

UNIVERSITÀ DI PISA

Facoltà di Ingegneria

Laurea Specialistica in Ingegneria dell’Automazione

Tesi di laurea

Candidato:

Matteo Tanzini

Relatori:

Prof. Andrea Caiti

Prof. Alexander Leonessa

SIGNAL PROCESSING FOR AN
AUTONOMOUS UNDERWATER VEHICLE:

AN FPGA APPROACH

Sessione di Laurea del 09/07/2009
Archivio tesi Laurea Specialistica in Ingegneria dell’Automazione

Anno accademico 2008/2009
Consultazione consentita

2

3

Dedico questo lavoro ai miei due
nonni che non hanno potuto avere la
soddisfazione di vedere il proprio
nipote laurearsi.

4

5

Ringraziamenti

Desidero ringraziare il Prof. Alexander Leonessa per il supporto scientifico e
morale che mi ha dato durante il mio soggiorno negli Stati Uniti; il Prof.
Andrea Caiti per la gentilezza, la disponibilità e l’aiuto dato lungo tutto lo
sviluppo di questa tesi; Gary Stein per il concreto contributo sperimentale e
il tempo dedicatomi; Marco Vincenzi per il supporto tecnico e la sua
disponibilità.
Desidero ringraziare la mia famiglia che ha sempre creduto in me e mi ha
aiutato in tutti i momenti difficili del mio percorso formativo; ringrazio mio
padre che durante tutti questi anni ha partecipato attivamente alla costruzione
della mia cultura scientifica.
Infine ringrazio la mia Giulia per avermi fatto sempre sentire speciale, in
grado di superare tutti gli ostacoli.

6

7

ABSTRACT

The idea of this thesis comes out from the participation of the University of Central
Florida to the Annual International Autonomous Underwater Vehicle Competition of
2007. The goal of this competition is to build an AUV capable to accomplish to some
various objectives. One of these, wants the AUV to detect an underwater acoustic ping
and follow it to his source. The objective of this thesis is to improve the performance of
this trajectory tracking. A Field Programmable Logic Gate Array will be used to perform
an effective Digital Signal Processing.

8

INDEX

INTRODUCTION .. 11

DESCRIPTION OF THE OPERATIVE CONTEST 12

2. STATE OF ART ... 13

2.1 Autonomous Underwater Vehicles: a general view 13
2.1.1 Introducion ... 13
2.1.2 History ... 14
2.1.3 AUV Technology ... 16
2.1.4 The Future of AUV Technology ... 19

2.2 Simplified method for obtaining navigational information from
hydrophone arrays ... 20
2.2.1 Introduction .. 20
2.2.2 Amplifier Circuit .. 22
2.2.3 Signal processing board .. 22
2.2.4 Signal Processing .. 23
2.2.5 Results and Conclusions ... 24

2.3 Development and Testing of an Acoustic Positioning System –
Description and Signal Processing ... 24
2.3.1 General Description .. 24
2.3.2 Hardware description ... 25
2.3.3 Conclusions ... 26

2.4 Underwater Acoustic Source Localization Based on Passive
Sonar and Intelligent Processing ... 26
2.4.1 General Description .. 26
2.4.2 Acquisition, control and processing unit .. 26
2.4.3 System Software .. 27
2.4.4 Acquisition and conditioning circuit control ... 27

2.5 Field Programmable Gate Array (FPGA) 28
2.5.1 What is an FPGA? .. 28
2.5.2 Why do we need FPGAs? ... 30
2.5.3 Logic Block.. 31
2.5.4 FPGA Routing Techniques ... 34
2.5.5 FPGA Structural Classification ... 36
2.5.6 Programming .. 38
2.5.7 FPGA Design Flow ... 40
2.5.8 Five reason to choose an FPGA .. 41

3.THE HARDWARE .. 43

3.1 How to choose an FPGA board .. 43

3.2 The Market Analysis ... 48
3.2.1 Pentek - Model 6256 ... 49
3.2.2 Innovative integration X3-A4D4 .. 50

9

3.2.3 Echotek ECAD-DA-41-PMC .. 51
3.2.4 Bittware TETRA-PMC+ .. 52

3.3 A real choice ... 53
3.3.1 New solutions ... 53
3.3.2 The FPGA board choice: ALTERA/TERASIC DE2 Development and
Education Board .. 55
3.3.4 The A/D board choice: MAX1127 Evaluation Kit from MAXIM 57
3.3.5 The A/D board: a self-made board ... 58
3.3.6 The Costs ... 59

3.4 Simulation’s hardware .. 59
3.4.1 Signal generation: a Digital Acquisition Board ... 60
Specifications Summary .. 60

3.5 The experimental setup ... 62

4. BORN AND DEVELOPMENT OF THE ALGORITHM 63

4.1 The 2007 AUVSI competition .. 63

4.2 The vehicle ... 64

4.3 The idea .. 66
4.3.1 The hydrophones ... 66
4.3.2 Issues.. 67

4.4 The Mathematic Theory.. 68
4.4.1 The idea ... 68
4.4.2 Extracting the Delay ... 69
4.4.3 The practice result .. 74
4.4.4 The Delay extraction ... 74

4.5 The simulation scheme .. 75
4.5.1 First blocks .. 77
4.5.2 The simulated input .. 77
4.5.3 Windowing ... 78
4.5.4 The Fast Fourier Transform .. 81
4.5.5 The product between the FFT outputs ... 87
4.5.6 The inverse Fast Fourier Transform .. 87
4.5.7 The cross correlation... 87
4.5.8 Delay Calculation .. 89
4.5.9 Results ... 90
4.5.10 Simulation Conclusions ... 94

5. IMPLEMENTATION, EXPERIMENT, RESULTS 95

5.1 The input signal generation .. 95
5.1.1 An acquisition tool .. 96

5.2 Sampling ... 96

5.3 The Real Scheme ... 100
5.3.1 Timing ... 103
5.3.2 Resource managing ... 104

10

5.4 Final Discussion and Future work .. 108

6. CONCLUSIONS ... 110

BIBLIOGRAFY .. 111

APPENDIX A – HOW TO PROGRAM AN FPGA 112

FIGURE INDEX ... 117

11

INTRODUCTION

The idea of this thesis starts from an Universal Central Florida’s Project aimed to
participate to the AUVSI & ONR’s 10th Annual International Autonomous Underwater
Vehicle Competition of 2007. The goal of the 2007 mission is to make a vehicle to
autonomously navigate an obstacle course. The UCF team developed an AUV: the
SCOUT.

The final obstacle the vehicle has to manage, is to identify an underwater ping and
tracking it until his source.

To accomplish this, the vehicle mounts four hydrophones on his structure, in a
diamond pattern. The incoming signals are treated and then sent to the Hydrophones
processor to perform computations to calculate the pinger’s relative heading and distance.
This trajectory tracking is the weak point of the project.

The trajectory tracking is affected by a route error equal to ± 30°. The working team
found that the problem was on the low acquisition time of the digital acquisition board
used for it.

The purpose of this thesis is to use a faster new technology, an FPGA board, to handle
better results for the trajectory tracking.

A general research on FPGA is made to show the state of art and to understand his
peculiarity. This would be an introduction to who has no knowledge on the FPGA world:
this research will comprehend hardware, software and market knowledges.

To understand what kind of FPGA would have fit our needs, a choice method is
created and then a real market comparison has made. Various options are evaluated and
then a trade-off choice between our needs has made: we focused on performance and
price.

To understand how to manage an FPGA, have been analyzed two software: a low level
program language that use the Quartus II software, and a visual one, that utilize a Matlab
Simulink tool, the DSP builder.

At this point, the theory is discussed: how to physically calculate the ping direction
source? This comprehends the idea that comes from the hydrophones diamond pattern,
how to extract the incoming signal’s data and how to apply some Digital Signal
Processing to them.

A simulation study is done to understand the effective goodness of the FPGA project.
The argumentation will go deep in to the FPGA programming, creating a simulation

scheme only on Simulink DSP Builder Software and then fitting that scheme, to a real
simulation with real simulated inputs and dealing with the FPGA board directly.

At last the results and the limitation of the algorithm are analyzed and some purpose
are made for future workers on the real project.

12

DESCRIPTION OF THE OPERATIVE CONTEST

This thesis was developed in two different contests: the first one was the department of

Mechanical, Materials, and Aerospace Engineering at University of Central Florida,
America, the other one was the department of Electric systems and Automation of
Engineering at University of Pisa.

On the first contest, it was possible to stay in touch with the Scout’s developing team
and to benefit of all the knowledge of Prof. Alexander Leonessa, our supervisor,
furthermore it was possible to use the laboratories resources and the University’s funding.
At UCF was developed the research and the theoretical simulation part of the thesis while
the Italy experience was focused on the real implementation in laboratory.

To stay at UCF was really useful dealing with the real beneficiaries of this thesis
directly. Choices and requests were made in real time. Furthermore it was easier to
contact directly lot of hardware manufacturers to get information about our needs.

At University of Pisa the supervision passed to Prof. Andrea Caiti. Here we were able
to use laboratories to build up our hardware and we had the support of the department
technicians and a lot of useful lab facilities and tools.

13

2. STATE OF ART

The bibliographic research comprehends three sections.
The first section will introduce you in the world of the Autonomous Underwater

Vehicles.
In the second section three experiences similar to our’s will be described. The first

experience is born form the same competition that the UCF team was involved. The
system results similar to our one because the AUV, developed by the team, extracts the
necessary informations from an hydrophone’s array performing some DSP analysis with
an FPGA and a microcontroller. The second experience discuss about an USBL Acoustic
positioning System for an underwater vehicle: they use an FPGA doing some DSP. In the
third experience an FPGA is used to process source localization based on a passive sonar.

The third section will give a wide view about FPGA.

2.1 Autonomous Underwater Vehicles: a general view [1][2]
2.1.1 Introducion

An Autonomous Underwater Vehicle (AUV) is a robotic device that is driven through
the water by a propulsion system, controlled and piloted by an onboard computer, and
maneuverable in three dimensions. This level of control, under most environmental
conditions, permits the vehicle to follow precise preprogrammed trajectories wherever
and whenever required. Sensors on board the AUV sample the ocean as the AUV moves
through it, providing the ability to make both spatial and time series measurements.
Sensor data collected by an AUV is automatically geospatially and temporally referenced
and normally of superior quality. Multiple vehicle surveys increase productivity, can
insure adequate temporal and spatial sampling, and provide a means of investigating the
coherence of the ocean in time and space.

The fact that an AUV is normally moving does not prevent it from also serving as a
Lagrangian, or quasi Eulerian, platform. This mode of operation may be achieved by
programming the vehicle to stop thrusting and float passively at a specific depth or
density layer in the sea, or to actively loiter near a desired location. AUV’s may also be
programmed to swim at a constant pressure or altitude or to vary their depth and/or
heading as they move through the water, so that undulating sea saw survey patterns
covering both vertical and/or horizontal swaths may be formed. AUV’s are also well
suited to perform long linear transects, sea sawing through the water as they go, or
traveling at a constant pressure. They also provide a highly productive means of
performing seafloor surveys using acoustic or optical imaging systems.

When compared to other Lagrangian platforms, AUV’s become the tools of choice as
the need for control and sensor power increases. The AUV’s advantage in this area is
achieved at the expense of endurance, which for an AUV is typically on the order of 8- 50
hours. Most vehicles can vary their velocity between 0.5 and 2.5 m/s. The optimum speed
and the corresponding greatest range of the vehicle occur when its hotel load (all required
power except propulsion) is twice the propulsive load. For most vehicles, this occurs at a
velocity near 1.5 m/s.

The degree of autonomy of the robot presents an interesting dichotomy. Total
autonomy does not provide the user with any feedback on the vehicle’s progress or
health, nor does it provide a means of controlling or redirecting the vehicle during a

14

mission. It does, however, free the user to perform other tasks, thereby greatly reducing
operational costs, as long as the vehicle and the operator meet at their duly appointed
times at the end of the mission. For some missions, total autonomy may be the only
choice; in other cases when the vehicle is performing a routine mission, it may be the
preferable mode of operation.

Bidirectional acoustic, radio frequency, and satellite based communications systems
offer the capability to monitor and redirect AUV missions worldwide from a ship or from

land. For this reason, semi-autonomous
operations offer distinct advantages
over fully autonomous operations.

2.1.2 History
The following presents highlights of

some notable achievements in the
history of AUV’s. In the short space
and time available, it is unfortunately
not possible to provide information on
all systems.

The origin of AUV’s should
probably be linked to the Whitehead

Automobile “Fish” Torpedo. Robert
Whitehead is credited with

designing, building, and demonstrating the first Torpedo in Austria in 1866. Torpedoes
are named after the Torpedo fish, which is an electric ray capable of delivering a stunning
shock to its prey. Whitehead’s first torpedo achieved a speed of over 3.0 m/s and ran for
700 m. The vehicle was driven by compressed air and carried an explosive charge. If one
ignores the fact that it carried an explosive charge, it might be considered the first AUV.

The need to obtain oceanographic data along precise trajectories and under ice
motivated Stan Murphy, Bob Francois, and later Terry Ewart of the Applied Physics
Laboratory of the University of Washington to begin development of what may have been
first “true” AUV in the late 1950’s. Their work led to the development and operation of
The Self Propelled Underwater Research Vehicle(s) (SPURV). SPURV I, became
operational in the early 60’s and supported research efforts through the mid 70’s. SPURV
I displaced 480 kg, and could operate at 2.2 m/s for 5.5 hours at depths to 3 km. The
vehicle was acoustically controlled from the surface and could autonomously run at a
constant pressure, sea saw between two depths, or climb and dive at up to 50 degrees.
Researchers used the vehicle to make CT measurements along isobaric lines in support of
internal wave modeling [1]. The vehicle was used later in the 70’s to support observations
of Horizontal and Vertical Diffusion using a dye tracer at depths to 1 km. The vehicle was
able to track the dye plume 66 hours after the dye was released [2]. SPURV II was more
capable than SPURV I, and was used to study the dispersion of submarine wakes using a
dye tracer during the 70’s and 80’s. There were over 400 SPURV deployments. The
Naval Ocean System Center, now SPAWAR, began development of the Advanced

Unmanned Search System (AUSS) in 1973 in response to the sinking of the USS
Thresher, the USS Scorpion, and the H bomb loss of Palomares. The vehicle was
launched in 1983, and reports and publications on the system were still in press in the
90’s. AUSS displaced 907 kg, carried 20 kw-hours of energy in silver zinc batteries, and
was rated to 6 km. It had an acoustic communication system that transmitted video
images through the water. AUSS completed over 114 dives, some to 6 km. The concept
of using multiple free swimming vehicles to improve system performance can be traced

Figure 1 - Robert Whitehaed with his first

Torpedo

15

to the development of this system. This work was completed some time in the early 80’s.
[5] IFREMER’s Epulard was designed in 1976, assembled by 1978, and was fully
operational by 1980. Epulard was the first 6 km rated acoustically controlled AUV that
supported deep ocean photography and bathymetric surveys. The vehicle maintained a
constant altitude above the bottom by dragging a cable. Epulard completed 300 dives,
some to 6 km, between 1970 and 1990 [3].

According to Busby’s 1987 Undersea Vehicle Directory, there were six operational
AUV’s and an additional 15 other vehicles that were considered to be prototypes or under
construction by 1987. During this period, AUV’s were called un-tethered (autonomous)
ROV’s, and the acronym AUV stood for Advanced Underwater Vehicle, a vehicle under
development by the U.S. Defense Advanced Research Projects, which was completed in
1984. The origin of the 3 Hugin vehicle, which is currently manufactured by Konsberg
Simard, can also be traced back to the late 80’s [4].

During the 90’s, there was a rekindling of interest in AUV’s in academic research. The
Massachusetts Institute of Technology’s Sea Grant AUV lab developed six Odyssey
vehicles during the early 90’s. These vehicles displaced 160 kg, could operate at 1.5 m/s
for up to six hours, and were rated to 6 km. Odyssey vehicles were operated under ice in
1994, and to a depth of 1.4 km for 3 hours in the open ocean in 1995 [6]. Odyssey
vehicles were also used in support of experiments demonstrating the Autonomous Ocean
Sampling Network during this period [7].

WHOI’s Autonomous Benthic Explorer (ABE) was also developed during the early
90’s and completed its first scientific mission in 1994. ABE displaces 680 kg and can
operate for up to 34 hours to depths of 5 km, and typically travels at about 0.75 m/s. ABE
carries six thrusters, making it a highly maneuverable vehicle in all three dimensions.
These capabilities make ABE an excellent platform to perform near bottom surveys in

rough terrain. ABE has completed over
80 dives in support of science; one dive
lasted for 30 hours at 2.2 km. Its deepest
dive to date was to 4 km [7].

International Submarines
Engineering, Ltd’s Theseus was
developed during the early 90’s for the
U.S. and Canadian defense
establishments. Theseus displaces 8,600
kg, and could operate at 2 m/s for 100
hours to depths of 1 km. The vehicle
successfully laid 190 km of fiber optic
cable under ice in 500 m of water in

1996; total mission length was 365 km and was completed in 50 hours [9]. WHOI’s
REMUS vehicle was developed in the late 90’s to support scientific objectives at the
LEO-15 observatory in Tuckerton, NJ, with funding from NSF and NOAA. REMUS
completed its first scientific mission in 1967. The vehicle displaces 36 kg and can operate
for up to 20 hours at 1.5 m/s and to a depth of 100 m. There are currently over 50
REMUS vehicles in 20 different configurations that are being independently operated by
nine universities, three US Navy laboratories, one British defense laboratory, and three
branches of the US Navy. Hundreds of people have been successfully trained in the use of
REMUS vehicles. It is not possible to determine how many missions have been
performed by REMUS. The longest REMUS mission lasted 17 hours. The vehicle
traveled 60 km at 1.75 m/s at a maximum depth of 20 m off the coast of NJ at the LEO-15
observatory [10].

Figure 2 – WHOI’s ABE

16

South Hampton Oceanography Center’s Autosub was developed during the early 90’s
to provide scientists with the capability to monitor the oceans in new ways. Autosub
completed its first scientific mission in 1998. The vehicle displaces 1700 kg, and can
travel for up 6 days at 3 knots at depths up to 1.6 km. Autosub has completed 271
missions, totaling 750 hours and covering 3,596 km. Its deepest dive was to 1 km.; its
longest mission lasted 50 hours [11]. In 1998, the UK National Environmental Research
Council provided 2.6m pounds in grants and training awards for use with the Autosub.
These grants stimulated a great deal of interest in the scientific community.
The turn of the century ushered in the first commercial enterprise to offer deep water (3
km) AUV survey services. C&C Technologies of Lafayette, Louisiana offers a Hugin
3000 AUV for charter. The vehicle was manufactured by Kongsberg Simrad of Norway.
The vehicle displaces 1400 kg, and can operate at 4 knots for 40 hours utilizing an
aluminum/oxygen fuel cell. C&C Technologies has completed over 17,702 km of (paid
for) geophysical mapping, some to 3 km, since the vehicle was first offered in 2000. C&C
Technologies also offers its clients interactive software on their web site that permits
them to monitor and direct the progress of the generation of charts that are being made
aboard the survey ship that is supporting the AUV survey. [12].

2.1.3 AUV Technology
Over the years, the focus of technology development has changed as new ideas

surfaced to address technology problems. Some of the problems have been solved, others
remain that must be addressed, and other, previously unrecognized problems, have
surfaced. It is hard to list those technologies that are needed for AUV systems. Any list
that is developed will be incomplete. It could be suggested, however, that the following
list represents many of the technologies that have been addressed over the past three
decades.

• Autonomy
• Energy
• Navigation
• Sensors
• Communications

The interesting aspect of this list is that although there have been advances in these
technical areas, a number of these technologies still remain the “technology long poles”
associated with AUV systems. Limits in these technologies limit the capability of AUV
systems. Technology “Long Poles”

• Autonomy / Cooperation / Intelligent Systems and Technologies
• Energy Systems / Energy management
• Navigation
• Sensor Systems and Processing
• 3D Imaging
• Communications.

