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Preface

We shall present in this work a proposal for modeling perturbation on complex systems.
In the chapter I we shall introduce the main mathematical tools and definitions of our

model: Renewal processes. Our attempt to model the perturbation of complex systems will
be limited to those for which a renewal perspective is allowed.
In chapter II we shall show, with the help of numerical simulations, that these systems

exhibit a non stationary, thus non ergodic, behavior.
In chapter III we shall present our proposal for a perturbation theory of complex systems.

Since Kubo’s fluctuation-dissipation theorem:

⟨A(t)⟩pert − ⟨A(t)⟩unpert = ε ∫
t


χ(t − s)B(s)ds

where χ(t − s) = d
dsC(t − s) holds for stationary processes, we have to extend it in order to

use it for complex renewal systems.
In those cases perturbation can act either on the event generating operator (thus per-

turbing the leading process without affecting the event occurrence time) or on the global
interaction (then perturbing our waiting time distribution).�e first approach, which we
refer to as “phenomenological” gives χ(t, s) = d

dsC(t, s); the second one, which we call
“dynamic” gives χ(t, s) = − ddtC(t, s). In the stationary case, both prescriptions lead to Kubo
theorem again.
We assert that the “dynamical” approach is the one which better describes our processes

and then extend this theory to non dichotomous processes. In this case, besides the linear
response term, a new term appears. If the perturbation is harmonic, Acos(ωt + φ), the
linear response theory leads to a response of the following form:

⟨A(t)⟩pert − ⟨A(t)⟩unpert = εBR(t) cos(ωt +Φ)

with R(t) ∼ /t−µ and B and φ depending on the peculiar characteristics of the system .
We then illustrate an experimental result on Liquid crystals dynamics that confirms our

theory.
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1 Complex systems power laws and
subordination theory

Answering a question like “what is complexity science?” is still a very hard task: complexity
science is a very recent discipline and, in spite of an exponentially increasing number of
results, it still lacks the support of a unifying theory, accepted by the majority of the scientists
working in this field.�e large variety of systems studied, the diversity of behaviors which
are usually labeled as “ complex” and its interdisciplinary status have made it to be a very
fast changing discipline in which many different approaches, of which each one has its pros
and cons, coexists: there is not yet a commonly recognized foundations even if some typical
behaviors are recognized.
As a discipline, complexity science suffers on account of difficulty of defining what a

complex system is. A typical heuristic reply to this question may be a negative one: a system
is complex if it is neither a completely deterministic one nor a completely stochastic one.
Complex systems stands in a certain way between Newtonian physics (that is physics of
large scales) and statistical and quantum physics (physics of small scales).
Although this definition is correct, it is too vague unsatisfactory and we would like to

elucidate some specific behavior of complex systems

1.1 Characteristics of complex systems

�is said, we would like to be able to give a more “positive” definition of complex system,
and we would like to be able to give some property that we would label as “bookmarks” of
complexity behavior (see [])
We want to identify three different types of behavior that can characterize a complex

system:

Chaos As usually defined a chaotic system is a causal system with unpredictable evolution.
�is is historically the first example of complex system.

Non linearity Non linear systems, that is systems whose outputs are not proportional to
their inputs, are another class of systems that exhibit complex dynamics (e.g. limiting
circles, bifurcations, period doubling)

Self-organization and cooperation Complex systems like neural networks, scale free
complex networks, cellular automata, decision-making networks show some typical
dynamics characterized by different form of self-organization, by the birth and death
of coherent structures (patterns), and power law behaviors.
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We shall be mainly interested in strongly cooperative systems whose evolution can be
characterized by a renewal process.
We shall not consider in our discussion, any specific model, but rather we shall propose a

generalized theory that may be applied whenever an event driven renewal description is
plausible.
We then shall refer to some recent experimental evidences on liquid crystals [,] which

prove that an event driven description is possible in this case, and so we shall confront our
theoretical proposals with some experimental results.

1.1.1 Power laws

In complex systems the emergence of power law is ubiquitous. Power Laws have been found
to govern the occurrence time of large earthquakes [, ], to model financial markets
behavior [], rains [] and many others.
Brain dynamics too seems to undergo an event power law distribution. Similarities be-

tween Omori’s law for earthquakes and epileptic seizures distributions have been found [],
Many complex networks too, like World Wide Web [] (see figure .), Social Networks,

human dynamics (e.g. electronic correspondence [] and traditional one []) exhibit
a complex topology characterized by a power law distribution of the degrees of nodes.
�ose networks, called scale-free complex networks [, ], lighten the nature of power law
emergence in complex system.

Figure 1.1: A figure taken from [?] which shows the emergence of a power law distribution
for real networks. �e distribution function of connectivity for various large
networks. (A) Actor collaboration graph with N = ,  vertices and average
connectivity ⟨k⟩ = . (B) WWW, N = , , ⟨k⟩ = . (). (C) Power grid
data, N = , ⟨k⟩ = .�e dashed lines have slopes (A) µ = . (B) µ = .
and (C) µ = 

While in fact purely random traditional complex network models (i.e. Erdős - Rényi
graphs [], Watts-Strogartz small world []) are characterized by degree distribution
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that is mainly poissonian, real-world complex networks, which have actually a very strong
cooperative behavior, are actually better modeled by scale free model.
Power laws are in fact able to correctly model what has been called sporadicity. Moreover

with respect to poissonian power laws they allow rare events to occur with a higher and not
negligible probability.
We consider it the only parameter which governs the universality class of system driven by

a power law distribution, and experimental observation are able to determine the exponent
µ.
Many complex physical systems have shown to exhibit a power law decay from a non-

equilibrium: a recent example is provided by liquid crystals [].�en we are interested to
analyze power law event driven processes as a model from which extrapolate theoretical
predictions.
Let us point here that power laws are asymptotic.�ey can be useful to model a universal

long term behavior but not the transient one which is strongly dependent on themicroscopic
details.
In order to facilitate calculations we have to make some assumptions on the form of the

distribution we shall use.�ese assumptions will introduce biases that should not affect the
asymptotic behavior of our results.�e assumption done will influence the choice of these
parameter without afflicting the asymptotic behavior.
In this chapter we shall present some functions that exhibits an asymptotic power law

behavior. We shall use these function our calculations.

Mittag-Le�er Function derivative

Mittag-Leffler function [] has frequently been considered to extend the concept of expo-
nential. To understand it we have digress a little and give a rapid introduction to Fractional
derivation.
�ere are many ways we could extend the concept of derivation. Liouville’s guess on

exponential function (i.e. Dαeax = aαeax),has been historically the first attempt to extend the
concept of Derivative but soon Liouville was confronted to the problems of this definition
(it was not a coherent definition). More then a century took to mathematicians to give a
coherent theory.
A fractional derivative cannot be a local operator. For the derivative operator defined

over a L space this is obvious, since it has to can be constructed by the mean of infinite
series of operator. But in general this is not obvious unless we use one of the many forms in
which fractional Derivatives may be expressed, the Riemann-Liouville form.
For q <  we set [] and []

aD
(q)
t X(t) = 

Γ(−q) ∫
t

a

X(ξ)
(t − ξ)q+ dξ (.)

and we extend this definition to α = q + n

aD
(α)
t X(t) = aD

(q+n)
t X(t) = − d

n

dtn aD
(q−n)
t X(t). (.)
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Here the non locality of this operator is clear.
We want to introduce Mittag-Leffler function as a generalization of exponential functions

(see []). Since we know that the exponential function is the solution of the equation
ordinary kinetic equation

Dt Xi(t) = ciXi(t) (.)

Integrating (notice that integration according to . is nothing but D
(−)
t operator) we

have:

Xi(t) − Xi() = ci D
(−)
t Xi(t) (.)

We can thus generalize this equation dropping indices and letting D
(−)
t → D

(−ν)
t that is

Xν(t) − Xν() = cν
D

(−ν)
t Xi(t) (.)

�is equation can be solved and we obtain

Xν(t) = Xν()cν
∞

∑
k=

(−)k(ct)νk

Γ(νk + ) = Xνcν()Eν(cνtν) (.)

We call the function :

Eν(t) =
∞

∑
k=

(−)k(t)k
Γ(νk + ) (.)

theMittag-Leffler function.
As this derivation shows,Mittag-Leffler function is a kind of interpolating function be-

tween exponential law and power law.
Let us consider now the function ψML(t) = − d

dtEα(λα tα). If we consider its Laplace
transform we obtain

ψ̂ML(s) =


 − λαsα with α ∈ [, ] (.)

Bochner’s theorem assures us that ψML(t) is actually a probability density function. Using
Tauberian theorem ( [], cap V) for Laplace transform we have (µ = α + ):

ψ̂ML(s) ∼  + λαsα (.)

and so for t →∞ we have
ψML(t) ∼


Γ(µ + )tµ (.)

obtaining an asymptotic power law.
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Manneville’s Map and Manneville’s distribution

In an article of  [] Paul Manneville proposed a model for intermittent turbulence,
which we shall call Manneville’s map

yn+ = M(yn) = yn + αyzn (mod ) (.)

with z > .�is function is plotted in Figure ..
As Gaspard and Wang found in  [] Manneville map dynamic has a very distinctive

behavior

 ≤z ≤ 


normal dynamics (Gaussian Fluctuations (.)



≤z ≤  transient anomalous dynamics (.)

 ≤z anomalous dynamics (Lévy fluctuations) (.)

As we see from figure . for z = . dynamics of Manneville model is characterized by a
certain form of clustering: long period laminar phases interrupted by chaotic burst.
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Figure 1.3:Manneville series for z = . a =  x = .

A�er establishing the intermittent nature of y we aim to calculate its probability density
function [], to do that we have to take a continuous time limit, by example considering the
differential equation:

y′ = αyz . (.)
the solutions of this equation is given by:

α(τ − τ) = ∫
y

y
yz dy = 

 − z
( 
yz−

− 
yz−

) . (.)
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�us, the time distance between two consecutive jumps (that is, by the structure of .,
we set t =  and y = ) is given by

ατ = 
 − z

( 
yz−

− ) . (.)

by inverstion of this equation we get:

y = ζ(τ) = ( 
( − z)ατ + )

/z−

. (.)

Since y ∼ U(, ) we have

ψM(t) = d
dt
Prob(τ < t) = d

dt
Prob(y < ζ(t)) = d

dt
( 
( − z)t + )


z−

= (µ − )T µ−

(T + τ)µ
(.)

where we have set µ = z
z− and T = α

(z−) .
We can apply Gaspard and Weng analysis [] to this case and obtain:

µ ≥  normal dynamics (Gaussian Fluctuations, finite mean and variance)
(.)

 ≤µ ≤  transient anomalous dynamics (finite mean, variance not defined)
(.)

 ≤µ ≤  anomalous dynamics (Lévy fluctuations, mean and variance not defined)
(.)

�us, Manneville’s intermittency is governed by a power law. We shall see that Laplace
Transform (see []) of probability density functions is of fundamental importance for our
theory but in this case a closed form is not available. We have, in fact,

ψ̂M(s) = ∫
∞


e−st

(µ − )T µ−

(T + τ)µ dt = (µ − )T µ−sµ−e−sTΓ( − µ, sT) (.)

where Γ(x , α) = ∫∞α et tx− dt is the upper incomplete Gamma function []. ψM(t) is a
probability density function (̂ψ)M() =  we can compute his asymptotic behavior for s → 
and obtain
If  < µ <  we can expand the function and obtain:

ψ̂M(s) ∼  − Γ( − µ)(sT)µ− (.)

IF  < µ <  we obtain instead:

ψ̂M(s) ∼  + sT
 − µ

− Γ( − µ)(sT)µ− =  + s⟨t⟩ − Γ( − µ)(sT)µ− (.)
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Lévy function

Lévy’s distribution is another function which can be used as asymptotic power law.
Lévy introduced his distribution looking for [, ]

De�nition 1.1.1 (infinite divisible distributions). Let φX(t) be the characteristic function
of a probability distribution f (t) (i.e φX(t) = Eµ(eiωX where X ∼ µ). A probability function
is said to be infinitively divisible if for any n there exists a probability measure ν whose
characteristic function λn(t) satisfies

φX(t) = (λn(t))n .
Among all the infinite divisible distributions a particular class is of wide interest. To

explore this point let us use

De�nition 1.1.2 (Stable distribution). A distribution is stable if it is stable under convo-
lution that is if, for any a,a,b, b there exist a, b ∈ R , so that its characteristic function
φX(t) satisfies:

φaX+b(t) = φaX+b(t)φaX+b(t)
If two random variables X and X are distributed according to a stable distribution the

their sum (rescaled and translated) is also distributed with the same distribution.
�e most widely known stable distribution is the Gaussian distribution. Levy and Kin-

chine have shown that the only possible attractors of probability distribution are stable
distribution and Levy has given a canonical representation theorem

Theorem 1.1.1 (Lévy-Kintchine representation theorem). �e most general form for the
characteristic function Lα,β(k) of a stable is given by

ln Lα,β(k) = iγk − c∣k∣α ( − β
k

∣k∣ω(k, α)) (.)

where

ω(k, α) =
⎧⎪⎪⎨⎪⎪⎩

tan ( πα
 ) if α ≠ 


π ln ∣k∣ if α = 

(.)

where γ is arbitrary, c > , α ∈ [, ], − < beta < 
Since γ and c are scale factors, the do not contribute to the shape of the distribution.

α and β instead determines the shape Lévy distribution. �e first exponent is called the
characteristic exponent since it governs the asymptotic behavior of the distribution, we have
in fact

for  < µ <  �e (bilateral) Laplace transform of the distribution can be calculated since
we have the characteristic function and expanding near origin we have

Lα,β(is) = ψ̂L(s) ∼  − ∣k∣α − β∣k∣α− k
ω(k, α)

we get that

ψL(t)→ ± 
∣x∣+α for x → ±∞ (.)
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for α =  the function becomes a Gaussian distribution.

�e β is called skewness parameter since it control the symmetry of the function. For
β =  we obtain symmetric Lévy function, for β = −�e distribution in concentrated in
the half line [γ,∞]

1.2 Mesoscopic phenomena and stochastic processes

Phenomena usually studied by physicists have well defined physical scales. Newtonian
dynamics, classical (equilibrium) statistical physics and general relativity investigates macro-
scopical phenomena in which the fluctuations can be neglected, quantum physics inves-
tigates microscopical phenomena in which quantum fluctuations are not negligible any
more. Recent advances in technologies (e. g. molecules tracking) have enabled scientists to
investigate phenomena whose typical scale are not large enough that fluctuations due to
microscopical dynamic can be totally neglected and still not small enough that a complete
quantum mechanical treatment can be set up. For these phenomena the name ofmesoscopic
phenomena has been proposed.
�e natural framework in which those systems are studied is that of stochastic processes.

