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Abstract

Context-based compression methods are the most powerful approaches to

squeeze arbitrary textual data. They offer a good predictive model for the

subsequent data based on the already seen one, without assuming any proba-

bility distribution for the input source. In this thesis we analyze the adaptive

ACB method [8] which is mostly unexplored in the literature, although pre-

liminary results showed compression ratios comparable (or even superior) to

the best known data compression utilities.

The novel feature of ACB consists of deploying both the previous context

and the subsequent content to find a succinct encoding for the latter one.

We perform a large set of experiments to study the experimental behavior of

ACB and to compare it with known compressors, thus devising variations of

the basic ACB-scheme that result promising for future developments.
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Chapter 1

Introduction

Recent years have been characterized by an exponential increment of stored

information: gathered from the web, from our credit card logs or just when

we send an sms or turn-on our mobile phone, just to cite a few. By now,

everything we do is logged into a file, the big bro is not so far and in this

case there is no someone who watches us, we want us to be watched.

The web, as always, has a dominant place also into this issue, and the

social networks’ boom confirms that. Everything is stored and everything is

considered important. No one cares if that particular information will never

be used again along the whole universe life, the important thing is to have

such information. These are also the years where big companies buy other

companies spending millions of dollars just to take their query logs to do data

mining on that. This confirms again that information is power. Data mining

is a relatively recent discipline who has been developed in concomitance with

this expansion in order to understand the relations and the associations that

humans cannot see due to the enormous amount of data: We are living in

the information era.

All of this amount of data can be separated into two parts, the first

one representing the information that has to be always available and the

second one representing the information that could be stored into archives
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CHAPTER 1. INTRODUCTION 7

and retrieved when needed.

In the former case we have, for example, the web indexes where we cannot

pay too much to retrieve them during query processing. Here we have to work

in real time[20][11].

In the latter case we have all the data that are not used on the fly or

very often such as query logs, backups and cached pages of search engines

for example. In these cases we can pay a little overhead to retrieve the

information since this is justified by the lower space usage (and bandwidth

usage if we are on the web) and unfrequent access.

Since we are speaking about millions of gigabytes we have to take into

account also the amount of money needed to store that data. It is true

that mass storage devices’ prices have decreased but it is also true that the

amount of information to store has grown in a measure that has kept the

“cost-per-unit-of-storage” relation nearly unvaried (ratio between the need

of space and the cost of the space needed).

In this thesis we are interested in lossless compression methods to apply

to the latter case presented. These techniques are distinguished from the

more general data compression methods because the original file can always

be reconstructed exactly. This is why they are also known as text compression

methods. In fact, for some types of data other than text such as sound or

images, small changes, or noise, in the reconstructed data can be tolerated

because it is a digital approximation to an analog waveform anyway.

Lot of techniques have been invented and reinvented over the years, de-

parting from one of the earliest and best-known methods, Huffman coding,

and arriving to the best and most used compressors which can be considered

the state-of-the-art: gzip [6], bzip2 [3] and PPM [9].

The first one, gzip, is an adaptive dictionary based method. It is a vari-

ant of the Lempel-Ziv schemes developed in the 1970s [28], the LZ77 and

LZ78. The idea behind these methods is the following: a substring of text is

replaced with a pointer to where it has occurred previously. The many vari-

ants of Lempel-Ziv coding differ primarily in how pointers are represented.
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In Figure 1.1 we present an example of the LZ77 compression where the

characters abaabab have already been decoded, and the next characters to

be decoded are represented by the triple <5,3,b>. The decoder will go back

five characters and will copy three characters, yielding the phrase aab. Then

it will add the third item, the b character. The Lempel-Ziv methods, which

are theoretically optimal, in practice do not reach the compression ratio of

the other compressors. On the other hand they are relatively easy to imple-

ment, requires a small amount of memory and decodes the text extremely

quickly.

decoder

output

encoder

output
<0,0,a> <0,0,b> <2,1,a> <3,2,b> <5,3,b>

a b a a bab

Figure 1.1: Example of LZ77 compression

Bzip2 is a block-sorting method based on the Burrows-Wheeler Transform

(BWT [24]), first published in 1994 and deeply studied in the literature. The

BWT permutes the characters in a text so that those occurring in similar

contexts end up near each other, producing a more compressible data. The

transformation is performed by sorting each character in the text, using its

context as the sort key. In Figure 1 there is an example of the BWT. First

we create a matrix with all the permutations of the text, then we sort all

the suffixes and then we take the last column as result. This transformation

is easily reversible thus the order in which corresponding characters appear

in the two columns (the first and the second of the permuted text) are the
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same. The method used to code the permuted string is crucial and since the

characteristics of the normal text are not preserved, a context-based coder is

not appropriate. One suitable method, which is also the one used in bzip2,

is to use a move-to-front coder (MTF), which assigns higher probability to

characters that have occurred recently in the input. For the final step it

uses the Huffman coding because of the patent issue about the arithmetic

coder which was used in bzip. The pros of bzip2 is that it achieves the

state-of-the-art compression ratio at a reasonable fast speed.

1 mississippi#

2 ississippi#m

3 ssissippi#mi

4 sippimis#mis

5 issippi#miss

6 ssippi#missi

7 sippi#missis

8 ippi#mississ

9 ppi#mississi

10 pi#mississip

11 i#mississipp

12 #mississippi

(a)

1 # mississipp i

2 i #mississip p

3 i ppi#missis s

4 i ssippi#mis s

5 i ssissippi# m

6 m ississippi #

7 p i#mississi p

8 p pi#mississ i

9 s ippi#missi s

10 s issippi#mi s

11 s sippi#miss s

12 s sissippi#m i

(b)

1 i

2 p

3 s

4 s

5 m

6 #

7 p

8 i

9 s

10 s

11 s

12 i

(c)

Figure 1.2: BWT of the string mississippi#: (a) rotations of the string,

(b) sorted by contexts, (c) permuted string

The prediction by partial matching (PPM ) technique was firstly intro-

duced by Cleary and Witten in the 1984 and uses the already seen contexts to

build a statistical model to predict next symbols of the input stream. It uses

the conditional probabilities, so for example if seen th 12 times followed by e

7 times, then P (e|th) = 7/12, the probability of to have an e for the context

th is 7/12. Much of the proposed PPM versions differ in how they handle

inputs that have not already seen. Since we cannot code 0 probabilities, the
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obvious solution is to code a never-seen symbol which triggers the escape

sequence [19]. This implementation starts with a context of fixed length that

is shortened until the prediction can be made. The main drawback of this

compressor is its high resources requirements while its pro is the effectiveness

which reaches or exceed the bzip2’s one.

Among the best compressors briefly reported here we asked ourself for the

existence of an hybrid method who should merge the pros of the dictionary

based model, the intuitiveness and the simpleness, and the pro of symbolwise

models, the effectiveness.

For that reason we investigated an hybrid method who takes the idea of

context sorting from bzip2 and PPM and that tries to mix it with the really

simple and intuitive concept of the Lempel-Ziv schemes, without assuming

any probability distribution for the input source.

In the literature such method has been proposed by George Buyanovsky

in the 1994 and is called ACB [8]. After the first work, which is in russian,

there have not been other works investigating this approach.

In this thesis we analyzed this adaptive method which is mostly unex-

plored in the literature, although preliminary results showed compression

ratios comparable (or even superior) to the best known data compression

utilities.

The novel feature of ACB consists of deploying both the previous context

and the subsequent content to find a succinct encoding for the latter one.

We perform a large set of experiments to study the experimental behavior of

ACB and to compare it with known compressors, thus devising variations of

the basic ACB-scheme that result promising for future developments.
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1.1 Organization of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 provides an overview of the basic concepts of this thesis.

Chapter 3 describes the implementation of the method and the related is-

sues.

Chapter 4 presents the whole corpus of experiments and the results ob-

tained under the space occupancy, memory usage and compression ratio

aspects.

Chapter 5 illustrates some methods which should actually be used in order

to improve the ACB’s performance. We present briefly also a variation

of ACB used to do some brute force test.

Chapter 6 concludes.



Chapter 2

Context-Based Data

Compression

once upon a ...

time, of course. Everyone, or better, most of people, will give this contin-

uation to the previous sentence, simply because the word time is the most

suitable word for the given text.

Some of the most powerful compression methods exploits the nature of

the input, such as in the example before. These methods, instead of to treat

all data with the same rules, are like a sort of specialization built over the

specific instance of the problem. One of the most interesting portion of them

is the one based on the Shannon’s classic paper on information content of

English text where he established the well-known bounds of 0.6-1.3 bits per

letter [23].

