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Abstract

The observation of emergent properties of biological systems has been the inspiration
of successful technologies opening new fields of computer science like artificial neural
nets, swarm intelligence algorithms, evolutive algorithms, etc. In this work we
focus on the emergence of negative feedback cycles: self-regulatory mechanisms
able to react to alterations of some environmental parameters (temperature, gas
concentrations, solar light, etc.) in order to compensate, preserving the environment
in a state suitable for life. We make the hypothesis that speciation events play a
central role for feedback formation and, and in order to select the negative cycles,
the arising species need to be strongly connected to the environment, therefore the
speciation needs to be sympatric (a speciation mode where new species arise without
geographical isolation). As an intermediate result, we propose a simulative model of
sympatric speciation and apply it to the field of evolutive algorithms. We propose
some variations of the standard island model, a model used in evolutive algorithms to
evolve multiple populations, to obtain dynamics similar to the sympatric speciation
model, enhancing the diversity and the stability of the evolutive system. Then
we propose a technique to define a metric and calculate approximated distances on
very complex genetic spaces (a recurring problem for several evolutionary algorithms
approaches). Finally, we describe the more complex model of negative feedback
cycles emergence and discuss the problems that, in the current model formulation,
make it not applicable to real world problems but only to ad hoc defined resource
spaces; conclusively we propose possible solutions and some applications.
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Table 1: Table of symbols and variables - Sympatric Speciation Model
Symbol/Variable Description
S The geographical bi-dimensional space
l The side of S
p A point in S
ds(p1, p2) The geographical distance of two points in S
G The genetic space
g A point in G
dg(g1, g2) The genetical distance of two points in G
f(gi) The fitness function
R The resource set
kres The density of resources
eresource The energy of a resource
A The population of agents
ai An agent in A
SSi The static internal state of agent ai

DSi The dynamic internal state of agent ai

ei The energy of agent ai

rangemating The maximum distance between two mating agents
rangegathering The maximum distance between a resource and

an agent competing for it
emetabolism The energy level that every agent loses in the

metabolism step of every iteration
emating The minimum energy level that an agent needs in order

to be able to mate
stepmax The maximum geographical distance of the position

of an agent between two consecutive iterations
ematingattempt The energy lost by an agent attempting a mating
enewborn The starting energy level of a new agent
maxmutation The maximum genetical distance between the genotype

of a newborn agent and the mean parental genotype
startingagents The number of agents in the initialization
startinggenotype The genotype of the agents in the initialization
startingenergy The energy of the agents in the initialization

Table 2: Table of symbols and variables - Simulacrum Genotype
Symbol/Variable Description
lsg The size of the bit string
psg The probability of a point mutation
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Table 3: Table of symbols and variables - Modified Island Model
Symbol/Variable Description
nislands The number of islands
Ai The population of agents in the island i
popi The size of Ai

mij The agents migrating from the island i to the island j

Table 4: Table of symbols and variables - Feedback Emergence Model
Symbol/Variable Description
resTypes The number of resource types
resEnergyr The energy level of the resource type r
Ri[r] The number of resources of type r in island i
dsr The rato of the spontaneous degradation sr
Rinput The resource with a constant incoming flux in the system
radiation The number of the input resource added to each

island in each iteration
islandV The volume of the islands
agentVi The volume of the internal environment of agent i
tenz The transformation rate of the enzyme enz
eeenz The energy efficency of the enzyme enz
celli A cell in the grid-like resource space
maxN The maximum length of a spontaneous degradation trajectory
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Chapter 1

Introduction

The observation of emergent properties of biological systems has been the inspiration
of successful technologies [4] [63] [68] opening new fields of computer science like
artificial neural nets, swarm intelligence algorithms, evolutionary algorithms, etc.

A very intriguing mechanism that we can observe in almost every complex bi-
ological system where different components (biotic and not biotic) interact are the
negative feedbacks: they are self-regulatory mechanisms able to react to alterations
of some environmental parameters (temperature [82] [96], gas concentrations [50] [51]
[78] [91] [57], rainfall and solar light [11] [64], sea salinity [35], growing or shrinking of
a species population size, etc.) in order to counterbalance the alteration, preserving
the environment in a dynamical homeostatic equilibrium suitable for life.

More fascinating is the spontaneous emergence of negative feedback and the
suppression of potentially catastrophic positive feedback, by the only means of a
simple mechanism like natural selection.

In order to formulate an hypothesis about negative feedbacks emergence and
then be able to reproduce and exploit them in artificial systems of computer science
interest, several mechanisms and intermediate problems need to be considered.

The first mechanism is the sympatric speciation: a speciation event where new
species arise without the need of geographical isolation. As an intermediate result
we present a simulative model of sympatric speciation that, at our knowledge, differs
from the models available in the literature.

Given the sympatric speciation model, we propose an application in the field of
evolutionary algorithms; we describe some variations of the standard island model
(a speciation model widely used in evolutionary algorithms to evolve multiple pop-
ulations) obtaining useful emergent properties observed in the sympatric speciation
model (enhanced biodiversity and stability of multi-species systems).

Working with evolutionary algorithms, we face the recurring problem of defining
a metric and calculating distance for very complex search spaces [12] (like the space
of computer programs source code). We propose a solution inspired by biological
observations of correlation between genetic variability and reproduction compati-
bility. Adopting the proposed technique we can calculate approximated distances
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independently of the complexity of the genetic space.
In conclusion we describe a model of negative-feedback emergence and we explain

the complications that, in the current model formulation, make it not applicable to
real world problems; we propose possible solutions and some applications.

1.1 Structure of the Work

In the following sections of this chapter, first we expose the aims of the thesis, then
we introduce some concepts of theoretical biology (the Gaia theory, the environmen-
tal negative feedback cycles, and some related problems like theoretical lacks and
teleological accusations), then we introduce the agent-based approach to modeling,
in the last section we introduce the evolutionary algorithms approach to machine
learning, focalizing to the multi-modal problems.

In chapter 2 we cite previous works on topics related to the thesis.
In chapter 3 we give some definition for several terms we utilize in the thesis,

underlining correlations between biological elements and computer simulation model
elements.

In chapter 4 we propose a model for the sympatric speciation mode. Starting
with some biological observations, we describe in the details the proposed simulative
agent-based model and illustrate an example of execution of an implementation of
the model. Then we discuss the features of the model and the observed emergent
properties. After an analysis of the role of every parameter of the model, we finally
discuss about the minimality of the model and the mechanisms tested in the model
development phase but removed from the final version.

In chapter 5 we propose some contributions to the field of evolutionary algo-
rithms. The first proposal (section 5.1) is a method for genetic distance measure-
ments, not dependent to the search space complexity The second proposal (section
5.2) is a modified island model, suitable for multi-modal optimization problems: we
expose the addressed problems (the diversity maintaining and the stability of the
evolving system), then we report the experimental observations for the several dif-
ferent tested model variations, focalizing on the features of locality of selection and
of variable fertility.

The third proposal (section 5.3) is a method, specific for the island model vari-
ation, that exploits the two levels of selection (local level and global level) in order
to destabilize some locations of the system avoiding a whole system destabilization,
obtaining an enhancement of the diversity emergence. We discuss the addressed
problem, then we describe the method and illustrate an example of a run.

In chapter 6 we propose a model for feedback emergence. We start exposing
our emergence hypothesis, then the proposed agent-based simulative model. In the
model discussion we address several problems faced and the model minimality. In
the observations we expose the experimental results and the problem of feedback
emergence when we make use of random generated system definitions (in opposition
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to ad hoc system definitions).
In the conclusions (chapter 7) we give a short summary of the various proposed

contributions described in the thesis.

1.2 Aims of the Work

Emergent properties observed in the natural environment have inspired the devel-
opment of very successful technologies in several computer science fields [4] [63]
[68]; for example: the neurophysiology studies of biological neural systems inspired
the artificial neural networks and the connectionist approach to machine learning,
the social behaviours of ants colonies and bird swarms inspired the Swarm intelli-
gence systems, the darwinian evolutionary paradigm of random mutation followed
by natural selection inspired the development of evolutionary approach algorithms.

In the case of the evolutionary paradigm, computer science has developed sev-
eral techniques proved to be human competitive in several fields of technological
development [46] [2] [60] [47] [88] [89] [5] [87] [48] [24] [54] [71].

The evolution mode of a population of organisms that, by the means of random
mutation and selection, change itself to fit better the environment, is known as
micro-evolution.

With the progress in the studies of the livings systems, the understanding of
micro-evolution dynamics consolidated and the biological debate shifted from micro-
evolution to environmental system level dynamics and macro-evolution related phe-
nomena: the speciation events, the biotic/non biotic interactions, the alterations of
the homeostatic environmental equilibrium caused by the metabolism of the living
beings, the promotion or inhibition of environmental feedback cycles, the stabilizing
effect of negative environmental feedback cycles, that preserve the environmental
parameters in a range suitable for the living beings.

In literature several publications presented models based on macro-evolution
(Tierra [76], Avida [69], and works focused on the compatibility between neo-
darwinist paradigm and Gaia theory [17] [18] [19]).

A very intriguing and debated phenomenon is the emergence, in a system with
strong interdependency between species and non biotic environment components,
of altruistic mechanisms like the environmental regulation, evolved thanks to the
typical selfish mechanism of natural selection.

The aim of this work is to study these system level emergent properties in order
to model and exploit them in computer science fields.

We want to stress that the emergent properties analysis, the natural environment
observations, hypothesis formulation and testing about the mechanisms involved in
the emergence, have the only purpose of finding plausible hypothesis about the
emergence dynamics: it’s enough that we are able to successfully reproduce the
emergence of the target property in a simulative model; in this work we don’t try
to verify the validity of our hypothesis in the natural environment, but only in the
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artificial models.

Our method consists in the developing of a simulation model where a target prop-
erty is permitted to emerge, then we try to minimize the elements and parameters
of the model, detecting and removing elements that turn out to be irrelevant or that
are redundant, then, after the model minimization, we search possible applications
in computer science.

The two main phenomena we consider in this work are the sympatric speciation
and the negative feedback formation. The proposed applications are all in the
evolutionary algorithms branch of machine learning.

1.3 Biological Systems

1.3.1 Gaia Ecological Paradigm

In the last century there has been a change in the interpretation of evolutionary
dynamics: the paradigm of a static environment, seen as the stable and passive
substrate that implicitly directs the evolution of life forms to better adapt to it,
changed to a modern paradigm where the species not only are adapting to the
environment, but their activities alter the environmental homeostatic equilibrium.

When the environmental homeostatic equilibrium is altered by the activities of
the living beings that populate it, some new ecological niches can be created, thus
new species can speciate from the existing ones in order to exploit the new formed
niches; this environment mutation mechanism eventually keeps the evolvability of
the system to a high level.

Not only every alteration can create new niches, but it can eventually (and almost
surely in a system where components have developed a strong level interdependency,
like the natural environment) alter the existing ones. In the worst cases an equilib-
rium alteration can destroy some niches, or it could create and activate a positive
feedback cycle that would destroy the whole system’s equilibrium, causing a mass
extinction.

For several events of mass extinction happened in the past Earth’s ages there
are strong clues of a reason internal to the ecological system (in opposition to events
caused by external events, like volcano eruptions, meteor impacts, etc.). For ex-
ample, the extinction caused by the apparition of oxygen in Earth’s atmosphere,
starting from the Paleoproterozoic era: the oxygen was produced by photosynthetic
archaea and bacteria and it was accumulated in the atmosphere reaching, about 2.4
billion years ago, a concentration that drove to extinction most of the anaerobic
organisms (almost all the currently living organisms). The homeostatic chemical
equilibrium was altered by the oxygen biotic production and caused mass extinction
because it destroyed almost all of the ecological niches for anaerobic life; on the
other hand, every alteration creates new niches, and as a matter of fact today the
oxygen plays a main role for both photosynthesis and respiration.
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The complexity of a biological system can be measured from the biodiversity
level (the number of different species composing it), from the number of distinct
inter-specific interactions and from the number of biotic-abiotic interactions (we
need to consider non biotic components like the soil, the minerals, the oceans, the
gases, etc. as reactive and essential components of the biological system).

The current biological system, the biosphere, has an incredibly high level of
complexity and we could guess that a system with so many (apparently) chaotic
interactions must be unstable; but instead of being so, in the natural environment
we are able to observe a strong active resistance to almost any destabilization,
stronger where complexity (biodiversity and interactions) is higher, thanks to the
actions of lots of complex spontaneously evolved auto-conservative mechanisms.

The biosphere now is not seen anymore as a stable and passive substrate for
life evolution, but as an energy and matter fluxes system in a (strongly) dynamical
equilibrium state, actively maintained by the biotic-abiotic components interactions.
This view is the one described by the Gaia theory (it be introduced in the next
introduction section).

As an example of the role and the strength of the equilibrium maintaining activity
of living beings, we know that the current Earth’s chemical state is really far from
the chemical equilibrium: without the action of living beings a lot of chemicals (like,
as an example, the oxygen) quickly disappear from the atmosphere (in Figure 1.1
the surface fluxes of some gases measured on Earth are compared to the estimated
fluxes in absence of the biological system).

The self-regulatory, equilibrium maintaining, mechanisms are unselfish (whole
system level useful but potentially local level resource consuming) indirect be-
haviours of the living beings that have evolved thanks to the typically selfish dynamic
of the natural selection.

The neo-darwinist point of view is in opposition to the fact that the evolution of
a quality that is useful to the global system can be imputable to the exclusive effect
of a selfish mechanism like the selection for resource competition. They state that
a theory that expects the spontaneous emergence of some negative feedback cycles
makes an implicit use of concepts like the group selection or teleological principles.

Another opposition to the self-regulatory biotic-abiotic systems is the not op-
timal choice of biotic active alteration and the (eventually resource consuming)
stabilization of the environment, when the optimal selfish choice for every species is
to simply adapt to the current environment.

All these critics made in opposition to the Gaia theory have been addressed by
and completely or partially settled in several works.

1.3.2 Gaia Theory and Negative Feedbacks Cycles

Today there is abundance of well documented empirical evidences about several
negative feedback cycles regulating critical parameters like the temperature [82] [96],
the frequency of precipitations [11] [64], the sea salinity [35], the concentrations
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Figure 1.1: Comparison between the current surface fluxes of some gases (on the
left) and the same fluxes in the chemical equilibrium estimated in absence of the
biological system (on the right). This graph is presented in [51].
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of gases in the sea [50] [51] [78] [91] and in the atmosphere [57], the number of
individuals of some species, etc. The effect of these negative feedback cycles is the
maintaining of the stabilized parameter in some boundaries life-permitting ranges.

The Gaia theory [55] [56] [57] [58] [59] predicts, and it’s the first to analyzing in
details, the negative feedbacks.

Initially the Gaia theory was proposed as an hypothesis; the informality of the
hypothesis and several other lacks caused it to be embraced by some new-age move-
ments, but to be rejected by the scientific community. The complains for teleologi-
cal elements were dropped in 1988, after a conference at the American Geophysical
Union, where the hypothesis was proposed again, reformulated as the Gaia theory
[55]. Only in the last years the Gaia theory was accepted by the scientific commu-
nity, but several disagreement issues are still alive [39]. Today there are a lot of
academic publications based on Gaia theory [31].

The Gaia theory still has some lacks: even if it is based on spontaneously emer-
gent auto-regulation systems, a model describing the emergence through classical
consolidated evolutionary dynamics of such systems is still missing.

Prosecuting the main objective of proving the plausibility of the existence of
unselfish system level self-regulatory mechanisms without any need of teleological
implications [39] [40], keeping aside the consistency with the real ecological system,
several researches have formulated some simulation models exhibiting dynamics ex-
pected by the Gaia theory [17] [18] [19] [91].

One of the first simulation model developed, the most simple and famous, is
Daisy-world: it shows how a multi-species self-regulatory mechanism can work
thanks only to the selfish selection.

In [51] Timothy M. Lenton described the standard daisy-world formulation:

“Daisy-world is an imaginary grey world orbiting, at a similar distance to
the Earth, a star, like our Sun, which gets warmer with time. The world
is seeded with two types of life, black and white daisies. These share the
same optimum temperature for growth, 22.5◦C, and limits to growth of
5◦C and 40◦C. Initial conditions on the planet are so cold that daisy seeds
cannot germinate. As solar forcing increases and the temperature reaches
5◦C, the first seeds germinate. The paleness of the white daisies means
that they are cooler than their surroundings, hindering their own growth.
The black daisies, in contrast, warm their surroundings, enhancing their
growth and reproduction. Hence black daisies come to dominate the
initial community. As they spread, the black daisies begin to warm the
planet. This increases the growth rate of all daisies, an environmental
positive feedback that reinforces the spread of life. As the warmer, darker
daisies are closer to the optimum temperature than the white daisies,
they remain dominant. Soon the limited area of planet surface constrains
the explosion of life. When daisies fill the world, the average temperature
has risen close to the optimum for daisy growth. As the sun warms, the
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temperature rises to the point at which white daisies begin to appear
in the daisy community. As it warms further the white daisies gain
the selective advantage over the black daisies and gradually take over.
Eventually, only white daisies are left, and when the solar forcing gets
too high, self-regulation collapses. The self-regulation of Daisy-world is
impressive: although the solar input changes over a range equivalent to
45◦C the surface of the planet is maintained within a few degrees of the
optimum temperature for daisy growth.” [51]

Figure 1.2: Temperature of the surface of the world at the variation of solar lumi-
nosity. The solid line represents daisy-world’s temperature variation, the dotted line
is the temperature of a control planet without flowers. This graph is presented in
[51].

