular significance; the user can choose any number they want. Here we use
10 so that it is easier to show all instances in the thesis). As a result we get 10 * 0.2 = 2
instances generated from the subschema that include “Cat” element, 10 * 0.3 = 3 instances
from the subschema with “Dog” element, and 10 * 0.5 = 5 instances from the subschema
with “Bird” element. We show these instances in Figure 6.26.

Next we will tried second test strategy, which generates the instances by the input
coverage with the same weights as the element. The value of the weight can influence
which subschemas will be used for instance generation. For example we can set the
weight as 80%. Then TAXI will select the subschema beginning with the heaviest on,e
until the total weight of selected subschemas is equal to or bigger than the input coverage.
With this test strategy, we get two instances, one with the element “Bird” and one with
“Dog”. Because the heaviest subschema is with “Bird” child, the weight is 0.5 smaller
than the input coverage, so TAXI selects the second heaviest subschema which is the one
with the “Dog” element. Then the total weight of the selected subschemas is 0.8 which is
equal to the input coverage, so TAXI stops the selection and generates the instances only
from the selected subschemas. See these instances in Figure 6.26.

Finally we tried the third test strategy, which mix the first two strategies together. In
this case we still set the coverage as “80%” and the number of instances as 10. Finally
we get 10 instances, 4 instances with the element “Dog”, and 6 with the element “Bird”.
These instances are shown in Figure 6.26.

6.4 Test Cases Of <Redefine>

6.4.1 Redefine The <ComplexType> Element

The <Redefine> element can redefine an element in different XML Schemas. In Fig-
ure 6.27, an XML Schema “name.xsd” defines a complex type “person”, which has two
children “firstName” and “lastName”. while in the schema “author.xsd”, “person” is re-
defined by extension with a child “gender”. As a result if we generate from the schema
“author.xsd”, we will get an instance with a “author” element, which has three children
“firstName”, “lastName” and “gender”. The instance generated by TAXI is shown in
Figure 6.27.

110 CHAPTER 6. COVER SET OF TAXI

6.4.2 Redefine The <SimpleType> Element
In Figure 6.28, the XML Schema “city.xsd” has a simple type “cityType”, which has two
enumeration values “LA” and “Pisa”; while in the schema “simpleCity.xsd”, “cityType”
is redefined by restriction with only one value “Pisa”. As a result, if we generate from the
schema “simpleCity.xsd”, we will get an instance with “smallCity” element, and its value
will always be “Pisa”. This instance generated by TAXI is shown in Figure 6.28.

6.5 Test Cases Of <any> and <anyAttribute>
Element <any> and <anyAttribute> are very special in XML Schema; they are used
to enable the user to extend the XML Document with elements or attributes that are not
specified by the schema. They do not define a specified element or attribute, but give
freedom to the user to fill in any attribute he/she expects.

6.5.1 Test Case Of <any> Element
Figure 6.29 shows the XML Schema 29. It defines an element “student”, which is a
<sequence> element with three child elements. The last child element is <any> element,
which means in the corresponding XML Instances, the user can extend the “student” with
any element. With TAXI, when there is the <any> element, TAXI will create an element
named “any”, and the value of the element is also filled in with “any”. In this test case, the
<any> element has an occurrence attribute, three different instances could be generated.
We show these three instances on the right side of the Figure 6.29. Also for the elements
“firstName” and “lastName” we use the same values as Test Case 19.

6.5.2 <anyAttribute> Element
Test Case 30 shows a schema with an <anyAttribute> element. Similar to the <any>
element, TAXI creates the attribute named “anyAttribute”, filled with the value “any-
Attribute”. From the schema in Figure 6.30, we ask TAXI to generate 30 instances.
Because “anyAttribute” is not required in the schema, we want more instances to test
if it occurs optionally. There are two different structures among these instances since
<anyAttribute> is optional. Therefore in some instances the element “student” has the
“anyAttribute”, in some it is omitted it. We have selected two: one with the <anyAttribute>
and one without. The generated instances are shown on the right side of Figure 6.30.

6.6 Summary
In this section we have presented a set of test cases used for testing the TAXI tool. These
test cases are focused on the specific elements and attributes defined by the XML Schema,
They help us to ensure that TAXI can deal with the elements and attributes of the XML

6.6. SUMMARY 111

Schema in the correct way. For the derived instances, we have not show all instances
derived by TAXI, in order to make it easier to read; we have just selected typical ones and
have shown them in the test cases. Also, from the Table it is clear we have not presented
all test cases used for testing TAXI, because some of them are large, and not easy to
understand if we show them in text format. However, the purpose of this chapter is to
show the details of the specific element generation, and the correctness of the behaviors
of the TAXI tool.

112 CHAPTER 6. COVER SET OF TAXI

A n i m a l

c h o i c e

C a t D o g B i r d

0 . 2 0 . 3 0 . 5

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > S i n g a p u r a < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > B a n d o g < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < C a t > O c i c a t < / C a t >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > B a n d o g < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > H u n t a w a y < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > M y n a h s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > C o c k a t i e l s < / B i r d >
< / A n i m a l >

X M L I n s t a n c e s b y " F i x n u m b e r " t e s t s t r a t e g y

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > K a k a p o < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > C o c k a t i e l s < / B i r d >
< / A n i m a l >

X M L I n s t a n c e s b y " F i x c o v e r a g e " t e s t s t r a t e g y

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > R o t t w e i l e r < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > H u n t a w a y < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > H u n t a w a y < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < D o g > P u l i < / D o g >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > C o c k a t i e l s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > C o c k a t i e l s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > M y n a h s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > B u d g e r i g a r s < / B i r d >
< / A n i m a l >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F 8 " ? >
< A n i m a l x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < B i r d > R o s e l l a s < / B i r d >
< / A n i m a l >

X M L I n s t a n c e s b y " F i x e d " t e s t s t r a t e g y

Figure 6.26: Test Case 26 Apply test strategies

6.6. SUMMARY 113

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : r e d e f i n e s c h e m a L o c a t i o n = " n a m e . x s d " >
 < x s : c o m p l e x T y p e n a m e = " p e r s o n " >
 < x s : c o m p l e x C o n t e n t >
 < x s : e x t e n s i o n b a s e = " p e r s o n " >
 <xs :sequence>
 <xs :e l emen t name="gende r " t ype= "xs : s t r i ng " />
 < / xs :sequence>
 < /xs :ex tens ion>
 < / x s : c o m p l e x C o n t e n t >
 < / x s : c o m p l e x T y p e >
 < / x s : r e d e f i n e >
< x s : e l e m e n t n a m e = " a u t h o r " t y p e = " p e r s o n N a m e " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : c o m p l e x T y p e n a m e = " p e r s o n " >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i s t N a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t N a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< a u t h o r >
 < f i r s t N a m e > S i s s y < / f i r s t N a m e >
 < l a s t N a m e > S m i t h < / l a s t N a m e >
 < g e n d e r > f e m a l e < / g e n d e r >
< / a u t h o r >

X M L S c h e m a 2 7

X M L I n s t a n c e 2 7

n a m e . x s d

a u t h e r . x s d

Figure 6.27: Test Case 27 Redefine the complex type element

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : s i m p l e T y p e n a m e = " c i t y T y p e " >
 <xs : res t r i c t i on base="xs : s t r i ng ">
 < x s : e n u m e r a t i o n v a l u e = " L A " / >
 < x s : e n u m e r a t i o n v a l u e = " P i s a " / >
 < /xs : res t r i c t i on>
 < / x s : s i m p l e T y p e >
 < x s : e l e m e n t n a m e = " c i t y " t y p e = " c i t y T y p e " / >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : r e d e f i n e s c h e m a L o c a t i o n = " c i t y . x s d " >
 < x s : s i m p l e T y p e n a m e = " c i t y T y p e " >
 < x s : r e s t r i c t i o n b a s e = " c i t y T y p e " >
 < x s : e n u m e r a t i o n v a l u e = " P i s a " / >
 < / xs : res t r i c t i on>
 < / x s : s i m p l e T y p e >
< / x s : r e d e f i n e >
< x s : e l e m e n t n a m e = " s m a l l C i t y " t y p e = " c i t y T y p e " >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s m a l l C i t y > P i s a < / s m a l l C i t y >

X M L S c h e m a 2 8

X M L I n s t a n c e 2 8

c i t y . x sd s i m p l e C i t y . x s d

Figure 6.28: Test Case 28 Redefine the simple type element

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
 < x s : e l e m e n t n a m e = " s t u d e n t " >
< x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t n a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t n a m e " t y p e = " x s : s t r i n g " / >
 < x s : a n y m i n O c c u r s = " 0 " / >
 < / x s : s e q u e n c e >
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
< f i r s t n a m e > E v a < / f i r s t n a m e >
< l a s t n a m e > B r o w n < / l a s t n a m e >
< a n y > a n y < a n y >
< / s t u d e n t >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
< f i r s t n a m e > S i s s i < / f i r s t n a m e >
< l a s t n a m e > J u l i e < / l a s t n a m e >
< / s t u d e n t >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
< f i r s t n a m e > E v a < / f i r s t n a m e >
< l a s t n a m e > J o h n s o n < / l a s t n a m e >
< a n y > a n y < a n y >
< a n y > a n y < a n y >
< / s t u d e n t >

x m l S c h e m a 2 9 x m l I n s t a n c e s 2 9

Figure 6.29: Test Case 29 <any> element

114 CHAPTER 6. COVER SET OF TAXI

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< x s : s c h e m a x m l n s : x s = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
< x s : e l e m e n t n a m e = " s t u d e n t " >
 < x s : c o m p l e x T y p e >
 < x s : s e q u e n c e >
 < x s : e l e m e n t n a m e = " f i r s t n a m e " t y p e = " x s : s t r i n g " / >
 < x s : e l e m e n t n a m e = " l a s t n a m e " t y p e = " x s : s t r i n g " / >
 < / x s : s e q u e n c e >
 < x s : a n y A t t r i b u t e / >
 < / x s : c o m p l e x T y p e >
< / x s : e l e m e n t >
< / x s : s c h e m a >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
 a n y a t t r i b u t e = " a n y a t t r i b u t e " >
 < f i r s t n a m e > M a r y < / f i r s t n a m e >
 < l a s t n a m e > H a n s < / l a s t n a m e >
< / s t u d e n t >

< ? x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ? >
< s t u d e n t x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e " >
 < f i r s t n a m e > T o m < / f i r s t n a m e >
 < l a s t n a m e > H e < / l a s t n a m e >
< / s t u d e n t >

X M L S c h e m a 3 0 X M L I n s t a n c e s 3 0

Figure 6.30: Test Case 30 <anyAttribute> element

Part III

XPT Applications

Chapter 7

XSLT Transformation Testing

This chapter presents an application of TAXI, which is an automatic validation of an
XSLT document.

7.1 Introduction

As introduced in Chapter 2, XML is used as a standard way to interchange information
between systems, since it is easily written and read by both the computers and humans.
The systems that need to interchange the information may not belong to the same organi-
zation, or even be involved in the different application domains. Therefore it is common
for the information to be defined by different formats. If the XML Documents need to
transfer data between those applications, they must be understood by the system of both
sides, so it needs data format transformation that can transform the XML Document from
one format, used by one application, to another format, used by the other one. The XSLT
language [XSL99] is developed to target this problem.

XSLT (eXtensible Stylesheet Language: Transformations) is a language primarily
designed for transforming an XML Document into another XML Document. It can
also transform XML Documents to HTML, XHTML and some other text-based formats.
XSLT has been a W3C Recommendation since 1999. XSLT creates the formatting struc-
tures that interpret and modify the existing XML element, and output the modified struc-
ture to the document with the required format, such as HTML, PDF, etc. The formatting
structures are written in the stylesheet, which are constructed using template rules that
match one or more nodes in the source XML Document, which are selected nodes. The
target document will be created by the selected nodes, and compose the structure of them
by the definition of XSLT.