Stochastic processes can be seen as a kind of “microscopical phenomenological description”
of the systems, that is, we take into account themicroscopical dynamics through a fluctuating
variable which describes it “phenomenologically”.
�is approach is obviously not new to physics: it has been, indeed, widely used in those

fields which ante tempora studied phenomena we could today define asmesoscopic (e.g. non
equilibrium statistical physics, Brownian motions etc.). We want to point, nonetheless, that
recent advances in experimental techniques have enabled us to study an extremely rich
variety of new systems and phenomena which cannot be interpreted from within the usual
perspective applied to those disciplines. New “interpretational” paradigm are needed to
describe these new fundamental phenomena (and some, like self-organized criticality have
yet been provided and have manifestated a powerful exegetic strength ).

1.2.1 Stochastic processes: some de�nitions

Usual mathematical description of probability is quite cumbersome, under certain aspects.
Here we shall limit ourselves to state some definition a property needed further. As a
reference books we have mainly used [] and [] (and also [], []).

De�nition 1.2.1 (Stochastic Process). Let L(X , µ,B) a probability space, a stochastic (or
random) process is collection of stochastic variables {Xt}t∈T parameterized over a set T and
assuming values in Rn

If T = R then we shall call the process a continuous time stochastic process. If T = N then
we shall call the process a discrete time stochastic process

�is definition enables us to translate every concept we already have on stochastic variables
to stochastic processes
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De�nition 1.2.2 (Finite dimensional distributions). Given a a stochastic process {Xt}t∈T
over the probability L(X , µ,B), for any finite dimensional set of indexes {t, . . . , tk} we
define we define the finite dimensional distributions of the process the sets of measures
{µt ,...,tk(F ×⋯ × Fk)} over Rnk defined by

µt ,...,tk(F ×⋯ × Fk) = Prob(Xt ∈ F ∩ Xt ∈ F ∩⋯ ∩ Xtn ∈ Fn) (.)

�e mathematical definition of our process allows us to interpret them in tree different
ways: either as random variables (i.e. measurable functions over our probability space
Xt ∶ X → Rn) or as functions defined over the set T × X (i.e. instead of interpreting it like
Xt(F) we look at it as X ∶ (t, F) ∈ T × X → Rn). A third possibility is to interpret them as
model functions for physics problems.

De�nition 1.2.3 (Path). For any Fixed F ∈ B we call the function

fF(t) = X(t, F) (.)

a path of our process.

As usually done for any set of variables, we can define some statistical properties for our
processes. Two statistical properties are particularly important :

De�nition 1.2.4 (Mean). Let {Xt}t∈T be a process on the probability space L(X , µ,B),
and let µt the -dimensional distribution as defined in definition .. We call the function

µ(t) = E(Xt) = ∫ Xt dµt (.)

themean of the process

and

De�nition 1.2.5 (Autocorrelation). Let {Xt}t∈T be a process on the probability space
L(X , µ,B) and let µt,s the -dimensional distribution as defined in definition . we
define the function

C(t, s) = E(XtXs) = ∫ XtXs dµt,s (.)

the autocorrelation of the process.

Among the great variety of processes a particular class of continuous time processes are
very important and are characterized by Markov Property

De�nition 1.2.6 (Markov Processes). Let {Xt}t∈T be a process on the probability space
L(X , µ,B),We say that the process is aMarkov process if, for any set of indexes {t, . . . , tk−, s} ∈
Rk
+ so that t < t < ⋯ < tk− < s the process has theMarkov Property

Prob(Xs ∈ Fs ∣ Xtk− ∈ Ftk− ∪⋯ ∪ Xt ∈ Ft) = Prob(Xs ∈ Fs ∣ Xtk− ∈ Ftk−) (.)
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Using the definition of conditional probability and definition of finite dimensional distribu-
tion we get the previous property translates

µs,tk− ,...,t(G × Fk− ×⋯ × F) =
µs,tk−(G × Fk−) ⋅ µtk− ,tk−(Fk− × Fk−) ⋅ . . . ⋅ µt ,t(F × F)

µtk−(Fk−) ⋅ . . . ⋅ µt(F)
(.)

that is the  and  dimensional distributions totally determines the process.
If µt,s(F ,G) = µt−s,(F ,G) the Markov process will be called time homogenous, otherwise

time inhomogeneous.

Since we are interested in modeling physical systems we content ourselves to choosing R
as basic space . We, moreover, will assume that the probabilities involved can be expressed
in terms of their probability density functions (to be true with a slight abuse of notation we
shall consider among those densities also the tempered distributions like Dirac’s δ(t)).
In the following, if nothing is otherwise expressed, we shall indicate the processes simply

by Xt or even X(t) where no confusion is possible and the probability density function
of our process will be simply denoted like p(x , t) = Prob(Xt ∈ [x , x + dx]). Conditional
probability analogously will be written like p(x , t ∣ yt′).

Markov Chains

Among all Markov processes an important class shall be studied more accurately

De�nition 1.2.7 (Markov Chain). AMarkov process {Xt} over a countable (of finite) subset
of R is called aMarkov Chain.

Since the possible outcomes the stochastic process can give are countable we shall use a
more comfortable notation. We label each possible outcome which we shall refer to as state,
with an integer i and denote the probability of the state i to occur at time t with πi(t).
We will call the transition probability Wi j(t, s) the conditional probability Prob(i , t ∣ j, s).

ObviouslyWi j(t, t) = δi j where δi j is the Kronecker symbol.
If Markov property holds we can write

πi(t) =∑
j
Wi j(t, s)π j(s) (.)

It straightforward to derivate some important properties like

Proposition 1.2.1 (Chapman-Kolmogorov-Smoluchovski). For all i , j and for all s < u < t
the transition probabilities satisfies

Wi jt, s =∑
k
Wik(t, u)Wk j(u, s) (.)

We shall show that under certain regularity hypothesis a differential system of equation
can be obtained.
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Let us assume that Wi j(t + dt ∣ t) = δi j + Ki j(t)dt + o(dt) and πi(t + dt) = πi(t) +
d
dt π(t)dt + o(dt). We can thus write:

d
dt

πi(t)dt =∑
j
Ki j(t)dtπ j(t). (.)

If the series of Ki jp j(t) still converge we can take limits and obtain

d
dt

πi(t) =∑
j
Ki j(t)π j(t), (.)

which we shall call time inhomogeneous Master equation.
If the Markov Chain is time homogenous the transition probability will satisfyWi j(t, s) =

Wi j(t − s, ) and thusWi j(t + dt, t) =Wi j(dt, ).
IfWi j(dt, )→ δi j at least linearly in dt we can take the limit for dt →  and we can write

d
dt

πi(t) =∑
j
Ki jπ j(t) (.)

where Ki j = d
dtWi j(t)∣. Equation . is usually known in physics asmaster equation.

Since πi(t) are probability, we have to request that ∑i πi(t) =  for every time. If
d
dt ∑i πi(t) = ∑i

d
dt πi(t) we have that∑i∑ j Ki jπ j(t) = . If we change the order of summa-

tion¹ we obtain that the Ki j satisfy the request

∑
i
Ki j = . (.)

Under these conditions (Ki i = −∑i≠ j Ki j) we thus restate the master equation in the form

d
dt

πi(t) =∑
j≠i

Ki jπ j(t) − Ki jπi(t). (.)

�e physical interpretation of master equation is now clear. If we interpret the pi as the
occupation probability of a state i, Ki jπ j(t)measures the occupation growth of state i due
to particles that leave the state j to go to the state i, Ki jπi(t)measures, instead, the decrease
of occupation of state i due to particles that leave state i to go to state j.
A Markov chain is said to have reached equilibrium if its probability distribution is time

independent.
If our Markov chain satisfies a master equation an equilibrium exists if∑ j Ki jπ j(t) = . If

the states are infinite we cannot establish a priori if an equilibrium exists. If we are dealing
with a finite state homogenousMarkov Chain the existence of equilibrium is guaranteed. We
have, in fact, that Ki j are the entries of a matrix K and the πi can be thought as the elements
of a vector π. Since equation . says that one raw it a linear combination of the other
ones, we have that Ker(K) contain at leat one possible equilibrium solution.
 the hypothesis we have made are trivially true for finite dimensional Markov chains
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Discrete time Markov Chain

�e previous discussion cannot be carried out for discrete time Markov Chains since limits
are not allowed.�is is not a big deal. We shall repeat our discussion to obtain a similar
result.
Probability transition will now depend on to discrete indicesWi j(n,m) withWi j(n, n) =

δi j. In this case Markov Property translates nicely since in the discrete case there is a “last
step before”, that is :

πi(n) =∑Wi j(n, k)π j(k) =∑Wi j(n, n − )π j(n − ). (.)

We can define Ki j(n − ) =Wi j(n, n − ) − δi j and restate the previous condition as

πi(n) =∑
j
(δi j + Ki j(n − ))π j(n − ), (.)

which is the discrete analog of inhomogeneous Master equation.
If the process it finite dimensional we can adopt a vector form that is a matrix (K)i j = Ki j

and a vector π(n) whose components are πi(n). �e discrete time master equation then
become:

π(n) = π(n − ) +K(n)π(n − ). (.)

�us
π(n) = Π(n)π() (.)

where Π(n) =∏ j(I+K( j)) is called the propagator of the system.
For time homogenous discrete Markov Chain we have Π(n) = Π()n.

Coin tossing

Fair Coin tossing may be seen as a Markov Chain.�ere are only two states, we denote them
+ and -, and at each step the system can move to the state + with probability / or in the
state − with probability /.
�e most general form the operator K fitting the constraint∑i Ki j =  is

K = ( a b
−a −b) . (.)

In order for that the equilibrium to be (/, /) we must set:

K = ( / −/
−/ / ) . (.)

We notice that K +K = . We refer to this throughout as a dichotomous process.
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Dice throwing

A generalization of previous problem is that of a Markov chain in which the system has k
states and at each time moves to one of those state with a given probability πk . We call π(n)
the vector of probability at time n, πeq the steady distribution and K the transition matrix
previously defined, we have

π() = (I+K)π() = πeq (.)
and

π() = (I+K)π() = πeq (.)
thus yielding the matricial equations:

K +K =  (.)

and
Kπeq =  (.)

We shall refer to this throughout as multichotomous process.

Random Walk

Another important example of discrete Markov Chain is random walk. In this case we chose
our transition probability to be constant and have

Wi j = pδi j− + qδi , j +  with p + q =  (.)

�e master equation then reads

πi(n) = pπi−(n − ) + qπi+(n − ) (.)

the solution is easily obtainable and has a typical Bernoulli distribution

πi(n) = ( n
n − i)p

iqn−i (.)

1.3 Subordination theory and renewal processes

As we have earlier pointed out, we are mainly interested in systems which exhibit complex
behavior characterized by the presence of abrupt transition (which we call “events”) between
two or more state, with a power law distribution density of the time distance between two
consecutive events.
A benchmark characteristic of those system it ageing, that is the system maintains a

memory of the moment of preparation.
�e theoretical frame which better suits the description of these systems is that of sub-

ordination theory of renewal systems. A substantial treatment of this topic in advanced
probability theory can be found in Feller’s work( []and []) and a general review on
renewal theory can be found in Cox’ work []
We shall first illustrate Blinking quantum dots behavior as a prototype of the systems we

are interested in.
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Blinking quantum dots: a prototypical system

Quantum dots (nanocrystals of semiconductors) are intensively studied since they seem to
promise great applications like light emissive diodes, solid state lighting, lasers. Investigation
on their nature has pointed out some characteristic behavior: fluorescence intermittency [].
�is intermittency, subsequently called blinking, still has a non completely understood

microscopical origin (even if many interpretation have been advanced) and constitutes a
major problem to be solved to be able to use semiconductors nanocrystals at their best.²

Figure 1.4: A figure taken from [] which shows the typical blinking behavior of quantum
dots

�e behavior of the blinking is complex; that is, it cannot be described by a poissonian
waiting time distribution. As shown in [] this typical behavior cannot be interpreted as
a consequence of slow modulation of parameters, since non ageing is possible within the
framework of this theory. Renewal subordination theory instead has, as a benchmark, that
of showing ageing.

Figure 1.5: A figure taken from [] which shows the typical intensity over time behavior of
quantum dots

Figure . shows a typical intensity over time fluctuation of blinking quantum dots. Anal-
ysis of those data shows that the permanence time is a random variable which is roughly
 recently a possible solution to this problem has been proposed [] but still it does not unveil the nature of
this behavior
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distributed like ∼ 
tµ .

To model these systems we imagine that the interaction among units has the effect of
creating abrupt transitions from one state to another.�is is equivalent to assume that the
process is modeled by a coin tossing Markov chain.�e time between two tossings, due to
complex interactions, is not constant any more but is distributed according to a power law.
�is is the basic idea of subordination theory and we shall analyze it now.

1.3.1 Subordination theory

We start with a definition

De�nition 1.3.1 (Subordinated process). Let {Xn} be a discrete time stochastic process
defined over R, and {Tn}n> a discrete time stochastic process defined over R+. We defined
the subordinated process of Xn to Tn the continuous time process ξ(t) defines

ξ(t) =
⎧⎪⎪⎨⎪⎪⎩

X if t < T
Xn if Tn < t < Tn+

(.)

We shall call {Xn} the leading process and {Tn}n> the subordination generating process.

We want to point out that this is amathematical model.�e only physical process is the
result of subordination ξ(t) and both the leading process and the subordination generating
process are phenomenological description of collective interaction.
Surely in certain cases we can give the leading process a microscopical interpretation, like

the modeling of shocks in a ideal gas if we accept Boltzmann’s Stosszahlansatz.�e waiting
time distribution, in this case, will have to be inferred from the statistical properties of ideal
gases.
Complex phenomena do not allow, usually, such a simple interpretation in terms of

local microscopical vs. global macroscopical behavior, since both processes involved in
subordination structure emerge from cooperative global interactions. �e distinction is
rather made in term of the effects both processes give rise to (i.e. the distinction we make is
an a posteriori phenomenological one that enables us to propose a model).
Another fact that should be stressed is that subordination is a key mechanism to explore

cooperative systems which could also not be simple fundamental physical systems. Studies
in neural and social network have shown to exhibit this characteristic behavior (which
happens to be tunable moreover).

Independent Increment Processes and renewal processes

�e previous definition is rather general. We could choose as subordination generating
process an arbitrary one.�e first simplification we shall make is that of considering :

De�nition 1.3.2 (Independent increment processes). A stochastic process {Xt} is said
to be an independent increment process if for any s < t < w < u Xt − Xs and Xu − Xw are
independent variables.
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�e previous condition implies that the probability density function of the interval de-
pends only on the time difference (i.e. Prob(Xt − Xs ∈ [x , x + dx]]) = f (x , t − s)). Among
all independent increment processes we are particularly interested in renewal processes

De�nition 1.3.3 (Renewal process). A discrete time independent increment process {Tn}
defined on R+ is called a renewal process

�e reason why this kind of processes are called renewal processes will be clarified in
next section. We first point out the most important property of those systems.
A renewal process {Tn} is totally determined by only one distribution

ψ(t) = Prob(Tn+ − Tn ∈ [t, t + dt]) = Prob(T − T ∈ [t, t + dt]) = f (t, ) (.)

which in the contest of subordination theory we shall call waiting time distribution.
�e independent increment process condition enables us, in fact, to obtain all the other

conditions immediately. If we define the events

A(t, n) = {Tn − T ∈ [t, t + dt]} (.)

by the independent increment hypothesis those events are independent. In particular the
event A(t, n) can be split recursively in this way:

A(t, n) =⋃
t′

[A(t − t′, ) ∩ A(t′, n − )], (.)

that is, we consider the probability of having the n-th element in [t, dt] as probability to
find the n − -th in t′ < t and that last interval has the length t − t′ (obviously this works
because Tn ∈ R+) we immediately write

ψn(t) = Prob(A(t, n)) = Prob(⋃
t′
[A(t − t′, ) ∩ A(t′, n − )]) = ∫

t


ψn−(t′)ψ(t − t′)dt′.

