UNIVERSITA' DEGLI STUDI DI PISA

Facoltà di Scienze Matematiche, Fisiche e Naturali

CORSO DI LAUREA TRIENNALE IN CHIMICA

Curriculum Molecolare

Studio di soluzioni acquose di sali biliari mediante ¹H NMR e ¹³C NMR: processi di autoaggregazione e interazione con l'albumina

Relatore interno: Dr. Donata Catalano

Controrelatore: prof. Daniela Belli

Candidato: Leonardo Antonio Acquasanta

Anno Accademico 2007/2008

INDICE

1. INTRODUZIONE	3
2.REAGENTI E STRUMENTAZIONE	6
3.OPERAZIONI PRELIMINARI	6
4. ¹ H e ¹³ C NMR di TCNa in D ₂ O	8
5. ¹³ C NMR di TCNa in soluzione a pH 7.2	14
6. ¹ H e ¹³ C NMR di TCNa e HSA in D ₂ O	16
7.Misura dei T1 di TCNa in soluzione con HSA tramite Inversion Recovery	22
8.CONCLUSIONI	26
9.BIBLIOGRAFIA	27
10.RINGRAZIAMENTI	28

INTRODUZIONE

Gli acidi biliari sono componenti fondamentali della bile umana [1]. Vengono prodotti dal fegato a partire del colesterolo e nelle condizioni fisiologiche si trovano sotto forma di sali. Durante la digestione vengono riversati nel duodeno e successivamente nell'intestino, arrivando fino all'ileo prima di tornare attraverso la vena porta al fegato, in quella che viene chiamata circolazione enteroepatica. Durante il digiuno invece vengono trattenuti dalla colecisti.

Essi sono molecole anfipatiche (o anfifiliche), possiedono cioè una faccia idrofobica, ovvero la faccia del gruppo steroideo che contiene i gruppi metilici, ed una idrofila, ovvero la faccia del gruppo steroideo contenente i gruppi ossidrilici e la porzione terminale della catena idrocarburica. Gli acidi biliari si trovano in forma di sali nelle condizioni fisiologiche. Grazie alla loro natura anfipatica essi possono svolgere due importanti compiti:

- formazione di emulsioni con aggregati lipidici: i sali biliari si comportano da detergenti nei confronti dei lipidi assunti con la dieta, emulsonandoli in minuscole gocce in modo che, grazie all'aumento della loro area superficiale, divengano aggredibili dagli enzimi lipolitici;

- solubilizzazione e trasporto di lipidi in ambiente acquoso: i sali biliari permettono la solubilizzazione di numerosi lipidi prodotti nella digestione – acidi grassi, monogliceridi, colesterolo – altrimenti insolubili in ambiente acquoso, tramite la formazione di micelle.

Proprio la formazione di micelle da parte dei sali biliari è oggetto di numerosi studi: infatti, al contrario di quanto avviene per tensioattivi inorganici e detergenti ionici contenenti catene idrocarburiche flessibili, a causa della loro struttura rigida e della distribuzione dei gruppi polari, i sali biliari presentano un andamento atipico nella formazione delle micelle. Questa al di sopra della concentrazione micellare critica, CMC, procede per gradi lungo un ampio range di concentrazioni [2].

Né il valore delle CMC dei diversi sali né l'esatta struttura degli aggregati e le loro modalità di formazione sono noti con certezza. Vari modelli sono stati proposti: ad esempio, per quanto riguarda il taurocolato di sodio, oggetto di studio di questa tesi, è abbastanza accettato il modello di Small [3], che prevede la formazione di aggregati costituiti da dimeri (detti micelle primarie) dovuti all'interazione back-to-back delle parti idrofobiche dei sali, e in seguito, con l'aumento della

concentrazione, la formazione di micelle secondarie, costituite da più micelle primarie tenute insieme tramite legami a idrogeno intramolecolari formati dai gruppi ossidrilici. Tuttavia, l'esatta struttura dei dimeri e delle micelle è tuttora argomento di discussioni a volte accese.[4a, 4b]

Struttura dimerica del taurocolato ottenuta con (a) Modelli di Meccanica Molecolare e (b) Cristallografia a Raggi-X [4a]

Sebbene il dibattito e gli studi sulle modalità con cui i sali biliari formano micelle sia relativamente recente ed ancora in corso, il loro potere detergente è noto da tempo all'uomo, tanto che sali biliari bovini sono stati sfruttati e vengono sfruttati tuttora nella preparazione di saponi adatti ad eliminare macchie di sangue, olio, uovo e altre sostanze organiche [5].

Di particolare interesse sono le interazioni dei sali biliari con l'albumina: infatti alla base della comprensione del comportamento farmacologico di numerosi principi attivi c'è la loro interazione con le macromolecole biologiche, tra le quali l'albumina serica umana (HSA, Human Serum Albumine) è la più comune e la più studiata. Attraverso lo studio dei peculiari complessi sali biliarialbumina è possibile comprendere meglio il comportamento di quest'ultima.

L'HSA è la proteina più abbondante presente nel plasma umano, dove ha una concentrazione variabile tra 30 e 50 g/L. Svolge un ruolo fondamentale nel mantenere la pressione oncotica nel sangue, ovvero la pressione osmotica necessaria alla corretta distribuzione dei fluidi corporei, ed è il trasportatore principale di ormoni, acidi grassi e numerosi farmaci.

Ha un peso molecolare di circa 67000 dalton ed è composta da una catena singola di 585 amminoacidi [1].

Modello tridimensionale dell'Albumina Umana

Grazie alla flessibilità della catena ed alla presenza di numerose cariche negative l'albumina è in grado di legare a sé numerose molecole. Per un generico legante possono essere presenti due siti di legame distinti, uno ad alta affinità, attraverso il quale l'albumina interagisce molto fortemente con il legante, ed uno a bassa affinità, dal quale il legante viene facilmente rilasciato. Sono stati individuati siti ad alta affinità verso alcuni specifici farmaci (che rimangono in essi intrappolati), mentre i siti a bassa affinità permettono l'interazione con varie molecole, il loro trasporto e rilascio.

In vivo l'albumina e i sali biliari si incontrano nel sangue solo nella circolazione enteroepatica, dove i sali potrebbero danneggiare le pareti cellulari lipidiche con la loro azione detergente; si ritiene quindi che l'albumina li leghi in modo da trasportarli rendendoli innocui.

Secondo una pubblicazione recente i sali biliari interagiscono con l'HSA attraverso due siti di legame, entrambi definibili come di alta o media affinità, in quanto possiedono una costante di equilibrio nell'ordine di 10^5 - 10^2 . In particolare, ogni molecola di albumina potrebbe legare fino a 13 molecole di taurocolato [6].