1.3.3 Feedback Cycles Formation and Inhibition

There are a lot of daisy-world model variations, but a model able to show not
only that the self-regulation is possible, but also the dynamics of negative feedback
cycles formation, starting from the speciation events, is still missing (and this lack
is keeping alive a debate about the teleology of group selection).

A further interesting and essential feature of the biosphere is the fact that, while
negative feedback cycles can emerge, on the other hand there is an inhibition (but the
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Figure 1.3: Distribution of the black daisies and white daisies populations on the
surface of the world at the variation of solar luminosity. This graph is presented in
[51].

geological history of the Earth shows that there can be some faults to the inhibition
mechanism) of positive feedback cycle formation.

It is an obvious fact that, in the natural environment, the only possible existing
positive feedback cycles are the ones quantitatively less influential than the negative
feedback cycles that regulate the same parameters. This was true, at least, before
the industrial modern era, and geological and fossil studies show that the inhibition
system has made several faults in past ages, usually followed by mass extinctions.

In order to develop a model with emergence of feedback cycles, we need to include
a model of speciation, as the species-species and species-environment interactions
are the base elements that constitutes any observed feedback cycle.

An hypothesis we can formulate is that there is a selective pressure acting against
or in favour of each speciation event, depending on the effect of the new capabilities
on the existing system at two different levels: a local effect and the corresponding
local selection, depending on simple competition with the other living beings, and a
second non-local effect and the corresponding global selection, depending on pertur-
bation of the global homeostatic equilibrium and on the eventuality of the formation
of feedbacks cycles, positive or negative.

Obviously, in order to enable the hypothesis of a selection from the global level
dynamics of the system (global selection) against or in favour the speciation phe-
nomena, we need to assume that the speciation model through which the species
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arise is able to work from within the system, not from an environmentally isolated
area (an island). This type of speciation is the sympatric mode speciation.

1.4 Agent Models

There are a lot of different interpretations and definitions for the term agent, because
there are a lot of possible uses for the agents, that need different sets of features.
A quite general definition that can describe the essential characterization of almost
every agent implementation can be:

An agent is an encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives.

The typical agent approach model is composed by a population of agents, each
of them able to act independently, and a geographical environment, where the agent
lives and can move around.

The geographical environment can be an euclidean space with a given number
of dimension (a typical setting is the bi-dimensional real space R2), a grid, a graph,
a single point, etc.

The most important differences between the various approaches to the agents
are about the type of individual capabilities of an agent, in terms of perception
(of other agents and/or the environment), internal state complexity, capability of
computation, environment alteration capabilities, communication with other agents,
stochasticity of its actions, locomotion, capability to dynamically create new agents
(usually by a fork-like procedure).

Another choice to make in every agent-based approach is the synchronization:
every agent can act when it wants to act, randomly timed, continuously in the time,
or all the agents act in synchronization, in a serial or a parallel way.

The agent model adopted in this works is the following:

• The agents are placed in a bi-dimensional limited finite geographical space
in R2. In some models described in the following chapters the geographical
space can be a graph of connected bi-dimensional limited finite surfaces of R2

(islands). In some model the islands can be only single point-shaped.

• The agents are synchronized (in some stages serial, in other parallel) and we
call every action step an iteration.

• Each agent can interact with other agents within a fixed range of locality in the
geographical environment. The possible interactions are limited to competition
for resources and sexual reproduction.



1.4. AGENT MODELS 21

• Each agent can percept the geographical environment and other agents within
a fixed range of locality in the geographical environment. The perception of the
environment is limited to an unordered list of reachable resources (described
in the following chapters). The perception of the other agents is limited to
a unordered list of agents enabled to mate and reachable. The two ranges
(resource perception range and potential partners range) can be different.

• Each agent can alter the environment within a fixed range of locality in the
geographical environment. The environment alteration is limited to resource
collecting, removing them from the geographical environment. Only in the
most advanced models the agents are able to put resources (the resources
they have previously collected or some different resources they can produce by
metabolizing of absorbed resources) in the environment.

• The agents have no control of their movement, that is stochastic Brownian-
like diffusive motion. In the models where the agents are placed in a graph of
connected islands, the Brownian-like motion is applied to the surface of the
island where the moving agent is placed, and if the agent reaches the island
geographical limits it will migrate to a connected island.

• Each agent has an internal state, divided in a read-only and in a read-write
parts.

• The computations of an agent can alter only his internal writable state.

• The agents can execute stochastic computations.

In addition to these quite standard settings, for the particular needs of our
work, the agents have two additional particular features (they are not new but quite
common for agent-based approaches applied to the field of Evolutionary Algorithms):

• The agents can die, being removed from the agent population.

• The agents can create new agents to add to the current population in two
possible ways (dependently on the particular model). The first one is the
asexual reproduction: a new agent is added to the simulation placed in a
point of the geographical space near to the position of the father; the new
agent read-only internal state is a mutated copy of the read-only internal
state of its parent. The second possible reproduction method is the sexual
reproduction: it needs that two agents are mutually in the mating range and
that both want to reproduce, a new agent is added to the simulation placed
in a point of the geographical space, near to the halfway point of its parents
geographical positions, the new agent read-only internal state is a mutated
copy of a combination of the read-only internal states of its parents.
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For the only purpose of simplicity of some system dynamics descriptions, we
sometime quit from the agent paradigm and we describe some computations of the
model, attributable to individual actions or synchronized interactions of groups of
agents, that will alter the agent population or some agents internal states, as done
by a non-agent mechanism. We want to assure that, independently of the paradigm
used to describe some agent state alteration mechanism, we can explain it in a less
simple way, but from within the agent paradigm.

1.5 Evolutionary Algorithms

The Evolutionary Algorithms [4] [45] are probabilistic search algorithms that main-
tain a population of candidates in the search space and evolve such a population by
the application of reproduction, mutation and selection.

An iteration of the typical evolutionary algorithm consists of:

• Selection of some representative candidates in the current can-
didates population, through a selection method and a fitness
function.

• Generation of a new candidates population from the selected
representative, through a reproduction method.

• Random mutation of the new candidates population, through
a mutation method.

• Replacement of the old candidates population.

Usually the population size is constant.

The fitness function has a main role in the standard formulation of an evolution-
ary algorithm: it’s defined over the problem space and it’s applied to a point in the
search space in order to numerically evaluate its goodness as a potential solution to
the target problem.

Usually the selection method needs the fitness values of all the search points
of the current generation, or the rank order (based on the fitness values) of search
points, to be able to select among them the population representatives.

The usual reproduction methods are cloning, sexual reproduction through a re-
combination method, or a combination of asexual and sexual reproductions methods.

There are a lot of different selection methods that make use of the fitness val-
ues, some of them are Linear Ranking Selection, Exponential Ranking Selection,
Truncation Selection, Fitness Proportional Selection and Tournament Selection.

We refer to the previously defined algorithm class, with the only reproduction
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method of sexual reproduction, as the classic generalized Evolutionary Algorithm
model.

1.5.1 Diversity in Evolutionary Algorithms

In the evolutionary algorithms literature, the term diversity (or genetic diversity)
is often used without any definition, but usually it is referred as the search space
points (the population) diversity, opposed to the fitness values diversity (sometimes
referred as phenotypical diversity).

With an opportune fitness function choice, if we plot the search points in the
search space, after some classic generalized Evolutionary Algorithm iterations, usu-
ally we can see the formation of a cluster of points; the genetic diversity can be seen
as such cluster’s diameter.

Several works define the loss of diversity as the proportion of individuals of a
population that are not selected during the selection phase [86] [14] [65].

In literature [12] [97] [98] [8] a lot of different measures of diversity are used:

• The number of different distinct genotypes (where a genotype is a point in the
search space).

• The number of different distinct phenotypes (where a phenotype is a fitness
value, calculated giving a search point as the input of the fitness function). In
this case the phenotypical diversity is used in order to indirectly approximate
the genetic diversity, this choice is usually done every time a metric for the
search space is difficult to define and/or to compute.

• The edit distances between recurring structures observed in the search points.

• Entropy measures over the genotypes population.

• A problem domain specific measure.

It’s a common assumption that Evolutionary Algorithms choices that obtain
higher diversity levels are better [86] [85], but the real correlations between the
maximum fitness value reached by the search points and a diversity measure has
not been investigated for every single measure proposed in the literature [14] [98]
[8].

A population with a high genetic diversity can maintain its exploration ability
in the evolutionary search and can avoid premature convergence to a local opti-
mum [65], therefore there are several publications that focus on methods aimed to
maintain the diversity in the population (and usually for every different method, a
different diversity measure is used) [26] [85] [86] [66] [8].
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1.5.2 Multi-Population Systems

Genetic diversity, as it is commonly intended in Evolutionary Algorithm literature,
has the limit to not considerate the biodiversity in the number of different species
(the presence of more than a single cluster in the search space), but it’s simply the
biological counterpart of the diversity internal of a single species (the diameter of
the only existing cluster).

Several publications point out that multi-population systems with different pop-
ulations in an inter-specific competition or cooperation, can work better (faster
search and/or better fitness levels reached) than the classical mono-population sys-
tem, where there is only intra-specific competition [3] [67] [24] [23] [25] [72] [71].

Usually, in the case of a multi-population Evolutionary Algorithm, the number
of different populations and the relationships between them (competition OR co-
operation) is statically defined in the design phase, with a specific problem domain
fashion [7] [72]. Several publications show that a statical choice of these search
parameters can negatively affect the search process [37].

More important, in the case of multi-modal optimization problems we want to
obtain not only a single solution but several alternatives, therefore the presence of
multiple clusters in the search space is needed.

In this work we focus on the island model approach for multi-population evolu-
tionary algorithms, proposing a solution for the problem of the statical number of
species.

1.5.3 Metrics for the Search Space

The field of application of Evolutionary Algorithms is so wide that the search space
can possibly be a very complex space.

The most general and powerful search space, widely used in the literature, is
probably the space of imperative language program codes [45]. Other complex widely
used search spaces are the space of electronic circuits [92] or some type of algebraic
functions spaces.

In these cases a metric to use for search space distance measurement is really
difficult to define.

Usually the search space metric is needed in order to evaluate the genetic di-
versity (and in these cases of complex spaces the genetic diversity is approximated
by phenotypical diversity), but the genetic distance of two search points can have
several other purposes [12]. As an instance, in this work the genetic distance of two
mating agents is needed in order to obtain the fertility rate of the mating couple.

The usual approximation of making use of the phenotypical distance is a strong
approximation in mono-population systems, but it’s obviously a wrong choice in the
more interesting and powerful multi-population systems.

We propose a new solution to this crucial problem, based on biological observa-
tions of links between genetic variability and reproduction compatibility.



Chapter 2

Related Works

2.1 Speciation and Diversity Maintaining in Evo-

lutionary Algorithms

In order to use the evolutionary paradigm for the solution of multi-modal or multi-
objective optimization problems, it is necessary to introduce speciation events in the
evolutionary process of EAs.

Speciation is obtained in evolutionary algorithms using niching mechanisms and
co-evolutionary models [99].

Several niching techniques have been proposed, which we can divide in three
main classes: modification of the mechanism of selecting individuals for the forma-
tion of a new generation (crowding models [61]), modification of the parent selection
mechanism (fitness sharing [33] [34] [36] or sexual selection [90]) or restricted appli-
cation of selection and recombination mechanism (grouping individuals into partially
isolated sub-populations [9]).

In co-evolutionary models the success of an individual depends not only on his
fitness but on the interactions with the other individuals. Co-evolutionary models
can be formulated without an explicit fitness definition, introducing open-ended
evolution and facilitating evolution in dynamic environments. The co-evolutionary
models can be classified in competitive [70] or cooperative [73].

Gavrilets in [27] reviewed several analytical results on speciation, considering
the three basic geographic modes: allopatric, parapatric and sympatric. Finally
Gavrilets showed that the sexual conflict mechanism (one sex evolves to attract the
other to mating, while the latter evolves to keep the reproduction rate on optimal
level) can lead to sympatric speciation.

Todd and Miller [90] presented a model where sexual selection and natural se-
lection are coupled. Sexual selection allows species to create their own optima in
fitness landscape, allowing populations to escape from local optima. The authors
showed that sexual selection coupled with natural selection can lead to sympatric
speciation.



26 2. RELATED WORKS

Sánchez-Velazco and Bullinaria [80] proposed “gendered selection strategies for
genetic algorithms”. The gender selection strategies are based on a sexual selection
mechanism, where females are selected not only on the basis of their fitness, but
considering their potential to produce fit offspring with partners.

Ratford, Tuson and Thompson [74] proposed the seduction function. The se-
duction function gives low measure for couples of individuals with very low or high
Hamming distance between their genotypes, and a high value for individuals with
fairly similar genotypes. The authors applied their mechanism alone and in combi-
nation with crowding and spatial population model. Even if the use of the seduc-
tion function for the partner selection can successfully locate several local optima
in multi-modal problems, the observed loss of diversity is very high, causing the
extinction of all the local optima except one.

Laumanns, Rudolph and Schwefel [49] proposed a model, based on a predator-
prey mechanism coupled with a graph topology, for multi-objective optimization
problems. Deb [15] extended Laumanns’ model with modified predator-prey model
using different weighted vectors associated with each predator.

Li [52] proposed a predator-prey genetic algorithm for multi-objective optimiza-
tion introducing a dynamic spatial structure to the predator-prey population, al-
lowing dynamic changes of the prey population size.

The use of a spatial structure is effective in maintaining a better population
diversity [9]: in [43] [42] and [53] the authors examined the effects of introducing
dynamical ecological features altering the spatial structure.

Dreżewski and Kisiel-Dorohinicki in [21] proposed a co-evolutionary version of
the evolutionary multi-agent system, showing an improved diversity maintaining
suitable for multi-modal optimization problems.

Dreżewski and Cetnarowicz in [20] considered the sexual selection as a speciation
mechanism for agent-based evolutionary algorithms. The proposed co-evolutionary
multi-agent system with sexual selection is applied to multi-modal optimization
problems and compared to classical evolutionary algorithms.

Dreżewski and Siwik in [20] proposed two techniques for maintaining population
diversity in agent-based multi-objective co-evolutionary algorithms, one based on
the flock operators and the other on the sexual selection.

Kondrashov and Shpak in [44] discussed the role of non-random mating as a
prerequisite for sympatric speciation. The authors proposed a model with similarity-
based non-random mating (assortative mating) and showed that speciation can take
place even in absence of sexual selection.

Kirkpatrick in [41] showed that an assortative trait, evolving as a reproductive
barrier between two hybridizing populations, can lead to isolation and speciation.

Dieckmann and Doebeli in [16] proposed a sympatric speciation model, showing
how the assortative mating can lead to speciation even if the assortative trait is not
linked to resource competition.
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2.2 Artificial life

Artificial life studies the logic of living systems in artificial environments. The goal
is to study the phenomena of living systems in order to come to an understanding
of the complex information processing that defines such systems.

Ray [76] [77] developed the Tierra software, a computer simulation in which
computer programs compete for central processing unit (CPU), time and access to
main memory.

Ofria, Adami and Brown developed Avida, an artificial life simulation software
inspired by Tierra [69] [1]. The main difference from Tierra is that in Avida every
digital organism lives in its own protected region of memory, and is executed by
its own virtual CPU. The speed at which a virtual CPU runs is determined by the
tasks that the organism performs, giving more CPU time as a reward.
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Chapter 3

Definitions

In this work we consider mainly two different theoretical fields, the biological field
and the simulation models field.

There are some elements of the biological field represented in the simulation field;
we refer to them as the simulation model counterpart of a biological element.

A simulation element that is the counterpart of a biological element is neither
a comprehensive nor a coherent representation of the biological element because we
need to have only a simplified version of a sub-set of the features that we can observe
in the natural environment: we don’t want to develop biologically realistic models,
but biologically inspired ones.

3.1 Biological Systems

There are some really big problems about giving definition of several biological el-
ements: the first more obvious problem is the limited understanding of biological
dynamics, especially system level dynamics like the biosphere auto-regulation. The
second problem is epistemological, about living beings definition and species defini-
tion: there is not in the zoological scientific community a strong agreement about
these subjects and the debate is generations old [62].