Along with the widespread use of XML-based applications, XSLT has become more
and more important. The correctness of the XSLT document critically affects the inter-
change of the systems. Also, as the XML Documents become longer and more complex,
correspondingly the complexity of the XSLT stylesheet increases rapidly. Moreover the
particular nature of XSLT Stylesheet containing a set of directives destined to be inter-

118 CHAPTER 7. XSLT TRANSFORMATION TESTING

preted by an XSLT engine makes them certainly not easily checked by human readers.
Concerning the properties of TAXI, our goal is to create a test environment for validating
the transformation from XML Documents to other XML Documents by XSLT, and for
validating the whole process of testing, including test case generation, test execution and
the test result analysis totally automatically.

This chapter is structured as follows: in Section 7.2 we give a general idea of our
approach to XSLT stylesheet validation; in Section 7.3 we show a case study for XSLT
validation to the bibliographic domain. Finally, in Section 7.3.3 we present the compar-
isons between TAXI and other XML benchmark tools.

7.2 Automatic Validation of XSLT Stylesheet
This section discusses why our approach seems particularly suitable for testing XSLT
stylesheets for which the starting and arrival formats are specified using XML Schema.

The general testing framework is based on software applications taking as input data
structured in XML format. Such a framework is particularly suitable for stateless ap-
plications, as is the case of an XSLT engine that derives an XML file reformatting the
data retrieved from another XML file and following the rules defined within an XSLT
Stylesheet.

In general, the XML Instance from which the data are retrieved does not have to
comply with any kind of XML Schema or other formatting technology. Nevertheless, the
availability of an XML Schema specifies the structure of accessible data of the XML, but
it is not an exception. Having this assumption in mind, it immediately follows that TAXI
can be a powerful tool for generating a relevant set of XML Instances to be provided
to the XSLT engine. Also, as presented in the Chapter 2, today in many projects, XML
Schema acts as a document for helping users to understand easily the structure of the XML
Documents used in the software system. Also when transforming the XML Documents
between different applications, it is common for both the source and the target XML
Documents to be accompanied by the related XML Schemas. The idea of XSLT stylesheet
validation is actually like black-box testing, using TAXI to generate the XML Instances
from the source schema, transform the XML Instances by XSLT stylesheet to the target
XML Documents, and check if all the transformed XML Documents conform to the target
schema. In Figure 7.1 we show the process of XSLT validation with TAXI.

As shown in Figure 7.1, the aim is to get XML Instances from a defined schema by
TAXI, and put the instances into the XSLT engine. After one XML Instance is passed,
the XSLT engine will provide back another XML Instance.

The availability of an XML Schema for the instances derived and returned by the
XSLT engine according to the Stylesheet permits the derivation of a simple oracle to
check if the derived instances conform to the corresponding schema. This scenario leads
to a completely automated framework to check if an XSLT stylesheet is correct.

The test environment is composed of five parts: TAXI tool; the schema of the source
XML Documents (here we call it source schema); the XSLT stylesheet (this is the object

7.2. AUTOMATIC VALIDATION OF XSLT STYLESHEET 119

Figure 7.1: Activity diagram of XSLT stylesheet checking

we want to test); the schema of the target XML Documents (we call it the target schema);
and the oracle to analyse the results of the testing (it is actually a validator). Then we
will describe the details of the approach, follow the steps from the instance generation, to
XML Instance transformation, and finally to the result checking.

The method of automatic XSLT validation has three steps: test case generation, XML
transformation, and transformed XML validation. TAXI first generates a set of valid
instances that conform to the source XML Schema. The number of instances is very
important. As presented in Chapter 5, the user could set the number of the instances and
create the value files for the elements if necessary. If the full number of instances is not
very large, it is better to generate all the possible instances; otherwise it is possible that
the omitted instances may cause errors, so that those transformations will not be carried
out, and the results of the testing may not be the accurate. If the number of instances
is very huge, then the number of instances should at least be equal to or bigger than the
instance number with pairwise testing. If the element value is also a factor that can effect
the transformation, the user should create value files for the elements before generation,
and input the valid values to the files, so that the elements in the derived instances will
have meaningful values. The derived instances will be used as test cases in the next step,

120 CHAPTER 7. XSLT TRANSFORMATION TESTING

and this step is actually the test case derivation.
After the instance generation, the second step is XML Instance transformation. The

XSLT stylesheet used in the XSLT engine is the object under test. The testing aims to
check if the XSLT stylesheet under test can transform correctly all the instances derived
from the source XML Schema. The XSLT engine takes the XML Instances one by one,
and transforms them to the target XML Document. This process is executed automati-
cally.

The last step is the test result checking. We use an XML validator as the oracle. When
an XML Instance is transformed to the target XML Document, it will be taken to the XML
validator and checked immediately whether it is conformed to the target XML Schema. If
it is conformed, then this instance is passed; otherwise it is failed, the result will be output
to the test report file.

After validation, if all transformed XML Documents are conformed to the target XML
Schema, we can say that the XSLT stylesheet has passed the testing. Otherwise it has not
passed, and there must be somewhere in the stylesheet that is not correct, and can not
transform the XML correctly. The test report gives some clues for bug shooting if the
XML Document does not pass validation. The unconformable place will likely be the
place where the XSLT stylesheet can not transform properly.

Most importantly, the steps of the XSLT transformation testing are executed com-
pletely automatically. The only effort of the tester is to design and populate the element
values before testing. However it is not required, if the transformation is not related to the
value of elements, in that case value population is not necessary. In the next section, we
give a case study that applies this method to testing the transformation between different
data models.

7.3 Case Study

In this section we present the case study in which automatically validate an XSLT stylesheet
by applying the framework outlined in Figure 7.1.

7.3.1 Marc21 and Dublin Core

This case study is to test the transformation from MARC XML to Dublin Core. For
better understanding, we first introduce two important concepts: MARC XML [mar06]
and Dublin Core [dub07a].

MARC means MAchine-Readable Cataloging: a MARC record is a machine-readable
cataloging record, formatted according to MARC 21, which is a set of standards for rep-
resenting and exchanging disparate data such as authority, bibliographic, classification,
community information, and holdings in a machine-readable form. MARC XML is a
framework for working with MARC data in an XML environment. This framework is be-
ing developed by the Library of Congress’ Network Development [LCN06] and MARC

7.3. CASE STUDY 121

Standards Office [MAR07d]. The MARC XML framework consists of many components,
including schemas, stylesheets and software tools.

To specify the structure of MARC complying documents, a MARC XML Schema
is created. In the schema all types of MARC 21 records are accommodated, such as:
bibliographic, holdings, bibliographic with embedded holdings, authority, classification,
community information, and so on. We show the MARC XML Schema in Figure 7.2.

From this Figure, we can see the root element of a MARC record is collection
with a child record. The record element represents the structure of the MARC record.
It has three children, leader, controlfield and datafield. For all MARC
records leader is always the first field; it contains data elements, fixed in 24 character
positions, that provide processing information of the record [web05]. Controlfield
is a tagged “00X” field, where different tags yield different meanings. For example,
fields 001-006 contain control numbers and other control and coded information. The
Datafield element is a variable data field tagged with “01X-8XX”. There are two in-
dicator position attributes within the datafield, which are ind1 and ind2; these
indicator positions contain values which interpret or supplement the data found in the
field. There is a child element of datafield that is subfield. The attribute code
of subfield is an alphabetical indicator that specifies the type of information in each
subfield shown in a MARC record.

The Dublin Core metadata standard defines a set of elements used to describe a wide
range of networked resources. The schemas of the Dublin Core defines the structure and
syntax of metadata specifications in a formal way. The Dublin Core standard includes
Simple level and Qualified level, so there are qualified schema and simple
schema. In this case study we use the simple level schema. The schema defines terms
for Simple Dublin Core; there are 15 elements defined in the schema, such as “title”,
“creator”, “subject”, “description”, “publisher” and so on. All the default content type of
the elements is xs:string with the attribute “xml:lang”.

Along with usage of MARC record, exchanging information from a MARC-based
system to other systems is often required, so MARC Standard offices has produced a set
of XSLT stylesheets to convert from MARC record to other formats, such as MOD and
Dublin Core, as well as stylesheets for the opposite transformation. This case study tests
the transformation from MARC XML to Dublin Core, therefore MARC 21 schema is
the source schema. We generate MARC XML Instances, and use them as test cases to
automatically test the standard stylesheet that is used to transform from MARC XML to
Dublin Core metadata. There are three available stylesheets transforming metadata from
MARC record to Dublin Core. In this case study we has chosen the one used to trans-
form from MARC to simple Dublin Core, in particular we have chosen the XSLT named
“MARC21slim2SRWDC.xsl” [MAR05]. Since MARC is richer in data than Dublin Core,
the elements of Dublin Core are only mapped to some data fields of MARC, so specific
tag values are required for MARC XML files. Otherwise, if tag values are not specified,
it means there will not be the corresponding fields in the Dublin Core. In that case the
MARC XML will transform to an empty Dublin Core instance, which has the root ele-
ment of Dublin Core instance but without any data inside. In the next section we will

122 CHAPTER 7. XSLT TRANSFORMATION TESTING

Figure 7.2: MARC 21 XML Schema

present the details of the mapping from MARC to unqualified Dublin Core.

Mapping from MARC to unqualified Dublin Core

As already presented, the MARC 21 fields are listed by field number with specific sub-
fields if applicable. Since Dublin Core is simpler in data than Marc, not all possible Marc
subfields can find corresponding Dublin Core elements. Therefore [mar01] gives a table
mapping the Marc 21 subfields to Dublin Core, here we focus specifically on the map to
unqualified Dublin Core. This is shown in Table 7.1. In this table, the first row is the field
code of the MARC XML, the second row is the corresponding Dublin Core element, and
the last row is the notes on implementation. In the row of MARC XML, the code written
by a number is the datafield, the character “$” is used to specify the subfield used, and the
letter after “$” is the code of the subfield. If none is specified, it means all subfields can
be used.

7.3. CASE STUDY 123

MARC Fields DC Element Implementation Notes
100, 110, 111, 700, 710, 711 Contributor

720
651, 662 Coverage
751, 752

Creator Creator element not used
008/07-10 Date
260cg

500-599,except 506, 530, 540, 546 Description
340 Format

856$q
020$a, 022$a, 024$a Identifier

856$u
008/35-37 Language

041abdefghj
546

260ab Publisher
530, 760-787ot Relation

506 540 Rights
534$t Source

786ot
050, 060, 080, 082 Subject

600, 610, 611, 630, 650, 653
245, 246 Title Repeat dc:title for each.

Some applications may
wish to include 210, 222,
240, 242, 243 and 247.

Leader06, Leader07 Type
655

Table 7.1: MARC to Dublin Core Crosswalk (Unqualified) [mar01]

7.3.2 Driving the Generation Process
The process of the automatic XSLT testing approach is according to what was presented
in Section 7.2. First, a set of XML Instances is derived from the MARC 21 XML Schema.
The instances are then given as input to the XSLT and the resulting XML Instances are
validated against the Dublin Core named dc-schema.xsd [dcS04]. The derivation of XML
Instances is done by means of the tool TAXI. For validating the XSLT results against
the XML Schema of Dublin Core we use instead the validator for javax API [val04].
For conducting the experiment, TAXI and the validator have been integrated in a unique
environment, so that for both instances, derivation and checking for conformance of the
transformed instances are completely automated.

