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Chapter 1

Introduction

An ideal carbon nanotube can be considered as rolled-up sheet of 2D graphite

(graphene). Hollow, seamless cylinders formed as a result of this wrapping

possess many unique properties owing to their quasi 1–dimensional structure

and exceptional properties of carbon–based materials. Their discovery by

Iijima in early 90s [1, 2] prompted extensive and fascinating research in this

new area of nanotechnology in an attempt to reveal all the fundamental

properties and making a way for new promising applications.

ba

c

Figure 1.1: (a)TEM image of Single-walled carbon nanotube bundle, (b)

STM image of an individual SWNT where single atoms can be identified

and the chirality of the nanotube can be determined, (c) SEM image of

milimeter long nanotube forest (from [3]).
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INTRODUCTION

Depending on the growth technique carbon nanotubes can be single–

walled (SWNT) or multi–walled (MWNT) containing several coaxial SWNTs

with common axis and increasing diameter. Single–walled carbon nanotubes

typically have diameters in the range of 0,7– ∼3nm and therefore can be

regarded as single molecules but on the other hand they can have macro-

scopical lengths reaching for some samples up to several milliliters [3]. As

a result some properties of carbon nanotubes can be explained within the

model of a macroscopic homogeneous cylinder while others, e.g. electronic

properties, are heavily influenced by the way the graphene monolayer is rolled

up. The resulting macro and micro(nano) properties of these materials are

indeed outstanding.

Mechanical properties of CNTs are a result of strong sp2 bonds of the

graphene honeycomb lattice. Though having light weight they can sustain

extremely high tension force up to 130 GPa compared to steel at 5 GPa,

which makes them the strongest material known. Variety of schemes have

been proposed to make use of these extraordinary properties ranging from

everyday items like clothes and sports gear to combat jackets and space ele-

vators. They are also highly flexible, even at low temperature, therefore these

compounds are potentially suitable for applications in composite materials

that need anisotropic properties such as AFM or STM tips.

Figure 1.2: Schematics of CNT electronic circuit.

Chemical reactivity of carbon nanotubes is based on the properties of

graphene sheet and is enhanced by curvature effects of CNT’s surface. Pi–

orbital mismatch owing to increased curvature can result in higher reactivity
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INTRODUCTION

for small diameter tubes. Covalent chemical modification of either sidewalls

or end caps has shown to be possible. For example, the solubility of CNTs in

different solvents can be controlled in this way. Chemical functionalization

of the CNTs makes it possible to tailor macromolecular structures trough

attachment of organic functional groups on the surface of nanotubes. On the

other hand wrapping of the tubes by other polymers mediated by van der

Waals interactions opens a way to investigate the effect of different dielectric

environments on the electronic structure of the CNTs.

Depending on the angle of wrapping chiral vector carbon nanotubes can

be either semiconductors or metals. As it will be shown later, differences in

conducting properties are caused by the molecular structure that results in a

different band structure and thus a different band gap. They can sustain high

current densities, 1000 times higher than copper wires. This makes CNTs

an ideal candidate for nanoscale electronic circuits, field emission devices or

single molecule transistors (Fig. 1.2, 1.3) [4].

Figure 1.3: Field emission flat panel based on CNTs from Samsung.

The discovery of photoluminescence (PL) from CNTs opened up new

perspectives for their application as narrow band emitters or biosensors [4, 5,

6, 7]. The PL intensity and the emission wavelength is shown to be sensitive

to the local environment. Other applications include the use of CNTs in

energy storage and energy conversion devices, actuators, electronic devices,

production of nanorods using CNTs as reacting templates, catalysis, and

hydrogen storage media [4].

7



INTRODUCTION

However, many of these applications require the full knowledge of the

electronic processes and interactions of the nanotubes. While the extensive

research during the last 15 years have answered to many intriguing questions

there are still some important gaps in our understanding of these systems.

One of them is the exact mechanism governing the excited state dynamics

of the carbon nanotubes. It has been established that elementary excita-

tions in carbon nanotubes constitute strongly bound excitons and is com-

monly agreed that their relaxation to the ground state is dominated by non–

radiative decay channels [8, 9]. Nevertheless, the exact mechanism of this

non–radiative relaxation is still a matter of debate.

In this work we tried to shed light on this issue by combining the photolu-

minescence (PL) spectroscopy with the time–resolved PL studies from single

carbon nanotubes at room temperature. To understand the behavior of the

excitations in SWNTs a profound knowledge of their electronic structure is

needed. We devote Chapter 2 to the review of electronic and optical proper-

ties of the nanotubes. First, in the framework of free carrier approximation

the Brillouin zone and the band structure of the nanotubes is constructed

based on the graphene structure. Second, it is shown how the reduced di-

mensionality of the system and its unique and symmetry properties give rise

to strongly bound excitonic states with different optical properties. And last,

the existing literature on the research of excited state dynamics, including

theoretical and experimental works using different methods and samples, is

reviewed. In Chapter 3 the description of the experimental setup of confo-

cal microscopy for investigating single molecules is given along with a brief

explanation of the time–resolved PL measurement method. In Chapter 4

we present the measurements of the exciton lifetimes in single carbon nan-

otubes at room temperature for the first time. The extremely low quantum

yield (QY) of the nanotubes (∼ 10−3)is one of the main difficulties hinder-

ing the experimental investigation of their emission properties on a ”single

molecule” level where usually QY values orders of magnitude larger are re-

quired (∼ 10%). However, we succeeded in obtaining good signal to noise
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INTRODUCTION

ratio by optimizing the components of the confocal experimental setup. We

find that unlike many other fluorescent materials the excited state in the

carbon nanotubes is depopulated by non-radiative relaxation channels. Our

experiments show how the local phonon modes and the nanotube length af-

fect this radiationless relaxation of the exciton. The correlated electron–hole

pairs in carbon nanotubes as all the excited systems have selection rules for a

photon emission imposed on them by quantum mechanics and the symmetry

of their host lattice structure. In Chapter 5 by locally changing the electronic

structure of the nanotube we show how some of this selection rules can be

relaxed. For the first time, we report on the observation of an intersystem

crossing and a triplet state emission in carbon nanotubes.

9



Chapter 2

Properties of Carbon

Nanotubes

2.1 Geometry and Nomenclature

In the classification of the well-known carbon allotropes regarding their di-

mensionality, 1D carbon nanotubes can be placed after the sp3 bonded three–

dimensional diamond structures and the individual two–dimensional layers of

graphite, thus closing the gap between the latter and quasi zero–dimensional

Fullerenes [10]. As mentioned above the ideal SWNT can be described as

a rolled up cylinder of graphene sheet. As there are infinitely many ways

to wrap the hexagonal honeycomb lattice with respect to its basis vectors

the resulting variety of nanotube species will also be different. Due to the

close similarity of the microscopic geometrical structure of the CNTs with the

graphene the lattice vectors of the latter are used to label the tube structures.