L'interazione sali biliari-albumina è stata variamente studiata. Essa risulta particolarmente evidente da uno studio $(S cm^2 eq^{-1})$ di conduttanza equivalente sul sistema taurodeossicolato di sodio-albumina bovina. in cui la conduttanza equivalente diminuisce all'aumentare del rapporto molare sale-proteina, fino alla saturazione dei siti di legame (circa venti per ogni albumina). Oltre conduttanza tale rapporto la equivalente aumenta per la presenza crescente di sale biliare libero in soluzione [7].

Il punto di partenza di questo lavoro di tesi è stato lo studio termodinamico, tuttora in corso, delle interazioni albumina-sali biliari, svolto dai prof. Gianni, Bernazzani e Mollica [8]: da loro sono state misurate le entalpie di aggregazione in soluzione acquosa di due sali biliari, il taurocolato di sodio (TCNa) e il deossitaurocolato di sodio (DTCNa), con lo scopo di determinarne la CMC e di analizzare il loro differente comportamento in assenza o in presenza di albumina. Per affiancare questa ricerca è stato iniziato, mediante spettroscopia ¹H e ¹³C NMR, lo studio di uno dei due sali, il TCNa, sia da solo che in presenza di albumina.

La spettroscopia NMR è uno strumento potente per l'analisi di molecole con diversi stati di aggregazione o legate a macromolecole [9, 10]

Infatti il chemical shift di ogni nucleo è strettamente connesso alla struttura ed alla conformazione della molecola a cui il nucleo appartiene: diversi intorni chimici significano diversi campi magnetici locali, una diversa schermatura rispetto al campo magnetico statico e quindi un diverso chemical shift.

Ovviamente i composti in soluzione si scambieranno tra tutte le possibili conformazioni (nel caso del TCNa, ilo scambio sarà tra le forme monomerica o aggregata, isolata o legata all'albumina) ma, se la costante di scambio è abbastanza elevata, e ciò è sicuramente vero per equilibri di questo tipo, risulteranno visibili nello spettro non i segnali relativi alle diverse situazioni, ma una media pesata tra tutte quante, cioè una media pesata dei due (o più) differenti chemical shift che possiede ogni nucleo:

$$P^{\text{oss}} = X_a * P^a + X_b * P^b + \ldots + X_n * P^n$$

dove

- P^{oss} è il chemical shift osservato;
- P^a...Pⁿ sono i chemical shift propri di ogni nucleo nelle differenti situazioni;
- X_a...Xⁿ sono le frazioni molari delle varie forme presenti.

Relazioni analoghe sono valide anche per altri osservabili NMR.

Studiando l'andamento dei chemical shift con il variare delle condizioni (nel nostro caso la concentrazione) è possibile seguire lo spostamento degli equilibri studiati e nei casi migliori calcolarne le costanti cinetiche o termodinamiche.

Inoltre, dato che la variazione dell'intorno chimico sarà più marcata per gli atomi coinvolti nella formazione di legami o comunque situati nelle vicinanze di essi, è possibile studiare la conformazione della molecola impegnata in un legame osservando quali nuclei manifestano le differenze di chemical shift più significative.

Oltre che per mezzo del chemical shift, l'autoaggregazione e la complessazione di vari composti può essere studiata in spettroscopia NMR osservandone il tempo di rilassamento, cioè il tempo impiegato da ogni nucleo, dopo essere stato eccitato, per tornare nello stato di equilibrio.

Esistono due modi in cui ogni nucleo rilassa: il rilassamento trasversale, governato dal tempo T_2 , e il rilassamento longitudinale, governato dal tempo T_1 .

Il rilassamento trasversale, o rilassamento spin-spin, comporta scambi di energia tra i momenti magnetici dei singoli nuclei: in conseguenza di questi scambi, l'insieme degli spin nucleari perde di coerenza, cioè gli spin si sfasano nel loro moto di precessione intorno al campo magnetico statico.

Il rilassamento longitudinale, o spin-reticolo, dipende dalle interazioni dello spin dei singoli nuclei con il loro intorno chimico (il cosiddetto reticolo) e porta al recupero della magnetizzazione nella posizione di equilibrio.

I tempi di rilassamento in soluzione dipendono dalla mobilità della molecola di cui fa parte il nucleo; il T_2 diminuisce con il diminuire della mobilità della molecola, che a parità di condizioni sperimentali si può associare alle sue dimensioni, con conseguente aumento della larghezza delle righe: seguendo questo parametro, è possibile verificare l'esistenza del legame tra albumina e sali biliari e analizzare qualitativamente anche la frazione di sale in forma legata, che sarà tanto maggiore quanto più saranno ampie le righe dello spettro.

Il T_1 è sempre dipendente dalla mobilità molecolare, ma in maniera diversa. In entrambi i casi il parametro che tiene conto della mobilità delle molecole è detto tempo di correlazione, τc , ed è legato al tempo T_1 dalla formula seguente, valida per il rilassamento dipolare di una coppia di nuclei uguali di spin $\frac{1}{2}$.

$$\frac{1}{T_1} = \frac{3}{20} \left(\hbar^2 \frac{y_N^4}{r^6} \right) \left\{ \frac{2\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{8\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right\}$$

con

 ω_0 = frequenza di Larmor

 γ = rapporto giromagnetico del nucleo

 \mathbf{r} = distanza tra il nucleo considerato e un altro interagente dipolarmente con esso

Tenendo fissa la ω_0 , è possibile distinguere due casi limite:

- uno in cui il prodotto $\omega_0 \tau_c \dot{e} \ll 1$, detto zona dei moti veloci, in cui si trovano le molecole piccole con una frequenza di riorientamento elevata;
- uno in cui il prodotto $\omega_0 \tau_c$ è >> 1, detto zona dei moti lenti, in cui si trovano le molecole grandi con una frequenza di riorientamento bassa;

Misurando il tempo di rilassamento longitudinale di una molecola piccola, per esempio un farmaco in presenza di albumina, è possibile risalire al tipo di moto della molecola analizzata, e quindi sapere se il legante è per la maggior parte (si tratta sempre di valori medi) legato alla macromolecola (moto lento) o in forma isolata (moto veloce).

Inoltre lo studio NMR delle interazioni di molecole piccole con macromolecole sfrutta ampiamente l'effetto NOE, tramite il quale è possibile valutare le distanze fra nuclei spazialmente vicini [4].

Sugli effetti sopra descritti è fondata una serie di metodologie estremamente elaborate e specifiche, ma risultati apprezzabili possono essere ottenuti anche con tecniche di base, come dimostra uno studio recente sull'interazione Diclofenac-Albumina.[11]

Il lavoro da noi svolto segue una procedura simile.