2.1 Shannon on English text compressibility

Shannon in his famous work on English text [23] describes two methods. In

both of them a person is asked to predict letters of a passage of English text

where some of the preceding text may be made available, but where the text

12



CHAPTER 2. CONTEXT-BASED DATA COMPRESSION 13

to be predicted must be unfamiliar to the subject. Shannon also shows that

the responses to the predictions are equivalent to the original text and that

an “identical twin” (or its mathematical equivalent) could be used to recover

the original input. In both cases the person effectively prepares a ranked

list of the probable symbols, most probable first, and present the list to the

comparator:

• first method. The person predicts the letter and is then told “cor-

rect”, or is told the correct answer.

• second method. The person must continue predicting until the cor-

rect answer is obtained. The output is effectively the position of the

symbol in the list and the sequence of “NO” and the final “YES” re-

sponses is a unary-coded representation of that rank or position.

A third method is a hybrid of the two given by Shannon and it is explained

in [10]. After some small numbers of failures (typically 4-6) the response is

the correct answer, rather than “NO”. With some types of coding for the

prediction values this may give a more compact code.

guesses 1 2 3 4 5 >5

success rate 71% 10% 7% 2% 2% 8%

Table 2.1: Shannon’s original prediction statistics.

The distribution is very highly skewed and it means that we have a low

information content per symbol which implies great compressibility.

Shannon used a technique that fall under the name of “symbol-ranking”.

In fact, usually, compressors are “symbol-frequency” based, such as Huffman,

and they process input in order to assign shorter codeword to more frequent

symbols. The “symbol-ranking” method on the contrary starts from the

current context, what it is known, and prepares a list of symbols that most

likely will follow the context.
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There exists several implementations based upon this idea, the most in-

teresting ones for our intents are (α, β) − HY Z, described in [18] [14] and

ACB that we are going to investigate in our thesis. An implementation for

the first one has been proposed by Yokoo in [26].

2.2 Notation

Given a string T of length n we define with T [i] the character at i-th position

in T (i < n) and with T [i : j] the substring (text between two included

indices).

For example if T = CASAPIDDU we will have T [0 : 2] = CAS. A substring can

be also reversed if i ≥ j, so T [2 : 0] = SAC.

We introduce now two fundamental concepts to develop context-based

compressors: context and content. A context is a substring already seen

read right-to-left. Some contexts for T are SAC, PASAC and C. Formally speak-

ing we define it using the following formula

context(i) = T [j : i] such that i < j, j < n, i < n (2.1)

For a context we also define its order by introducing the number of symbols

we are considering for each context. Two order-three contexts for T are SAC

and DDI.

A content is the portion of text that follows a context. For example for the

context SAC the corresponding content is APIDDU. The formal definition is

the following

content(i) = T [i + 1, n− 1] (2.2)

As we have done for the context we also define the order of a content in the

same way.

So we have as many contexts and contents as how many characters our

text is composed by. Assuming that we have read a string until the i-th

position, we define the look-ahead buffer as content(i).
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2.3 (α, β)−HY Z

Formally speaking the (α, β)−HY Z compression method works by replacing

disjoint blocks (substrings) of size β with shorter codewords. The codeword

selection is done as follows. Say the first i − 1 blocks have been encoded.

To compute the codeword ci for block i we determine its context first. The

context of the i-th block T [iβ : (i + 1)β − 1] is the longest substring T [k :

iβ − 1], of size at most α such that T [k : (i + 1)β] occurs earlier in T. The

codeword is the ordered pair < γ, λ > where γ is the length of the context of

block i and λ is the rank of block i with respect to the context in accordance

to some predetermined ordering. For instance, we can use the lexicographic

ordering of all distinct substrings of size β that follow any previous occurrence

of the context of block i in T .

In Figure 2.2 there is an example where the β-blocks following some

context are ordered by their position in T . The output for the reported

situation is <2, 0>. Note that if we had not have had the bb context we

would have restricted the research to the b case.

T = bbababaababbbabb | abab

α = 2, β = 4

context of block abab = bb

list of earlier occurrences of this context:

bb | abab

bb | babb

bb | abb

Table 2.2: (α, β)−HY Z example.



CHAPTER 2. CONTEXT-BASED DATA COMPRESSION 16

2.3.1 Yokoo’s implementation

One (α, β) − HY Z implementation has been proposed by H. Yokoo in [26]

and it considers the case when β = 1 and α is unbounded. Its implementation

encodes one symbol at a time and the encoding process consists of several

operations faced to compute the symbol ranking. Given a string it sorts

all the previous contexts by the length of their common suffixes. Then, it

enumerates all the candidates for the symbol to encode in the order of the

next symbol of each context. The rank is represented by the count of distinct

symbols, the bracketed value in the example. If no match is found, then it

encodes a virtual out-of-bound rank followed by the look-ahead character. In

Table 2.3 there is an example for T = bacacaba, the λ identifies the empty

string and x identifies the look-ahead character. If x = c we will emit a rank

0 thus the first c we met is on the group who shares most symbols and if x =

a we will emit a rank 2 since the a is on the 0-similarity group.

contexts

λ b

b a

ba c

bac a

baca c

bacac a

bacaca b

bacacab a

bacacaba x

similarity contexts symbol rank

bacacaba x

2 ba c (0)

1 baca c

bacaca b (1)

λ b

b a (2)

0 bac a

bacac a

bacacab a

Table 2.3: Yokoo’s example: on the left the previously seen contexts with the

first following character, on the right the same contexts sorted by similarity

group with T

The context sorting is done using a fixed-order context (maximum number

of character to compare) so, in order to measure the similarity between two
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contexts, it introduces a parameter M . The relation for a context corresponds

to the lexicographic order of at most M symbols, so for any integer M > 0

we have

x[1..m]M≺y[1..n] (2.3)

if one of the following two conditions holds:

1. we have x[m − i] ≺ y[n − i] for an integer i such that 0 ≤ i <

min{m, n, M} and x[m − j] = y[n − j] for an integer j such that

0 ≤ j < i.

2. we have m < n, m < M and x[m − i] = y[n− i] for any integer i such

that 0 ≤ i < m.

The encoding process can be schematized as following:

• find the position p of the substring to encode in the context dictionary

• merge the list of 4 contexts in the neighborhood of p (2 up and 2 down).

It is not mentioned how to do this and why 4 contexts.

• get the rank of the symbol x[i] that we wanted to encode counting the

number of distinct symbols prior x[i] in this sorted sequence. If no

symbol will be found the out-of-bound rank will be emitted

• first symbol is transmitted as it is

Yokoo proves that the average length of a codeword representing a β-sized

block (β = 1) approaches the conditional entropy for the block, H(C), within

an additive term of c1 log H(C) + c2 for constants c1 and c2, provided that

the input is generated by a finite-order Markovian source. However we did

not find any clarification about how big are these constants. The important

thing is that Yokoo proved also that by encoding a block of d symbols at a

time, it is possible to achieve asymptotically the entropy bound as closely as

desired.
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2.4 ACB

The ACB compression method is a method proposed by George Buyanovky,

the name stands for “Associative Coder of Buyanovsky”, of which not so

many details are known. The only documentation available is outdated and

in Russian [8]. An English informal interpretation is available at [1] [2] and

that is what we have taken as a starting point of our work.

To explain the key principles of the algorithm we begin with an example.

Assume that the text ‘‘swiss miss is missing...’’ is part of the input

stream and that the first seven symbols have already been encoded and that

are now in the dictionary of the previously seen contexts, sorted in accordance

to the reverse lexicographic ordering as shown in Table 2.4. The look-ahead

buffer starts with the string ‘‘iss is...’’. We want to replace a prefix of

this string with a shorter codeword exploiting context-content relations.

swiss m|iss is missing... ← text to be read

For each element we also have the text following it, the content string.

Now imagine to act as LZ77, we should search for the longest common sub-

string in the previously seen text for the look-ahead buffer, that is at position

2. In ACB we search it in the content part of our dictionary (Table 2.4), item

7, and then we encode it as difference from the best context matched depart-

ing from obvious one.

In practice it tries to exploit the Shannon result in order to copy phrases

and not single symbols. To do that it chooses the most similar context to the

obvious one as the sentence-predictor. We describe now the encoding and

decoding process in details.