Each SWNT is specified by the chiral vector

Ch = na1 + ma2 = (n,m) (2.1)

which is often described by the pair of indices (n, m) that denote the

number of unit vectors na1 and ma2 in the hexagonal honeycomb lattice

contained in the vector Ch. The graphene sheet is rolled up in such a way
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Figure 2.1: Graphene honeycomb lattice and its wrapping into carbon

nanotube. If rolled-up, the shaded area would correspond to a (5,3) nan-

otube. a1 and a2 denote the graphene lattice vectors and chiral angle θ

determines the structure of the nanotube. Chiral indexes indicated in red

correspond to metallic tubes, in blue to semiconducting tubes.

that the chiral vector becomes the circumference of the nanotube. The nan-

otubes are uniquely described by this vector and many of their fundamental

properties like electronic band structure or spatial symmetry group vary dra-

matically with their chiral vector even for tubes with similar diameter and

direction of the vector. As shown in Fig. 2.1, the chiral vector Ch makes an

angle θ, called the chiral angle, with the so-called zigzag or a1 direction. The

chiral angle θ can be calculated from

θ = arccos
a1 ∗Ch

|a1| ∗ |Ch| = arccos
n + m/2√

n2 + nm + m2
(2.2)

Thus, not only tubes with different diameters can be designed but also

the orientation of the carbon chains with respect to the cylinder axis can

vary, resulting in three groups of nanotube structures Fig. 2.2: (i) armchair
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PROPERTIES OF CARBON NANOTUBES

tubes, with carbon atom chains parallel to cylinder axis θ = 0◦, (ii) zigzag

tubes with chiral angle 30◦ and (iii) third group with θ ∈ (0◦ − 30◦) called

chiral tubes. For the structures belonging to first two achiral groups a mirror

plane exists in contrast to the third one where mirror symmetry is removed

and respective tubes form optical enantiomers.

Figure 2.2: Three groups of nanotube structures. (a) armchair tube, (b)

zigzag tube, (c) chiral tube from [11].

All the structural parameters of the nanotubes like diameter, unit cell

and also the size and shape of the Brillouin zone are determined by the

chiral vector. The diameter of the tube can be computed from the length of

the Ch:

d =
|Ch|
π

=
a0

π

√
n2 + nm + m2 (2.3)

where a0 = 2, 461Å is the length of the basis vectors.

Raman spectroscopy is one of the powerful tools to verify the structure

of the material. As we claim that the CNTs have a structure that is in
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PROPERTIES OF CARBON NANOTUBES

many aspects closely related to the structure of graphene, it is natural to

expect that the Raman spectrum of CNTs should have similarities with the

graphene spectrum.

d

1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0

p
h
o
to

n
 c

o
u
n
ts

 [
a
.u

.]

Raman shift (cm-1)

G

G'grapheneCNTs

Figure 2.3: Typical Raman spectrum of SWNTs showing the most promi-

nent first order D and G mode and the second order G’ mode (left panel).

The diameter dependent Radial Breathing Mode characteristic for car-

bon nanotubes is indicated by an arrow. The spectrum of the graphene

monolayer (left panel), from [12]

As it is shown in Fig. 2.3 this is, indeed, the case. The main difference

is the appearance of a new mode at low frequencies called Radial Breathing

Mode (RBM). As the name of the band indicates the phonon mode associated

with it could not be realized in the case of carbon sheets and it is a specific,

diameter dependant signature of carbon nanotubes. Although one would

expect a large number of phonon modes in the Raman spectrum of carbon

nanotubes due to the confinement, there are in fact only three major bands in

the first-order spectrum. This is a consequence of the high symmetry of the

nanotube, leading to selection rules that prohibit most of the phonon modes

in the Raman process. Because of the small mass of the carbon atoms com-

bined with strong carbon-carbon bonds, the phonon frequencies are much

larger than what is typically observed in semiconductors like GaAs or Si.

Besides the RBM mode around 200 cm−1, the strongest Raman modes are

the so called D mode (1350 cm−1) associated with the large wave vector lon-

gitudinal optical (LO) and inplane transverse optical (iTO) phonons and the
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high-energy G modes (∼1600 cm−1), the most prominent mode of graphite

associated with zero–momentum LO and TO phonons [13, 14]. Because of

their large momentum the D modes cannot be excited with a photon unless

a defect site in the structure of the nanotube is present to elastically scatter

back the phonon to match the momentum conservation law. Thus, as it will

be discussed in Chapter 5, the intensity of the D mode is a direct measure of

a defect concentration in the tube. The most prominent second order mode

in nanotubes is the overtone of the D mode, the so called G’ (or alternatively

2D) mode at ∼2600 cm−1.

2.2 Electronic Structure

Electronic properties of nanotubes are also determined by their chiral vector.

Depending on the values of n,m indexes the SWNT can be either metallic or

semiconducting [15, 16]. Moreover, as it will be shown later in this section

the energy gap of the tubes can be tuned by changing their diameters [17].

This is one of the most remarkable properties of carbon nanotubes which

makes them promising candidates for nanoscale electronics. The conduction

properties of CNTs are governed by the following simple clauses:

υ = n-m = 3j → metallic υ = n-m 6= 3j → semiconducting, j ∈ N

If the difference of n and m is a multiple of three, then the tube is metallic,

otherwise it is semiconducting. Thus, all SWNTs belonging to the armchair

group are metallic. In general, from all theoretically possible SWNT struc-

tures one third will be metallic while two third will possess semiconducting

properties(Fig. 2.1).

The electronic characteristics of the SWNTs, in particular the 1D joint

density of states (JDOS) and its van Hove singularities (vHs), are fundamen-

tal for the occurrence of such optical phenomena like absorption, photolumi-

nescence and resonance Raman effect. The electronic band structure of the

SWNTs, and the special electronic and vibrational characteristics resulting
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PROPERTIES OF CARBON NANOTUBES

from it, are a direct consequence of the geometry of the SWNTs. In the

previous section the geometrical characteristics of the SWNTs were derived

from the graphite lattice structure. Now, in order to understand the SWNTs’

band structure in more detail it is useful to consider first the electronic prop-

erties of a graphene sheet. Afterwards the 1D energy dispersion relation for

SWNTs can be obtained on the basis of graphene’s 2D dispersion relation.

Graphite consists of layers of hexagonally arranged sp2-hybridized carbon

atoms. While inter–layer interaction is due to weak van der Waals forces,

within the individual layers each carbon atom is covalently bonded with its

three neighboring atoms through one σ− and one π− bonds.

Γ K
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ev
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Figure 2.4: Graphene band structure along the high symmetry points of

the reciprocal lattice (right panel), 3D structure of the π orbitals with a

linear energy dispersion near the Fermi level in the inset.

The hexagonal elementary cell of graphene contains two carbon atoms.

The corresponding Brillouin zone in the reciprocal lattice has a hexagonal

structure as well, however it is rotated by 90◦ with respect to the elementary

cell in the real space. The Brillouin zone contains three points of high sym-

metry designated as K, M and Γ. Fig. 2.4 shows the band structure of the

graphene along high symmetry points (b) and structure of only π orbitals

in the first Brillouin zone computed for the reciprocal effect of three nearest

neighbors (”third nearest neighbor tight-binding approximation”). The π or-
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bitals are formed via binding of 2pz orbitals of two adjacent carbon atoms and

the resulting π, π∗ molecular orbitals cross at the high symmetry K–point

of the graphene Brillouin zone, exactly at the Fermi level. These orbitals

in the terms of solid state physics are regarded as valence and conductance

bands. Thus, graphene is a ”zero bandgap” semiconductor. The inset at the

Fig. 2.4 demonstrates the linear energy dispersion of the graphene bands near

the Fermi level at the K point responsible for many remarkable properties of

the graphene itself [18].

The unit cell of the carbon nanotube is formed by a cylindrical surface

with height T and diameter d, where T is the length of the tube translational

vector. The latter is defined as the smallest graphene lattice vector perpen-

dicular to Ch determining the translational period along the tube axis. It

can be calculated from chiral indexes as:

T =
2m + n

gcd(2n + m, 2m + n)
a1 − 2n + m

gcd(2n + m, 2m + n)
a2 (2.4)

where gcd() stands for the greatest common divisor. T varies strongly

with the chirality of the tube; chiral tubes often have very long unit cells.