124 CHAPTER 7. XSLT TRANSFORMATION TESTING

There is no <choice> element in Marc 21 XML Schema; as presented in Chapter
4 and Chapter 5, the number of derived instances depends on the occurrence numbers.
From Figure 7.2 we can see there are 4 elements that have occurrence attributes, so that
from MARC 21 XML Schema, TAXI can generate 34 = 81 Intermediate Instances. We
show some of them in Figure 7.3. This means there are 81 different instance structures
that can be generated. The Intermediate Instances are then used for generating the final
instances set by associating appropriately selected values with each element.

co l l ec t i on co l l ec t i on

r e c o r d

t y p eid l e a d e r con t ro l f i e l d d a t a f i e l d

t a g

id
id

t a g i n d 1 i n d 2 s u b f i e l d

c o d e

co l l ec t i on

r e c o r d

l e a d e r con t ro l f i e l d

t a g

id

id

con t ro l f i e l d

t a g

con t ro l f i e l d

t a gid

co l l ec t i on

r e c o r d

t y p eid l e a d e r d a t a f i e l d

id

t a g i n d 1 i n d 2 s u b f i e l d

c o d e

d a t a f i e l d

t a g i n d 1 i n d 2 s u b f i e l d

c o d e

d a t a f i e l d

t a g i n d 1 i n d 2 s u b f i e l d

c o d e
id

co l l ec t i on

r e c o r d

t y p eid l e a d e r

id

d a t a f i e l d

t a g i n d 1 i n d 2
s u b f i e l d

c o d eid

s u b f i e l d

c o d eid

s u b f i e l d

c o d e

co l l ec t i on

r e c o r d

l e a d e r con t ro l f i e l d

t a g

id

id id

Figure 7.3: Example of Intermediate Instances derived by TAXI

As described in Section 7.3.1, there are some specific values for the elements of
MARC Schema that represent different fields of data. So we populate the value files
according to those definitions.

• For element “leader”, “leader” is a string with 24 characters. It has no indicators
or subfield codes; the data elements are positionally defined. The characters in
different positions represent different information, and in each position only some
specific characters can be used. For example the characters from 00 to 04 mean

7.3. CASE STUDY 125

the length of the record; the fifth character means the record status: “a” means an
increase in encoding level; “c” means corrected or revised; “d” mean deleted; “n”
means new; and “p” means an increase in encoding level from prepublication. The
definition of the characters of “leader” can be found in [MAR07c]. We checked the
MARC21slim2SRWDC.xsl, and found that only the sixth and seventh characters
are mentioned during the transformation. The sixth character represents type of
record, in which:
“a” means language material;
“c” means notated music;
“d” means manuscript notated music;
“e” means cartographic material;
“f” means manuscript cartographic material;
“g” means projected medium;
“i” means nonmusical sound recording;
“j” means musical sound recording;
“k” means two-dimensional nonprojectable graphic;
“m” means computer file;
“o” means kit;
“p” means mixed materials;
“r” means three-dimensional artifact or naturally occurring object;
“t” means manuscript language material.

The seventh character represents the bibliographic level. It could be:
“a” means monographic component part;
“b” means serial component part;
“c” means collection;
“d” means subunit;
“i” means integrating resource;
“m” means monograph or item;
“s” means serial.

With regard to the combination possibilities of the sixth and seventh characters, we
create 14 * 7 = 98 values for the “leader” element; each value includes one combi-
nation of the sixth and seventh characters. The characters of the other positions are
selected randomly, but the value can contain all possible combinations of letters of
the sixth and seventh character.

• For the element “controlfield”: “controlfield” is used to control numbers and other
kinds of coded information control that are used in the machine-readable bibli-
ographic records process. It has the attribute “tag”; the value of “tag” actually
contains the information. The value of “tag” could be presented as “XX0”. The
meanings of the values are listed below. The details of “controlfield” can be found

126 CHAPTER 7. XSLT TRANSFORMATION TESTING

in [MAR07a].

“001” means the control number. When “tag” equals 001, the value of “con-
trolfield” represents the organization that creates, uses or distributes the records;
“003” means the control number identifier. When “tag” equals 003 value of “con-
trolfield” is the MARC code for the organization that is mentioned in field 001
“005” means the date and time of latest transaction.
“006” means the fixed-length data elements-additional material, that is the data el-
ements defined by the form of material postionally.
“007” means the physical description fixed field, the positional definition of data
elements by category of material.
“008” means the fixed-length data elements, that is the positional definition of data
elements by type of material.
In the MARC21slim2SRWDC.xsl, only the last case is mentioned. This means that
in Dublin Core, no other cases have related elements. In order to simplify the in-
stances and also meet the requirement of the XSLT, we have given only one value
“008” for “tag”. When “tag” equal to “008”, each character of the value of “con-
trolfield” presents different meaning. In particular the 18-34 characters are in seven
separate sections corresponding to the type of material configurations, for instance
Books (BK), Computer Files (CF), Maps (MP) and so on. Since there are not spe-
cific requirements for the “controlfield” value for the transformation, we have found
a set of random values (around 20 values) for this element.

• For the element “datafield”: “datafield” has the attribute “tag”, “ind1” and “ind2”.
The value of “tag” represents the data field of the record. As already presented,
the values of “tag” can not all be used for the transformation from MARC XML
to Dublin Core, A table and list of the accepted values is given in Table 7.1. In
[MAR07b] a very detailed introduction of the number signification can be found.
We don’t describe it here. Therefore the values for “tag” are very clear; they are the
values that are listed in able 7.1. In that table also define the value of “code”, which
is the attribute of “subfield”. So we take all values mentioned in the Table 7.1, and
put them in the value file of “code”. The value of “subfield” is not important during
the transformation, so we set it with a set of random values (around 20 strings). For
the attribute of “ind1” and “ind2”, the value could be a number from 0 to 9, or a
single letters. Since their values do not influence the transformation, we set “0” to
“9” as the value set of those two attributes.

After value setting, we can start instance generation. The automatic generation of
instances from XML Schema can include two different kinds of variability. On one hand
it is possible to generate instances that are distinguishable on the basis of their structure
(i.e. they can be represented with different tree structures); on the other hand instances can
be distinguished on the basis of the value assumed by the various attributes and elements
composing the instance.

7.3. CASE STUDY 127

In order to illustrate whether the number of instance can influence the test result, we
have tested the XSLT with different quantities of instances. In the first test, we generate
the minimum number of instances, fixing the number of instances as “9”, since we know
that with this umber, TAXI will automatically start to apply pairwise testing. Then we fix
the number of instances as “81” which is the number of Intermediate Instances, then we
fix the number as “250”, and “1000”. The results of testing using different numbers of
instances are listed in Table 7.2.

Number of Number of Number of
generated test cases different
instances rising a failure faults

Pairwise (9) 3 1
81 27 1
250 81 1

1000 364 1

Table 7.2: Conducted experiments

We can see that with an increase in the number of test cases, the number of faults
increases too, but all of those failures are caused by the same fault. The only failure
occurs when the occurrence of “record” is equal to “0”. When the content of “collection”
is empty, the transformation can not work properly. The transformed XML Document is
not well-formed.

7.3.3 Comparison of TAXI With Other Instance Generators
In the previous case study, we used our tool TAXI to automatically generate XML In-
stances from the MARC 21 schema. Some other tools exist for XML Instance generation,
such as: XMLSpy [XML05b], oXygen [oxy07], Toxgene [tox05], and so on. TAXI,
however, surpasses existing tools, as it is unique in its combination of ease of use and
powerfulness. In this section we briefly discuss the comparison between TAXI and other
XML Instance generators.

Toxgene is a very powerful tool for instance generation; it can generate a large, con-
sistent collection of synthetic XML Documents and can also be used for benchmarking,
as can TAXI. However, Toxgene is template-based, thus before it can be applied, the user
needs to learn the template specification language and manually write down the gener-
ation instructions. In our experience, the effort to write the template increases with the
complexity of the XML Schema. In contrast, by using TAXI, the user does not need to
make any extra effort to configure the generation. Moreover, in Toxgene the resulting set
of instances will heavily depend on the template instructions, while TAXI is configured
to systematically consider all elements of the schema. It is possible to use Toxgene to
generate the instances of the MARC 21 XML Schema, but the instance coverage can not
be guaranteed, and it needs much more preparation works than using TAXI.

128 CHAPTER 7. XSLT TRANSFORMATION TESTING

XMLSpy and Oxygen are well-known and easy-to-use tools that can generate XML
Instances from a schema. The problem is that in reality they can generate only a few
specific instances from a schema, whose structure and value are fixed in advance by the
tools. Therefore they can not be used to do the testing done by of TAXI, because their test
is very dependent on the value of the derived XML Instances. If the values are fixed, and
not the values already defined in the MARC standard, the transformed XML Documents
will always be empty, so the test can not be executed.

By comparison, TAXI can combine differing numbers of occurrences of the elements,
and also provides the capability of interacting with the value sets for differentiating value
generation and selection. To our knowledge, it is the only tool that can be used for this
kind of XSLT testing without the necessity of high costs for study and preparation.

7.4 Summary
In this chapter we have presented an application of TAXI, an automatic validation of
XSLT stylesheets. XSLT stylesheets testing is a domain of particular relevance today;
and it seems particularly suitable to the application of our approach. We have used TAXI
to generate instances of an input XML Schema, taking those instances as test cases, trans-
forming them by the under test XSLT stylesheet, and validating the transformed XML
Document against the target XML Schema. In this case, the process can be completely
automated from the generation of instances to the definition of “powerful” oracles, by
using the input and target Schema as the model to which the transformed instances should
conform. We have also presented a case study that tests the transformation from MARC
XML to Dublin Core. In this way, our work has shown some of the first experimental
results obtained in the bibliographic domain.

Chapter 8

XML Database Mapping Test

This Chapter presents an application of TAXI for Black-box Testing, Specifically, we will
focus on the testing of XML database population.

8.1 Introduction

The most traditional approach to software testing (see, e.g., [Mye04]) is constituted of
Black-box Partition testing, in which a system is tested at its I/O interface by identifying
relevant classes of input values, and by systematically choosing some representative test
input values for each identified class. In three decades of research in software testing,
many sophisticated and advanced techniques have been proposed. However partition test-
ing remains the most intuitive approach, and perhaps the most practised on a wide scale,
since it only relies on the functional specifications describing the desired I/O behaviour
and does not require any special-purpose notation or technical expertise. The idea is that
tester examines the functional specification documentation and (ad hoc) selects those in-
put points that (in his/her judgement) exercise the program in relevant ways.

In this chapter we will present a method that applies Black-box Testing to test the
population of an XML database. An XML database is a data persistence software system
that allows data to be stored on XML format, and enables the data be queried, exported
and serialized into any format that the developer wishes [XTY07]. As presented in Chap-
ter 2, XML is a well-structured, self-describing language, that describes the data in a tree
structure; all of these features are make XML an advantageous database format.

There are two major classes of XML databases: XML-enabled databases (XEDB) and
Native XML databases (NXD). XEDB takes XML as input, maps all XML to a traditional
database (for instance a relational database), and renders XML as output. NXD defines
the internal model of databases depending on XML, the fundamental unit of the database
for storage is XML Documents [ABC03].

In this Chapter we focus on the application of an XML-enabled database. Along with
the widespread using of XML in various application domains, the demand for efficient
XML data management is increasing. The major relational database systems such as

130 CHAPTER 8. XML DATABASE MAPPING TEST

IBM DB2 [Rub06], Oracle [Bur06], Microsoft SQL Server [Sin00] are also extending
and offering forms of XML support. An XML database could be populated by an XML
Document, and with an XML supported database, XML can be stored as an XML Docu-
ment, a text document or even be built into table structures; all of these require mapping
between XML Documents and the database.

Not all XML Documents can map to an XML database. The particular database usu-
ally has a schema for defining the structure of acceptable XML Documents. There are
various methods for converting an XML Document into a database effectively and au-
tomatically, for example, the Oracle XML-SQL Utility, IBM DB2 XML Extender, etc.
[Day01].

In this chapter we will use TAXI to test the method for mapping and populating the
data of XML Document to XML database. TAXI can generate various instances from
the schema that defines acceptable XML Document, and those XML Documents can be
used as test cases to test the transformation method from XML Documents to an XML
database.

The Chapter is structured as followings: in Section 8.2 we show our concept of XML
database mapping testing; and in Section 8.3 we give a case study that uses TAXI to test
a mapping method from XML Documents to a MySQL database [DuB07b].