(.)
If we consider the Laplace transform (for the mean properties look Appendix) of the

waiting time distribution ψ̂(u) the Laplace transform of ψn(t)

ψ̂n(u) = ψ̂n(u). (.)

Renewal hypothesis: waiting time distribution as renewal failure time distribution

To clarify why discrete time positive valued independent increments processes are called
renewal processes we have to think waiting time distribution as a failure time distribution.
In its classical Monograph on Renewal�eory ( []) Cox gives a simple but insightful
description of what a renewal process is.
Renewal theory is originally linked to the study of probabilistic problems connected with

the failure and replacement of components. typical terminology could sound a little weird
to a scientist’s ear, but we shall use it, for now, to let reader to easily find it in specialistic
literature.
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Let us then think to a robotized assembly line. It will work efficiently if all its components
are working. But even the best constructed robot will endure soon or later some failure
problems (due to wear e.g.). We now think that every time a robot fails it is immediately
and completely restored in a perfectly working state.�is is called the renewal hypothesis
For simplicity sake (and we are actually interested in these kinds of mechanism) we

consider a single robot line.
We can model the failure probability of these robots as real positive random variable

T called failure time. �is failure time give rise to a failure time distribution f (t). �e
probability for the system not to break if called survival probability and has the obvious
expression

Ψ(t) = Prob(T > t) = ∫
∞

t
f (t′)dt′. (.)

We can construct a discrete time process setting {Tn} is the time of the n-th failure and
renewal.�is is, by construction, a discrete time positive values independent interval process
as previously defined and now the reason why it’s called renewal process is clear.
Renewal hypothesis make us able to give a nice description of failure time distribution

f (t)
Let us consider a key property of renewal processes called failure rate:

g(t) = lim
∆t→+

Prob(T ∈ [t, t + ∆t]∣t < T)
∆t

. (.)

Since Prob(T ∈ [t, t + ∆t]∣t < T) = Prob((T∈[t,t+∆t])∩T>t)
ProbT>t we get

g(t) = f (t)
Ψ(t) . (.)

By definition Ψ(t) = − d
dt f (t).�erefore:

g(t) = −Ψ
′(t)
Ψ(t) = − d

dt
logΨ(t) (.)

integrating equation . and noticing that Ψ() = , we obtain

Ψ(t) = exp(− ∫
t


g(t′)dt′). (.)

�erefore, a renewal-process occurrence time is completely characterized by its failure rate.
Equation . enables us to make some analysis on g(t).

• g(t) =  in this the mean failure rate is constant and we obtain Ψ(t) = exp(−gt) and
subsequently f (t) = g exp(−gt): this is the case of Poissonian failure time distribution.
�is is the typical “ failure” mechanism in traditional physics (e.g. radioactive decay,
usual statistical physics phenomena etc.)

• g(t) ∼ Atα with α >  In this case we get a probability whose queues are super exponen-
tially depressed ∼ exp−Btα+/(α + )
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• g(t) ∼ A ∗ tα with  < α <  In this case we get sub exponential distribution which asymp-
totically give rise towhat are called stretched exponentials distributionΨ(t) ∼ exp(−Atγ/γ)
with α +  = γ ∈ [, ]

• g(t) ∼ A/t In this case we get power laws in fact Ψ ∼ exp  log(t−A)) = 
tA

• g(t) ∼ tα with α < − In this case we find the construction is impossible since it would
lead to immortality that is the f (t) is not normalized to 

�is analysis shows than that the power laws are a limiting case of failure time distributions
that seem to correctly model sporadicity.
We notice, moreover, that g(t) is not constant so the failure rate, that is the probability of

decaying, changes over time: the system is ageing in the sense that from an estimation g∗
of g(t) we can get an estimation of the age (i.e. the time elapsed since last failure) of the
system g−(g∗)
Specific choice of g(t) let us to derive the power laws we have already presented.
If g(t) = r

+r t we obtain Ψ(t) = (r + t)−r/r . If we call µ =  − r
r and T = r we obtain

back Manneville’s distribution ..
More complicated (i.e. non analytical) choices lead to Lévy and Mittag-Leffler distribu-

tions.

The rate of event per unit time

Let us consider the random variable

N(t) = # events occurred in [, t] (.)

we may ask what is the mean number of event.�is calculation is easily carried out if we
notice that the probability of having n events before time t that is B(n, t) = {n events have
occurred before time t} can be split using using .

Prob(B(n, t)) = Prob(⋃
t′
(A(n, t′) ∩ A(, t′)) = ∫

t


ψn(t − t′)Ψ(t′)dt′ (.)

and thus the mean is easily written out:

H(t) = E(N(t))∑
n
n Prob(B(n, t)) =

∞

∑
n=

∫
t


nψn(t − t′)Ψ(t′)dt′ (.)

Using Laplace transform we have :

H(u) =  − ψ̂(t)
u

∞

∑
n=

∫
t


nψ̂n =  − ψ̂(u)

u
ψ(u) d

dψ̂(u)
∞

∑
n=

ψ̂n(u) = 
u

ψ̂(u)
 − ψ̂(u) (.)

and thus
H(t) = ∫

t



∞

∑
n=

ψn(t′)dt′. (.)
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We can now define a crucial quantity for our renewal processesmean rate of events :

R(t) = d
dt

H(t) = d
dt

E(N(t)) =
∞

∑
n=

ψn(t) (.)

Another way to understand what R(t) is, can be that of considering the event E =
{ an event occur at time t }. In can be easily be split into an union of independent event
that is

Prob(E) = Prob(⋃
n
A(n, t))dt =

∞

∑
n=

ψn(t)dt = R(t)dt. (.)

For Manneville power law, using Tauberian�eorem and asymptotic expansion .
and . we write for  < µ < 

R(u) ∼ (uT)−µ
Γ( − µ) (.)

and thus
R(t) ∼ 

T µ−Γ( − µ)Γ(µ − ) . (.)

and for  < µ < 

R(u) ∼ 
⟨t⟩u +

(uT)−µ
Γ( − µ) (.)

and thus
R(t) ∼ 

⟨τ⟩[ +
T µ−

 − µ


tµ−
]. (.)

Subordinated renewal processes

We can now completely analyze subordinate renewal processes. Our analysis is based on the
seminal works of Montroll and Weiss on Continuous Time RandomWalk (CTRW) [] .
Our end is to obtain the the distribution of the subordinated process π(ξ, t).
�e key idea is to consider that according to our definition, the to processes are indepen-

dent. Since we know by hypothesis the distribution of the leading process p(x , n) and our
waiting time distribution we have everything. In fact the pdf

p(ξ, t)dξ = Prob[(X ∈ [ξ, ξ + dξ] ∩ no event occurred until t) ∪⋯
∪(Xn ∈ [ξ, ξ + dξ] ∩ exactly n events occurred before timet ∪⋯] (.)

Since, by independence we can write

p(ξ, t)dξ = Prob(⋃
n
(B(n, t) ∩ Xn ∈ [ξ, ξ + dξ) =∑

n
Prob(B(n, t))π(ξ, n)dξ (.)

Now we have all the pieces of information needed to write (which sometimes known as
Montroll-Weiss equation)

p(ξ, t) =
∞

∑
n=

∫
t


ψn(t − t′)Ψ(t′)π(ξ, n)dt′. (.)

�is is the most general form Montroll-Weiss equation can take unless we make some
other hypothesis on our system.
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Generalized master equation

If {Xn} is a finite time homogenous discrete Markov Chain, adopting our shortcut notation
³ we can write:

p(t) =
∞

∑
n=

∫
t


ψn(t − t′)Ψ(t′)Π()n dt′π(). (.)

Taking the Laplace transform of both sides we write:

p̂(u) =  − ψ̂(u)
u

∞

∑
n=

(ψ(u)Π())n dt′π(). (.)

Since both ∣ψ̂∣ and ∥Π()∥ are less than  we can sum the geometrical series and considering
that p() = π(), we have:

p̂(u) =  − ψ̂(u)
u


 − ψ̂(u)Π()p(). (.)

Defining K = Π() − I and rearranging we obtain:

up̂(u) − p() = uψ̂
 − ψ̂(u) K p̂(u). (.)

Transforming back we obtain the Generalized Master Equation

d
dt

p(t) = ∫
t


Φ(t − t′)Kp(t′)dt′, (.)

where the quantity Φ(t) is calledmemory kernel and is defined by its Laplace transform:

Φ̂(u) = uψ̂(u)
 − ψ̂(u) . (.)

We thus see that subordination induces a loss of Markoviantity, that is, it introduces
memory in the process.

Ageing

Renewal processes by derived by subordination are characterized by ageing. To see it let us
suppose a renewal system is prepared at time , and our observation starts at time s. Obvi-
ously the first occurrence time is nomore governed by ourwaiting time distribution. We have
in fact (a graphical sketch can be found in picture .) to find the distribution the event O =
{ the first observable event occur at time t given the system observation started at times}.
As usually we can split, for any ( < t′ < s < t this event as follows:

O =⋃
t′
⋃
n
(A(n, t′) ∩ A(, t − t′)) (.)

 we label states by j and consider the probability vector π(n) of π( j, n) and the vector p(t) of the probability
p(i , t)
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Figure 1.6: A visual sketch of aged waiting time calculation

that is, by disjunction and independence we can write the waiting time distribution of age s:

ψ(t, s) = Prob(O) =
∞

∑
n=

∫
s


ψn(t′)ψ(t − t′)dt′ = ψ(t) + ∫

s


R(q)ψ(t − q)dq. (.)

We can associate the survival probability of age s integrating :

Ψ(t, s) = ∫
∞

t

∞

∑
n=

∫
s


ψn(t′)ψ(t′′ − t′)dt′ dt′′. (.)

Changing the order of integration and using formula . we obtain:

Ψ(t, s) = Ψ(t) + ∫
s


R(t′)Ψ(t − t′)dt′ (.)

We can obtain directly this prescription considering the stochastic failure rate that is :

r(t) = g(t − ti) (.)

In a certain way r(t) represents the failure rate of the entire process see figure .
Remembering the definition of g we can write:

Ψ(t, s) = ⟨ ∫
s


δ(q) + R(q)e− ∫ s

q r(τ)dτ⟩ =

∫
s


(δ(q) + R(q))e− ∫ s

q g(τ)dτ dq = Ψ(s) + ∫
s


R(q)Ψ(t − q)dq

(.)

We want to point that for poissonian processes we have

g(t) = r(t) = R(t) = 
⟨t⟩ (.)
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Figure 1.7: A simple example of r(t) corresponding to equation g(t) = 
+t
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2 Ergodicity, ergodicity breaking and
non stationarity

�e aim of this chapter is to introduce the reader to the concept of ergodicity as it has been
conceived by physicists andmathematicians and to analyze some physical phenomena which
exhibit an “ ergodicity breaking’. It will be shown, in particular, that complex systems are
likely to be considered “non ergodic systems”

2.1 Boltzmann’s Ergodic hypothesis

�eory of “irreversibility’ had always been a hard problem to deal with for physicists of
XIX century. Clausius law, which had been proved by experiments, posed ha complicated
problem. How can irreversibility arise from fundamental microscopical laws, which are
time invariant?
It was not until the end of the century that a solution appeared, thanks to the work of

Boltzmann.
Ludwig Boltzmann had yet began to organize his theories about irreversibility while

building his kinetic theory. His H functional seemed, then, to provide a good mathematical
instrument to show that irreversibility could be outputted by his kinetic theory but still he
wasn’t able to link his “phenomenological’ theory to microscopical fundamental laws.
During the ’ and ’ of XIX century Boltzmann in his papers proposed his Ergodic

Hypothesis as the foundations of his, then innovative, theory of irreversibility. �e usual
form under which ergodic hypothesis is stated nowadays is to be ascribed to Ehrenfest, who
in a review of  [], stated it :

Boltzmann-Ehrenfest’s Ergodic hypothesis A dynamical system during his evolution
will take all the microscopical configurations compatibles with a given macroscopic
state (i.e. a single trajectory will cover the whole phase space during his evolution)

To be true Boltzmann never stated his hypothesis this way, but he limited himself in
assuming a “uniform probability“ of phase space.
Conservative systems’ evolution is known to follow Liouville’s equation

∂tρ = L ρ (.)

where ρ(pi , qi)∏i d
d pi dd qi is the measure on the phase space (MPS).

Liouville’s theorem warrants us that time evolution preserves phase space measure. Nor-
malizing MPS we get a probability space.�us for conservative systems, this probability is
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invariant under time evolution.�is mean that we can ”safely“ consider temporal means of
a variable f :

lim
t→∞
/t ∫

t


f (x(t))dt (.)

Under Boltzmann-Gibbs frame, we “introduce” ameasure of our ignorance of the effective
initial conditions of the system by defining a new space, theGibbs ensemble, which is nothing
but the set of infinite copies of the given dynamical system at fixed time, each one of which
is the time evolute of one of all the possible compatible initial conditions. We associate a
probability measure to each phase space configuration in the usual frequency limit way and
use it to calculate averages.
Ergodic hypothesis is, roughly speaking, nothing but the assumption that MPS and Gibbs

measure are the same that is, temporal mean and Gibbs average are the same.
As stated earlier, Boltzmann-Ehrenfest Hypothesis is proved to be false. �e original

Boltzmann hypothesis as been weakened and stated in a more “realistic” way:

Ergodic hypothesis (weak form) �e set of values taken by a dynamical system is dense
in the set of all the microscopical configurations compatible with a given macroscopic
state.

Under this form, which has enabled mathematician to state and prove ergodic theorems,
Ergodic hypothesis has been proved to hold for some dynamical systems but it is still not
clear why it should be true for all. Moreover if warrants the existence of time and ensemble
averages and their equivalence it has been shown that for an arbitrary observable the time
needed to reach equilibrium is exponential in the number of elements of the system.
Most authors (i.e. Landau [] ) tend to diminish the importance of this hypothesis

as a foundational hypothesis of Statistical physics and in recent years many examples of
ergodicity breaking has been shown to exist.
We will show that the complex systems of our interest are non ergodic.