The determination of the unit cell of the CNTs allows us to construct

their Brillouin zone. The reciprocal lattice vector kz in the direction of

the tube z–axis corresponds to the transitional period T, and has a length

kz = 2π/T . As the tube is regarded as infinitely long, the wave vector kz is

continous, therefore the first Brillouin zone in the z–direction is the interval

(−π/T, π/T]. In contrast to kz the wave vector k⊥ along the circumference of

the tube can assume only quantized values due to the reduced dimensionality

of the system. The wave function of electrons in the nanotube must have a

phase shift of an integer multiple of 2π around the circumference, as all other

wavelengths will vanish by interference. This implies a boundary condition

on the wave vector:

k⊥,j =
2π

λ
=

2π

|Ch|j =
2

d
j (2.5)

where j is an integer taking the values −nc/2 + 1, . . . , 0, 1, . . . , nc/2, nc
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being the number of graphene hexagons in the nanotube unit cell. Thus

the first Brillouin zone of carbon nanotubes consists of nc lines parallel to

the z–axis separated by k⊥ = 2/d, Fig. 2.5. In the first approximation

the electronic band structure of a particular carbon nanotube can be found

by cutting the two–dimensional band structure of graphene into nc lines of

length 2π/T and distance 2/d parallel to the direction of the tube axis Fig.

2.5. In this way, the appropriate SWNT bands are found. This approach is

called zone folding and is commonly used in nanotube research. Although

results obtained using this method are satisfactory in many cases, for the

more precise calculation of the band structure the curvature effects and the

cylindrical geometry of the nanotubes have to be taken into account.
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Figure 2.5: From left to right: The Brillouin zone of a carbon nanotube,

”cutting lines” in the energy dispersion of the π orbitals, corresponding

energy bands and density of states.

The density of states (DOS) of the SWNTs can be directly calculated

from their band structure using the definition of the DOS:

DOS ∝ (
dEj

dk
)−1 (2.6)
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An example of such a derivation of the DOS for metallic (upper panel)

and semiconducting (lower panel) cases are depicted on Fig. 2.5. It shows

that at certain energy values the density of states exhibits sharp peaks called

van Hove singularities (vHs). These maxima occur when the energy disper-

sion relation has a infinitesimal upward gradient as function of k, i.e. for

each extremum of the energy. These singularities are characteristic for 1–

dimensional systems and combined with the peculiar properties of SWNTs

give rise to several interesting phenomena. One of them is the unusual ab-

sorption spectrum of these materials with many well resolved narrow peaks

resulting from different chirality species. Due to the very small momentum

of the absorbed photon compared to the line separation k⊥ = 2/d of the

SWNTs’ Brillouin zone, the allowed transitions are only those within the

same Brillouin zone line or so–called vertical transitions. In other words the

electron from any van Hove singularity below EF can be excited only to the

band which is its mirror image with respect to the Fermi level in the en-

ergy band (or DOS) diagram. This transitions are usually called E11(or A),

E22(B), . . . , Eii transitions and are shown in Fig 2.6.

∆k = 0 is not the only selection rule for the optical transitions in the

nanotubes. One of the noteworthy properties of the electronic transitions

which also arises from the reduced dimensionality is their strong dependance

on the relative polarization of the electric–field vector to the nanotube axis.

Depolarization or antenna effect takes place which implies that carrier exci-

tations are possible only with the field component parallel to the tube axis.

For external fields applied in other directions charges are induced on the

cylinder walls. The resulting polarization vector opposes the external field

and reduces the electric field.

As mentioned above, a very interesting electronic property of the carbon

nanotubes is their either semiconducting or metallic nature. As depicted

in Fig 2.6 two typical structures are possible for the energy bands. When

the cutting line of the Brillouin zone goes trough K point the density of

states has a finite value at the Fermi level due to the respective linear energy
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Figure 2.6: Energy dispersion and density of states of semiconducting (left)

versus metallic (right) tubes, near the Fermi level. For metallic nanotubes

because their Brillouin zone the K point of the graphene reciprocal lattice

a finite density of states exists at Fermi level.

bands. These nanotubes have metallic characteristics. In all other cases a

bandgap opens between the first two vHs and the nanotubes are semiconduct-

ing. Strictly speaking, a tiny gap exists also for the non–armchair metallic

tubes because of the curvature effects[19, 20]. Nevertheless, for most prac-

tical purposes and for most experimentally observed carbon nanotube sizes

this gap would be so small that, all the n − m = 3j tubes can be consid-

ered as metallic at room temperature. From geometrical considerations it is

obvious that one–third of all possible SWNT structures will be metals while

two–third will be semiconductors.

The size of the gap depends on the diameter of the SWNTs as result of

the spatial confinement of electrons in the radial direction. However, the

dependence is not simply inversely proportional to the diameter as in the

case of e.g. quantum dots, but depends also on the chirality of a certain tube

in an elegant manner:
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Figure 2.7: The Kataura plot showing the dependence of the electronic

transitions in nanotubes on their diameters. The separation of the van

Hove singularities scales with the inverse diameter. Black points corre-

spond to semiconducting nanotubes and red points to the metallic ones.

E11 = 2γ0a0d
−1 + (−1)υ t11 cos 3θ

d2
(2.7)

where γ0 and t11 are free parameters related to the onsite energy and

to the hopping integrals, respectively, d is the nanotube diameter, and θ is

the nanotube chiral angle. Fig. 2.7 shows the computed transition energies

Eii of semiconducting and metallic SWNTs for different n,m pairs for the

diameter range up to 3 nm. The subscript indexes designate the appropriate

pair of van Hove singularities, while the superscript indexes ”S” and ”M”

refer in each case to metallic or semiconducting SWNTs. This kind of the

representation is the so-called Kataura plot [17].

20



PROPERTIES OF CARBON NANOTUBES

2.3 Optical Properties

2.3.1 Photoluminescence

As most CNT species are semiconducting it was commonly expected that

these materials should be luminescent. It was anticipated that the carriers

excited to the higher vHs will relax to the band edge of the first singularity

followed by a radiative recombination to the valence band. However lumi-

nescence from carbon nanotubes was not observed for many years after their

discovery in early 90s. The main obstacle here is apparently the low intrinsic

quantum efficiency of the system. Another very important reason that hin-

ders the tube to radiate is their tendency to form small bundles and ropes

in most of the samples. The van der Waals forces between individual tubes

can be as strong as 500 eV/µm tube–to–tube contact and favor the aggre-

gation of the tubes into bundles. The exact mechanism which quenches the

radiative recombination in the bundles is still a matter of debate. Suppos-

edly, the energy transfer [21, 22] from the excitations in the semiconducting

tubes to the metallic ones and their subsequent radiationless relaxation is one

of the main contributing reasons. Other speculations suggest alterations in

the band structure of the individual tube due to the inter–tube interactions

which might create sites with non–zero density of states near the Fermi level

along the nanotube. Some of the factors influencing non–radiative relaxation

channels in CNTs will be discussed later in this work.