8.2 Black-Box Testing For XML-database Mapping
This section we will discuss the method for testing the data transformation from XML
Documents to an XML database.

Data is stored in an XML Document as characters or strings, but the data stored in
the database has various data types. If we want to store the data from an XML Document
in a database, we must solve the problem of how to map the data in the XML Document
to the corresponding XML database. Usually databases do not have the capability to do
this transformation, but various methods have been developed to solve this problem. The
database vendors such as Oracle, IBM, and Sybase have also developed tools to convert
XML Documents into relational tables, for instance XML-SQL Utility (XSU) [Ora] for
Oracle database, XML Extender [JC00] for IBM DB2, and Sybase Adaptive Server for
Sybase database.

Learning from these tools, we have found that when they do the XML Document to
XML database mapping, all of them need rules for defining the XML Document. Some
of the rules are definition files, some are functions and some are XML Schemas (DTD or
XML Schema). If the XML Documents that can be accepted by the tool are defined by
XML Schema, TAXI is very suitable for using to test this tool.

Since only XML Documents that conforming to the schema can be accepted by the
tool, the Schema is actually the specification of the input domain of the tool. The first
step of testing is to generate conformed XML Instances from the defined XML Schema.

Then the test is executed by running the tool to map the derived XML Instances to the
database. If all of the documents can be transformed correctly, the mapping tool passes

8.3. CASE STUDY 131

the testing; otherwise there are bugs in the tool.
The oracle in this testing usually is the tool itself, because when there is the error,

most tools could throw an exception message or at least record the error in the log file.
We can just check the output of the tools to get the result of testing.

In the next section we will present a case study of testing the XML-database mapping.

8.3 Case Study
In this section we will present a case study in which a tool for XML Document and XML
database transformation is tested. At the beginning we will first introduce the concept and
tools that are important for understanding the case study.

8.3.1 MySQL Database
MySQL [Sue02] [SM] is a relational database management system developed by the
Swedish company MySQL AB. Because of its consistently fast performance, high re-
liability, and ease of use MySQL has become one of the the most popular open source
databases. MySQL can run on different computer systems, such as Unix, Linux, and
Windows. MySQL can also be written in many languages. Currently it is widely used for
web applications.

The MySQL database system uses a client-server architecture. The server is the pro-
gram that actually manipulates the database. The client programs communicate the intent
of the user to the server by means of queries written in Structured Query Language (SQL)
[DuB07b]. The client and server of the database may be installed in the different comput-
ers. Client programs can be written for many different purposes; each of them connects
and interacts with the server, sending SQL queries to the server and receiving the query
result.

MySQL has now become a subsidiary of Sun Microsystems [sun08]. The source code
of the MySQL project is available under the terms of the GNU General Public License.

MySQL database does not have the native capabilities for supporting XML, but there
are many languages for writing MySQL applications provide the XML support, and those
languages connect XML with the relational databases. In the following section, we will
introduce a mapping tool that parses XML format data, and saves it in a MySQL database.

8.3.2 XML-database Mapper(myXDM)
XML-database Mapper (myXDM) [myx06] is an open source Java based application that
maps between XML and the database. It parses the data in XML format, and populates it
into the database; it can also query the data from the database and transform the data back
to the XML Document.

But not all XML Documents can be processed by myXDM; XML Documents that
can be mapped to the MySQL database by myXDM must conform to a specific specifica-

132 CHAPTER 8. XML DATABASE MAPPING TEST

tion defined by a schema. Initially the schema is written in DTD, and called “myXDM-
xml2db”, we show it in Figure 8.1.

< ! E L E M E N T X D M (T a b l e +) >
< ! E L E M E N T T a b l e (P r i m a r y K e y , F o r e i g n K e y * , R e c o r d *) >
< ! A T T L I S T T a b l e N a m e C D A T A # R E Q U I R E D
A c t i o n (i n s e r t | u p d a t e) # I M P L I E D
C o m m i t (t r u e | f a l s e) # I M P L I E D
>
< ! E L E M E N T P r i m a r y K e y (G e n e r a t o r) >
< ! A T T L I S T P r i m a r y K e y F i e l d C D A T A # R E Q U I R E D >
< ! E L E M E N T G e n e r a t o r (# P C D A T A) >
< ! A T T L I S T G e n e r a < ! E L E M E N T X D M (T a b l e +) >
< ! E L E M E N T T a b l e (P r i m a r y K e y , F o r e i g n K e y * , R e c o r d *) >
< ! A T T L I S T T a b l e N a m e C D A T A # R E Q U I R E D
A c t i o n (i n s e r t | u p d a t e) # I M P L I E D
C o m m i t (t r u e | f a l s e) # I M P L I E D
>
< ! E L E M E N T P r i m a r y K e y (G e n e r a t o r) >
< ! A T T L I S T P r i m a r y K e y F i e l d C D A T A # R E Q U I R E D >
< ! E L E M E N T G e n e r a t o r (# P C D A T A) >
< ! A T T L I S T G e n e r a t o r T y p e (u u i d | s e q u e n c e | a s s i g n e d | i d e n t i t y) # I M P L I E D
N a m e C D A T A # I M P L I E D >
< ! E L E M E N T F o r e i g n K e y (# P C D A T A) >
< ! A T T L I S T F o r e i g n K e y F i e l d C D A T A # R E Q U I R E D
R e f C D A T A # R E Q U I R E D
T y p e C D A T A # I M P L I E D
>
< ! E L E M E N T R e c o r d (F i e l d + , T a b l e *) >
< ! A T T L I S T R e c o r d C o m m i t (t r u e | f a l s e) # I M P L I E D >
< ! E L E M E N T F i e l d (# P C D A T A) >
< ! A T T L I S T F i e l d N a m e C D A T A # R E Q U I R E D >
< ! A T T L I S T F i e l d T y p e (b l o b | c l o b | d a t e | i n t | l o n g | d o u b l e | f l o a t | d a t e | t i m e | t i m e s t a m p) # I M P L I E D >
< ! A T T L I S T F i e l d F o r m a t C D A T A # I M P L I E D > t o r T y p e (u u i d | s e q u e n c e | a s s i g n e d | i d e n t i t y) # I M P L I E D
N a m e C D A T A # I M P L I E D >
< ! E L E M E N T F o r e i g n K e y (# P C D A T A) >
< ! A T T L I S T F o r e i g n K e y F i e l d C D A T A # R E Q U I R E D
R e f C D A T A # R E Q U I R E D
T y p e C D A T A # I M P L I E D
>
< ! E L E M E N T R e c o r d (F i e l d + , T a b l e *) >
< ! A T T L I S T R e c o r d C o m m i t (t r u e | f a l s e) # I M P L I E D >
< ! E L E M E N T F i e l d (# P C D A T A) >
< ! A T T L I S T F i e l d N a m e C D A T A # R E Q U I R E D >
< ! A T T L I S T F i e l d T y p e (b l o b | c l o b | i n t | l o n g | d o u b l e | f l o a t | d a t e | t i m e | t i m e s t a m p) # I M P L I E D >
< ! A T T L I S T F i e l d F o r m a t C D A T A # I M P L I E D >

Figure 8.1: The DTD of myXDM-xml2db

As already presented in Chapter 5, TAXI supports only XML Schema, so we first need
to transform the schema from a DTD to an XML Schema. There are a lot of tools that
can convert a DTD file to an XML Schema. From them we have chosen choose the well-
known tool XMLSpy to do the conversion, we have called the converted XML Schema
“myXDM-xml2dbSchema”. Figure 8.2 shows the converted XML Schema.

Below we introduce the elements in “myXDM-xml2dbSchema”:

• <XDM> is the root element.

• <Table> contains the data that will be saved into the database. <Table> has three
attributes:

– “Name” is the table named in the database; it is required.

8.3. CASE STUDY 133

Figure 8.2: The XML Schema myXDM-xml2dbSchema

– “Action” has two values “insert” and “update” that are defined in the schema.
When the attribute “Action” is equal to “insert”, it means the data under the
<Table> should be inserted into the database. When the value of “Action”
is “update” it denotes the data under <Table> should update the data in the
database. “Commit” has two values “true” and “false”. If its value is equal
to “true” then the transaction will be committed after the data has been saved
into the database, otherwise the transaction will not be commit.

• <PrimaryKey> element describes the primary key field. Its attribute “Field” is
required and denotes the primary key field name of the database.

• <Generator> element denotes the method for generating the primary key value.

134 CHAPTER 8. XML DATABASE MAPPING TEST

This method is defined by the value of the attribute “Type”. There are several
values for “Type” defined by the schema, which are:

– “uuid” which means the string should be generated by UUID algorithm and
the length of the string should be 36 characters.

– “sequence” which means the primary key generation method provided by the
Oracle database should be used. In this case the name of this method must
defined by the value of “Name” attribute.

– “assigned” which means the primary key value is assigned by the node <Field>.

– “identity” which means the value of primary key is assigned by the field char-
acters in the database.

• <ForeignKey> defines the field name. There are three attributes of this element:

– “Field” attribute defines the field name in child table.

– “Ref” attribute is the field of primary table; the format should be “Table.Field”.

– “Type” attribute defines the data type of the “Field”. MyXDM supports only
some specific types, they are: “int, long, float, double, date, time, datetime,
BLOB, image, bytea, CLOB, text”.

• <Record> element defines the record data that is inserted into the database. <Record>
is a sequence element that has two children that are referred from the elements
<Field> and <Table>, a record could include a table. It has an attribute “Commit”
that denotes whether to commit the transaction after the record data insert into the
database.

• <Field> defines the properties of the database. In XML Documents the data is
stored as characters, whereas in the database there are many types of data. Different
data types need specific methods for transformation. The attribute ‘Type” is used to
denote the type of the data.

8.3.3 Testing myXDM Tool
In this case study, the tool myXDM is the system under testing. We will use TAXI to test
if this tool can map XML Documents to a MySQL database correctly, and if it is strong
enough for dealing with a variety of documents.

As already presented, the input of this tool is a group of XML Documents, which are
conformed to the “myXDM-xml2dbSchema” (see in Figure 8.2), so the schema could be
considered as the specification for the myXDM input domain. According to the specifi-
cations of myXDM, this tool can deal with all documents that conform to the “myXDM-
xml2dbSchema”, so our task is trying to find as many as possible different conformed
XML Documents, and check if all of them can be mapped correctly. TAXI is a very
suitable tool for solving this problems. The process of testing is presented in Figure 8.3.

8.3. CASE STUDY 135

Conformed
XML Documents
Conformed

XML Documents
Conformed

XML Documents
Conformed

XML Documents

TAXI

Data

Test Cases

System Under Testing

myXDM-xml2db
(DTD)

myXDM-
xml2dbSchema

myXDM
MySQL

Database

Figure 8.3: XML database mapping test

Before using TAXI to generate the XML Instances of the “myXDM-xml2dbSchema”,
we must solve a problem. During the introduction of the “myXDM-xml2dbSchema”, it
was easy to see that the values of the elements are actually related to the attribute values.
For example in the element <ForeignKey>, the attribute “Type” defines the data type of
“Field”. This means that with a specific value of an attribute, the related element must
have a correspond value.

As we know, an XML Schema defines the structure and data types of a class of XML
Documents. It dose not define the relationships among the elements and attributes with
the different values. Therefore TAXI in its current version, also does not support the
generation of instances according to the value of elements and attributes. In order to
overcome this problem, we can use a set of XML Schemas to describe these relations.
These XML Schemas are based on “myXDM-xml2dbSchema”, and are derived by the
relationships of the values and elements according to the myXDM specification. With
each particular value of the attribute, we set the correct values that correspond to the
attribute value during XML Instance generation.

According to the specifications of myXDM, we found there are two elements that
could influence other elements by the value of their attributes. They are the elements
<Table> and <Generator>. In the following section we will describe this in detail.

