UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria "Leonardo da Vinci"

Corso di Dottorato di Ricerca in INGEGNERIA DELL'INFORMAZIONE

Tesi di Dottorato di Ricerca

A GSM-based method for the electromagnetic analysis and design of truncated periodic structures

Autore:

Alice Pellegrini _____

Relatori:

Prof. Giuliano Manara

Prof. Agostino Monorchio _____

Anno 2006

TABLE OF CONTENTS

Table of Contents	I
Abstract	III
Sommario	IV
List of Acronyms	V
List of Figures	VI
List of Tables	IX
Acknowledgements	IX
Introduction	1
1 The Hybrid Method: Mode Matching - Finite Element	3
1.1 GSM-based Method	3
1.1.1 The Mode Matching Method as GSM-based approach	3
1.1.2 Circuit representation of a discontinuity	6
1.1.3 Step Junction	11
1.2 Finite Element Method	18
1.2.1 FEM formulation	19
1.3 The hybridization of Mode Matching - Finite Element Method	22
2 Analysis and optimization of thick Frequency Selective Surfaces	27
2.1 Formulation: the periodic problem	28
2.1.1 The genetic optimization	31
2.2 Numerical results	34
2.3 AMC with genetic optimization	36
3 Analysis of radiating apertures	41
3.1 Formulation	42
3.1.1 Infinite array	43
3.1.2 Finite array: the Spectral Decomposition method	44
3.2 Depolarization technique	47
3.3 Horn antennas array	48
3.4 Radiation pattern	49
3.5 Numerical results	50
4 Analysis of finite FSSs	59
4.1 Formulation	59
4.2 Spectral decomposition approach	65
4.3 Preliminary results	66

5 Analisys	of composite devices	
5.1 Met	hodology	
5.2 Pre	liminary numerical Results	
5.2.1	Analysis of infinite composite structures	
5.2.2	Analysis of finite composite structures	
Conclusio	ns	
Reference	S	

ABSTRACT

The research activity, illustrated in this work, has been developed in the area of applied electromagnetics and it concerns the development and the improvement of a hybrid numerical method combining the Mode Matching (MM) and the Finite Element (FE) specifically derived for the study of complex microwave devices. Firstly, the optimization problem of unconventional Frequency Selective Surfaces (FSSs), obtained by using NURBS curves, is analyzed. A genetic algorithm is used in order to address the optimization of a multiparametric structure such as the FSS. The hybrid method MM-FE is used to evaluate the frequency behaviour of this kind of structures. The hybrid technique is therefore applied to the study of large finite arrays of open-ended or iris-loaded waveguide apertures or horn antennas. The finite dimensions are taken into account by using a Spectral Decomposition (SD) approach that allows us to reduce the finite problem to a summation of infinite periodic ones. A similar procedure, now based on the Method of Moments (MoM) and the spectral decomposition approach, is applied to the analysis of finite thin frequency selective surfaces. Finally the hybrid methodology MM-FEM-SD, combined with an MoM, is used to study finite arrays of rectangular waveguide cascaded with a finite thin FSS. In order to prove the effectiveness of this methodology, several numerical results are compared with that obtained through a commercial software or available in literature.

Sommario

Obiettivo dell'attività di ricerca scientifica, svolta nel settore dell'elettromagnetismo applicato, consiste nell'impiego e nell'estensione di un metodo numerico Mode Matching -Finite Element Method (MM-FEM) per l'analisi di dispositivi a microonde. In una prima fase, è stato affrontato il problema dell'ottimizzazione di superfici selettive in frequenza (Frequency Selective Surfaces - FSSs) non convenzionali ottenute mediante curve NURBS (Non Uniformal Rational B-Spline). Data la natura multiparametrica delle strutture in esame, il problema dell'ottimizzazione è stato affrontato mediante l'impiego di una tecnica evoluzionistica, di natura stocastica, nota come algoritmo genetico. Per l'analisi delle prestazioni e del comportamento in frequenza di tali strutture, è stato impiegato il metodo ibrido Mode Matching- Finite Elements Method. Tale metodo è stato inoltre utilizzato per l'analisi di array finiti di guide d'onda open-ended o iris-loaded e antenne horn. Le dimensioni finite delle strutture in esame sono state considerate mediante il metodo Spectral Decomposition (SD). Tale tecnica consente di ricondurre l'analisi del problema finito, a quella di una combinazione di problemi equivalenti di tipo infinito, più semplicemente analizzabili.