In order to prevent the bundling process a procedure of coating the in-

dividual tubes with surfactant molecules was successfully implemented by

Weisman and coworkers [23]. The surfactant molecules (sodium dodecyl sul-

fate (SDS)) used in this pioneering work and also in subsequent improved

methods have hydrophobic head that aggregates with the nanotube sidewalls

and hydrophilic long tails. Ultrasonic agitation of an aqueous dispersion of

raw single–walled carbon nanotubes and surfactant material and subsequent

centrifugation to remove tube bundles, ropes, and residual catalyst resulted in

individual nanotubes, each encased in a cylindrical micelle. Free from the per-
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turbation of surrounding tubes and surfaces, the tubes in these suspensions

show much better resolved optical absorption spectra. Most importantly, the

one-dimensional direct band gap semiconducting tubes in these samples are

now found to fluoresce brightly in the 800– to 1600–nm wavelength range

of the near infrared. Later analysis of the discrete peaks in photoexcitation

emission maps [24] and combined Raman and photoluminescence measure-

ments from single carbon nanotubes [25] allowed unambiguous assignment of

the emission peaks to certain tube chiralities.

a b

Figure 2.8: Photoluminescence from carbon nanotubes. (a) the emission

and absorption spectra of the aqueous solution of surfactant coated nan-

otubes, with the cross section of the carbon nanotube model encapsulated

into a SDS micelle in the inset. Well resolved peaks belonging to different

nanotube charities are present in both spectra. (b) photoluminescence in-

tensity as a function of emission and excitation wavelengths, from [23, 24].

Fig. 2.8 shows the well resolved peaks in the absorption and emission

spectra of the micelle encapsulated SWNTs aqueous solution (a) and pho-

toluminescence excitation map of the material (b). In the contour plot the

fluorescence intensity versus excitation and emission wavelengths is depicted.

Each feature in the region marked by a white ovale corresponds to the E11

emission of a certain (n,m) species after their excitation to the second van

Hove singularity of the conduction band. Similar results were reported for in-

dividual nanotubes suspended in air, free of substrate interaction [26, 27, 28].
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2.3.2 Excitons

The electronic structure of SWNTs presented above does not take into ac-

count the electron–electron interactions but assumes free non–interacting

carriers. However, strong confinement of electrons in the 1–dimensional ge-

ometry suggests that these interaction can significantly influence the band

structure. Indeed, early theoretical calculations predicted that because of

strong Coulomb interaction the excited electron in the conduction band and

the hole in the valence band will form strongly correlated entities known as

excitons [29, 30, 31, 32]. Another important effect that results from Coulomb

interactions is the so called band gap renormalization (BGR). Electron–

electron repulsion in the stongly confined 1–D system leads to a larger energy

gap compared to the free carrier picture. The net impact of these two effects

results in optically active singlet excitonic states with an energy close to cal-

culated values based on zone folding free carrier approximation. Moreover,

in contrast to 3D or 2D materials the density of states for one dimensional

structures with sharp singularities does not change significantly with the ad-

dition of excitonic states. These factors made the existence of the excitons

in the CNTs elusive in the early stages of carbon nanotube research.

As a result of strong Coulomb interaction strongly bound hydrogen-like

excitonic states are formed below the energy of the vHs. The structure of

these excitonic states determines the optical, electronic and other properties

of the nanotubes. Moreover, the unique electronic structure of the graphene

and SWNTs give rise to interesting features of the excitonic manifold. Two

special points in the Brillouin zone the K and K’ points, emerge as a result

of the unusual geometrical structure of sp2 hybridized carbon atoms. These

points are related by time-reversal symmetry [33] and therefore the conduc-

tion and valence bands in the vicinity of these points constitute two sets of

inequivalent bands (Fig. 2.9 a), Fig. 2.10 a)) making carbon nanotubes dif-

ferent from other nano systems, which also have large excitonic effects, but

do not have similar symmetry constraints. Although an optical transition

occurs vertically in k space, we can consider the electron and the hole in the
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electron-hole pair to be either in the same valley, or an electron to be in one

valley and a hole in the other valley. The latter pair can form an excitonic

state, but it never recombines radiatively because the electron and hole do

not exist in the same valley; such a state is called a dark exciton Fig. 2.9

b). Differences in symmetry are important and guide electronic-structure

calculations and the interpretation of experiments. Therefore, an analysis

of exciton symmetries in SWNTs is needed to understand in greater detail

many aspects of their optical properties.
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Figure 2.9: a)Brillouin zone of the (6,5) nanotubes showing to inequivalent

valley near K and K’ points (adopted from [33]). Electron (filled cycle)

and the hole (empty cycle) are depicted on the cutting lines in the vicinity

of K and K’ points, respectively . b) the four excitonic states formed as a

result of mixing of two bands near the K and K’ points.

Because the exciton wave function is localized in real space by a Coulomb

interaction, the wave vector of an electron (ke) or a hole (kh) is not a good

quantum number any more, and thus the exciton wave function Ψn for the

n-th exciton energy Ωn is given by a linear combination of Bloch functions

at many ke and kh wave vectors.

Ψ(~ke, ~kh) =
∑
v,c

Avcφc(~ke)φ
∗
v(

~kh), (2.8)

where v and c stand for valence and conduction band states, respectively.
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Then the Fourier transformation of the localized exciton (e.g. a Gaussian

wave packet) wave function will obviously result in a localized wave function

also in k–space and thus we can define the central position of the latter as a

wave vectors of the of the electron and the hole in the bound exciton. For the

theoretical determination of the coefficients Avc and to obtain the mixing of

different wave vectors by the Coulomb interaction it is necessary to solve a

Bethe–Salpeter equation which incorporates many-body effects and describes

the coupling between electrons and holes.

∑

ke,kh

((E(~ke)− E(~kh))δ~k′e~ke
δ~k′h~kh

+ K(~k′e~k
′
h,

~ke
~kh))Ψn(~ke

~kh) = ΩnΨn(~k′e~k
′
h),

(2.9)

where E(~ke) and E(~kh) are the quasi-electron and quasi-hole energies, re-

spectively and are the sum of the single-particle energy and the self-energy.

The self-energy encodes the exchange-correlation potential an excited quasi–

particle feels due to the surrounding electronic medium, and it is nonlocal

and energy dependent. Here quasi-particle means that we add a Coulomb

interaction to the one-particle energy and that the particle has a finite life-

time. Equation 2.9 represents simultaneous equations for many k′e and k′h
points. The K(~k′e~k

′
h,

~ke
~kh)is the mixing term which takes into account the

direct and exchange interactions of spin-singlet and spin–triplet states.

Although by solving Bethe–Salpeter equation it is possible to calculate

the exact excitonic manifold of the system [30, 31] some important optical

properties like the above mentioned availability of the excitonic state from

the ground state can be obtained only from symmetry considerations [34].

For this purpose the effective mass and envelope function approximation

(EMA) [35] can be used and the final excitonic wave function’s symmetry

can be directly related to the symmetry of the conduction and valence states

where the electron and the hole forming the exciton originate from. It is

important to note that for the use of the approximation the contributions

from only 1st (n-th) van Hove singularity states can be used which is justified

given the large energy separations of the singularities. Thus the approximate
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wave function

ψEMA(~re, ~rh) =
∑
v,c

′Bvcφc(~re)φ
∗
v(~rh)Fν(ze − zh) (2.10)

will have the same symmetry as the real wave function. Here the prime

in the summation indicates that only states from the given singularity are

included. The ”hydrogenic” envelope function Fν(ze−zh) provides the local-

ization of the exciton along the principal z axis of the nanotube and ν labels

the levels in the 1D hydrogen–like series. The use of this envelope function

is dictated from general physical considerations for the ordering in which

the different exciton states appear. Finally, to evaluate the symmetry of the

excitonic state its irreducible representation D(ψEMA) should be examined.