In this work we do not engage in biological or epistemological debates and we
adopt definitions arbitrarily.

Biosphere : a dynamical system composed by a biotic component (the species)
and a not-biotic component (the inanimate portion of the environment).

Genotype : all the genetic information contained in a living being; it is almost
stable during the whole life of the living being.

Phenotype : the expression in a living being of his genotype in his local environ-
ment (the portion of the biosphere that interact with the living being).
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Living Being : the base element of the biotic component of the biosphere, it’s
characterized by a genotype (inherited from his parent/s) and a phenotype;
some living beings can reproduce themselves (sexually and/or asexually) giv-
ing a partially random modified copy of the genotype (or a partially random
modified copy of a combination of all the genotype of the partners in the case
of sexual reproduction) to a new living being.

Resource : the component (biotic or not-biotic) of biosphere that a living being
needs in order to live and to reproduce (the needed resources can differs de-
pending on the living being considered).

Mutation : the random modification of a genotype.

Selection : the non uniform distribution of the resources needed in order to live
and reproduce, the death of living beings not able to obtain resources and the
proliferation of the others.

Evolution : the dynamic of the system in terms of variety and distribution of phe-
notypes, efficiency of living beings’s resource collection, variation of system
species and species interactions. Such a dynamics is determined by the com-
bined effects of mutation and selection.

Species : is the characterization that fit a particular group of living beings that
share some level of similarity, and where some component of such a group
are eventually capable of interbreeding, producing fertile offspring of the same
species.

Speciation : the process of formation of a new species in the biosphere.

Environmental Feedback Cycle : the activation and the effect of the activation
of a subsystem of the biosphere system, in response to an alteration of some
parameter of the biosphere system.

Negative Feedback Cycle : an environmental feedback cycle that react to an
alteration of some environmental parameters (temperature, gas concentrations,
solar light, growing or shrinking of the size of a species population, etc.) in
order to counterbalance the alteration and maintain the environment in a
dynamical equilibrium.

Positive Feedback Cycle : an environmental feedback cycle that reacts to an al-
teration of some environmental parameters in order to amplify the alteration.

3.2 Simulation Models

In the thesis we describe more than a single simulation model, therefore only ele-
ments common for every model are defined here.
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We assume as defined (they are defined later for every different model) the en-
vironment, the agents, the agent internal state and the agent static internal state.

The environment is the simulation model counterpart of the biosphere, the agents
are the simulation model counterparts of the living beings, the agent internal state
is the simulation counterpart of the phenotype and the agent static internal state is
the simulation model counterpart of the genotype.

Not every simulation model has a counterpart for resources, where represented
they are defined.

We assume as defined some other elements that have not an explicit counterpart
in the definition exposed for the biological field case: geographical space, geograph-
ical metric, genetic metric. All the models described are iterative, so the iteration
is implicitly defined.

Population : the set of all the active agents in the simulation.

Genetic Space : the smallest space containing all the possible agent static internal
states.

Mutation : the variation from a given point of the genetic space to another random
target one, with a probability distribution on the targets inversely proportional
to the distance (obtained from the genetic metric on the genetic space) of the
target from the starting point.

Selection : the process that at each iteration, for each agent in the population,
choose if it has to die (be removed from the population) or to live (based on
fitness function or resource consumption that could be defined). Among all
the survivals, this process can select some agents able to reproduce themselves
(in the case of sexual reproduction it does not select single agents but couples
based on their relative distance obtained from the geographical metric on the
geographical space).

Evolution : the dynamic of the system in terms of variety and distribution of
agent internal states, efficiency of agent’s resource collection, variation of the
system species and species interactions. Such a dynamic is determined by the
combined effect of mutation and selection.

Species : the concept of species has no role in the run of the simulation but only
in the data analysis process. A species is defined as every set of agents whose
genotype form a cluster in the genetic space (such a definition allows an agent
to be in more than one species and allows a hierarchical species structure).

Speciation : the events that, during the run of the simulation, lead to formation
of a new species.
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Feedback Cycle : during the simulation run, a system level change in the dynam-
ics of the agents that can be explained by the means of another variation of
agents dynamics or resource (where defined) dynamics.

Negative Feedback Cycle : a feedback cycle whose effect is to counterbalance
the changes that have activated it.

Positive Feedback Cycle : a feedback cycle whose effect is to amplify the changes
that have activated it.

We want to stress the fact that species, speciation, evolution and feedback cycles
have not, by definition, any role in the run of the simulations, but they are used
only in the data analysis process.

In the model description, when is clear that we are referring to the simulation
models field and not to the biological field, we can use the biological term in order
to refer to the simulation model counterpart.
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The Sympatric Speciation Model

Speciation is the evolutionary process by which new species arise.
The zoological scientific community defines different speciation dynamics be-

lieved to occur in the nature. Speciation rate is strongly debated but realistically
it’s too slow to directly test the speciation hypothesis; on the other hand a lot of
indirect evidences have been gathered to support the assumptions.

The four most accepted modes of speciation are allopatric, parapatric, peripatric
and sympatric speciation. The key feature that characterize the four modes is the
role of geographical isolation (figure 4.1).

Isolation is a process that divides the starting population in different geographical
zones, the islands; the interactions between living beings (competition, cooperation,
mating) located in different islands is limited or absent, and limited or absent can
be the migration of a living being from one island to another one.

In the biosphere the isolation can occur through several different ways: there
could be real islands, but a river or a mountain range can isolate as well. But even
considering different species sharing the same geographical area we can still consider
them as partially isolated because different species need different types of resources,
so the competition is limited to the shared needed resources. This extended notation
of partial isolation usually is labeled as ecological niche.

The aim of this work is to study the dynamics of negative feedback formation;
in chapter 6 we make the hypothesis that the speciation event plays a fundamental
role for feedback formation and, in order to select the negative ones, the arising
species need to be strongly connected to the environment. This does not mean that
there is not the need of a new ecological niche to occupy for the arising species,
but that if a species arises and evolves far from a given ecosystem then, when the
speciation is complete, we cannot hope that, putting back all the new species in
the same starting ecosystem, they would interact well. In the biosphere there are
a lot of examples of this situation: when a species is transported from a continent
to another, the consequences are difficult to predict, and often the new species
weakened or compromised the whole local ecosystem. In particular, species evolving
isolated cannot direct their genetic trajectory in order to inhibit system level positive
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Figure 4.1: The schematized comparison of the differences in geographical isolation
of allopatric, parapatric, peripatric and sympatric speciation modes. Figure drawn
by Ilmari Karonen and published on wikipedia.
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feedbacks or to promote negative feedbacks.
Therefore we need to focus on the more general sympatric speciation mode.
In the sympatric speciation mode, from a single starting species two will evolve

and diverge, but without any geographical isolation. Even if the new diverged species
share the geographical space but live in separate ecological niches, in the starting
and critical stage of sympatric speciation the two potential diverging population are
so similar to be considered in the same exact ecological niche (unless there is an
hopeful monster case).

The main problem for a sympatric speciation manifests itself when a sub-population
starts to differentiate: the original population and the sub-population are fully in
contact an therefore they are in a situation in which there is competition, but the
two population are so similar (in the hypothesis of slow mutation) that, in this
situation, it’s expected that one population quickly extincts.

4.1 Biological Observations

In 1966 Maynard Smith [84] proved the plausibility of the sympatric speciation
hypothesis and today exist well documented empirical evidences of sympatric spe-
ciation.

Currently there is a lot of debate about the validity of this mechanism and, from
the initial theoretical work of Smith, only in the recent years several works discussed
evidences of sympatric speciation events.

A very interesting example of sympatric speciation in its critical starting stage
(when the ecological niche is the same) is the case of Microtus savii ’s speciation, a
small rodent whose geographical distribution is limited to a large part of the italian
peninsula and Sicily, studied in 2003 from a strong biological point of view by
Galleni et al [13]. A chromosome investigation carried out in M.savii from central
Italy and from Calabria showed different amounts of heterochromatin in the sex
chromosomes; hybrids were formed from crosses but no offspring at all was obtained
from the crosses between hybrids.

The most intriguing observation on the two different species of Microtus savii
is the fact that even if they occupy the same niche the two population are well
geographically separated, but not isolated: all the rodent living in the same zone
are of the same species even if there is not any geographical obstacle to isolate the
two populations and there is not any mating preference for the rodent of the same
species.

The work explains the situation addressing to the hybrid population in the border
zone between the two different species to act like a biological barrier of limited
reproduction rate. They develop a simulation model where a mixed population of
rodent of the two species are capable to randomly move in a bi-dimensional space,
competing for limited resources that limit their population; when a pair of rodent
of different sex are geographically near they can produce an offspring, generating an
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infertile hybrid if the two parents rodents are not of the same species. They show
how even a starting situation with uniformly geographically distributed rodent of the
two species quickly collapses to a situation with perfect isolation of the two species
in two or more populations, separated by stable borders populated by hybrids. In
absence of hybrids the system shows a fast extinction of one of the two species.

In this case the effect of the hybrids with limited reproductive capability is to
stabilize the coexistence of the two similar populations in the same niche.

This case of study shows that there are possible mechanisms that permit the
coexistence of similar populations in the same niche, a situation needed for the
sympatric speciation mode. But it’s not enough, we need a model that enables
not only the maintaining of such diversity for the time necessary to form fully
differentiated species, but that permits the initial sub-population formation.

4.2 The Simulative Model

The model of sympatric speciation is an iterative, dynamic, stochastic model based
on agents.

The agents of this model are synchronized. Thanks to the geographical space
abstraction they can be seen as moving entities on a planar space (R2).

The agents can perceive other agents in a fixed range (rangemating) in the geo-
graphical space and interact with them (for reproduction purpose).

The agents can perceive the resource components of the environment in a fixed
range (rangegathering) in the geographical space and can compete for them with the
near agents in order to increase their energy level.

The energy level that every agent loses in the metabolism step of every iteration
is emetabolism.

Another parameter of the model is the minimum energy level emating that an
agent must have in order to be able to mate.

4.2.1 Components

The environment : is composed only by the geographical space (S), a population
of agents (A) and the set of the resources (R).

The geographical space : is a bi-dimensional square of side l. As geographical
space metric we adopt the Euclidean metric.

S = {(x, y) | 0 ≤ x, y ≤ l, x, y ∈ R}

ds(p1, p2) =
√

(p1[0]− p2[0])2 + (p1[1]− p2[1])2 p1, p2 ∈ S

The genetic space : is a bi-dimensional space. As genetic space metric we adopt
the Euclidean metric.

G : R2
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dg(g1, g2) =
√

(g1[0]− g2[0])2 + (g1[1]− g2[1])2 g1, g2 ∈ G

The Fitness Function : defined on the genetic space.

f : G→ R

The resources : each resource is characterized only by its position in the geo-
graphical space. The number of resources of the environment is a fixed number
(kres · l2).

R = {pi | pi ∈ S}

|R| = kres · l2

If an agent wins the competition for a resource, the energy gained is a fixed
value eresource.

The agents : an agent is characterized by its internal state, further divided in static
internal state and dynamic internal state. The size of the agent population is
not fixed nor directly limited.

ai = SSi ∪DSi ai ∈ A

The dynamic internal state : of an agent consists of its energy level value (an
integer) and the position of the agent (a point of the geographical space, or
geographical position).

DSi = {ei, pi} ei ∈ N, pi ∈ S

The static internal state : of an agent consists of his genotype (a point of the
genetic space, or genetic position).

SSi = {gi} gi ∈ G

Thus an agent ai can be represented as {ei, pi, gi}, ei ∈ N, pi ∈ S, gi ∈ G.
As geographical space abstraction we mean a view of this model considering the

position pi in the geographical space of an agent as a parameter of the environment
and not of the internal state of the agent (in this case an agent ai is composed only
by {ei, gi}).

4.2.2 The Iteration

The agents are synchronized. A synchronization cycle is defined as an iteration and
each iteration is divided in several steps.

For the only purpose of simplicity of some system dynamical descriptions, some-
time in the work we give up the agent paradigm and describe some computations in
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the model, attributable to individual action or synchronized interaction of groups
of agents, that alter the agent population or some agents internal states, as done by
a non-agent mechanism. We want to assure that, independently from the paradigm
used to describe some agent state alteration mechanism, we can explain it in a less
simple way but from within the agent paradigm. Of course dynamics like resources
regeneration and resources stochastic distribution are outside the agent system.

An iteration schema is composed by several sequential steps:

1. Movement

2. Resources Regeneration

3. Competition

4. Metabolism

5. Reproduction

And now a detailed description of each step dynamics:

Movement Step : Each agent ai ∈ A must do a movement action: its current
geographical position is stochastically changed to a new geographical position
extracted with an uniform statistical distribution over the portion of S distant
from its starting position at most stepmax:

pi → pi
′, pi

′ ∈ S, ds(pi, pi
′) ≤ stepmax

Resources Regeneration Step : For each resource i < (kres · l2), its new position
in the geographical space pi ∈ S is randomly determined.

Competition Step : For each resource i < (kres · l2), all the agents capable of
perceiving it form the set of opponents that compete in order to obtain it:

Oi = {aj | ds(pj, pi) ≤ rangegathering, aj ∈ A, pi ∈ R}

For each opponents set Oi, a winner is stochastically selected based on the
opponents fitness values of each agent’s genotype. The selection method used
is Fitness Proportional:

• For each opponent its fitness value is calculated.

vj = f(gj) oppj = {ej, pj, gj} ∈ Oi

• The sum of fitness values of the opponents is calculated.

vtotal =

|Oi|∑
k=0

vk
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• A stochastic value is extracted with uniform statistical distribution U(0, vtotal).

vselect ∈ [0, vtotal] vselect ∈ R

• The winner is calculated.

winner ∈ N,

winner−1∑
k=0

vk ≤ vselect ≤
winner+1∑

k=0

vk

• The agent that win the competition gets its energy level increased.

oppwinner = ax = {ex, px, gx}, ax ∈ A

ex = ex + eresource

Metabolism Step : Each agent ai ∈ A gets its energy level decreased by a constant
value:

ei = ei − emetabolism

If the remaining energy is ei ≤ 0 then the agent dies and it’s removed from
the agent population A.

Reproduction Step : All the agents whose energy level is equal or greater than
the minimum mating energy emating compose the mating set:

MATE = {ai = {ei, pi, gi} | ei ≥ emating, ai ∈ A}

It is randomly selected (if existing) a couple of agents from the mating set that
are near in the geographical space:

(ax, ay) ax, ay ∈MATE, ds(px, py) ≤ rangemating

The selected copy mates (the process is described in section 4.2.3) and, inde-
pendently to the result of their attempt, the two agents are removed from the
mating set MATE.

4.2.3 Mating Mechanism

When a couple of agents ax and ay are selected for mating in the reproduction step,
then they attempt to generate a new child agent to insert in the agent population
A; such a child inherits their genotype.

The key element of the model is that the mating can fail to generate a child and
that the fail probability is dependent to the genetic distance of the parents.

Pmating(ax, ay) =
1

1 + dg(gx, gy)
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This means that the probability that a mating attempt successfully generates
a child decreases proportionally with the genetic distance of the mating agents’
genotypes.

The two agents get their energy level decreased by a fixed value independently
to the success of mating.

ex = ex − ematingattempt

ey = ey − ematingattempt

If the mating is successful a new agent anew = {enew, pnew, gnew} is inserted in
the agent population.

• enew is set to the constant starting level enewborn (the parameters of the model
need to be such that this starting level is not greater than the sum of the
energy paid by the parents in the mating process).

• pnew is set to the halfway point in the geographical space of its parents’ posi-
tions:

pnew =
px + py

2

• gnew is set near to the halfway point in the genetic space of its parents’ geno-
types:

gnew = mutation

(
gx + gy

2

)
The function mutation : G → G selects two stochastic values in a uniform

statistical distribution U(−maxmutation, maxmutation) and uses them to the two
coordinates of

(gx+gy

2

)
.

In order to obtain a simulation working as intended, the value of maxmutation
needs to be small, such that the mutation function application to a point of the
genetic space can produce only a minor variation of its corresponding fitness function
value.

4.2.4 Initial Settings

The starting agent population is created of size startingagents, each agent in the
starting population has the same genotype (startingenotype), a starting energy
level value (startingenergy), and they are randomly placed within the geographical
space.

The Fitness Function f is chosen such that only two different paths in the genetic
space (sharing a common starting path) are fitness increasing in the genetic space;
the paths starting point is the common starting genotype (startingenotype).
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4.2.5 Termination Condition

The termination condition in our experiments is the number of iterations we want
to run, but it can be set to any other condition, as an example it can based on the
fitness level reached by the agents in the agent population.

4.2.6 The Result of a Simulation

In a classical search algorithm based on fitness function directed evolutionary dy-
namics, the result of the search process is considered to be the point of the search
space with higher fitness that was found during the simulation.