Una procedura basata sulla decomposizione spettrale e su un metodo dei momenti (Method of Moments - MoM) per strutture periodiche sottili è stata applicata allo studio di superfici sottili selettive in frequenza di dimensioni finite. Infine, la metodologia impiegata nelle attività sopra descritte è stata utilizzata per lo studio di sistemi compositi, costituiti dalla cascata di un array di guide d'onda o antenne horn e una o più FSS entrambi di dimensioni finite e diversa periodicità.

La correttezza della metodologia impiegata nelle attività descritte è stata verificata mediante esempi presenti in letteratura o mediante software commerciali.

LIST OF ACRONYMS

AMC: Artificial Magnetic Conductor;

DFT: Discrete Fourier Transform;

EFIE: Electric Field Integral Equation; EBG: Electromagnetic Band Gap;

FEM: Finite Element Method; FFT: Fast Fourier Transform; FSS:Frequency Selective Surface;

GA: Genetic Algorithm; GAM: Generalized Admittance Matrix; GIM: Generalized Impedance Matrix; GSM: Generalized Scattering Matrix;

MM: Mode Matching; MoM: Method of Moments;

NURBS: Non Uniform Rational B-Spline;

PEC: Perfect Electric Conductor; PMC: Perfect Magnetic Conductor;

SD: Spectral Decomposition;

TE: Transverse Electric; TEM: Transverse ElectroMagnetic; T(FW)2: Truncated Floquet Wave Full-Wave; TM: Transverse Magnetic;

LIST OF FIGURES

Fig.	1.1 - Geometry of a waveguide problem	4
Fig.	1.2 - Geometry for representing a waveguide discontinuity	7
Fig.	1.3- Multi-port equivalent circuit to the discontinuity depicted in Fig. 1.2	7
Fig.	1.4 - Multi-port circuit representation of a waveguide discontinuity for deriving	the
e	standard admittance matrix.	8
Fig.	1.5 - Boundary enlargement problem	11
Fig.	1.6 - Identification of the scattering parameters of the step discontinuity as entries	of
e	the GSM.	15
Fig.	1.7 - Geometry for the analysis of a double step discontinuity.	15
Fig.	1.8 - Reference systems at a step discontinuity analyzed through the transmissi	ion
-	matrix.	17
Fig.	1.9 - Step discontinuity between two different heights rectangular waveguides	18
Fig.	1.10 – Unconventional shaped cross-section waveguide	19
Fig.	1.11 – Vector basis function (a); amplitude of the Whitney function over a triangu	ılar
-	element(b)	21
Fig.	1.12 – Boundary reduction: a rectangular waveguide ($\Omega 1$) ends with a small	ller
-	unconventional waveguide (Ω2)	22
Fig.	2.1 - Geometry of a thick inductive Frequency Selective Surface	28
Fig.	2.2 - The elementary periodicity cell of the thick metallic screen: longitudinal sect	ion
		30
Fig.	2.3 - Chromosome structure: each gene represent a structure parameter.	32
Fig.	2.4 – Set of possible aperture shapes	32
Fig.	2.5 – NURBS defined by 16 control points	33
Fig.	2.6 - Optimization of thickness, skewness angle and periodicity of a FSS with a give	/en
	shaped aperture	34
Fig.	2.7 – Transmission (a) and reflection (b) coefficient for the FSS in Fig. 2.6	34
Fig.	2.8 – FSS screen with optimized shaped aperture selected from database	35
Fig.	2.9 – Transmission (a) and reflection (b) parameters for the geometry in Fig. 2.8	35
Fig.	2.10 – FSS screen ith optimized skewness angle, thickness and shape aperture (a)), a
	particular of the unit cell (b)	35
Fig.	2.11 – Transmission and reflection coefficient for the screen in Fig. 2.10	36
Fig.	2.12 - Comparison of the normalized fitness function of three examples	36
Fig.	2.13 – Image Theorem: the longitudinal component of the electric field nulls on a PE	EC,
	the orthogonal one on a PMC	37
Fig.	2.14 - PMC surface as dual of a PEC surface after 180° phase shift	38
Fig.	2.15 - A FSS terminated with a PEC surface, a PMC surface is obtained at a distance	e of
	$\lambda g/4$ in the waveguide.	38
Fig.	2.16 - An optimized FSS that realize a PMC condition (a), a particular of the unit of	cell
	(b)	39
Fig.	2.17 - Reflection coefficient phase of the PMC realized by using the GA	39
Fig.	3.1 - Geometry and characteristic dimensions of the finite array of waveguide	fed
	apertures	42
Fig.	3.2 - Cross section (a) and longitudinal (b) view of the unit cell under analysis	44
Fig.	3.3 - Windowing function applied to the excitation. The parameter δ defines the tag	per
	of the spatial gate	45
Fig.	3.4 - Fourier transform and discretization of the spatial gate	46