2.2 Mathematical theory of ergodicity and Brickho�
theorem

Mathematicians have tried to establish a well founded theory of ergodicity, during the
XX century and have succeeded in establishing very powerful results, which are linked to
mathematical theory of dynamical systems. Before correctly stating the main, and most
known result of this theory, we have to give some preliminary definitions (see also []).
As we have shown in the previous chapter, Boltzmann’s ergodic hypothesis allows us

to associate to any system a probability space L(X ,B, dµ) which describes how certain
microscopical configurations lead to a given macroscopical configuration. In this theory
the macroscopical value of a dynamical variable A is calculated as the mean ⟨A⟩ = ∫ Adµ.
Traditionally a statistical dynamical system is described mathematically by a flow from a

metric space to another
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De�nition 2.2.1. Flow Let X be a metric space, we define a flow over X a collection of maps
{Tt ∶ Tt ∶ X → X} indexed over a given set I such that:

i. TtTs = Tt+s

ii. T = 

Generically mathematicians call ergodic any asymptotic property of a dynamical system
expressed by a flow. To find any connection with the main problem of statistical physics we
confine ourselves to consider temporal means of dynamical variable f (i.e. a L function of
dynamical variables)
�e mathematical ergodic theory aims to analyze the temporal mean

f̄ = lim
T→∞


T ∫

T


f (Ttx)dt (.)

and its relation with spacial mean

⟨ f ⟩ = ∫
∞


f dµ (.)

One of the most fundamental question of mathematical theory of ergodicity is to assess
when the temporal mean of f is equal to its space mean.

2.2.1 Invariant Measure

Before we continuing our discussion we have to consider some definitions

De�nition 2.2.2 (Invariant measure). Let L(X ,B, dµ) be a probability space. �en a
measure is said to be invariant with respect to the flow T ∶ X → X if µ(A) = µ(T−A)

An obvious characterization of invariant measure is the following :

Lemma 2.2.1. Amap T preserves µ if and only if ∫ f dµ = ∫ T ○ f dµ for all in L(X , (B), µ)

A trivial generalization of the previous definitions can be obtained for flows

De�nition 2.2.3 (Invariant measure). Let L(X ,B, dµ) be a probability space. �en a
measure is said to be invariant with respect to the flow Ttfor t in I if µ(A) = µ(T−

t A) for
all t in I

From now on we shall consider I = N and so Tn = Tn. Obviously if a temporal mean
exists we can confine ourselves to consider discrete flows. In this case invariance for flows is
simply T invariance.
Let us state one of the most fundamental results of ergodic theory:

Theorem 2.2.1 (Poincaré Recurrence Theorem). Let T ∶ X → X be a measurable transfor-
mation on a probability space L(X ,B, µ) preserving µ. Let A ∈ B so that µ(A) > ; then for
almost all points x ∈ A the orbit {Tnx}n≥ returns to A infinitely many o�en
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Proof. Let us define the set

F = {x ∈ A ∶ Tnx /∈ A, n > } (.)

First we note that T−nA ∩ T−mA = ∅, for n > m. Where it not, we would have for
w ∈ T−nA ∩ T−mA , Tmw ∈ F and Tn−m(Tmw) ∈ A contradicting our hypothesis. We can
thus write

∑
n
µ(T−nF) = µ(∪nT−nF) ≤  (.)

but µ is T-invariant and so equation . can hold only if µ(F) = 

2.2.2 Ergodic measures and Birkho�’s theorem ergodic and invariant
version

A stronger property is needed to establish Birkhoff theorem

De�nition 2.2.4 (Ergodic measure). Let L(X ,B, dµ) be a probability space. �en a
measure is said to be ergodic with respect to T ∶ X → X if for every set B ∈ B with B = T−B,
µ(B) =  o µ(B) = 

As previously we can characterize ergodic measure in a simple way

Lemma 2.2.2. A map T is ergodic with respect to µ if and only if for every f ∈ L(X ,B, µ),
f = T ○ f implies f be constant.

Now we can state the first version of Birkhoff theorem

Theorem 2.2.2 (Birkhoff theorem). Let f ∈ L(X ,B, µ). If µ is ergodic then

lim
N→∞


T

N

∑
n=

f (Tnx) = ∫ f dµ (.)

for almost every x in X

�is demonstration is quite technical and not very significant on a pysical point of view.
Assuming without loss of generality that ∫ f dµ = , if it is not so we can substitute f with
f − ∫ f dµ.�e main idea of this demonstration is to show that the set defined:

Eε( f ) = {x ∈ X ∶ lim sup
N→∞


N

∣
N−

∑
n=

f (Tnx) ∣≥ ε} (.)

has null measure (i.e. µ(Eε( f ) = ).
We first prove two sublemmas

sublemma 2.2.2.1. µ(Eε( f )) ≤ inf ∣ f ∣dµ
ε
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Proof. Defining f = f+ − f− where f+(x) = max( f (x), ) and f− = max(− f (x), ). Obvi-
ously ∣ f ∣= f+ + f−. Now we define

EM
ε ( f+) = {x ∈ X ∶ ∃ ≤ N ≤ M ,

N−

∑
n=

f+(Tnx) ≥ εN} (.)

and

EM
ε ( f−) = {x ∈ X ∶ ∃ ≤ N ≤ M ,

N−

∑
n=

f−(Tnx) ≥ εN} (.)

forM ≥ .
If we consider that:

P−

∑
n=

f+(Tnx) ≥ ε
P−M

∑
j=

χEM
ε ( f+)(T jx) (.)

and
P−

∑
n=

f−(Tnx) ≥ ε
P−M

∑
j=

χEM
ε ( f−)(T jx) (.)

where we have bounded f from below by  or ε.�us, integrating both sides of . and
.,we write:

∫
P−

∑
n=

f+(Tnx)dµ(x) = P ∫ f+ dµ ≥ ε(P −M)µ(EM
ε ( f+)) (.)

and analogously:

∫
P−

∑
n=

f−(Tnx)dµ(x) = P ∫ f− dµ ≥ ε(P −M)µ(EM
ε ( f−)) (.)

for allM ≥ .
When P →∞ we have:

∫ f± dµ ≥ εµ(EM
ε ( f±)) (.)

and thus

µ(Eε( f ) ≤ lim sup
M→∞

µ(EM
ε ( f+)) + lim sup

M→∞
µ(EM

ε ( f−)) ≤ ∫ f+ dµ + ∫ f− dµ. (.)

Now we need to be able to control the size of the higher bound and to do this we can we
prove this second lemma

sublemma2.2.2.2. If ∫ f dµ = , then, for every δ ≥  there exists a function h ∈ L∞(X ,B, µ)
for which ∫ ∣ f − (hT − h) ∣ dmu < δ
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Proof. Let S be defined by:

S = {h ○ T − h ∶ h ∈ h ∈ L∞(X ,B, µ)} (.)

and the B
B = { f ∈ L(X ,B, µ) ∶ ∫ f dµ = }. (.)

. We first show that S is dense in B. Hann Banach theorem guarantees us we only need to
show that every null functional on S is also a null functional on B .
As known for every functional α( f ) defined on L(X ,B, µ), there exists a function

k ∈ L∞(X ,B, µ) so that α( f ) = ∫ f ⋅ k dµ Now let us suppose that α vanishes on S thus
∫ (h ○ T − h) ⋅ k dµ =  if h = k we have k ⋅ (kT)k = ∫ k dµ
We can then write:

∫ (k○T−k) dµ = ∫ (k○T) dµ+ ∫ k dµ− ∫ (k○T)k dµ = ( ∫ k dµ− ∫ (k○T)⋅k dµ) = 
(.)

We have that k = k ○ T and so k must be constant by ergodicity hypothesis. We can thus
write  = k ∫ f dµ = ∫ f k dµ = α( f ) which proves the lemma.

We can now proceed to prove Birkhoff theorem.

Birkhoff ’s theorem proof. As earlier done, we consider without loss of generality f ∈ B.
Let del ta > . Using sublemma ... and choose h so that ∫ ∣ f − (hT − h) ∣ dµ ≤ δ.
Eε( f ) = Eε([ f − (hT − h)] + (hT − h)) ⊂ Eε/( f − (hT − h)) + Eε/(hT − h)) and so:

µ(Eε( f )) ≤ µ(Eε/( f − (hT − h))) + µ(Eε/(hT − h))). (.)

But ∀x ∈ X we can write


N

∣
N−

∑
n=

(hT − h)(Tnx)∣ = 
N

∣h(TNx) − h(x)∣ ≤ ∥h∥∞
N

(.)

and so µ(Eε/(hT − h)) = .
Using ... we have

µ(Eε/( f − (hT − h))) ≤ ∫ ∣ f − (hT − h)dµ∣
ε/ ≤ δ

ε

and thus µ(Eε/( f − (hT − h))) =  which proves the result.

2.3 Ergodicity of time series

It is a well known fact that Dynamical Systems like those considered in the previous section
are in fact Markov Chains (see []).
In a certain way theMarkov Chain perspective is nothing but amicroscopical phenomeno-

logical description of the effect of global dynamic of the system. Under this perspective we
wonder how ergodicity is espressed in stochastic Process.
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In the previous sections we have seen that ergodicity is roughly equivalent to say that the
temporal means equal statistic means.�us a single process we can express ergodicity as
follows (see []):

De�nition 2.3.1 (Strict ergodic process). A stochastic process is ergodic if all his statistical
means can be calculated trough a single realization of the process

as above we can confine ourselves to considering a weaker form of ergodicity that is

De�nition 2.3.2 (Wide sense ergodic process). A stochastic process is ergodic in the wide
sense if if holds:

X̄t = lim
T−>∞


T ∫

T

−T
X(t′)dt′ = E[X(t)] (.)

and

RXX(τ) = lim
T−>∞


T ∫

T

−T
X(t′)X(t′ + τ)dt′ = E[XtXt + τ] (.)

It is natural to wonder what is the equivalent concept of invariance in the language of
stochastic processes. In this case too, little work is needed to translate concept:

De�nition 2.3.3 ((Strictly) Stationary processes). A random process {Xt} is called a
(Strictly) Stationary process if his cumulative distributions

FXt ...Xtn (xt . . . xtn) = FXt+τ ...Xtn+τ(xt . . . xtn), (.)

for all ti , τ ∈ R

Usually weaker form of stationarity is required to get useful results, that is only the first
and the second moment are stationary:

De�nition 2.3.4 (Wide sense Stationary processes). A random process {Xt} is called a
(Weak) Stationary process if its mean

E[Xt] = E[Xt+τ] = µ (.)

and its auto covariance (or autocorrelation)

E[XtXt+τ] = E[XXτ] = C(τ) (.)

For all t, τ ∈ R

In a stationary process, thus, we can begin an observation at any time and we shall still be
able to access to all the information on the process.
As shown in the previous chapter, ergodicity is a stronger property than invariance: the

same holds for ergodic and stationary processes.

Proposition 2.3.1. Ergodicity in the wide sense implies stationarity in the wide sense
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Proof. �e proof is almost trivial. In fact the limit exists equation . reads

E[X(t)] = lim
T−>∞


T ∫

T

−T
X(t′)dt′ = µ (.)

and . reads

E[XtXt + τ] = lim
T−>∞


T ∫

T

−T
X(t′)X(t′ + τ)dt′ = RXX(τ). (.)

�us proving that a process (or a dynamical system) is not stationary is the same as showing
that it is not ergodic.
But stationarity does not imply ergodicity. To see it let U a random variable with mean µ.

Let us consider the process defined as follows:

Xt =
⎧⎪⎪⎨⎪⎪⎩

U if t = 
X if t > 

. (.)

By construction this is a stationary process but it is clearly non ergodic. In fact ⟨Xt⟩ = µ
but X̄t = U .

2.4 Ergodicity breaking

When coming to “Ergodicity breaking ” many physicists think to usual critical phenomena.
Second phase transition have, in fact, have provided very rich experimental ground upon
which physicists have built a very well founded theory (see []). Typically, in those systems,
ergodicity breaking is explained as a consequence of spontaneous symmetry breaking at a
certain critical temperature Tc (e.g. Curie Law for magnetization).
Similar but slightly different systems are those which undergo critical dynamics. In

this case the system is thought to be in a non equilibrium state and expected to regress to
equilibrium during his time evolution. In a totally ergodic system regression to equilibrium
should occur with a precise an fixed “mean regression time” which is nothing but the “time
correlation length”.
When the system is near a critical point this happens to be false and the more the system

is near the critical point, the more the “time correlation length” of the system grows: system
exhibit what is called critical slowing down.
Yet the simple and rough Van Hove model [] had shown it , and the models further pro-

posed byKawazaki in the late sixties [] and to thework ofHöhenberg andHalperin [] []
who managed to give a Renormalization Group description of critical dynamics have con-
firmed it.
All these theories have shown that the typical characteristic behavior of a system near a

critical point satisfies what is called dynamical scaling hypothesis, that is, the typical time
behaves like:
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τk = ξzf(kξ) (.)

where k is the (Fourier) mode index ξ is the spatial correlation length and z is the so called
dynamic exponent which is quite a universal property of many similar systems.
When approaching critical point ξ →∞ (i.e. the global properties of the system determine

at a great extent his singular behavior) and thus system dynamics slows down i.e. the system
take a very long time to explore the entire phase space:e otherwise saying ergodicity breaks.
A simple toy model, which can be considered a first model for some thresholds problems,

enables us to show that non ergodic behavior may occur even in simple models if we are
dealing with “events”.

2.4.1 Toward a event driven ergodicity breaking: recurrence time for
discrete random walk

Even some simple systems can exhibit non ergodic behavior. As a classical example let us
consider a discrete time, one dimensional random walk over a Lattice of step length a with
constant transition probability p = 

 . We will denote the value of the walk with Xn. In this
case writing down a recurrence equation for probability is trivial:

Prob(Xn = ka) = 

P((k − )a, n − ) + 


P((k − )a, n − ) (.)

With very simple calculation we get that :

Prob(Xn = (n − k)a) = ( n
n − k

) 
n

(.)

And so we can define an origin recurrence time probability (only even period can admit
return to origin)

Prob(Xn = ) = (n
n
) 
n

(.)

by Stirling approximation we obtain that.

un = Prob(Xn = ) ∼
√
πn

. (.)

It is easy to prove (see [] cap. III) that:

Prob(Prob{X > ) ∪ (X > ) ∪ . . . ∪ (Xn− > ) ∪ (X > )} = 

un (.)

and more interestingly that the probability of first return is:

fn = Prob{(X ≠ )∪(X ≠ ) ∪ . . . ∪ (Xn− ≠ ) ∪ (Xn = )} =

un− − un =


n − un .
(.)
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Figure 2.1: A single realization of random walk

Intuition suggests that a single random walk should be equally distributed between
positive and negative zone but Figure . shows our intuition is likely to be wrong.
A precise statement of this is possible, since, in this case, we are able to calculate the last

visit probability that is the probability αk,n the up to an including epoch n the last visit to
the origin happen at time k. An easy calculation shows that:

αk,n = unun−k . (.)