Generate Schema From Element <Table>
Specifically, according to the myXDM specification, for the <Table> element, the at-
tribute “Name” is required, the type is string, and its value can not affect other elements.
The value of the attribute “Action” then is different. When it equals “insert”, then the
element <Generator> in <PrimaryKey> will become optional. And when it equals
“update” the value should be obtained from the element <Record>. So from here the

136 CHAPTER 8. XML DATABASE MAPPING TEST

“myXDM-xml2dbSchema” schema could be divided into two schemas: in one schema
the value of “Action” is always equals “insert”, and the element <Generator> is optional
(let’s call it schema-insert). In another schema the value of “Action” equals “update”;
when we generate an instance from this schema we must set only the same value for both
the attribute “Field” of <PrimaryKey> and the element of <Field> in element <Record>
(let’s call this schema schema-update).

Generate Schema From Element <Generator>
Another element that can affect the instance generation by attribute values is the element
<Generator>. The value of the attribute “Type” affects the value of attribute “Name” in
<Generator>. From both schemas we generated by <Table> element, the new schemas
are derived according the value of <Generator>’s attribute “Type”, and the value of at-
tribute “Field” in <PrimaryKey>. The value of “Type” could be: “uuid”, “sequence”.
“assigned” and “Identity”. In the first derived schema, the value of “Type” equals “uuid”
and the primary key value will be generated by myXDM automatically. In the second
schema the value of “Type” always is equal to “sequence”, and it means the Primary key
will be generated by myXDM, but with the methods defined in the Oracle database. When
the “Type” value equals “sequence”, the attribute “Name” in <Generator> is required,
and its value must equal the method name that already exists in the database. So when we
generate instances from this schema, we must set the values of attribute “Name” as the
names of methods for primary key generation defined by oracle, which are: “increment,
identity, sequence, hilo, seqhilo, uuid.hex, uuid.string, native, assigned”.

In the third schema the value of “Type” equals “assigned”, and the primary key should
be obtained from the <Field> in <Record>; this will be generated by the tool, so we do
not need to set the values. In the fourth schema, the value of “Type” equals “identity”,
and the primary key is controlled by the field of the primary key. It also will be generated
by myXDM.

Because these schemas are generated both from the schema-insert and from the schema-
update, we now have 2 * 4 = 8 schemas generated from “myXDM-xml2dbSchema”.
These schemas cover the relationships of the values and elements specified in myXDM
specification.

Next we can start instance generation from these eight generated XML Schemas. Be-
fore generation, we need to set the value of the attribute “Type” in <ForeignKey>, be-
cause in the specification, the value of “Type” can only be “int, long, float, double, date,
time, datetime, BLOB, image, bytea, CLOB, text”, so we must predefine those values for
“Type”. We have not predefined specific values for any other elements in the schemas, if
they do not have the values that defined by the schema, then random values generated by
TAXI will be assigned.

In order to cover as many instances as possible that can be accepted by myXDM,
for all schemas we choose the test strategy “Get all possible instances”. From these 8
schemas we get 7 * 3 5 + 3 6 = 2430 instances, because among the schemas, there are 7
that have five occurrence attributes. and one schema that has six occurrence attributes. In
this schema the value of <Generator>’s attribute “Action” is “insert”, so in the element
<PrimaryKey> the <Generator> element becomes optional; therefore this schema has

8.4. SUMMARY 137

one more occurrence attribute.
There is one thing that should be mentioned; in the XML Schema, <Table> is a

recursive element. In the current version of TAXI, the recursive element will be looped
once in the derived instances. The occurrence attribute of the element in the first loop
will not attend the combination of intermediate instance generations. In the loop, if the
element is optional or could occur more than once, its occurrence will be fixed as one by
TAXI.

Since myXDM is written in Java, it can be easily executed by Java comments. We
have embedded the myXDM execution into the TAXI environment. When an XML In-
stance is generated, it will be immediately mapped to the MySQL database by myXDM
automatically. The result of the execution will be written into the log of myXDM. So
when we finish the XML Instances generation by TAXI, we actually have also finish the
testing execution.

Initially we expected to generate several sets of instances with values for the occur-
rence. For the first set, we took the value “0” as the occurrence value assigned by TAXI,
and then for the next sets, we increased the value by 10 each time until the value equaled
to 100. In this way we hoped to get 11 sets and 11 * 2430 = 26730 XML Instances.
However during the test execution, when the occurrence number is equal to 50, myXDM
crashed, and threw the “out of memory error”. So we stopped the generation, and finally
we ran 6 sets 14580 test cases. We show the result in Table 8.1.

Occurrence Value Size of Instances Error
0 1KB 0

10 1KB – 10KB 0
20 1KB – 170KB 0
30 1KB – 3MB 0
40 1KB – 6.5MB 0
50 1KB – 13MB 3

Table 8.1: Conducted experiments

By Testing, we can say myXDM can transform the data from XML to MySQL database
correctly, but it not robust enough for dealing with the big XML documents.

The possibility of using other generation tools for doing XML-based Black-box Test-
ing has already been presented in Chapter 7, and we will not repeat it here.

8.4 Summary
In this chapter we presented an application of TAXI for testing XML Document to database
mapping tool. We first gave an overview of how to use TAXI for testing XML database
population tools, then we give a case study. In the case study we attempted to test a
XML database mapping tool, myXDM. We first analyzed the XML Schema used to de-
fine the input of the myXDM, and then used TAXI to generate a set of conformed XML

138 CHAPTER 8. XML DATABASE MAPPING TEST

Instances as test cases. After running the test cases in myXDM, we found the tool can
map XML Documents correctly, but it is not robust enough to deal with the big size XML
documents.

Chapter 9

The Application Of TAXI to XML
Benchmarks

This chapter presents the application of using TAXI to do XML benchmarking. We will
explain why TAXI can be used as an XML benchmark tool, and illustrate a case study as
well.

9.1 Introduction

The original meaning of the term “benchmark” is the chiseled horizontal marks in stone
structures, that an angle-iron could be placed in, to form a “bench” for a leveling rod,
ensuring the leveling rod could be accurately repositioned in the same place in the future.
More recently benchmarks are used as reference point in land surveying; they are typically
placed by a government agency or private survey firm, and many governments maintain a
register of these marks so that the records are available to all. [wik]. Today, people have
extended the meaning of the term “benchmark” to different areas; generally, it means the
datum mark, the reference point, or the standard by which something can be measured.

In the computing field, the term “benchmark” means the act of assessing the perfor-
mance of an object by running a set of programs or other operations; sometimes these
programs may be standard tests. Benchmarks provide a method for evaluating the perfor-
mance of software or hardware. The comparison could among different systems or the
same system running in different environments.

Specifically, with the widespread usage of XML technologies, the requirements for
XML Benchmarks is becoming more and more evident. XML-based systems need XML
Benchmarks to assess their performance; a great number of methods for storing XML
information have been developed in recent years, especially for database systems based on
XML. The advantages and disadvantages of these systems need to be careful considered.
Unfortunately, there is no industry standard for XML Benchmarks currently available.
Along with the increase in requirements, there have been a lot of XML Benchmark tools
developed, such as XBench [XBe], XMark [XMa], Toxgene [tox05], and so on.

140 CHAPTER 9. THE APPLICATION OF TAXI TO XML BENCHMARKS

For different applications, XML Documents for benchmarking need a range different
of numbers, complexities, sizes, etc. As already presented in chapter 5, TAXI is a tool that
can generate XML Instances from XML Schema automatically and systematically. The
tool gives the possibility of configuring the number and size of derived XML Instances.
Also, the values of the instance elements can be set to the user’s expectations. Therefore,
the size and the number of TAXI derived instances are varied and controllable. These
properties make TAXI a suitable tool for XML benchmarking.

We will first present how to apply XML Benchmarking with TAXI in Section 9.2, then
in Section 9.3 we will illustrate a case study using TAXI to assess the algorithms of XML
Schema validation; finally, in Section 9.4 we review the advantages and disadvantages of
using TAXI.

9.2 Benchmarks for XML-based Applications
As already presented, XML technologies are in widespread use. As XML has gained
more and more momentum, and commercial products have began to appear on the market;
also many XML-based applications are under development. The performance of these
products has received a lot of attention. XML Benchmark tools then take on the challenge
and develop features for evaluating the performance of these XML applications.

The work flow of XML Benchmarking in generally is:

• make a plan for the benchmark;

• derive a specific set of XML Documents as benchmark tests;

• run the tests on the target XML-based applications with the particular goals;

• record the relevant data for the benchmark goals; and

• analyze the record to evaluate the performance of the application.

For different goal of benchmark, the work flow may vary.
XML Benchmarks could be use to evaluate many XML-based applications, such as an

XML database benchmark, an XSLT translation benchmark, an XML security benchmark
and so on. The idea is to use TAXI for applying XML Benchmarks to XML-based appli-
cations. Since TAXI can produce fairly complex XML Documents systematically, it can
capture the most common kinds of integrity constraints for popular XML benchmarks.

The environment for an XML-based application benchmark maybe not the same for
the different products. But in general the aim of an XML Benchmark is to focus on the
following points:

• How fast is each XML application;

• What hardware resources does each application need;

9.3. CASE STUDY 141

• What is the best for the intended purpose.

Of course, there are other particular factors for each specific application. The envi-
ronment of an XML-based application benchmark should include at least three primary
parts: the XML Document derivation, the benchmark execution and the benchmark report
output.

XML Documents may be generated from different schemas. When they are based
on an XML Schema, TAXI can serve as a good tool for the test derivation of the XML
Benchmark. Tester should first design XML Schemas that are suitable for creating the
benchmark by means of a test plan, then use TAXI to generate the XML Instances for
the XML Schema. Depending on the purpose of benchmark, the derived XML Instances
will vary. The tester may test for instances with a specific number, or instances of dif-
ferent size, or instances with particular elements or values; moreover invalid instances
sometimes are required.

Next these derived XML Documents will be run on the under test XML-based ap-
plications. Meanwhile the data that can measure the application performance, such as
time costs, resource costs, and other relevant items will be recorded. At the end of the
benchmarking, the data obtained during the running of application will be compared and
analyzed. The results of comparison and analysis is the basis for evaluating the perfor-
mance of the application.

9.3 Case Study
In the case study, we will use TAXI to benchmarking the performance of two methodology
of XML validators, which are based on the line-time translation algorithms.

9.3.1 Background
Before describing the case study, we must introduce first the fundamental concepts used
in the case study. The first is Regular Expressions (REs) that are formalisms used in the
domain to describe sets of strings of an alphabet. REs form the basis of most XML type
languages such as DTD, XML Schema types, etc. Therefore the interweaving operator
such as in XSD, Relax-NG would be a natural addition to the language of REs [GG08]. In
this work, a liner-time translation algorithm is defined to check whether a word satisfies
the resulting constraints. An algorithm that extends to the Type language could be express
as below:

T ::= ε | a [m..n] | T + T | T · T | T & T
In which instead of REs, the term type language with counting, disjunction, concate-

nation, and interleaving for strings over a finite alpha
∑

. The ε represents an empty
word, and an expression whose language is {ε}. a [m..n] with a ∈ ∑

contains the words
composed by j repetitions of a, with m ≤ j ≤ n.

142 CHAPTER 9. THE APPLICATION OF TAXI TO XML BENCHMARKS

The algorithm is then extended from the words to trees, specific to the XML Schemas.
The details of the algorithm can be found in [GG08].

To understand the algorithms, we must first explain the extended DTDs (EDTDs)
[WG06]. If we define a DTD is a tuple (Σ, d, sd), where d is a function maps symbols in
Σ to the elements, and sd ∈ Σ is the start symbol. The EDTDs can be expressed with a
quintuple(Σ, Σ′, d, s, µ), where Σ′ is an alphabet of types, (Σ′, d, s) is a DTD over Σ′, and
µ is a mapping from Σ′ to Σ. A tree t satisfies an EDTD if t could be rewritten as µ(t′),
where t′ must be valid of the DTD (Σ, d, s).