REAGENTI E STRUMENTAZIONE

Sono state preparate soluzioni di taurocolato di sodio (Fluka, 97%) sia in acqua deuterata (Sigma-Aldrich, 99%) sia in soluzione acquosa tamponata con un tampone fosfato.

Il tampone a pH 7.2 è stato preparato utilizzando fosfato acido di sodio e fosfato di sodio, aggiungendo il primo al secondo con un sistema di aggiunte automatiche computerizzato, controllando il pH in continuo tramite un elettrodo a vetro collegato a un pHmetro TIM900 e tenendo costante la temperatura a 25°C tramite un termostato HAAKE DC10.

Al tampone è stata aggiunta NaNH₃ (Sigma Aldrich, 99,5%) come antibatterico.

Il pH delle soluzioni di taurocolato prive di tampone è stato misurato utilizzando un microelettrodo a vetro collegato al pHmetro TIM900.

Sono state preparate soluzioni di taurocolato di sodio e albumina serica umana "defatted", Sigma-Aldrich, 99%.

Gli spettri di ¹H e del ¹³C sono stati registrati con uno spettrometro Varian VXR300 operante a 300 e 75.4 MHz rispettivamente per i due nuclei. Per i tempi di rilassamento dei protoni è stato impiegato anche uno strumento Varian Gemini 200.

OPERAZIONI PRELIMINARI

Essendo questo studio basato sulla precedente esperienza del prof. Gianni e del prof. Bernazzani, per la scelta delle condizioni sperimentali di concentrazione, temperatura e acidità in cui operare siamo partiti dalle loro indicazioni e i campioni sono stati preparati seguendo per quanto possibile le loro metodologie. Abbiamo quindi utilizzato concentrazioni di TCNa comprese tra 2mM e 20mM, e, per quanto riguarda la temperatura, abbiamo svolto le misure di pH e registrato gli spettri NMR a 37°C, salvo che in qualche occasione che citeremo.

Un problema si è posto nella scelta del solvente da utilizzare. I dati termodinamici erano stati raccolti in soluzione acquosa a pH=7.2, realizzato con fosfato acido e fosfato di sodio; con l'intenzione di replicare il più fedelmente possibile il comportamento all'interno dell'organismo dei due composti, sarebbe tuttavia consigliabile operare in soluzioni tamponate al pH fisiologico (~ 7.4 [1]). D'altra parte, volendo effettuare spettri NMR del protone, sarebbe stato utile operare in solvente deuterato. Sono state perciò preparate inizialmente delle soluzioni di TCNa in acqua deuterata a varie concentrazioni senza tampone: infatti, il pH (o meglio, pD) calcolato delle soluzioni a partire dalla K_a dell'acido taurocolico (pK_a=2.8[12]) e dal prodotto ionico dell'acqua deuterata (K_w = 14.48 a 37°C [13]) non si discosta eccessivamente da quello ottimale di 7.4. Per il calcolo del pD delle soluzioni, a causa della bassa K_b del taurocolato, non è stato possibile trascurare la quantità di OD dovuta all'autoionizzazione dell'acqua deuterata.

Successivamente i pH delle varie soluzioni sono stati misurati tramite un microelettrodo a vetro,

operando a 37 °C, ottenendo i valori riportati nella tabella e nel grafico seguenti, insieme a quelli calcolati.

Concentrazione (mM)	2	4	7,5	10	12,5	15	20	
pН	7,570	7,680	7,490	7,460	7,500	7,520	7,680	
pH misurato								
Concentrazione (mM)	2	2 4	4 7,5	5 1	0 12	,5 1	15 20	
рD	7,4172	7,513	5 7,6192	2 7,671	9 7,714	4 7,749	99 7,8071	

Si osservi che, secondo quanto dettagliatamente riportato in letteratura [13,14]:

- poiché $K_W(D_2O) = 14.48$ a 37°C, la neutralità in D_2O corrisponde a pD = 7.24;
- in linea di massima, un elettrodo a vetro tarato con soluzioni di H₂O permette di ottenere valori affidabili di pD, aggiungendo 0.40 alla lettura strumentale;
- i valori di pKa per un acido moderatamente debole come il taurocolico potrebbero aumentare di circa 0.2 passando da H₂O a D₂O.

Tenendo conto delle correzioni citate agli ultimi due punti, il grafico precedente potrebbe dover essere modificato come segue:

Si osservi che, in ogni caso, i valori di pD misurati variano moderatamente con la concentrazione di TCNa (meno di quanto varia il valore calcolato), ma presentano una discontinuità in corrispondenza

della soluzione 7.5 mM. Questa discontinuità può essere interpretata come effetto dell'inizio del fenomeni di aggregazione fra ioni taurocolato (CMC). L'aggregazione sembra quindi avere un effetto blandamente tamponante.

Quale sia il miglior criterio di confronto fra il pD stimato nelle nostre soluzioni e il pH fisiologico non è cosa ovvia, ma, considerando che $K_W(H_2O) = 13.62$ a 37°C, potremmo avere:

condizioni fisiologiche	$[H^+] = 6.3 \ 10^{-8}$	$[OH^{-}] = 3.4 \ 10^{-7}$
soluzioni TCNa in D ₂ O	$[D^+] \sim 10^{-8}$	$[OD^{-}] \sim 3.2 \ 10^{-7}$

Abbiamo utilizzato queste soluzioni per una prima indagine NMR.

¹H e ¹³C NMR di TCNa in D₂O

Come già descritto, basandoci sul valore di CMC pari a 7 mM trovato con le misure termodinamiche, sono state preparate soluzioni di taurocolato in acqua deuterata con concentrazioni pari a 2, 4, 7.5, 10, 12.5, 15 e 20 mM, in modo da avere valori distribuiti uniformemente intorno all'ipotetica CMC, e ne sono stati effettuati gli spettri NMR sia ¹H sia ¹³C.

Taurocolato di Sodio

L'assegnazione delle frequenze dei picchi dei carboni e dei protoni del taurocolato è nota [15] ed è stato quindi immediato il loro riconoscimento negli spettri. Con lo scopo di operare in condizioni vicine a quelle del corpo umano (e delle misure termodinamiche), tutti gli spettri sono stati registrati ad una temperatura di 37 °C.

Una volta raggiunta la CMC il sale passa dalla forma isolata monomerica a quella aggregata, nella quale i suoi atomi si trovano in un intorno chimico differente e quindi hanno un differente chemical shift. Oltre alla CMC, in questo modo è teoricamente possibile stimare quali atomi vengono coinvolti nella formazione delle micelle, in quanto maggiore è la vicinanza con il punto interazione dei dimeri, maggiormente differente risulta l'intorno chimico e maggiore la variazione di chemical shift.