We can then state this interesting theorem

Theorem 2.4.1 (Discrete Arc Sin law for sojourn time). �e probability that up to an epoch
n the system is k times on the positive side and n − k times on the negative time is ak, n

and as a corollary we find

Corollary 2.4.1. �e probability that the systems stays xn times on the positive side and
( − x)n times on the negative side tend to 

π arcsin
√
x.

�is last result was found also in Brownianmotion by Lévy [] and for the positive partial
sums of mutually independent variables by Erdős and Kac []
Let us now consider the stochastic process constructed in the following way :

ξn = sign(Xn). (.)

�eorem .. suggests that this process cannot be ergodic.
Its statistic mean is clearly zero since the problem is symmetric.
We can, in fact, associate to any trajectory T(Xn) = {X = x, X = x, . . . , Xn = xn} a

reflected one T̃(Xn) = {X = −x, X = −x, . . . , Xn = −xn} whose probability is exactly the
same a thus the corresponding trajectories for ξ will have exactly the same probability to
occur.�is obviously implies that ⟨ξ⟩ = 
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Figure 2.2: sojourn time distribution for n = 

To see that we first define the stochastic variables

πn = {k if Xn stays on the positive side for k steps} (.)

and
νn = {h if Xn stays on the negative side for h steps} (.)

�e temporal mean of ξn over a realization of length n can then be written as

ξ̄(n) = πn − νn

n
. (.)

for n ≫ , setting
X = πn

n
(.)

we write for most trajectories
νn

n
∼  − X (.)

and thus
ξ̄(n) ∼ X − . (.)

If the process were ergodic we would have

Prob(ξ̄(n) = )→  as n →∞, (.)

but we actually get that using ..

Prob(ξ̄(n) = )→ 
π
arcsin( √


) = 


(.)
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2.4.2 Ergodicity breaking in sub di�usive system

A very interesting example of complex system where ergodicity breaks has been described
by He et al. in a recent work [].
In this article, the authors analyze mRNA molecules and lipid granules diffusion in

Escherichia Coli bacterium¹
Since the internal structure of bacteria is usually extremely complicated (many different

types of almost macroscopical molecules are present, irregular membrane structure, etc.)
a complete microscopical description is not possible. Recent single particle tracking tech-
niques, nevertheless, have enabled biologists to obtain very precise experimental data on
the characteristics of diffusion in those systems which have shown a certain regularity and
universality in diffusive motion and a clear deviation with respect of Fick’s Law.
Mean square Deviation :

δ̄(∆, t) = ∫ t−∆
 (x[t′ + ∆] − x[t′]) dt′

t − ∆ (.)

on a single time series can be calculated for these systems.
Observations a sub diffusive behavior, i. e.

δ̄ ∼ D̄α∆α with α ≈ . (.)

If the system were ergodic, δ̄ should trend to to the ensemble variance ⟨x(t)⟩. Using
Continuous Time RandomWalk (CTRW)methodHe et al. have found that the mean square
deviation fluctuate and he was able to give an exact form of MSD distribution using CTRW
formalism.
In particular He called f (δx) the probability density function of jumps and considered a

waiting time distribution of the form:

ψ(τ) ∼ A
τ−−α

Γ(−α) with α ∈ [, ]. (.)

If the jumps δxi the system makes in the time interval [t, t + ∆] are i.i.d. random variables
— we are thus considering an unbiased — we have ⟨δxi⟩ = ⟨δx⟩ =  and ⟨δxiδx j⟩ = ⟨δx⟩δi j)
and we can write

⟨x[t + ∆] − x[t]⟩ = ⟨
n(t,∆)

∑


δxi⟩ = ⟨δx⟩⟨n(t, ∆)⟩ = , (.)

where n(t, ∆) is the number of jumps in the interval [t, t + ∆] and thereby yielding

⟨(x[t + ∆] − x[t])⟩⟨
n(t,∆)

∑


δxi
n(t,∆)

∑


δxi⟩ = ⟨δx⟩⟨n(t, ∆)⟩. (.)

In a sub diffusive CTRW we can estimate the number of jumps by

⟨n(t, ∆)⟩ = ⟨n(, t + ∆)⟩ − ⟨n(, t)⟩ where ⟨n(, t)⟩ ∼ tα

AΓ( + α) , (.)

Escherichia Coli is a bacterium species usually used as general model for bacteria in biological literature
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giving

⟨δ̄⟩ = ⟨δx⟩
AΓ( + α)

t+α − ∆+α − (t − ∆)+α

( + α)(t − ∆) . (.)

We thus see that for α ≠  the MSD do not converge to ensemble variance ⟨x(t)⟩ = Dα tα

Γ(+α) .
For ∆≪ t we have

δ̄ ∼ Dα
∆

Γ( + α)t−α = D(t)∆. (.)

�is biological system shows then a non ergodic behavior which is not linked to any kind
of symmetry breaking.�is system is, in fact, always in a non ergodic a so non equilibrium
state.
�e system we aim to describe are in a similar situation, as we shall see, and exhibits

interesting properties.

2.4.3 Subordinated renewal processes

Until now we have dealt with quite general concepts. Let us specify to the Subordinated
renewal process we have introduced in chapter II.
Let us consider a discrete time renewal stationary process Xn that is:

Prob(Xn ∈ [x , x + dx]) = Prob(X ∈ [x , x + dx]) = π(x)dx (.)

we then subordinate it with a waiting time distribution ψ(t) that is, we first consider the
discrete time process Tn defined by

Prob(Tn ∈ [t, t + dx]) = P(T ∈ [t, t + dt]) = ψ(t)dt (.)

and then the continuous time process:

ξ(t) = Xk if t ∈ [Tk , Tk+]. (.)

As we have seen in chapter XXX we are mainly interested in processes in which the
waiting time distribution is asymptotically a power law with index µ. Let us consider (for
numerical purposes) the Manneville distribution

ψ(t) = (µ − )T µ−

(t + T)µ . (.)

We want to study how does our process autocorrelation behave. In chapter III it is shown
( .) that the correlation function is

C(t, s) = E(ξ(t)ξ(s)) = Ψ(t, s) (.)

where Ψ(t, s) is the waiting time distribution of age s < t. While the correlation is analytical
is hard to plot it since it is defined in terms n-th term of the convoluted waiting time., but
its structure shows that it cannot be stationary.
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For this reason we have made some numerical simulations to investigate better the nature
of this process.
If we useManneville’s waiting time distribution . we canwrite analytically the Survivor

probability

Ψ(t) = ( T
(t + T))

µ−

. (.)

It is a well known fact that, for a random variable t ∼ ψ(t), the random variable k = Ψ(t) ∼
U(, ) where U(, ) indicates the uniform distribution over the interval [, ].
We then generate our simulated time series of length L, ξ[nτ], where τ is our sampling

time, in the following way:

i. At time zero we assign the + or − to with probability . to ξ[]

ii. we then extract a time with the following prescription (here u ∼ U(, ):

t∗ = T [ 

u
µ
−µ

− ] (.)

iii. then for every n so that nτ < t∗ we set ξ[nτ] = ξ[(n − )τ] and return to the first step
unless our time series has length L.

We simulate N time seriesξ[i] to simulate our statistical ensemble and build an estimator

C (nτ, kτ) =
N

∑
i=

ξ[i][nτ]ξ[i][kτ]
(N − ) (.)

of autocorrelation C(t, s)
All these figures show that our system has a non stationary correlation function which

takes into account that in those systems become more and more correlated (since the
number of events per unit time become smaller and smaller). To see it we have to think that
a stationary correlation matrix would have a band structure.
In figure we have plottedC (s, s+ τ) for different value of s. In fact a stationary correlation

function would have showed a band structure, that is the elements C (nτ, (n + x)τ) would
have been the same for all n.
As we find with our figures, there are three different possible regimes possible:

Case:  < µ < 

In this case, both mean and variance of our waiting time are not defined. We can still use
Lévy theorem in this case, but, as we can also see in Figure.., the events are rare and clustered
(that is the probability of having N events in our series is) We know that in this case the
event rate R(t) ∼ 

t−µ and our simulation confirms this. We see form figure . that the
system is strongly non stationary.
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Figure 2.3: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ = . and for a sampling time τ = . arbitrary time unit. Each pixel
corresponds to a value of the matrix according to the color scale of the legend.
Number of elements of the Gibbs ensemble N = ′′.�e leading process
was dichotomous. A simple fit over the fist row (∼ Ψ(t)) gives T = . ± .
and µ = . ± .
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Figure 2.4: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ = . and for a sampling time τ =  arbitrary time unit. Each pixel
corresponds to a value of the matrix according to the color scale of the legend.
Number of elements of the Gibbs ensemble N = ′′.�e leading process
was dichotomous.
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Figure 2.5: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ =  and for a sampling time τ =  arbitrary time unit.Each pixel corre-
sponds to a value of the matrix according to the color scale of the legend.Number
of elements of the Gibbs ensemble N = ′′. �e leading process was
dichotomous.
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Figure 2.6: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ = . and for a sampling time τ =  arbitrary time unit.Each pixel corre-
sponds to a value of the matrix according to the color scale of the legend.Number
of elements of the Gibbs ensemble N = ′′. �e leading process was
dichotomous.
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Figure 2.7: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ = . and for a sampling time τ =  arbitrary time unit.Each pixel corre-
sponds to a value of the matrix according to the color scale of the legend.Number
of elements of the Gibbs ensemble N = ′′. �e leading process was
dichotomous.
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Figure 2.8: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ =  and for a sampling time τ =  arbitrary time unit.Each pixel corre-
sponds to a value of the matrix according to the color scale of the legend.Number
of elements of the Gibbs ensemble N = ′′. �e leading process was
dichotomous.
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Figure 2.9: A graphic representation of the symmetrized correlation matrix C (nτ, kτ) with
T = , µ = . and for a sampling time τ =  arbitrary time unit.Each pixel corre-
sponds to a value of the matrix according to the color scale of the legend.Number
of elements of the Gibbs ensemble N = ′′. �e leading process was
dichotomous.
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Figure 2.10: A graphic representation of the symmetrized correlationmatrixC (nτ, kτ)with
a poissonian waiting time distribution and N = ′′
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Figure 2.11: A graphic representation of the the aged correlation matrix Chτ(kτ) =
C (hτ, (h + k)τ) from the matrix of the same data of figure .. s =
{, , , , , , , }





. Ergodicity breaking

Case:  < µ < 

In this case, we are in a intermediate regimen. As we see from figures ., . and ??, the
fact that now the mean is defined is not sufficient for the system to be stationary.
If on the one hand theory says us the system should reach the stationarity our simulations

show it does not.
�e explanation is readily available since it is true the system reaches stationarity in a

very slow way, that it like 
tµ− and thus less than hyperbolically.

Case:  < µ

Here the system reaches rapidly the stationary condition thus behaves exactly like a normal
poissonian/Gaussian system, since in this range the variance is finite and thus the central
limit theorem holds.
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3 Linear Response Theory

Traditional Linear Response�eory [] has been one of the most powerful working tools
in non equilibrium statistical physics and especially in condensed matter problems. Van
Kampen [] criticized it on the basis that microscopic linearity, which is assumed in LRT,
is quite different fromMacroscopic linearity. Van Kampen correctly noted that to observe
linear microscopic response (ie of individual particle trajectories) over macroscopic time
(seconds, minutes or even hours), requires external fields which are orders of magnitude
smaller than those for which linear macroscopic behavior is actually observed.�erefore,
so the argument goes, the theoretical justification of, the Green-Kubo relations for linear
transport coefficients, is suspect.
Nevertheless, the experimental work done over a time span of about  years did not

reveal any breakdown of the theory.�e search for the theoretical explanation of why the
LRT work in spite of the hard criticism of Van Kampen is so extended that we limit ourselves
to refer the reader to the book of Carolyn van Vliet [] and the paper of Bianucci Mannella
and Grigolini []. Both explanations seem to fail when wemove from the systems originally
studied by Kubo and van Kampen to the complex processes that are the current subject of
an extended research work.
In short, for Carolyn van Vliet, the violation of the LRT cannot be experimentally revealed

because of the fast decay of the correlation functions of the variable perturbed by external
stimuli.�e research work on anomalous diffusion and related processes [,,], however,
revealed the existence of complex phenomena, characterized by extremely slow correlation
functions, and by the ensuing ergodicity breakdown, thereby making it natural to conclude
that in these conditions the LRT is violated [].
�e authors of Ref. [] noticed that the condition of strong chaos to which van Kampen

refers generates the breakdown of the LRT at the level of single trajectories, but at the same
time, thanks to chaos, makes the Gibbs ensemble of trajectories fulfill the LRT predictions.
�e density of a set of independent trajectories, each of which violates the linear response

condition, does obey the LRT of Kubo. Both these explanations fail when we come to study
the dynamic of complex networks. As we have pointed out in first chapter mesoscopic
phenomena e and systems with strong self-organization seem to exhibit a predilection for
power laws and sporadicity; so, in this case, Kubo�eory do not hold because the system
are not ergodic (not either stationary).
Wewill show in this chapter that for those systems a generalization of LRT can be provided.

And since renewal non poissonian event driven systems are in fact non ergodic, from one
single realization of the system it is impossible to derive the statistical properties of the
system. Even if the correlation function is not stationary we shall adopt also in this case the
Gibbs perspective. To do this, we shall propose our Ansatz and show that, with our proposal,
LRT can be extended also to the dynamic of complex networks.
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We first shall introduce traditional linear response theory by Kubo and stochastic reso-
nance, we shall then proceed to extend this theory to non stationary subordinated renewal
processes.

3.1 Traditional linear Response theory

Traditional Linear response theory interested in studying the response of a system at equi-
librium to a external perturbation. Usual exposition begin with static response theory then
dynamic theory. Very rich and insightful exposition can be found in Kubo’s classical exposi-
tion []. We shall follow here a more synthetic exposition due to Zwanzig [] applied to
classical systems.

3.1.1 Static response

LetH(X) be the unperturbed Hamiltonian over the a set of dynamical variable and let E
be and external field. We shall model the coupling of two systems by a coupling variable
M(X) thought to be a certain function of dynamic variables.
Let’s consider the perturbed HamiltonianHP(X) = H(X) − εM(X)E.
Equilibrium distribution is given by canonical distribution ρeq = Z− exp(βH(X)).

Where Z is the Partition Function (i.e. Z = ∫ expβH (X)dX in quantum version we have
the trace) and β = (kT)− .
Since we want to push our theory up to the first order in ε we have to perturb ρP up to

the first order in ε.
Noticing that:

eβ(H(X)−εM(X)E) ≈ exp(βH(X))[ − εβM(X)E + o(ε)] (.)

and that:

Z ≈ ∫ (exp(βH(X))[ − εβM(X)E + o(ε))]dX = Q + ε⟨(⟩M)E + o(ε) (.)

We obtain
ρP = ρeq[ − εβ(M − ⟨M⟩)E + o(ε)). (.)

If A is dynamic variable of the system we can write:

⟨A⟩P = ⟨A⟩eq − εβ ∫ (ρeqA(X)M(X)E dX + o(ε) ≈ ⟨A⟩eq − εχAME . (.)