And the single-type EDTD (EDTDst) is an EDTD (Σ, Σ′, d, s, µ) with the property
that for every a ∈ Σ′, in the regular expression d(a) no two types bi and bj with i 6= j can
occur.

An XML Schema could be modeled with the EDTDst, with (Σ, ∆, τ, µ, ρ), where Σ
is a set of labels, ∆ is a set of type-names, τ is a function mapping each type-name
to a content-model, which is a type expressed on the alphabet ∆, µ is a function from
∆ to Σ, and ρ ∈ ∆ is the root type-name. By the constraint specification of Element
Declarations Consistent µ must be injective when restricted to a specific content model
[HST04]. Therefore it is possible to check the membership of the XML tree in an XML
Schema. For example, a content-model T = τ(β), which β is a specific type-name. To
check if 〈a1〉x1〈/a1〉...〈an〉xn〈/an〉 satisfies T, it needs to retrieve the content model Ti =
τ(µ−1

β (ai)) of each subelement, check that each xi matches Ti, and check if the sequence
ω = µ−1

β (a1)...µ
−1
β (an) matches T (µ−1

β () is the inverse of µ, restricted to the type-names
appearing in the content model of β.)

9.3.2 XML Schema Validation Benchmark

A case study of XML Benchmarking by TAXI will be presented in this section. 1 In the
case study, TAXI is used to evaluate the performance of the algorithms for validating an
XML Document against an XML Schema.

There are two algorithms of XML Schema validation that are developed based on the
algorithm that we described in the background, called lazy validation and eager valida-
tion. The lazy and eager algorithms are both developed in Java; their input is in the XML
Schema but written in EDTDst format. Therefor to apply both of the algorithms, the XML
Schema needs first to translate them into the form of EDTDst.

The lazy validation gets its name because with this algorithm the validation will not
be called until all the elements under validation are read; in other words, when the close
tag of an element is reached, the validation will be carried out.

With the algorithm eager validation, when the start tag of an element is read, the
validation is called, and starts the calculation of the residue along with the reading of the
element content. When the close tag is reached, the validation of the element is finished.

In order to evaluate the performance of these algorithms, we have used the validation

1This case study is from a collaboration between the author and the work of Professor Giorgio Ghelli at
the University of Pisa.

9.3. CASE STUDY 143

that has been included in the standard Java API Xerces [xer05] as a reference. The XML
Schemas that are used to do the XML Benchmarking are shown in Figure 9.1. One is the
schema of DBLP database, which describes the structures of the data that could be used
in DBLP database. Another schema is the “expense-report” which describes the data
structure of the data for people expense. These two schemas include both <sequence>
and <choice> elements, and the size of the generated XML Documents are suitable for
the requirements of the benchmarking.

Figure 9.1: The schemas that are used for XML Schema Validation Benchmark

We need first to generate the XML Instances from the XML Schemas. The aim of
the benchmark is to evaluate the time costs of the XML validators. The algorithms of
“lazy” and “eager” are only focused on the validation of the XML structure, and ignore
the correctness of the element values.

According to the aim of the benchmark, we get first the requirements for the derived
XML Instances. First, the elements in the instances do not need to have particular values,
so we can skip the step of value pre-define, and let the instances use the random values
generated by XPT. The second requirement is the size of the documents. The benchmark
needs various documents from very small to quite large, so that we can check the rising
of time cost according to those instances. Also, the benchmark needs a large number of
the instances.

As presented in Chapter 5, the derived instances of TAXI may not have the same size if

144 CHAPTER 9. THE APPLICATION OF TAXI TO XML BENCHMARKS

there are elements in the schema that have occurrence attributes, since those elements will
occur at different times in the derived instances. In addition to this, there are two ways
for getting different sizes of XML Instances using TAXI: one is by element selection,
especially when there is <choice> element in the XML Schema. We can select specific
subschema for instance generation, according to the <choice> child in the subschema,
and the size of the document may be different. Another way is by setting the value of the
element occurrences. When there is the occurrence valued with “unbounded”, by default
TAXI sets it at a default value, for example “3”, but this could be changed by the user.
With a bigger value for the occurrence, the derived instances will have a greater size.

In order to make the instance size distribute in different ranges, we set the occurrence
value of schema “DBLP” and “expense-report” from 0 to 10000, as 0, 10, 100, 200, 500,
800, 1000, 2000, 3000, 4000, 5000, 6000, 70000, 8000, 9000, 10000, and run TAXI
several times with different values of element occurrence.

Finally, we select 1040 XML Instances from the schema “DBLP” ranging from 1 KB
to 300 MB, and 1000 instances from schema “expense-report” ranging from 1 KB to 5
GB. The details of these XML Instances are shown Figure 9.2.

Figure 9.2: The size and number of the XML Instances

From this figure, we can see that size of the instances needs to increase uniformly.
Since the value of the elements were not considered during the benchmarking, we did not
populate the value files, so that all elements in the derived instances have random values
generated by TAXI automatically.

After XML data generation, all these instances are taken as input to the “lazy valida-

9.3. CASE STUDY 145

tion”, “eager validation” and to the validator within Xerces. After the time costs analysis,
we get the result shown in Figure 9.3 and Figure 9.4. In thees figures, the horizontal axis
represents the size of the XML Documents under the validation; the unit is “megabyte”.
The vertical axis denotes the time spent on the validation; the unit is “second”. There
are three lines with different colors in the figures. The red line is the timeline of “lazy
validation”, the blue line represents the timeline of “eager validation”, and the green one
denotes the result of Xerces.

Figure 9.3: The graph of time measured for “DBLP” validation

After benchmarking and analysis of the performance of the algorithms, we can con-
clude that the algorithms of “lazy validation” and “eager validation” perform well, al-
though they are more than three times slower than the validator within Xerces. Since
these two algorithms are without any optimizations, while Xerces is a mature tool, this
result could be accepted, and we believe that the optimistic liner-time algorithms will
perform well for validating XML Documents.

In this case study, TAXI plays as an important role, since this benchmarking requires
XML Schemas that are used in the real-word, and needs schemas containing different
types of elements. XML benchmark tools such as XMark [XMa], XBench [XBe], X007
[SB01] can only accept specific schemas. Moreover TAXI provides a sufficient number

146 CHAPTER 9. THE APPLICATION OF TAXI TO XML BENCHMARKS

Figure 9.4: The graph of time measured for “expense-report” validation

and quality of XML Instances for benchmarking. The automatic mechanism avoids the
costs of studying the schemas, and avoids mistakes caused by the lack of the experience.

9.4 Advantages and Disadvantages of TAXI In Meeting
The Requirements of Benchmarks

In this section we will discuss the requirements of tools for XML benchmarks, and how
the TAXI tool satisfies these requirements. We will describe our own criteria for bench-
marks, but be aware that they are not a wildly accepted standards. Also we have found
that some XML Benchmark tools do not tend to satisfy some of our criteria, but have their
own features.

9.4.1 How TAXI Meets the Requirements of XML Benchmark
TAXI has some features that are really suited for service as an XML benchmark tool. The
details of XML Document generation by TAXI have already been shown in Section 5; in
this section we will not repeat them but just give a summary of the the TAXI features.

9.4. ADVANTAGES AND DISADVANTAGES OF TAXI IN MEETING THE REQUIREMENTS OF BENCHMARKS147

Various sizes of documents. First an XML Benchmark needs to include various sizes
of documents. To evaluate a system’s performance, the ability to handle different sizes
of documents is an important aspect. A tool for doing XML Benchmarking should also
have capability to generate various sizes of documents. As presented in Chapter 5, XML
Documents derived by TAXI include different structures; each structure will lead to a dif-
ferent size. Moreover, TAXI gives the user the possibility of changing occurrences, when
“maxOccurs” equals to “unbounded”. The default value will be set as 3 by TAXI automat-
ically, but it can be changed by the user. This means TAXI can generate very big of XML
Documents. On the other hand, when the derived instance includes a combination of very
small occurrence values, the derived XML Instance will be very small. So the smallest
size of a TAXI derived document could be 1 KB. The upper boundary is unknown, the
biggest document we generated is more than 10 GB. Therefore the size range of XML
Documents derived by TAXI is really wide; this could perfectly meet the requirement of
a benchmark.

Larger number of derived documents. The performance in handing a large number of
documents is another important aspect as sometimes a large number needs to be evaluated
during XML benchmarking. Therefore benchmark tools are required to have good capa-
bility for generating a sufficient number of documents. The number of XML Documents
derived from TAXI does not depend on the structure of the XML Schema, but can be
configured by the user, that the number of derived documents can be as many as required.
The maximum we tried is to generate more than 1000000 instances for a schema. There
is no upper limit to the number of documents that TAXI can derive.

The variability of the schemas and documents. An XML benchmark could be used for
different applications, for instance an XML database, a business system, even a tool for
an XML Benchmark, etc. These applications may need information in different formats.
The variability of the schemas and documents sometimes becomes the critical property
for benchmarking. However in many tools, the elements and attributes are fixed, such as
in XMark [XMa], XPathMark [Fra05], X007[SB01], and so on. TAXI allows the user to
use XML Schemas as needed and expected. This gives great flexibility to the benchmark;
moreover it is not necessary to prepare instructions for the derivation when the schema is
changed.

Element value configuration. With value population, it is possible to generate mean-
ingful XML Documents. Using TAXI, the user can set the values for each element, or
use random values that generate automatically. This gives more flexibility to the user, and
makes the tool suitable for more objects of XML Benchmarking.

XML Document validation. XML Document validation against the schema can ensure
the documents used for benchmarking are correct and conformed to the XML Schema.
Otherwise they may give misleadings result. TAXI validate the derived XML Documents
as soon as they are generated, and ensure their conformance.

148 CHAPTER 9. THE APPLICATION OF TAXI TO XML BENCHMARKS

9.4.2 Limitations of the TAXI tool for Benchmarking
As described before, TAXI has many advantages for doing XML benchmarking. Some
features are really outstanding compared to other tools. As with anything else, the tool is
not perfect; there are still some shortcomings that need to be improved.

The first is the control of document size. As presented in Chapter 5, the size of de-
rived documents relies on two factors: the structure of the documents, and the occurrence
values set by the users. However, it is difficult to know exactly how large the documents
could be generated. Especially with a complex schema, size control is difficult to do.
To solve this problem, we generate the XML Documents with different values of occur-
rence, experimenting with the relationship between the document size and the value of
occurrence; we then documented the required size of the documents, according to the ex-
perience. Even then, it was difficult to generate precisely the required size of a document.
It may be necessary to run TAXI several times to get a satisfactory size of documents.

Another limitation of TAXI is that instances can only extend in breadth, not in depth.
As we know, XML Schema can go broad by the extension of occurrences, and extend
deep by the recursive use of elements. While TAXI supports both of these, but it does
not support the configuration of element recursions. When there is a recursive element,
TAXI allows only one recursion, so that the derived instances cannot extend to different
recursive levels. This limitation sometimes cannot satisfy the requirements of a specific
benchmark.

A finally limitation is the time costs of the XML Document generation. Since now
TAXI is in its initial version, the optimization of the system is not very adavanced. For
the generation of small documents, the difference in time costs is not obvious, but the
time to generate large documents is much longer. For example to generate a 5 GB XML
Document, TAXI needs around 3 hours. It should become must shorter after system
optimization.

In summary, TAXI can be used as a tool to do XML Benchmarking. It is new, and
has many outstanding features for XML Document generation, and the flexibility of using
schemas. But it still has limitations that could be improved in the future.

9.5 Summary
In this section we presented the second application of TAXI: XML benchmarking. The
aim of this application is to evaluate the performance of XML-based applications. First
we explained what and how to do XML Benchmarking, then we gave a case study, us-
ing TAXI to do an XML Schema validator benchmark. In the case study we evaluated
the performance of three XML validators, using test cases generated from TAXI. After
the case study we discussed why TAXI is suitable to be an XML Benchmark tool, and
the properties of the instances generated from TAXI. Additionally we described also the
limitations of the TAXI tool, then we conclude that although there are some limitations,
TAXI still a powerful tool for using as an XML Benchmark.