2.4.1 Encoding

Continuing with the example we gave before, the current context ‘‘swiss m’’

is matched to the dictionary entries. The best match, right-to-left, have to

be chosen between items at position 2 and 4. The encoder will choose the



CHAPTER 2. CONTEXT-BASED DATA COMPRESSION 19

Unordered Ordered

s|wiss m 1 swiss |m

sw|iss m 2 swi|ss m

swi|ss m 3 swiss m|... <- obvious context

swis|s m 4 s|wiss m

swiss| m 5 swis|s m

swiss |m 6 swiss| m

swiss m|... 7 sw|iss m

Table 2.4: Dictionary of the first six contexts before and after sorting.

one who shares the longest backward common prefix (bw_lcp) and, in case

they have the same bw_lcp, it assumes that the encoder select next entry, 4

in our case. The content is then matched in the content part of the dictio-

nary, best match for the look-ahead buffer text occurs at position 7 and is

4 characters length. The output is then the triplet <7-4, 4, i> where the

first element is the distance between the best matching context index and

the best matching content index within the dictionary, the second element is

the length of the match (the substring to copy of the content) and the third

one is the first unmatched symbol. Then, all five contexts are added to the

dictionary which becomes the one shown in Table 2.5.

The new buffer is

swiss miss i|s missing... ← text to be read

The process iterates until the end of the buffer is reached. In case the

length of the match is 0 then the triplet <0, 0, c> is emitted, where c is

the first character in the look-ahead buffer.

2.4.2 Decoding

The decoder will fill first the dictionary with some startup contexts and then,

for each triplet, it will emits the portion of the identified text plus the look-
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s|wiss miss i 1 swiss miss |i

sw|iss miss i 2 swiss |miss i

swi|ss miss i 3 swiss miss i|...

swis|s miss i 4 swiss mi|ss i

swiss| miss i 5 swi|ss miss i

swiss |miss i 6 swiss m|iss i

swiss m|iss i 7 s|wiss miss i

swiss mi|ss i 8 swiss mis|s i

swiss mis|s i 9 swis|s miss i

swiss miss| i 10 swiss miss| i

swiss miss |i 11 swiss| miss i

swiss miss i|... 12 sw|iss miss i

Table 2.5: Dictionary after first step.

ahead character read from the input triplet. After each step it will update

its dictionary. The context is determined using the same rules so that the

best matching context will be the same used in compression. This is easy to

prove since we never used the obvious entry while encoding.

For example, assuming we have the context dictionary shown in Table 2.4,

the triplet <3, 4, i> that has been emitted in compression will be processed

as follows:

• compute the bw_lcp between the obvious context and its predeces-

sor/successor and then select the best matching one. In case they have

the same bw_lcp, such as has been done during the encoding process

we choose the next item, which is the number 4 in our case

• offset to item at position 4 + 3 = 7

• append the 4 characters substring of content (iss m) to the output

buffer (the decoded text)

• append the look-ahead character i
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The resulting output, after this step, will be swiss miss i|.... The process

iterates until the end of the triplets will be reached.

2.4.3 On comparing LZ vs ACB

Now that we have a clearer, although not complete, vision of how ACB

works we can analyze the similarity existing with the Lempel-Ziv compression

scheme and its variants. Both compressors, in fact, copy substrings of text

accessing them by a distance, it is just how we interpret this distance that

makes the difference.

In LZ77 we have a fixed size, say k, sliding-window which identifies the

portion of the text where to search for the longest substring who matches the

look-ahead buffer. The dictionary here is represented by the context of order

k. The distance is the offset between the current position and the position

of the substring who has the longest match.

In LZ78 the dictionary contains the substrings already seen, so it is a real

data structure not a simple string. The distance is the index of the matched

phrase within this dictionary.

Also in ACB we have distances but the semantic associated is really

different. Instead of identifying the substring to copy by its position in the

text or by its index we identify the distance as the offset between the index

of the item representing the best substring to copy and the index of the item

representing the look-ahead buffer within the dictionary built over all the

suffixes ordered by the reverse lexicographic relation.

This is a very powerful approach because in LZ the distance emitted

between two indexes in the text is not related to any kind of relation since

we search for the content without taking the context into account in any

manner. In ACB instead we try to predict the content to copy, we depart

from context and not from content. The cost we pay to encode this distance

is deeply related to the prediction error as we reported in Section 4.1.

Under a software engineering point of view we have the same I/O inter-

faces both for LZ and ACB. We have two interchangeable black-boxes which
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share the same triplet but who have really different cores.

2.4.4 Why we have chosen it

ACB can be considered as the most general (α, β)−HY Z implementation,

with α and β unbounded and, since in literature this class of compressors has

been proved to achieve the conditional entropy bound of the input source,

it is very powerful in theoretical terms. What have always discouraged the

research of new solutions based on the (α, β)−HY Z method is mainly the

low efficiency of the implementations which seems to be unavoidable.

In fact, if we look at the Yokoo’s implementations, which is an (α, 1) −

HY Z with α fixed to a maximum of 8 characters, we note that it is not very

efficient and that the overall compression rate is not awesome. We think

that this is due to the limit of one character copy (β = 1) which involves a

number of steps equals to the length of the input text. This means that we

have to encode such number of elements, which is penalizing also for very

compressible data.

In our case we have

• a different distance computation and a different dictionary,

• an unlimited phrase’s length copy,

• an unlimited and not fixed context length

We think that for real inputs our dictionary organization, illustrated in

Section 2.4, in concomitance with the policy chosen to get the offset for the

content will produce quite small distances accompanied by long copies. The

number of iterations should decrease of a factor equals to the ratio between

1 and the mean substring length of ACB. For example, if Yokoo takes n

iterations, where n is the length of the text, we will use n ∗ m iterations,

where m = 1/mean copy is the β-gain.
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More the prediction will be accurate and smaller will be m. What we

have to understand is if to a really small β-gain factor correspond also short

distances.

While we are pretty sure that the distance coding will be good, we are not

so sure about the efficiency issues which we could inherit from (α, β)−HY Z.

This is not the main problem of this thesis but we think that this will be the

main problem if we will want a production version of ACB.



Chapter 3

Implementing ACB

The development of ACB has been a tricky experience, due to the complexity

of managing all the sorted suffixes of the text.

For example

• after getting the best matching context we want to search all the avail-

able contents in order to get the best matching content and we would

like to do it without scanning the whole data

• we should have also the possibility to compute the distance between

the two item in the dictionary avoiding another linear scan to get this

offset (distance to emit).

It is clear that we need a data structure that is able to perform efficient

searches and that provides a method to access elements by their index.

In compression we did not encountered lot of problems because we have

all the text and so we can build a static data structure such as a suffix-array

[20][11][5]. In decompression instead, we need a dynamic data structure that

is able to handle millions insertions, searches and that can allow random

access to items (and that preferably implements the iterator pattern).

These sophisticated data structures have a great impact on the overall

efficiency of the algorithm and cannot be underestimated although our main

24
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target is to investigate the compression efficacy of this approach compared

to the best known ones in literature.

The language we used to implement the compressor and the libraries it

uses is mainly C, with just some extensions of C++ only when needed.

During the rest of the chapter we illustrate how we transformed the the-

ories exposed before into code.

3.1 Compression

The ACB’s dictionary is based upon the reverse lexicographically context

sorting so we need at least a data structure to keep them organized. The

content part of each item can be easily retrieved so it is not absolutely nec-

essary another data structure for them. Here the problem is, as already

mentioned, that for a given context (the one corresponding to the current

symbol read) we want first to retrieve its placement among the seen con-

texts in the dictionary. Then we want to get the item whose has the longest

common prefix with the look-ahead buffer. We can solve it by

• taking only one data structure for the context and scanning the whole

items looking at the associated content. The brute force approach.

• using another data structure to store the sorted contents. The faster

but memory hog solution.

We have obviously chosen the second option because the first one is so

computationally expensive that will preclude tests just after some kilobytes

of data. So, in this phase, we used two suffix arrays, one for the context

dictionary (SAR) built over the reversed text TR and one for the content

dictionary (SA) built over T . This allow us to search the best content in

logarithmic time and to retrieve the gap between two contexts in O(1).

This choice bring us to another problem due to the static nature of the

suffix array. Building the data structure all over the text involves an avail-

ability check for each item because we cannot use a content or context that
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we have not already seen from input. In practical terms we can not output a

triplet in which we tell the decoder to copy a substring that is located after

the actual position. Moreover when we compute the offset we have to ignore

the unavailable items to be coherent with the decompression procedure.

In order to get the item who has the longest common prefix with the text

to encode we exploit the ordering of the items so, instead of to do a search,

we look at the first available item upward and downward respect to the one

corresponding to the obvious content. Since they are sorted these elements

are the most similar to the given one.

After we have remarked how we find the best item we can list the possible

solution to the problem:

• scan all the items while going upright and downright checking the item’s

availability at each step.