3.1.2 Dynamic Linear Response

If the perturbation is not a static one we have to use a little more sophisticated language. As
we know from Liouville’s theorem the phase space density a constant of motion and thus
the dynamic of the system is given by the Liouville equation

∂tρ(t) = L ρ. (.)
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where
L ρ = {ρ,H } =∑

i

∂ρ
∂pi

∂H
∂q

− ∂ρ
∂qi

∂H
∂pi
. (.)

With our choice for the Hamiltonian we have:

L = L − εL + o(ε) = {⋅,Ho} − ε{⋅,M}E(t) (.)

We want to solve the equation perturbatively that is ρ = ρ + ερ + o(ε). We thus obtain
the equations:

⎧⎪⎪⎨⎪⎪⎩

∂tρ = Lρo

∂tρ = Lρ −Lρ
(.)

Solving the first equation (ρ() = ρeq) formally we obtain:

ρ(t) = expLtρeq = ρeq (.)

Since

Lρeq = {e
βH

Z
,M}E(t) = ρeq{H,M}E(t) = −βρeq(

d
dt

M)E(t)ds (.)

�e second equation can be written down (ρ() = )

ρ(t) = +β ∫
t


exp−L(t − s)( d

ds
M)E(s)ρeq (.)

we can then write for a generic variable

⟨A⟩P(t)−⟨A⟩eq(t) = −εβ ∫
t


⟨Aexp−L(t − s)( d

ds
M)⟩E(s)ds = −εβ ∫

t


χAM(t−s)E(s)ds

(.)
where
If ⟨A⟩ =  and ⟨M⟩ =  we can write down Kubo’s formula []:

⟨A⟩P = −εβ ∫
t


χAM(t − s)E(s)ds (.)

3.1.3 Velocity Autocorrelation Function

If we consider the Langevin Equation for a particle subjected To a stochastic and Variable
Force we have

v̇(t)eq = −γv + f (t) + ξ(t) (.)

If f (t) is a white noise and ⟨v⟩eq =  we obtain:

⟨v⟩(t) = ∫
t


e−(γ(t−s)ξ(t) (.)





 Linear Response�eory

since the equilibrium autocorrelation of velocities for :

⟨v(t)v(s)⟩ = ∫
t

 ∫
s


e−(γ(t−u)e−(γ(s−v)⟨ f (u) f (v)⟩du dv = e−γ∣t−s∣ D

γ
(.)

using equipartition of energy we obtain

⟨v⟩(t) = β ∫
t


χxv(t − s)ξ(s)ds (.)

that is the same that considering the system coupled with the external perturbationH =
−xξ(t) where ẋ = v. Since the system is linear the linear response is exact.
If we consider system in which also a potential is present we can write Langevin equation

⎧⎪⎪⎨⎪⎪⎩

ẋ = v
v̇ = −γv + F(t) − d

dxV(x) + ξ(t)
(.)

For V(x) = 
ωx and with the Smoluchowski approximation v̇ ≈  we can write the

equation becomes

v̇ = −ω

γ
x + F(t)

γ
+ ξ

γ
= −Γx +G(t) + Ξ(t) (.)

formally equivalent to equation .. In this case:

C(t, s) = ⟨x(t)x(s)⟩ = −γΓe−γ(t−s) (.)

And thus
⟨v⟩(t) = β ∫

t



d
ds

C(t, s)ξ(s)ds (.)

Since the system is stationary the response function can bewritten as ddsC(t, s) = d
dsC(t, s) =

− d
dsC(t − s) = − d

dtC(t, s) .
When trying to extend LRT to non stationary systems those two prescriptions are no

more equivalent and correspond to make two profoundly different hypothesis.

3.2 Stochastic Resonance

We want to proceed to illustrate what is, in fact, another form of linear response theory,
stochastic resonance. As its name specify its resonant character is usually stressed but we
want, instead, point that RS is actually a specific form of LRT for a class of stochastic systems.
Let us consider a stochastic system with a potential. A typical example of this kind of

systems is that of a particle subject to a potential V(x), a dumping and a white noise random
force of intensity D whose Langevin equations are:

⎧⎪⎪⎨⎪⎪⎩

v̇ = −γv −∇V(x) + F(t)
ẋ = v

(.)
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Figure 3.1: A plot of V(x) = −x + .x

�e transitional moments are easily calculated in this case, since by integration we get:

⟨x⟩ = ⟨v⟩∆t (.)

and
⟨v⟩ = γ⟨v −∇V(x)⟩ + ∫

t


⟨F(t)⟩dt. (.)

We derive from them the first two transitional moments ax = v and av = −γv − ∇V(x).
Because of . the coupled transitional moments are null and since:

⟨v⟩ = γ⟨v −∇V(x)⟩∆t + ∫
t

 ∫
s


⟨F(t)F(s)⟩dt ds (.)

we obtain avv = D. We can write Fokker-Planck equation for the process:

∂tp(x , v , t) = ∂x[vp(x , v , t)] + ∂v[(−γv −∇V(x))p(x , v , t)] − D∂x p(x , v , t), (.)

where p(x , v , t) = P(x , v , t∣x, v, ).
Solving the previous equation is a hard task. It can be made easier if me make Smolu-

chowski approximation (that is v̇ = ) in this case the system’s equation simplifies to

ẋ = 
γ
∇V(x) − 

γ
F(t) (.)

and subsequently Fokker-Planck equation becomes

∂tσ(x , t) = ∂x(−

γ
∇V(x)σ(x , t)) + 

γ
∂xσ(x , t) (.)
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equilibrium distribution of the previous equation can be analytical found.
If we choose a double well potential . V(x) = − x + 

λx our system is bistable, that
is there are two stable states, which we label with + and −. Because of the stochastic force
the system will stay in a state for a few time than go to the other and so on. In practice the
system will act as a two state system []. It can then be described by a Master Equation

⎧⎪⎪⎨⎪⎪⎩

d
dt p+(t) = r−p+(t) − r+p−(t)
d
dt p+(t) = −r−p+(t) + r+p−(t)

, (.)

where the quantity r± are called Kramers rates.
�ey can be derived by the equilibrium solution of equation in the case of double well

potential (x± are the minima points) obtaining:

r± =
(V ′′(x±)V ′′()) 

πγ
e−γ

V()−V(xpm)
D . (.)

If we perturb this system with a small perturbation εg(x)ξ(t), that is, we consider the
equation

ẋ = 
γ
∇V(x) + 

γ
F(t) + εg(x)ξ(t), (.)

this can be seen as taking a time dependent potentialW(x , t) = V(x) + εh(x)ξ(t) where
h′(x) = g(x). If g =  and ε <<  so that the minima point can be considered fixed, we write
Kramers rate

r± = r±eγ ∓x± ξ(t)
D (.)

By expanding up to first terms in ε , for a symmetric double well (i.e. r± = r and x± = λ),
we obtain ¹

d
dt

p(t) = r (
− −λεξ(t)

 + +λεξ(t)


+ +λεξ(t)
 − −λεξ(t)



)p(t). (.)

Moving to the the variable Π(t) = p + (t) − p − (t) (the sum equals ) the equation
becomes:

d
dt
Π(t) = −rΠ(t) + εrλξ(t) (.)

thereby yieldin to the solution

Π(t) = e−r tΠ() + εrλ ∫
t


e−r(t−s)ξ(s). (.)

From Pi we then recover the probabilities

p+(t) =
 +Π(t)


and p−(t) =
 −Π(t)


, (.)

using a vector notation p = (p+(t), p−(t))
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�us any observable average becomes

⟨A⟩P =
A(+) + A(−)


+ A(+) − A(−)


Π(t). (.)

�e response becomes then

⟨A⟩P − ⟨A⟩eq = εrλ
A(+) − A(−)

 ∫
t


e−r(t−s)ξ(s)ds. (.)

We notice that:
A(+) − A(−)


= AT Opeq = mA. (.)

For an harmonic perturbation ξ(t) = Acos(ωt) the system response becomes:

⟨A⟩P − ⟨A⟩eq = −ελA
r√

r + ω
cos(ωt + φ), (.)

with φ = arctan ( r
ω ).

3.3 Linear Response theory for complex systems

�is section is devoted to the illustration of the generalization of LRT to complex event
driven systems

3.3.1 Event Driven Systems

Our extention to LRT theory aims to show that for event driven systems a LRT framework
can be provided even if stationarity does not hold.
An event driven (complex) system is a system which can be described by an event driven

renewal process as defined in the first chapter. As it has been shown there, those systems
can be described by a subordinated process which characterized by a leading process Xn

and a subordination generating process characterized by a waiting time distribution.
We want to point here that the theory which shall be discussed further is applicable

whenever such a description is allowed.
It is, as Kubo’s theory for ordinary statistical physics, a framework in which the details

have to be provided case by case. (i.e. what is perturbing what defines the fine details of the
theory but its structure remains the same).
A more detailed discussion of what event Driven systems are is fundamental to prevent

any misunderstanding.
An “event”, is an abrupt transition of the system from one state to another. Obviously this is

an idealization but this idealization is enough to capture some of the fundamental properties
FL those system. An event driven system is a system whose characteristic dynamics can
be described as due to events, that is, to these abrupt transitions. For power law waiting
time distributions this characteristic is extremely important. In this case , in fact, for µ < 
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the system characteristics are mainly determined by those events. It has been shown, in
fact, that the power spectra of event driven systems with a power law distribution have the
characteristic power spectrum P( f ) ∼ / f η for f →  where η =  − mu []. Renewal
processes with a power law distribution are, in this sense, special since the sole presence of
events determine at least one of the fundamental characteristics of power spectra: that is we
could refer to the events in this case as “crucial event”.
Stochastic resonance, in McNamara and Wiesenfeld approach, can be thought of, as we

shall see, as a poissonian event driven system.�e “events” in this case are the crossings of
the potential barrier which make the state of the systems to undergo a transition between
two stable states, while the waiting time distribution represent the time distribution between
two of those events.�e action of the perturbation can then be seen either as modifying the
transition rates (and we shall refer to it as phenomenological approach) or by perturbing the
time event occurrence. In this case the result is the same, an in poissonian case this is always
true since the quantity which determine the renewal process g(t) = r(t) = R(t) coincides.
When we depart from poissonian statistics.�is equivalence breaks.
For complex systems a microscopical approach typically is not available. When it is

available it can be extremely complicated ore simply useless (e.g. the sub diffusion of
mesoscopic molecules in the E. Coli bacterium already proposed []) or liquid crystals
experiments []. In many cases like in the decision making networks [] it is simply
unavailable.

Perturbing a complex system

When we apply a small perturbation to the system, like an oscillatory potential in the liquid
crystal experiment [], we are perturbing the global propertied of the system.
It makes then sense to wonder how a complex system respond to an external perturbation.
We shall remember that subordination theory is a mathematical phenomenological pic-

ture of a complex phenomena as a whole. We cannot identify the leading process with a
microscopical process and the waiting time distribution as a global properties but both are
the expression of global cooperative structure of this systems.
In this frame we have two possibilities to model the action of the perturbation of the

subordinated process.
We can assume that the net effect of the perturbation on the system is that of modifying

the operator K and leaving the waiting time distribution unperturbed (Phenomenological
approach) or we can make the hypothesis that the perturbation acts on the entire laminar
regions letting the waiting time distribution to be perturbed.�ose approaches lead to two
different results.
Preliminary results on the liquid crystals confirm that for this specific system the dynami-

cal approach is the correct one.
We notice that, when perturbations act on complex systems, they modify all their global

properties.�e dynamical approach better models the net effect of these perturbations on
the element of the systems since it take into account also the effect of this perturbation on
the occurring time (which is a fundamental expression of global properties of the system).
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Liquid Crystals

In a recent article [] it has been shown that Liquid crystals in weak turbulence exhibit a
non exponential relaxation to equilibrium.
In the dynamic elecrohydrodynamic convection regime, in which the authors have made

their experimental works, the light tranmission is mediated by the creation and destruction
of defects leading to a increase or decrease of light trasmittivity.
�e liquid crystals where placed between two transparent glass plates coated with iridium

to allow electrical conductivity.�en an alterate electrical difference of potential was placed
between the two plates.
Near a threshold voltage V ≈ V the convective instability appears visualized as a

regular pattern of light vs. darkness stripes. Turbulence near threshold can be modeled by a
Ginsburg-Landau theory.
�e authors define an order parameter ε = V−V

V and show that for  < ε < ε = . ± .,
liquid crystals presented spacial inhomogeneity and did not equilibrate. In this case a
Ginsburg Landau theory is no more effective and the system exhibits and inhomogeneous
extremely complex dynamic of defects (of birth, death, oscillatory or dri�ing).
In this regime liquid Crystals can be modeled by a renewal non stationary event driven

process ξs(t) experimentally compatible with the assumption that the permanence in the on
(+ state and off (−) state is determined by a Manneville distribution

ψ±(t) =
(µ − )T µ−

±

(T± + t)µ (.)

with the same µ parameter. In the limiting case of weak turbulence the two values T+ → T−
Since ⟨ξs(i)⟩ is proportional to the number of defects of the sample it can be experimentally

measured through a measure of the total light intensity transmitted by the sample.
�e external voltage, in this case, acts as the perturbation ξP to the liquid crystal system.
For this system a perturbation experiment has been done and the results agrees with the

predictions of the dynamical LRT.

3.3.2 The Onsager Principle

Onsager’s principle [] is one of the key relations for traditional non equilibrium physics.

Onsager’s principle �e regression of system out of equilibrium is proportional to his
unperturbed correlation function.�at is for a system observable ξt

⟨ξ(t)⟩P
⟨ξ()⟩ ∼ ⟨ξ(t)ξ()⟩eq

⟨ξ()⟩eq
(.)

�is principle is true if the system we are dealing with admits an equilibrium correlation
function that is if the correlation function of the system is stationary. As we have seen the
systems we are interested in are non stationary one.�ey exhibits different properties like
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ageing which are obviously non compatible with Onsager’s principle stated the way we have
stated it.
Let us notice that Onsager’s principle can be used an experimental definition of correlation

function of a system, and has been extensively used under this perspective, since the Gibbs
averages can be measured (in classical Ising models these are Magnetizations).
Is has been shown that Onsager’s principle can be extended also to this case []). We want

to find what the non stationary correlation function in this case is.
Let p(t, s) be the probability that the system is in the same laminar region between at

time t and s, t > s. In two different laminar regions the system will take values from two
different variables that are clearly independent and their mean, therefore, is the product of
the means of each variable, if the system is in the same laminar region instead we have to
consider its variance. Clearly, then:

⟨ξ(t)ξ(s)⟩ = ⟨p(t, s)ξi + ( − p(t, s))ξi ξ j⟩ = E(ξ)⟨p(t, s)⟩. (.)