The D(ψEMA) is simply related to the product of the respective irreducible

representations of the conduction state D(φc), valence state D(φv) and the

envelope function D(Fν)

D(ψEMA) = D(φc)⊗ D(φv)⊗ D(Fν) (2.11)

We can now apply the Eq. 2.11 to study the symmetry related properties

of the excitons in nanotubes. Here we consider only E11 transitions of the

most general case of the chiral nanotubes as they were subject of the exper-

imental studies of the current work. The similar discussion for the achiral

(zigzag and armchair) nanotubes can be found in the original work of Barros

et al. [34].

Fig. 2.10 a) shows the two inequivalent bands in the vicinity of K and

K’ points of the nanotube’s Brillouin zone. As mentioned above these two

bands are related by time-reversal symmetry and have band extrema at ± k

points. The symmetry of these bands in the commonly used molecular sym-

metry notation1 [37] are Eµ(k0) and E−µ(−k0). Here E stands for the doubly

degenerate representation and µ is the quasiangular momentum quantum

1For the description of the symmetries of the nanotubes the so called ”line group”

notations were also introduced which provide somewhat more convenient but equivalent

labeling. [36]
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a b

Figure 2.10: Forming of excitonic states in a chiral nanotube [34]. (a)

The inequivalent pair electron and hole bands in a free carrier picture,

(b) corresponding four excitonic bands with different symmetries. The

electron hole and exciton states at the band edges are indicated by a solid

circle and labeled according to their irreducible representation.

number associated with the cutting lines of the Brillouin zone. Thus for the

lowest ”hydrogen level” of the envelope function ν = 0 with the absolutely

symmetric A1(0) representation we have

(Eµ(k0)− E−µ(−k0))⊗ (E−µ(−k0 − Eµ(k0))⊗ A1(0)

= A1(0) + A2(0) + Eµ′(k
′) + E−µ′(−k′) (2.12)

where k’ and µ’ are the exciton linear momenta and quasiangular mo-

menta respectively. Here for A1 and A2 symmetries A stands for the sym-

metrical rotation around the principal axis with odd and even parity respec-

tively for subscripts 1 and 2. The resulting four lowest set of excitonic bands

is shown in Fig. 2.10 b). The excitonic bands that have an energetic mini-

mum at the Γ point result from electron and hole states from different bands

(near K and K’ points). As the ground state of the nanotube has a totally

symmetric A1 representation only one of these two excitonic states fulfills

the selection rule of one photon absorption and emission polarized parallel
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with the nanotube axis. This is a consequence of the fact the interaction

between the light polarized along the principal axis and the electric dipole

moment in the nanotube transforms as the A2 representation for the chiral

nanotubes [38]. Thus, only the product of A2 state with the symmetry of the

interaction equals to the ground state’s symmetry and the other state is a

optically inactive dark state. The other two states formed by the same K and

K’ bands will be dark as well because they do not match the selection rules

for both symmetry and momentum (they have non–zero momenta). Other

values of the envelope function ν (odd and even) will leave the decomposition

in the Eq. 2.12 unchanged, hence, there will be one and only one optically

active excitonic state per each ν.

The similar set of excitonic bands exists also for triplet excitons which

have lower energies compared to singlet states [39, 40, 41]. The obvious

difference is that triplets are non–emissive due to the spin selection rule.

Thus only from symmetry considerations it becomes obvious that not all

excitonic states are emissive. However if the ideal structure of the nanotube

is modified e.g. by defect introduction, the discussed selection rules can be

relaxed because of the change in the symmetry of the structure [39]. In

this case the exciton state can be formed by mixing of states with different

parity and multiplicity depending on the nature of the introduced defect. In

Chapter 5 we will show for the first time the experimental realization of this

effect. By intense pulsed laser excitation and by interaction of metal atoms

with the individual nanotube we show that singlet A1 symmetry and triplet

states can be ”brightened” i.e. turned into emissive.

The existence of strongly bound excitons was experimentally observed us-

ing the described peculiarities of their electronic states (Fig. 2.11). Namely,

the states inaccessible from the ground state with a one photon absorption

can be accessible if two photons are absorbed simultaneously. If this state

has a higher energy (ν > 0) than the lowest optically active state (ν = 0) it

can decay non–radiatively to the latter state and emit a photoluminescence

photon. Thus the difference between the energy of the two absorbed photons
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and the emitted photon will manifest the excitonic nature of the excited state

and will determine the binding energy of the excitons.

free electron-hole continuum

fluorescenceabsorption

dark exciton

bright exciton

Ground state

Figure 2.11: Schematics showing the experimatal approach to identify

the nature of the excited states in carbon nanotubes. The two–photon

absorbtion into the dark excitonic state is followed by its radiationless

relaxation to bright state and subsequent fluorescence. The difference in

the energy of the absorbed and emitted photons determines the biding

energy of the exiton.

This experimental approach was successfully implemented by two groups

[8, 42] and exciton binding energies (Eb) up to 1 eV have been determined.

Thus, the exciton binding energy constitutes a substantial fraction of the gap

energy. For comparison the exciton binding energies in bulk semiconductors

typically lie in the range of several meV and represent a slight correction to

the band gap [43].
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These significant binding energies suggest that the excitons in SWNTs

should be more strongly localized than their weakly bound bulk counter-

parts. Indeed, the wavefunction of the excitons was found to be fully delo-

calized along the circumference of the nanotube and strongly localized along

the nanotube axis, with resulting exciton Bohr radius corresponding to the

envelope function defined in Eq. 2.10 of ∼3nm [8, 44]. Thus, the size of the

exciton is comparable and even larger than the diameter of the nanotube

and as a result the effect of the lattice potential can be incorporated into the

effective masses of the electron and hole as is usually done for the so called

Wannier–Mott excitons.

The size of the excitons in the nanotubes also implies that their binding

energy will be very sensitive to the environment. The Coulombic coupling

between the electron and hole forming the 1D exciton, as in the case of bulk

excitons, depends on dielectric screening. In bulk excitons the binding energy

is proportional to 1/ε2, where ε is the dielectric function of the material. In

nanotubes, when the exciton size is larger than the tube diameter, most of the

electric-field lines between charges penetrate the surrounding medium and

this makes the exciton binding energy (as well as the bandgap) a function of

the dielectric constant of the surrounding environment. Perebeinos et al. [31]

gave the following expression for the dependence Eb on CNT diameter (d),

chirality through the effective mass (m∗) and dielectric constant (ε):

Eb = Cdα−2m∗α−1εα (2.13)

where α = 1.4. Hence, the poor screening in the vacuum or dielec-

tric environment outside of the nanotube allow for significant binding ener-

gies of 0.4-1.0 eV characteristic for Frenkel type excitons. This dual nature

(Wannier–Mott and Frenkel type) of the excitons is a unique feature of car-

bon nanotubes. The excitonic nature of the excitation was shown even in

metallic nanotubes with combination of Rayleigh scattering and absorption

spectroscopy [45]. Normally, one does not find bound excitons in bulk metal-

lic systems because the long-range part of the electronhole interaction is
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screened out completely by the available carriers. However, the reduced di-

mensionality leads to the incomplete screening of Coulomb interactions and

exciton formation.

Thus, in carbon nanotubes the excited state oscillator strength is almost

completely transferred from the free carrier band edge to the excitonic man-

ifold. The former still exists with a far smaller weight and does not play a

major role [46]. The described excitonic structure of the carbon nanotubes

has a very important impact on optical, electronic and other properties of

this material. Naturally, it influences also the dynamics of the excited state

discussed in present work.