• scan only the existing ones:

– using a static data structure, such as a bit array, that keeps track

of inserted elements and that provides iterations functionalities

among only the available items.

– using a tree containing only the available items

The first method is highly inefficient at the beginning because of the lack of

available items while it is efficient at the end so in the mean case it involves

at least in a number of checks which we consider too much since we have to

do them both for the context and the content search. This method has also

the problem of computing the offset between the context and the content in

efficient time.

The third one involves a scan to compute the distance between the context

and the content. This solution has not a random access to its elements so at

each step we have to do a search. It has also a space consumption which is

bigger than the one needed by the the second solution.
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This is why we have opted for the second choice, the best trade-off. The

offset will be computed in very efficient time, while the occupied space is

almost optimal. We have just a little bit time overhead due to the bit packing

stuff.

We called such data structure, developed for the scope, the bit ranker.

The features we implemented are the only needed ones:

• insert(i): set true the bit for element i

• rank(i): get the number of 1s before i

• prev(i): get the position of the first 1 preceding i

• next(i): get the position of the first 1 following i

Each element is represented by a bit, which is packed into a block of unsigned

char for fast serialization feature. Blocks are organized into super-blocks

which keep the process of counting the available elements contained. We

could have putted the number of the following elements in each super-block

instead of the number of contained elements to get a faster ranking procedure.

The fact is that in our case we are interested in a fast insert function because

it will be called n times, where n is the input length, while the ranking

procedure will be called only at each step. Since we hope these steps to

be really smaller than n we opted for a fast insert function which will be

penalized introducing the sum of the following available elements.

In Figure 3.1 there is an example of how the data structure is organized.

Each element of the bit_ranker represents an element of the suffix array

so, assuming that we are at position pos in T , all the bits corresponding to

values of k such that SA[k] = i and i <= pos are set to true.

There are other methods to do it, and this is not the best one under

the complexity point of view, but it is a very good compromise in terms of

coding time so for the moment we have not planned any substitution. A

further modification could consist in the introduction of another super-block

level for example.
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0 0 0

element block sblock

Figure 3.1: bit ranker data structure overview

We know that we have opted for an implementing solution which has a

memory overhead for the additional suffix array but, hoping distances will

be as small as expected, in future we could use only one data structure. For

the moment, however, we have to use a whole-range approach, because we

have to prove all our assumptions and because we have to test the algorithm

for optimal cases and not for sub-optimal ones.

With the implementation given, for each character i in the input stream,

we

• compute best context for T [i : 0] in SAR

• search the longest prefix that matches the current content(i) in SA

• map the content’s position in SA to the position of its context (left-

part) in SAR

• compute the distance

• emit the triplet as described before.

In order to get the best matching context/content we look at the prede-

cessor and successor, retrieved by the bit_ranker data structure, because

they are the elements most similar to the current one.
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In Table 3.1 (* means available) there are the context and content dictio-

naries for the text swiss miss. Suppose now that we are at character 3, the

second “s”. At position 6 there is the obvious content matched by a binary

search into the suffix array and at position 7 there is the obvious context.

Now we proceed in the following manner to get the best matching content

(the other case, for the context, is perfectly symmetrical):

• compute the lcp between element at position 6 and its predecessor at

position 3 (we consider only the available ones)

• compute the lcp with the successor element, which is at position 8

• set as best content the one who shares the longest lcp (element 8)

The best context is the element at position 10.

SA SAR

1  miss 1  ssiws

2 iss 2 im ssiws

3∗ iss miss 3 iws

4 miss 4 m ssiws

5 s 5∗ s

6 s miss 6 sim ssiws

7 ss 7 siws

8∗ ss miss 8 ssim ssiws

9∗ swiss miss 9 ssiws

10∗ wiss miss 10∗ ws

Table 3.1: Context and Content dictionaries.

Continuing the previous example we have to map now the best content

found at position 8 into the context dictionary to compute the distance with

respect to the data structure illustrated in Table 3.2. Things we know and

that could be helpful are:
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• position pctn in T of the best content (3 in the example), that is position

pctn′ = n− 3− 1 = 6 in TR

• position pctx in TR of the best context (8 in the example)

Note that we use TR because the ACB dictionary is based on contexts thus

the prediction is based upon them.

All that we need is a function to retrieve, given a position of the text, the

position in the suffix array. Call it Φ and define it as follow:

Φ(i) = k iff SAR[k] = i 0 ≤ i < n (3.1)

So, since we know the position in T of the context and the content we can

use Φ to compute the distance

δ = rank(Φ(pctn′ + 1))− rank(Φ(pctx)) (3.2)

where the rank function has to be used since there are many unavailable

items to skip. In the example we have δ = rank(3)−rank(10) = 0−3 = −3.

Since the suffix array library does not provide Φ’s computation it is im-

plemented via a simple data structure that access elements by SA values

and whose values are barely the indexes of the SA. It is a reverse suffix

array. The space consumption of this solution is linear to the input length

and correspond to an unsigned int for each character, so we have 4 times the

text.

3.2 Decompression

In decompression we have to deal with the problem of keeping sorted suffixes

of the decoded text. Here, excluding the idea to develop an efficient data

structure for the scope, we have to choice among some tree implementations.

Since offsets are performed at each iteration, we opted for a b+-tree because

it has all the records stored at the leaf level (only keys are stored at interior

nodes) and linked together.
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SAR content(Φ(SAR))

swiss 1 miss

swiss mi 2 ss

swi ∗3 ss miss

swiss m 4 iss

s ∗5 wiss miss

swiss mis 6 s

swis ∗7 s miss

swiss miss 8 $

swiss 9  miss

sw ∗10 iss miss

Table 3.2: Mapped data structure for the text swiss miss.

Following the Occam’s razor principle, for the first version of the software

we used an in memory berkeley-db. Since the number of suffixes could be

really big we though that such solution will be also good thinking to work

on disk for some tests.

Unfortunately we were not able to decompress neither a file of 10MB.

After checking out the code by unit tests we did a brute force insertion of

the suffixes to check this data structure performance. We obtained very

discouraging results since just after few millions insertions the throughput

falls until the unusable level on a powerbook G4 1.5GHz with 1.25Gb of

RAM. We tried to tune the db but without positive results.

So we have had to start investigating for an appropriate data structure

that could handle the problem. Here we briefly illustrate the library we tested

and the result obtained.

Data structures comparison We tried the following data structures:

• berkeley-4.7 b+-tree[4]

• hamsterdb-1.0.6[22]
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• libredblack-1.3[16]

• luxio-0.1.0[25]

• tokyocabinet-1.4.7[15]

• b+tree implementation given by the team of http://www.scalingweb.com/

• stx-btree-0.8.3[7]

• reverse lexicographically sorted list (Yokoo [27]), our implementation

[17]

• gnu libavl-2.0.2[21]

For each one, except for the Yokoo’s sorted list, we set as the db-key an

integer representing the position (pos) in the text T and as a comparison

function a function that computes the reverse longest common prefix (or the

lcp depends if we are considering contexts or contents) between the two

suffixes identified by the position stored in the db-key.

The implementation of the reverse sorted list we made is released under

the Gnu GPL3 license and available for download at [17].

It was not our intent to analyze in detail the performance of these data

structures so we report only elapsed time and traversal time for some portions

of the file english.50MB downloadable at [5].

Table 3.3 shows results obtained to insert all the suffixes and Table 3.4

shows results obtained to traverse the whole data structure one time.

The elapsed time has been calculated using the clock() function of the

C standard library (stdlib) so it is a measure of the processor’s time.

Looking at the results the gnu-libavl library looks as the winner but,

after some tests in the field, we decided to use stx-btree because in real

cases it performs really faster. Also luxio has very interesting results but

also this library in real cases is slower than the stx-btree one. These per-

formance, since construction time is comparable for gnu-libavl and luxio,
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lib english.1MB english.5MB english.10MB

berkeley-4.7 b+-tree 82s 661s 1642s

libredblack-1.3 8s 286s 937s

luxio-0.1.0 12s 219s 645s

hamsterdb-1.0.6 24s 436s 1310s

tokyocabinet-1.4.7 13s 656s 2520s

gnu libavl-2.0.2 (pavl) 8s 196s 594s

gnu libavl-2.0.2 (avl) 8s 195s 590s

stx-btree-0.8.3 13s 398s 1229s

prefix list 85s 723s 1680s

Table 3.3: Construction time.

are attributable to the traversal time. This is because in ACB at each itera-

tion we do an offset to get the content to copy and a minimal time difference

that does not came out in Table 3.4 becomes the bottleneck since we do two

offsets operations at each iteration.