Per l'analisi del comportamento del solo taurocolato ci siamo serviti principalmente degli spettri del ¹³C, che, spaziando su un range di frequenze più ampio, hanno un chemical shift più sensibile ai cambiamenti rispetto al protone.

Gli spettri di quest'ultimo sono stati comunque acquisiti e caratterizzati. La zona alifatica e steroidea, non risolvibile con lo strumento da noi utilizzato è stata comunque risolta in letteratura.

Spettro ¹³C della soluzione 20 mM di Taurocolato

Ingrandimento 52-10 ppm dello spettro in ¹³C della soluzione 20 ppm di Taurocolato

	20 mM	15 mM	12,5 mM	10 mM	7,5 mM	4 mM	2 mM
	25.245	25.000	25 404	05 407	0F 447	05 440	25.4
1	35,315	35,226	35,194	35,137	35,117	35,113	35,1
2	29,646	29,63	29,654	29,626	29,629	29,626	70
3	71,976	12	72,032	72,03	72,036	72,049	/ <u>/</u>
4	36,604	30,792	30,010	30,000	30,603	30,010	30,0
5	41,94	41,956	41,985	41,989	41,988	42,005	42,07
6	34,68	34,636	34,627	34,587	34,582	34,583	34,6
1	68,734	68,795	68,86	68,872	68,879	68,9	68,83
8	39,516	39,415	39,391	39,318	39,293	39,285	00.74
y to	26,744	26,728	26,74	26,72	26,719	26,728	26,74
10	34,182	34,122	34,114	34,053	34,044	34,053	34,04
11	28,047	27,996	27,942	27,894	27,881	27,877	27,87
12	73,51	73,57	73,667	73,635	73,647	73,671	73,65
13	46,481	46,456	46,46	46,44	46,427	46,432	46,4
14	41,39	41,33	41,329	41,297	41,276	41,289	41,3
15	23,195	23,13	23,11	23,07	23,049	23,054	
16	27,525	27,485	27,473	27,448	27,44	27,448	27,43
17	46,869	46,934	46,995	46,999	47,022	47,047	47,05
18	12,374	12,289	12,244	12,2	12,167	12,159	12,15
19	22,345	22,256	22,22	22,228	22,142	22,135	22,11
20	35,093	35,004	34,97	34,91	34,9	34,991	34,94
21	17,04	17,08	17,012	16,979	16,975	16,979	16,96
22	31,92	31,912	31,928	31,9	31,907	31,924	31,94
23	33,102	33,13	33,171	33,171	33,182	33,199	33,2
24	177,663	177,736	177,8	177,82	177,825	177,849	
25	35,417	35,392	35,4	35,372	35,371	35,38	35,35
26	50,2	50,184	50,196	50,184	50,175	50,184	50,2
	Ossidrilci	Steroidei	Metilici Ta	irinici	Carbonilico	Alifatici	

Tabella dei chemical shift dei ${}^{13}C$ (± 0,01 ppm

Mettendo in grafico i chemical shift dei diversi carboni, è già possibile avere riscontri interessanti. Infatti, numerosi carboni presentano un chemical shift variante con la concentrazione, con una discontinuità situata tra 7,5 e 10 mM.

Tuttavia, dato che aumentando la concentrazione di taurocolato si vanno già a modificare le condizioni in cui si trovano i nuclei (ad esempio la forza ionica e la costante dielettrica della soluzione) e quindi il loro intorno chimico, sarebbe possibile giustificare il cambiamento di chemical shift anche senza coinvolgere fenomeni di autoaggreazione. Per questo abbiamo deciso di riferire tutte le variazioni ad uno standard interno, ovvero ad un carbonio che non presentasse variazioni significative con l'aumentare della concentrazione: il segnale più invariante è risultato essere il C4.

Ai precedenti valori di chemical shift è stato quindi prima sottratto il chemical shift del corrispondente C4, quindi, per ottenere dati nella stessa zona di quelli originali, è stato aggiunto il valor medio di tutti i C4.

	20 mM	15 mM	12,5 mM	10 mM	7,5 mM	4 mM	2 mM
1	35,317	35,240	35,184	35,135	35,135	35,103	35,106
2	29,648	29,644	29,644	29,624	29,624	29,616	
3	71,978	72,014	72,022	72,028	72,028	72,039	72,006
4	38,806	38,806	38,806	38,806	38,806	38,806	38,806
5	41,942	41,970	41,975	41,987	41,987	41,995	42,076
6	34,682	34,650	34,617	34,585	34,585	34,573	34,606
7	68,736	68,809	68,850	68,870	68,870	68,890	68,836
8	39,518	39,429	39,381	39,316	39,316	39,275	39,286
9	26,746	26,742	26,730	26,718	26,718	26,718	26,746
10	34,184	34,136	34,104	34,051	34,051	34,043	34,046
11	28,049	28,010	27,932	27,892	27,892	27,867	27,886
12	73,512	73,584	73,657	73,633	73,633	73,661	73,656
13	46,483	46,470	46,450	46,438	46,438	46,422	46,406
14	41,392	41,344	41,319	41,295	41,295	41,279	41,306
15	23,197	23,144	23,100	23,068	23,068	23,044	
16	27,527	27,499	27,463	27,446	27,446	27,438	27,466
17	46,871	46,948	46,985	46,997	46,997	47,037	47,056
18	12,376	12,303	12,234	12,198	12,198	12,149	12,156
19	22,347	22,270	22,210	22,226	22,226	22,125	22,116
20	35,095	35,018	34,960	34,908	34,908	34,981	34,946
21	17,042	17,094	17,002	16,977	16,977	16,969	16,966
22	31,922	31,926	31,918	31,898	31,898	31,914	31,946
23	33,104	33,144	33,161	33,169	33,169	33,189	33,206
24	177,665	177,750	177,790	177, <u>818</u>	177,818	177,839	177,786
25	35,419	35,406	35,390	35,370	35,370	35,370	35,356
26	50,202	50,198	50,186	50,182	50,182	50,174	50,206

Chemical Shift riferiti al C4 (± 0,01 ppm)

Ossidrilci	Steroidei	Metilici	Taurinici	Carbonilico	Alifatici
------------	-----------	----------	-----------	-------------	-----------

Anche riferiti al C4, i dati indicano una variazione continua dei chemical shift con la concentrazione con un salto sempre nella zona compresa tra 7,5 e 10 ppm. Ponendo la CMC in questo range di concentrazioni ci troviamo perfettamente in accordo con la letteratura presente sull'argomento e con lo studio termodinamico a cui facciamo riferimento [4,8].