Fig. 3.5 - N-sided planar polygon; $\hat{\alpha}_n$ is the tangential vector and $\hat{\gamma}_n$ describes the position
of the nth corner
Fig. 3.6 - Longitudinal profile discretized as a series of steps whose length is $\lambda/32$
Fig. 3.7 – Magnitude (a) and phase (b) of the active reflection coefficient and E-plane
radiation pattern for the 20×20 array of open-ended waveguides: comparison with
[73]
Fig. 3.8 - Amplitude of active reflection coefficient for the 21×21 array of open-ended
waveguides scanned at 20° in E-plane as compared with [74]
Fig. 3.9 - Shape and dimensions of the iris for the 20×20 array of waveguides, ensuring a
better matching
Fig. 3.10 - Active reflection coefficient, along the central horizontal row (continuous line)
and along the central vertical row (dashed line), for the 20×20 array of irises-loaded
waveguides
Fig. 3.11 - Active reflection coefficient, along the central horizontal row (a) and along the
central vertical row (b), for the 6×6 array of open-ended waveguides: comparison of
our technique with Ansoft HFSS
Fig. 3.12 - Normalized radiation pattern of the 6×6 open ended rectangular waveguide array
compared with Ansoft HFSS: a) H-plane pattern, b) E-plane pattern
Fig. 3.13 - Geometry of the hexagonal array of rectangular open-ended waveguides: a)
original problem with characteristic dimensions (a=17.142 mm, b=11.428 mm,
$dx=28.57$ mm, $dy=17.142$ mm and $\alpha=50.194^{\circ}$), b) equivalent problem: infinite array
with hexagonal illumination
Fig. 3.14 - Magnitude of the reflection coefficient evaluated on each aperture for an
hexagonal array of open-ended waveguides. The upper values are obtained with the
present method, the lower values are obtained with Ansoft HFSSv10.1
Fig. 3.15 - Phase (in degrees) of the reflection coefficient evaluated at each aperture for an
hexagonal array of open-ended waveguides. The upper values are obtained with the
present method, the lower values are obtained with Ansoft HFSSv10.1
Fig. 3.16 - Geometry of the array and dimension of elementary radiating element
Fig. 3.17 - Comparison with Ansoft HFSS: active reflection coefficient along the central
column for the 6×6 array of pyramidal norn antennas
Fig. 3.18 - Normalized radiation pattern of the 6×6 pyramidal norm array compared with
Ansoli HFSS: a) H-plane pattern, b) E-plane pattern
Fig. 5.19 - Geometry of the nexagonal array and magnitude of the active reflection
Example 2 20. The radiation pattern on the two principal planes (a) (b) and the co-polar and
Fig. 5.20 - The fadiation patient on the two principal planes (a)-(b) and the co-polar and areas polar component on a plane at $phi = 45^{\circ}$ (a)
Fig 4.1 Mondimensional natch ESS 50
Fig. 4.1 – Monumensional patch FSS
Fig. 4.2 - X-unected and y-unected footiop basis functions
Fig. 4.5 – Doubly periodic minine unit FSS screen
Fig. 4.4 - Subdomain roomop dasis runction
rig. 4.5 – fruncated spatial fetangular (a) and kaiser (b) gate that implinges on the infinite
F = 55
Fig. 4.0 – F55 with fing elements arranged in a 5×5 rectangular grid
Fig. 4. $/$ – Kadiation pattern for a FSS with 5×5 elements; E_phi component (a) and E_theta
component (b) compared with HFSS for an incident plane wave along the orthogonal
airection. E theta component (c) and E phi component (d) compared with HFSS for a plane wave with incident on pla that $a = 200$
a plane wave with incident angle theta = 30°