For example to decode a 5MB file gnu-libavl is roughly 7 times slower

than stx-bree.

The decoding algorithm will follow these steps for each triplet read from

the input:

• read the startup substring and initialize SAR keeping a pointer to last

item inserted

• find the best context using prev() and next() methods

• offset of distance position

• copy the relative text

• append look-ahead character
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lib english.1MB english.5MB english.10MB

berkeley-4.7 b+-tree 1s 8s 15s

libredblack-1.3 5s 191s ∞

luxio-0.1.0 <1s 1s 2s

hamsterdb-1.0.6 <1s 2s 5s

tokyocabinet-1.4.7 2s 21s 43s

gnu libavl-2.0.2 (pavl) <1s 2s 3s

gnu libavl-2.0.2 (avl) <1s 2s 3s

stx-btree-0.8.3 <1s <1s <2s

prefix list <1s 1s 2s

Table 3.4: Elapsed time for a complete traversal.

The substring’s copy is done char-by-char as in LZ because in this way it will

be possible to copy also a part of the string we are writing. For example if

the output buffer is ABAAB we can copy 4 characters from position 2 even if

we have only 3 characters until the end of buffer. The resulting string will

be ABAABAABA.



Chapter 4

Experiments

Our experiments are divided into three parts, one investigating the triplets’

compressibility, one faced to the time and memory usage of the algorithm

and the last one faced to compare these results with some of the other com-

pressors available such as LZOptimal [13], bzip2 [3] and gzip [6]. We also

used the compression boosting library [12] for our tests. Before we begin

with the discussion on the experiments we briefly recall the main features of

the LZOptimal compressor and of the boosting library.

Bit-Optimal Lempel-Ziv [13] compression computes the LZ-optimal pars-

ing of any input string in efficient time and optimal space. Here optimality

means to achieve the minimum number of bits in compressing each individ-

ual input string, without any assumption on its generating source and for a

general class of variable-length codeword encodings.

Technically speaking, they modeled the search for a bit-optimal parsing

of an input string T [1, n], as a single-source shortest path problem (shortly,

SSSP) on a weighted DAG G(T ) consisting of n nodes, one per character of

T , and e edges, one per possible LZ77-parsing step. Every edge is weighted

according to the length in bits of the codeword adopted to compress the

corresponding LZ77-phrase. They consider a class of codeword encoders

which satisfy the so called increasing cost property: the larger is the integer

35
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to be encoded, the longer is the codeword, such as we have done for ACB.

They provided also a version of the LZ algorithm with unbounded context

window which chooses the longest substring to copy located at the closer

distance respect to the current position.

Boosting compression library [12] provides a general boosting tech-

nique for Textual Data Compression. Qualitatively, it takes a good com-

pression algorithm and turns it into an algorithm with a better compression

performance guarantee. It displays the following remarkable properties:

• it can turn any memoryless compressor into a compression algorithm

that uses the “best possible” contexts;

• it is very simple and optimal in terms of time;

• it admits a decompression algorithm again optimal in time.

This boosting technique is based upon the Burrows-Wheeler Transform (BWT [24])

such as the bzip2 library. It uses also the Suffix Tree data structure and a

greedy algorithm to process them. In their works it is shown that there exists

a proper partition of the BWT of a string T that shows a deep combinatorial

relation with the k-th order entropy of T. That partition can be identified

via a greedy processing of the suffix tree of T with the aim of minimizing

a proper objective function over its nodes. The final compressed string is

then obtained by compressing individually each substring of the partition by

means of the base compressor to boost. Their boosting technique is inher-

ently combinatorial because it does not need to assume any prior probabilistic

model about the source T, and it does not deploy any training, parameter

estimation and learning.

This library has been used for our tests since bzip2 -9 is limited to com-

press the input text in blocks of 900Kb.

File we used to do our tests are all the ones downloadable at [5]:
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• english (english texts)

• sources (source program code)

• pitches (MIDI pitch values)

• proteins (protein sequences)

• dna (gene DNA sequences)

• xml (structured text)

We used also a portion of the English web.

Plottings have been made with gnuplot and all data manipulation has

been made using our tools which also comprehend a version of the Huffman

compressor with custom symbol length. We used it to obtain the order-0

entropy of a binary file where symbols were packet not by a single byte as

usual but by 4 bytes (the integer we used to store distances and lengths). All

the tests have been made on a Powerbook 12” with 1.25GB of RAM except

for the memory usage as explained later.

4.1 Plotting results

The most significant part of the emitted data, in terms of compressibility,

is represented by the tuple composed by distance and length since the look-

ahead character is not correlated to the algorithm itself in any manner. We

plotted these distributions in order to understand how ACB performs and to

understand if a specific coder could be developed. We also compared these

plots with the ones made from the optimal compressor who shares the same

tuple, LZOptimal.

Here we first present our results and then the one produced by LZOptimal.

In Figure 4.1 the lengths’ plot is shown. This distribution is a very narrow

gaussian which we could remap to a exponential decay one, since coders work

better with such distribution, taking as zero the peak value. We expect also
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to get the same, or very similar, plot from LZOptimal when we use its greedy

version.

Figure 4.1: ACB’s lengths distribution of English text.

In Figure 4.2 is illustrated the distances’ plot which is most important to

our intents since it is a graphical representation of the main feature of our

approach.

The curve at a first glance seems to be good due its skewness, but if we

look better we note that the range of distances and thus the range of values

to encode is very huge and it spans from the two extremities of the dictionary

(which means a distance equals to the length of the read text, equivalent to

a copy from the beginning in LZ77). In Figure 4.3 we reported the plot

corresponding to the distribution of these big distances.

We expected these values to be limited to a small size window since we

expected a good predictor, but in the tests we made we have always a very

wide distance range. Moreover, in a relevant percentage of that big values,

we copy more than a character as seen in Figure 4.4. In that figure we plotted



CHAPTER 4. EXPERIMENTS 39

Figure 4.2: ACB’s distances distribution of English text.

on x-axe the distance and on y-axe the length of the match to understand

how much we copy at that very far place. We noted that also for these limit

values, such as 20 millions on a 20MB file, the length of the match is still

very good and so we cannot prune these portion of the data in a greedy

approach like the one we used. Of course we could parse these couples to

emit the optimal tuple, such as in LZOptimal. It is obvious in fact, that if

to copy some characters we are going to pay a coding space for the distance

comparable to the space of the raw substring, we are only wasting our time.

We could also find another way to encode the distances since we have lot of

information in the data structure that we are not currently using.

We have to take into account also the following interpretation of the

big copy correlated to a big distance. We used a greedy approach so the

algorithm instead to take a substring of k characters at a very close distance

could choose a substring of k + 1 characters at the extremities. We will

analyze this correlation later in the section.
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Figure 4.3: ACB’s distance distribution of English text for the extremities

values.

Figure 4.4: ACB’s distance with corresponding match length for the extrem-

ities values of the English text.
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Results obtained by other files are very similar to the given one, except

for XML one where the lengths have an oscillating decay probably because

of the language tags as shown in Figure 4.5.

Figure 4.5: ACB’s length distribution of XML text.

The same work has been done with the LZOptimal version which use

the greedy unbounded window settings. We used this version of the software

for the plot section because it is the most similar to the ACB’s approach.

Results are quite similar for the lengths values as shown in Figure 4.6.

However, we expected these result to be identical to the ACB’s ones

because both compressors use the longest content to copy but, looking at

the number of triplets emitted, we noted that ACB has a smaller number of

triplets, about 10% on a portion of 10MB of the English file. In practical

terms it seems that ACB is able to see longest copies that LZOptimal does

not see and we should analyze, but it is not in the intent of our thesis,

the LZOptimal code to understand better what is done under the hood. In

Figure 4.7 we overlapped the lengths distribution of the two compressors to
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Figure 4.6: LZOptimal’s length distribution on English text.

better compare them. ACB has a lower peak value so it has to have a better

decreasing curve section, with much more values than LZOptimal for long

copies, to justify the smaller number of triplets as showed by the Figure 4.8.

In order to compare the distances’ distribution of the LZOptimal with

the ACB one we have had to remap the negative distances emitted by out

compressor into positives using the following formula:

remap(x) =







x = 2 ∗ |x| − 1 if x < 0

x = 2 ∗ x if x >= 0
(4.1)

Then we overlapped the two plots to find similarities as shown in Figure 4.9.

From this differential it is very clear that the ACB’s distribution is really

better because it is highly skewed. Looking also at the extremities values,

Figure 4.10, we note that the two plots are almost identical and this means

that although these unexpected values ACB is able to generate a better data

distribution.
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Figure 4.7: Lengths’ distribution of LZOptimal and ACB on English text.