2.4 Excited State Dynamics

Recent rapid advances in synthesis of high quality, low cost nanotube materi-

als opened perspectives for new applications in different promising fields deal-

ing with optoelectronic properties of CNTs, e.g. ultracompact and narrow-

band emitters and detectors. Knowledge of excited state dynamics of these

systems is absolutely crucial for achieving desired goals as it probes the funda-

mental properties of the CNTs like electron-photon/phonon coupling, exact

electronic/excitonic structure, nature of the various defect states, impact of

the environment on the electronic processes and many other interesting and

important characteristics. In this work these questions are addressed by in-

vestigating the exciton recombination lifetimes of single carbon nanotubes at

room temperature.

In any electronic system after absorption of a photon with an appropriate

energy matching the transition resonance of its electron, an excitation from

the ground state to higher energy electronic states occurs. The characteristic

time needed for the electron to return to the ground state is called lifetime

of the excited state. Decay channels influencing the effective lifetime can

be divided in two major groups: radiative and non–radiative. Radiative

relaxation is associated with the emission of a photon whereas non–radiative
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relaxation can have various pathways such as coupling to phonons, energy

transfer to the environment, quenching by other molecules or by intrinsic

defects. A useful measure for this output is the quantum yield defined as

η =
γr

γr + γnr

(2.14)

where γr and γnr are radiative and nonradiative decay rates, respectively

(inverse of lifetime τ) .

Figure 2.12: Schematic representation of the commonly accepted picture of

the excited state’s relaxation channels in the CNTs. The exciton pumped

into its first excited manifold by an external stimulus relaxes to the ground

state predominantly via non–radiative relaxation channels.

The radiative lifetime of the system is given only by the oscillator strength

of the specific excited state. For the SWNTs theoretical calculations [47, 39]

predict this parameter to be in the range of ∼ 10ns at room temperature. On

the other hand all the measurements of the ground state recovery lifetime

using different methods, samples and environments give us lifetimes that
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are faster by several orders of magnitude and very low quantum yields were

measured in the range of 10−3. This fact indicates that the total decay rate

γ = γr + γnr is dominated mainly by the non–radiative decay channels. One

of the main goals of this work is to discuss the possible mechanisms of the

non–radiative relaxations of excitons in the SWNTs.

Many measurements on excited state dynamics have been reported during

the last several years, for various samples of SWNTs using different methods.

Although these findings step by step bring us closer to the full understanding

of the principal properties of the problem, there is a large variety of differ-

ent observations often contradicting each other. This concerns mainly the

timescale of the ground state recovery ranging from sub–picosecond dynam-

ics to several hundreds of picoseconds, the time dependence of the exciton

recombination and the exact structure of exciton manifold’s electronic states.

Apparently, this discrepancies are due to differences in the sample prepara-

tion and processing as well as to different measuring methods. As many of

this experiments were done on ensemble samples, the averaging over individ-

ual features of single nanotubes like defect concentration, length, coupling to

the environment, bundling also contributes heavily in complicated and some-

times controversial interpretations of the data. Thus, in this work we tried

to use an approach that would simplify the matter and reduce the number of

unknown parameters by investigating individual SWNTs and by using rel-

atively straightforward Time Correlated Single Photon Counting (TCSPC)

technique for measuring time resolved photoluminescence. Previously this

approach was used to measure SWNTs exciton decay lifetimes at low tem-

perature [9] and quite a big variation of recombination lifetime for different

tubes (20–180ps) was detected. At room temperatures similar experiments

might seem to be challenging as the PL intensity is reduced by a factor of

∼ 5 and the decay times are also decreased dramatically [9, 48, 49]. However,

the results shown here indicate that a well optimized confocal laser scanning

microscope setup is capable for such investigations and we can benefit largely

from advantages of the ambient conditions. Moreover, from the application
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point of view room temperature measurements are even more valuable as

most of the devices are supposed to work in these conditions.

First studies on the excited state dynamics of SWNTs were done mainly

using the so called ”pump–probe” techniques. In these experiments two spa-

tially overlapped beams from pulsed lasers are used. The first beam excites

the system from its grounds state and the second beam probes the evolution

of the excited state. The measured signal here is the enhanced or reduced

transmission of the probe beam through the sample respectively due to ei-

ther stimulated emission and photobleaching or excitation of the system to

even higher electronic states. Thus, by varying the time delay between the

two pulses one can investigate dynamic electronic processes of the system.

Though this technique has a major advantage, that is the temporal resolu-

tion of the experiment is limited only by the laser pulse duration and not by

the response time of the detection electronics, very often there are compli-

cations in the interpretation of the data caused by different types of signals

(positive and negative) and overlapping contributions in different spectral

regions from various nanotube species. Besides this, the powers usually used

in these experiments are relatively high in order to be able to detect the

small variations in the transmission. High power excitations however, are

shown to cause additional non–linear processes in the excited state dynamics

like Auger recombination or exciton–exciton annihilation [50, 51, 52] which

further complicate the matter substantially.

Nevertheless, valuable information have been obtained using this method

for semiconducting SWNTs excited to their first excitonic state. They were

shown to exhibit a very fast recovery to the ground state with time constant

of ∼ 1 ps, attributed to nonradiative decay [53, 54, 55, 56]. By correlating

the photoinduced absorption signal corresponding to the difference of the

first and second excitonic bands’ energies with the photobleaching from the

first excitonic band Manzoni et. al. [57] determined the time constant of

∼ 40fs for the intersubband exciton relaxation. The availability of unbun-

dled, individual SWNTs free from complications of intertube interactions as
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well as chirality enriched materials [58], made it possible to improve the un-

derstanding of these experiments. The detection of signals indicating the

transitions of excited electrons to other non–emitting states (dark excitons

or non–emitting trap states), made it closer to the full understanding of the

dynamical properties of the system [59], [60].

On the other hand, the discovery of the bandgap photoluminescence from

surfactant coated semiconducting carbon nanotubes [23, 24, 25] enabled the

direct measurement of the decay rate of the PL. Early measurements on

suspension of isolated SWNTs using Kerr gating [61] technique showed bi-

exponential decay with a fast component in the order of ∼ 7ps attributed to

intrinsic non–radiative relaxation channels. In that work authors suggested

that given the extremely low fluorescence quantum efficiency, η, of carbon

nanotubes (∼ 10−4) the intrinsic radiative lifetime γr can be estimated to be

as long as ∼ 100ns.

Several other measurements of time-resolved fluorescence reported some-

what longer lifetimes with mono- [62, 63, 48], bi- [64] and multiexponential

decay dynamics [49]. The short lived components within 10–60 ps is usu-

ally believed to be due to coupling to either extrinsic relaxation channels

like radiationless energy transfer to metallic tubes in the small residual bun-

dles or to intrinsic non emissive states. The observed long lived components

in some experiments ranging from several hundreds of picoseconds to sev-

eral nanoseconds are attributed to the real intrinsic lifetime of individual

SWNTs.
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Chapter 3

Experimental

3.1 Confocal Microscopy of Single Carbon Nan-

otubes

The measurement of the excited state dynamics of the single carbon nan-

otubes consists of two main parts. First, the individual nanotubes are iden-

tified on the substrate by confocal microscopy and afterwards the exciton

recombination lifetime is measured using Time Correlated Single Photon

Counting (TCSPC) technique.