In our case we consider the results of the simulation not simply a single agent,
but the clusters that the genotypes of the various living agents constitute in the
genetic space.

By adopting the view of the simulation interpreted as a search algorithm over
the genetic space, directed by the defined fitness function, its final objective is not
finding the best solution anymore, but finding several alternative solutions.

4.3 An Example of Execution of the Model

In order to implement the simulation model in a computer program and study its
emerging properties we need to assign a value to every parameter of the theoretical
model.

All the parameters that are needed in order to implement the model will be
summarized and their isolated effects to the system dynamics will be described in a
following section.

We want to stress that the dynamics of the agent population in the implemented
model depends on the choice of the parameters: even if is not difficult to find a
parameter choice that grants speciation, there are choices that do not make the
model work as intended; these cases give us hints of the different role that every
parameter has in the emergence of speciation and are discussed in the following.

Another fundamental choice to do in order to obtain a speciation event is the
fitness function definition. In the following example we make use of a fitness function
with a well defined increasing gradient path in the genetic space. The gradient
increasing path starts from starting genotype and leads to a point of the genetic
space from where there is a bifurcation: two separate paths with increasing gradient
leading to different directions.

The implementation of the model with the described fitness function shows the
emergence of speciation capabilities without the need of any geographical isolation.

The speciation event is dependent to parameter choice, but it shows a strong
resilience to parameters variation and we didn’t experience any difficulty to quickly
set parameters that enable the speciation.
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The dynamics of the agent population in the course of speciation, in both geo-
graphical space and genetic space, is shown, for an example of model execution, in
the figures 4.2, 4.3, 4.4, 4.5 and 4.6.

The left-sided square in the figures represents the geographical space and the
colored dots are the agent positioned; each dot in the geographical space is colored
dependently on the agent genotype position in the genetic space; this enables a
mapping from the two spaces and gives us the very interesting information that
agents near in the geographical space tend to be near in the genetic space too.

The right-sided square in the figures represents the genetic space and the colored
area represents the points of the space occupied by genotypes present in the agent
population. The colors represent the density of representatives in the population for
the particular genotype.

The small colored square on the left visualizes the values of the fitness function
mapped on the genetic space: the yellow-red colors have a higher fitness value.
The main starting gradient increasing path can be visualized on the diagonal; the
bifurcation point is placed in the middle of the square and the two alternative paths
are positioned one vertical and the other horizontal.

Figure 4.2 is a screenshot of the situation before the starting of the speciation:
the only cluster of genotypes in genetic space, following the main starting gradient
increasing path of the fitness function, has reached the bifurcation point.

Figure 4.2: An example of execution of an implementation of the sympatric specia-
tion model. A speciation is occurring. The left-sided square in the figure represents
the geographical space with dots representing the agent positions, the right-sided
one represents the genetic space with dots representing genotype density.
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In the Figure 4.3 is shown the starting phase of the speciation, when the geno-
types organize in weakly defined clusters and are still on the bifurcation point.

Figure 4.3: The same run of Figure 4.2: the genotypes start to organize in weakly
defined clusters and are still on the bifurcation point.

In the Figure 4.4 the two clusters in the genetic space are formed, but their
closeness still allows the birth of hybrid agents.

In the Figure 4.5 the two clusters are more separated in the genetic space and
it’s shown an interesting emerging property of this dynamic of sympatric speciation:
even if there is not any obstacle in the geographical space the agents tend to form
isolated groups composed of representative of only one of the genetic clusters. Agents
near in the geographical space tend to be near in the genetic space too. We can
still see some hybrid agents in the boundary line: they are the green dots in the
geographical space.

The situation in Figure 4.6 shows fully separated clusters in the genetic space
and the absence of hybrid formation.

4.4 Model Discussion

The settings and the features choice adopted in the proposed model of sympatric
speciation are standard in regard to the modeling approaches found in computer-
science literature, but with one notable innovation, a simple mechanism fundamental
for the emergence of speciation without any need of geographical discontinuities:
the negative effect on the fertility of the genetic distance between couples of mating
agents.
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Figure 4.4: The same run of Figure 4.2: the two clusters in the genetic space are
formed, but their closeness still allows the birth of hybrid agents.

Figure 4.5: The same run of Figure 4.2: the agents tend to form isolated groups in
the geographical space composed of representative of only one of the genetic clusters.
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Figure 4.6: The same run of Figure 4.2: the two clusers are now fully separated in
the genetic space.

The simulation dynamics of an implementation of the model of sympatric spe-
ciation can exhibit, dependently on the parameters choice, not only the expected
emergence of the speciation, but another unexpected additional emergent property:
the spontaneous formation in the geographical space of several zones where the
agents populating it have their genotypes positioned in the same cluster of the ge-
netic space. Another additional emergent property of the model is the cohesion of
genetic clusters.

The most interesting features of the model, the observed emergent properties
and the role of each parameter in the whole system dynamics, are discussed in this
section.

4.4.1 Discussion About the Features of the Model

The Separation of the Geographical Space from the Genetic Space

The feature of separating the search space (the genetic space in our modeling ap-
proach) from a second distinct space (in literature it’s usually addressed as geo-
graphical, like in our case) independent from the first one is present in several works
in the field of evolutionary algorithms literature.

In absence of any geographical space, the selection phase of the evolutionary
algorithm doesn’t usually make use of the distance of pairs of sexually-reproducing
agents.

In the island model approach, the islands’ structure can be seen as a particular



46 4. THE SYMPATRIC SPECIATION MODEL

geographical space composed of only a very limited number of points (usually a
limited migration capability from an island to a connected another one is granted
to the agents).

Our choice for the use of a geographical space is explained by the necessity to
have some type of locality over the selection process: the environment that defines
the selective pressure over a particular agent (in our case the competition for the
resources) is not the whole system environment but only a local fragment of it,
centered on the agent’s geographical position.

The locality of the selection is essential because it is the selective pressure that
directs the genetic trajectory followed by a population subjected to the effects of
genetic mutation.

Different selective pressures can move the genotypes of the agents toward dif-
ferent distinct directions in the genetic space, but if the selection pressure is the
same for all the agents in the system then the genetic trajectory is the same too:
no splitting of the genotype cluster can be expected and thus we will not obtain
the occurrence of any speciation event. If we have not a locality of the selection
pressure we cannot obtain speciation events without the necessity of isolation of the
population in several sub-populations.

Making use of a geographical space not limited as the one we can see in the case
of the island model, saves us from the additional parameter of the number of islands
to put in the model, that is a problem in the field of multi-population evolutionary
algorithms, as this number is defined at design time and usually is dependent to the
problem that we want to solve.

Variable Fertility Discussion

For variable fertility we mean that the mating of two agents can produce a newborn
agent with the probability:

Pmating(ax, ay) =
1

1 + dg(gx, gy)

This is a feature that, at our knowledge, in literature never appeared before in
an evolution computer model; it is standard the assumption that a pair of selected
agents (or a pair of search points) produces a new child agent with probability one.

There is a biological inspiration for this simple feature: the epistemological de-
bate about a good definition of species stressed the existence of inter-species breed-
ing, sometimes generating hybrids capable of making children, as a motivation to
keep out the fertility from the qualities that define the species boundaries. From
these cases we can assume the possibility that the fertility or infertility between
two living organisms not only is determined by the genetic closeness (and this is al-
most obvious) but that it’s a fuzzy property, decreasing when the distance increase.
This is a naive and oversimplification assumption to do about the biological real
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world, where the high complexity of living beings prevents us to make this type of
generalizations, but it worked out well in our simplified biologically inspired models.

When the adopted type of variability of the fertility coexists with the geographi-
cal space and the locality of mating (two agents can mate only if they are geograph-
ically near), we can expect several different effects:

• If in a zone of the geographical space the agents are genetically similar, then
there is not any effect, because the probability is near to one.

• If in a zone of the geographical space two groups of genetically different agent
populations are shuffled in equal proportions, then the effect is a reduction in
reproduction rates for every agent because the energy cost of mating is paid
independently to the success of mating.

• If in a zone of the geographical space two groups of genetically different agent
populations are shuffled in unequal proportions, then the effect is a reduction in
reproduction rates. The reduction is stronger in the outnumbered population
and smaller for the main population.

• In the zones that constitute the borderline of two areas occupied by genetically
different mono-population of agents, the effect not only is the reduction of the
reproduction rates, but, due to the higher rates in the mono-population areas,
any invasion attempted by a population will fail in the beginning, because
the first invading agents will suffer a huge reduction of reproduction (remem-
ber that the reduction is stronger in the outnumbered population) thus the
selective pressure imbalance will prevent any invasion.

We are able to appreciate the last described effect for the case of borderline zones
when we are making comparisons with the work of Galleni [13]. It turns out that
the effect of the adopted variable fertility has strong similarity with the effect of the
hybrid zone of M.savii : it’s the effect of diversity maintaining for different species
living in the same niche.

The borderlines stability obtained by the variable fertility prevents us from the
need to adopt further diversity maintaining mechanics.

Another quite obvious and expected effect is the last phase of speciation event:
when two agent populations that constitute two different clusters in the genetic
space are far from each other, then the interbreed disappears.

4.4.2 Observed Emergent Properties

Speciation

By observing a single genetic cluster dynamics in the genetic space when the pop-
ulation of agents is following a genetic mutation trajectory, we can note that the
integrity of the cluster is not statical: several groups of genotypes tend to go away
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from the center of the cluster in every direction (more prominent in gradient in-
creasing genetic directions).

Mapping these groups of differentiated genotypes on the geographical space we
can observe that the agent composing them are positioned in the same local geo-
graphical areas.

It is the local selection that enables the separation from the genetic cluster,
acting before the delayed global selection that, in asecond moment, can suppress or
select the speciation.

The delay of global selection is caused by the fact that an event far in the
geographical space takes some time (dependently to the velocity of diffusion of the
agents) before being influential locally.

It’s this delay from the local to the global selections that enables that, from a
cluster in the genetic space centered in a point from which several directions are
fitness increasing, different genetic clusters represented by groups of agents posi-
tioned in different geographical areas, can emerge without suppressing each other,
and independently starting to constitute new populations, eventually will split the
starting genetic cluster when the global level selection occurs.

We are able to observe the expected emergent property dependently to the pa-
rameter choice.

A species is a cluster in the genetic space, so it is possible to obtain not only
speciation of different clusters, but eventually, dependently to the particular fitness
function, the emergence of a hierarchical cluster structure.

Formation of Mono-population Areas

This emergent property of the simulation model was initially unexpected.

We are able to observe that, when a speciation is occurring in the system, the two
genetically different populations tend to occupy separated areas of the geographical
space, forming mono-population areas.

But, more in general, even if there is not any speciation event, if we map the
geographical positions of agents with the genetic position of theirs genotypes, we
note that agents that are geographically close usually are genetically close too.

Our interpretation of this emergent property of agent distribution is the contem-
poraneous effect of local selection and variable fertility. The local selection encour-
ages variability among geographically far areas but, when considering the selection
locality range, the selective pressure encourages the mono-population. Adding to
the particularities of the local selection the previously discussed diversity maintain-
ing effect of variable fertility, we can understand and expect the formation of the
mono-population areas.
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Cohesion of Genetic Clusters

For genetic clusters cohesion we mean the experimentally observed fact that a ge-
netic cluster positioned in a zone of the genetic space, where the corresponding
defined fitness function is a constant value, maintains a limited diameter rather
than expanding indefinitely.

The genetic cohesion can be easily described as one of the direct results of the
variable fertility: the genetic distance that two agent of the same species can reach
is regulated by the fact that the greater it is, the less energetically efficient is their
mating process.

Therefore, a genetic cluster with a big diameter denotes a species whose mating
efficiency is low, and in this case the selective pressure tends to select a version
of the species with a decreased diameter. But, on the other hand, the genetic
cluster diameter cannot be indefinitely decreased (even if the fitness function is not
a constant) because of the locality of selection and the effect of random genetic
mutation of the newborns.

In the case of the constant value fitness function we see a cohesive cluster, with
occasional speciation of alternative clusters. In comparison, evolutionary models
where there is not any variable fertility, in absence of additional features, have no
form of cohesion.

4.4.3 Parameter Role Discussion

Here we summarize all the parameters used for the description of the theoretical
model. Any implementation of the theoretical model is a particular choice of pa-
rameters and, even if some choices prevent the emergence of the target properties
of the model, it is not difficult to find a parameter choice that grants the emergence
of speciation.

The singular effects to the system dynamics of every parameter are described.
All the analysis are based on experimental evidences.

rangemating : the geographical range for mating.

rangegathering : the geographical range for resource competition.

We have not found any valid motivation for setting rangemating and
rangegathering to different values. These two parameters define the range of the
locality of selection. Their effects are linked to the parameters that define the
geographical space size and the maximum distance that an agent can move in the
movement phase. An increase of the locality range can be completely balanced by an
appropriate increase of the geographical space size and of the maximum movement
step size. When not balanced, the increase of the locality of selection causes an
increase in the thickness of boundaries areas of limited reproduction rate that will
form dividing different mono-population areas, and a second observed effect is the
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decrement of local genetic variability (actually, the variability is the same, but the
locality range increases, so it’s the same thing).

l : the size of the geographical space side.

stepmax : the maximum variation of the position that an agent can do in the move-
ment phase.

As previously stated, appropriate variations of stepmax and l can completely
balance the variation of the locality range, therefore they, linked, have the same
effect. But changing only one at the time, keeping constant all the other system
parameters, we observe different effects.

If l is set over a minimum value experimentally found, any further increments
do not have any big effect on the dynamics of the model; all the effects that we can
obtain is to have an increased number of mono-population areas but their dimension
and stability is the same for every value of l. If the l is too low, to say, about
the dimension of a typical mono-population area that we can obtain with a very
high value of l, then the lower this parameter is set, the more unstable the mono-
population system becomes. If the mono-population system is destabilized then we
cannot observe any speciation event.

The variation of stepmax, keeping unchanged all the other parameters of the
model, causes a variation of the delay of the global dynamics effect over the local
effect. Increasing the stepmax, even if the locality range is the same, the effect is
transported around the geographical space with an increased diffusion velocity. A
too big value of stepmax therefore destabilizes the system, on the other hand, a too
small value slows down the system dynamics and, in presence of bifurcations in
the fitness function, prevents speciation (this second effect can be mitigated by an
increase of l).

kres : the density of resources, as the number of resources to put in the geographical
space for each unit of space.

eresource : the energy gained by winning a competition for a resource.

The product (kres · eresource) is proportional to the number of agents that we
see in the simulation. Increasing or decreasing the density of population we obtain
effects similar to the variation of the locality range of selection.

Keeping constant the product (kres · eresource) and altering the kres

eresource
ratio we

observe some very interesting dynamics.
When we increase kres and proportionally decrease eresource, the actual dynamics

of the selection mode (fitness proportional) slowly changes, becoming similar to
a truncated ranking selection mode. This has a really bad effect on the genetic
variability of the genotypes and make the search process more prone to be trapped
in a local optimum.
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On the other hand, decreasing kres and proportionally increasing eresource, the
actual dynamics of the selection mode (fitness proportional) slowly changes, becom-
ing similar to a random selection mode (the selected agents are completely randomly
chosen, regardless to their fitness values). This is a even worst scenario than the
one of the previous case and all the dynamics of the system fail.

maxmutation : the maximum genetic mutation applied to each axis of the genetic
space to the genotype of a newborn agent.

A really independent parameter, the variation of maxmutation alters the velocity
of the search process in the genetic space for optima of the fitness function. The
optimal value of maxmutation depends on the particularity of the defined fitness
function. An increase in maxmutation promotes speciation events but, on the other
hand, it causes a decrease of the genetic cluster cohesion and a generalized decreased
rate of successful mating. If set to a value too high it destabilizes the system.

emetabolism : the energy decrease in metabolism.

emating : the minimum energy level that an agent must have in order to be able to
mate.

ematingattempt : the energy spent by an agent for a mating attempt.

enewborn : the starting level of energy of a newborn agent.

This set of parameters regulate the life cycle of the agents. An increase in
emetabolism not only prolongs the expected life (in term of number of iterations) of an
agent, but, if not counterbalanced by a variation in the energy received by winning a
competition for a resource, increases the number of living agents. The enewborn must
be set to be enewborn ≤ (2 · ematingattempt) otherwise every successful mating adds
energy to the system and it can eventually diverge. The lower enewborn is compared
to emetabolism, the higher is the infant mortality of agents. Increasing emating not only
increases the time, in terms of number of iterations, before a new generation starts
to have children, but simulates an increase in the selective pressure. If, for instance,
we set emating = 0 (or, better, equal to ematingattempt) then every agent tries to have
children; the effect is that even the agent with the lower fitness level becomes able to
generate an offspring (if they obtain any resource the energy is invested in children)
and the selection focuses more on who starves than on who does not generate off-
spring. An increase in ematingattempt makes stronger the effect of the variable fertility,
because every failed mate attempt costs more. A ematingattempt decrease on the other
hand nullifies the effects of variable fertility: the mono-population areas disappear
and no speciation occurs.

startingagents : the size of the starting agent population.
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startingenotype : the genotype common to every agent of the starting agent popu-
lation.

startingenergy : the energy level common to every agent of the starting agent pop-
ulation.