The main problem of our implementation is to understand why the dis-

tances reach these huge values so that we could think about some tricks to

reduce them. What we analyzed is the

• context error: the difference, in terms of bw_lcp’s length, between

the best context used by ACB to compute the distance and the context

of the content we are going to copy

• content error: the difference, in terms of lcp’s length, between the

best content copied by ACB and the content associated to the best

context.

In practice we would answer the following question: what if we always copy

from the obvious context? A graphical example of how these deltas are

calculated is illustrated in Figure 4.11.

The plots of these absolute errors are shown in Figure 4.12 for the contents

and in Figure 4.13 for the contexts.
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Figure 4.8: Lengths’ distribution of LZOptimal and ACB on English text for

long copies.

The gaussians produced are not so readable because they represent the

absolute error and because there is not present a correlation with the distance

emitted. So instead of plotting the distribution of the absolute errors we

plotted the distance emitted for such error.

In Figure 4.14 and Figure 4.15 it is shown this relation. We noted that

for small deltas we have very big distances so we think that the algorithm

can be improved avoiding these dummies copies but the plot has lot of noise

and does not take into account if the error is big for the context/content we

are considering or not. What evinced from these figures is only the fact that

it seems that we emit a very big distance just to copy a character in addition

to the one we could copy from the obvious choice. This is obviously a bad

situation since the coding space used for the distance is not compensated by

the additional character copied.

A brute force approach to avoid these dummy copies could be the one
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Figure 4.9: Distance distribution of LZOptimal and ACB on English text.

Figure 4.10: Distance distribution of LZOptimal and ACB on English text

at the extremities.
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context delta content delta

best   context

best   content

obvious context

obvious content

Figure 4.11: Context and content deltas between the obvious and the best

one.

Figure 4.12: ACB’s absolute error between best and obvious content length.

which consists in restricting the search set for the best content to only a por-

tion of the whole dictionary. In section 5.1 we reported some tests to compare

the theoretically optimal method, used in ACB, with a limited neighborhoods
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Figure 4.13: ACB’s absolute error between best and obvious context length.

Figure 4.14: ACB’s distance corresponding to the content absolute error.
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Figure 4.15: ACB’s distance corresponding to the context absolute error.

method which could be considered as an heuristic.

The main problem with these error plots, 0s values apart, resides in the

incapacity to distinguish if a big distance is generated by a small absolute

error on a long context/content or by a small absolute error for a short

context/content. To avoid this ambiguity we adopted the relative error which

is a better comparing measure for the problem. In fact if we have a content

match of 2 characters offsetting will be probably penalizing.

In Figure 4.16 and in Figure 4.17 we present the plot generated using the

relative errors respectively for the context and content and here finally we

have a really better and understandable plots.

As expected there is no evident relation between the contents’ relative

error and the corresponding distance. This is because the distance could be

interpreted as a function of the prediction, which is made by the contexts and

not by the contents. For the contexts in fact we have a very clear relation

between the error and the distance. It is interesting to note that we reach
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Figure 4.16: ACB’s context relative error with corresponding distance.

Figure 4.17: ACB’s content relative error with corresponding distance.
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the very big values, noise apart, only when we have a complete mismatch for

the prediction (relative error 1). This means that the prediction accuracy

influences very deeply the overall compression since for error values until 0.9

the distance range is very narrow, about 20% of the maximum value emitted.

Since the problem is limited to the cases when we get a complete predic-

tion miss we counted these occurrences and on the 113078 triplets emitted

for the english.1MB file they are 51570 which is a big amount of the overall

data.

We also tried to correlate the distance with the relative error of contexts

and the relative error of contents in a 3D plot as illustrated in Figure 4.18.

We see that the content relative error does not seem to be strongly related

Figure 4.18: ACB’s content and context relative errors with corresponding

distance.

to the prediction rate since we have the complete range of error values also

when we get a correct prediction (context relative error = 0). We notice

also that the biggest part of the big distances is located in the high content

error zone of the plane defined by context error = 1 which means that if we
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miss also the content we have a very bad context/content for the prediction,

which is obvious.

We found that the bottleneck of our ACB implementation resides in the

distances emitted. Now we also know that these distances are emitted only,

with a very good approximation, when we have a complete prediction miss.

So if we found a method to avoid or limit the context error 1 cases we could

increase considerably the compression ratio since we will reduce the amount

of different symbols to encode.

Is it true that the amount of the error 1 cases is considerable but is also

true that if we try to emit a raw character on a complete miss we could free

the path to a good series of predictions. We modified ACB in order to test

this hypothesis, get the prediction only when the context matches at least

1 character emitting a raw character otherwise. This naive approach, used

just because not to expensive to code, as revealed itself as a bad idea since

the number of triplets increases penalizing the overall compression ratio.

Of course this is a viable path to future researches since instead of this

approach we could use an heuristic to estimate at each step if we will reach

better compression using this limited-window technique. In fact we have

two cases, one where emitting a raw character instead of a long distance

will bring us to a good prediction on the next step with a shorter distance

and one where emitting that character will produce a series of 0-copies or

a series of bad predictions. This problem could be solved using a weighted

graph where each node represent a computation step and where each edge

represent the codification’s cost. Each node will have 2 edges, one for the

ACB greedy version and another for the limited context error ACB version.

The same approach could be used in accordion to another kind of encoding

such as LZ77, instead of the ACB, which should be better at these cases.

What we should take into account is the impact of the escape bit used to

discriminate between the two cases. In the test we made for example, the

loss to compensate using another distance codification is somewhat like the

4% of the greedy compressed version.
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As shown before, differences between LZOptimal and ACB are limited

only to the distance distribution at small values. In practical terms we should

reach better compression due the skewness of our distribution.

During the experiments we also used the optimal parsing version to com-

pare results. The plots generated are very similar to the one reported before

so they are not presented. What we want to report is the interesting capa-

bility of ACB to obtain better result, and better compression ratios we hope,

than LZOptimal using only the dictionary. This lets opened the door of the

weighted graph to create an optimal parsing also for ACB.

4.2 Time performance

As we said before, it was not our intent to give an efficient implementation

of this algorithm, so time performance have to be improved. By the way we

have some portion of code to refactor that could decrease significantly the

computational time, but first we want to understand if it worth.

Table 4.1 illustrates elapsed times for different portion of the English file.

File size in Kb compression decompression

498204 4s 17s

2266491 23s 521s

26214400 407s 33153s

Table 4.1: Elapsed time for several portion of English file.

Compression time is practically equal to the LZOptimal’s time since to

compress 25 megabytes both algorithms employ about 400 seconds, ACB is

just a bit slower (5 to 7 seconds). Of course we have to consider that our

implementation does not have a triplet encoder. We have not attached one

to it because we want first to understand if there exist something ad-hoc,

so to the reported time we should add the triplets coding time which should

not alter too much the results.
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The big problem here resides in the decompression phase where we are

not competitive at all, maybe it should be more correct to say that we are

not comparable at all. In fact, while LZOptimal decompresses also 25MB

in few seconds we employ lot of minutes or hours. This is due to the long

distances emitted that in decompression mean lot of offsets within the tree.

We have to find a solution to that problem but since the scope of our thesis

is to study how ACB performs under the compression ratio we leave it for

further developments.

4.3 Memory usage

To compute the memory usage we used the tool memusage downloadable at

[5]. These tests have been made on a Pentium IV machine with 512MB of

RAM since this tool cannot be used on Mac since it uses the argp.h library

which is a non-standardized glibc API extension so we used another machine

instead of porting the software.

In Table 4.2 and in Table 4.3 we reported the ACB and LZOptimal results.

Compression

File size in Kb heap total heap peak stack peak

ACB LZOptimal ACB LZOptimal ACB LZOptimal

1048576 29817861 bytes 23107154 bytes 27693667 bytes 22740984 bytes 8208 bytes 2864 bytes

10485760 460095354 bytes 307717815 bytes 283816816 bytes 227390868 bytes 13408 bytes 6496 bytes

26214400 1240661227 bytes 804452246 bytes 724457933 bytes 568474008 bytes 13056 bytes 6240 bytes

Table 4.2: ACB and LZOptimal memory usage to compress several portion

of the English file.