The concept of confocal microscopy, depicted in the Fig. 3.1 is to excite

the material resting on the substrate by a tightly focused diffraction lim-

ited spot of the excitation beam from the light source (typically a single

mode laser source) and then to detect the locally generated optical signal by

guiding it through a pinhole [65]. The latter is done in order to avoid the

background originating not from the excitation area. The small detection

area of the detector can also act as a spatial filter, i.e pinhole. The measured

optical response of the system can be different types of light–matter inter-

actions, such as elastic or Raman scattering, fluorescence, higher–harmonic

generation etc. To generate an image of the optical response from the sam-

ple either the laser beam or the sample itself has to be raster scanned. The

availability of translators based on piezoelectric actuators made it possible
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Figure 3.1: Schematic of the confocal microscopy. Only the signal em-

anating from the focal point of the objective can reach the detector(red

solid line). Light emanating from other spots(blue dashed line) is blocked

by the pinhole.

to scan areas with nanometer precision.

The confocal microscopy setup is depicted on Fig. 3.2. The excitation

source is a Coherent Mira 900 Ti:Sapphire laser. It is pumped by a Coherent

Verdi diode–pumped solid state laser operating at 532nm wavelength with

5W output power. The Ti:Sapphire laser can operate either in continuous

wave (CW) or in pulsed (mode–locked, ML) regime with pulse duration of

150fs and repetition rate 78 MHz. The operating wavelength can be tuned

from 750nm to 900nm depending on the experimental objectives. The typical

output power is in the range of 50mW, though for our purposes beams with

far less intensities are used in the range of 1µW–200µW. The laser line filter

(LLF) with a narrow spectral transmission matching the laser wavelength

is located in the beam–path to suppress the fluorescence of the Ti:Sapphire

crystal. The set of neutral density (ND) filters reduce the intensity of the

37



EXPERIMENTAL

M3

M2
M1

Sample Scanstage

Objective

Retroreflector

M4

Flip Mirror

Monochromator

Beam-

splitter

LP Filter

BP Filter

L1

L2
M5

LL Filter

ND Filters set

Pump laser

T
i:S

p
p

h
ir

e
 

p
u

ls
e

d
 la

se
r

Figure 3.2: The basic elements of the experimental setup. Excitation is

provided by a pulsed tunable laser, confocal detection principle is used to

measure PL spectra(spectrometer) and transients(APD) from individual

nanotubes.

laser beam to obtain powers required for a given experiment. Next, the beam

is guided into the inverted microscope (Nikon Eclipse TE2000 E) with a set

of mirrors (M1, M2, M3). To split the excitation path and the detection path

into two separate arms a beam splitter is introduced with a transmittance

to reflection ratio of 70/30. Afterwards, the beam is focused onto the sam-

ple by an oil immersion objective (Nikon Plan Fluor S) with 1.3 numerical

aperture (NA). The high NA objective allows us to have an excitation spot

size ∆x ≈ 0.61λ/NA as small as half the wavelength of the excitation beam

and therefore high lateral resolution of optical signals. Collection angles ex-
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ceeding the angle of total internal reflection reached for NA > 1 maximize

the detection efficiency and are also very crucial for the observation of weak

signals emanating from nanoscale emitters as in the case of single carbon

nanotubes. The sample, typically a microscope cover slip spin coated with

the CNT solution, is then raster scanned by a XY piezo scan stage (Physik

Instrumente, P-517.2CL) and at each position the optical signal from the

sample is collected in epi-illumination configuration. A retroreflector is used

to guide the detection path either to the eye piece or the side port of the

inverted microscope.

In the detection path the first element usually is the one that should sup-

press the excitation background. As we work mainly with spectrally shifted

signals with respect to the excitation, e.g. photoluminescence, a long–pass

(LP) interference filter is used to block the laser. With the help of a flip mirror

the signal can be guided either to the avalanche photo diode (APD)(MPD,

PDM 5CTC) or to the spectrometer depending on the measurement goals.

Alternately a 50/50 beamsplitter can be used instead of a flip mirror if the

simultaneous detection of spectrum and the PL transient (vide infra) is de-

sired. As usually the imaging is done with an APD the signal is guided

through a lens to focus it onto the small detection area of the APD of 25µm.

As previously mentioned the pinhole is not needed in this case and confocal

detection is secured by the small size of the detector. Typical acquisition

times per pixel for APD imaging are in order of 20–60ms depending on ex-

citation power. If the detection of the PL signal from a specific chirality

nanotube is desired then a narrow band–pass (BP) filter corresponding to

the particular chirality emission energy is inserted in front of the APD. Be-

sides the imaging the photodiode is used also to measure the time resolved

photoluminescence from single carbon nanotubes as will be described in the

next section. In this last case the presence of the bandpass filter, matching

the emission wavelength of the tube, in front of the APD is obligatory as

the residual fundamental photons not suppressed by the LP filter can bring

misleading results.
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Figure 3.3: The quantum efficiency curves for the detectors used in the

current work. a) the QE of the CCD camera and the spectrometer grating,

b) the QE of the APD. The curves show typical behavior of Si based

detectors that become ”blind” for wavelengths longer than ∼1000nm.

The spectra of the SWNTs are measured by flipping up the mirror and

guiding the signal to the spectrometer (Andor Technology, Shamrock 303i).

An additional lens is situated in front of the spectrometer to focus the light

through the entrance slit. The size of the slit can be varied and can be reduced

down to 10µm thus, if needed, it can act as a pinhole. Inside the spectrometer

the signal is dispersed by a dispersion grating which operates in Czerny-

Turner configuration. The dispersed spectrum is then recorded by charged

coupled device (CCD, Andor IDUS OE DU420) camera, thermoelectrically

cooled to −60◦C. The typical integration times for obtaining a spectrum

from a single nanotube is in the range of 2–30 seconds depending on the

emission rate. The spectroscopic imaging of the sample, i.e. recording the

spectrum of the sample at each pixel in principle is also possible, however it

requires much longer acquisition times given the slow readout speed of the

CCD.

The quantum efficiencies (QE) of the detectors used in this work are

depicted in Fig 3.3. The working materials of these detectors are based on

Si, which has a band gap 1.12 eV at room temperature, therefore their QE

decreases drastically at wavelengths longer than ∼ 1000nm. This limits our

studies on the photoluminescence of the SWNTs to those which have a band
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gap larger than 1000nm i.e. diameter smaller than ∼ 0.8nm according to the

Kataura plot 2.7. However, the CoMoCat nanotubes used in this work have

a quite narrow diameter distribution peaking at about 0,8nm [66] and based

on the comparison of the density of the nanotubes on the microscope cover

slips determined from Atomic Force Microscopy (AFM) measurements and

optical imaging (vide infra) we conclude that most of the nanotubes present

in our samples emit in the detection range of our system.

The total detection efficiency of the system can be estimated from the

absorption cross section and the quantum yield of the emitter and the actual

count rate detected at the detector. The quantum yield of the SWNTs is in

the range of 10−3 [9] and absorption cross section is ∼ 10−18cm2/atom [67,

68]. The typical count rate detected at the APD from the PL of the nanotube

in the focus of the 1014pulse−1cm−1 intensity excitation is ∼ 1000Hz. Taking

into account the repetition rate of the Ti:Sapphire laser of 78 MHz we get

an estimation of the overall detection efficiency of the setup of ∼ 10−3.

3.2 Time Correlated Single Photon Counting

Time-correlated single photon counting (TCSPC) is a sensitive technique for

recording low-level light signals with picosecond resolution and extremely

high precision [69]. Photon counting techniques consider the detector signal

a random sequence of pulses corresponding to the detection of the individual

photons. Therefore, the detector signal is a random sequence of single-photon

pulses rather than a continuous waveform. The light intensity is represented

by the density of the pulses, not by their amplitude. Obviously, the intensity

of the light signal is obtained best by counting the pulses in subsequent time

channels. A unique feature of photon counting results from the fact that the

arrival time of a photon pulse can be determined with high precision. The

bandwidth of a photon counting experiment is limited only by the transit

time spread of the pulses in the detector, not by the width of the pulses.