But the probability for the system to stay in the same laminar region can be calculated. In
we can split the event C = {�e system at t is in the same laminar region than it was at s}
can be split as the union of the events: C(n, t, s) = {�e system at tis in the n-th laminar region and so it was at s}.
We can then write:

⟨ξ(t)ξ(s)⟩ =Prob(⋃
n
C(n, t, s)) =

∞

∑
n=

∫
s


ψn(t′)Ψ(t − t′)dt′

= Ψ(t) + ∫
s


R(t′)Ψ(t − t′)dt′ = Ψ(t, s).

(.)

3.3.3 Linear Response theory for event driven Poissonian processes

Before extending our theory to non stationary processes, we want to focus on poissonian
dichotomous systems. In fact analyzing those systems will lead us to make a crucial Ansatz
needed in order to be able to state a consistent linear response theory for complex non
stationary systems.

The terms of the problem

Let us consider a system whose variable of interest can take two values + and −. �e
transition between this two states is governed by the Master equation of coin tossing that is

p(n) = p(n) + (

 − 
−  


)p(n). (.)

We want this process to be a poissonian event driven process.
Using the renewal formalism this implies we set a time dependent failure rate g(t) to be

a constant g.�e waiting time distribution is then the exponential one

ψ(t) = ge−g t (.)
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In this simple case we can write down the Generalize Master equation noting that

Φ̂ = g (.)

the GME becomes then²:

d
dt

p(t) = −g ∫
t


δ(t − t′)(


 − 
−  


)p(t′)dt′ = g (


 − 
−  


)p(t′) (.)

�ere are two possibilities of perturbing this equation. We could think the perturbation
act on the transition rate between the two states, in this case we will call the phenomenological
perturbation theory, or we could figure that the perturbation act on the system in order to
change the perturbation rate, approach we shall call dynamic.

Phenomenological Linear Response theory

In this case the perturbation acts on the probabilities, that is we are rigging the coin toss. In
practice we let p → p + ε

 ξP(t).�e master equation becomes:

d
dt

p(t) = g (
−εξP(t)


−+εξP(t)


−+εξP(t)


−εξP(t)


)p(t) (.)

which is formally similar to the equation . of Stochastic Resonance. We obtain then
exactly the same result for an observable variable A:

⟨A⟩P − ⟨A⟩eq = ελ
A(+) − A(−)

 ∫
t


ge−g(t−s)ξ(s)ds. (.)

If we calculate the equilibrium correlation function in this case we get:

C(t, s) = E ξ(t)ξ(s) = p+(t)p+(s) + p−(t)p−(s) − p+(t)p−(s) − p−(t)p+(s) (.)

were p±(t) using the usual trick of writing P(t) = p+(t)− p−(t) the equation then becomes:

d
dt

P(t) = −gP(t) (.)

ant thus, remembering that p+ + p− = , and taking into account that P(t) = exp(−gt)P()
we obtain:

C(t, s) = P()e−g(t−s) = C(t − s) (.)

thus we have χ(t, s) = − d
dtC(t − s) = d

d( s)C(t − s)

ageing is not issue for poissonian processes since ψ(t, s) = ψ(t)
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Dynamical Linear Response

In this case we have to perturb the waiting time distribution ψ(t).
In our renewal perspective the time dependent failure rate g(t) totally determines the wait-

ing time distribution, perturbing our waiting time distribution is the same that perturbing
our time dependent failure rate.
For a Poissonian waiting time distribution g(t) = g. Wemake then a fundamental Ansatz

that is that our perturbation acts on the time dependent failure rate only in the following
way:

gP(t) = g − gεξP(t) + o(ε) (.)

that is for our system master equation:

d
dt

p(t) = (g − gεξP(t))(

 − 
−  


)p(t) = g (

−εξP(t)


−+εξP(t)


−+εξP(t)


−εξP(t)


)p(t) (.)

that look formally exactly the same that equation ..�is could be expected since we are
in a stationary condition and then Kubo theorem hold. But this discussion has taught us
how to perturb waiting time distributions, at least in Poissonian case. We notice, in fact,
that, according to renewal formulas, we have:

ΨP(t − s) = e− ∫ t
s g(t) = e−g t−se−gε ∫ t

s ξ(t′)dt′ = Ψ (t − s − ε ∫
t

s
ξ(t′)dt′) (.)

3.3.4 Non poissonian event driven linear response theory

Until now we have only stated known results in a fancier way, pointing out some extremely
important aspects.

Perturbing Generalized Master Equation: Sokolov’s phenomenological approach

We first want to outline phenomenological linear response theory proposed by Sokolov [].
As we have seen a non poissonian, infinitely young, system satisfies the generalized master
equation:

d
dt

p(t) = ∫
t


Φ(t − t′)Kp(t′) (.)

where the Laplace transform of the memory kernel is given by

Φ(u) = uψ̂(u)
 − ˆψ(u)

(.)

Using an approach equivalent to Sokolov proposal we can think our perturbation acts on the
operator K. We can figure the perturbation acts on K changing it into K(t). In the following
way:

K(t) = 

(− 
 −) + ε




ξP(t)(
 
− −) (.)
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Solving the integro-differential system is not an easy task in general but if we consider
only the  state system we can do it.
In fact since we are dealing with probabilities we have p+ + p− =  and thus introducing

the quantity Π(t) = p+(t) − p−(t) we obtain

d
dt
Π(t) = − ∫

t


Φ(t − t′)Π(t′)dt′ − εξP ∫

t


Φ(t − t′)dt′ (.)

Since
A(t) = ∫

t


Φ(t − t′) = − ∫



t
Φ(s)ds = ∫

t


Φ(s)ds (.)

and

Â(u) = 
u

uψ̂(u)
 − ˆψ(u)

=
∞

∑


ψ̂n = R̂(u) (.)

We can write

u ˆΠ(u) −Π() = uψ̂(u)
 − ψ̂(u)

ˆΠ(u) −L [εξPR] (t) (.)

that is
ˆΠ(u) =  − ψ̂(u)

u
(L [εξPR] (u) −Π()) (.)

which leads, when starting from equilibriumΠ() = , and remembering that ⟨ξ⟩(t) = Π(t),
to a response

⟨ξ⟩P = −ε ∫
t


Ψ(t − t′)R(t′)ξP(t′) (.)

We notice that in this case

χ(t, t′) = − d
dt′

C(t, t′) = −R(t)Ψ(t − t′) (.)

�is choice while simple, do not take into account that the perturbation could act on the
system during the entire laminar region causing the system to undergo a crucial event sooner
or later than when it would have occurred in an unperturbed system.
For this reason we want to go further a perturb the waiting time distribution too. To do

this we have to make an Ansatz on how to perturb our waiting time distribution.

The dynamic perturbation ansatz

We have now to make a new Ansatz which will enable us to carry on a consistent dynamical
pertubation approach.
As we have seen in the previous sections, perturbational approach in Poissonian case can

be carried out trivially. We have seen that thought as a dynamical perturbation it leads to
equation .
We are then naturally led to extend this perturbative structure also to non poissonian

event driven systems that is:
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Dynamic approach Ansatz

ΨP(τ∣s) = Ψ (τ −O ε ∫
s+τ

s
ξ(t′)dt′) (.)

Where the operator O take into account the effects of the perturbation on probabilities of
the leading process. We can think this ansatz in a fancy way.
We can think to expand our survivor probability in terms of exponential functions.

According to Beck prescriptions [] we write ³:

Ψ(t − s) = ∫
∞


Π(g)e−g(t−s) dg (.)

and then we think that these exponential functions are perturbed as in the poissonian case:

ΨP(τ∣s) = ∫
∞

 ∫
∞


Π(g)e−g(τ)+gεO ∫ s+τ

s ξ(t′)dt′ dg = Ψ (τ − εO ∫
s+τ

s
ξ(t′)) (.)

In this way we perturb the probability without affecting the statistics.
By the definition of ΨP(τ∣s) we can infer the form of the perturbation as it should act on

the waiting time distribution. We have in fact:

ψP(τ∣s) = − d
dτ
ΨP(τ) = [ +O εξ(τ)]ψ (τ −O ε ∫

s+τ

s
ξ(t′)dt′)

≈ψ(τ) + εO [ψ(τ)ξ(τ) + ψ′(τ) ∫
s+τ

s
ξ(t′)dt′] + o(ε)

(.)

�e presence of the integral term characterize our perturbation theory in that it is not
time invariant since the way the perturbation acts depends on explicitely of the age of our
system s.
If we expand our perturbation up to the first order in ε we obtain:

ΨP(t − s∣s) ≈ −εOψ(t − s) ∫
t

s
ξP(q)dq = εΨ()

P (t − s∣s)O (.)

and for the perturbed waiting time distribution:

ψP(t − s∣s) ≈ εO [ψ(t − s)ξ(t − s) + ψ′(t − s) ∫
t

s
ξ(t′)dt′] = εψ()(t − s∣s)O (.)

The meaning of operatorO

Until now we have not said anything about the operator O we have inserted in our Ansatz.
At that point we have inserted our operator as a simple add on. We want now try to
specify its form at least in the dichotomous case. If A is an observable of the system (i.e
A = {−, }→ R) we define our operator matrix by:

mA = ⟨A⟩ = AT Opeq (.)

 Ψ is in practice the inverse Laplace transform of Π(g)
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�at is how would the system respond if it were a discrete time process described by our
leading process.
Our operator O acts then on the system

O(




) = (



− 

) (.)

that is
(I+K)Opeq = . (.)

In general the equilibrium probability vector will be the  eigenvector of the matrix
K. �e perturbational operator O then will be the operator that applied to equilibrium
probability state will give the eigenvector corresponding to the first nonzero eigenvalue (“the
first excited state”). Since for multicothomous system K +K =  it is straightforward to see
( +K)Opeq = .

3.3.5 The Fluctuation-Dissipation theorem

We are now able to state the main result of this thesis.
We are interested in expanding our probability vector in terms of ε

p(t) =
∞

∑
n=

p(n)(t)εn (.)

Let us call the the Montroll Weiss evolution operator:

p(t) = TK(t − s∣s)p(s) =
∞

∑
n=

∫
t−s


Ψ(t − s − t′)ψn(t′)( +K)np(s), (.)

which governs the evolution of the system from from time s to time t provided that at time
s an event has occurred.
By definition, on the equilibrium state, we have:

peq(t) = TK(t − s∣s)peq(s). (.)

�e unperturbed evolution, under our hypothesis that the system is a renewal system, is
obviously governed by TK(t − s∣s).
In doing our calculations we have to remember that, in order for the perturbation to act,

we have that a least one event occur a�er preparation time.
We shall see that under the dynamical perturbational frame this leads to :

p()(t) = L(t) + E(t) (.)

where:
L(t) = ∫

t


(δ(s) + R(s))ΨP(t − s∣s)peq ds (.)





 Linear Response�eory

 t

0

Ψ  (t-t' | t')

n events
n

...

ψ(t')
n

(1) p
eq  Opeq

Figure 3.2:One of the terms of the L(t) contribution

and:
E(t) = ∫

t

 ∫
s


ψ()(s − q∣q)R(q)TK(t − s)(I+K)peq dq ds. (.)

To understand where those contributions come from we have to make these considera-
tions.
Since we are interested in the linear term to the perturbational series we have to consider

only terms in which only one event as been affected by pertubation .
Taking into account the first order contribution we can see they arise from two different

elements of the Gibbs ensemble:

. �ose in which the last event occured at time s < t and the perturbation is acting in
the last laminar region ..�is contribution will be denoted as L(t)

. �ose in which the effect of perturbation occurred in a previous laminar region ..
�is contribution will be denoted as E(t).

 t

0

Ψ(t-z)

n events
n

...

ψ  (q)
n

(1) ψ   (z-s)
m

ψ   (s-q|q)
(1)

m events...

 p
eq

 p
eq

 T(t-s)(I+K)Op
eq (I+K)Opeq

 z s q

Figure 3.3:One of the infinite terms of the E(t) contribution

Calculation of L(t)

L(t) take into account the contribution of the elements of Gibbs ensemble in which the last
laminar region is influenced by the perturbation.
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For these elements, since we are starting from an equilibrium distribution, the system
probability distribution will be peq until the last event occur and only during the last event it
will shi� to the first excitation Opeq.�at is:

L(t) = Op(t)Prob{(⋃
q
last event occurred at time q

last laminar region is perturbed and lasts until t)}
(.)

and thus by independence and remembering that our ansatz prescribes that we have to use
the perturbed survivor probability of equation . for last laminar region: we obtain:

L(t) = ∫
t


(δ(s) + R(s))Ψ()

P (t − s∣s)Opeq ds. (.)

using formula . we obtain:

L(t) = ∫
t


(δ(s) + R(s))ψ(t − s) ∫

t

s
ξP(q)dqOpeq ds (.)

Calculation of E(t)

�e second contribution is more difficult to obtain. As we have said, we have to consider in
this contribution only those elements of Gibbs in which only one laminar region is perturbed.
Since we are dealing with renewal systems, the evolution a�er the perturbation has acted,
is given by Montroll-Weiss evolution operator applied to the perturbed probability vector.
Because we are staring from our equilibrium distribution, up to the laminar region in which
the perturbation acts the system will remain at equilibrium
Accordingly to the sketch figure . we can write then:

E(t) = ∫
t

 ∫
s


ψ()(s − q∣q)R(q)TK(t − s)(I+K)Opeq dq ds. (.)

3.3.6 Dichotomous non-poissonian case

For dichotomous non poissonian event driven systems a LRT had yet been provided with a
slightly different formalism here [].�is allows us to test our theory.
Since we are starting on equilibrium and (I+K)Opeq =  because the operator Opeq is

antisymmetric and operator I+K is symmetric.
�erefore only the linear contribution is present:

L(t) = εO ∫
t


(δ(s) + R(s))ψ(t − s) ∫

t

s
ξP(q)dq ds (.)

To obtain a linear response form we have to do some calculations:
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Some calculations

In this subsection we prove the important relationship

∫
t


dsΞ(s) ( ∫

s


Y(q)dq) = ∫

t


dsY(s) ∫

t

s
dqΞ(q). (.)

To prove this relation we set

Ξ(s) = − d
ds ∫

t

s
Ξ(q)dq = − d

ds
A(s) (.)

By plugging it into the le�-hand term of equation .) we obtain

∫
t


dsΞ(s) ( ∫

s


Y(q)dq) = − ∫

t

s

d
ds

( ∫
t

s
Ξ(τ)dτ)( ∫

s


Y(q)dq)

= − [ ∫
t

s
Ξ(s)ds ⋅ ∫

s


Y(q)dq]

t


+ ∫

t


Y(s) ∫

t

s
Ξ(q)dq ds.

(.)

On the other hand
[ ∫

t

s
dqΞ(q) ⋅ ∫

s


Y(q)dq]

t


= , (.)

thereby yielding Eq. (.).

The dynamic Linear Response Theory

We are now able to calculate the Linear Response for a dynamical quantity under our
dynamical prescription.

⟨A⟩P(t) = εATL(t) = εmA ∫
t


(δ(s) + R(s))ψ(t − s) ∫

t

s
ξP(q)dq ds (.)

We set Ξ(q) = ξP(q) and

Y(s) = ∫
s


[δ(q) + R(q)]ψ(t − q)dq. (.)