As happened for the time performance also for the memory consumption

we have comparable results, although worst, for the compression phase while

in decompression, due to the data structure we have to keep in memory, we

have a bigger consumption. We have also to mention that in LZOptimal

during the decompression phase there is no overhead for the copy thus the

only thing to do is a subtraction (to get the position within the decoded
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Decompression

File size in Kb heap total heap peak stack peak

ACB LZOptimal ACB LZOptimal ACB LZOptimal

1048576 28273794 bytes 1403080 bytes 28273442 bytes 1402728 bytes 1568 bytes 284 bytes

10485760 201698970 bytes 12808877 bytes 194610634 bytes 12808525 bytes 1712 bytes 284 bytes

26214400 492427826 bytes 31315754 bytes 462420210 bytes 31315402 bytes 1712 bytes 284 bytes

Table 4.3: ACB and LZOptimal memory usage to decompress several portion

of the English file.

text) and an access to that portion of the text (which is also computed in

constant time and space). In ACB on the contrary we have to rebuilt the

same dictionary used in compression. We think that it is not fair to compare

the decompression phase of the two compressors since they are too different.

We reported the values just to a mere confront.

4.4 Compression ratio

To compute the final compression ratio of ACB we used the order-0 entropy

(H0) to encode the emitted triplets, so it is like we choose a range encoder.

We have not attached a coder to our ACB implementation since we would

first analyze results in order to find if there is a specific coder to use instead

of waste time adapting an existing one which probably will be discharged. By

the way the H0 is a reliable measure of the compressed size because using a

range coder the loss from the optimal result is really minimal. We compared

our results with some of the best known compressors such as LZOptimal,

gzip (-9 option), bzip2 (-9 option) and its boosted version.

Table 4.4 shows compression ratios.

In the tests we used both the LZOptimal versions, greedy and optimal,

because the first one is useful to understand how much we gain changing

only the distance interpretation while the latter one is useful to understand

if we are still competitive when an optimal policy is applied. Also gzip is

comparable in terms of emitted data but since it has a limited window size
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File gzip -9 bzip2 -9 LZOpt (greedy) LZOpt (optimal) bst -fm -a6 bst -fm -a2 -y16384 -z64 bst -f -a7 -y65536 -z256 ACB (ideal)

english.1MB (1048576 bytes) 380327 (0.36) 286148 (0.27) 377740 (0.36) 353224 (0.33) 282239 (0.26) 282905 (0.26) 281347 (0.26) 332422 (0.32)

english.10MB (10485760 bytes) 3950985 (0.37) 3012397 (0.28) 2559363 (0.24) 2321837 (0.22) 2319811 (0.22) 2300303 (0.22) 2214666 (0.21) 2272364 (0.21)

english.25MB (26214400 bytes) 9828313 (0.37) 7522109 (0.28) 5697944 (0.22) 5100074 (0.19) 5321362 (0.20) 5277340 (0.20) 5046839 (0.19) 5063542 (0.19)

dblp.xml.1MB (1048576 bytes) 183931 (0.17) 115871 (0.11) 174088 (0.16) 164728 (0.15) 112870 (0.10) 113601 (0.10) 116469 (0.11) 143848 (0.13)

dblp.xml.10MB (10485760 bytes) 1825535 (0.17) 1174240 (0.11) 1581552 (0.15) 1455734 (0.14) 1047196 (0.09) 1036605 (0.09) 1045184 (0.09) 1375252 (0.13)

dblp.xml.25MB (26214400 bytes) 4517302 (0.17) 2937212 (0.11) 3794954 (0.14) 3452262 (0.13) 2522973 (0.09) 2486327 (0.09) 2487936 (0.09) 3326610 (0.12)

dna.1MB (1048576 bytes) 285687 (0.27) 274488 (0.26) 329713 (0.31) 301554 (0.29) 269030 (0.25) 255507 (0.24) 267874 (0.25) 255549 (0.24)

dna.10MB (10485760 bytes) 2836601 (0.27) 2723685 (0.26) 3162993 (0.30) 2832127 (0.27) 2618141 (0.25) 2484962 (0.23) 2594753 (0.24) 2446727 (0.23)

dna.25MB (26214400 bytes) 7096159 (0.27) 6815089 (0.26) 7800001 (0.29) 6965414 (0.26) 6494091 (0.25) 6164332 (0.23) 6425845 (0.24) 6035427 (0.23)

sources.1MB (1048576 bytes) 255409 (0.24) 198528 (0.19) 246294 (0.23) 234480 (0.22) 193683 (0.18) 195942 (0.18) 201759 (0.19) 221592 (0.21)

sources.10MB (10485760 bytes) 2403782 (0.23) 1971044 (0.18) 2228068 (0.21) 2048697 (0.19) 1852874 (0.17) 1859264 (0.17) 1863561 (0.17) 2107311 (0.20)

sources.25MB (26214400 bytes) 6177216 (0.30) 5233647 (0.19) 5672347 (0.21) 5131207 (0.19) 4801310 (0.18) 4813679 (0.18) 4750516 (0.18) 5388999 (0.20)

web (26214400 bytes) 5249476 (0.20) 4168425 (0.16) 2922143 (0.11) 2657049 (0.10) 2463698 (0.09) 2469670 (0.09) 2476088 (0.09) 2627404 (0.10)

proteins.1MB (1048576 bytes) 402689 (0.38) 420336 (0.40) 435015 (0.41) 414073 (0.39) 419691 (0.40) 418008 (0.39) 413619 (0.39) 340820 (0.32)

proteins.10MB (10485760 bytes) 3547759 (0.33) 3583043 (0.34) 3646708 (0.34) 3371309 (0.32) 3282741 (0.31) 3273363 (0.31) 3216026 (0.30) 2940161 (0.28)

proteins.25MB (26214400 bytes) 10308574 (0.39) 10232402 (0.39) 9123674 (0.34) 8337249 (0.31) 8633151 (0.32) 8609256 (0.32) 8490721 (0.32) 7339947 (0.27)

Table 4.4: Compression results comparison.
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in which to choose the best content to copy it will be not fair to use it as a

baseline.

Our results are always better than the LZOptimal with greedy parsing

ones and this is a confirm of the effectiveness of the ACB method, the dis-

tance interpretation involves a great improvement. A more encouraging re-

sult comes out when we look at the LZOptimal with optimal parsing. Here

we do better in most test cases which is a very interesting thing because we

use only the dictionary without any parsing optimization which should also

be applied to ACB.

Among all compressors our results are always really competitive and in

most cases really better such as in the surprising ratios reached for the DNA

and the PROTEINS sequences where compression is still an open research

problem and where context-based compressors are not usually the best choice.

A further analysis will surely be to investigate what we can do to improve

compression ratio on these fields.

4.5 Results

In this chapter we analyzed ACB under many aspects and now we have

a clearer idea of what to do for further developments. We departed from

a scratch, from an informal interpretation, and we came out after lot of

modifications and analysis with something that has been deeply studied in

order to extrapolate as many information as possible.

Results we obtained are very good and justify future work in order to

improve space/time efficiency to create a production version of the software.

Also in compression ratio we think that some improvements may be possible,

specializing ACB for the particular case of the PROTEINS/DNA or finding

an ad-hoc coder for example.

What we have showed is that the method has great potentialities and, as

always when you get something good, there are also many issues to deal with.

First of all the distance encoding on the compression side and the complex
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data structure used for the dictionary on the time/space side. The developed

version in fact should be considered only under the academic aspect since

the elapsed time is too big for an end user tool, especially if we consider the

decompression phase. Of course after the distances problem will be solved,

if there exist a solution, this issue will be partially solved too.

Some of the things we could try in order to achieve these objectives, with-

out having to alter too much the algorithm written here, are the followings:

• reduce the search set of contexts. This is a brute force approach

to limit the maximum distance emitted. Since we think that many

long distances are generated just to copy a substring a little bit longer

than the one which could be copied departing from a closer distance,

this approach should be viewed as an heuristic to limit this case which

reduce also complexity.

• reduce the content order. This is another way to limit the big offset

paying a shorter match length gain. If we set it to 1 character ACB

will be equivalent to the (α, β)−HY Z implementation of Yokoo with

another distance interpretation.

• reduce the context order (it will introduce duplicates). As for the

substring to copy we also think that in many cases when we search

the best context, since we always take the longest, we choose a context

which is not the optimal one just because of the longer match due to

the greedy approach. The duplicated can be treated using a queue, a

priority queue or any other policy which improves the probability to

get the first item as the right choice. This method introduces another

element to the output which refers to the duplicate to choose, we call

it the ranking.

In Chapter 5 we report such experiments and we propose some new ideas

about how we think things could be done. Note also that we have improve-

ment margins on lengths and look-ahead characters since there is so much

unused information within the dictionary.
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An example of this unused information is the delta between the longest

common prefix between the look-ahead buffer and the previous/next con-

tent. This value could be subtracted from the length of the match since it is

available also in compression in order to obtain a better lengths’ distribution.