The startingagents is of no relevance because the size of the agent population of
the system changes to a level depending to other parameters (the maximum average
number of agents will be kres·eresource

emetabolism
but the effect of variable fertility puts the

habitual number of agents under such a limit). startingenergy is of no relevance
too. startingenotype depends to the fitness function definition.

4.4.4 Model Minimality and Mechanisms Dropped From
the Minimal Model

The process of model designing was oriented to develop not only a model that enables
the emergence of sympatric speciation, but a minimal model with such an emergent
property.

Calling it minimal, we mean that the model is intended to be the simplest nec-
essary, in terms of number of constitutive base mechanisms, in order to obtain the
emergence of sympatric speciation.

We are not able to prove that a simpler but still operational model does not
exists; anyway, our design process, considering the analysis of several different more
complex model we initially developed, consists in tests of alternative choices of
pruning of the base mechanisms of these models.

We can assume by experimental observations that, with the limited consideration
of only the mechanisms or properties we analyzed, the proposed model is the simplest
in terms of constitutive base mechanisms.

Essentiality of the Mechanisms Adopted in the Model

We can make a differentiation between the base mechanisms and the properties that
emerge from the interaction of the mechanisms composition (system level emergent
properties).

The emergent property whose presence define if the model is operational is the
speciation in absence of any direct isolation of the agent population.

The essential emergent properties we must observe in the model in order to in-
directly divide the agent population are any form of geographical locality in the
selection and the spontaneous formation of mono-population areas in the the geo-
graphical space.

An alternative, with a different essential property and without the need to have
a geographical space, is a form of genetic locality in the selection. This setting can
eventually enable the formation of clusters of agents in the genetic space, but when
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the clusters become distant then any form of interaction between the two cluster
disappear (on the other hand in our model if two agents are near in the geographical
space they not only compete but there is the possibility of interbreeding). In the
case of a residual interaction, then even if the speciation is possible, there is a
lack of diversity maintinmnet. This is a bad feature if we consider the model to
be implemented in an evolutionary algorithm (it removes the main advantage of
evolutionary search over the standard search approach), but even if we are only
interested in the theoretical biology value of the model, then it is not coherent to
biological observations.

We have already discussed in the previous model description sections the mech-
anism of geographical locality in the selection, how it works, its effects and the
influence of the various parameters.

We have already discussed the spontaneous formation of mono-population areas
in the the geographical space too, and we have found that a single feature can not
only enable the formation of these areas, but, when they are formed, it has the
main and essential role in the preservation of such areas. This base mechanism is
the variable fertility and in the previous sections we have already described how it
works, its effects and the influence of the various parameters.

Every component or elemental (non emergent) mechanism present in the de-
scribed model, if removed or destabilized (destabilization that can be obtained by
parameter choice, already discussed in details), suppresses the locality of selection
or the formation of mono-population areas, or both; the resulting system is not
operational.

Sexual Diversity

In the first developed non minimized model the agents internal static state was
composed by one additional value: the gender.

The gender value could eventually be set to several different values, but, for a
simple analysis, in the implemented models it can have only two separate values:
male or female.

The gender of an agent was stochastically determined when an agent is producted
by a successful mating.

The only role of the gender is the fact that every selected pair of mating agents
needs to be composed by a male agent and a female agent.

This feature of the model allowed the exact implementation of a gender-dependent
variability of the fertility, as in the case study of the M.savii.

We did not observe any qualitative variation in the system dynamics when we
removed this feature.

Our hypothesis is that, in order to exploit the mechanism of sexual diversity, we
need to have a diploid-like structure of genotypes.

We observe that sexual diversity is not an essential feature in order to obtain
any mode of speciation in our simulation models.
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Gestation Period

One of the various features tested in our models is the gestation period feature.
The gestation period is the time, expressed as a number of iterations, that it

takes to a pregnant agent to release the newborn agent in the geographical space.
When a mating event is successful then the newborn agent is suspended from

the simulation for the gestation period, and one of the agents of the mating pair
becomes pregnant. A pregnant agent cannot set itself as enabled to further mating.

At the end of the gestation period the newborn is positioned in the geographical
space in the same position of the pregnant “mother” agent, that returns to be non-
pregnant.

An additional parameter is needed and is the length, expressed as the number
of iterations, of the gestation.

We did not observe any interesting change the in system dynamics attributable
to the effect of the gestation period. The only (not interesting) observed effects are
a general slow down of the model, a decreased reproduction rate (if a pregnant agent
dies before the end of the gestation period then the child agents is deleted too) and
stronger fluctuations in the number of the living agents.

Diversity Maintaining: Decreased Fertility for Hybrid Agents

In the case study of M.savii the role of diversity maintaining when several mono-
population areas are formed is ascribed to the presence, in the boundary zones, of
a population of hybrid agents with decreased fertility [13] (they can still mate with
every agent but the probability to produce any offspring is decreased even if the
mating pair is composed to genetically identical hybrid agents).

In order to give this mechanism to the model we need to make explicit and
functionally make use of the notion of species. We need to identify the different
genetic clusters in the genetic space if we want to calculate if a newborn is to be
considered an hybrid with decreased fertility or not.

This problem is really hard because if we make use of the cluster notation and
identification in order to regulate the system dynamics, any possible cluster forma-
tion or split can be considered as attributable to this feature and not a emergent
property.

Luckily, it turned out that the variable fertility essential mechanism is able to
maintain the diversity, without any need of species notation. The decreased fertility
for hybrid agents does not add anything to the model and can be dropped.

Aging

The aging feature consists of the addition of the age value in the internal dynamical
state of agents.

In every iteration the ages of all the agents in the model are increased by one
and the age of a new agent is set to zero.
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The age of an agent has a role in the metabolism simulation phase: the metabolic
energy paid by an agent is increased by the age multiplied by the aging parameter.

The effect of the aging in the model is to increase the selective pressure for
an agent at the increasing of its age. The observed mutation of dynamics is the
promotion of the generational replacement of agents.

This feature has very interesting effects and implications, but it is not essential
to the model.

Sexual Maturity

Like for the aging mechanism, for the sexual maturity mechanism we need the age
value for every agent, initially set to zero and increasing at each iteration of the
simulation. But there is not any increase of the metabolic energy.

An additional parameter is needed and it’s the minimal age, expressed as the
number of iterations, that an agent needs to have in order to become able to par-
ticipate to the mating phase.

This mechanism turned out to be completely useless, causing only a slow-down
of the system dynamics.

Asexual Reproduction

In the described model we make use only of the sexual reproduction. This does not
mean that we make use of any gender notation, but that, in order to generate a
new agent, there is the necessity to have two agents and that the genotype of the
newborn is a mutated composition of its parents genotypes.

We refer to asexual reproduction as the capability of a single agent to generate a
new clone agent (we call it clone but it has a mutated copy of its parent genotype).

We can use the asexual reproduction as the only possible reproduction mode, or
we can use both sexual and asexual (a choice that is quite popular in the evolutionary
algorithms literature).

With only the asexual reproduction the effect of variable fertility is removed: the
system diverges to a single population and, even if a speciation event occurs, the
resulting multi-population system is so strongly unstable that it converges back to
single population.

Mixing the sexual and the asexual reproduction modes, we obtain the only effect
of the weakening of the diversity maintaining effect of the boundary zones that
divide the mono-population areas.
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Chapter 5

Applications of the Sympatric
Speciation Model to Evolutionary
Algorithms

The model for sympatric speciation, described and discussed in the previous chapter,
can have some relevance in the field of theoretical biology, but the final use we want
to make of it is not in the biological field: it’s intended to be applied to evolutionary
algorithms.

Moreover, such a modeling was done only because the sympatric speciation mode
is a crucial component of our hypothesis about negative feedbacks emergence. The
negative feedback emergence hypothesis will be discussed in chapter 6.

We have studied several variations of the sympatric speciation model and several
variations of single mechanisms (for instance, the genetic distance measure) in order
to show the usefulness of the application of our partial work to the evolutionary
algorithms.

The first result we propose in this chapter is an approximation of the distance
measure for the search space. The peculiarity of the biologically inspired approx-
imation we propose is its applicability to every possible search space, with a sort
of approximation that does not invalidate the measured distances for our particu-
lar purposes. This result is important because a distance measure for the search
space is frequently used by the works found in evolutionary algorithms literature
and because the search space can be extremely complex.

A second result we propose is a variation of the island model in order to solve
the problem of the necessity to statically define the number of species in the design
phase of the system.

The third and last result we propose is a technique that promotes alternative
local optima search, through the destabilization of mono-population groups of island
that emerges from the previously described model, coupled with a system global level
stabilization that prevents the search from stopping.
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5.1 An Approximated General Method for Ge-

netic Distance Measurements Independent of

the Search Space

The notion of distance in the search space is recurrent in evolutionary algorithms
literature.

The measure adopted in a particular work is usually a problem dependent choice,
a choice that sometimes, when the search space is complex [45] [92], brings out to
be a very hard problem.

The needs for a definition of a distance measure metric can be various: it can be
needed in order to evaluate the genetic diversity [14], but there can be some base
mechanisms of the algorithm that depend on it [12].

5.1.1 The Problem

The most general and powerful search space widely used in literature is probably the
space of imperative programming language codes [45]. Other widely used complex
search spaces are the space of electronic circuits [92] and some type of algebraic
functions spaces.

In these cases of complex spaces, a metric to use for the measurement of distances
between two search points is really difficult to define.

When the problem is too much hard or if the effects of an arbitrary choice are
not clear in terms of search outcomes, it’s a common practise to approximate the
genetic distance measure replacing it with a phenotypical diversity measure (the
difference between the fitness values of the two searching points).

The usual approximation of using the difference between the fitness values can
result to be an acceptable approximation in the case of mono-population systems,
but it’s obviously a wrong choice in the more interesting and powerful case of the
multi-population systems.

5.1.2 Biological Observations

In the previous discussion about the biological observations that inspired the intro-
duction of the variability of the fertility mechanisms, we cited some debates where
the relationship between the genetic isolation and the fertility are discussed.

The outcome of the debates is that the reproductive fertility is a fuzzy property
whose value depends on the genetic distance between the mating organisms.

It is a result of works in the field of genetic that, in order to evaluate the genetic
reproductive compatibility of two organisms, for some particular cases of study it
turns out that only a partial fraction of the genotypes is found to play a role: the
concordance of the longer part of the genotypes is less important in order to quantify
the reproductive compatibility.
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5.1.3 The Proposed Solution

In order to obtain an approximated genetic distance measure, independent of a
particular search space, we propose the addition, to every agent static internal state
or to every search point, of a sequence of bits of a fixed length lsg, that will be
referred to as simulacrum genotype.

Every agent in the starting population or every search point in the starting search
set has the same simulacrum genotype, for example a string of lsg zeroes will do the
work.

When a sexual reproduction successfully generates a new agent or a new search
point, the new simulacrum genotype is obtained from the recombination of its
parental simulacrum genotypes, then a point mutation (bit switch) can occur with
a probability psg.

The recombination z of two simulacrum genotypes x and y is carried out in the
simplest way possible: for each bit z[i] of the string we randomly pick the x[i] or
the y[i] bit, with an equal probability.

The proposed approximated distance between two agents or search points is the
edit distance of the two simulacrum genotypes.

5.1.4 Discussion

The proposed solution can seem a very naive approach, anyway the simple mechanics
of the simulacrum genotype are able to mimic very well the accumulation of mutation
that occurs in the search process over the search space.

The edit distance of two simulacrum genotypes approximates the distance, in
terms of generations, from their nearest common ancestor.

The two parameters lsg and psg can be tuned for every particular need. For
example a very long bit string and a psg near to 1 decrease the approximation of the
nearest common ancestor distance.

We observed that, when adopting this approximated distance in replacement
of the exact genetic distance used in the previously described sympatric speciation
model, all the system properties appeared unchanged.

We want to stress that the adoption of the described approximated distance not
only saves us from the problem of a complex search space, but, in comparison to
a less approximated ad hoc solution over complex spaces, it is probably more time
complexity cost friendly, and, compared to the habitual approximation of making
use of the difference between the fitness values, it works well also in the case of
multi-population systems.

5.2 A Modified Island Model

The island model [94] is the most popular model used for the multi-population
approach of evolutionary algorithms.
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We want to propose a variation of the island model adopting techniques taken
from the sympatric speciation simulation model described in chapter 4.

The typical evolutionary algorithm is a probabilistic search algorithm that main-
tains a population of points in a search space, evaluates the goodness of such search
points thanks to a fitness function, and iteratively does:

1. Selection of a representative set of points in the population,
through a selection method that makes use of the fitness val-
ues of the points.

2. Generation of a new population from the selected representa-
tives, through a reproduction method.

3. Mutation of each point of the new population.

4. Replacement of the old population.

The iteration is repeated until a stop condition is reached.

When an evolutionary algorithm makes use of the island model there is an ad-
ditional element: the island graph. An island graph is a graph where the vertexes
are the islands and the edges are the possible ways of migration from an island to
another. Additionally, in the island model case there are several candidates popu-
lations, one for each island.

In order to better describe the system, we label the number of islands nislands

and give an index to each island, each cadidate population is labeled Ai where i is
the index of the corresponding island. The migration rates defined for each pair of
islands are labeled mij and they specify the number of search point that migrate
from island i to island j in the migration phase. Even if the value of mij can be
different from mji, usually the total number of points migrating toward an island is
equal to the number of points that leave the island. The size of each Ai is a constant
value |Ai| = popi.

An iteration of the probabilistic search algorithm becomes:
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1. For each island i:

(a) Selection of a representative set of points in the popula-
tion Ai, through a selection method that makes use of
the fitness values of only the points in Ai (in other words
the selection is local to the single island).

(b) Generation of a new population from the selected repre-
sentatives through a reproduction method.

(c) Mutation of each point of the new population.

(d) Replacement of Ai with the new population.

2. For each island pair (i, j), mij randomly selected search points
are removed from Ai and added to Aj (the random selection
does not consider points that have already migrated in the
same iteration).

Figures 5.1 and 5.2 show a run of our implementation of the previously described
island model. In this example the search space is a segment of R.

On the left part of the figures are represented the islands and the search popu-
lations. Each small group of 40 coloured points represents a particular island pop-
ulation (there are 400 islands in this example) and each coloured point represents
the position in the search space of a particular search point.

The right part of the figures represents the distribution in the genetic space of
the genotypes. The green columns represent the number of genotypes and the red
line is a plot of the fitness function.

Figure 5.1 shows that, if the starting population is set with a genotype placed
in a point of the search space where two different directions are fitness increasing,
then in the island model some islands can genetically go to one direction and some
in the other one.

In figure 5.2 we can see that, even if initially a speciation can occur, in absence
of any diversity maintaining mechanism the system is unstable and one of the two
species quickly disappears.

5.2.1 The Problems

Even if our main and starting motivation of the adaptation of our sympatric speci-
ation model to the island model is the emergent property of diversity maintaining,
we realized that some other recurrent problems of the island model are solved by
our approach.
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Figure 5.1: An example of execution of a variation of the sympatric speciation model.
The left-sided square in the figure represents the islands and the search points, while
the right-sided one represents the genetic space genotype distribution.
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Figure 5.2: The same run of the Figure 5.1: even if initially a speciation can occur
the system is unstable and one of the two species disappears.
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Diversity Maintaining

The main problem we want to resolve in the application of the multi-population
evolutionary algorithms to problems with alternative solutions, is the fact that,
even if speciation is possible, in absence of any diversity maintaining mechanism the
system is unstable and one of the two species quickly disappear.

The problem is well visualized by the example run of figures 5.1 and 5.2.

The Number of Islands

A recurrent problem, widely discussed in the field of multi-population evolutionary
algorithms, is the definition of the nislands parameter.

The standard approach is to define it in the design phase of the model.
When the only purpose of a multi-population approach is to enhance the search

by an additional competition element (if the migrants have a very high fitness they
can destroy the native population of an island, invading the niche with their off-
spring), then a priori defined number of islands can be an acceptable solution.

But if the role of the islands is to support the divergence of several alternative
clusters in the search space (in this case the role of the migration is to transfer
solution structures from the other clusters, not to enhance competition, so invasion
is usually avoided) the decision on the number of islands needs to be related to
the expected number of alternative solutions of the problem, an evaluation usually
impossible to make.

In the literature there are several solutions able to dynamicize the number of
islands.