2.1.3.1 Autonomy / Cooperation / Intelligent Systems and Technologies
In the 1980s there was a considerable effort placed into understanding how to give an

AUV a level of intelligence necessary to accomplish assigned tasks. Issues such as
intelligent systems architectures design, mission planning, perception and situation
assessment were investigated. These are all hard problems and there were few successes
that led to in-water evaluation. As the capabilities required by the first generation AUVs
became clear, the tasks the AUVs were to perform seemed not to demand a high level of
intelligent behavior. In fact many of the tasks being assigned to today’s AUVs required

17

only a list of preprogrammed instructions to accomplish a task. For this reason, there has
not been a significant level of development, recently, that is focused on AUV autonomy.

The problem of autonomy still remains unsolved. There have been some successes
with other autonomous systems, but those advances have not been brought into the AUV
community. There are very few programs funded to address these issues and the problem
remains. As AUV operations increase, it will become apparent that more investigation is
needed. This will again emphasize the need for more development along the lines of
making AUV systems more intelligent and better able to adapt to the environment within
which they exist.

The use of multiple cooperating AUVs was first considered in the 1980s. Some work
was undertaken, but not completed. Since that time, there has been little funded work on
this technological issue. In the past few years, there has been increased recognition of the
potential of multiple cooperating AUVs. Currently some work is underway to investigate
cooperating AUVs tasked to meet some of the needs of mine clearance. Many more
investigations are required as the problem is a significant problem and far from being
solved.
2.1.3.2 Energy Systems / Energy management

Endurance of AUVs has increased from a few hours to 10s of hours. Some systems
now contemplate missions of days and, a very few, of years. This extended endurance,
however, is at the expense of sensing capability, as well as
very limited transit speeds. In the majority of early AUV
systems, Lead Acid batteries were the workhorse for
energy systems. Some AUV designs included Silver Zinc
batteries, but, for the most part, the cost was prohibitive.
Some applications, such as the ABE vehicle, utilized
Lithium primary batteries. A number of other chemistries
were tried for different applications. Recent advances in
NiMH batteries have provided new opportunities for AUV
and this technology is being used in many of the current
AUV systems. In 1987 the use of an Aluminum / Oxygen
“semi-cell” was proposed to DARPA for use in an AUV.
A number of years later a similar system development was
funded and dramatically increased the endurance of the
DARPA UUV.

Currently the ALTEX [altex] program is underway to
utilize similar technology to allow an AUV to transit
under the Arctic ice. Solar Energy is now being used to
power an AUV [AUSI]. This system demands a detailed design of onboard energy
management; both during the acquisition phase, as well as, the utilization phase of
operations. It is an inexhaustible energy source but requires an AUV to surface while
recharging. The Glider AUVs [Simonetti] utilize heat energy to vary the buoyancy of an
AUV that can glide up and down in the water column. The potential endurance of such a
system is measured in years.
2.1.3.3 Navigation

Early AUV systems relied on dead reckoning for their navigation. Acoustic
transponder navigation systems provided greater accuracy but at a significant logistics
cost. Inertial navigation systems were available for more expensive AUVs, but costs were
prohibitive for the non-military user. With advances in inertial platform technology, the
cost has dropped significantly to a point where it is possible to utilize these systems for
lower cost AUVs.

Figure 3 - A typical Energy
system focused AUV

18

Navigation systems continue to improve in accuracy as well as precision. In the past
few years, many AUVs have taken advantage of Global Positioning Systems (GPS).
When the vehicle surfaces, it is possible to obtain an accurate position and update
onboard inertial systems. Still, there is strong interest in being able to navigate relative to
the environment within which the system exists. This environment referenced navigation
utilizing bottom features, gravimetric variations or other similar characteristics is an
objective to be attained. A successful system will provide a significant increase in AUV
capability.
2.1.3.4 Sensor Systems and Processing / 3D Imaging

An AUV is simply a platform on which to mount sensors and sensing systems. Initial
efforts to develop AUV technology was more concerned about the basic technologies
required to allow reliable vehicle operation. As that reliability was achieved, sensors were
added to the vehicle system to acquire data from the ocean environment. Most of these
efforts to date have been to integrate existing sensors and sensor processing to the
sometimes unique constraints of the AUV. This paradigm has proven to work reasonably
well. Recently it has been recognized that we must develop entirely new sensors based on
the constraints imposed by an AUV. This would change the paradigm of sensor
integration. It would encourage the development of sensors specifically for AUVs;
smarter, lower power, highly reliable, smaller in size, etc. It is also becoming clear that
AUVs can be used in groups to act cooperatively to acquired needed data. By maintaining
a common spatial and temporal reference, data acquired by multiple AUVs can be
aggregated and processed to obtain synoptic, high resolution data describing a process of
interest. Much work continues on the development of higher and higher resolution
imaging systems, both optical and acoustic. With the new processors it has been possible
to obtain very high resolution images over longer and longer ranges [LENS]. The
roadblock to much of this work is the ability to analyze the acquired data autonomously
such that the AUV can utilize this data for guidance and control decisions. This
perception ability is still beyond the currentcapabilities of AUVs.
2.1.3.5 Communications

In the underwater environment acoustic communications is probablythe most viable
communication system available to the system designer. Some development programs
have investigated and evaluated other technologies such as laser communication at short
range and relatively noise free communications over larger ranges using RF current field
density techniques. In the past 10 years there has been significant advances in acoustic
communications such that relatively low error rate communications is possible over
ranges of kMs at bit rate of a few kbps [Comms]. This remains an active area of
investigation. Another aspect of communication is the issue of connecting multiple
vehicles and/or bottom mounted instrument platforms via a networked-based
communication infrastructure. This subsea network can then be connected to a surface
vehicle that will act as a gateway to the terrestrial based communication infrastructure
such as the internet [Welsh]. Efforts are underway to investigate how to implement such a
network and be able to have effective communications among and between multiple
underwater systems.

Other technologies have been investigated over the years such as those below. There
have been a number of significant advances in these areas and, although there is still
much to be learned, they do not represent major stumbling blocks to the further
advancement of AUV technology at this time. These technologies continue to be
investigated and refined in the development of operational systems. There remain some
important advances to be made such as in the area of autonomous manipulation but the
emphasis of current activities are not along these lines.

19

• Guidance /Low Level Control
• Hydrodynamics and Control Systems
• Autonomous Manipulation / Work Systems
• User Interface / Development Tools / Emulation / Modeling

There are also issues associated with the basic system design. It is clear that the system
design must result from an understanding of the mission to be undertaken by the system.
Over the past few decades, there has been an increased effort to standardize such that
advances in system design can be shared by the community. This move toward
standardization has increased dramatically over the past few years as AUV systems move
closer and closer to operational systems.

Another aspect of the system design that has become commonplace is the tendency to
think in terms of modularity. This is seen in current efforts to design distributed control
systems architecture both in terms of software and hardware. The concept of “plug &
play” is becoming a buzz word for AUV developers as well as PC users. In an
environment where new sensors are added to AUV systems on a regular basis, it is
obvious that a simple method for managing the impact on the vehicle software system is
important.

As AUV systems mature to a point where they are being commercialized, the
importance of cost reliability and robustness are gaining increased importance. These are
the characteristics that are best optimized by industry. The next few years will
undoubtedly see AUVs undergo a strong systems design process to optimize these
features. This will benefit the community as a whole and should be well received by the
potential user community of the future.

• Software System Architecture / Distributed Control
• Hardware System Architecture / Standardization
• Platform Design
• Cost / Reliability / Robustness

2.1.4 The Future of AUV Technology
AUV technology has followed a path not unlike other technologies. It has gone

through stages where academic curiosity was followed by research investigation and
prototype development. Applications have recently surfaced that seem to have sufficient
financial backing to develop operational systems. Certainly the timing of AUV
technology was good. It has been able to leverage its development by utilizing many
technologies developed for other markets.

The next years will see the expansion of AUV technology into the commercial
marketplace. The size of that market is unclear but the move into the marketplace has
begun. There are still many important research investigations to be undertaken.
Autonomy is probably the most important issue to be addressed but others, such as those
described above, certainly must be addressed. It is clear that the limit to the capability of
any AUV is the amount of energy it has onboard. There have been many discussions that
suggest that fuel cell technology has reached a point where it may well be possible to use
this technology in AUV systems. The increase in endurance will be substantial.

Basic research into some of the enabling technologies must be supported. The
development of operationally reliable systems must be undertaken. Unique markets where
AUV technology can make a significant impact must be identified. Most important, the
AUV community must educate the user community of the future about AUV systems
capabilities and operational reliability.

20

2.2 Simplified method for obtaining navigational information from
hydrophone arrays [3]
2.2.1 Introduction

This thesis describes a simplified method of acquiring acoustic information from a
hydrophone array. The hardware consists of an amplifier circuit and a custom designed
signal processing board. The hydrophone signal is directly converted to digital form by
saturating the signal in the amplifier circuit. The result is a digital pulse waveform that
can be analyzed by digital non-DSP devices. The signal processing board consists of a
Flex 10k FPGA and an Atmel Mega 128 8-bit microcontroller. Using state machines in
the FPGA, the digital waveform outputs of the amplifier circuit are filtered and cross-
correlated. The time of arrival values between the hydrophones is used in the
triangulation calculations in the microcontroller.

The goal of this system involves gathering accurate data from the hydrophone sensor
array and processing the data to obtain navigational information. This particular system is
part of Subjugator, an autonomous submarine designed by students of the Machine
Intelligence Lab at the University of Florida.
2.2.1.1 Underwater Acoustic Pinger

The underwater acoustic locator pinger is used to mark an underwater target or site.
They are typically used in offshore environments. In the case of the AUVSI 2004
Underwater Competition it was used to identiy the recovery zone, which was the final
task of the mission. For testing purposes, prior to the competition, an ALP-365a pinger
was purchased and will be used in all testing of the system described in this thesis. The
pinger specifications, which are similar to those of the competition pingers, are listed
forward.

Description Value
Frequency 27 kHz
Acoustic Output 162 dB (re 1 μPa)
Pulse Length 5 ms.
Pulse Repetition 1 pulse/sec.

21

Subjugator 2000

The array used in this submarine consists of five hydrophones sensors in an ultra short
baseline configuration as shown in figure.

The value of d in Fig.5 is equal to one wavelength of the pinger signal. Therefore the

phase difference between the hydrophone outputs is used in the bearing calculation. The
output of the hydrophones are sent to a preamplifier circuit. The output of the preamplifer
is filtered using an analog bandpass filter. The filtered signal is passed through a zero-
crossing detector and fed into a DSP. The DSP then cross-correlates the signals and
forwards the timing information to an embedded linux computer . Finally, the linux
computer computes the bearing to the pinger source.

Figure 5 - The hydrophones array for Subjugator 2000

2.2.1.2 Hydrophones

The hydrophones used in this application are designed for navigational use. The array
hydrophones are custom-designed International Transducers part ITC- 4155. They are
omnidirectional in their horizontal plane. The sensitivity for the frequency range of 20-40
kHz is -196 through -205 dBV referenced to 1μPa. The output from the hydrophone is a

Figure 4 - The Subjugator 2000

22

differential sinusoidal signal corresponding to the acoustic signal in the water. The
hydrophones will be used in a short baseline configuration.

2.2.2 Amplifier Circuit
The amplifier circuit used in this application is designed to amplify a given signal to

saturation. The information of interest from the hydrophone signals are the zero-
crossings. By amplifying the signal to saturation the pertinent information is maintained.

Figure 6 - The amplifier circuit schematic

2.2.2.1 Circuit Design

The amplifier circuit consists of two main components: an instrumentation amplifier
and a schmitt trigger buffer. The instrumentation amplifier is used to amplify the
differential signal to saturation. The amplifier’s output is fed to the schmitt trigger buffer
to convert the signal into a digital waveform.

2.2.3 Signal processing board
The signal processing board consists of an Atmel Mega 128 and an Altera Flex 10K70

FPGA. The Mega 128 is the main control unit of the autonomous submarine. All sensors
are interfaced to the microcontroller as shown in Fig.7. The microcontroller makes
control decisions for its current task based on its partially processed sensor data. The
FPGA is currently used solely for processing the hydrophone signals. In the future, the
FPGA can be used to interface more sensors and/or provide a fast parallel processing
environment. The processing board includes additional hardware to interface a digital
compass, communicate to a an embedded linux PC, and allow in-system programming of
the Mega 128 and Flex 10k70. This chapter describes the functionality of the Mega 128
and the Flex 10k70.
2.1.3.1 Atmel Mega 128

The Atmel Mega 128 is an eight-bit microcontroller unit with flexible and powerful
on-chip peripheral capabilities. The functionality of this microcontroller include an eight-
channel analog-to-digital converter (ADC) with ten bits of resolution, two universal
asynchronous serial transceiver (UART), and eight high precision timing output lines.
The architecture of the code onboard the Atmel is designed as an interrupt-driven sensor
data acquisition (ISDA) and interrupt driven attuator control (IAC). The incorporation of
the ISDA/IAC philosophy eliminates wasteful polling routines freeing processor time to
make high level decisions and perform complex calculations

23

Figure 7 - Signal processing board architecture

2.2.3.2 Altera Flex 10K70
An Altera Flex 10K70 serves as a flexible hardware expansion device. Currently, logic
cells are utilized for debug registers, additional I/O pins, and hydrophone logic. The
hydrophone logic only occupies 15% of the logic elements of the Flex 10k70. This leaves
_ 3200 logic elements for future expandability.

Description Value
Typical Gates 70,000
Logic Elements 3,744
Logic Array Blocks 468
Embedded Array Blocks 9
Total RAM Bits 18,432

2.2.4 Signal Processing
The amplified signal is processed in the FPGA as a digital waveform. The three

hydrophone signals are processed simultaneously to determine the time of arrival of the
pinger signal to each hydrophone. First, each signal is filtered for a pinger frequency of
27 kHz. The output of each filter block is then processed to determine the time each
hydrophone sensed the ping relative to the first hydrophone that senses the ping.
2.2.4.1Frequency Filter

Two registers containing the time values of the desired frequency band are accessed by
the Mega 128 microcontroller at reset. A state machine uses a counter to calculate the
elapsed time between rising edges. When the time between rising edges falls between the
desired frequency band values, the frequency filter module outputs a high signal. The
state machine operates and samples the hydrophone signal with a 4 MHz clock. A 27 kHz
hydrophone signal is ≈ 148 samples of a 4 MHz clock. To use a 1 kHz frequency band
centered at 27 kHz in the state machine, the microcontroller writes frequency band values
of 145 and 151 to their corresponding registers. The sampling frequency can be increased
for more accuracy, but it is not necessary since the competition pinger frequencies will be
at least 1 kHz apart.

24

2.2.5 Results and Conclusions
The system described in the previous chapters was integrated and tested in a 2’ x 5’ x

1.5’ container of water where the results were quite good.
Based on these results, the system described in this thesis is affected by noise. Creating

a reliable acoustic based positioning system, requires accurate signal filtering. The
passive hydrophone sensors used in this system are sensitive to most frequencies of noise.
With proper analog or digital filtering, the sensors can be used with better results. The
system described in this thesis can be made more reliable may building more complex
filtering entities in the FPGA. The FPGA can parallel process all the filtering of the
signals and cross-correlate at high speeds. However, the development time for using the
FPGA will take longer than using a Digital Signal Processor. The best approach would
likely involve developing a tunable analog filter that feeds into an FPGA or DSP to cross-
correlate the signals.

2.3 Development and Testing of an Acoustic Positioning System –
Description and Signal Processing [4]
2.3.1 General Description

This work presents an USBL Acoustic Positioning System developed for an
underwater vehicle. The position estimation is based on time-of-arrival (TOA) estimation
of acoustic signals traded between a transponder and a transducer array placed on the
vehicle. Modulated Barker-coded signals are used to achieve low ambiguity. Real-time
DSP is implemented in a Programmable Logic Device. The TOA estimator uses a time-
domain matched filter with quantized coefficients. The signal design is based on the
characteristics of the employed acoustic transducers and system requirements. Numerical
simulations and FPGA realization tests have shown the viability of implementing the
proposed TOA estimator.

An Acoustic Positioning System (APS) estimates relative positions using acoustic
waves. For underwater vehicle navigation, an APS can consist of an embedded module
and a transponder placed at a reference location. The vehicle estimates its position
sending an interrogation pulse to the transponder and measuring the TOAs of the reply
signal. The reply is received by an array of transducers. The direction- of-arrival (DOA)
is estimated computing the delays of the TOA measured for the acoustic receivers of the
array.

In the case of an Ultrashort Baseline (USBL) APS (with an array baseline shorter than
1 meter), very small phase differences of the received signals must be measured. In order
to obtain TOA estimations of high precision, coded waveforms and signal processing
techniques are used.

This work describes an USBL-APS that is being developed for guiding an autonomous
underwater vehicle (AUV) in missions of retrieval of off-shore equipments from the
seafloor. The transponder is placed at the target to be retrieved. The APS is designed for
short range operation (about 100 m), but it must estimate the position with increasing
precision as it approaches the target, reaching 50 mm at a distance of 1 m. In this way, the
AUV can autonomously connect a rescue tool to the target.

25

Figure 8 - The USBL positioning system

Recently, with the use of fast Digital Signal Processors, the application of complex

waveforms and signal processing allows the development of real-time high accuracy
APSs . Further, with the development of commercial high density Field Programmable
Gate Arrays (FPGA), reconfigurable and fully parallel signal processing is possible.
FPGAs has been used for acoustic signal processing and digital communications systems.

This work proposes a configurable APS digital processing unit that performs real-time
signal processing using a FPGA. Considerations about signal design for our specific
application are presented. Finally, the TOA estimation performance and the system
viability are evaluated.

2.3.2 Hardware description
Fig.9 shows the block diagram of the processing unit. It can sample up to four signals
simultaneously and has a high density FPGA to implement digital processing algorithms.

Figure 9 - Block diagram of the processing unit

The input signals (RX) are amplified by a Variable Gain Amplifier (VGA). The FPGA
can implement a fixed or a time-variable gain. In order to sample the four signals with
only one A/D converter, a high speed Analog Multiplexer can be used to select the signals
cyclically. The 12-bit resolution A/D converter can operate up to 100 MSPS.

26

Signal processing, storage and other functions are performed by the FPGA. It can
operate at high speed, and it has a density of about 600K logic gates. Such characteristics
allow the implementation of several signal processing algorithms and logic functions. The
FPGA configuration is stored in a serial PROM.

A microcontroller controls the whole processing unit. It trades data and instructions
with a host computer via a serial port (SP). The microcontroller can also generate digital
signals used to drive the acoustic transmitter (TX). The microcontroller uses 3 buses to
interface with the FPGA: Data, Address and Control buses. The programmable clock
generator (CLK) drives the ADC and the FPGA logic, and is configured by the
microcontroller.

The board has also a Threshold Detector (TD) implemented by a voltage comparator.
The system can use it to have a coarse TOAestimation.The TDcan be connected to one of
the VGA outputs, and its output is read by the FPGA.
2.3.3 Conclusions

The proposed APS processing unit provides high programmability, flexibility and can
be used in many other applications, like non-destructive testing and acoustic
communications. The use of high density FPGA allows the implementation of real-time
DSP algorithms.

2.4 Underwater Acoustic Source Localization Based on Passive Sonar and
Intelligent Processing [5]
2.4.1 General Description
The work presents a distributed measuring system designed and implemented for
underwater acoustic source detection and localization. The main part of the system is a
sonar unit with three hydrophones connected to a conditioning block controlled by an
acquisition, control and processing unit expressed by a real-time controller, a FPGA core
and a set of IO modules. The conditioned signals are acquired and processed at the real
time controller level using wavelets filtering algorithms in order to extract the relative
time delay information. An intelligent algorithm based on a neural network uses the time
delays and the sonar structure azimuth as input values to calculate the range and bearing
angle associated with the detected underwater acoustic source.
2.4.2 Acquisition, control and processing unit

The sonar unit, including the hydrophones, is connected to the three-channel
hydrophone conditioning circuit, H-CC. This circuit is controlled by the ACQ-PP unit
using an analog output of the AO analog output module (NI cRIO-9263) and two digital
outputs of DO digital output module (NI cRIO- 9472). The hydrophones gains and offsets
are controlled through signals synthesized in the real-time system and use an E2POT non-
volatile digital potentiometer (Xicor X9C102).