Chapter 10

Conclusion and Future Work

In this Thesis we have presented the methodology for automatically testing XML-based
applications, automated through the whole process of testing, from Test Condition Iden-
tification, Test Case Design, Test Case Generation, Test Case Execution, to Test Result
Analysis.

Through in-depth study of the literature and consideration of the real requirements of
developers, we have tried to find a solution that can be used in the real world, not only the
theoretically on paper. Therefore we have put a lot of efforts into the implementation of
the methodology, and the application of the tool. If a method or a tool is to be accepted for
real projects by the industry, it must have good usability (that is easy to use) and be able
to adapt itself well to the requirement of real environments within the industry. It must
also have high efficiency, so that it can help to reduce the costs of project; this sometimes
requires automation. The method presented in this thesis is also aimed towards these
goals. We have made the tool very easy to understand and use, and create environments for
testing which the maximizes automation. In the latter part of the thesis we have focused
on the practical and real applications of the method, with three real case studies. It is
easy to understand the significance and contributes of our research by case studies, and
the comparison between our solutions with others. With the case study, we can see our
methodology can be used in different application domains, such as XML-based Black-
box Testing, XSLT transformation Testing and XML application Benchmarks and so on.
Some test processes using our tool are totally automatic. Comparing with the existing
tools for XML-based testing, our methodology is able to generate more systematic test
cases without predefined instructions; it is adaptable for different applications, and it
gives more flexible to the user.

Besides the contribution, we have gained also the information which will inform what
we should continue doing in the future.

As presented in the previous Chapters of this Thesis, our solution and tool have the
advantages, but there is still some work that needs to be done in the future. For the
improvement of the methodology, we have several tasks.

First, we need to consider how to relate the value and the element during XML In-
stance generation. In our case studies and in a lot of real projects, this is a very common

150 CHAPTER 10. CONCLUSION AND FUTURE WORK

and critical requirement. This actually is a limitation of XML Schema, but if we can
not overcome this problem, the areas of our method application will be greatly restricted.
Even if the user can find a some remedy to solve this problem, it still increases the costs,
and reduces the usability of the method.

Second we should think about how to control the size of the generated instances. As
presented in Chapter 9, our method could be used for doing XML benchmarking. The
benchmark application asks various questions of XML Instances, not only about different
structures, but also about different sizes. TAXI can generate different sizes of instances,
but the size of the instances can not be evaluated before generation. Since TAXI can
take any XML Schema for instance generation, it is difficult to evaluate the instances.
However, it is possible to forecast size after the first generation, and give suggestions to
the user, guiding him/her to get instances with a satisfactory size more easily.

With regard to the tool TAXI, currently it is still under development for improving
its performance and functionalities. The version we used in this thesis is not the latest
version of TAXI. In a newer version more functions have been added, such as XSLT
transformation. And the new version of TAXI does not use the eXist database for storing
values. In the future, there are still some aspects of the tool could be improved.

Currently, for different applications of testing, we need to customize TAXI to create
an automated testing environment. In the future we hope to make TAXI as an integrated
tool, which gives the user the possibility of customizing the tool. For tests that are already
defined, TAXI provides predefined automatic test environments; the user does not need to
know the details of the tool, but just needs to choose the type of testing he/she wants to
do.

We will improve the performance and the usability of TAXI. Currently TAXI does not
generates instances very efficiently. If the Schema is complicated or the derived instance
is large, it takes a long time to generate. We need to optimize the arithmetic of XML
Schema analysis and instance building, to make the tool more adopted to the requirements
of industry applications. Also we need to improve the tool and rise it usability to adapt
various of applications. Now for different testing application, we need to customize TAXI.
In the future, TAXI should be an integrated tool that can be used for mulriple testing
domains.

Until now, for different applications, TAXI use third-party software as oracle to anal-
yse the result of the testing. In the future, we would like to have the specific oracle for
TAXI. Some of the oracle could have more analysis function, for example for XSLT Test-
ing, the oracle could include mutation testing on XSLT stylesheet transformation testing.
Or we would like to add more method such as some White-box Testing methods to analyse
and measure the quality of the derived test cases, and make the test suite more reliable.

Finally, the most important task for our work in the future is to spread the application
of our methodology. In this Thesis we have already presented three applications. Com-
pared with the applications of XML technology, these applications are only the tip of the
iceberg. We believe there are more potential applications waiting to be found.

Bibliography

[ABC03] Roberto Zicari Akmal B. Chaudhri, Awais Rashid. XML Data Management
Native XML and XML-Enabled Database Systems. Addison-Wesley, 2003.

[AM07] Darko Marinov Sarfraz Khurshid Aleksandar Milicevic, Sasa Misailovic. Ko-
rat: A tool for generating structurally complex test inputs. In ICSE 2007,
pages 771–774, 2007.

[AP97] M. A. Vouk Amit Paradkar, K.C. Tai. Specification-based testing using cause-
effect graphs. Annals of Software Engineering archive, 4(133157), 1997.

[AWW96] Robert L. Probert Alan W. Williams. A practical strategy for testing pair-
wise coverage of network inter-faces. In Proceedings of the 7th International
Symposium on Software Reliability Engineering (ISSRE96), New York, USA,
October 1996.

[BdR04] Utsav Boobna and Michel de Rougemont. Correctors for xml data. In Inter-
national XML Database Symposium 2004, pages 97-111, Toronto, Canada,
2004.

[Bei90a] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold Co., New
York, NY, USA, 2nd edition edition, 1990.

[Bei90b] Boris Beizer. Software Testing Techniques. International Thomson Computer
Press, June 1990.

[Bei95] Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Soft-
ware and Systems. Wiley, May 1995.

[Ber04] Antonia Bertolino. Guide to the Software Engineering Body of Knowledge,
chapter SWEBOK: SOFTWARE TESTING. Joint IEEE ACM Software En-
gineering Cordination Committee., On line at http://www.swebok.org, 2004.

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In ICSE 2007, pages 85-103, Minneapolis, USA, May 2007.

152 CHAPTER 10. BIBLIOGRAPHY

[BM01] J. Berlin and M. Motro. Autoplex: automated discovery of content for vir-
tual databases. In Proc 9th Int Conf OnCooperative Information Systems
(CoopIS), volume 2172, pages 108-122, Berlin Heidelberg NewYork, 2001.
Springer. Lecture Notes in Computer Science.

[Bur06] Donald K. Burleson. Oracle Tuning The Definitive Reference. Rampant Tech-
press, 2006.

[CK99] Hung Quoc Nguyen Cem Kaner, Jack Falk. Testing Computer Software. Wi-
ley computer publishing, second edition edition, 1999.

[Coe08] David J. Coe. A review of boundary value analysis techniques. STSC
CrossTalk, April 2008.

[Coh06] Sara Cohen. Count-constraints for generating xml. In NGITS, pages 153-164,
Kibbutz Shefayim, Israel, 2006.

[Coh08] Sara Cohen. Generating xml structure using examples and constraints.
PVLDB, 1(1):490-501, 2008.

[Con03] Software diagnostics and conformance testing division: Web technologies.
http://xw2k.sdct.itl.nist.gov/brady/xml/index.asp, 2003.

[Cor08] Stylus Studio Corporate. Stylus studio powerful xml integrated development
environment. http://www.stylusstudio.com/xml product index.html, 2008.

[Day01] Igor Dayen. Storing xml in relational databases.
http://www.xml.com/pub/a/2001/06/20/databases.html?page=2#ibm, June
2001.

[dcS04] dc-Schema. http://www.loc.gov/standards/sru/resources/dc-schema.xsd,
April 2004.

[DDH01] AH. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate
data sources: a machine-learning approach. In Proc ACM SIGMOD Conf,
pages 509-520, 2001.

[DDL00] AH. Doan, P. Domingos, and A. Levy. Learning source descriptions for data
integration. In Proc Web DB Workshop, pages 81-92, 2000.

[DK07] Jaeyoung Choi Chae-Woo Yoo Dongkyu Kwack, Yongyun Cho. A xml-
based testing tool for embedded softwares. In Multimedia and Ubiquitous
Engineering, 2007. MUE ’07. International Conference on, pages 431-438,
Seoul, 2007.

10.0. BIBLIOGRAPHY 153

[dlR07] Jose Tuya Javier de la Riva, Claudio Garcia-Fanjul. Systematic design of test
case for xpath queries using partition-based techniques. In Latin America
Transactions, IEEE (Revista IEEE America Latina), volume 5, pages 259-
264, July 2007.

[DM03] Dumitru Daniliuc Sarfraz Khurshid Martin Rinard Darko Marinov,
Alexandr Andoni. An evaluation of exhaustive testing for data structures.
Technical report, MIT Computer Science and Artificial Intelligence Labora-
tory, 2003.

[DMC97] M. L. Fredman G. C. Patton D. M. Cohen, S. R. Dalal. The aetg system: An
approach to testing based on combinatorial design. IEEE Transactions On
Software Engineering, 23(7), July 1997.

[DTD96] DTD. http://www.w3.org/TR/2000/CRSVG20001102/svgdtd.html, 1996.

[dub07a] The dublin core metadata initiative dublin core. http://dublincore.org/, 2007.

[DuB07b] Paul DuBois. MySQL Cookbook. O’Reilly Media, second edition edition,
January 2007.

[dV04] Eric Van der Vlist. RELAX NG. O’Reilly, 2004.

[easnd] EasycheXML. http://www.stonebroom.com/xmlcheck.htm, nd.

[ED00] John Paul Elfriede Dustin, Jeff Rashka. Automated Software Testing : Intro-
duction, management and performance. Addison-Wesley, 2000.

[EJB03] EJBSourcegenerator. http://ejbgen.sourceforge.net/, 2003.

[Elm97] W. R. Elmendorf. Cause-effect graphs in functional testing. Technical Report
TR-00.2487, IBM Systems Development Division, 1997.

[exi] exist. http://exist-db.org/.

[Fra05] M. Franceschet. Xpathmark-an xpath benchmark for xmark generated data.
In International XML Database Symposium(XSYM), pages 129-143, 2005.

[GG08] Carlo Sartiani Giorgio Ghelli, Dario Colazzo. Linear time membership for
a class of xml types with interleaving and counting. In In Proceedings of
PLAN-X 2008 Programming Language Techniques for XML, San Francisco,
California, January 2008.

[GW97] R. Goldman and J. Widom. Dataguides: enabling query formulation and
optimization in semistructured databases. In Proc 23th Int Conf On Very
Large Data Bases, pages 436-445, 1997.

154 CHAPTER 10. BIBLIOGRAPHY

[Ham94] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering,
pages 970/–978. Wiley, 1994.

[Har99] Elliotte Rusty Harold. XML Bible. IDG Books Worldwide, Inc., 1999.

[HHS04] Langer Hagen, Lungen Harald, and Bayerl Petra Saskia. Text type structure
and logical document structure. In Bonnie Webber and Donna K. Byron, edi-
tors, ACL 2004 Workshop on Discourse Annotation, pages 49-56, Barcelona,
Spain, July 2004. Association for Computational Linguistics.

[HST04] Murray Maloney Noah Mendelsohn Henry S. Thompson, David Beech. Xml
schema part 1: Structures second edition. Technical report, World Wide Web
Consortium, October 2004.

[IEE90] Ieee standard glossary of software engineering terminology. In IEEE Std
610.121990, 1990.

[Jav03] JAVA XMLbindlets. http://wwws.sun.com/software/xml/developers
/instancegenerator/index.html, 2003.

[Jav06] The JAVA XML validation api. http://java.sun.com/developer/technicalArti-
cles/ xml/validationxpath/, 2006.

[JC00] Jane Xu Josephine Cheng. Ibm db2 xml extender, an end-to-end solution for
storing and retrieving xml documents. In ICDE’00 Conference, San Diego,
USA, 2000. IEEE.