�us, using Eq.(.) we write Eq. (.) under the form

⟨A⟩(t) = εmA ∫
t


ξP(s) ∫

s


(δ(s) + R(s))ψ(t − s)ds dt (.)

Differentiating the correlation function found in equation . we can obtain:

ψ(t, s) = d
dt

C(t, s) = ∫
s


(δ(s) + R(s))ψ(t − s)ds (.)

and thus equation . reads

⟨A⟩(t) = εmA ∫
t



d
dt

C(t, s)ξP(s)ds (.)

Which is the statement of dynamic linear response.
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3.3.7 Response to an harmonic perturbation

In this section we want to derive how the system respond to an harmonic perturbation. Let
us begin by calling:

Q(t) = ⟨A⟩(t)
εmA

(.)

To be able to do our calculation correctly we will consider first ξP(t) = exp(iωt).
We have then to calculate

Q(t) = ∫
t


ψ(t, s) exp(iωt)ds (.)

Let us make the Laplace transform of Eq. (.). We apply the method of integration by
parts, yielding

Q̂(u) = ∫
∞


dt exp(−ut) ∫

t


ψ(t, s) exp (−iωs) =

∫
∞


dt exp(−ut) ∫

t


( 
−iω)ψ(t, s)dexp (−iωs)

ds
. (.)

�us, we obtain

Q̂(u) = ( i
ω
) ∫

∞


dt exp (−ut){[ψ(t, s) exp (−iωs)]t − ∫

t


ds exp (−iωs) d (ψ(t, s))

ds
} .

(.)
Note that, as prescribed by the dynamic LRT, ψ(t, s) is the probability density of an event

occurrence at time t given the condition that the waiting process begins at time s. Using the
corresponding survival probability Ψ(t, s) we write ψ(t, s) as

ψ(t, s) = ψ(t) + ∫
s


R(q)ψ(t − q). (.)

Here, to establish a closer connection with the calculations done in Ref. [] we consider
also the preparation event occurring at t = . Using the definition of ψ(t, s) given by Eq.
(.), we get

Q̂(u) = i
ω ∫

∞


exp(−ut) [ψ(t, t) exp(−iωt) − ψ(t) − ∫

t


exp(−iωs)

∞

∑
n=

ψn(s)ψ(t − s)ds]dt
(.)

Using again the definition of Eq. (.), we have

Q̂(u) = ( i
ω
) ∫

∞


dt exp(−ut){ exp(−iωt) [ψ(t) +

∞

∑
n=

ψn(s)ψ(t − s)]−

ψ(t) − ∫
t


dsexp(−iωs)

∞

∑
n=

ψn(s)ψ(t − s)} (.)
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Taking into account thatwe are dealingwith uncorrelated events (ψ̂n(u+iω) = (ψ̂(u + iω))n)
we write the Laplace transform of Eq. (.) as follows:

Q̂(u) = ( i
ω
){ψ̂(u + iω) +

∞

∑
n=

[ψ̂(u + iω)]n ψ(u + iω) − ψ̂(u) −
∞

∑
n=

[ψ̂(u + iω)]n ψ(u + iω)} ,
(.)

which yields

Q̂(u) = ( i
ω
){[ψ̂(u + iω) − ψ̂(u)] +

∞

∑
n=

[ψ̂(u + iω)]n [ψ(u + iω) − ψ̂(u)]} . (.)

By summation of the geometric series, we obtain the important result

Q̂(u) = ( i
ω
) ψ̂(u + iω) − ψ̂(u)
 − ψ̂(u + iω) . (.)

With the help of Eq. (.) we now evaluate the system’s response to a harmonic pertur-
bation. Let us define

Π(t) ≡ εRe(Q(t)) (.)

�us, the linear response to a harmonic perturbation is obtained by anti-Laplace transform-
ing:

Π̂(u) = εRe [ i
ω

ψ(u) − ψ̂(u + iω)
[ − ψ̂(u + iω)] ] , (.)

We use as density distribution the negative derivative of a Mittag-Leffler, namely

ψ(t) = − d
dt

Eα [−( t
T
)

α
] , α = µ − . (.)

Its Laplace transform is

ψ(u) = 
 + (Tu)α . (.)

Plugging Eq. (.) into Eq. (.), a�er a little algebra we obtain

Q̂(u) = εRe [ i
ω

( − uα

(u + iω)α )]


 + (Tu)α . (.)

As we see Eq. (.) has a correction factor with respect to the expression for the linear
response []. �is factor could be neglected for u → . As we shall see this extra factor
affects the amplitude and the phase as well. It is possible write an exact expression for the
inverse Laplace transform of Eq. (.). Using the result of [] we can write

Π(t) = ε(µ−)Re { ∫
t


F[ − µ, , iω(t − t′)] exp[iω(t − t′)] d

dt′
Eα [−( t

′

T
)

α

] dt′} (.)





. Linear Response theory for complex systems

200 400 600 800 1000
t

-0.10

-0.05

0.05

0.10

<Ξ_s>

Figure 3.4:Dynamical Linear Response to an harmonic perturbation cos(.t) calculated
using the correlation function C of figure .(T = ,µ = .).�e Purple dots
represent 

Γ(µ)


tµ−

�e asymptotic expression for Π(t) is

Π(t) ≈ εRe
⎧⎪⎪⎨⎪⎪⎩

exp [i (ωt + π
 µ)]

Γ[µ − ](ωt)−µ


 + (iωT)µ−
⎫⎪⎪⎬⎪⎪⎭
= ε ∣z∣

cos [ωt + π
 µ + φ]

Γ[µ − ](ωt)−µ (.)

where we defined


 + (iωT)µ− =∣z∣ exp[iφ].

Clearly for ωT ≪  we obtain the result of ( []):

Π(t) = ε
Γ(µ − )

cos ( πµ
 + ωt)

(ωt)−µ
. (.)

3.3.8 Phenomenological Response to harmonic perturbation: The
“Freud e�ect”

With calculations of the same kind as those used to derive Eq. (.) we obtain []

Q̂(u) = − − ψ̂(u)
u

Re { ψ̂(u + iω)
[ − ψ̂(u + iω)]} . (.)

It is shown []that this formula yields

Π(t) ≈ ε ( T
T + t

)
µ−

− ε
Γ( − µ)(ωt)µ− sin

πµ

+ ε
Γ(µ − )

cos ( πµ
 + ωt)

(ωt)−µ
, (.)

where the last term is identical to that of Eq. (.).�us, we see that the adoption of the
phenomenological theory generates a slow non-oscillatory regression to equilibrium, which
depends on the sign of perturbation at the time when the perturbation is applied.
�is characteristic is known as “Freud Effect” ( as shown in figure . )
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Figure 3.5: Phenomenological Linear Response for an harmonic perturbation cos(.t)
calculated using the correlation function C of figure .

3.3.9 Liquid Crystals experiment

We want to describe here an experiment on liquid crystals that could be interpreted trough
our theoretical approach. Since it has been proved in recent paper [] that these systems
exhibit an event-driven power law relaxation we are led to analyze what happens when the
system is perturbed by an harmonic perturbation.
�e prediction of our dynamical linear response theory for harmonic perturbations

provides a response of the form:

Π(t) = ε
Γ(µ − )

cos ( πµ
 + ωt)

(ωt)−µ
= CR(t) cos(ωt + φ) (.)

In an recently accepted article [], the same authors have verified an experimental quench-
ing of harmonic stimuli, that is the response to an external harmonic perturbation is charac-
terized by an effective decay of a factor:

⟨ξ⟩S ∼ CR(t)cos(ωt + φ), (.)

where C and φ are fitting parameters while µ is calculated from the regression to equilibrium.
We want to illustrate better the experimental results included in this article in order to

interpret them in the dynamic LRT perspective.
�e experimental setup is the same used in []. In this case the potential difference

applied was modulated with an harmonic perturbation.

preparation �e system if first prepared by applying a potential difference ofV = ±.V
which bring the system to a fully developed turbulence in order to destroy preexistent
structures (µ > ) and then put it to voltage Vc = . ± .V which correspond to a
defect mediated turbulence µ ∼ .. Each defect it modeled as a dichotomous non
stationary renewal process l(t).

perturbation Once the system has been prepared, (a time of the order of s is awaited), a
small voltage perturbation is applied to the system. To test the presence of Freud effect
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Figure 3.6:Here S(t) = Λ+(t) and the green line represent tµ− in log log plot.
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the author apply first a voltage perturbation ξP = ε cos(ωt) then a perturbationξ+ =
−ε cos(ωt) where ε = ∆V/(V − Vc) is a small volt amplitude < , .

�e statistical mean of ⟨l⟩(t) is proportional to the number of defects and so light intensity
transmitted by the sample which can be experimentally measured. . We shall denote with
⟨l⟩+(t) the response to the perturbation ξ+ andwith ⟨l⟩+(t) the response to the perturbation
ξ−. In order to analyze the data the quantities

S(t) = ⟨l⟩+(t) + ⟨l⟩+(t)


(.)

and

D(t) = ⟨l⟩−(t) + ⟨l⟩+(t)


(.)

Figure 3.7:Here D(t) = Λ+(t) and the green line represent the prediction of equation

Figure . show the free regression to equilibrium. Since the process is prepared a time
zero in highly out of equilibrium state at time zero there is a free regression to equilibrium
which is proportional the the survivor probability and which is ∼ t−µ this provide a good
way to estimate µ and gives µ = . ± .. D(t) instead in shown in figure . and exhibit
an extremely good agreement with our theoretical proposal. No Freud effect appears then
we are led to conclude that Sokolov Phenomenological proposal cannot be applied in this
case.
�e authors have also controlled if the response were actually linear and the (positive)

answer is given in figure .. Using perturbation of different intensity it was showed that
the intensity scaling of the perturbation was linear.
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Figure 3.8:Here = Λ−(t)/ε = D(t)/ε with ω/π = .Hz and espilon = . (red line),
. (green), . (blue), . (purple), . (cyan)

3.4 Further consideration and conclusions

We want here point some arguments which need some further investigation. For dichoto-
mous/multicotonomous system�e correction to linear response theory is not zero anymore.

3.4.1 Fokker-Planck equation

If we consider, by example, discrete time Fokker Planck equation

p(y, n + ) = (I+LFP)p(y, n) = p(y, n) + (γ∂y y + D∂y)p(y, n) (.)

Deriving from a microscopical discrete time Langevin

y(n + ) = −γy(n) + f (n) (.)

In this case the operator O, that is the operator that give rise to the first excitation is O = −∂y
⁴.
Since peq(y) defined by equation LFP peq(y) =  and is a known quantity peq = e−

γ y

D

In this case we easily see that:

(I+LFP)O peq(y, n) = γO peq = γ
γ
D
e−

γ y

∗D (.)

In this case L(t) does not vanish any more. It is an open question to see whether this
contribution can neglected, and thus, wether LRT is still valid or not.

We can easily calculate it in the continuous time case since, in this case, perturbing Langevin equation:

ẏ = −γy + f (t) + εξP(t) (.)

Leading to a Fokker-Planck equation:

∂t p(y, t) = (γ∂y y + D∂y − εξ(t) − ∂y)p(y, t) (.)
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3.4.2 Complexity Matching

Another very interesting question to be studied is what happenswhen the system is perturbed
by a statistic signal. Numerical simulations have been done in [] in which a complex
network which is known to have a renewal non poissonian event driven dynamics is coupled
with another system with the same characteristics.

Figure 3.9: An example of the response of a network of stochastic oscillator in a complex
regime (renewal non poissonian regime) when weakly coupled with another
complex networks of stochastic oscillators. Image taken from []

�e system in this cases show a perfect response . which do not decay.�is behavior has
been called complexity matching since both the perturbing and the perturbed system are com-
plex system. In a very “vivid” way complexity matching can be thought as a communication
from one complex system to another.
�e precise statements of this particular behavior is beyond the purposes of this thesis,

but represents one of the most interesting questions of complexity science

3.4.3 Conclusions

Perturbational approaches are for physicists extremely natural.�ey take into account that
small stimuli cannot produce significant changes in the dynamical properties of systems,
that is, with an vivid metaphor, a fly cannot move an elephant (but still annoy him).
Kubo’s theory extends this approach to statistical system.�ough the derivation of Kubo’s

prescriptions proceeds from the microscopical picture of phenomena provided by Liouville’s
equations, what is actually perturbed linearily is the entire Gibbs system. Liouville equation
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simply provide a sort of transition from microscopic to macroscopic world.�is means that
a linear response theory is acceptable even if the single trajectories do not respond linearily.
When we consider ergodic systems this transitions from the microscopic to the macro-

scopic is not straightforward.
Complex systems of our interest, however, are non stationary, and thus non ergodic.

�ey exhibit a complex inhomogeneous dynamic which can effectively be modeled within a
non poissonian renewal perspective.�is means that the global statistical properties are
well defined and can be measured, but their value cannot be inferred from microscopical
description of their dynamics. Does a perturbative approach make sense in this case?�is
is a hard question to answer but the results of this thesis seem to suggest that, for a vast class
of systems, the answer is yes.
Obviously, since the microscopical description either is not available or is too complex

to be useful, a linear response theory of complex system lacks the usual, clear connection
between perturbation and perturbated variable, which is expressed by the coupling Hamil-
tonian. It is not hard to figure that the perturbation acts on a complex system by perturbing
his global properties which characterize the complex dynamics. But, expressing precisely
what is being perturbed by what, is a hard (if not impossible) task.
We have taken into account our ignorance on the effective interaction by proposing a

“phenomenal” ansatz, what we have called the dynamic perturbation ansatz, on the way
Gibbs ensemble is perturbed by this perturbation applied to complex system. Carrying out
calculation we have obtained an resonable result .. A different Ansatz proposed from
Sokolov lead to another result ..
At least on the theoretical point of view, both proposals are equally plausible.�ere are

attempts to model phenomenologically systems whose microscopical description is unknown
or useless.
Predictions of those theories, nevertheless, are different. Sokolov’s phenomenological

approach exhibits what he calls “Freud Effect”. Our dynamical approach does not; Neither
do the experimental results on the liquid crystals. We are then led to think that, at least
for liquid crystals, dynamic paradigm is the one which better models the structure of the
response.
Liquid crystals experiment, and our theory too, show that a decaying response can appear

as a result of Linear�eory without the need to invoke the “death of Linear Response theory”
as some authors did [, ]. We are then led to ask:“ Is Linear response theory universal?”.
�e presence of a correcting term to linear response seems to indicate that this is false

for general systems and general responses forms but there are evidences that, at least for
harmonic perturbations, the structure

⟨ξs⟩ = CR(t) cos(ωt + φ) (.)

seem to persist.
We notice by the way that for harmonic perturbation the structure of equation . is a

natural generalization of stochastic resonance response which takes into account the ageing
of the system, that is, the fact the (infinitely lasting) regression to equilibrium induces a
progressive diminution of the number of events per unit time (which are the indication of
the non equilibrium state of the system).
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