27

Figure 10 - Hardware schematics

For signal acquisition, a four channel synchronous AI acquisition module (NI cRIO-

9215) is used: three of the analog input channels are connected to the H-CC outputs and
the forth channel to an electronic compass that is a part of the sonar unit. A high speed
continuous buffered algorithm is implemented on the FPGA core (NI cRIO-9103) that
communicates with the real-time controller through a PCI internal bus. The graphical user
interface for the system and the advanced processing and design tasks (e.g. neural
network design) are assured by a laptop PC connected to the ACQ-PP through an
Ethernet link. The positioning elements are provided by a GPS system (Garmin
GPSMAP76) that communicates with NI cRIO-9002 real-time controller of the ACQ-PP
through a RS232 link.

2.4.3 System Software
The system software performs the following tasks:

a) multiple-channel analogue-to-digital conversion control through FPGA core
programming,

b) hydrophone conditioning channel control,
c) noise filtering based on wavelet threshold denoising technique,
d) underwater sound source localization and motion tracking using an intelligent

range - bearing angle estimator based on source-hydrophones time-of-flight
differences and on the orientation of the hydrophone array.

2.4.4 Acquisition and conditioning circuit control
For underwater sound source localization and motion tracking the information from the
three hydrophone channels is acquired using the analog input module of ACQ-PP. The
acquisition rate and the data format are imposed by the programmed FPGA core. Thus, in
the present case, a multichannel simultaneously acquisition for an imposed sampling rate
(e.g. 44.l kS/s) is performed in order to obtain the digital samples associated with
hydrophones' channels. The digital values are transferred from the FPGA to the real-time
controller (NI cRIO-9002) using the PCI bus. At the real-time controller, the samples are
processed according to the above processing tasks using the specific software developed
in LabVIEW real-time. Referring to the conditioning circuit control, the FPGA is
programmed to assure the H-CC gain control using the DO module.

28

2.5 Field Programmable Gate Array (FPGA) [6]
Field-programmable gate array (FPGA) technology continues to gain momentum, and the
worldwide FPGA market is expected to grow from $1.9 billion in 2005 to $2.75 billion
by 2010. Since its invention by Xilinx in 1984, FPGAs have gone from being simple glue
logic chips to actually replacing custom application-specific integrated circuits (ASICs)
and processors for signal processing and control applications.
2.5.1 What is an FPGA?

FPGA are a special form of Programmable logic devices(PLDs) with higher densities
as compared to custom ICs and capable of implementing functionality in a short period of
time using computer aided design (CAD) software.

At the highest level, FPGAs are reprogrammable silicon chips. Using prebuilt logic
blocks and programmable routing resources, you can configure these chips to implement
custom hardware functionality without ever having to pick up a breadboard or soldering
iron. You develop digital computing tasks in software and compile them down to a
configuration file or bitstream that contains information on how the components should
be wired together. In addition, FPGAs are completely reconfigurable and instantly take on
a brand new “personality” when you recompile a different configuration of circuitry. In
the past, FPGA technology was only available to engineers with a deep understanding of
digital hardware design. The rise of high-level design tools, however, is changing the
rules of FPGA programming, with new technologies that convert graphical block
diagrams or even C code into digital hardware circuitry.

FPGA chip adoption across all industries is driven by the fact that FPGAs combine the
best parts of ASICs and processor-based systems. FPGAs provide hardware-timed speed
and reliability, but they do not require high volumes to justify the large upfront expense
of custom ASIC design. Reprogrammable silicon also has the same flexibility of software
running on a processor-based system, but it is not limited by the number of processing
cores available. Unlike processors, FPGAs are truly parallel in nature so different
processing operations do not have to compete for the same resources. Each independent
processing task is assigned to a dedicated section of the chip, and can function
autonomously without any influence from other logic blocks. As a result, the performance
of one part of the application is not affected when additional processing is added.

Field Programmable Gate Arrays are two dimensional array of logic blocks and flip-
flops with a electrically programmable interconnections between logic blocks.

The interconnections consist of electrically programmable switches which is why
FPGA differs from Custom ICs, as Custom IC is programmed using integrated circuit
fabrication technology to form metal interconnections between logic blocks.

In an FPGA logic blocks are implemented using multiple level low fanin gates, which
gives it a more compact design compared to an implementation with two-level AND-OR
logic. FPGA provides its user a way to configure:

1. The intersection between the logic blocks and
2. The function of each logic block.

Logic block of an FPGA can be configured in such a way that it can provide
functionality as simple as that of transistor or as complex as that of a microprocessor. It
can used to implement different combinations of combinational and sequential logic
functions. Logic blocks of an FPGA can be implemented by any of the following:

29

1. Transistor pairs
2. combinational gates like basic NAND gates or XOR gates
3. n-input Lookup tables
4. Multiplaexers
5. Wide fanin And-OR structure

Figure 11 - Simplified version of FPGA internal architecture

Routing in FPGAs consists of wire segments of varying lengths which can be
interconnected via electrically programmable switches. Density of logic block used in an
FPGA depends on length and number of wire segments used for routing. Number of
segments used for interconnection typically is a tradeoff between density of logic blocks
used and amount of area used up for routing.

The ability to reconfigure functionality to be implemented on a chip gives a unique
advantage to designer who designs his system on an FPGA It reduces the time to market
and significantly reduces the cost of production.

Every FPGA chip is made up of a finite number of predefined resources with
programmable interconnects to implement a reconfigurable digital circuit.

Figure 12 - the different parts of an FPGA

FPGA chip specifications include the amount of configurable logic blocks, the number

of fixed function logic blocks, such as multipliers, and size of memory resources like

30

embedded block RAM. There are many other parts to an FPGA chip, but these are
typically the most important when selecting and comparing FPGAs for a particular
application.

At the lowest level, configurable blocks of logic, such as slices or logic cells, are made
up of two basic things: flip-flops and look-up tables (LUTs). This is important to note
because the various FPGA families differ in the way flip-flops and LUTs are packaged
together
2.5.2 Why do we need FPGAs?

By the early 1980’s Large scale integrated circuits (LSI) formed the back bone of most
of the logic circuits in major systems. Microprocessors, bus/IO controllers, system timers
etc were implemented using integrated circuit fabrication technology. Random “glue
logic” or interconnects were still required to help connect the large integrated circuits in
order to :

• generate global control signals (for resets etc.)
• data signals from one subsystem to another sub system.
• Systems typically consisted of few large scale integrated components and

large number of SSI (small scale integrated circuit) and MSI (medium scale
integrated circuit) components.

Initial attempt to solve this problem led to development of Custom ICs which were to
replace the large amount of interconnect. This reduced system complexity and
manufacturing cost, and improved performance. However, custom ICs have their own
disadvantages. They are relatively very expensive to develop, and delay introduced for
product to market (time to market) because of increased design time. There are two kinds
of costs involved in development of Custom ICs:

1. Cost of development and design
2. cost of manufacture
(A tradeoff usually exists between the two costs)

Therefore the custom IC approach was only viable for products with very high
volume, and which were not time to market sensitive.

FPGAs were introduced as an alternative to custom ICs for implementing entire
system on one chip and to provide flexibility of reprogramability to the user. Introduction
of FPGAs resulted in improvement of density relative to discrete SSI/MSI components
(within around 10x of custom ICs). Another advantage of FPGAs over Custom ICs is that
with the help of computer aided design (CAD) tools circuits could be implemented in a
short amount of time (no physical layout process, no mask making, no IC manufacturing)

Figure 13 - FPGA comparative analysis

31

2.5.3 Logic Block
Logic block in an FPGA can be implemented in ways that differ in number of inputs

and outputs, amount of area consumed, complexity of logic functions that it can
implement, total number of transistors that it consumes. This section will describe
some important implementations of logic blocks.
2.5.3.1 Crosspoint FPGA

Consist of two types of logic blocks. One is transistor pair tiles in which transistor
pairs run in parallel lines as shown in figure below:

Figure 14 - Transistor pair tiles in cross-point FPGA

second type of logic blocks are RAM logic which can be used to implement random
access memory.
2.5.3.2 Plessey FPGA

Basic building block here is 2-input NAND gate which is connected to each other to
implement desired function.

Figure 15 - The Plessey logic block

Both Crosspoint and Plessey are fine grain logic blocks. Fine grain logic blocks have
an advantage in high percentage usage of logic blocks but they require large number of
wire segments and programmable switches which occupy lot of area.

32

2.5.3.3 Actel Logic Block
If inputs of a multiplexer are connected to a constant or to a signal, it can be used to

implement different logic functions. for example a 2-input multiplexer with inputs a and
b, select , will implement function ac + bc´. If b=0 then it will implement ac, and if a=0 it
will implement bc´.

Figure 16 - An Actel logic block

Typically an Actel logic block consists of multiple number of multiplexers and logic
gates.
2.5.3.4 Xilinx Logic block

In Xilinx logic block Look up table is used to implement any number of different
functionality. The input lines go into the input and enable of lookup table. The output of
the lookup table gives the result of the logic function that it implements. Lookup table is
implemented using SRAM. A k-input logic function is implemented using 2^k * 1 size
SRAM. Number of different possible functions for k input LUT is 2^2^k. Advantage of
such an architecture is that it supports implementation of so many logic functions,
however the disadvantage is unusually large number of memory cells required to
implement such a logic block in case number of inputs is large. Fig.14 shows 4-input
LUT based implementation of logic block.

Figure 17 - Four input LUT based Xilinx logic Block

33

Xilinx - LUT based: LUT based design provides for better logic block utilization. A k-

input LUT based logic block can be implemented in number of different ways with
tradeoff between performance and logic density.

An n-lut can be shown as a direct implementation of a function truth-table. Each of the
latch holds the value of the function corresponding to one input combination. For
Example: 2-lut shown in figure below implements 2 input AND and OR functions.

Figure 18 - 2-LUT implementation table

2.5.3.5 Altera Logic Block

Altera's logic block has evolved from earlier PLDs. It consists of wide fan in (up to
100 input) AND gates feeding into an OR gate with 3-8 inputs. If floating gate transistor
based programmable switch is provide any vertical wire passing near AND gate can be
used as input to the AND gate. IF each input signal is present both original and
complemented form functional capability of block increases significantly. The advantage
of large fan in AND gate based implementation is that few logic blocks can implement
the entire functionality thereby reducing the amount of area required by interconnects. On
the other hand disadvantage is the low density usage of logic blocks in a design that
requires fewer input logic.

Another disadvantage is the use of pull up devices (AND gates) that consume static
power. To improve power manufacturers provide low power consuming logic blocks at
the expense of delay. Such logic blocks have gates with high Threshold as a result they
consume less power. Such logic blocks can be used in non-critical paths.

Altera, Xilinx are coarse grain architecture.
2.5.2.6 Tradeoff - Size of Logic block Vs Performance

Size of logic block plays an important role in deciding density of logic blocks and area
utilization in an FPGA. It also effects the performance of the FPGA.

• A large size logic block implements more logic and hence requires less number of
logic blocks to implement a functionality on the FPGA. On the other hand a large
logic block will consume more space on the FPGA. So optimal size of logic block
is one that optimally uses lesser number of logic blocks for functionality
implementation while consuming as little space as possible.

• Active logic area is generally less than total logic area due to presence of
programmable connections. Total logic area is sum of active logic area and area
consumed by programmable connections.

• Routing area in an FPGA is typically more than the active area. It is 70 to 90
percent of total area in an FPGA.

34

• In case of Lookup table based FPGA, a 4-input lookup table gives best results in
terms of logic synthesized and area consumed.

• Granularity of logic block has influence on performance of an FPGA. Typically
higher granularity level results in lesser delay between input and output. As the
granularity of logic block increases, number of levels of logic in critical path
decreases, and hence delay in critical path decreases. On the flip side with
increase in granularity level average fan out increases and number of switches also
increases as each block has more pins. Also the length of wires increases with
increase in size of logic block.

2.5.4 FPGA Routing Techniques
Routing architecture comprises of programmable switches and wires. Routing provides

connection between I/O blocks and logic blocks, and between one logic block and another
logic block.

The type of routing architecture decides area consumed by routing and density of logic
blocks.

Routing technique used in an FPGA largely decides the amount of area used by wire
segments and programmable switches as compared to area consumed by logic blocks.

A wire segment can be described as two end points of an interconnect with no
programmable switch between them. A sequence of one or more wire segments in an
FPGA can be termed as a track.

Typically an FPGA has logic blocks, interconnects and Input/Output blocks. Input
Output blocks lie in the periphery of logic blocks and interconnect. Wire segments
connect I/O blocks to wire segments through connection blocks. Connection blocks are
connected to logic blocks, depending on the design requirement one logic block is
connected to another and so on.
2.5.4.1 Xilinx Routing architecture

In Xilinx routing, connections are made from logic block into the channel through a

Figure 19 - Xilinx routing architecture

35

connection block. As SRAM technology is used to implement Lookup Tables, connection
sites are large. A logic block is surrounded by connection blocks on all four sides. They
connect logic block pins to wire segments. Pass transistors are used to implement
connection for output pins, while use of multiplexers for input pins saves the number of
SRAM cells required per pin. The logic block pins connecting to connection blocks can
then be connected to any number of wire segments through switching blocks.

There are four types of wire segments available :
• general purpose segments, the ones that pass through switches in the

switch block.
• Direct interconnect : ones which connect logic block pins to four

surrounding connecting blocks
• long line : high fan out uniform delay connections
• clock lines : clock signal provider which runs all over the chip.

2.5.4.2 Actel routing methodology
Actel's design has more wire segments in horizontal direction than in vertical direction.

The input pins connect to all tracks of the channel that is on the same side as the pin. The
output pins extend across two channels above the logic block and two channels below it.
Output pin can be connected to all 4 channels that it crosses. The switch blocks are
distributed throughout the horizontal channels. All vertical tracks can make a connection
with every incidental horizontal track. This allows for the flexibility that a horizontal
track can switch into a vertical track, thus allowing for horizontal and vertical routing of
same wire. The drawback is more switches are required which add up to more capacitive
load.

Figure 20 - Actel FPGA routing architecture
2.5.4.3 Altera routing methodology

Altera routing architecture has two level hierarchy. At the first level of the hierarchy,
16 or 32 of the logic blocks are grouped into a Logic Array Block, structure of the LAB is
very similar to a traditional PLD. the connection is formed using EPROM- like floating-
gate transistors. The channel here is set of wires that run vertically along the length of the
FPGA. Tracks are used for four types of connections :

• connections from output of all logic blocks in LAB.
• connection from logic expanders.

36

• connections from output of logic blocks in other LABs
• connections to and from Input output pads

all four types of tracks connect to every logic block in the array block. The connection
block makes sure that every such track can connect to every logic block pin. Any track
can connect to into any input which makes this routing simple. The intra-LAB routing
consists of segmented channel, where segments are as long as possible. Global
interconnect structure called programmable interconnect array (PIA) is used to make
connections among LABs. Its internal structure is similar to internal routing of a LAB.
Advantage of this scheme is that regularity of physical design of silicon allows it to be
packed tightly and efficiently. The disadvantage is the large number of switches required,
which adds to capacitive load.

Figure 21 - Altera MAX 5000 global (top) and local (bottom) routing architecture

2.5.5 FPGA Structural Classification
2.5.5.1 Programmable Logic Devices

There is a constant effort on the part of system designers to design systems with
improved performance, efficiency and flexibility.

Today, if one wants to make effective and competitive use of these general purpose
blocks, then one of the better ways is to use reconfigurable hardware that allows user
programmability.

The first form of reconfigurable device was Programmable Logic Devices which
consisted of arrays of AND and OR gates with programmable metal paths as

37

interconnection between them. They could be programmed to into a single chip to meet
specific requirements. PLDs later evolved into what was later known as FPGAs.

Basic structure of an FPGA includes logic elements, programmable interconnects and
memory. Arrangement of these blocks is specific to particular manufacturer. On the basis
of internal arrangement of blocks FPGAs can be divided into three classes:
2.5.5.2 Symmetrical arrays

This architecture consists of logic elements(called CLBs) arranged in rows and
columns of a matrix and interconnect laid out between them. This symmetrical matrix is
surrounded by I/O blocks which connect it to outside world. Each CLB consists of n-
input Lookup table and a pair of programmable flip flops. I/O blocks also control
functions such as tri-state control, output transition speed. Interconnects provide routing
path. Direct interconnects between adjacent logic elements have smaller delay compared
to general purpose interconnect.

Figure 22 - A symmetrical Array

2.5.5.3 Row based architecture
Row based architecture consists of alternating rows of logic modules and

programmable interconnect tracks. Input output blocks are located in the periphery of the
rows. One row may be connected to adjacent rows via vertical interconnect. Logic
modules can be implemented in various combinations. Combinatorial modules contain
only combinational elements which Sequential modules contain both combinational
elements along with flip flops. This sequential modules can implement complex
combinatorial-sequential functions. Routing tracks are divided into smaller segments
connected by anti-fuse elements between them.

38

2.5.5.4 Hierarchical PLDs
This architecture is designed in hierarchical manner with top level containing only

logic blocks and interconnects. Each logic block contains number of logic modules. And
each logic module has combinatorial as well as sequential functional elements. Each of
these functional elements is controlled by the programmed memory. Communication
between logic blocks is achieved by programmable interconnect arrays. Input output
blocks surround this scheme of logic blocks and interconnects.

Figure 24 - A hierarchical PLD

2.5.6 Programming
Electrically programmable switches are used to program an FPGA. Performance of an

FPGA in terms of area and logic density is a function of properties of these switches.
Properties of these programmable switches that make difference are on-resistance,

parasitic capacitance, volatility, re-programmability, size etc.
Various approaches to provide user programmability are :

Figure 23 - A row based architecture

39

2.5.6.1 SRAM programming technology
Static RAM cells are used to control pass gates or multiplexers. To use pass gate as

closed switch, boolean one is stored in SRAM cell. When zero is stored pass transistor
provides high resistance between two wire segments.

Figure 25 - RAM cells used to control pass gates (a) or multiplexers (b)

To use SRAM as multiplexer, state of control values stored in SRAM decides which of

the multiplexer inputs are connected to the output as shown in figure b.
Advantage of SRAM is that it provides fast re-programmability and integrated circuit

fabrication technology is required to build it. While disadvantage is the space it consumes
as minimum five transistors are required to implement a memory cell.
2.5.6.2 Floating Gate Programming

Technology found in ultraviolet erasable EPROM and electrically erasable EEPROM
devices is used in FPGA from Altera. The programmable switch is a transistor that
permanently be disabled.

Here again the advantage is reprogrammability but there is another advantage no

Figure 26 – Floating gate programming technology

40

external permanent memory source is need to program it at power-up. However it
requires three additional processing steps over CMOS technology. Other disadvantages
are high static power consumption due to pull up resistor and high ON-resistance of
EPROM transistor.

Electrically programmable EPROM is used by AMD and Lattice. Use of EEPROM
gives advantage of easy reprogrammability. However EEPROM cell is twice as large as
EPROM cell.
2.5.6.3 Antifuse programming methodology

An Antifuse is a two terminal device with an unprogrammed state providing very high
resistance between its terminals. To create a low resistance link between the two
terminals high voltage is applied across the terminals to blow the antifuse. Extra bit of
circuitry is required to program an antifuse. Antifuse technology is used by FPGA’s from
Actel, QuickLogic and Crosspoint.

Advantage of Antifuse is relatively small size and hence area reduction which is
40nnulled by area consumed by extra circuitry to program it. Another big advantage is
low series resistance and low parasitic capacitance.
2.5.7 FPGA Design Flow

One of the most important advantages of FPGA based design is that users can design
it using CAD tools provided by design automation companies.

Generic design flow of an FPGA includes following steps:
• System Design: At this stage designer has to decide what portion of his

functionality has to be implemented on FPGA and how to integrate that
functionality with rest of the system.

• I/O integration with rest of the system: Input Output streams of the FPGA
are integrated with rest of the Printed Circuit Board, which allows the
design of the PCB early in design process. FPGA vendors provide extra
automation software solutions for I/O design process.

• Design Description: Designer describes design functionality either by
using schema editors or by using one of the various Hardware Description
Languages(HDLs) like Verilog or VHDL.

• Synthesis: Once design has been defined CAD tools are used to implement
the design on a given FPGA. Synthesis includes generic optimization,
slack optimizations, power optimizations followed by placement and
routing. Implementation includes Partition, Place and route. The output of
design implementation phase is bit-stream file.