Islands Connections and Migration Rates

Other recurrent problems are the choices of the connectivity of islands and of the
migration rates [6] [83].

When the number of islands is high the structure of the island graph and the
rates of migration for each edge can be, depending to the problem, a crucial problem.

Some works adopt a full connectivity, some others set the islands in a chain,
some others propose an island graph structure specifically designed for the particular
problem to solve.

5.2.2 The Approach

We propose a solution to the described problems through the adaptation of the
sympatric speciation model to the island model.

Adapting our sympatric speciation model to the island model we mean to enable
the properties emergence by the reproduction of the features of the speciation model.
The features or components that do not have a counterpart in the island model will
be added to the modified speciation model, but for the other ones that have a direct
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counterpart, we need to found a solution that enables not only the emergence of
speciation but also the search capabilities of the agent model.

From now we use again the agent paradigm and the genetic space is the search
space. An agent is not a solution: its genotype is the solution. In the examples the
genetic space is R (not R2 as in the basic sympatric speciation model description).

In order to measure the distances between two genotypes we adopt the Approx-
imated General Genetic Distance previously described in section 5.1.

We compare the various alternative variations of the sympatric speciation model
with the standard island model approach.

5.2.3 Locality

As previously stated, the island structures can be viewed as a very simple geograph-
ical space, where the agent movement is restricted to a migration from an island to
another one. This type of geographical space enables a locality of selection: in the
selection step of the island model a solution competes only against a local portion
of the totality of the solutions.

In our model there are three basic activities of agents that have a locality com-
ponent:

• Competition;

• Mating;

• Movement.

We have already observed experimentally that there is not a notable variation
of the emerging properties of the model if the locality of the competition is different
from the locality of mating, therefore we reduce to only two types of locality.

We tested several alternative variations from the sympatric speciation model of
the geographical space and of the two described types of locality.

The first variation we tested is:

• Geographical Space: keeping the geographical space as a toroidal R2 surface
(we described the sympatric speciation model with square surface in R2, but
the dynamics are almost the same in the toroidal unlimited surface) but with
a grid-like segmentation in macro-areas of fixed size.

• The locality of movement: keeping the movement in the geographical space as
described in the sympatric speciation model.

• The resources are not placed on a point in R2, but assigned to macro-areas.
Every macro-area gets the same fixed amount of resources at each iteration.
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• The locality of competition: the agents populating a particular macro-area
compete only for the resources locally assigned.

• The locality of mating: all the agents populating a particular macro-area are
considered to be in the geographical mating range that enables couple random
selection, but if two agents are in two different macro-areas, even if they are
geographically very near, they are considered out of the geographical mating
range.

Figure 5.3: An example of execution of a variation of the sympatric speciation
model. The left-sided square in the figure represents the geographical space with
dots representing the agent positions, the right-sided one represents the genetic space
genotype distribution.

Figures 5.3, 5.4, 5.5 and 5.6 show the dynamics of this variation of the speciation
model.
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Figure 5.4: The same run of Figure 5.3: the explosive invasion of free islands.
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Figure 5.5: The same run of Figure 5.3: the hybrid agents are uniformly distributed
in the macro-area, not on the boundaries.
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Figure 5.6: The same run of Figure 5.3: the mono-population areas emerge.
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The left-sided square in the figures represents the geographical toroidal space and
the colored dots are the agent geographically positioned; each dot in the geographical
space is colored in dependence of the agent genotype position in the genetic space,
this enable a mapping from the two spaces. The red grid shows the geographical
space segmentation in macro-areas.

The right-sided square in the figures represents the distribution in the genetic
space of the genotypes. The green columns represent the number of genotypes, the
red line is a plot of the fitness function.

In the Figure 5.3 is showed the starting phase of the simulation: the dynamics
of the model variation in this phase are the same of the sympatric speciation model.

In the Figure 5.4 is showed a phase of the simulation where the first observed
particularity of this model variation starts to show its nature: when the first two
agents of the population move in a previously free macro-area, the discontinuity
in the selective pressure, due to the discontinuity in resource distribution in the
geographical space, increases their mating rate to a very high level compared to the
level observed in the macro-area they come from. This, in addition to the fact that
the newborns are placed almost on the borderline of the two macro-areas, causes an
unfair advantage to the particular genotype of the first couple of invading agents in
the competition for the first macro-area.

In the Figure 5.5 we can observe that with the macro-area variation no hybrid
boundaries emerge in the simulation: when two macro-areas with genetically differ-
ent populations start sending migrants from one macro-area to the other one, the
hybrid agents are uniformly distributed in the macro-area, not on the boundaries.
The effect is a decrement of the mating rate in the whole macro-area.

Figure 5.6 shows a quite stable situation. Even if there are not any hybrid
boundaries, the mono-population areas emerge, but the boundaries are forced to be
on the macro-areas grid lines.

5.2.4 The Adoption of the Islands with Fixed Population
Size

Thanks to the previous first variation of the model we are able to see that we can
adopt a simplification of the resource system needed in the sympatric speciation
model.

The other variations we discuss adopt exactly the same concept of island utilized
by the island model:

• There is not any geographical space: two agents in the same island are near
but if they are in different islands they cannot interact.

• There is a graph structure of islands and the adopted connectivity of the graph
is the more widely used: the total connectivity.

• The movement phase is replaced by the migration phase.
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• There is not any energy level in the agent internal state: on each iteration all
the agents are replaced by the next generation, composed by the offspring of
some agents selected from the original population. The population size has a
fixed value for every island.

5.2.5 Variable Fertility and Total Connectivity

We have tested how the base island model changes its dynamics by the only addition
of the variable fertility mechanism.

The variable fertility mechanism is the same described in the base sympatric
speciation model. In order to measure the distances between two genotypes we
implemented a system with the Approximated General Genetic Distance and one
with the exact genetic distance.

Figures 5.7, 5.8 and 5.9 show an example of the island populations dynamics: we
have almost the same identical dynamics observed in the basic island mode case but
with a prolongation of the number of iterations with the two coexisting solutions.

It’s hard to isolate the only effect of the variable fertility in this model variation.
Using the approximated general genetic distance measure we are able to better
understand it.

It can be summarized by a late occurring effect: after the first iterations of the
system, that have exactly the same dynamics of the basic island model, when the
accumulation of mutations in the simulacrum genotypes (a genetic split typical and
distinct for every different island, independently to the position in the search space)
in the agent populations has reached a high value, then the effect of invading agents
changes.

Before the genetic clusters separation, when a migrant agent arrives in an island,
through the mating with native population it can eventually produce several hybrid
agents. After the genetic clusters separation, a single agent has some troubles repro-
ducing itself, because the success of a mating with the natives is low and no hybrid
agents are born; therefore there is the necessity of at least two distinct migrants of
the same genetic cluster and the rate between the number of components of the two
different populations tends to increase giving an advantage to the main population.

With the only effect of variable fertility we are not able to reach the level of
variability maintaining we have previously obtained in the sympatric speciation
model.

5.2.6 Total Fertility and Local Connectivity

One of the basic observations done in the analysis of the sympatric speciation model
is that the limited movement capabilities of the agents generate a delay of the global
dynamics effects compared to the local effects.

Increasing the maximum movement step that an agent can do in the geographical
space, the system suffers a destabilization.
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Figure 5.7: An example of a run of the variation Variable Fertility and Total Connec-
tivity of the sympatric speciation model. Each group of 40 coloured points represents
an island agent population (there are 400 islands). The colour of a represented agent
indicates the position of the agent’s genotype in the search space.
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Figure 5.8: The same run of Figure 5.7: the red agents start to dominate.
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Figure 5.9: The same run of Figure 5.7: the blue agents will disappear.
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In order to adopt a form of locality in the movement even if we have dropped the
geographical space, we can change the connectivity of the islands: we want that a
single migration or a small sequence of migrations of an agent cannot make it move
to any possible island in the system, but only to a limited set of local islands (Figure
5.10 is an example).

Figure 5.10: In order to obtain a form of locality in the movement, distant islands
must exists.

In this particular variation of the model, we adopt a grid-like connectivity of the
islands and a travel cool-down (an agent cannot migrate if it has already migrated
within a fixed number of iterations; his cool-down is inherited by his offspring).

Figures 5.11, 5.12 and 5.13 show an example of the local connectivity of islands
dynamics: we observed the emergence of mono-population areas like in the sympatric
speciation model.

The boundaries of the mono-population areas are not defined by hybrid popu-
lated zones but are forced to be border islands groups. Unluckily, the border islands
do not have the stability showed by the hybrid zones.

Even if mono-population areas emerged, there is not any diversity maintaining
mechanism to stabilize the border islands groups, and, after a variable amount of
iterations, the system converges to a single type of population in every island.

5.2.7 Variable Fertility and Local Connectivity

In this final variation of the model we adopt both variable fertility and local con-
nectivity of the islands.

We adopt the same grid-like connectivity of the islands previously discussed in
the Total Fertility and Local Connectivity model variation. We also adopt the travel
cool-down parameter (an agent cannot migrate if it has already migrated within a
fixed number of iterations, his cool-down is inherited by his offspring) in order to
enhance the locality of migrations.

We adopt the same variable fertility mechanism used in the Variable Fertility
and Total Connectivity model variation.
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Figure 5.11: An example of execution of the variation Total Fertility and Local
Connectivity of the sympatric speciation model. Each group of 40 coloured points
represents an island agent population (there are 400 islands). The colour of a rep-
resented agent indicates the position of the agent’s genotype in the search space.
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Figure 5.12: The same run of figure 5.11: the mono-population areas emerge.
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Figure 5.13: The same run of figure 5.11: there is not any diversity maintaining
mechanism to stabilize the border islands groups, the system will converge to a
single type of population in every island.
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Figures 5.14 and 5.15 show an example of simulation run of this model variation:
we observe the emergence of the mono-population areas like in the Total Fertility
and Local Connectivity model variation, but in this case the mono-population areas
are maintained by an emergent conservative mechanism.

Figure 5.14: An example of execution of the variation Variable Fertility and Local
Connectivity of the sympatric speciation model. Each group of 40 coloured points
represents an island agent population (there are 400 islands). The colour of a rep-
resented agent indicates the position of the agent’s genotype in the search space.

As in the previous model variation, the boundaries of the mono-population areas
are not defined by hybrid populated zones but are forced to be border islands groups.

The effect of the variable fertility is a late occurring effect and in our tests
(probably due to the excessive simplification of the search space) the adoption of
the approximated general genetic distance measure makes the effect stronger. With
the accumulation of mutations in the simulacrum genotypes in the different mono-
population areas, the groups of border islands become more resistant to invasion,
thanks to the decreased propagation of the invading genotypes.
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Figure 5.15: The same run of figure 5.11: the mono-population areas are maintained
by a conservative mechanism.
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5.2.8 The Proposed Solution

We have found a variation of the sympatric speciation model that, even if it drops
the geographical space, adopting islands with a fixed population size (as in the
typical island model), is able to show the emergence of mono-population areas in
the island graph with boundaries stabilized by another emergent property.

The only two modifications of the default island model iteration are in the step of
generation of the new populations from the representative sets and in the migration
step.

The iteration dynamics becomes:

1. For each island i:

(a) Selection of a representative set of agents in the popu-
lation Ai, through a selection method that make use of
the fitness values of only the agents in Ai.

(b) Generation of a new population from the selected repre-
sentatives, through a reproduction method. The repro-
duction method, when it wants to select a pair of agents
for sexual reproduction purposes, needs to abort such
selection accordingly to the stochastic variable fertility
method.

(c) Mutation of the genotype of each agent in the new pop-
ulation.

(d) Replacement of Ai with the new population.

2. For each island pair (i, j), mij randomly selected agents are
removed from Ai and added to Aj (the random selection does
not consider agents that have already migrate in the same
iteration, or whose migration cool-down value is grater than
zero).

In addition to this simple variations of two steps of the iteration, the proposed
model imposes that the island graph connectivity is a grid-like connectivity.

5.2.9 Discussion

We want to stress that the proposed model is compatible with the existing island
model approaches. With some minor additions the evolutionary algorithms can
improve the simulation process results:

• If the main role of the several isolated populations is only an enhancement of
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the competition mechanism, adopting our proposed modifications we enable
an extension (in the number of iterations), or even a stabilization (if the fitness
values are similar), of the state of multi-population, usually unstable.

• If the main role of the several isolated populations is the finding of alternative
solutions, adopting our proposed modifications we resolve the problems of the
choice of the number of islands and the island graph connectivity. Moreover,
it improves the stability of the multi-population system.

If we have the possibility to make a radical change, we can obtain a stronger
stabilization effect adopting a model more similar to the sympatric speciation model,
but, in this case, the computational costs of the various locality mechanisms needed
are higher than in the case of the approximation of the geographical space using the
islands approach.

5.3 Island Destabilization Method

Unlike all the other proposals in the field of evolutionary algorithms, the island
destabilization method we are going to describe does not have any biological inspi-
ration.

5.3.1 The Problem

In the various runs of the different evolutionary search algorithms, we observed
a very annoying recurrent situation that arise in the case of multi-modal fitness
functions with multiple local optima.

When the search process, visualizable like a migration movement of a cluster in
the search space, reachs a fitness bifurcation, we want it to find and maintain two
different local optima of the fitness function, visualizable as isolated clusters in the
search space (Figure 5.16 case A).

But if the cluster does not start from an area in the search space with a bifurca-
tion in the fitness function value (a point where two different directions in the search
space are fitness increasing), then one or more local optima of the fitness function
will never be found (Figure 5.16 case B).

In order to improve the probability of reaching such a bifurcation point, we can
increase the internal diversity of the cluster, i.e. increase the diameter of the cluster
in the search space, or execute several runs from several different starting position
in the search space.

Unluckily, if one or more populations have already reached a local optimum, even
if the internal diversity of the cluster is so high that an alternative local optimum
can be reached, a speciation, with formation of a mono-population isolated area, is
very difficult to happen (Figure 5.16 case C).
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Figure 5.16:

In fact, if the diameter of the cluster is so wide that it touches another zone
of the search space with a gradient of the fitness function pointing away from the
center of the cluster, we see some agents with this genotype, but no a cluster splits
from the original one in order to follow a potentially long fitness increasing path in
the search space (Figure 5.17).

Figure 5.17:
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5.3.2 The Proposed Method

We propose a method applicable to the Modified Island Model described in section
5.2 that enables speciation events in cases like the one visualized in Figure 5.16 C
or, more interesting, the case visualized in the right side of Figure 5.17.

This method consists in a local destabilization of the search population.

We need to consider a single island whose population has reached a local optimum
in the search space. What we want is to destabilize it, such that there is a limited
probability that the current search cluster, characterized by the agents of the island
population, disgregates and the population begin eventually to evolve in another
direction.

If we are in the cases of Figure 5.16 case C or the right side of Figure 5.17, with
a cluster diameter wider than the local optimum diameter, a disgregation of the
island population can be equivalent to a situation of Figure 5.16 A or the left side
of Figure 5.17.

If we consider only the single-island system, if we can obtain such a destabiliza-
tion then we have lost the purpose of the search: every time the island population
disgregates, a big chunk (or the whole) of the searching process information is irre-
mediably lost.

What we want is a destabilization mechanism whose action is local to a single
island or a small group of adjacent islands. The global system reacts with a de-
lay repopulating the islands if the destabilization does not have found any fitness
increasing path. But if the destabilized population starts to follow an increasing
fitness path in the search space, then the delay of the global level reaction allows a
speciation.

Analyzing the role of each parameter of the modified island model, we have found
that we can obtain this mechanism with an opportune choice of some of these.

We can obtain such a local destabilization in the modified island model by con-
temporaneously:

Lowering the genetic stability of the newborns. Increasing the maxmutation
parameter. If in the model the newborn genetic mutation is not applied every
time (several works have this feature), but only with a fixed probability, this
probability needs to be increased.

Lowering the selective pressure. This can be obtained modifying the selection
method, by lowering the stochastical advantage of having a high fitness. The
parameters to modify depend on the particular selection method (for example,
in a tournament selection, this can be obtained decreasing the tournament
participants).
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5.3.3 Examples

In figure 5.18 is shown a particular situation where all the islands of the system are
stabilized to an optimum, but the fitness function has a second local optimum. For
this second local optimum there is not any cluster in the search space and it’s fitness
value is lower than the fitness of the first one. On the right side of the figure we can
see the distribution of the genotypes in the search space. It’s interesting that even
if the cluster diameter is really wide no agent with genotype in the second optimum
is born. In figure 5.19 is shown the effect of the only modification of the selective
pressure.

Figure 5.18:

Figures 5.20 and 5.21 show an example of the dynamic of the systems in the
setting of fitness function with two local optima. In this case the starting genotype
is not placed in the middle point between the two optima: all the starting agents are
in the blue optimum. This is the case C of Figure 5.16. We can observe that some
islands in the figure 5.20 have been destabilized to the red. Thanks to the decreased
selective pressure, the delay in the global reaction gives to some destabilized islands
(not all the destabilizing ones) the time to obtain a good fitness value. In figure
5.21 we can view this situation.