E' molto interessante notare come, sebbene il chemical shift della maggior parte dei carboni presenti un andamento crescente con la concentrazione (vedi carbonio 8), ve ne siano alcuni, il C5, il C17, il C23 (ovvero due carboni steroidei e un carbonio alifatico), il carbonio carbonilico (C24) e i carboni legati agli ossidrili (C3, C7 e C12) che hanno un andamento decrescente. Questo dato è un'ulteriore conferma di come le variazioni di chemical shift siano imputabili alla formazione di aggregati da parte del taurocolato, in quanto, se ci riferissimo alla sola variazione di condizioni del solvente per spiegare i cambiamenti di intorno chimico, dovremmo avere presumibilmente andamenti simili per tutti i carboni.

Si potrebbero imputare le variazioni osservate al cambiamento del pH "spontaneo" illustrato precedentemente . Tuttavia, se così fosse, la soluzione 20 mM dovrebbe presentare uno spettro simile a quello della soluzione 4 mM, poiché i rispettivi pH sono molto vicini, e così non è.

Sembra quindi certo che la discontinuità riscontrata in corrispondenza della soluzione 10 mM segnali l'inizio dell'aggregazione.

Inoltre, un andamento di chemical shift crescente con l'aggregazione è tipico del passaggio da ambiente acquoso ad ambiente idrofobico, mentre un andamento decrescente è associabile ad un ambiente maggiormente polare, come riscontrato nello studio di formazione di micelle del Sodio Dodecil Solfato [16], un tensioattivo a catena lineare dal comportamento ben noto. Risultati in accordo con i nostri sono presenti anche in uno studio analogo relativo al deossicolato di sodio [17]. Gli andamenti da noi trovati sono coerenti con il modello di Small che prevede la formazione di dimeri con interazione back-to-back delle zone steroidee del taurocolato.

Risultati simili ma molto meno convincenti sono stati ottenuti anche dagli spettri al protone, nei quali il segnale a circa 4 ppm dell'idrogeno 12 presenta la maggiore variazione. In letteratura la variazione di questo segnale è stata utilizzata per determinare i numeri di aggregazione (e le costanti d'equilibrio) del TCNa nel nostro stesso range di concentrazioni [4a].

Gli aggregati più probabili sono risultati essere dimeri e pentameri.

Questo lavoro non è però risultato convincente in tutti i suoi aspetti. [4b]

¹³C NMR di TCNa in soluzione a pH 7.2

Per adeguarci alle condizioni di lavoro delle misure termodinamiche e più in generale a quelle più spesso applicate in letteratura [4, 8, 16], sono stati preparati campioni di concentrazioni uguali alle precedenti ma in soluzione tampone fosfato acido/fosfato a pH 7.2 e con aggiunta di NaN₃ 12 mM come antibatterico.

Sono stati quindi misurati i chemical shift del ¹³C su un primo campione. Tuttavia, la stabilità del campo magnetico dello spettrometro NMR non è risultata sufficientemente elevata da permettere di ottenere spettri con un buon rapporto segnale/rumore senza la stabilizzazione mediante il "lock" del segnale del deuterio. E' stato quindi aggiunto il 5% di acqua deuterata ad ogni soluzione, quantità sufficiente perché lo strumento potesse sfruttare il circuito di "lock".

Purtroppo il tampone ha avuto un effetto negativo sugli spettri NMR, risultati molto più rumorosi e più incompleti delle loro controparti a pH "spontaneo".

I dati sono stati nuovamente riferiti ad uno standard interno, con la stessa metodologia applicata ai valori di chemical shift nelle soluzioni non tamponate: questa volta è stato scelto il C9, perché il più invariante; del C4, d'altra parte, non è stato possibile raccogliere dati per tutte le soluzioni.

Tutto ciò comporta uno spostamento artificioso dei chemical shift rispetto a quelli in D_2O riferiti al C4 di -2,37 ppm.

	20 mM	15 mM	10 mM	7,5 mM	4 mM
1	33,169	33,172	33,169	33,152	33,182
2	27,371	27,370	27,377	27,355	27,390
3	69,800	69,801	69,813	69,765	69,825
4	36,958	36,991	36,958		36,965
5	40,353				
6	32,234	32,246	32,240	32,125	32,253
7	66,661	66,655	66,673	66,635	66,698
8	38,893	38,959		38,945	38,955
9	24,365	24,365	24,365	24,365	24,365
10	31,563	31,767		31,645	31,775
11	25,573	25,589		25,535	
12	71,422	71,410	71,434	71,425	71,452
13	44,093	44,109	44,099	44,095	44,111
14	39,648	39,652	39,654	39,625	39,673
15	20,673	20,728		20,745	
16	25,093	25,119		25,125	25,123
17	44,669	44,685	44,675	44,675	44,748
18	9,854	9,857	9,854	9,807	9,860
19	19,836	19,838	19,830	19,792	19,810
20	32,781	32,798	32,787		32,785
21	14,669	14,668	14,669	14,617	14,687
22	29,553	29,596	29,549	29,555	29,595
23	30,892	30,896		30,915	30,923
24	175,503	175,537			175,425
25	36,533	36,551			36,564
26	47,857	47,877	47,865	47,825	47,882

Chemical Shift delle soluzioni tampone riferiti al C9 (± 0,01 ppm)

Ossidrilci Steroidei Metilici Taurinici Carbonilico Alifatici

Le curve ottenute dai dati così modificati hanno mostrato una straordinaria invarianza rispetto alla presenza di fenomeni di autoaggregazione, evidenziati invece dalle soluzioni prive di tampone.

Tale uniformazione dei chemical shift può essere forse giustificata con l'aumento della forza ionica delle soluzioni dovuto alla presenza del tampone fosfato e della sodioazide: gli intorni chimici dei diversi carboni sarebbero influenzati dalle interazioni con gli ioni, molto numerosi in queste soluzioni, piuttosto che dal diverso stato di aggregazione, con conseguente appiattimento degli spostamenti chimici. Alternativamente, si dovrebbe ritenere che in queste condizioni non ci sia aggregazione, o che il tampone sposti la CMC a concentrazioni molto inferiori o molto superiori, possibilità che sembrano però essere escluse dai dati termodinamici.

Le ragioni di tale comportamento non sono state indagate ulteriormente.

¹H e ¹³C NMR di TCNa e HSA in D₂O

Sono state analizzate alcune soluzioni di taurocolato di sodio contenenti albumina serica umana (HSA, Human Seric Albumin) allo 0,4 % w/w. Per i motivi precedentemente descritti, le soluzioni sono tutte in D₂O, prive di tampone, a pH spontaneo.