• Design Verification: Bit stream file is fed to a simulator which simulates
the design functionality and reports errors in desired behavior of the
design. Timing tools are used to determine maximum clock frequency of
the design. Now the design is loading onto the target FPGA device and
testing is done in real environment.

Example

Below given circuit consists of gates and flip flops. Combinational elements of the
circuit are covered by a 4-input Look up table(4-LUT). Sequential elements in the input
circuit map to flip flops on the FPGA. Placement of these elements is done in such a way
as to minimize wiring during routing.

41

Figure 27 - Example circuit: a collection of gates and flip-flops

2.5.8 Five reason to choose an FPGA

Performance: Taking advantage of hardware parallelism, FPGAs exceed the
computing power of digital signal processors (DSPs) by breaking the paradigm of
sequential execution and accomplishing more per clock cycle. BDTI, a noted analyst and
benchmarking firm, released benchmarks showing how FPGAs can deliver many times
the processing power per dollar of a DSP solution in some applications. Controlling
inputs and outputs (I/O) at the hardware level provides faster response times and
specialized functionality to closely match application requirements.

Time to market: FPGA technology offers flexibility and rapid prototyping capabilities
in the face of increased time-to-market concerns. You can test an idea or concept and
verify it in hardware without going through the long fabrication process of custom ASIC
design. You can then implement incremental changes and iterate on an FPGA design
within hours instead of weeks. Commercial off-the-shelf (COTS) hardware is also
available with different types of I/O already connected to a user-programmable FPGA
chip. The growing availability of high-level software tools decrease the learning curve
with layers of abstraction and often include valuable IP cores (prebuilt functions) for
advanced control and signal processing.

Cost: The nonrecurring engineering (NRE) expense of custom ASIC design far
exceeds that of FPGA-based hardware solutions. The large initial investment in ASICs is
easy to justify for OEMs shipping thousands of chips per year, but many end users need
custom hardware functionality for the tens to hundreds of systems in development. The
very nature of programmable silicon means that there is no cost for fabrication or long
lead times for assembly. As system requirements often change over time, the cost of
making incremental changes to FPGA designs are quite negligible when compared to the
large expense of respinning an ASIC.

Reliability: While software tools provide the programming environment, FPGA
circuitry is truly a “hard” implementation of program execution. Processor-based systems

42

often involve several layers of abstraction to help schedule tasks and share resources
among multiple processes. The driver layer controls hardware resources and the operating
system manages memory and processor bandwidth. For any given processor core, only
one instruction can execute at a time, and processor-based systems are continually at risk
of time-critical tasks pre-empting one another. FPGAs, which do not use operating
systems, minimize reliability concerns with true parallel execution and deterministic
hardware dedicated to every task.

Long-term maintenance: As mentioned earlier, FPGA chips are field-upgradable and
do not require the time and expense involved with ASIC redesign. Digital communication
protocols, for example, have specifications that can change over time, and ASIC-based
interfaces may cause maintenance and forward compatibility challenges. Being
reconfigurable, FPGA chips are able to keep up with future modifications that might be
necessary. As a product or system matures, you can make functional enhancements
without spending time redesigning hardware or modifying the board layout.

43

3.THE HARDWARE

This chapter intends to describe all the hardware used in this thesis, the core is formed

by:
• An FPGA Board
• An Analog to Digital Board
• A Digital Acquisition Board

The hardest step in hardware was to choose an FPGA that can fit our needs. The

present market has an infinite choice of FPGA boards and the companies can practically
fit the needs of everyone. An important step is to learn how to move in this entangled
variety and make the best choice that can fit our application.

3.1 How to choose an FPGA board [7]
Usually we could project an FPGA that fit our needs but this would imply a big

investment of money and time. This is no longer a need because there are many
companies that offer board level FPGA solutions for any type of use.

Now we are going to analyze the criteria for an FPGA board selection. This criteria
comes down in to 3 particular areas:

1. How complicated is my project?

• Simple (ex: machine control application with digital I/O)
è Small FPGA (Altera ACEX or Cyclone)

• Complex (ex: processing image data or high speed analog data)
è Large FPGA (Xilinx Virtex II or 4)

2. How fast do I need to process data?

• Slow (under 60 MHz)

è Altera Cyclone/Xilinx Spartan
• Fast (from 60 to 100 MHz)

è Xilinx Virtex II or Altera Stratix
• Very Fast (to 500 MHz)

è Xilinx Virtex 4

3. Special needs

Need in special work condition

• Large amount of Memory
• Fast memory
• Conduction Cooling/ Extended Temperature
• Resistant hardware

44

To have an idea of what exist in the market we will show you three examples of FPGA
boards.

Basic FPGA Module

• Basic FPGA
- Altera Cyclone II
- Xilinx Spartan

• TTL, RS422/485 or LVDS Digital I/O
• External SRAM Storage

- 64K x 16 external SRAM
- High-speed interfaces to external memory

• Clock management/control
- Multiple PLL/clocks sources
- Digital Clock Managers (DCM)

• DSP Support
- Up to 26 18x18 multipliers
- DSP IP cores available

Typical applications:

- High speed Hardware control
- Satellite downlink controller
- System simulation
- Serial communication protocol converter
- In-circuit testers

Figure 28 - A basic FPGA module example

45

Mid-Size FPGA module

• Large FPGA
- Xilinx Virtex II
- Altera Stratix

• Faster Bus interfaces (PMC/PCI)
• High speed Analog and Digital I/O available
• Expanded SRAM Storage

- Larger External SRAM (256K x 36 and larger)
- Up to 1.7 Mbits of on-chip embedded memory

• Expanded Clock control
- Multiple PLL/DCM

• DSP Support
- Up to 56 18 x 18 multipliers
- DSP IP cores available

• High-speed interfaces to external memory
• Chip Scope/ModelSIm Support
• Math MatLab Support

Typical Applications:

- Data Stream Processors
- Audio Data Processor/Control
- Image Processor
- High Speed Analog Processor

Figure 29 - A mid-size FPGA module example

46

Large-Size, High Speed FPGA module

• Large, High Speed FPGA
- Xilinx Virtex 4/5
- Altera Stratix III

• Faster Bus interfaces (PMC/PCI/PCI-X/PCIe)
• Expanded SRAM Storage

- Up to 2.8 Mbits of on-chip embedded memory
- Larger External Dual Ported SRAM (256k X 36 and larger)
- Large, Fast DDR SDRAM (32 Mbits x 32 at 400 MHz)

• Expanded Clock control
- Multiple PLL/DCM
- 500MHz Clock rates

• DSP Support
- Up to 192 18x18 multipliers
- Configurable for over 40 DSP and Arithmetic Functions

• Advance Encryption Standard (256-bit Key) security
• Advanced I/O options with mezzanine based I/O
• Chip Scope/ModelSim Support
• MathWorks Mat Lab Support

Typical Applications:

- Missile control
- Sonar/Radar Downlink Analyzers
- Image Analyzer
- Laser Control

Figure 30 - A large size, high speed FPGA module example

47

Fig.31 gives a bird’s eye on various type of FPGA boards and their performance, it
shows the resource specifications used to compare FPGA chips within various Xilinx
families. The number of gates has traditionally been a way to compare the size of FPGA
chips to ASIC technology, but it does not truly describe the number of individual
components inside an FPGA. This is one of the reasons that Xilinx did not specify the
number of equivalent system gates for the new Virtex-5 family.

The figure below gives an idea of the tradeoff between price and performance.

Figure 32 – The trade off between cost and performance for FPGA boards

Figure 31 – General view on various FPGA boards

48

It’s really important to consider the support that the supplier offers with the board and
what the final user really need.

What a Module Supplier Should Offer

• Engineering Design Kit
- Schematic and parts list
- Example VHDL code (compiled and source)

§ Bus interface
§ Memory interface
§ I/O interface
§ Interrupts
§ DMA transfers

- Pin Definitions
- Manuals

What the customer Requires
• Development Tools

- Xilinx
§ ISE Foundation software suite
§ Or ISE WebPACK

- Altera
§ Quartus II design software

• Development Platform (Matlab etc.)

3.2 The Market Analysis
After this introduction on how to choose a general FPGA board let’s focus on the real
choice of our project.
Here we will anticipate the constraints explained better in the next chapters.

The needs of our project are:

- Make an analog to digital conversion of 4 independent signals
- Have a sample time of acquisition over 1 MHz and handle this elaboration
- Have the capabilities to realize an algorithm to calculate the delays

between the 4 signals
- Find an FPGA small enough that can enter inside the cylindrical

enclosures
- Stay under a budget of 1000$
- Have a software support to develop the project
- 12 bit A/D

A 12 bit A/D has enough accuracy to analyze our kind of signals.
In front of the previous research we need a medium-low level FPGA board because

generally the FPGAs have a faster clock then we need, our elaboration seems not to be so
complicated to need a lot amount of RAM or logic cells.

A long research is made, analyzing a lot of solutions proposed by the major
companies. Xilinx and Altera are the major companies building FPGA cores and boards
and they purpose multifunction boards to fit the majority of cases. There are also a lot of

49

other companies that try to fit more particular needs using Xilinx and Altera’s FPGA
cores

There, will be shown some companies’ examples chosen from a selection of the best

interesting FPGA boards

3.2.1 Pentek - Model 6256

Cost: more than 2000$

Features Summary:

A/D: 2/4 channels ; Sample Freq. Max: 105 MHz ; 14 bit
Fpga: 2 Virtex II pro 2-XC2VP50 53136 logic cells
SDRAM: extern 2x64 MB 32 bit Flash 2x16MB 16 bit
Clock: external input, LVDS clock/sync bus for multi- module
synchronization
Software: Gate-flow design kit (visual programming kit) ; IP
Cores

General Information
The Model 6256 is a complete two or four channel data acquisition and signal

processing subsystem implemented as a VIM-2 module. Up to two 6256 modules can be
attached to any of the Pentek VIM baseboards for a total of eight channels. The 6256 is
ideal for digitizing signal bandwidths up to 45 MHz with subsequent real-time digital
signal processing and data buffering of those signals using two on-board Xilinx Virtex-II
Pro FPGAs.

A/D Converters

The front end accepts two full scale analog HF or IF inputs at +4 dBm full scale into
50 ohms on front panel SMA connectors.

Each input is transformer coupled, and digitized by a 14-bit 105 MHz A/D converter
(Analog Devices AD6645).

The A/D converters deliver parallel digital output into a Virtex-II Pro FPGA for
further processing. An optional second-slot mezzanine provides two additional A/D
converters. These deliver output to a second Virtex-II Pro for a 4-channel system.

The A/D clock can be driven from an internal crystal oscillator or from an external
sample clock supplied through a front panel

SMA connector. A front panel LVDS clock and sync bus supports synchronization
across multiple modules. For large, multichannel systems, up to 80 modules can be
synchronized using the Model 9190 Clock and Sync Generator.

Virtex-II Pro FPGAs

The Model 6256 is equipped with a pair of FPGA devices from the Xilinx Virtex-II
Pro family. Models XC2VP20 or XC2VP50

Figure 33 – Pentek
6256

50

are selectable by option number. Contact factory for alternate sizes. Each Xilinx
Virtex-II Pro FPGA includes factory installed functions for data formatting, channel
selection, timing, triggering and gating. In addition to ample on-board

SRAM memory and configurable logic, each FPGA features two PowerPC processor
cores for implementing internal control

or analysis functions. These resources are available to customers for implementing
extremely powerful signal processing algorithms for signal intelligence, radar,
communications, process control, and test instrumentation.

Memory Resources

Each FPGA is equipped with a 64 MB SDRAM connected with separate address and
data buses so it can be used independently.

These SDRAMs are useful for storing data without consuming internal FPGA logic
cells. In addition, 16 MB of FLASH memory

is attached to each FPGA (32 MB total).

VIM Processor Interface
The FPGA outputs are connected through the VIM mezzanine interface to the 32-bit
synchronous FIFO on the VIM processor
board where it is buffered for efficient blocktransfers into the baseboard processor.

FPGA Programming
Pentek's optional GateFlow Design Kit allows the FPGAs to be configured by the user for
implementation of custom preprocessing functions such as FFTs, FIR filters, compression
and decompression algorithms, software radio blocks, decryption, telemetry functions,
decoders and encoders, and convolution.

3.2.2 Innovative integration X3-A4D4

Cost: 1295$

Features Summary:

• Four 4 MSPS, 16-bit A/D channels
• Four 50 MSPS, 16-bit DAC channels
• +/-10V, +/-5V, +/-2.5V, +/-1.25V
input ranges
• +/-10V output range

• Low Latency I/O
• Xilinx Spartan3A DSP, 1.8M gate
FPGA
• 4MB SRAM
• Programmable PLL timebase
• Framed, software or external
triggering
• Log acquisition timing and events
• 48 bits digital IO on J16
• Power Management features
• XMC Module (75x150 mm)
• PCI Express (VITA 42.3)

The X3-A4D4 is an XMC IO module featuring four 16-bit, 4 MSPS A/D channels and
four 16-bit, 50 MSPS DAC channels with FPGA computing core designed for servo

Figure 34 – Innovative integration
X3A4D4

51

controls, arbitrary waveform generation and stimulus response applications. Low latency
SAR A/D and no-pipeline DACs support real-time servo control applications.

Flexible trigger methods include counted frames, software triggering and external
triggering. The sample rate clock is either an external clock or on-board programmable
PLL clock source.

Data acquisition control, signal processing, buffering, and system interface functions
are implemented in a Xilinx Spartan3A DSP, 1.8M gate device. Two 1Mx16 memories
are used for data buffering and FPGA computing memory.

The logic can be fully customized using VHDL and MATLAB using the FrameWork
Logic toolset. The MATLAB BSP supports real-time hardware-in-the-loop development
using the graphical, block diagram Simulink environment with Xilinx System Generator.

The PCI Express interface supports continuous data rates up to 180 MB/ s between the
module and the host. A flexible data packet system implemented over the PCIe interface
provides both high data rates to the host that is readily expandable for custom
applications.
3.2.3 Echotek ECAD-DA-41-PMC

Cost: more the 1500$

Features summary:

• Combines high-speed and-high resolution A/D conversion with sample rates up to
80 MHz

• Single-channel D/A conversion with update rate of up to 400 MSPS
• Supports both pulse and continuous wave applications
• Onboard SDRAM is provided for data storage of A/D or D/A data
• Sync input and output allow synchronization of multiple modules in system
• Single width PMC module and XMC VITA-42 compliant

Four Analog Devices AD9245 A/D converters
digitize corresponding intermediate frequency (IF)
inputs from the board’s R1-R4 connector with 14-
bits of resolution, at 80 MSPS. The output of each
A/D is connected to the FPGA for data collection
and/or processing. The FPGA in turn drives the
input of an Analog Devices AD9726 16-bit
LVDS-compatible D/A, which converts at rates
up to 400 MSPS.
 The board’s four IF inputs are each connected to
a narrowband receiver composed of a numerically

controlled oscillator (NCO), cascade integrate combine (CIC) filter and two decimate-by-2
finite impulse response (FIR) filters.
An external clock input, running at up to a 400 MHz PECL signal, or a programmable
divided derivation, is provided to the converters and the FPGA. The clocks also feed
synchronization logic that supports coherent configurations across multiple cards. The

Figure 35 - Echotek ECAD-DA-41-PMC

52

board’s PCI r2.2 compliant interface transfers data at 64-bit/66 MHz, 64-bit/33 MHz, 32-
bit/66 MHz, or 32-bit/33 MHz rates in both PCI master and slave modes, plus chained
DMA bursting for reduced CPU overhead. Forty-two user-definable I/O pins connect the
card’s P4 connector with the FPGA, and a high-speed serial interface connects a VITA-42
compliant XMC connector to the FPGA for industry-standard ECMA-342 RapidIO®.

3.2.4 Bittware TETRA-PMC+

Cost: 3995$

Features Summary:

• High-performance wideband A/Ds

- Four channels, 14-bit A/D (AD6645)
- Up to 105 MHz per channel

• Altera Cyclone II reconfigurable FPGA

- A/D control and data distribution
- Configurable pre-processing of highspeed A/D data

• 32-bit, 66 MHz PCI interface via Cyclone II FPGA

• Four external link ports

- Configurable for TS201-based boards
- Available via PMC+ interface
- Up to 210 MBytes/s per channel

• Internal/external clock and triggering
• Complete software support
• Cyclone II development and customization support

Product Overview

BittWare’s Tetra-PMC+ (TRPM) board is a high-speed
analog input board that provides data capture for four 14-
bit A/D channels running at up to 105 MHz. The board
streams the data directly to an Altera Cyclone II FPGA,

which provides A/D control, data distribution, and front-end
processing capabilities. A 32-bit, 66 MHz PCI interface and

four TigerSHARC link ports make the captured data available to the host board.

High-Speed A/D Interface

The high-speed A/D interface features four 14-bit A/D conversion channels, each
sampled at up to 105 MHz. Using high-quality 14-bit A/D converters from Analog
Devices, the analog interface provides input bandwidth up to 150 MHz with DC coupled

Figura 36 - Bittware TETRA-
PMC+

53

inputs. For clocking options, the board features an internal clock and an external clock
and trigger; the clock is user-configurable to the onboard clock or external clock.

Altera Cyclone II Reconfigurable FPGA

The Cyclone II reconfigurable FPGA (Altera) provides A/D control and data
distribution for the Tetra- PMC+ and is available for configurable preprocessing of high
speed A/D data, such as digital filtering, decimation, and digital down conversion. To
interface the A/D data to the host, the Cyclone II contains a link port interface providing
direct access to the ADSP-TS201 DSPs located on the base board.

PMC+ I/O Interface

When attached to one of BittWare’s PMC+ base boards, it supports BittWare’s PMC+
extensions, which include four link ports directly connected to the Cyclone II FPGA. The
PMC+ link ports are configurable for BittWare’s T2 (ADSP-TS201S) based boards and
are an ideal way to move high-speed data directly to the DSPs.

Available Development Tools

BittWare offers complete software development tools that allow designers to easily
develop application code and integrate the Tetra-PMC+ into their systems. For user-
configured pre-processing, Altera also provides a complete suite of development tools for
the Cyclone II.

3.3 A real choice
The boards analyzed, give an idea of what solutions are on the market. Corresponding

to our project they have really good performance and they can fit our needs. The main
problem of these boards is the high price that overcome our budget. It was not possible to
find an FPGA board with also the A/D conversion of 4 channel.

 We decide to direct to other solutions probably removing some specific.
3.3.1 New solutions
3.3.1.1 Multiplexer and FPGA

The first solution was to choose one FPGA board with only 2 analog input and to build
a simple multiplexing board to send 4 analog signals in 2 channels.

In telecommunication and Signal processing, an analog time division multiplexer may
take several samples of separate analogue signals and combine them into one pulse
amplitude modulated (PAM) wide band analogue signal.

There are two techniques to use this transmission’s system.
Time division multiplexing (TDM): is a type of digital or (rarely) analog multiplexing

in which two or more signals or bit streams are transferred apparently simultaneously as
sub-channels in one communication channel, but are physically taking turns on the
channel. The time domain is divided into several recurrent timeslots of fixed length, one
for each sub-channel. A sample byte or data block of sub-channel 1 is transmitted during
timeslot 1, sub-channel 2 during timeslot 2, etc. One TDM frame consists of one timeslot
per sub-channel. After the last sub-channel the cycle starts all over again with a new
frame, starting with the second sample, byte or data block from sub-channel 1, etc.

Frequency division multiplexing (FDM): more channels are combined in one single
transmission’s channel. The signals are divided by frequency. There are always unused
frequency bands between the channels known as “guard bands”. Those bands reduce the
“bleedover” effect between the adjacent channels. This condition is known as “crosstalk”.