5.3.4 Discussion

The statistical nature of the single-island destabilization and the stabilizing global-
effect of the migration from other islands of the system, prevents the global system
to destabilize. In fact, we found that only single islands or small adjacent groups
destabilize. This is true for a system with a high amount of islands.
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Figure 5.19:

In the absence of multiple local optima of the fitness function, the efficiency of the
search results diminished only by a small factor (a deeper analysis is still needed),
but in presence of multiple local optima the system gains an increased speciation
capability.
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Figure 5.20: An example of execution of the Island Destabilization Method. Each
group of 40 coloured points represents an island agent population (there are 400
islands). The colour of a represented agent indicates the position of the agent’s
genotype in the search space.
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Figure 5.21: The same run of figure 5.20: the formation of the alternative solution
islands.



Chapter 6

The Feedback Emergence Model

The final focus of the thesis is the development of a model of system auto-regulation
through the emergence of negative feedback cycles.

The feedback cycles in the biological environment are constituted by interactions
between biotic (species) and abiotic components of the biosphere and they target
one or several parameters of the natural environment.

Negative feedback cycles are feedback cycles that became active when the value
of the parameter they controls is shifting away from its homeostatic equilibrium
value, and their effect is to compensate such alteration. Therefore, the negative
feedback cycles role is to increase the stability of the homeostatic equilibrium of the
system.

In order to explain the spontaneous emergence of auto-regulation, we unavoid-
ably need to make use of group selection. There is group selection when a group-
oriented altruistic behaviour is selected in a population, even if the altruistic indi-
viduals have lower fitness.

The debate about the group selection compatibility with the selfish base mech-
anism of natural selection started from Darwin’s original theory of evolution and
it continues today. As for the species definition problem, we do not want to enter
in the group selection debate: we do not add any mechanism in the model whose
purpose is to enable the group selection; groups selection emerges as an outcome of
the previously modeled mechanisms of variable fertility and local selection.

6.1 Feedback Emergence or Inhibition Hypothe-

sis

Now we are considering feedback cycles, but the same hypothesis can eventually be
applied to other system-wide mechanisms, altruistic, like negative feedback cycles,
or catastrophic, like positive feedback cycles.

A basic hypothesis is that the system evolved to a state where all the species
and the abiotic elements of the system developed a strong level of interdependency
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through biotic active environment transformation: each species role on the system
is not only the consumption of resources, but also the resources transformation.

The homeostatic equilibrium of the system depends on the resource transforma-
tion effect of the various species and the species have evolved in order to fit the
transformed environment (the fitness changes every time the species in the system
alter the homeostatic equilibrium).

We consider an island in the state of homeostatic equilibrium, where the species
developed a high level of interdependency.

The fitness function is dynamical, because it is implicitly defined by the dynam-
ical system environment (an evolutionary process can alter the environment and
therefore the fitness).

There are input fluxes of external resources in the island (as, for the biologi-
cal system, there is the solar radiations), but it is not constant, some fluctuations
(periodical or chaotic) can occur.

6.1.1 Single Island Dynamics

We start considering only a single environment with several species that have devel-
oped a strong level of interdependency, where every species needs in order to survive
some products of the other species. This single environment is isolated and there is
not any limit to the velocity of internal diffusion of resources and organisms.

We assume that every time a speciation event successfully occurs, if the new
species develops any new resource transforming capabilities that can alter the home-
ostatic equilibrium, then all the species in the system suffer a chaotic change (pre-
sumably a decrease) of their fitness.

Two cases can occurs:

• The homeostatic equilibrium variation enables the species to reach a better
fitness than before the speciation.

• The homeostatic equilibrium variation enables the species to reach a fitness
level lower than before the speciation.

We see a period of fast mutations where the existing species adapt to the altered
environment. Additionally, any new resource transformation capabilities of the new
species can create, combined to the capabilities of all the other species, a feedback
cycle:

Positive feedback cycle : at the first notable fluctuation of the regulated param-
eter, the positive feedback cycle causes a potentially catastrophic alteration of
the homeostatic equilibrium of the system with a corresponding great change
of the implicit fitness function. The result of a catastrophic equilibrium alter-
ation can eventually be a mass-extinction.
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Negative feedback cycle : the fluctuations of the regulated parameter are damp-
ened. With a less fluctuating environment, the species can adapt more effi-
ciently to the more stable environment.

6.1.2 Multi Island Dynamics

Now we make the hypothesis that, if the system is composed by several islands
where migrations can occur with a limited rate, then the dynamics described in the
previous single island case can be different.

In particular, every time the fitness adaptation of the species of the island where
the speciation occurs increases, the better adaptation causes an increase of the
population and therefore in an increased outgoing migration flux. In this case the
new species are encouraged to populate the other islands.

If, on the other hand, the new homeostatic equilibrium defines a new fitness
function that enables lower adaptation for the current species, then less energy is
obtained from the resources and the selective pressure increases. This causes not only
a decrement of the outgoing migration flux, but also the island can be “captured”
by the other island systems, because even if the incoming migration flux remains
the same, it becomes proportionally more influential because of the decreased local
population stressed by the increased selective pressure.

The two cases of feedback cycle formation are particular cases where the fit-
ness adaptation levels are dropped almost to zero (positive feedback) or increased
(negative feedback).

Our hypothesis is that speciation events in a strongly interdependent system can
eventually cause the formation of feedback cycles, not only the biologically observed
negative ones, but the positive ones too, and that, in a second delayed moment,
the global level selection, in the case of negative feedback, supports the selection of
the new modified environment, making it transfer the new species from the starting
island to the others, or, in the case of positive feedback, prevents a fail of the global
level system, resetting the local level failed system with the invasion of the species
of the surrounding islands.

We want to stress that in this hypothesis the fluctuations of the incoming external
resources flux are not essential to suppress the diffusion of the positive feedback
cycles in all the islands of the system (assuming that minor stochastical fluctuations
of the resource levels activate the feedbacks). On the other hand, we expect to see
selection and widespread diffusion of positive feedback cycles even if there is not
the additional advantage of the fluctuations suppression, but if we consider the fact
that the negative feedback action is probably producted only by the development of
fitness decreasing capabilities, then without the fluctuations the emergence is very
unlikely to occur.
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6.2 Simulative Model

The feedback emergence model is an iterative, dynamic, stochastic model based on
agents.

This model is an extension of the modified multi-island sympatric speciation
model (the Variable Fertility and Local Connectivity variation).

As in the sympatric speciation models, we need the variable fertility mechanism
and the differentiation between local and global selections (in this case, as in the
modified model, “local” is everything in the same island and “global” is every type
of inter-island interaction).

6.2.1 Geographical Environment

The geographical environment is the same adopted in the Variable Fertility and Local
Connectivity speciation model variation: a grid-like connected graph of islands.

The main difference is that the island population size is not fixed, but it depends
on the efficiency of the resource transformation activities of the agents that populate
the island: some more energy-efficient islands can be more populous than others.

Obviously, in this case the migration rates are not fixed, but (stochastically)
proportional to the current population size.

The agents can interact (mating and resource competition) in the same island
and they are considered all at the same distance; agents in different islands cannot
interact.

6.2.2 Resources

A big change in this model is the way in which resources are represented.
There is not only a generic resource anymore, but several different types of

resources are defined. Every resource unit has an energy potential value defined
by the resource type: there are high-energy resource types and low-energy resource
types.

As in the modified model, the resources are assigned to the island, for each island
the number of resources for each type is stored in an array of values.

The unused resources does not disappear from the island: they accumulate for
the next iteration.

Together with the resource types definition and the various energy potential value
of every resource type, some spontaneous degradations and the various respective
degradation rates are defined.

Resources Spontaneous Degradations

A spontaneous degradation from resource type A to resource type B with rate di

(0 < di < 1, di ∈ R) is the transformation of a fraction of the total number of
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resources of type A to type B, and it happens at each iteration of the simulation,
in the resource spontaneous degradation step.

For all the defined spontaneous degradations, the energy potential level of re-
source type B is lower than the energy potential level of resource type A, in this
way the total energy of the system can only decrease.

We define Ri[r] as the number of resources of the type r in the island i. resTypes
is the number of resource types. resEnergyr is the energy potential level of the re-
source type indexed by r.

Resource spontaneous degradation step
For each island i:

1. Initialize to 0 the elements of an array mods of size resTypes.

2. For each resource type a:

(a) apparent rate = 0

(b) cumulative rate = 0

(c) For each spontaneous degradation sr that transforms the resource
type a to the resource type bsr:

i. cumulative rate+ = dsr

ii. apparent rate+ = (1− apparent rate) · dsr

(d) mods[a]− = Ri[a] · apparent rate

(e) For each spontaneous degradation sr that transforms the resource
type a to the resource type bsr:

mods[bsr]+ = (Ri[a] · apparent rate) · (dsr/cumulative rate)

3. For each resource type r: Ri[r]+ = mods[r]

For clarity purposes in the degradation step we have considered the values of
the array mods to be integer numbers and the degradation process to be determin-
istic, but currently we adopt a stochastic degradation method in order to obtain a
chemically realistic resources dynamics. We can adopt a more elegant method: an
optimized version of the Gillespie algorithm [29] [30] [75] [28].

Resources Homeostatic Equilibrium

There is an input flux of the most energetic resource type (indexed input), expressed
by the number of such resource type units to add to every island (radiation) at each
iteration step.

In order to be able to obtain an homeostatic equilibrium of the resources fluxes,
we define an output resource type (indexed NULL) and we set the output resource
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to 0 at every iteration.

Resource input-output step
For each island i:

1. Ri[input]+ = radiation

2. Ri[NULL] = 0

If the spontaneous degradation system has not resources types from wich is
impossible to find a degradation route to reach the NULL resource, then, indepen-
dently from the radiation rate and spontaneous degradation rates, after an initial
transient number of iterations, a state where, for all resources, the sum of incoming
fluxes is equal to the sum of outgoing fluxes will be unavoidably reached.

We refer to such a state as the resources homeostatic equilibrium.

6.2.3 The Agents

In this model each agent can be viewed as a portion of geographical space: in its
internal state the agent has an array storing the quantity of every resource types
that it contains.

We refer to the resources contained in the agent as its internal environment and
to the resource contained in the island where the agent is placed as its external
environment.

With an analogy to the cell mechanisms, every agent has membrane pumps and
enzymes : at each iteration each agent interacts with the external environment in
order to exchange resources in a diffusive-like fashion. The exchange results is
influenced by the presence of membrane pumps that can pump inside or outside
the internal environment some particular types of resource (in absence of pumps the
internal environment and external environment concentration of resources are the
same), then, after the resources exchange step, each enzyme of an agent transforms
the resources of its internal environment.

Resources Exchange Step

The diffusion model we adopt needs to handle resource concentrations, therefore we
need to define volumes for the islands (islandV ) and for the internal environment of
the agents (agentVi). For each pump of each agent it’s defined the resource type that
it pumps, a value of its efficiency and the direction of pumping (inside or outside
the membrane).

We do not describe the technical details of the exchange computation, but it’s
developed in order to obtain:
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• In absence of any membrane pump, the internal and external environment
resource concentrations are the same for every resource type.

• The inter-membrane resource flux caused by a membrane pump in a particular
iteration is defined by the concentration of the resource type targeted by the
pump (external environmental concentration for pumps that pump in, internal
environmental concentration for pumps that pump out), multiplied by the
pump efficiency.

• For every agent, the incoming resource flux of a particular resource type not
directly caused by pumps has a value proportional to the external resource
type concentration.

• For every agent, the outgoing resource flux of a particular resource type not
directly caused by pumps has a value proportional to the internal resource
type concentration.

In the resources exchange step of the iteration, we need to calculate the steady
state where, for each agent and for each resource, the incoming and the outgoing
fluxes are equal. Then from the concentrations of the steady-state and the volumes
we can calculate the number of resources contained in each island and in each agent
internal environment.

Resources Enzymatic Transformation Step

For each enzyme of each agent are defined, as for the case of spontaneous degrada-
tions, the starting resource type A and the target resource type B, and the trans-
formation rate t (0 < t < 1, t ∈ R). Additionally, for every enzyme, we need the
energy-efficiency of the transformation: ee.

In the case that the resource type A is more energetic than the resource type B,
then the energy an agent gains after an execution of such transformation is:

(resEnergyA − resEnergyB) · ee

An enzymatic transformation, unlike the spontaneous degradations, can trans-
form a low energetic resource type in a more energetic one. In that case there is not
any energy gain but an energy consumption for the agent:

(resEnergyB − resEnergyA) · (1 + ee)
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Resource enzymatic transformation step
For each agent i:

1. Initialize to 0 the elements of an array mods of size resTypes.

2. energy variation = 0

3. For each resource type a:

(a) apparent rate = 0

(b) cumulative rate = 0

(c) For each enzymatic transformation enz that transform the resource
type a to the resource type benz:

i. cumulative rate+ = tenz

ii. apparent rate+ = (1− apparent rate) · tenz

(d) mods[a]− = Ri[a] · apparent rate

(e) For each enzymatic transformation enz that transform the resource
type a to the resource type benz with efficiency eeenz:

i. prod = (Ri[a] · apparent rate) · (tenz/cumulative rate)

ii. mods[benz]+ = prod

iii. if (resEnergyB ≤ resEnergyA) then energy variation+ =
(resEnergyA − resEnergyB) · eeenz · prod

iv. if (resEnergyB > resEnergyA) then energy variation− =
(resEnergyB − resEnergyA) · (1 + eeenz) · prod

4. For each resource type r: Ri[r]+ = mods[r]

5. ei+ = energy variation

Genotype

The genotype of the agents does not describe anymore a point in a genetic space
with a defined fitness function.

There is not any explicit fitness function in this model, but the fitness of a
particular agent can be indirectly considered as its ability to gain energy from the
external environment.

The genotype now defines the several parameters of the agent: the internal
environment volume agentVi, the pumps (for each pump: the resource type, the
direction of pumping and the efficiency) and the enzymes (for each enzyme: the
starting resource type A, the target resource type B, the transformation rate t and
the energy-efficiency of the transformation ee).
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We need to define the genetic mutation of a genotype and the genetic recombi-
nation of two different genotypes. Mutation and recombination are related to the
enzyme description and development problems; we will propose a possible imple-
mentation of the two mechanisms, but the only thing that cannot be changed is
the fact that the various energy-efficiency parameters of the enzymes cannot be ob-
tained by mutation or recombination, they need to be calculated from the enzyme
descriptions.

Metabolism

In this model the metabolism energy value that every agent needs to pay at every
iteration is not the same for all the agents, but it is calculated from the agent
parameters.

The metabolism is the sum of various factors plus a basic minimum metabolism
value.

The metabolism increases if there is: an increase of the agent internal environ-
ment volume, an increase in the number of the pumps and of the pumps efficiency
parameters, an increase in the number of the enzymes and of the enzymes transfor-
mation rates, and, in dependence of the adopted genotype description, an increase
in genotype description size.

6.2.4 Local Selection

The local selection feature is obtained thanks to the grid-like connections of the
islands, as previously described in section 5.2.6 for the sympatric speciation model
Variable Fertility and Local Connectivity variation.

6.2.5 Variable Fertility

The variable fertility feature is obtained adopting the same variable fertility mech-
anism described for the sympatric speciation model in section 4.2.3.

The genetic space now is very complex, therefore we need to add to the agents
genotypes the previously described simulacrum genotype bit string (section 5.1), in
order to calculate genetic distances.

6.2.6 The Iteration

A summary of the iteration computations is the following:



98 6. THE FEEDBACK EMERGENCE MODEL

Summary of iteration

1. For each island i:

(a) Ri[input]+ = radiation

(b) Compute the resource spontaneous degradation step

(c) Ri[NULL] = 0

(d) Compute the agent/external environment resource exchange step

(e) Initialize the mating pool to an empty set

(f) For each agent j:

i. Compute the resource enzymatic transformation step

ii. ej− = metabolism(j)

iii. If ej ≤ 0 then kill the agent (and release the internal environ-
ment resources to the island)

iv. If ej ≥ emating then add the agent to the mating pool

(g) Until the mating pool size is ≤ 1, select 2 random agents a and b
to mate:

i. Remove a and b from the mating pool

ii. ea− = emating attempt, eb− = emating attempt

iii. Compute the fertility level confronting their simulacrum geno-
types

iv. If the fertility check does not fail, then create a new agent with
a genotype equal to a mutated recombination of the genotype
of the parent agents

(h) For each agent j:

i. Decrease the migration cool-down value

ii. If the migration cool-down is equal to 0, then migrate the agent
to an adjacent island and reinitialize the cool-down

6.3 Model Discussion

6.3.1 The Choice of Resources Types, Degradations and
Possible Enzymes

We have already explained that there is not any explicit fitness function in this
model, but the fitness of a particular agent can be indirectly considered as its ability
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to gain energy from the external environment. In the previous models, in order to
obtain a speciation event we had to define a fitness function with two or more local
optima. Now, without an explicitly defined fitness function, we face the problem of
finding a starting environment definition that enables speciation and, obviously, a
negative feedback emergence.