Chapter 5

New ideas

ACB performs very well in the experiments we made and in this chapter we

are going to describe some methods we could try to improve it. The points

to work on are faced one to increase compression ratio and one to decrease

computation time.

On the first area we have

• find a method to reduce the emitted lengths

• find a method to reduce the emitted distances

and on the second area we have

• find how much does it cost in compression ratio to reduce the search

set within we will search the content to copy

• the impact of limiting the longest common prefix during compression

In this section we present the first area enhancements while the others

will be presented later.

To reduce the range of values’ lengths we begin from the following idea:

if we are at position pos in T and we have to jump x items from a position

p in the SA to copy a substring, it means that ∀y such that y ∈]p− x, p + x[

59
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we have

lcp(content(pos), content(SA[p + x])) > lcp(content(pos), content(SA[y])).

The proof is really simple. We always copy the content which is at the

shortest available distance. Suppose now that there exist an element, say k,

which is closer than x and that has the same prefix we want to copy from

p + x. By the assumption done before we have that x = k and so that such

k < x can not exists.

So, instead of emitting the whole length, we could emit the difference between

the full length of the match and the longest common prefix computed among

all the suffixes in the range. For example in Table 2.5 instead of emit 6 we

could emit 4 due the longest common prefix is 2 (with item at position 8).

For the distances since we have to uniquely identify the item, the situ-

ation is trickier. Some of the possibility we thought about are:

• as in the Yokoo’s works counting the number of distinct symbols until

the one who matches the first character of the content to copy and

then, counting the number of other contents to skip until the matched

one. This will introduce another element to the output which is what

we have called ranking. In Table 2.5 we will have a 0 meaning that the

content to copy starts with an s and a 3 to indicate that is the third

content who starts with an s that we have to take.

• acting like in the Shannon’s work, emitting a stream of bits representing

correct or incorrect guesses for a character and moving to the next

character at each correct guess. In practical terms beginning from the

best matching context (ctx) we act in the following manner assuming

we are at position x = 0 and at position ctn for the best matching

content:

while (x < match_length)

{

if (ctx == ctn) then // we reached the correct item



CHAPTER 5. NEW IDEAS 61

emit_escape_sequence();

if (content(ctx)[x] == content(ctn)[x]) then

{

emit_1();

++x;

}

else

{

emit_0();

skip_to_next_not_seen_symbol();

}

}

In Table 2.5 we will have the sequence 10010 and the escape sequence.

The first one means that the s is correct while the two zeros means

that the second s and the next not seen symbol i are not correct.

The fourth 1 indicates the correct guess for the space while the last 0

indicates the incorrect i. The risk we could encounter on using this

approach is that we could emit a sequence really big if the predictor is

not a good predictor since we have deep correlations with alphabet size

and guessing rate. The worst case is when we iterate match_length

times and for each iteration we skip all alphabet symbols (call it |Σ|),

in formula

O(|Σ| ∗match length) (5.1)

Now we present a method who needs bigger modification of the algorithm

but that should be able to solve many issues. Before we have spoken about

the rank as a measure to indicate how many items which starts with a given

symbol we have to skip. Another and better way to interpret this concept

could be the following. In all the cases we considered the best content has
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been always identified by the number of items to skip without keeping in

consideration the probability that the given content has in respect to the

others. To clear up we give an example. Suppose we have the following

dictionary generated from the text ababab|ab, where as always the look-

ahead buffer is the substring after the pipe:

a | babab

aba | bab

ababa | b

ab | abab

abab | ab

ababab | $

In this case the conditional probability to have an a content given a context

who starts with b is equal to 1. The same occurs if we consider the content

ab.

We could order the contents in the following manner:

• take the subset of contexts whose bw_lcp with the obvious one is equal

to 1

• find the longest common prefix, the match_len, between the look-ahead

buffer and the contents within this subset

• associate to each content the frequency of its substring of length equals

to match_len

In our example we will have:

• context subset = {ab, abab}

• match_len = 2

• freqs set = {{ab, 2}, {abab, 2}}
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The output will be the triplet <0,2,eof> where the 0 indicates the first item

in the ordered freqs set.

We could also extend the context-order used to create the subset to a

greater value or to the longest common prefix between the order-1 subset

(ab in the example) to increase the model accuracy.

In Chapter 4 we spoked about a technique to avoid the context relative

error 1. We used one additional bit per triplet to discriminate to the method

we were using to encode the current distance, ACB vs LZ for example. The

bit could be removed if we assume, but first we have to do some tests to

understand the new curve fitting, that on context relative error 1 we auto-

matically choose LZ77 distance.

5.1 jcb

This compressor is a variant of ACB, developed in order to understand the

impact onto the compression ratio of the enhancements described before for

the computation time area. It uses only one data structure (the gnulibavl)

and works within a limited context dictionary, what we have called the neigh-

bourhood. It is also customizable for the context/content order. When we

limit the number of characters to compare to lexicographically sort the data

structure we are going to introduce duplicates entries. The default policy

applied is to keep them into a LIFO queue, where not differently indicated,

and to add an element to the output stream to indicate the rank of the chosen

content within this list.

We developed it in the following versions:

• base. It performs such as ACB.

• without look-ahead character. We emit the look-ahead character only

if the match length is 0.

• using a priority queue to treats contents associated with a duplicated

context
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• distance encoded counting the number of distinct symbols and then

offsetting within them. This is the method we exposed before when we

were speaking about the distance reduction.

In Table 5.1 are shown result obtained using jcb base with unlimited

context and content length, at varying of how many dictionary’s items we

look upright and downright to the obvious context. These tests are faced

to understand how much the context dictionary size influence the overall

compression.

File ACB jcb -n2 jcb -n32 jcb -n128 jcb -n512 jcb -n1024

english.1MB (1048576 bytes) 332422 (0.32) 486569 (0.46) 388928 (0.37) 367052 (0.35) 353495 (0.33) 348765 (0.33)

dna.1MB (1048576 bytes) 255549 (0.24) 418182 (0.39) 330477 (0.31) 312213 (0.29) 300813 (0.28) 296359 (0.28)

Table 5.1: Compression results of jcb with different neighbourhood size.

We notice that for a reasonable small context dictionary neighbourhood,

such as 1024, we reach a compression ratio which is only 1% worst than the

best one generated considering the whole data structure. This means that

the majority of distances for a good compression ratio are very close to the

obvious context as also shown in Figure 4.16. We think that the difference

is due to long substrings which are copied from the extremities as shown in

Figure 4.4. This is a remark that indicates how the greedy approach used for

ACB is not the best one. We should rethink the method used to choose the

best content or at least we should try the graph optimization of LZOptimal.

Shorter distances does not only mean a better compression ratio but also a

really faster decompression phase. The offsets are computed by iterating the

data structure and not by direct access to the element as we could have done

in a suffix array, so each distance is equivalent to a linear scan of the tree and

this is unacceptable for the data we produce. This is why the decompression

phase is so slow. We have to consider that we did not optimize the b+-tree

in order to get a faster offset, things that can be done taking the count in

the inner node of the number of leafs contained in the subtree for example.
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Some tests have been made also using the other versions of jcb but the

results were always worst or nearly equals to the ACB ones. This is a confirm

that the method we used to compute the distance is reliable and that naive

variations does not show any improvement path.
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Conclusion

In this thesis we illustrated the ACB compression method and we showed its

real performance. The literature is poor of results about this compressor so

we are nearly the first producing such deep analysis and explaining in detail

the implementation choices adopted. We proved that the intuition behind

ACB was correct and that this method has a great potential.

This does not mean that we have reached a solution, there are some

issues of this approach which should be better understood. For example, the

succinct encoding of the distances: we believe that one should deploy, at its

full extent the structure information present in the dictionary. We consider

this work as starting point for future analysis and implementations faced

more on efficiency than on efficacy.

Another interesting aspect that has to be investigated is relative to the

DNA and PROTEINS sequences where we obtained really surprising results.

We should depart from ACB and understand how to specialize it for this

particular case.

Future works should take into consideration also the development of a

new data structure to be used as dictionary which implements a fast offset

method in order to obtain a time acceptable decoding procedure.

Thinking about the boosting library work [12] another view of the prob-

lem could be answering the following question:

66
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Does it exist a partition of the input text which has the property of

optimality for a disjoint-block ACB compression?

In other words, we would like to know if is it possible to partition the text

and compress each partition separately from the others achieving possibly

better results of compressing the whole text at once. In positive case we will

be able to compress files of any size breaking the space/memory limit of this

implementation. We could also implement a parallel version of the algorithm

since the assumption foresees disjoint blocks.
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