54

To set up this system we decided to choice a 2 A/D FPGA and to build a simple 4 to 2
multiplexing board.
A good low cost FPGA chosen for this target was:

Cyclone II EP2C70 DSP development board

Cost: 995$

Features summary:

• Cyclone II EP2C70 DSP development board
o Cyclone II EP2C70F672C6 device

• Analog I/O
o Two 14-bit analog-to-digital (A/D) converter

channels with 125-million samples per
second (MSPS)

o Two 14-bit, 165-MSPS, 70 dB digital-to-
analog (D/A) converters

o One 24-bit RGB VGA adapter with a DB-15
connector

o One Audio CODEC with input, output, and amplified output
• External I/O

o Mictor connector for hardware and software debugging
o 3.3-V/5-V tolerant Altera expansion/prototype headers
o One Texas Instruments Evaluation Module (TI-EVM) expansion

connector to connect to the Spectrum Digital 'DSP Starter Kit (DSK) for
the TMS320C6416', Revision E

• Memory subsystem
o 256-Mbyte DDR2 SDRAM DIMM
o 1-Mbyte synchronous SRAM (SSRAM)
o Two EPCS64 devices

• MATLAB/Simulink evaluation software
• DSP Builder development tool
• Quartus II Education Kit
• Evaluation IP cores
• System reference designs and labs

o DSP Builder filtering design
o DSP Builder/SOPC Builder image processing reference design
o Fast Fourier transform (FFT) coprocessor reference design for Texas

Instruments' TMS320C6416 DSK
o Nios® II reference designs
o DDR2 DIMM reference design

• Cables and accessories
• USB-BlasterTM download cable
• Power supply
• International power cords

Video input daughtercard features:

• Two composite video input channels using the TI TVP5146 ADC

Figure 37 - Cyclone II
EP2C70 DSP development
board

55

• Support for NTSC/PAL
• 10-bit BT.656 output
• Compatibility with expansion connector, standard on most Altera development

kits and included with the Video Development Kit, Cyclone II Edition

This board must be linked to another board built around 2 multiplexer like this:

AD8170: 2 Channel Buffered, 250MHz, 10 ns Multiplexer w/Amplifier

• Fully Buffered Inputs and

Outputs
• Fast Channel Switching: 10 ns
• Internal Current Feedback Output

Amplifier
High Output Drive: 50 mA
Flexible Gain Setting via
External Resistor(s)

• High Speed
250 MHz Bandwidth, G = +2
1000 V/µs Slew Rate
Fast Settling Time of 15 ns to
0.1%

• Low Power: < 10 mA

• Excellent Video Specifications
(RL = 150 O, G = +2)
Gain Flatness of 0.1 dB Beyond
80 MHz
0.02% Differential Gain Error
0.05° Differential Phase Error

• Low Crosstalk of -78 dB @ 5
MHz

• High Disable Isolation of -88 dB
@ 5 MHz

• High Shutdown Isolation of -92
dB @ 5 MHz

• Low Cost

This solution could be a nice one but doesn’t respect some constraints like the size of
the board and the price is quite high. Furthermore, with this kind of choice we foresee that
the complexity of the project should raise, expending lot of memory and logic resources
lowering the overall performances

3.3.1.2 A/D conversion and FPGA
Then second solution was to choose a low cost FPGA, without any A/D conversion and
analog input, assisted by a dedicated A/D board. This is a really simple solution that
imply only a special attention to the linking methods of the two boards.

This solution appear to be the best one:

- No need to build a board
- Lot of solutions on the market
- Low costs

We moved in this direction and we chose the two boards.

3.3.2 The FPGA board choice: ALTERA/TERASIC DE2 Development and
Education Board

We avoid the size constraint. To respect it, it’s a must refer to high band boards as the
one presented before.

We choose a development and education board to have all the support necessary to
move the first steps in the FPGA world.

The purpose of the Altera DE2 Development and Education board is to provide the
ideal vehicle for learning about digital logic, computer organization, and FPGAs.

The DE2 board features a state-of-the-art Cyclone® II 2C35 FPGA in a 672-pin
package. All important components on the board are connected to pins of this chip,

56

allowing the user to control all aspects of the board’s operation. For simple experiments,
the DE2 board includes a sufficient number of robust switches (of both toggle and push-
button type), LEDs, and 7-segment displays. For more advanced experiments, there are
SRAM, SDRAM, and Flash memory chips, as well as a 16 x 2 character display. For
experiments that require a processor and simple I/O interfaces, it is easy to instantiate
Altera’s Nios II processor and use interface standards such as RS-232 and PS/2. For
experiments that involve sound or video signals, there are standard connectors for
microphone, line-in, line-out (24-bit audio CODEC), video-in (TV Decoder), and VGA
(10-bit DAC); these features can be used to create CD-quality audio applications and
professional-looking video. For larger design projects the DE2 provides USB 2.0
connectivity (both host and device), 10/100 Ethernet, an infrared (IrDA) port, and an SD
memory card connector. Finally, it is possible to connect other user defined boards to the
DE2 board by means of two expansion headers.

Features summary:

FPGA
• Cyclone II EP2C35F672C6 FPGA and
EPCS16 serial configuration device

I/O Devices
• Built-in USB Blaster for FPGA
configuration
• 10/100 Ethernet, RS-232, Infrared port
• Video Out (VGA 10-bit DAC)
• Video In (NTSC/PAL/Multi-format)
• USB 2.0 (type A and type B)
• PS/2 mouse or keyboard port
• Line-in, Line-out, microphone-in
(24-bit audio CODEC)

• Expansion headers (76 signal pins)

Memory
• 8-MB SDRAM, 512-KB SRAM, 4-MB
Flash
• SD memory card slot

Switches, LEDs, Displays, and Clocks
• 18 toggle switches
• 4 debounced pushbutton switches
• 18 red LEDs, 9 green LEDs
• Eight 7-segment displays
• 16 x 2 LCD display

Figure 38 - ALTERA/TERASIC DE2

57

• 27-MHz and 50-MHz oscillators, external SMA clock input

3.3.4 The A/D board choice: MAX1127 Evaluation Kit from MAXIM
We choose an analog to digital converter, the MAX1126/MAX1127 quad 12-bit

analog-to-digital converter, mounted on an evaluation board. This board fit our needs and
is linkable to the FPGA board by the parallel ports.

Features summary:

• Sample Rate Up to 65Msps (MAX1127)
• Low-Voltage and Power Operation
• Optional On-Board Clock-Shaping Circuitry
• Four analog input
• Serial SLVS/LVDS Outputs
• On-Board LVPECL Differential Output Drivers
• On-Board Deserializer
• LVDS Test Mode

The MAX1127 evaluation kit (EV kit) is a fully assembled and tested circuit board

that contains all the components necessary to evaluate the performance of the
MAX1126/MAX1127 quad 12-bit analog-to-digital converter (ADC). The
MAX1126/MAX1127 accept 4 differential analog input signals. The EV kit generates
these signals from user-provided single-ended input sources. The digital outputs produced
by the ADC can be easily sampled with a user-provided, high-speed logic analyzer or
data-acquisition system. The EV kit also features an on-board deserializer to ease
integration with standard logic analysis systems. The EV kit operates from 1.8V and 3.3V
power supplies (1.5V for the optional FPGA) and includes circuitry that generates a clock
signal from an AC signal provided by the user.

Input Signal

Although the MAX1127 accepts differential analog input signals, the EV kit only
requires a single-ended analog input signal, with an amplitude of less than 1.4VP-P

Figure 39 - MAX1127

58

provided by the user. On-board transformers (T1–T4) convert the single-ended analog
input signal and generate differential analog signals at the ADC’s differential input pins.

Output Signal

The MAX1127 features four, serial, LVDS-compatible, digital outputs. Each output
transmits the converted analog input signals of channels 0 through 3. Two additional
outputs (CLKOUT and FRAME) are provided for data synchronization.
3.3.4.1 A route accident

The max evaluation kit was not a ready to use board, it need some soldering to be
linked to the power supply. This board resulted really sensitive to heat in fact it broke
during the soldering-work.

A new A/D board was committed to Gary Stein, a PhD Student Researcher at the
University of Central Florida. This perfectly fit our needs.

3.3.5 The A/D board: a self-made board

Figure 40 – The A/D board: The electric development scheme

Figure 41 - The A/D board: assembled view

The new board is based on 4 Analog Devices A/D converters.

AD7482: 12-Bit, 3 MSPS SAR ADC

The AD7482 is a 12-bit, high speed, low power, successive approximation ADC. The
part features a parallel interface with throughput rates up to 3 MSPS. The part contains a
low noise, wide bandwidth track-and-hold that can handle input frequencies in excess of
40 MHz.

59

Features summary:

• Fast Throughput Rate: 3 MSPS
• Wide Input Bandwidth: 40 MHz
• No Pipeline Delays with SAR ADC
• Excellent DC Accuracy Performance

• Two Parallel Interface Modes
• Low Power: 90 mW (Full Power) and 2.5

mW (NAP Mode)
• Standby Mode: 2 µA Max

3.3.6 The Costs

The costs were:

• Altera DE2 : 269$ for academic customers (495$ for commercial customers)
• Quartus 2 software licensed: free for students (around 2000$ for commercial

customers)
• Maxim1127 EVKIT: 195$

for a total of 464$.

The costs were really less in front of our budget, this is a really nice goal because we
decided to avoid the size project constraint changing our project in a likelihood study
sending back the size’s matter to the future Scout’s working team.

3.4 Simulation’s hardware
In order to simulate our experience during the Italian experimental work we need some

other components. We need something to simulate our input signals and some other
common laboratory tools like a power supply, an oscilloscope and some cables to link all
together.

Figure 42 – The AD7482

60

3.4.1 Signal generation: a Digital Acquisition Board

Figure 43 - NI USB-6251 DAQ board

To simulate the analog input signals we used the NI USB-6251 from National

Instruments. The National Instruments USB-6251 is a USB high-speed M Series
multifunction data acquisition (DAQ) module optimized for superior accuracy at fast
sampling rates. It is designed specifically for mobile or space-constrained applications.
Plug-and-play installation minimizes configuration and setup time.

Specifications Summary

General

Form Factor USB
OS Support Windows
Measurement Type Quadrature encoder, Voltage
DAQ Product Family M Series

Analog Input

Number of Channels 16 SE/8 DI
Sample Rate 1.25 MS/s
Resolution 16 bits
Simultaneous Sampling No
Maximum Voltage Range -10..10 V
 Range Accuracy 1.92 mV
 Range Sensitivity 112 µV
Minimum Voltage Range -50..50 mV
 Range Accuracy 0.052 mV
 Range Sensitivity 6 µV
Number of Ranges 7
On-Board Memory 4095 samples
Signal Conditioning Low-pass filtering

Analog Output

61

General

Number of Channels 2
Update Rate 2.86 MS/s
Resolution 16 bits
Maximum Voltage Range -10..10 V
 Range Accuracy 2.08 mV
Minimum Voltage Range -5..5 V
 Range Accuracy 1.045 mV
Current Drive (Channel/Total) 5 mA/10 mA

Digital I/O

Number of Channels 24 DIO
Timing Hardware, Software
Maximum Clock Rate 1 MHz
Logic Levels TTL
Maximum Input Range 0..5 V
Maximum Output Range 0..5 V
Input Current Flow Sinking, Sourcing
Programmable Input Filters Yes
Output Current Flow Sinking, Sourcing
Current Drive (Channel/Total) 24 mA/448 mA
Watchdog Timer No
Supports Programmable Power-Up States? Yes
Supports Handshaking I/O? No
Supports Pattern I/O? Yes
Counter/Timers

Number of Counter/Timers 2
Resolution 32 bits
Maximum Source Frequency 80 MHz
Logic Levels TTL
Maximum Range 0..5 V
Timebase Stability 50 ppm
GPS Synchronization No
Pulse Generation Yes
Buffered Operations Yes
Debouncing/Glitch Removal Yes

Timing/Triggering/Synchronization

Synchronization Bus (RTSI) No
Triggering Analog, Digital
Physical Specifications
Length 18.8 cm, 26.67 cm
Width 17.09 cm
Height 4.45 cm
I/O Connector 68-pin male SCSI-II type, screw term.

62

3.5 The experimental setup
Fig.44 shows all the experiment tools linked together: the NI DAQ is linked to the A/D
acquisition board with two professional data transmission shielded cables. This A/D
board is powered by an Hewlett Packard power supply with 12V and it is linked to the
FPGA board with a standard 48 pin Cable. On the same flat cable can be sent two 12 bit
signals. Both the NI DAQ and Altera FPGA board are linked with an USB to a laptop PC.
The oscilloscope is linked to 2 output pins of the FPGA board.

Figure 44 - The experimental setup

63

4. BORN AND DEVELOPMENT OF THE ALGORITHM

In this chapter we develop the core of our work. We will start talking about the

competition and the AUV the UCF team worked on, focusing on their underwater
acoustic acquisition. We will describe the idea that is the basis of the implemented
system. This idea justifies our future DSP algorithm.

Then our simulation’s algorithm for the FPGA is presented.

4.1 The 2007 AUVSI competition [8]
The idea of this thesis starts from an Universal Central Florida’s Project aimed to

participate to the AUVSI & ONR’s 10th Annual International Autonomous Underwater
Vehicle Competition of 2007. The UCF team developed an AUV, the SCOUT.

The goal of the 2007 mission is for the vehicle to autonomously navigate an obstacle
course, as shown in Fig.45.

The tasks of the mission include:

• Passing through a validation gate.
• Docking with buoys and releasing them from their mooring
• Locating a pipeline
• and follow it. (Along the pipeline will be two bins, one that will be covered by

a Buoy. The Vehicle can drop markers in either bin).

Figure 45 – The competition obstacle course

64

• Navigating to a specified sound source and surface within the zone of the
buried treasure.

• Recovering the treasure denoted by a “X” shaped PVC pipe.

4.2 The vehicle

Over 3 years of work the UCF team developed 3 types of vehicles, the Scout is the last
one.

It is small, lightweight, and highly maneuverable. At 20” wide, 11.5” tall,15” long, and
roughly 35 lbs. It requires only three thrusters for navigation:

one for depth control and two for speed and yaw control. The vehicle utilizes
embedded processors which offer high performance at very low power, with no operating
system overhead.

The vehicle thrust consist in:
• a vertical thruster mounted in the center of the vehicle responsible for depth

control
• a left and a right thrusters: they provide forward and backward propulsion.

Driving them in opposite directions allows the vehicle to rotate in place.

Scout uses two newly designed watertight cylindrical enclosures to hold all of the

vehicle’s circuit card assemblies. They’re each 12” long with a 6” outer diameter. The
enclosure mounted on the left side of the vehicle contains Scout’s batteries and power
electronics. The enclosure mounted on the right side of the vehicle contains Scout’s
processing platforms, Ethernet switches, and various sensor systems.

On the back there is a backplane that routes all the signals from the enclosures and
other components wherever they need to go. This allow minimal intrusion caused by
cables.

Figure 46 - The Scout

65

Figure 47 - The scout: hardware view

A user console is embedded in the top of the vehicle near the back. It contains an LCD

screen which displays parameters such as measured heading and depth, battery levels,
current mission state, etc.

The frame is strong, compact, and well-suited to the needs of the mission.

Scout’s computing architecture consists of several microprocessors and Digital Signal

Processors, each of which is responsible for a unique task. They communicate with each
other via a standard Ethernet network. All of Scout’s processors were chosen for their
small size, low power requirements, high performance, ease of programmability, and
instant-on behavior.

The AUV comprehends various types of sensors:

• The compass
• The depth sensor: a pressure sensor is used to measure the vehicle’s depth

Figure 48 – The Scout: the frame

66

• The light sensors: they are positioned inside the electronics enclosure so they
could receive light directly through the front lid. Four TAOS TSLR257 light-
to-voltage sensors are used to detect the position of the buoys.

• The Cameras: Scout has both forward and downward pointing cameras
• The Hydrophones: the vehicle has four new TC4013 hydrophones from Reson.

Each hydrophone consists of a piezo-electric ceramic transducer, packaged in a
small protective housing. The TC4013 is omni directional in both vertical and
horizontal planes. Its sensitivity and frequency response make it ideal to locate
the acoustic pinger. The TC4013 is shown in Figure

4.3 The idea
The task of the AUV is to follow a sound source wherever the Scout is. The sound

source of the competition was a pinger that emits a limited frequency sound every 1
second. This sound is catch by the Scout with four hydrophones.

4.3.1 The hydrophones

Figure 50 – The hydrophones pattern

The four hydrophones are positioned on the vehicle in a rough diamond shape pattern:
one on the front of the vehicle, one on the right side, one on the left side, and one in the
back. The number and placement of the hydrohpones was chosen to best triangulate

Figure 49 - The Scout: an Hydrophone

67

distance and heading of the vehicle from the acoustic pinger. The raw analog signal from
each hydrophone is fed into the hydrophone analog processing board. The amplitude of
each signal is first amplified to a desirable magnitude. It’s then fed through a digitally
programmable band pass filter. Eight dip switches can set their cutoff frequency
anywhere from 200 Hz to 50 kHz in 200 Hz steps. Fig. 51 shows the delayed output seen
between two filtered hydrophone signals.

The conditioned hydrophone signal is then passed to the Hydrophone Digital
processing Board. The incoming signals are triggered at a specific amplitude value to
digitize them. The triggered signals latch values from a counter. The Hydrophone
Processor reads these values and performs computations to calculate the pinger’s relative
heading and distance.

Fig.52 shows the hydrophone’s characteristics.

4.3.2 Issues

The 2007 competition and some further work on the Scout presented some issues,
especially when the AUV has to navigate to a specified sound source. The UCF team’s
work on this task presented some limits in the trajectory tracking: the AUV had a tracking

Figure 51 - An hydrophone's acquisition sample

Figure 52 - Hydrophone's characteristics

68

error of +/- 30°. They imputed this error to the low sampling frequency and the low speed
of the data’s treatment typical of the hardware adopted.

The purpose of this thesis is to use a faster technology, an FPGA board to reach better
results on the trajectory tracking.

4.4 The Mathematic Theory
The UCF team for the 2007 AUVSI competition found some precision issues in

following the ping route. This problem was imputed to the low frequency sampling
during the acquisition of the hydrophones signals.

Our objective is to handle 4 signals with a sampling rate of more than 1 MHz and then
processing them with the FPGA to obtain the delays between each one so that the future
algorithm can have some more rigorous data to calculate the route on.
4.4.1 The idea

Our work is focused on the acquisition of the ping signal from an underwater source.
This source is positioned on the objective that the AUV has to reach, so, the ping
indicates our route source. To listen to this ping the AUV has docked 4 hydrophones on
his frame. Once the signals are acquired by the hydrophones they are sent to a board for
signal conditioning to have a good shape to work with and then, they are sent to the A/D
board and the FPGA board.

To follow the route, the AUV compute an algorithm that use the signal delays as
inputs. Our objective is to extract this delay from the signal sources and make it available
to the AUV.
Figure 54 shows the flow diagram.

Figure 53 – The idea for the trajectory tracking

69

Figure 54 – The flow diagram for the delay extraction

4.4.2 Extracting the Delay
A way to succeed in extract the delay between two signal can be to analyze the cross
correlation between them.

4.4.2.1 Cross correlation [9]

In signal processing, cross-correlation is a measure of similarity of two waveforms as
a function of a time-lag applied to one of them. This is also known as a sliding dot
product or inner-product

The complex cross correlation of f(x) with g(x) is defined as () = () ∗ ∗() = ()

 ∗(−)

(1)
The definition can also be written as () = () ∗ ∗() = (+)

 ∗()

(2)

after changing the dummy variable of integration. The corresponding definition of cross
correlation for sequences would be [] = F[N + M]G∗[N]

(3)
Some authors define cross correlation as () = ()

 ∗(+)

(4)

70

The corresponding definition for sequences would be [] = F[N]G∗[N + M]

(5)

The Matlab function xcorr uses the second definition. Note that
 () = (−)

(6)

Example 1
Use the following real input sequences:
x = [1 2 3 4];
y = [-1 2 1 -1];
Matlab convolution:
conv(x,y)

ans =

 -1 0 2 3 9 1 -4
The following should be the first definition of cross-correlation:
conv(x,fliplr(y))

ans =

 -1 -1 1 2 8 5 -4
This should be the second definition of cross-correlation:
conv(fliplr(x),y)

ans =

 -4 5 8 2 1 -1 -1
and indeed it does match the results of xcorr:
xcorr(x,y)

ans =

 -4.0000 5.0000 8.0000 2.0000 1.0000 -1.0000 -1.0000

4.4.2.2 Fourier Transform of Cross-Correlation Function
Using the first definition of cross correlation, we can find its Fourier transform as
 () = () ∗()

(7)

71

Example 2
To insure linear convolution (rather than cyclic convolution) we must zero pad the

input sequences:
x = [1 2 3 4 0 0 0 0];
y = [-1 2 1 -1 0 0 0 0];
Now we generate the cross correlation (first definition) and check that it is a real

sequence so that we can eliminate the spurious small imaginary component due to round-
off

xc = ifft(fft(x).*conj(fft(y)));
max(abs(imag(xc)))

ans =
 1.0413e-15

xc = real(xc)

We use fftshift to display the results in the correct order

t = [0 1 2 3 -4 -3 -2 -1];
[fftshift(t)' fftshift(xc)']

ans =
 -4.0000 0.0000
 -3.0000 -1.0000
 -2.0000 -1.0000
 -1.0000 1.0000
 0 2.0000
 1.0000 8.0000
 2.0000 5.0000
 3.0000 -4.0000

Finally we compare to the results of xcorr

[xco,lags] = xcorr(x,y);
[lags' xco']

ans =

 -7.0000 0.0000
 -6.0000 0.0000
 -5.0000 -0.0000
 -4.0000 -0.0000
 -3.0000 -4.0000
 -2.0000 5.0000
 -1.0000 8.0000
 0 2.0000
 1.0000 1.0000
 2.0000 -1.0000
 3.0000 -1.0000
 4.0000 -0.0000

72

 5.0000 0
 6.0000 0.0000
 7.0000 0.0000
The results are the same if we change the sign of the lags.