Il pH misurato a 37 °C è risultato pari a 7,293 per la soluzione contenente solo HSA allo 0,4 %, e pari a 7,279 per quella contenente anche una concentrazione 50 mM di taurocolato: misurando il pH ai due estremi delle possibili concentrazioni di taurocolato, ne è stata dunque notata una sostanziale invarianza. Supponiamo che tale invarianza caratterizzi anche le soluzioni a concentrazione intermedia.

Questi valori presentano ovviamente gli stessi problemi di interpretazione descritti precedentemente.

Nello studio del prof. Bernazzani e del prof. Gianni è stata utilizzata una concentrazione di HSA pari a 0,4% w/w, ma nelle condizioni fisiologiche [1] e in altri esperimenti effettuati sull'argomento [6] è presente una concentrazione pari a circa 0,6 mM, corrispondente al 4% w/w: per questi motivi sono stati preparati due gruppi di soluzioni, contenenti rispettivamente lo 0,4% e il 2% di HSA

E' stata prestata particolare attenzione, più che alla concentrazione assoluta del taurocolato, al suo diverso rapporto con la concentrazione di albumina.[11]

La tabella seguente presenta le caratteristiche delle quattro soluzioni analizzate in seguito.

#	HSA (% w/w)	HSA (mM)	TCNa (mM)	R=TCNa / HSA
1	0,4	0,06	20	333
2	2,0	0,3	20	67
3	0,4	0,06	4	67
4	2,0	0,3	10	33

Gli spettri al protone del taurocolato mostrano un progressivo allargamento delle righe crescente con il diminuire del rapporto TCNa/HSA, segno della presenza dell'albumina che però, grazie alla bassa concentrazione, non interferisce eccessivamente con le righe del taurocolato, comunque riconoscibili. E' possibile inoltre notare nella zona intorno ai 7 ppm una "gobba" nella linea di base, dovuta principalmente ai numerosi idrogeni ammidici dell'HSA.

Spettro ¹H della soluzione 0,4% HSA

Sono stati quindi effettuati gli spettri del ¹³C delle soluzioni. In questi spettri i segnali dei carboni dell'albumina si manifestano come una debole oscillazione della linea di base.

Ingrandimento dello spettro in ¹³C della soluzione 20 mM TCNa/ 2 % HSA

L'elemento più interessante di questi spettri è il differente allargamento delle righe che si ha a differenti rapporti di concentrazione (R) TCNa/HSA.

Questo allargamento riguarda tutti i segnali in misura diversa, ma è molto meno marcato per i segnali dei metili.

Quando R è alto, cioè nel caso della soluzione 20 mM TCNa/ 0,4% HSA, l'ampiezza delle righe è molto simile a quella riscontrata negli spettri delle soluzioni prive di albumina; diminuendo il rapporto, si nota immediatamente un sostanziale aumento di tale ampiezza. Gli spettri delle soluzioni 20 mM / 2% e 4 mM/ 0,4%, che hanno lo stesso rapporto di sale e albumina, mostrano un differente rapporto segnale/rumore dovuto alla diversa concentrazione di taurocolato, ma un allargamento delle righe molto simile.

Nella soluzione 10 mM/ 2% si nota un ulteriore aumento delle larghezze di riga, tanto che alcuni segnali spariscono nel rumore di fondo.

Ingrandimento dello spettro in ¹³C della soluzione 4 mM TCNa/ 0,4% HSA

Ciò si spiega considerando che con questi rapporti di concentrazione i siti di legame di ogni albumina sono presumibilmente saturati, cioè la proteina lega a se un numero fisso di molecole di taurocolato; quindi, aumentando la concentrazione di HSA rispetto al TCNa, cresce il numero di molecole di sale che si trovano in forma legata e non libera, con conseguente diminuzione del T_2^* medio (in quanto le particelle legate all'albumina si possono considerare avere il suo stesso moto lento) ed allargamento delle righe.

Passiamo ora ad esaminare i chemical shift dei carboni per verificare se anch'essi, come le larghezze di riga, segnalano l'aggregazione.

Per poter meglio confrontare i dati di chemical shift con e senza albumina è stato effettuato il solito riferimento al carbonio 4.

	20 mM 0,4% HSA	20 mM 2% HSA	10 mM 2% HSA	04 mM 0,4% HSA
1		35,346		35,196
2	29,645	29,668		29,656
3	71,985	71,968	71,996	72,020
4	38,806	38,806	38,806	38,806
5	41,948	41,961	41,906	42,005
6	34,679	34,702	34,656	34,611
7	68,748	68,700	68,746	68,843
8	39,504	39,533	39,386	39,318
9	26,777	26,775	26,744	26,748
10	34,193	34,211		34,136
11	28,032	28,121	28,076	28,126
12	73,518	73,491	73,619	73,643
13	46,480	46,493	46,452	46,448
14	41,391	41,435	41,346	41,306
15	23,196	23,249		23,016
16	27,531	27,576		27,489
17	46,875	46,827		46,966
18	12,370	12,414	12,313	12,204
19	22,341	22,409	22,321	22,191
20		35,126		34,956
21	17,039	17,073	17,040	19,999
22	31,927	31,925		31,940
23	33,100	33,068		33,186
24	177,648	177,550	177,590	177,536
25	35,422	35,455	35,426	35,408
26	50,208	50,242	50,250	50,216

Chemical Shift delle soluzioni Taurocolato/albumina riferiti al C4 (± 0,01 ppm)

Ossidrilci Steroidei Metilici Taurinici Carbonilico Alifatici

Le differenze di chemical shift tra le soluzioni contenenti albumina e le soluzioni che ne sono prive sono praticamente nulle quando il rapporto taurocolato/HSA è alto (R= 333, soluzione 20mM – 0,4 %), mentre si fanno più marcate a valori più bassi del suddetto rapporto (R= 67, soluzioni 20mM – 2%, 04mM – 0,4% e R= 33, soluzione 10mM – 2%), come dimostrano la tabella ed i grafici seguenti.

Si noti che la scala verticale nel grafico relativo alla soluzione con R = 33 è compressa rispetto a quella degli altri grafici.