[JO06] Lisa Liu Jeff Offutt, Paul Ammann. Mutation testing implements grammar-
based testing. In Proc. Second Workshop Mutation Analysis, November 06.

[Kab08] Barbar Kablan. Automatic generator of xml documents editors based on at-
tributed grammars. In CSTST ’08: Proceedings of the 5th international con-
ference on Soft computing as transdisciplinary science and technology, pages
166-172, New York, USA, 2008. ACM.

[KC00] John Hughes Koen Claessen. Quickcheck: a lightweight tool for random
testing of haskell programs. In In International Conference on Functional
Programming, pages 268/–279, Montreal, Canada, September 2000. Associ-
ation for Computing Machinery.

[Läm01] Ralf Lämmel. Grammar testing. In Proc. of Fundamental Approaches to
Software Engineering (FASE) 2001, volume 2029 of LNCS, pages 201-216.
Springer-Verlag, 2001.

[LC94] W. Li and C. Clifton. Semanticinte gration in heterogeneous databases using
neural networks. In Proc 20th Int Conf On Very Large Data Bases, pages
1-12, 1994.

10.0. BIBLIOGRAPHY 155

[LC00] W. Li and C. Clifton. SemInt: a tool for identifying attribute correspondences
in heterogeneous databases using neural network, pages 49-84. Data Knowl
Eng 33(1), 2000.

[LCL00] W. Li, C. Clifton, and S. Liu. Database Integration Using Neural Network:
Implementation and Experiences, pages 73-86. Knowl Inf Syst 2(1), 2000.

[LCN06] The library of congress network development.
http://www.loc.gov/index.html, 2006.

[Lev99] Alon Levy. More on data management for xml.
http://www.cs.washington.edu/homes/alon/widom response.html, May
1999. University of Washington.

[LM05] Jian Bing Li and James Miller. Testing the Semantics of W3C XML Schema,
pages 443 - 448. COMPSAC 2005, 2005.

[mar01] Marc to dublin core crosswalk. http://www.loc.gov/marc/marc2dc.html,
February 2001.

[MAR05] Xslt of marc21slim2srwdc. http://www.loc.gov/standards/marcxml/xslt/
MARC21slim2SRWDC.xsl, 2005.

[mar06] Marc standard office. http://www.loc.gov/standards/marcxml/, July 2006.

[MAR07a] Marc 21 bibliographic of “controlfield”.
http://www.loc.gov/marc/bibliographic/bd00x.html, 2007.

[MAR07b] Marc 21 bibliographic of “datafield”. http://www.loc.gov/marc/bibliographic/
bdheading.html, 2007.

[MAR07c] Marc 21 bibliographic of “leader”. http://www.loc.gov/marc/bibliographic
/bdleader.html, 2007.

[MAR07d] Marc standards office. http://www.loc.gov/marc/, 2007.

[Mei02] Wolfgang Meier. exist: An open source native xml database. In NODe 2002
Web-and Database-Related Workshops, Springer LNCS Series, 2593, pages
169-183, Erfurt, Germany, October 2002. Springer-Verlag.

[MF94] Dorothy Graham Mark Fewster. Software Testing Automation Effective use
of test execution tools. ACM Press, New York, 1994.

[MJC93] J. F. Naughton M. J. Carey, D. J. DeWitt. The oo7 benchmark. In ACM SIG-
MOD Int. Conf. On Management of Data, pages 12-21, Washington, United
States, 1993.

156 CHAPTER 10. BIBLIOGRAPHY

[MLL] Zo Lacroix Mong-Li Lee, Ying Guang Li. The xoo7 benchmark. In Pro-
ceedings of the VLDB 2002 Workshop EEXTT and CAiSE 2002 Workshop
DTWeb on Efficiency and Effectiveness of XML Tools and Techniques and
Data Integration over the Web-Revised Papers table of contents, pages 146-
147. Springer-Verlag London, UK.

[Mye04] Glenford J. Myers. The art of software testing. John Wiley & Sons, Inc., 2nd
edition edition, 2004.

[myx06] Xml-database mapper (myxdm). http://sourceforge.net/projects/myxdm/,
February 2006.

[OB88] T.J. Ostrand and M.J. Balcer. The category-partition method for specifying
and generating functional tests. Communications of ACM, 31(6), 1988.

[Obj04] Objectmodelgenerator. http://sourceforge.net/projects/omgen, 2004.

[Ora] Oracle. Xml-sql utility (xsu). http://www.oracle.com/technology/tech/xml/
xdk/doc/production/plsql/doc/plsql/xsu/xsu user.

[OX04] Jeff Offutt and Wuzhi Xu. Generating test cases for web services using data
perturbation workshop on testing, analysis and verification of web services.
Boston Mass, July 2004.

[oxy07] oxygen xml editor. http://www.oxygenxml.com/, 2007.

[Pat05] Ron Patton. Software Testing. Sams Publishing, July 2005.

[RB01] Erhard Rahm and Philip A. Bernstein. Survey of approaches to automatic
schema matching. VLDB Journal: Very Large Data Bases, 10:334-350,
2001.

[Rei97] S.C Reid. An empirical analysis of equivalence partitioning, boundary val-
ueanalysis and random testing. In Software Metrics Symposium, 1997. Pro-
ceedings., Fourth International, November 1997.

[RML05] Miguel A. Sanz-Bobi Roćio Mart́inez-López. Lecture Notes in Computer
Science, chapter Divisible Rough Sets Based on Self-organizing Maps, pages
708-713. Springer Berlin / Heidelberg, 2005.

[RTTnd] RTTS: Proven XML testing strategy.
http://www.rttsweb.com/services/index.cfm, nd.

[Rub06] Chris Rubsamen. Ibm transforms database market with introduction of db2.
http://www-03.ibm.com/press/us/en/pressrelease/19781.wss, 2006.

10.0. BIBLIOGRAPHY 157

[SB01] Z Lacroix-M Lee Y Li U Nambiar B Wadhwa S Bressan, G Dobbie. X007:
Applying 007 benchmark to xml query processing tool. In Proceedings of
CIKM, 2001.

[SB04] Tobias Nipkow Stefan Berghofer. Random testing in isabelle/hol. In 2nd In-
ternational Conference on Software Engineering and Formal Methods, pages
230/–239, Beijing, China, September 2004. IEEE Computer Society.

[SCL01] Jeff Offutt Suet Chun Lee. Generating test cases for xml-based web compo-
nent interactions using mutation analysis. In In Proceedings of the 12th In-
ternational Symposium on Software Reliability Engineering, pages 200-209,
Hong Kong China, November 2001. IEEE Computer Society Press.

[Sin00] Russell Sinclair. From Access to SQL Server. Apres, 2000.

[SM] Inc. Sun Microsystems. Mysql. http://www.mysql.com.

[SQC01] Xml schema quality checker. http://www.alphaworks.ibm.com/tech/xmlsqc,
2001.

[Sri] Rahul Srivastava. Xml schema: Understanding structures.
http://www.oracle.com/technology/pub/articles/srivastava structures.html.

[ST02] M.H. Shafazand and A M. Tjoa. A Levelized Schema Extraction for XML
Document Using User-Defined Graphs, pages 434-441. Number LNCS 2510.
EurAsia-ICT 2002, 2002.

[STH+99] Jayavel Shanmugasundaran, Kristin Tufte, Gang He, Chun Zhang, David
DeWit, and Jeffrey Naughton. Relational databases for querying xml doc-
uments: Limitations and opportunities. In Proceedings of the 25th VLDB
Conference, 1999.

[Sue02] Steve Suehring. MySQL-Bible. Wiley Publishing, Inc., 2002.

[Sun03] SUN XML instance generator. http://wwws.sun.com/software/xml/develop-
ers/instancegenerator/index.html, 2003.

[sun08] Sun microsystems announces completion of mysql acquisition. Sun Mi-
crosystems Press release, February 2008.

[TB01] E. Rahm T. Böhme. Xmach-1: A benchmark for xml data management.
In Proceedings of German database conference BTW2001, pages 264-273,
2001.

[TBSK03] Khoo Boon Tian, Sourav S. Bhowmick, and Madria Sanjay Kumar. VACX-
ENE: A User-Friendly Visual Synthetic XML Generator. Object-Oriented and
Entity-Relationship Modelling, 2003.

158 CHAPTER 10. BIBLIOGRAPHY

[THCS01] Ronald L. Rivst Thomas H. Cormen, Charies E. Leiserson and Clifford Stein.
Introduction to Algorithms. The MIT Press, second edition edition, 2001.

[tox05] Toxgene - the tox xml data generator.
http://www.cs.toronto.edu/tox/toxgene/index.html, February 2005.

[val04] Java XML Validation. http://java.sun.com/j2se/1.5.0/docs/api
/javax/xml/validation/package-summary.html, 2004.

[vdV02] Eric van der Vlist. XML Schema. O’Reilly, first edition edition, June 2002.

[W3C01] W3C Validator for xml schema. http://www.w3.org/2001/03/webdata/xsv,
2001.

[W3C05a] EXtensible Markup Language (xml) conformance test suites.
http://www.w3.org/XML/Test/, 2005.

[W3C05b] W3C World Wide Web Consortium. http://www.w3.org, 2005.

[W3S05] XML Schema reference. http://www.w3schools.com/schema/schema ele-
ments ref.asp, 2005.

[web05] Marc 21 concise bibliographic: Leader and directory.
http://www.loc.gov/marc/bibliographic/ecbdldrd.html#mrc
blea, 2005.

[WG06] Frank Neven Wouter Gelade, Wim Martens. Optimizing schema languages
for xml: Numerical constraints and interleaving. LECTURE NOTES IN
COMPUTER SCIENCE, (4353):269-283, 2006.

[Wid99] Jennifer Widom. Data Management for XML, volume 22(3), pages 44-52.
IEEE Data Engineering Bulletin, Special Issue on XML, September 1999.
Working Document, initial draft appeared April 1999.

[wik] Benchmark (surveying). http://en.wikipedia.org/wiki/Benchmark (surveying).

[WYW00] Q. Wang, J. Yu, and K. Wong. Approximate graph schema extraction for
semi-structured data. In Proc Extending DataBase Technologies, Lecture
Notes in Computer Science, volume 1777, pages 302-316, Berlin Heidelberg
NewYork, 2000. Springer.

[XBe] Xbench. http://www.xbench.com/.

[xer05] Xerces. http://xerces.apache.org/xerces-j/, 2005.

[XMa] Xmark. http://monetdb.cwi.nl/xml/.

[XML96] W3CXML. http://www.w3.org/XML/, 1996.

10.0. BIBLIOGRAPHY 159

[XML98] W3C XMLSchema. http://www.w3.org/XML/Schema, 1998.

[XML99] XML Generator. http://www.alphaworks.ibm.com/tech/xmlgenerator, 1999.

[XML02] XMLTester. http://www.xmltester.org/ html out/main/index.html, 2002.

[XML03] XMLUnit-junit and nunit testing for xml. http://xmlunit.sourceforge.net/,
2003.

[XML04] XMLXIG. http://sourceforge.net/projects/xmlxig, 2004.

[XML05a] XML Validator. http://www.elcel.com/products/xmlvalid.html, 2005.

[XML05b] XMLSpy. http://www.altova.com/products ide.html, 2005.

[xmlnda] XML Judge. http://www.topologi.com/products/utilities/xmljudge.
html, nd.

[xmlndb] XMLBuddy. http://xmlbuddy.com/2.0/index.php, nd.

[XOM02] XOMA. http://sourceforge.net/projects/xoma, 2002.

[XSL99] Xsl transformations (xslt). http://www.w3.org/TR/xslt, November 1999.

[XTY07] Benoit Eynard Xiu-Tian Yan, William J. Ion. RoHS Compliance Declaration
Based on RCP and XML Database. Springer London, July 2007.

[YL02] K. C. Tai Yu Lei. A test generation strategy for pairwise testing. IEEE
Transactions on Software Engineering archive, 28:109-111, January 2002.