Example 3

Consider the following complex sequences:
x = [1+3j 2 3-j 4+j]
x =
 1.0000 + 3.0000i 2.0000 3.0000 - 1.0000i 4.0000 + 1.0000i

y = [-1+j 2-j 1 -1-j]
y =
 -1.0000 + 1.0000i 2.0000 - 1.0000i 1.0000 -1.0000 - 1.0000i

We append zeros, as before, to insure linear convolution when using the finite discrete

fourier transform:

xz = [x zeros(1,4)];
yz = [y zeros(1,4)];

First we demonstrate the use of the Matlab function xcorr:

[xco, lags] = xcorr(x,y);
[lags' xco']

ans =

 -3.0000 -3.0000 + 5.0000i
 -2.0000 3.0000 - 4.0000i
 -1.0000 9.0000 - 0.0000i
 0 4.0000 - 0.0000i
 1.0000 -1.0000 -11.0000i
 2.0000 -1.0000 - 5.0000i
 3.0000 -4.0000 + 2.0000i

Next we demonstrate the use of the Fourier transform (based on first definition of

cross correlation):

xc = ifft(fft(xz).*conj(fft(yz)));
t = [0 1 2 3 -4 -3 -2 -1];
[fftshift(t)' fftshift(xc)']

ans =

 -4.0000 0 + 0.0000i
 -3.0000 -4.0000 + 2.0000i
 -2.0000 -1.0000 - 5.0000i

73

 -1.0000 -1.0000 -11.0000i
 0 4.0000 - 0.0000i
 1.0000 9.0000 - 0.0000i
 2.0000 3.0000 - 4.0000i
 3.0000 -3.0000 + 5.0000i

The results are the same if you change the sign of the lags in xcorr.
We also demonstrate the results obtained from direct convolution:

xcn = conv(x,fliplr(conj(y)));
xcn'
ans =

 -4.0000 + 2.0000i
 -1.0000 - 5.0000i
 -1.0000 -11.0000i
 4.0000
 9.0000
 3.0000 - 4.0000i
 -3.0000 + 5.0000i

4.4.2.3 Commutative Property of Cross Correlation
Cross correlation is non-commutative: () = ∗ (−)

(8)
using either definition of cross correlation

Example 4
Using the sequences from example 3, we have

xco = xcorr(x,y);
xco'
ans =

 -3.0000 + 5.0000i
 3.0000 - 4.0000i
 9.0000 - 0.0000i
 4.0000 - 0.0000i
 -1.0000 -11.0000i
 -1.0000 - 5.0000i
 -4.0000 + 2.0000i

xrev = xcorr(y,x);
xrev'

74

ans =

 -4.0000 - 2.0000i
 -1.0000 + 5.0000i
 -1.0000 +11.0000i
 4.0000 + 0.0000i
 9.0000 + 0.0000i
 3.0000 + 4.0000i
 -3.0000 - 5.0000i

The second example is the conjugate of the first in reverse order, as expected.
4.4.3 The practice result
The demonstration above is made to justify our future use of the cross correlation in
frequency domain.

Resuming

4.4.4 The Delay extraction
To extract the delay information from the cross correlation we must calculate the index

of the maximum. The cross correlation shape can move along the X axe depending on the
delay between the signals. Fig.56 shows a cross correlation between two identical signals:
the index is 0.

Figure 55 - Delay extraction scheme

Figure 56 - Cross correlation of two identical signals

75

Fig. 57 shows the cross correlation between 2 identical signal but one delayed ten

samples from the other. The maximum index move along the X axe showing the accurate
delay.

Figure 57 – Cross correlation of two delayed signals

4.5 The simulation scheme
To learn how to program an FPGA some training time must be spent. To do some DSP

with an Altera FPGA involves the use of the DSP Builder tool: a visual programming
language built on Simulink Matlab. Basically, the DPS Builder add a number of blocks
that can be translated to the FPGA language.

This simulation scheme works only on Simulink Matlab’s environment and simulate
the FPGA flow and the signal input. The objective of this scheme is to calculate the input
signals’ delay without considering the real FPGA’s programming issues as the language
coherency and the management of the hardware resources.

In this scheme (Fig. 58) the DSP Builder blocks (the ones with a blue edge), and the
Simulink ones are used together: in the real scheme, downloadable directly on the board
for his execution will be available only the DSP Builder blocks. These blocks have
corresponding translation in HDL language so that the board could be programmed.

One of the first problem encountered was that the Dsp Builder blocks are more logic
oriented and they don’t allow the same freedom of design (especially in DSP) that
Simulink gives. Often, to have not a higher DSP programming language, make us to use
some tricky scheme to substitute, for example, an obvious Simulink one block: a clear
example of this will be found on the last part of the scheme where a maximum must be
calculated (Cap. 4.5.8).

76

Fi
gu

re
 5

8
–

Th
e

sim
ul

at
io

n
sc

he
m

e

77

4.5.1 First blocks

These preemptive blocks are useful to manage various aspect. The first

block from the top is the clock one that can be used in the top level of our
design to set the base hardware clock domain for the DPS BUILDER
blocks. The second block is the compiler and is used to create and compile
a Quartus II project for our DSP BUILDER design, and to program the
design onto an Altera FPGA. The compiler has various function but not

useful in this part of the design, there will be explained in the real
scheme part. The third block is the board block, it allows the use of all

specific board blocks.
4.5.2 The simulated input

Figure 60 – The simulated input signal

The simulation first study is made on two delayed simple sinewaves to make things
easier. Anyway the generating sinewave has the same characteristics of the real one
except that it has a continuous and regular pattern. The signal, as the real one has a
frequency of 27 KHz and a testing amplitude of “100”; here the sampling frequency is 1.3
MHz anticipating the real sampling frequency adopted during the real work.

Figure 59 – Utility
blocks

78

4.5.3 Windowing [10]

When using FFT analysis to study the frequency spectrum of signals, there are limits
on resolution between different frequencies, and on detectability of a small signal in the
presence of a large one. There are two basic problems: the fact that we can only measure
the signal for a limited time; and the fact that the FFT only calculates results for certain
discrete frequency values (the 'FFT bins'). The limit on measurement time is fundamental
to any frequency analysis technique: the frequency sampling is peculiar to numerical
methods like the FFT.
 4.5.3.1 Limited measurement time

 The first problem arises because the signal can only be measured for a limited time.
Nothing can be known about the signal's behaviour outside the measured interval. We
have to assume something about the signal outside the measured interval, and the Fourier
Transform makes an implicit assumption that the signal is repetitive: that is, the signal
within the measured time repeats for all time. Most real signals will have discontinuities
at the ends of the measured time, and when the FFT assumes the signal repeats it will
assume discontinuities that are not really there. Since sharp discontinuities have broad
frequency spectra, these will cause the signal's frequency spectrum to be spread out.
4.5.3.2 Spectral leakage

It is easy to gain an insight by thinking about the special case of a pure sine wave. This
has a frequency spectrum which is a single spectral line: but the frequency spectrum
calculated by the FFT will show a spread out line. Each spectral line will be spread out in
the same way.

The spreading means that signal energy which should be concentrated only at one
frequency instead leaks into all the other frequencies. This spreading of energy is called
'spectral leakage'. Since spectral leakage is related to discontinuities at the ends of the
measurement time, it will be worse for signals that happen to fall such that there are large
discontinuities.

Spectral leakage is not an artifact of the FFT, but is due to the fact that the signal was
measured only for a finite time. For a sine wave to have a single line spectrum it must
exist for all time. Any practical method of calculating the frequency spectrum of a signal
suffers from spectral leakage due to the finite measurement time.

Spectral leakage is not related in any way to the fact of having sampled the signal, but
only to the finite measurement time. Spectral leakage causes at least two distinct
problems.

Figure 61 - The windowing scheme

79

First, any given spectral component will contain not just the signal energy, but also
noise from the whole of the rest of the spectrum. This will degrade the signal to noise
ratio.

Second, the spectral leakage from a large signal component may be severe enough to
mask other smaller signals at different frequencies.
4.5.3.3 The Window’s application
The effects of spectral leakage can be reduced by reducing the discontinuities at the ends
of the signal measurement time. This leads to the idea of multiplying the signal within
the measurement time by some function that smoothly reduces the signal to zero at the
end points: hence avoiding discontinuities altogether. The process of multiplying the
signal data by a function that smoothly approaches zero at both ends, is called
'windowing': and the multiplying function is called a 'window' function.
4.5.3.4 Some window examples [11]
The table lists, for various window functions, the following parameters:

Sidelobe level: The attenuation to the top of the highest side
lobe
Fall off: The asymptotic rate of fall off to the side lobe
Coherent gain: The normalized DC gain

Equivalent noise bandwidth: The bandwidth of a rectangular filter which
would let pass the same amount of broadband
noise

6 dB bandwidth: The bandwidth in which the window function
falls by 6 dB

Worst case processing loss: The ratio of input signal to noise to output signal
to noise, including scalloping loss for the worst
case frequency

Figure 62 - Characteristics for various window

80

We choose to use an Hann window that not compare in the table above.
This is the shape’s equation of the Hann window:
 () = 0.5 1 − cos 2 − 1

(9)

Fig. 63 shows the Hann window in function of time and his frequency response.

Figure 63 - Hann window in function of time and his frequency response

Fig. 64 shows the input signal after windowing.

Figure 64 - Windowed input signal

The length of the window is chosen to fit the FFT length.

81

4.5.4 The Fast Fourier Transform

Altera Dsp builder offer an FFT block as a Megacore-Function. Megafunctions are
ready-made, parameterized, pre-tested blocks of intellectual property that are optimized to
make efficient use of the architecture of the targeted programmable device. By using
megafunctions, designers can focus more time and energy on improving and
differentiating their system-level product, rather than redesigning common functions.
Megafunctions are supported in any CPLD design methodology, including existing
hardware description language (HDL) design. When implementing complex system
architectures, using megafunctions dramatically shortens design time by allowing the
reuse of existing intellectual property. Megafunctions provide total solutions by targeting
specific application areas and providing optimized performance, significantly increasing
design productivity and reducing time-to-market.

4.5.4.1 Transform Architecture [12]

The FFT MegaCore function is a high performance, highly parametrizable Fast Fourier
transform (FFT) processor. The FFT MegaCore function implements a complex FFT or
inverse FFT (IFFT) for high-performance applications. The FFT MegaCore function
implements one of the following architectures:

• Fixed transform size architecture
• Variable streaming architecture

4.5.4.1.1 Fixed Transform Size Architecture

The fixed transform architecture FFT implements a radix-2/4 Decimation In
Frequency (DIF) FFT fixed-transform size algorithm for transform lengths of 2m where 6
≤ m ≤ 14. This architecture uses block-floating point representations to achieve the best
trade-off between maximum signal-noise ratio (SNR) and minimum size requirements.
The fixed transform architecture accepts as an input, a two’s complement format complex
data vector of length N, where N is the desired transform length in natural order; the

Figure 65 - The FFT scheme

82

function outputs the transform-domain complex vector in natural order. An accumulated
block exponent is output to indicate any data scaling that has occurred during the
transform to maintain precision and maximize the internal signal to noise ratio. Transform
direction is specifiable on a per-block basis via an input port.

4.5.4.1.2 Variable Streaming Architecture

The variable streaming architecture FFT implements a radix-22 single delay feedback
architecture, which you can configure during runtime to perform FFT algorithm for
transform lengths of 2m where 6 ≤ m ≤ 14. This architecture uses either a fixed-point
representation or a single precision floating point representation. The fixed-point
representation grows the data widths naturally from input through to output thereby
maintaining a high SNR at the output. The single precision floating point representation
allow a large dynamic range of values to be represented while maintaining a high SNR at
the output. For more information on radix-22 single delay feedback architecture, refer to
S. He and M. Torkelson, A New Approach to Pipeline FFT Processor, Department of
Applied Electronics, Lund University, IPPS 1996.

The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier

transform of a discrete-time sequence at N evenly distributed points ωk = 2πk/N on the
unit circle.

Equation 10 shows the length-N forward DFT of a sequence x(n):
 [] = x(n)

 e
(10)

Where k = 0,1,…N-1

Equation 11 shows the length-N inverse DFT:
 () = 1 X[k]

 e
(11)

Where n = 0,1,…N-1

The complexity of the DFT direct computation can be significantly reduced by using

fast algorithms that use a nested decomposition of the summation in equations one and
two—in addition to exploiting various symmetries inherent in the complex
multiplications. One such algorithm is the Cooley-Tukey radix-r decimation-in-frequency
(DIF) FFT, which recursively divides the input sequence into N/r sequences of length r
and requires logrN stages of computation.

Each stage of the decomposition typically shares the same hardware, with the data
being read from memory, passed through the FFT processor and written back to memory.
Each pass through the FFT processor is required to be performed logrN times. Popular

83

choices of the radix are r = 2, 4, and 16. Increasing the radix of the decomposition leads
to a reduction in the number of passes required through the FFT processor at the expense
of device resources.

A radix-4 decomposition, which divides the input sequence recursively to form four-
point sequences, has the advantage that it requires only trivial multiplications in the four-
point DFT and is the chosen radix in the Altera FFT MegaCore function. This results in
the highest throughput decomposition, while requiring non-trivial complex
multiplications in the post-butterfly twiddle-factor rotations only. In cases where N is an
odd power of two, the FFT MegaCore automatically implements a radix- 2 pass on the
last pass to complete the transform.

To maintain a high signal-to-noise ratio throughout the transform computation, the
FFT MegaCore function uses a block-floating-point architecture, which is a trade-off
point between fixed-point and full floating point architectures.

In a fixed-point architecture, the data precision needs to be large enough to adequately
represent all intermediate values throughout the transform computation. For large FFT
transform sizes, an FFT fixed-point implementation that allows for word growth can
make either the data width excessive or can lead to a loss of precision.

In a floating-point architecture each number is represented as a mantissa with an
individual exponent—while this leads to greatly improved precision, floating-point
operations tend to demand increased device resources.

In a block-floating point architecture, all of the values have an independent mantissa
but share a common exponent in each data block. Data is input to the FFT function as
fixed point complex numbers (even though the exponent is effectively 0, you do not enter
an exponent).

The block-floating point architecture ensures full use of the data width within the FFT
function and throughout the transform. After every pass through a radix-4 FFT, the data
width may grow up to log2 (4√2) = 2.5 bits. The data is scaled according to a measure of
the block dynamic range on the output of the previous pass. The number of shifts is
accumulated and then output as an exponent for the entire block. This shifting ensures
that the minimum of least significant bits (LSBs) are discarded prior to the rounding of
the post-multiplication output. In effect, the block-floating point representation acts as a
digital automatic gain control. To yield uniform scaling across successive output blocks,
you must scale the FFT function output by the final exponent.

The variable streaming architecture uses a radix 22 single delay feedback architecture,
which is a fully pipelined architecture. For a length N transform there are log4(N) stages
concatenated together. The radix 22 algorithm has the same multiplicative complexity of
a fully pipelined radix-4 architecture, however the butterfly unit retains a radix-2
architecture. The butterfly units use the DIF decomposition. The variable streaming
architecture uses either fixed point of single precision floating point data representation.
Fixed point representation allows for natural word growth through the pipeline. The
maximum growth of each stage is log2(4 √2) = 2.5 bits, which is accommodated in the
design by growing the pipeline stages by either 2 bits or 3 bits. After the complex
multiplication the data is rounded down to the expanded data size using convergent
rounding.

The floating point internal data representation is single precision floating point (32 bit,
IEEE 754 representation). Floating point operations are costly in terms of hardware
resources. To reduce the amount of logic required for floating point operations, the
variable streaming FFT uses "fused" floating point kernels. The reduction in logic occurs
by fusing together several floating point operations and reducing the number of
normalizations that need to occur.

84

Some applications for the FFT require an FFT > user operation > IFFT chain. In this
case, choosing the input order and output order carefully can lead to significant memory
and latency savings. For example, consider where the input to the first FFT is in natural
order and the output is in bit-reversed order (FFT is operating in engine-only mode). In
this example, if the IFFT operation is configured to accept bit-reversed inputs and
produces natural order outputs (IFFT is operating in engine-only mode), only the
minimum amount of memory is required, which provides a saving of N complex memory
words, and a latency saving of N clock cycles, where N is the size of the current
transform.

4.5.4.2 FFT Processor Engine Architectures

The FFT MegaCore function can be parameterized to use either quad output or single-
output engine architecture. To increase the overall throughput of the FFT MegaCore
function, you may also use multiple parallel engines of a variation. This section discusses
the following topics:

• Radix 22 single-delay feedback architecture
• Quad-output FFT engine architecture
• Single-output FFT engine architecture

4.5.4.2.1 Radix-22 Single Delay Feedback Architecture

Radix-22 single delay feedback architecture is a fully pipelined architecture for
calculating the FFT of incoming data. It is similar to radix- 2 single delay feedback
architectures. However, the twiddle factors are rearranged such that the multiplicative
complexity is equivalent to a radix-4 single delay feedback architecture. There are
log2(N) stages with each stage containing a single butterfly unit and a feedback delay unit
that delays the incoming data by a specified number of cycles, halved at every stage.
These delays effectively align the correct samples at the input of the butterfly unit for the
butterfly calculations. Every second stage contains a modified radix-2 butterfly whereby a
trivial multiplication by –j is performed before the radix-2 butterfly operations. The
output of the pipeline is in bit-reversed order. The following scheduled operations in the
pipeline for an FFT of length N = 16 occur.

1. For the first 8 clock cycles, the samples are fed unmodified through the
butterfly unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data
from the delay feedback unit and the incoming data. The higher order
calculations are sent through to the delay feedback unit while the lower
order calculations are sent to the next stage.

3. The next 8 clock cycles feeds the higher order calculations stored in the
delay feedback unit unmodified through the butterfly unit to the next stage.
Subsequent data stages use the same principles. However, the delays in the
feedback path are adjusted accordingly.

Subsequent data stages use the same principles. However, the delays in the feedback
path are adjusted accordingly.

85

4.5.4.2.2 Quad-Output FFT Engine Architecture

Figure 66 - Quad-Output FFT Engine Architecture

For applications where transform time is to be minimized, a quad-output FFT engine
architecture is optimal. The term quad-output refers to the throughput of the internal FFT
butterfly processor. The engine implementation computes all four radix-4 butterfly
complex outputs in a single clock cycle. Fig. 66 shows a diagram of the quad-output FFT
engine. Complex data samples x[k,m] are read from internal memory in parallel and re-
ordered by switch (SW). Next, the ordered samples are processed by the radix-4 butterfly
processor to form the complex outputs G[k,m]. Because of the inherent mathematics of
the radix-4 DIF decomposition, only three complex multipliers are required to perform
the three nontrivial twiddle-factor multiplications on the outputs of the butterfly
processor. To discern the maximum dynamic range of the samples, the four outputs are
evaluated in parallel by the block-floating point units (BFPU). The appropriate LSBs are
discarded and the complex values are rounded and re-ordered before being written back
to internal memory.