	20 mM 0,4% HSA	20 mM 2% HSA	04 mM 0,4% HSA	10 mM 2% HSA
1	0,017	-0,115	-0,033	-0,228
2	-0,006	-0,021	-0,022	-0,014
3	-0,007	-0,010	-0,019	-0,032
4	-0,012	-0,036	-0,043	-0,124
5	-0,006	0,040	0,038	0,068
6	-0,004	-0,044	-0,021	
7	0,003	0,010	0,026	0,014
8	-0,006	0,019	0,010	-0,081
9	0,001	0,043	0,007	0,051
10	0,014	0,015	0,041	0,070
11	0,000	0,000	0,000	0,000
12	-0,003	0,036	0,030	0,056
13		0,029	0,063	
14		0,031	-0,015	
15	0,003	0,020	0,034	0,071
16	-0,009	0,027	0,063	
17	0,004	-0,036	-0,023	
18	-0,005	0,003	0,032	
19	0,003	0,020	0,040	
20	0,017	0,072	0,059	0,184
21	-0,004	0,049	0,047	
22	-0,031	0,029	0,022	0,026
23	0,001	0,052	0,042	
24	0,006	0,062	0,062	0,095
25	0,003	0,031	0,026	0,063
26	0,006	0,038	0,051	0,115

Differenze di chemical shift in presenza e in assenza di albumina ($\pm 0,01$ ppm)

Ossidrilci Steroidei Metilici Taurinici Carbonilico Alifatici

Delta Soluzione 04 mM – 0,4 % HSA, R=67

Le differenze trovate sono maggiori a rapporti più bassi di TCNa / HSA, ma sono comunque troppo piccole e troppo oscillanti per poterne ricavare informazioni specifiche sull'interazione del taurocolato con l'albumina.

Tuttavia, il fatto che la variazione dei chemical shift rispetto alle soluzioni prive di HSA sia grossolanamente proporzionale a 1/R induce a pensare che essa sia dovuta all'interazione specifica sale-proteina e non a fluttuazioni casuali o causate da altri cambiamenti delle condizioni delle soluzioni.

Misura dei T₁ di TCNa in soluzione con HSA tramite Inversion Recovery

Per differenziare i diversi siti di attacco del taurocolato alla proteina, sono stati misurati i tempi di rilassamento T_1 dei diversi ¹H con la tecnica dell'Inversion Recovery [9b].

Tale tecnica consiste nell'inviare inizialmente un impulso RF perpendicolarmente alla direzione del campo principale, in modo da invertire la magnetizzazione netta lungo Z (impulso π).

Alla cessazione dell'impulso RF, la magnetizzazione comincia a riequilibrarsi, o "recuperare" lungo la direzione del campo magnetico; dopo un tempo t_i viene inviato un impulso $\pi/2$ che sposta la magnetizzazione M(t_i) nel piano XY: la magnetizzazione risultante inizia a precedere attorno all'asse Z, generando nel ricevitore un segnale tipo FID, la cui intensità iniziale è proporzionale alla magnetizzazione iniziale stessa M(t_i).

T₁ è collegato a M(t_i) dall'equazione

$$M(t_i) = M_z [1 - 2exp(-t_i / T_1)]$$

con

- $M(t_i)$ magnetizzazione dopo l'impulso π e il tempo t_i ; essa è misurata dallo strumento come intensità iniziale del FID o integrale del segnale dopo Trasformata di Fourier;
- M_z magnetizzazione netta iniziale.

In un esperimento di Inversion Recovery viene variato t_i , in modo che T_1 possa essere calcolato come parametro di fitting dell'equazione scritta sopra.

D'altra parte il tempo di rilassamento longitudinale dipende dall'intorno del nucleo e dalla mobilità della molecola di cui il nucleo fa parte, come espresso dalla formula (già citata nell'introduzione)

$$\frac{1}{T_1} = \frac{3}{20} \left(\hbar^2 \frac{\gamma_N^4}{r^6} \right) \left\{ \frac{2\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{8\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right\}$$

log(T_)

con

Nel

 ω_0 = frequenza di Larmor

 γ = rapporto giromagnetico del nucleo \mathbf{r} = distanza tra il nucleo considerato e un altro interagente dipolarmente con esso

 τ_{c} = tempo di correlazione.

nostro

Quindi, misurando T_1 possiamo sperare divalutare il grado di mobilità di una molecola o di un aggregato.

il

caso

taurocolato

intermediate

T₁

all'albumina, muovendosi più lentamente di quello libero con cui è in rapido scambio, dovrebbe contribuire ad accorciare sensibilmente il tempo di rilassamento osservato per tutti i nuclei. Il taurocolato in forma micellare potrebbe comunque avere T_1 non molto più lunghi di quelli del taurocolato legato all'HSA.

legato

Abbiamo quindi acquisito con la tecnica IR gli spettri delle quattro soluzioni con albumina e delle soluzioni di solo taurocolato 4 mM e 20 mM, scelte rispettivamente prima e dopo la CMC.

Spettro ¹H in Inversion Recovery della soluzione TCNa 4 mM

Spettro ¹H in Inversion Recovery della soluzione TCNa 20 mM / HSA 2%

Dalle figure precedenti, osservando in particolare il valore di t_1 per il quale ogni singolo segnale è nullo, si vede che i tempi di rilassamento dei protoni del taurocolato sono straordinariamente invarianti, sia che esso sia libero in D₂O, concentrato in micelle o concentrato in presenza di albumina.

Questa osservazione si può estendere a tutte le soluzioni esaminate con Inversion Recovery.

Tale risultato è sorprendente in quanto l'interazione taurocolato-albumina è confermata non solo dai dati di letteratura ma anche dall'allargamento di riga già discusso dovuto alla diminuzione del tempo di rilassamento trasversale: l'assenza di variazione del T_1 contrasta con queste certezze.

L'unica spiegazione immediata è che operando a 300 MHz ci siamo venuti a trovare in tutti i casi esaminati nella zona di passaggio dal regime dei moti lenti a quello dei moti veloci, intorno a $\omega_0 \tau_c = 1$, dove T₁ ha un minimo largo e risulta variare molto poco in funzione di τ_c .

Abbiamo a disposizione due metodi per far variare T_1 e confermare la nostra ipotesi di moti "intermedi", ovvero variare la temperatura (cioè variare τ_c) o variare la frequenza di lavoro (cioè variare ω_0)

Il tempo di correlazione infatti dipende dalla temperatura secondo la formula

$$\tau_c = \frac{4\pi\eta a^3}{3\mathrm{kT}}$$

dove η è la viscosità del solvente, a il "raggio" molecolare e T la temperatura.

Bisogna notare che, cambiando la temperatura, si vanno ad alterare i delicati equilibri presenti nel nostro sistema, a cominciare dal pH. Abbiamo comunque misurato i tempi di rilassamento dei protoni delle stesse soluzioni a 23 °C, ottenendo variazioni molto modeste e difficilmente razionalizzabili rispetto ai dati a 37 °C. Tuttavia si osservi che nella scala Kelvin cambiare la temperatura di 14 K quando siamo a circa a 300 K corrisponde ad una variazione minore del 5%.