Fig. 4.8 - Radiation pattern for a FSS with 10×10 elements, E_phi component (a) and E theta component (b) compared with HESS for orthogonal incidence 67
Fig. 4.9 - FSS with cross elements arranged in a 9x9 rectangular grid
Fig. 4.10 - Radiation pattern for a ESS with 0.00 cross elements. E. phi component along the
principal plane compared with HFSS for a plane wave with incident angle theta = 30
Fig. 4.11 - FSS with asymmetrical elements arranged in a 9×9 rectangular grid
Fig. 4.12 – Radiation pattern along the principal planes, E theta component (a) and E ph
component (b) compared with HFSS for orthogonal incidence
Fig. 5.1 – Composite structure of a finite array of rectangular waveguides with above one of
more FSS; each subsystem has its own periodicity72
Fig. 5.2 - Equivalent infinite problem: the plane wave is replaced with a truncated spatial
gate g(x,y)
Fig. 5.3 – Mapping between the local harmonic numeration for the FSS and the global one
of the array75
Fig. 5.4 – Mapping of the local shifted harmonics for the FSS into the globa numeration of
the array
Fig. 5.5 - Geometry of a cascade system of an infinite array of rectangular waveguides with
above an infinite FSS (a); the unit cell of the composite structure (b)
Fig. 5.6 - S-parameters of each separated subsystem: (a) S-parameters for the infinite array
of rectangular waveguides, (b) S-parameters of the infinite FSS78
Fig. 5.7 - S-parameters of the composite structure; the transmission of TM mode in free
space region (a) and the reflection of the TE10 in the waveguide (Fig. 5.5)
Fig. 5.8 – Unit cell of the composite structure
Fig. 5.9 – S-parameters of the infinite FSS (Fig. 5.8)
Fig. 5.10 - S-parameters of the composite structure; the transmission of TM mode in free
space region (a) and the reflection of the TE10 in the waveguide (Fig. 5.8)
Fig. 5.11 – Unit cell of the composite structure; the FSS dimensions are twice the
dimensions of the array
Fig. 5.12 – S-parameters of the infinite FSS (Fig. 5.11)
Fig. 5.13 - S-parameters of the composite structure; the transmission of TM mode in free
space region (a) and the reflection of the TE10 in the waveguide (b)
Fig. 5.14 - Geometry of a cascade system of a finite array of rectangular waveguides with
above a finite FSS (a); the unit cell of the composite structure (b). 32
Fig. $5.15 - 8$ -parameters of the equivalent FSS Fig. $5.14(b)$ as a function of the frequency
(a) and of the incident angle (b) (Freq = 14.5 GHz)
Fig. 5.16 – Radiation patterns for the composite structure along the two principal planes
$pn1 = 0^{\circ}$ (a) and $pn1 = 90^{\circ}$ (b)
Fig. 5.1 / $-$ S-parameters of the FSS as frequency function (a) and as incident angle function
(b)
rig. $3.10 - $ kadiation patterns for the composite structure compared with the radiation
Fig. 5.10. Unit call of the ESS obtained by using a constitution starting starting starting and starting starti
Fig. 5.19 – Unit cen of the FSS obtained by using a genetic optimization algorithm
Fig. 5.20 – 5-parameters as function of the incident angle
rig. 5.21 - Kaulation pattern on the two principal planes evaluated for the cascade system
and compared with single array patients

LIST OF TABLES

roposed
he local
global
75
he local
global global
79

ACKNOWLEDGEMENTS

The author wishes to thank Prof. Raj Mittra for the possibility to develop the last part of this activity at the Electromagnetic Communication Laboratory of the Penn State University (PA).