4.5.4.2.3 Single-Output FFT Engine Architecture

For applications where the minimum-size FFT function is desired, a single-output

engine is most suitable. The term single-output again refers to the throughput of the

Figure 67- Single-Output FFT Engine Architecture

86

internal FFT butterfly processor. In the engine architecture, a single butterfly output is
computed per clock cycle, requiring a single complex multiplier.
4.5.4.3 I/O Data Flow architecuteres
The Altera Megacore FFT supports 4 types of architectures:

• Streaming: allows continuous processing of input data, and outputs a
continuous complex data stream without the requirement to halt the data flow
in or out of the FFT function.

• Variable Streaming: allows continuous streaming of input data and produces a
continuous stream of output data similar to the streaming architecture.

• Buffered Burst: it requires fewer memory resources than the streaming I/O data
flow architecture, but the tradeoff is an average block throughput reduction.

• Burst: it operates similarly to the buffered burst architecture, except that the
burst architecture requires even lower memory resources for a given
parameterization at the expense of reduced average throughput.

For our type of analysis, that implies a real time acquisition we choice a Streaming
architecture and therefore a Quad output Architecture. The only other parameter we set is
the FFT length that was 1024 point long, the other parameters involve a resource analysis
that we have done during the study of the real scheme.
To work in the right way the FFT Megacore requires a specific timing that we can see in
the Fig. 68

We decided to work initially with a 1024 point FFT as a trade off between

computation time and accuracy.
Fig. 69 shows the result of one cycle of the FFT Megacore. You can see the imaginary

part on the first graphic, the real part on the second graphic and the timing of an FFT
window on the third graphic. The output of the FFT is observed in a time domain as a
data flow to manage the timing of the FFT.

Figure 68 - FFT mecagore Timing

87

Figure 69 – FFT output. From the top we can see the imaginary response then

4.5.5 The product between the FFT outputs
In this scheme is developed the logic multiplication between the first FFT output and

the complex conjugate of the second FFT output

Figure 70 - The product scheme

4.5.6 The inverse Fast Fourier Transform
To calculate the cross correlation between the two signal an IFFT is necessary. The FFT
Altera Megacore allow us to use it also as an inverse transform. The timing of this IFFT is
taken from the previous FFT and modified considering the logic delays introduced by the
complex multiplication
4.5.7 The cross correlation
As we see in the cross correlation example to display correctly the waveform we must
manipulate the output data vector switching the 2 half parts. The delay is inserted to
compensate other logic delay to display correctly the cross correlation. The buffer load
1024 points to make a valid input for the cross correlation “sink” of Matlab.

88

Fig.72 shows the cross correlation output.

The side pattern are given by the harmonic of the windowing function

This shape has a quite good resolution. The precision of the cross correlation is linked
to various factor as the FFT length and the sampling time.

 Fig. 73 shows a Cross correlation made with a 512 point FFT, we can see a decreased
number of peaks, this lows the performances at the increasing of the delay between
signals, during the future calculus of the index of the maximum.

Fig. 74 shows a lowered sample rate: we gain a more accurate cross correlation at the
cost of a low signal resolution and then bounding our chance to analyze little delays.

Figure 71 - Cross correlation information extraction

Figure 72 - Cross correlation: 1024 point FFT length

89

Figure 73 – Cross correlation: 512 point FFT length

Figure 74 – Cross correlation: decreased sample rate

Analyzing these graphics we understand that a trade-off choice has to be made between
resolution and accuracy though a higher FFT length is anyway a good choice to improve
accuracy.

4.5.8 Delay Calculation
To calculate the delay between the two signals we have to extract the

max data from the cross-correlation and his index that will represent the
delay itself. Working only on Matlab Simulink this can be a really easy

step because it use a simple block that can calculate directly both
results (see fig.75).

Using the DSP Builder, we must calculate it only using simple
logic functions then without using some useful tool like a derivative

block. The idea is to compare every sample with the previous one holding in memory the
maximum with a logic loop and then to extract the index of that maximum. This has to
be done for each (FFT) period of analysis. In Fig.76 the top part cares about to calculate
the maximum and the part in the bottom cares about calculate the index of that maximum.

Figure 75 –
Simulink block to

calculate the
maximum

90

4.5.9 Results
We made some tests to understand if the algorithm is robust and until what

performance.

Delay samples

To check the algorithm accuracy we tested various couple of signals with different
delays. Having a sampling rate of 1.3 MHz one sinewave period is made of 48 sample so
the maximum delay between the 2 signals is 48 samples. Indeed we expect a maximum
observable delay of 24 sample because after half signal the algorithm see the second
signal delayed regard of the first one instead of the opposite. Anyway, the algorithm is
able to observe a direct delay untill 32 samples, after, it find a negative delay as explained
before.

Noise

To evaluate the robustness of the algorithm we inserted a simple noise input in both
channels: the regular sinewave and the delayed one.

In Fig.77 we can see the windowed input signals with a noise variance of 500. The
algorithm is considered to be really robust in simulation. With a danger noise like the one
inserted the delay is estimated with a discard of only one sample. With a noise variance of
100 the algorithm is perfectly stable.

Figure 76 – Delay calculation scheme

91

A more real signal

We decide also to simulate the real ping signal that the AUV has to deal with.
On the figure below you can see the sinewave shape. This sinewave ping has a length of
5ms and repeat every 1 sec. We tried to simulate the channel attenuation modulating the
sinewave with another sinewave. This change of signal doesn’t affect the algorithm
performance that remains stable.

Figure 77 – Windowed input signal with noise

Figure 78 – The attenuated signal simulation

92

Fft length

Here we analyze the changes in front of a variable FFT length continuing the speech
open in the cross correlation paragraph.

We must notice that, using a constant sample rate, to change the FFT length mean to
change the number of signal period we are analyzing. To limit excessively the FFT
window mean to have few samples to work on and so in addition to not have a very
accurate analysis, every noise peak could weight on the cross correlation shape

The following tests are made with a

delay between signals of 20 samples

The first test is made with a FFT

length of 256 point. As we can se in the
figure the cross correlation is not really
accurate to extract good information
from it. In fact the delay extracted suffer
form 1 sample error

In the second picture we add a noise
input with a variance of 500. The cross
correlation is less accurate then before
and the delay error estimated oscillate
between 3 and 0.

Here we can see a cross correlation with a
512 point FFT. The cross correlation is
quite accurate and we don’t have any delay
error.

Figure 79 – Cross correlation of the
signals: 256 point length FFT

Figure 80 – Cross correlation of the
disturbed signals: 256 points length FFT

Figure 81 – Cross correlation of the signals:
512 point length FFT

93

Introducing the same noise, the cross
correlation results less conditioned.
The delay error now oscillates
between 0 and 1.

Increasing the FFT length, the
cross correlation improves his
accuracy .

Figure 84 - Cross correlation of the disturbed signals: 1024 point length FFT

Figure 82 – Cross correlation of the disturbed
signals: 512 point length FFT

Figure 83 - Cross correlation of the signals: 1024
point length FFT

94

As we can see with a 1024 point FFT length cross correlation the noise sensitivity is

lowered again. The delay error is still 1 sample maximum.
Here we encounter a new interesting issue: increasing the FFT length will increase also

the cross correlation’s number of peaks so the Amplitude difference between next peaks
become smaller too. We understand that little fluctuations of the maximum’s next peaks
can be dangerous in the finding of the overall maximum, generating a completely wrong
calculus of the delay. For this reason we want to underline that increasing the FFT length
doesn’t mean to improve the robustness perfomances of the algorithm: a trade off has to
be made between noise sensitiviy and the noise error threshold.

4.5.10 Simulation Conclusions

The simulation ended successfully for the objective of our project. Two delayed
signals with a sample rate greater than 1 MHz are analyzed. The delay between these
signals are calculated only using tools compatible with our FPGA board. The simulating
performance are good enough to start to build the real scheme.

95

5. IMPLEMENTATION, EXPERIMENT, RESULTS

This chapter shows the experimental part of this thesis: this involves the use of the

whole hardware. The DAQ board generates the signals that have to be analyzed. The A/D
board , timed by the FPGA, will digitalize and send them to the FPGA board. The
simulation scheme will be optimized to be fitted to the FPGA board.

5.1 The input signal generation
The NI DAQ board is programmable in LABVIEW. We use this powerful tool to

generate our simple signals
Fig. 85 shows how the two signals are created and tested. The NI USB 6251 allow to

use the DAQ assistant: this is a wizard manager that allow us to configure the I/O in some
simple guided steps. Furthermore, to generate the 2 signals, a pre-built block called
Simulate signal is used. The signal has a Frequency of 27 KHz, an offset of 2V and an
amplitude of 0,7V.

Figure 85 – Labview scheme for the simulated input signals

Fig.86 shows the two signals generated, the second one has a phase delay of 90

degrees.

Figure 86 - The signals generated

96

5.1.1 An acquisition tool
It’s important to spend some words on a vital tool of the DSP Builder: the Signal Tap

II. It is our DSP builder’s tool to catch the board’s signals while the board is working.
This logic analyzer helps debug an FPGA design by probing the state of the internal

signals in the design without the use of external equipment. Defining custom trigger-
condition logic provides greater accuracy and improves the ability to isolate problems.
The SignalTap II Embedded Logic Analyzer does not require external probes, or changes
to the design files to capture the state of the internal nodes or I/O pins in the design. All
captured signal data is conveniently stored in device memory until the designer is ready to
read and analyze the data.

This can be a really useful tool, the only issues is that, using FPGA hardware, it will
steal some memory and logic resources from our availability, this can be a problem if in
the future we will have some hardware restriction.

Figura 87 - Memory usage of Signal Tap II

5.2 Sampling [13]
The A/D board developed for our simulation need to be driven by an external source.

There are some parameters to respect to make work the A/D converter in the right way
especially the timing characteristics of the driving signal.

The A/D converter has various type of driving modes: we used the parallel mode 2
read cycle.

Fig.88 shows a timing diagram for the AD7482 operating in Parallel Mode 2

Figure 88 – Parallel mode 2 timing for the AD7482

In Parallel Mode 2, the data in the output register is not updated until the next falling

edge of /CONVST . The BUSY output pin shows the working time of the A/D converter.

97

Figure 89 - Timing characteristics for the AD7482

We used the FPGA board to generate the driving signal. We have created a scheme to

drive the board and to watch the sampled signals .

98

Fig. 90 shows the DSP Builder timing and Observation scheme.
On the left part we can see the observation scheme. Twelve input ports route the

twelve input bits’ signal in the Signal Tap II analyzer (the output ports are need by the
Signal Tap II too). The 12 bit output is practically useless, we put it there only for a
Signal Tap requirement, it needs a sort of output to work correctly.

On the right part a simple square signal drive /CONVST pin of the A/D board.
To create that signal we have used the internal cloak of the FPGA. The FPGA’s

frequency clock range go from 10 MHz to 500 MHz.

Figure 90 - Acquisition test scheme

99

Fig.91 shows the timing for a 1.27 MHz acquisition. Both channels watch the bit
signals. The assertion happens on down. The first signal from the top is the /CONVST
timing signal generated from our FPGA. It suffers from some noise and a fixed over-
elongation. The bottom one is the BUSY signal, it represent the time the A/D board takes
for an acquisition cycle: it is the answer to our input /CONVST. The length of our
/CONVST signal exceeds the recommended setup mode but doesn’t interfere with the
consequent samples because our real sample time is slower than the fastest one.

Figure 91 - AD7482 timing for a 1.27 MHz acquisition

Fig.92 shows the corresponding signal acquisition catch with Signal TAP II: we are
looking at 8000 samples. This acquisition is quite good: only some spikes appear. These
could be easily cut off with a simple threshold or with a derivative one to be more
accurate. We decided to not apply the threshold to test the resilience of our algorithm.

Figure 92 - Signal Tap II signal acquisition

100

Fig. 93 shows what’s happen raising the sampling time. The BUSY answer of the
board is not really accurate maybe suffering more form noise respect of a smaller
sampling CONVST input.

Figure 93 - AD7482 timing increasing sampling frequency

Fig. 94 shows the corresponding sampled signals. As we can see they suffer of a high
noise. This signal is not suitable for our future analysis without a proper signal processing
like some filtering. So we decided to use the first sampling also because it fits our needs
and we don’t need of faster sampling time at least for our first objectives.

Figure 94 - Signal Tap II acquisition with an increased sampling fequency

5.3 The Real Scheme
For the real scheme implementation we must start from the simulation scheme but

taking in account the other side, the real part of the experiment. We will have to create the
whole real scheme built from the simulation one, dealing with real issues as resource
management, real clock and observation of the output.

101

Fi
gu

re
 9

5
–

Th
e

wh
ol

e
sc

he
m

e

102

103

To build the real scheme a lot of consideration has to be made.
First of all the scheme has to be compiled to be translated in HDL language to program

the FPGA board. The compiler works on 3 phases:

1. Create a Quartus II project
2. Run the Synthesis
3. Run the Fitter
4. Program the FPGA

On phase two the compiler translate the Simulink scheme in HDL language. On phase

three the compiler compare and analyze the resources need for the scheme created with
the ones of our board.

To make the visual algorithm readable for the compiler only DSP builder blocks must
be used. So all the subsystem has to be decomposed and all the simulink block has to be
translated with the DSP builder ones.

For example:

è

This shows that sometimes also a simple block must be translated in an understandable
language for the compiler, as in this case, where a Simlink square signal generator must
be translated in a DSP Builder step signal with a delayed reset input. Also from this
example we can understand how much work has to be made to improve the DSP Builder
software to make it more friendly for a Matlab Simulink user.

In the final scheme we substitute the simulated input signal with a 12-bit input for each
signal: each port catches an input bit from the parallel port and then, together, they create
the signal bus.

Two are the main issues working with the real scheme:

1. Timing
2. Resource management

5.3.1 Timing
When we work only on DSP builder some consideration has to be made. First we are

not using any more the sampling time of Simulink and all the blocks are timed by the
internal clock of the board. Basically we need a specific clock for two parts: the timing of
the A/D board and the timing of the FFTs. The clock block establish the base clock of the
board, in our case is 20 ns. We must obtain two different clocks from it. We use a PLL
(Phase-Locked Loop) block: it synthesizes a clock signal that is based on a reference
clock, it generates internal clocks that operate at frequencies that are multiples of the
frequency of the system clock.

This block has some limitation that link together the various clocks generated, the
width between maximum clock division time and multiplication time is limited. We have
chosen a trade off that was also considered in the sampling time chosen for the A/D
sampling.

Figure 96 – Dsp builder translation of a
Simulink block

104

So for the FFT timing we used a 80 ns clock time, really slower in front of the 2.5 ns
used for the A/D clock time. The rest of the scheme is synchronized considering the FFT
clock.

Another really important timing issue is the sync of the whole scheme. On the first part
of the scheme we have two channels working in parallel that merge in a common IFFT
timed by one of the previous FFT, this has created some issues in timing. We have
inserted some delay blocks to sync the FFT and the IFFT ‘s analyzing window with the
data flow.

5.3.2 Resource managing
This is an aspect that we were not able to deal with during simulation. The objective of

the resource management is to have the maximum performance possible from the scheme
using the smaller number of resources.

The DSP Builder gives two tools to deal with the memory resources: the first one is
the “fitter” tool of the compiler: his function is to compare our resource usage with the
board one and in case of error to display some useful hints to decrease the resource usage.
The other tool is to use the resource usage block: if a compiling sequence is accomplished
it can display a summary and a detailed description for the resource usage of the actual
scheme.

There are two main resource that we have to take care of: logic cells and memory
(especially the M4K memory blocks).

Initially we had some issues fitting our algorithm scheme, in fact the board resource
seem to not be enough to contain it. We had to economize on resource to load on the
board at least the analysis of two signals. Speaking of logic cells the main problem is
about the FFT megacores that take a lot of resources. We show an example of the FFT
megacore performance.

Performance varies depending on the FFT engine architecture and I/O data flow. All
data represents the geometric mean of a three seed Quartus II synthesis sweep. Fig.97
shows the streaming data flow performance, using the 4 mults/2 adders complex
multiplier structure, for width 16, for Cyclone III devices that is the same for our Cyclone
II devise.

Figure 97 – Performance with streaming data flow engine architecture – Cyclone III

Devices

The parameters to work on are:
• I/O data flow
• Transform length
• The FFT structure: 4 mults/2 adders or 3 mults 5 adders
• Where to implement the multipliers: on DSP blocks (very limited resource) on

logic resource or with a mix of both

105

Unfortunately our streaming architecture is a fixed parameter given by our restriction
to work in real time. The streaming data flow is the most expensive in fact of resources,
the other data flows types could have allowed to decrease the resource usage. For
instance we show in Fig. 98 the resource usage list with the burst data flow architecture,
using the 4 mults/2 adders complex multiplier structure, for data and twiddle width 16, for
Cyclone III devices.

Figure 98 – Resource usage with the burst data flow architecture – Cyclone III

Devices

Talking about the transform length we had to choose a tradeoff between windows
length (so the accuracy of the cross correlation) and resource usage. After the whole
analysis we decided for a 512 point length FFT: it was the maximum length reachable
considering the resource usage of a reasonable acquisition with Signal tap II.

106

Fig.99 shows what the FFT is going to analyze, the Hann windowed input signal. As
we can see from the figure the windowing on a signal with our characteristics, makes to
loose the side lobe accuracy making the FFT future work harder, because it will have to
analyze less accurate periods of that signal.

Figure 99 – Windowed input signal

To decrease further the logic usage, we decided to use the “3 mults/5adders structure
The Dsp blocks are a very limited resource, there are only 35 blocks available. They

allow us to decrease the logic cost heavily but they are not enough to use them in all the
FFTs.

With all these choices we succeed to create a working real scheme. A limitation comes
out from this study: to have an acceptable processing, only 2 inputs can be analyzed with
this FPGA board, due to the limited resources. Anyway, they are enough to understand
the good implementation of our work and if it could be a good idea to move towards this
solution for this kind of DSP.

107

Fig.100 shows the resource usage block of the FPGA board

Figure 100 - resource usage of the FPGA

The resource that result critics are logic cells(31345 on 35000) and M4Ks memory

block (99 on 105).
Fig. 101 shows as instance the delay calculation for two signals with a phase delay of

90°. The output is constantly a delay of 12 sample that is what we was expecting for a 90°
phase delay.

We notice that the channel and A/D noise doesn’t interfere in a good delay calculation:
the windowing has a good role eliminating our input noise that was made of peaks for the
most part.

Figure 101 - The delay calculated

108

5.4 Final Discussion and Future work
The purpose of this thesis should be ended, the tools in our possession don’t allow us

to improve further the performance of the DSP analysis. A lot of improvements could be
made with better hardware and working with the real AUV, dealing with other real issues
not treated here.

We formulate a list of points that the future workers should have to deal with:
• A new FPGA has to be chosen: you will have to deal with the FPGA size

and the SCOUT cylindrical enclosures. Choose an FPGA with really better
performance focusing on number of Logic Elements and RAM. To build our
algorithm to calculate the 6 delays you’ll need around 130000 logic
elements. Anyway we suggest to direct towards an FPGA with more LE.
Actual HIGH class FPGA should have around some millions of LE.
Increasing the FFT length will increase your memory usage heavily.

• Dealing with the real acquisition will require more accuracy and
performance from the algorithm, try to improve the performances increasing
the A/D number of bits and the FFT length.

To enumerate some more purpose we decide, as we did for the simulation scheme, to

build a signal that would try to emulate, in an easy way, the real hydrophone signal. This
is only a preemptive study to understand what kind of work would have done when
working with the real signal.

As in the simulations scheme we create a sinewave modulated with another sinewave
to simulate the attenuation of the communication channel, in our case the water.

Fig.102 shows, on the first graphic, a zoom of the two base signals and on graphic two
and three one ping of both signals.

Figure 102 – From the top: real signal simulated zoom, two pings of the signal

We tried to calculate the delay between these two signals but the result was not accurate
like the one with the standard sinewave: only occasionally the real delay is catch, we deal
with an error of 5 samples often .

109

We can understand this behavior looking at the windowed input signal on the following
figures.

