brought to you by TCORE provided by Electronic Thesis and Dissertation Archive - Università di Pisa

A. Bertei

Mathematical Modelling of an Innovative Solid Oxide Fuel Cell

INDEX

Chap. I – Introduction		1
I_1 – Introduction to fuel cells	n	1
I_{1} = introduction to fuel cells	p.	1
I.2 The IDEAL Cell concept	p. n	+ Q
I.3 – The IDEAL-Cen concept	р. р	0 14
1.4 – Anns of moderning	p.	14
1.3 – Kererences	p.	10
Chap. II – Description of phenomena	р.	17
II.1 – The reaction of water recombination	р.	17
II.2 – ACP-PCP interface	p.	19
II.3 – The porous structure of the central membrane	p.	23
II.4 – Charge transport	p.	25
II.5 – Transport in gas phase	p.	26
II.6 – Water transport in PCP	p.	27
II.7 – Towards the model of the central membrane	p.	28
II.8 – Proof of the concept and experimental set up	p.	31
II.9 – References	<u>p</u> .	34
Chap. III – <i>Morphology</i>	р.	36
III.1 – Introduction to the morphology of random packing of spheres	p.	36
III.2 – Percolation theory	p.	40
III.3 – Overlapping of particles	p.	56
III.4 – Apparent conductivity	р.	59
III.5 – Effects of porosity	p.	78
III.6 – Calculation of morphological parameters	р.	82
III.7 – Morphological results	р.	86

III.8 – The real morphology	p.	93
III.9 – References	p.	94
Chap. IV – Submodels	р.	96
IV.1 – Thermodynamics and kinetics	p.	96
IV.2 – Gas transport	p.	100
IV.3 – Water adsorption and transport in PCP	p.	104
IV.4 – Charge transport	p.	111
IV.5 – References	p.	113
Chap. V – Model of the central membrane	р.	114
V 1 Conorol accumptions	n	114

A. Bertei

V.1 – General assumptions		114
V.2 – Mass and charge balances	p.	115
V.3 – Boundary conditions	p.	117
V.4 – Working conditions and estimation of parameters	p.	123
V.5 – Energy balance	p.	133
V.6 – Performance indexes	p.	137
V.7 – How to obtain impedance curves from dynamic simulations	p.	142
V.8 – The solver	p.	145
V.9 – References	p.	146

Chap. VI – Simulation results	р.	148	
VI.1 – Model outcomes	р.	148	
VI.2 – Validation	p.	149	
VI.3 – Description of base-case	p.	154	
VI.4 – Sensitivity analysis	p.	158	
VI.5 – Design analysis	p.	166	
VI.6 – Dynamics results	p.	177	

A. Bertei	Mathematical Modelling of an Innovative Solid Oxide Fuel Cel		
VI.7 – References		p.	181
Chap. VII – <i>Conc</i>	lusions	р.	183
VII.1 – Conclusior	s on simulation results	p.	183
VII.2 – General co	p.	18	
VII.3 – Future dev	elopments	p.	185
VII.4 – References		p.	186
Acknowledgement	\$	р.	18
References		р.	18
Glossary		р.	192
List of tables and j	ïgures	р.	19