Abbiamo infine misurato i T_1 delle stesse soluzioni utilizzando però uno strumento operante a 200 MHz anziché a 300 MHz.

Spettro ¹H in Inversion Recovery della soluzione TCNa 20 mM / HSA 2% a 200 MHz

Dal confronto fra la serie di spettri sopra riportati e quelli corrispondenti registrati a 300 MHz, è evidente che operando a 200 MHz il punto d'inversione è anticipato; ad esempio i segnali relativi ai metili si annullano per $t_i = 0.2$ s anziché per $t_i=0.25$ s, mentre i segnali relativi ai metileni della taurina s'invertono a $t_i = 0.4$ s anziché a $t_i = 0.6-0.7$ s.

Osservazioni simili si ripetono per tutte le soluzioni esaminate. Tutto ciò è in accordo con la dipendenza di T_1 da ω_0 prevista teoricamente nella zona dei moti lenti e intermedi e sembra confermare la spiegazione da noi data per l'invarianza di T_1 a 300 MHz nelle varie soluzioni.

CONCLUSIONI

La spettroscopia NMR si è confermata uno strumento adatto per mettere in evidenza i fenomeni di autoaggregazione del taurocolato di sodio in acqua e le interazioni di questo con l'albumina, anche operando con uno strumento routinario a campo magnetico relativamente basso.

In particolare l'andamento dei chemical shift dei ¹³C, a concentrazioni crescenti di TCNa, è risultato un parametro sensibile al manifestarsi della concentrazione micellare critica in D_2O . Rimane da spiegare l'inverianza del chemical shift con la concentrazione in presenza di tampone fosfato.

Per quanto riguarda le interazioni del TCNa con l'albumina, esse sono messe in evidenza soprattutto dall'allargarsi delle righe spettrali sia del protone sia del ¹³C.

Al contrario, il tempo di rilassamento longitudinale T_1 è risultato essere praticamente insensibile alla presenza di HSA, almeno operando alla frequenza di 300 MHz. Le prove effettuate a 200 MHz suggeriscono che sia in presenza che in assenza di albumina ci troviamo a operare nella zona dei moti intermedi. E' comunque sorprendente che il taurocolato presenti T_1 molto simili sia libero sia aggregato e in presenza di albumina (situazioni in cui in teoria la mobilità molecolare dovrebbe essere molto differente).

Infine questo studio ci ha permesso di "scoprire" le differenze di comportamento nell'autoionizzazione dell'acqua deuterata D_2O rispetto all'acqua H_2O , molto studiate nella letteratura meno recente.

Cristalli aghiformi di albumina nella soluzione 0,4 % in D₂O conservata in frigorifero

BIBLIOGRAFIA

[1] R. N. Berne, M. N. Levy, B. M. Kuetten, B. A. Stanton, *Fisiologia*, Casa Editrice Ambrosiana, Milano, **2007**

[2] M. Calabresi, P. Andreozzi, C. La Mesa, *Molecules*, 2007, 12, 1731-1754

[3] Small D. M., *The Physical Chemistry of Cholanic Acids* in *Chemistry*; *The Bile Acids*, P. P. Nair, D. Kritchevsky Eds., Plenum Press, New York, **1971**, 1, 8.

[4a] N. Funasaki, M. Fukuba, T. Kitagawa, M. Nomura, Se. Ishikawa, S. Hirota, S. Neya, *J. Phys. Chem. B*, **2004**, 108, 438-443

[4b] L. Galantini, E. Giglio, N. V. Pavel, J. Phys. Chem. B, 2005, 109, 9849-9850

[5] www.sonnet-online.de

[6] A. Roda, G. Cappelleri, R. Aldini, E. Roda, and L. Barbara, J. Lipid Res, 1982. 23, 490-495.

[7] B. Orioni, M. Roversi, C. La Mesa, F. Asaro, G. Pellizer, G. D'Errico, *J. Phys. Chem. B* 2006, 110, 12129-12140

[8] P. Gianni, L. Bernazzani, V. Mollica, AICAT 2008, 2008, 31-34

[9a] A.Carrington, A. D. McLachlan, *Introduction to Magnetic Resonance*, Harper&Row, New York, **1968**

[9b] J. K. M. Sanders. B. K. Hunter, Modern NMR Spetroscopy, Oxford Universitiy Press, Oxford, **1993**

[10] Autori vari, Modern Magnetic Resonance, G. A. Webb, Eds. Springer, Dordrecht, 2006

[[11] J. Zhu-Sheng, L. Cong-Gang, M. Xi-An, L. Mai-Li, H. Ji-Ming, *Chem. Pharm. Bull.*, **2002** 50(8) 1017—1021

[12] Cabral, D. J.; Hamilton, J.A.; Small, D. M., J. Lipid Res. 1986, 27, 334-343

[13] Handbook of Chemistry and Physics, CRC Press, Cleveland, 1976

[14] P. Salomaa, L. L. Schaleger, F. A. Long, Journal of the American Chemical Society, **1964**, 86, 1-7

[15] M. Liu, R. D. Farrant, B. C. Sweatman, J. K. Nicholson, J. C. Lindon, *Journal of Magnetic Resonance*, **1995**, Series A 113, 251-256

[16] L. Bernazzani, S. Borsacchi, D. Catalano, P. Gianni, V. Mollica, M. Vitelli, F. Asaro, L. Feruglio, *J. Phys. Chem. B* **2004** 108, 8960-8969

[17] Y. Murata, G. Suglhara, K. Fukushlma, M. Tanaka, J. Phys. Chem. 1982, 86, 4690-4694

RINGRAZIAMENTI

Ringrazio innanzitutto i professori Bernazzani e Gianni, per avermi suggerito l'argomento di studio e per avermi supportato con materiali, consigli, strumentazione.

Ringrazio Rita Carosi per la disponibilità dimostrata e per non essersi mai arresa di fronte alle difficoltà a cui gli strumenti ci hanno sottoposto.

Ringrazio la signora Teresa, per avermi fatto trovare la professoressa Catalano quando ormai avevo perso le speranze di iniziare il tirocinio.

Ringrazio chi, abbracciandomi e facendosi abbracciare, è riuscito a farmi passare col sorriso sulle labbra uno dei mesi più lunghi della mia vita. Grazie davvero.

Ringrazio tutti quelli che si meritano di essere ringraziati ma che non ho il tempo di citare uno per uno.

Infine, ringrazio la mia inesorabile relatrice, la dottoressa Catalano, che con infinita pazienza ma anche tanta allegria mi ha condotto lungo un percorso formativo utile e interessante.