Figure 103: Real signal windowed

These figures represent random signal windows: first of all we notice that the shape
are really not regular and they have not the same accuracy. Doing some tests we saw that
we can work on the first shape with an FFT also if the sinewave periods analyzed are few
and the side lobes are attenuated. As we easy understand we can’t work on a shape like
the one on the second figure, the shape is really flat and doesn’t carry enough
information. We impute the bad shape to the most attenuated parts of the real sinewaves.

We formulate another three point to focus to solve this kind of issues:

• The best solution could be to improve the FFT length, to increase the
working data that the FFT has to deal with. We remember that in our
simulation a low FFT length is chosen only cause the limited resource of our
FPGA board

• An easy solution could be only to analyze the less attenuated part of the
signal so that the signal shape can be the best as possible

• A preemptive action could be to work on the signal shape before entering
our algorithm. In this way we could recover the worst part of our signals.

The last study that can be made (but really not less important!), is born from the last
paragraph of chapter 4.5.9: a trade off between FFT length and noise sensitivity could be
studied to choose the perfect configuration making the Signal Processing more accurate
using less resource as possible. We remember that, using less FPGA resources, it means
to use less energy resources in the future, improving the autonomy of the vehicle (one of
the critical issue of an AUV project).

110

6. CONCLUSIONS

A preemptive and experimental study is made to improve the UCF Robotic team’s

work on the AUVSI competition of 2007. The thesis focused on the trajectory tracking
objective of the competition. The state of art is analyzed and a new solution is chosen to
give the AUV new tracking performances. An FPGA is chosen for the Signal Processing
to go beyond the previous limits. We analyzed the FPGA market to understand where the
trend is going to, and to choose a board according to our experimental needs.

An algorithm based on a cross correlation analysis is created, and tested on computer
simulation and with experimental tools. The algorithm creation was limited by the
hardware chosen but the experimental results are exhaustive to make the FPGA solution a
good choice for an underwater signal processing. The algorithm is accurate and has a
good noise rejection.

A real experiment with real hydrophones signals is not done yet. This is left to who
will deal with the real AUV and with more real issues

Lot of improvements can be made with a new hardware and new founds. The FPGA
world is actually in full evolution and can give a new range of solutions and ideas for
future analysis.

111

BIBLIOGRAFY

[1] Alt, C. Autonomous Underwater vehicles. Retrieved from http://www.geo-
prose.com/ALPS/white_papers/alt.pdf

[2] Blidberg, D. The Development of Autonomous Underwater Vehicles (AUV).
Retrieved from http://ausi.org/publications/ICRA_01paper.pdf abgerufen

[3] Panez, R. (2004). Simplified method to obtain navigational information. Retrieved
from http://www.mil.ufl.edu/publications/thes_diss/Rolando_Panez_thesis.pdf
abgerufen

[4] Vines Faria de Lima, F., & Massatoshi Furukawa, C. Development and Testing of
an Acoustic Positioning System – Description and Signal Processing.

[5] Postolache, O., Girao, P., & Pereira, M. Underwater Acoustic Source Localization
Based on Passive Sonar and Intelligent Processing.7

[6] FPGA Tutorial. Retrieved from http://www.tutorial-reports.com/book/print/260
[7] Acromag. Custom board level solutions.
[8] Sean Bean, J. H. (2007). SCOUT, The University of Central Florida’s 2007

Autonomous Underwater Vehicle.
[9] Loomis, J. S.. Cross Correlation. Retrieved from

http://www.johnloomis.org/ece561/notes/xcorr/xcorr.html abgerufen
[10] BORES Signal Processing. FFT windows Function
[11] Window function. Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Window_function abgerufen
[12] Altera. FFT MegaCore Function - User Guide.
[13] Devices, A.. AD7482. Retrieved from http://www.analog.com/static/imported-

files/data_sheets/AD7482.pdf abgerufen
[14] Altera. Introduction to the Quartus II Software.

http://www.geo
http://ausi.org/publications/ICRA_01paper.pdf
http://www.mil.ufl.edu/publications/thes_diss/Rolando_Panez_thesis.pdf
http://www.tutorial-reports.com/book/print/260
http://www.johnloomis.org/ece561/notes/xcorr/xcorr.html
http://en.wikipedia.org/wiki/Window_function
http://www.analog.com/static/imported

112

APPENDIX A – HOW TO PROGRAM AN FPGA [14]

The first step to use the board that must accomplish to our project is to find a way to
manage it. The Altera Corporation furnish a global software for their FPGAs that can fit
the most of needs. This software is the Quartus 2.

QUARTUS 2

Due to the significant increase in FPGA device densities over the last few years, designs
are increasingly complex and may involve multiple designers. The inherent flexibility of
advanced FPGAs means that the pin layout, power consumption, and timing performance
for each design block are all dependent on the final design implementation. The system
architect must resolve these design issues when integrating design blocks, often leading to
problems that affect the overall time to market and thereby increase cost. Many potential
problems can be solved earlier in the design cycle by selecting the optimal device and
programming method, properly planning I/O pin locations, estimating power
consumption, selecting appropriate third-party tools, planning for in-system debugging
options, performing good design partitioning for incremental compilation, and obtaining
early timing estimates.

The first step in using Quartus2 Software is to consider our design priorities. What are the
important factors for our design? More device features, density, or performance can
increase system cost. Signal integrity and board issues may impact I/O pin locations.
Power, timing performance, and area utilization affect each other, and compilation time is
affected by optimizations for these factors. The Quartus® II software optimizes designs
for the best average results, but we can change settings to focus on one aspect of the
design results and trade off other aspects.

Design flow

The Altera Quartus II design software provides a complete, multiplatform design
environment that easily adapts to our specific design needs. It is a comprehensive
environment for system-on-a-programmable-chip (SOPC) design. The Quartus II
software includes solutions for all phases of FPGA and CPLD design (Figure 104).

113

Figure 104 - Quartus II Design Flow

In addition, the Quartus II software allows us to use the Quartus II graphical user
interface and command-line interface for each phase of the design flow. We can use one
of these interfaces for the entire flow, or we can use different options at different phases.

Design entry

A Quartus II project includes all of the design files, software source files, and other
related files necessary for the eventual implementation of a design in a programmable
logic device. We can use the Quartus II Block Editor, Text Editor, MegaWizard Plug-In
Manager, and EDA design entry tools to create design files that include Altera
megafunctions, library of parameterized modules (LPM) functions, and intellectual
property (IP) functions. The Quartus II software also supports system-level design entry
flows with the Altera SOPC Builder and DSP Builder software.

We can create designs in the Quartus II Block Editor or Text Editor. The Quartus II
software also supports designs created from EDIF Input Files (.edf) or Verilog Quartus
Mapping Files (.vqm) generated by EDA design entry and synthesis tools. We can also
create Verilog HDL or VHDL designs in EDA design entry tools, and either generate
EDIF Input Files and VQM Files, or use the Verilog HDL or VHDL design files directly
in Quartus II projects. The Quartus II Block Editor allows us to enter and edit graphic
design information in the form of schematics and block diagrams. The Block Editor reads
and edits Block Design Files. The Text Editor is a flexible tool for entering text-based
designs in the AHDL, VHDL, and Verilog HDL languages, and the Tcl scripting
language. We can also use the Text Editor to enter, edit, and view other ASCII text files,
including those created for or by the Quartus II software.

Once we have created a project and our design, we can use the Assignment Editor,
Settings dialog box, TimeQuest Timing Analyzer, Pin Planner, Design Partitions

114

window, and the Chip Planner to specify initial design constraints, such as pin
assignments, device options, logic options, and timing constraints.

Synthesis

We can use the Analysis & Synthesis module of the Compiler to analyze our design files
and create the project database. Analysis & Synthesis uses Quartus II Integrated Synthesis
to synthesize our Verilog Design Files (.v) or VHDL Design Files (.vhd)
We can start a full compilation in the Quartus II software, which includes the Analysis &
Synthesis module, or we can start Analysis & Synthesis separately. We can perform an
Analysis & Elaboration to check a design for syntax and semantic errors without
performing a complete Analysis & Synthesis or check a single design file for syntax
errors.

Place & Route

The Quartus II Fitter places and routes your design, which is also referred to as “fitting”
in the Quartus II software. Using the database that has been created by Analysis &
Synthesis, the Fitter matches the logic and timing requirements of the project with the
available resources of the target device. It assigns each logic function to the best logic cell
location for routing and timing, and selects appropriate interconnection paths and pin
assignments. If we have made resource assignments in our design, the Fitter attempts to
match those resource assignments with the resources on the device, tries to meet any
other constraints we have set, and then attempts to optimize the remaining logic in the
design. If we have not set any constraints on the design, the Fitter automatically optimizes
it. If it cannot find a fit, the Fitter terminates compilation and issues an error message.

Power Analysis

The Quartus II PowerPlay Power Analysis Tools provide an interface that allows us to
estimate static and dynamic power consumption throughout the design cycle. The
PowerPlay Power Analyzer performs postfitting power analysis and produces a power
report that highlights, by block type and entity, the power consumed. The Altera
PowerPlay Early Power Estimator estimates power consumption at other stages of the
design process and produces a Microsoft Excel-based spreadsheet with estimate
information.

Debugging

The Quartus II SignalTap II Logic Analyzer, the External Logic Analyzer Interface, the
SignalProbe feature, the In-System Memory Content Editor, and the In-System Sources
and Probes Editor enable us to analyze internal device nodes and I/O pins while operating
in-system and at system speeds. The SignalTap II Logic Analyzer is an embedded logic
analyzer that routes the signal data through the JTAG port to the Quartus II software
based on user-defined trigger conditions. We can use the External Logic Analyzer
Interface to connect an off-chip logic analyzer to nodes in the design. The SignalProbe
feature uses otherwise unused device routing resources to route selected signals to an
external logic analyzer or oscilloscope. The In-System Memory Content and In-System
Sources and Probes Editors allow us to view and modify, at run-time, data in a design.

115

Engeneering change menagement

The Quartus II software allows us to make small modifications, often referred to as
engineering change orders (ECO), to a design after a full compilation. These ECO
changes can be made directly to the design database, rather than to the source code or the
Quartus II Settings File (.qsf).
Making the ECO change to the design database allows us to avoid running a full
compilation in order to implement the change

Timing Analysis

The Quartus II Time Quest Timing Analyzer allows us to analyze the performance of all
logic in our design and help to guide the Fitter to meet timing requirements. The
TimeQuest analyzer uses industry-standard Synopsys Design Constraint (SDC)
methodology for constraining designs and reporting results. We can use the information
generated by the timing analyzer to analyze, debug, and validate the timing performance
of your design.

Simulation

We can perform functional and timing simulation of our design by using EDA simulation
tools or the Quartus II Simulator. The Quartus II software provides the following features
for performing simulation of designs in EDA simulation tools:

• NativeLink integration with EDA simulation tools
• Generation of output netlist files
• Functional and timing simulation libraries
• Generation of test bench template and Memory Initialization Files
• (.mif)
• Generation of Signal Activity Files (.saf) for power analysis

Timing Closures

The Quartus II software offers a fully integrated timing closure flow that allows us to
meet our timing goals by controlling the synthesis and place and route of a design. Using
the timing closure flow results in faster timing closure for complex designs, reduced
optimization iterations, and automatic balancing of multiple design constraints. The
timing closure flow allows us to perform an initial compilation, view design results, and
perform further design optimization efficiently.

Programming and configuration

Once we have successfully compiled a project with the Quartus II software, we can
program or configure an Altera device. The Assembler module of the Quartus II Compiler
generates programming files that the Quartus II Programmer can use to program or
configure a device with Altera programming hardware. We can also use a stand-alone
version of the Quartus II Programmer to program and configure devices.
 The Assembler automatically converts the Fitter’s device, logic cell, and pin assignments
into a programming image for the device, in the form of one or more Programmer Object
Files (.pof) or SRAM Object Files (.sof) for the target device.

116

DSP BUILDER

The QUARTUS 2 is a really powerful tool that allow to program the FPGAs in their full
complexity. Like all the low level program tools it is less useful in case of some more
general application or high level programming. In our case we will have to deal with
some DSP application so we will need some MACRO functions and some more visual
language to program our FPGA in an easy way.
This is the reason why we choose the DPS BUILDER.

Digital signal processing (DSP) system design in Altera programmable logic devices
(PLDs) requires both high-level algorithm and hardware description language (HDL)
development tools. The Altera DSP Builder integrates these tools by combining the
algorithm development, simulation, and verification capabilities of The MathWorks
MATLAB and Simulink system-level design tools with VHDL and Verilog HDL design
flows, including the Altera Quartus II software.
DSP Builder shortens DSP design cycles by helping us create the hardware representation
of a DSP design in an algorithm-friendly development environment. We can combine
existing MATLAB functions and Simulink blocks with Altera DSP Builder blocks and
Altera intellectual property (IP) MegaCore® functions to link system-level design and
implementation with DSP algorithm development. In this way, DSP Builder allows
system, algorithm, and hardware designers to share a common development platform.
We can use the blocks in DSP Builder to create a hardware implementation of a system
modeled in Simulink in sampled time. DSP Builder contains bit- and cycle-accurate
Simulink blocks—which cover basic operations such as arithmetic or storage functions—
and takes advantage of key device features such as built-in PLLs, DSP blocks, or
embedded memory.
We can integrate complex functions by using MegaCore functions in your DSP Builder
model. We can also experience the faster performance and richer instrumentation of
hardware co-simulation by implementing parts of our design in an FPGA.
The DSP Builder Signal Compiler block reads Simulink Model Files (.mdl) that are built
using DSP Builder and MegaCore functions and generates VHDL files and Tcl scripts for
synthesis, hardware implementation, and simulation.

High-Speed DSP with Programmable Logic, an FPGA advantage

Programmable logic offers compelling performance advantages over dedicated digital
signal processors. Programmable logic can be thought of as an array of elements, each of
which can be configured as a complex processor routine. These processor routines can
then be linked together in serial (the same way digital signal processor would execute
them), or they can be connected in parallel. In parallel, they offer many times the
performance of standard digital signal processors by executing hundreds of instructions at
the same time. Algorithms that benefit from this improved performance include forward-
error correction (FEC), modulation/demodulation, and encryption.

117

FIGURE INDEX

Figure 1 - Robert Whitehaed with his first Torpedo... 14
Figure 2 – WHOI’s ABE ... 15
Figure 3 - A typical Energy system focused AUV .. 17
Figure 5 - The hydrophones array for Subjugator 2000 .. 21
Figure 4 - The Subjugator 2000 .. 21
Figure 6 - The amplifier circuit schematic .. 22
Figure 7 - Signal processing board architecture ... 23
Figure 8 - The USBL positioning system ... 25
Figure 9 - Block diagram of the processing unit .. 25
Figure 10 - Hardware schematics ... 27
Figure 11 - Simplified version of FPGA internal architecture 29
Figure 12 - the different parts of an FPGA.. 29
Figure 13 - FPGA comparative analysis ... 30
Figure 14 - Transistor pair tiles in cross-point FPGA ... 31
Figure 15 - The Plessey logic block .. 31
Figure 16 - An Actel logic block .. 32
Figure 17 - Four input LUT based Xilinx logic Block .. 32
Figure 18 - 2-LUT implementation table ... 33
Figure 19 - Xilinx routing architecture ... 34
Figure 20 - Actel FPGA routing architecture .. 35
Figure 21 - Altera MAX 5000 global (top) and local (bottom) routing architecture ... 36
Figure 22 - A symmetrical Array ... 37
Figure 24 - A hierarchical PLD ... 38
Figure 23 - A row based architecture .. 38
Figure 25 - RAM cells used to control pass gates (a) or multiplexers (b) 39
Figure 26 – Floating gate programming technology ... 39
Figure 27 - Example circuit: a collection of gates and flip-flops 41
Figure 28 - A basic FPGA module example .. 44
Figure 29 - A mid-size FPGA module example .. 45
Figure 30 - A large size, high speed FPGA module example 46
Figure 32 – The trade off between cost and performance for FPGA boards 47
Figure 31 – General view on various FPGA boards .. 47
Figure 33 – Pentek 6256 ... 49
Figure 34 – Innovative integration X3A4D4.. 50
Figure 35 - Echotek ECAD-DA-41-PMC .. 51
Figura 36 - Bittware TETRA-PMC+ .. 52
Figure 37 - Cyclone II EP2C70 DSP development board .. 54
Figure 38 - ALTERA/TERASIC DE2 ... 56
Figure 39 - MAX1127 ... 57
Figure 40 – The A/D board: The electric development scheme 58
Figure 41 - The A/D board: assembled view ... 58
Figure 42 – The AD7482 .. 59
Figure 43 - NI USB-6251 DAQ board ... 60
Figure 44 - The experimental setup ... 62
Figure 45 – The competition obstacle course .. 63
Figure 46 - The Scout ... 64

118

Figure 47 - The scout: hardware view .. 65
Figure 48 – The Scout: the frame .. 65
Figure 50 – The hydrophones pattern ... 66
Figure 49 - The Scout: an Hydrophone ... 66
Figure 51 - An hydrophone's acquisition sample ... 67
Figure 52 - Hydrophone's characteristics ... 67
Figure 53 – The idea for the trajectory tracking ... 68
Figure 54 – The flow diagram for the delay extraction ... 69
Figure 55 - Delay extraction scheme .. 74
Figure 56 - Cross correlation of two identical signals .. 74
Figure 57 – Cross correlation of two delayed signals ... 75
Figure 58 – The simulation scheme... 76
Figure 60 – The simulated input signal ... 77
Figure 59 – Utility blocks ... 77
Figure 61 - The windowing scheme... 78
Figure 62 - Characteristics for various window .. 79
Figure 63 - Hann window in function of time and his frequency response 80
Figure 64 - Windowed input signal ... 80
Figure 65 - The FFT scheme ... 81
Figure 66 - Quad-Output FFT Engine Architecture .. 85
Figure 67- Single-Output FFT Engine Architecture .. 85
Figure 68 - FFT mecagore Timing .. 86
Figure 69 – FFT output. From the top we can see the imaginary response then 87
Figure 70 - The product scheme ... 87
Figure 71 - Cross correlation information extraction.. 88
Figure 72 - Cross correlation: 1024 point FFT length .. 88
Figure 73 – Cross correlation: 512 point FFT length ... 89
Figure 74 – Cross correlation: decreased sample rate .. 89
Figure 75 – Simulink block to calculate the maximum .. 89
Figure 76 – Delay calculation scheme .. 90
Figure 77 – Windowed input signal with noise .. 91
Figure 78 – The attenuated signal simulation ... 91
Figure 79 – Cross correlation of the signals: 256 point length FFT 92
Figure 80 – Cross correlation of the disturbed signals: 256 points length FFT 92
Figure 81 – Cross correlation of the signals: 512 point length FFT 92
Figure 84 - Cross correlation of the disturbed signals: 1024 point length FFT 93
Figure 82 – Cross correlation of the disturbed signals: 512 point length FFT 93
Figure 83 - Cross correlation of the signals: 1024 point length FFT......................... 93
Figure 85 – Labview scheme for the simulated input signals 95
Figure 86 - The signals generated .. 95
Figura 87 - Memory usage of Signal Tap II .. 96
Figure 88 – Parallel mode 2 timing for the AD7482 ... 96
Figure 89 - Timing characteristics for the AD7482 ... 97
Figure 90 - Acquisition test scheme .. 98
Figure 91 - AD7482 timing for a 1.27 MHz acquisition .. 99
Figure 92 - Signal Tap II signal acquisition .. 99
Figure 93 - AD7482 timing increasing sampling frequency100
Figure 94 - Signal Tap II acquisition with an increased sampling fequency100
Figura 96 – The whole scheme ..101
Figure 97 – Dsp builder translation of a Simulink block ..103

119

Figure 97 – Performance with streaming data flow engine architecture – Cyclone III
Devices.. 104

Figure 98 – Resource usage with the burst data flow architecture – Cyclone III
Devices.. 105

Figure 99 – Windowed input signal... 106
Figure 100 - resource usage of the FPGA ... 107
Figure 101 - The delay calculated ... 107
Figure 102 – From the top: real signal simulated zoom, two pings of the signal 108
Figure 103: Real signal windowed .. 109
Figure 104 - Quartus II Design Flow .. 113