The elements that have a role in the dynamical implicitly defined fitness function
are:

• The resource type definitions, and their corresponding energy potential values.

• The spontaneous degradations defined for the resource types, and the degra-
dation rates.

• The possible enzymatic transformations, and the maximum energetic efficien-
cies of the various transformations.

• The mutation mechanism of a genotype and the recombination mechanism of
two different genotypes.

In the real case of the natural environment system, resource types, degradations
and possible enzymatic transformations are bind to the low level physics of the real
world.

But in the case of our artificial model it’s pointless to calculate all the elements
from a certain particular low level physical-like mechanism.

For this problem we adopted a solution based on an additional hypothesis: ev-
ery random big resource type system (big in the number of resource types) with
a coherent spontaneous degradation system (capable to reach an homeostatic equi-
librium) and an energy coherent system of possible enzymatic transformations, has
an acceptable probability to enable evolutionary dynamics of agents with speciation
events and negative feedback cycles emergence.

We are aware that our hypothesis can be quite strong and can be view as opposed
to anthropic reasoning.

Assuming this hypothesis, we adopted a method to randomly generate a resource
type system and, from the generated resource types, calculate a coherent set of
spontaneous degradation and a set of possible enzymatic transformations.

From the adopted method we can derive a “natural” way to describe enzymes
in the genotype in the form of a string; the mutation and recombination then are
string operations inspired by the real genetic mutation and recombination.

Resource Space

We define the resource space as a bi-dimensional grid with a Manhattan distance.
Then we define a particular cell of the grid (indexed input) as the maximum

energy point with energy value resEnergyinput. The energy value of any other cell
i is defined as:
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resEnergyi = resEnergyinput −Manhattan(input, i)

If the resulting energy resEnergyi is lower than 0 then we assume that resEnergyi =
0.

From this cells space we randomly select resTypes cells with energy value > 0.
This cells, plus the input cell, are the resource types of the feedback emergence
model. The NULL resource can be viewed as any cell with energy value = 0.

Spontaneous Degradations

From a particular defined resource space, we can obtain all the spontaneous degra-
dations and the corresponding degradation rates choosing only a maximum number
of steps parameter (maxN).

For each resource type a corresponding cell in the resource space cella, we cal-
culate all the possible trajectories composed by unitary steps with not-increasing
energy value in the resource space, starting from cella, of length maxN steps (the
not-increasing energy value constrain needs to be valid for every unitary step in the
trajectory).

For each possible resource type b, whose corresponding cell in the resource space
cellb is the end point of at least one trajectory from cella, we define a spontaneous
degradation from a to b with a degradation rate proportional to the number of such
trajectories divided by the total number of possible trajectories. For the case of the
degradation to NULL we consider all the trajectories ending in a cell of the resource
space with energy value equal to zero.

Enzymatic Transformations

All the possible enzymatic transformations are all the trajectories composed by
unitary steps in the resource space, starting from a cell corresponding to a resource
type a.

In the case of enzymatic transformation there is not the constrain that all the
unitary steps of the trajectory need to be of not-increasing energy value, and the end
cell of the transformation, indexed end, is not constrained to have a corresponding
resource type.

The resource type product of an enzymatic transformation is the resource type
b whose corresponding cellb is the cell with the greatest number of not-increasing
energy trajectories of length maxN that, starting from cellend, ends in cellb. If there
is not such a resource type then the product resource type is a itself. For the case
of the enzymatic transformation to NULL we consider all the trajectories ending in
a cell of the resource space with energy value equal to zero.

The enzymatic transformation rate t (if used by the model) is inversely propor-
tional to the length of the corresponding trajectory.
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The energy-efficiency of an enzymatic transformations is obtained from the num-
ber of energy increasing unitary steps of the corresponding trajectory.

Enzyme Description

In order to fully describe an enzyme we need to describe only the corresponding
trajectory and the starting resource type a; the resource type b of the product, the
transformation rate t and the energy-efficiency parameter ee can be calculated as
previously described.

The more natural method to describe an enzyme is then a string that is the
concatenation of the resource type index followed by a string on the alphabet of the
four possible unitary steps on the resource space, sequentially describing each step
of the trajectory.

Genotype Description

An agent genotype is composed by three parts:

1. All the simple numerical parameters, like the internal volume, or the efficiency
of every possible pump (a value of 0 if the corresponding pump is not present,
a negative value if the pump pumps out, positive if it pumps in).

2. The Simulacrum Genotype bit string.

3. A string describing the various enzymes, that we label enzymatic string.

The enzymatic string can be of fixed or variable length, so we need to add to the
alphabet (currently composed only by the various resource type indexes, and by the
4 possible unitary step in the resource space) a separator character.

When the enzymatic string is parsed, every time a resource type index appear we
consider the following character as the trajectory description, until a new resource
type index or a separator character appears. Therefore we can describe several
enzymes in the same enzymatic string.

Genotype Mutation

The mutation of the genotype numerical parameters part has the same simple dy-
namics described in the previous speciation models.

The mutation of the Simulacrum Genotype bit string is executed as described in
section 5.1.

Every mutation event of the enzymatic string is of two possible types, inspired
by observations of the real genetic sequence mutations:

Point mutation : a single character of the enzymatic string can be deleted, mod-
ified or added in a random position.
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Segment mutation : a segment of the enzymatic string can be deleted or copied
and added in a random position of the enzymatic string.

The segment mutation enables a partial re-utilization of already developed struc-
tures in the enzymatic string, allowing quick new useful enzyme development.

Genotype Recombination

The recombination of the numerical parameters of two genotypes is performed choos-
ing, for each parameter, a random value included in the interval defined by the two
parent parameter values.

The recombination of the Simulacrum Genotype bit strings is executed as pre-
viously described in section 5.1.

The recombination of the enzymatic strings is performed selecting some random
recombination numbers (rec[i]) of incremental value, with values smaller than the
size of the enzymatic strings. The recombined new enzymatic string is obtained
copying the first rec[0] character from one of the parent enzymatic string, then
copying from the second parents enzymatic string the characters from rec[0] to the
rec[1] − 1, then again from the first parents enzymatic string the characters from
rec[1] to the rec[2]− 1, and so on, until the new enzymatic string is complete.

6.3.2 Avoid the Super Agent

Observing the biological systems we can see that a super organism fully independent
from the other ecological components, able to do any possible enzymatic reaction,
able to adapt to every possible environment, does not exist.

A first obvious hypothesis about the super organism absence comes from the
observation that every additional capacity or increasing of any already existing ca-
pacity of a species, is paid in terms of additional resource consuming structures.

But there is another additional observation to do: in order to increase the energy-
efficiency or to enable a new functionality, the internal system of every organism
potentially needs to be modified.

A non specialized organism loses in the competition against a specialized one,
then the fact that, in order to develop and optimize a new capability, it needs to alter
its current internal state, every additional capability potentially causes a decrease
of the theoretical maximal optimization for all the other existing capabilities.

An additional outcome is that even if we suppose to solve the problem of compe-
tition removing all the existing organisms and replacing them with a single species of
super organisms, then we can expect a lower efficiency of the whole system caused by
the limited optimization capability caused by the more constrained internal system.

Therefore we have decided to personalize the metabolism energy cost that every
agent needs to pay at every iteration, calculating it from the internal environment
volume, the number of the pumps and the pumps efficiency parameters, the number
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of the enzymes and the enzymes transformation rates, and, dependently on the
adopted genotype description, the genotype description size.

About the second observation, the need to alter the internal environment in order
to optimize the agent, we have already a solution from the dynamics of resource
exchange: if an agents want to optimize the energy obtained from a particular
enzymatic degradation of a resource type, then it needs to develop a pump for that
resource type; then if the same agent wants to exploit a second type of resource,
a second type of pump is needed, but the side effect of a second pump addition is
an increased outgoing flux for every resource type, an increased outgoing for the
first exploited resource type too, then there is an indirect side effect of decrease of
optimality relative to the first resource type exploit.

6.3.3 Model Minimality

The dynamics in this model are quite more complex than the dynamics of the
sympatric speciation model (the sympatric speciation is included in the feedback
emergence model), therefore the process of minimization of the elements of the
model is more difficult.

As for the case of the sympatric model, we are not able to prove that a simpler
but still operational model does not exists. Our design process is based on the
comparison of several models with alternative choices of the basic mechanisms.

We can assume by experimental observations that, with the limited consideration
of the mechanisms or properties we analyzed, the proposed model is the simplest in
terms of constitutive basic mechanisms.

One of the emergent property that are needed in our model in order to enable
the emergence of negative feedbacks is the speciation, therefore all the minimization
analysis done for the sympatric speciation model are still valid here. Therefore the
following features are not essential:

• Sexual diversity (two genders);

• Gestation period;

• Hybrid agents with decreased fertility;

• Increasing of the metabolism with the aging;

• Sexual maturity minimal age;

• Asexual reproduction.

In the sympatric speciation model discussion all these features are analyzed in
the details (see section 4.4.3).

In addition to the unnecessary features inherited from the speciation model, we
have found several new others:
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Enzymatic transformation rates : in our experiments, defining a constant trans-
formation rate, the same for all the possible enzymes, does not alter the possi-
ble system dynamics. We have kept the transformation rates in the description
of the model only for consistency with the spontaneous degradation rates (the
spontaneous degradation rates, on the other hand, are essential in order to
develop not trivial resource homeostatic equilibria).

Membrane advanced models : we call the pumps membrane pumps, but we
don’t have any membrane model in the resource exchange process. In the
early models of feedback emergence, we tested several different biologically
inspired models of membrane. Membrane with permeability to some resource
types, models with limited inter-membrane fluxes, etc. Experimentally we
found that not considering at all the membrane does not alter the possible
system dynamics.

Complex enzymatic transformations : with more than one single product or
with more than only one single reagent. We have not extensively experimented
the system dynamics when the possible enzymatic reaction are in forms like
A + B → C or A → 2B, because of problems of enzyme description and
resource types graph definition. We are able to obtain in some cases the
negative feedback without this type of enzymatic transformations, therefore
we have assumed that enzymatic reactions which form is more complex than
A → B are unnecessary. Anyway, the model effectiveness is lower than the
one we expected, this simplification of the transformation forms could have
compromised the model, but more extended tests are needed.

Genotype String Mutation Methods

We have observed that, in the proposed enzymatic description string format, adopt-
ing only the point mutation method the agents take extremely long time before
develop new enzymes, because there is the necessity of some point mutation accu-
mulation. This problem disappears adopting the previously described method of
segment mutation, thanks to the chance of a partial re-utilization of already devel-
oped structures. Even if the segment mutation is not strictly essential, we choosed
to keep it.

6.4 Observations

6.4.1 Homeostatic Equilibrium Alteration

In order to reach the resource homeostatic equilibrium the simulation needs to be
executed agent-less for several iterations.
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We can observe that when the agents start to populate the system the resource
homeostatic equilibrium change; the changed new equilibrium induces agent adap-
tation, therefore additional homeostatic variations, and so on.

It’s common to observe various periods of almost maintained homeostatic equi-
librium, followed by quick alterations in the environment and, at the same identical
time, in the agents genotypes.

Figure 6.1 show a simple example of the various resources types concentration dy-
namics in time (the concentration values are plotted on a logarithmic scale): starting
with no resources in the system, thanks to the radiation input and the spontaneous
degradations, we can observe an initial fast accumulation of the resources until the
output fluxes equate the input fluxes. The homeostatic equilibrium level is not the
same for every resource type. In the middle of the plotted run, the agents are added
to the system. The number of agents is plotted (not in logarithmic scale, for a better
visualization) in white color. We can see that the resource homeostatic equilibrium
is altered by the effect of biotic resource transformations.

In Figure 6.2 there is a plot of some parameters (the average values of the whole
population) of the agents. We can observe that the non chaotic random variations
in 6.2 reflect the resource homeostatic equilibrium alteration in 6.1.

On the right side of Figure 6.1 we can observe that a new resource homeostatic
equilibrium is reached after a period of fast accumulation of mutation in the agents
(right side of Figure 6.2); the corresponding increase of the agent population size
shows that the mutation of the agents transformation capabilities caused a better
energy utilization.

Figure 6.1: A plot of the resource type concentration levels during a simulation run,
on a logarithmic scale. The white line represents the number of living agents, not
in logarithmic scale.

Figures 6.3 and 6.4 are other two examples of biotic resource homeostatic equi-
librium alteration.
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Figure 6.2: A plot of some agent parameter value (the average values of the whole
population) variations during the same simulation run of Figure 6.1.

Figure 6.3: A plot of the resource type concentration levels during a simulation run,
on a logarithmic scale. The white line represents the number of living agents, not
in logarithmic scale.
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Figure 6.4: A plot of the resource type concentration levels during a simulation run,
on a logarithmic scale. The white line represents the number of living agents, not
in logarithmic scale.

6.4.2 Environmental Pollution

In our experiments we have observed pollution-like events that are able to compro-
mise the system.

A pollution event happens when a species has an enzyme that transforms a
resource type with quick regeneration rate (for example the irradiated resource type)
to another resource type with a very low degradation rate. The effect that we observe
is that the produced resource type accumulates, increasing its concentration in the
external environment and therefore increasing its flux toward the agents internal
environments.

If the presence of the new product become so high to be one of the main compo-
nents of the external environment, then this produces a strong negative poison-like
influence to the effectiveness of the membrane pumps: the agents need to use more
energy in order to obtain the internal resource homeostatic equilibrium previous to
the pollution.

The dynamics generated by polluting agents can be almost equal to the positive
feedback dynamics: in absence of group selection there can be mass extinctions, but
if there is a global selection and a high level of interdependency between the various
biotic element of the system, then the pollution capability diffusion are inhibited.

6.4.3 Negative Feedback Emergence

We are able to observe the emergence of feedback cycles in ad hoc defined resource
spaces, but the emergence of the feedback cycles in the random generated version
of the resource space is actually a quite rare event.

The cause of this problem can be that the hypothesis opposed to the anthropic
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reasoning, previously formulated in section 6.3.1, is not valid. Alternatively it can
be that we have not created a sufficiently interdependent biotic-abiotic interaction
system, or that the developed systems are too much small in the number of com-
ponents. It can be that the enzymatic transformation simplified form (A → B)
is too much weak, in this case we need to reformulate the random resource space
generator.

In order to obtain an answer, more research about the random generated resource
systems dynamics is needed.

With the limits of the current formulation of the model, where we can obtain
negative feedback emergence only in ad hoc crafted resource system, differently from
the case of sympatric speciation model, we are not able to find useful applications
to the field of evolutionary algorithms.



Chapter 7

Conclusions

In this thesis we have presented and discussed several original contributions to the
fields of theoretical biology and machine learning.

Sympatric Speciation Model

We have formulated a new biologically inspired simulative minimal model for sym-
patric speciation. The relevance of this model can be found in theoretical biology.

The proposed variable fertility mechanism has similarities with the assortative
mating, but not only it does not require that agents have recognition capabilities,
the fact that it is a post-mating barrier (the assortative is a pre-mating barrier)
cause it to waste resources to the agents in multi-population areas (boundaries),
making it a more efficient diversity maintaining mechanism.

Simulacrum Genotype

We proposed a biologically inspired solution to the problem of genetic space distance
measurements. This solution is relevant in the field of evolutionary algorithms: can
be applied not only to the proposed models, but to the data analysis process of
pre-existing models.

Island Model Variations

We proposed several variations of the island model, a widely used model in the field
of evolutionary algorithms, in order to develop an evolutionary system suitable for
multi-modal optimization problems.

The variations are based on the introduction of features observed in the sym-
patric speciation model (variable fertility, local selection paired with a delayed global
selection). The system is focused on maintaining a high population diversity.
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Island Destabilization Method

We proposed a not biologically inspired method of diversity enhancement, the Is-
land Destabilization Method, applicable to the previously described island model
variation.

Feedback Emergence Model

We formulated a biologically inspired simulative model for negative feedback cycles
emergence and positive feedback cycles inhibition. Even if the results of this model
are limited because we are not able to observe the emergent properties for random
generated system settings, in ad hoc settings we are able to observe the emergence.
This model has a relevance for the Gaia theory.
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[21] R. Dreżewski and M. Kisiel-Dorohinicki. Maintaining Diversity in Agent-Based
Evolutionary Computation. ICCS 2006, volume 3993 of Lecture Notes in Com-
puter Science (2006), pp. 908-911.
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