Time-correlated single photon counting, or TCSPC, is based on the de-
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Figure 3.4: The principle of the TCSPC method. The histogram of the

detected counts is constructed based on their arrival time. The measure-

ments over many excitation cycles result in a time–resolved signal curve

tection of single photons of a periodic light signal, the measurement of the

detection times, and the reconstruction of the waveform from the individual

time measurements. TCSPC makes use of the fact that for low-level, high-

repetition rate signals, like single SWNT flourescence, the light intensity is

usually low enough that the probability to detect more than one photon per

one laser excitation pulse is negligible. The detector signal consists of a train

of randomly distributed pulses corresponding to the detection of the individ-

ual photons. There are many signal periods without photons, other signal

periods contain one photon pulse. This situation is depicted in Fig. 3.4.

When a fluorescence photon is detected, the arrival time of the corre-

sponding detector pulse in the signal period is measured. The events are

collected in a memory by adding a 1 in a memory location with an address

proportional to the detection time. After many signal periods a large number

of photons has been detected, and the distribution of the photons over the
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Figure 3.5: The schematics of the TCSPC experiment. The delay time

between a laser excitation pulse (start pulse) and the detected PL photon

(stop puls) is determined by a TCSPC acquisition card.

time in the signal period builds up. The result represents the waveform of

the optical pulse. In other words the generated laser pulse starts the clock

and afterwards the PL photon created by the same pulse stops the clock and

the measured waveform shows the characteristic delay between the excitation

and the emission. The latter is governed by the dynamical properties of the

excited state of the sample.

To measure the signal period the exact excitation time of the signal should

be known. This is provided by connecting the output of the detector in-

side the laser which monitors the pulse generation directly to the TCSPC

card(SPC-140). Another input of the card is connected to the APD to de-

tect the ’stop’ pulse from PL signal. This configuration is schematically

represented in the Fig. 3.5. Typical accusation times for a PL transient are

in the range of 30-500 seconds.
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Chapter 4

Exciton Decay Dynamics in

Individual Carbon Nanotubes

at Room Temperature

4.1 General Procedure for Exciton Lifetime

Measurements

In this chapter exciton lifetimes of individual CNTs are measured using the

TCSPC method combined with confocal microscopy as described in the ex-

perimental chapter. Here, for the first time, the results on time–resolved

photoluminescence (PL) of individual SWNTs at room temperature are pre-

sented. The exciton recombination follows strictly monoexponential decay

over four orders of magnitude with time constants varying from tube to tube

in the range of ∼ 1 to 40ps for the same chirality tubes. The impact of

parameters expected to influence the exciton decay, like nanotube length,

environment and defect concentration on the photoexcitation relaxation pro-

cess is discussed.

Samples are prepared by spin coating an aqueous solution of surfactant

coated CoMoCat SWNTs [70, 71, 72] on the microscope glass cover slip. Di-
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luted solutions are used in order to obtain samples with individual nanotubes

and to prevent bundling. The atomic force microscopy (AFM) measurements

of the samples show well dispersed, isolated, extended structures (Fig. 4.1).

The height of these structures ∼2nm is somewhat bigger than expected for

single tubes ∼0.8nm. This is due to the surfactant layers covering the tubes.

The residual surfactant can also be seen in the AFM image in a form of small

dots with similar height. Almost parallel orientation of the tubes is a result

of the spin coating procedure.

Figure 4.1: Typical AFM image of the sample containing micelle en-

capsulated nanotubes. Well separated, elongated features are individual

SWNTs. The height of the features exceeds single nanotube diameter due

to the layer of the surfactant covering the tubes.

Nanotubes are imaged by raster scanning the sample by means of piezo

XY scanner and detecting the optical signal from individual tubes with the

APD [73]. As the aim of our studies is to investigate the time resolved

radiative recombination of the excitons in CNTs, the typical signal detected

during the scanning process is the fluorescence from single SWNTs. The

detection of inelastically scattered Raman photons to identify the nanotubes
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in the sample could be another option. In order to obtain chirality selective

signals the RBM Raman mode has to be detected. However, the detection

of PL is preferable since the chirality identification using this signal is much

less ambiguous. The PL peaks of different (n,m) species are spectrally far

better resolvable than RBM modes and also RBM detection would require

to be in exact resonance with an electronic state within ∼ 20 nm. Moreover,

the detection of the Raman active tube does not necessarily mean that it will

be a luminescent one, i.e the intensity (or even occurrence) of these signals

do not always correlate [74].
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Figure 4.2: (a)A confocal PL image of SWNTs emitting at 800nm -

1000nm spectral range. The density of the emitting nanotubes deter-

mined from the optical measurement is in good agreement with the AFM

measurements indicating that most of nanotubes ar emissive on glass sub-

starte, (b) zoom-in of the area highlighted in the (a), (c) cross section

of the dashed line in (b) showing the spatial resolution of the confocal

microscopy setup.

Laser wavelength used in typical experiments presented here was 760 nm,

which is close to the exciton–phonon(G) bound state resonance of the (6,4)

tubes, above the E11 transition [75, 76, 77, 78]. After imaging the area

with a 800nm longpass filter all the tubes with a emission energy in the

range of the detection limit of the APD can be observed. As our Si–based

detector has almost zero detection efficiency at the wavelengths longer than

∼ 1000nm (See Fig. 3.3), PL from tubes with only small diameter (smaller
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than ∼ 0, 8nm) can be detected. In the Fig. 4.2 (a) typical example of such a

PL image from 20µm x 20µm sample area is shown. Some elongated features

can be recognized in the image indicating the presence of tubes significantly

longer than the confocal spot size. The 5µm x 5µm zoom–in image of such an

elongated tube is depicted in Fig. 4.2 (b) together with the cross section taken

along the indicated dashed line (c). The 380nm full width at half maximum

(FWHM) of the cross section is the maximum achievable resolution with this

diffraction limited type of microscopy. The nanotube density of 0.4 /µm2

observed in the optical image is in agreement with the value determined

from AFM measurements (0.6 /µm2) and demonstrates that most of the

nanotubes on the substrate are in fact emissive in the accessible spectral

range. This shows also that we are not probing optically some particular

fraction of the nanotubes but rather most of them.
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Figure 4.3: Representative photoluminescence spectra of SWNTs. Each

of the narrow emission peaks correspond to five individual nanotubes with

different chirality as indicated by the index pair (n,m).
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Measurement of the PL spectra at different bright spots shows that nan-

otubes belonging to various chirality species are present in the sample. In

Fig. 4.3 normalized PL emissions of five different tubes are illustrated: (5,4)

tube with emission maximum at 835 nm, (6,4) tube at 880nm, (9,1) tube at

918nm, (8,3) tube at 958nm, and (6,5) nanotube with emission at 979nm.

The assignment of the peaks to the respective chiral indexes is done according

to the previous works [25, 24] where the simultaneous of Raman RBM mode

and the absorbtion or PL resonances allowed the complete recognition of the

emissive species. The position of PL maxima for certain chirality can vary

slightly from tube to tube in the range of 10 nm [77]. Also for the FWHM of

the emission which is typically ∼ 25nm at room temperature, can sometimes

be as wide as ∼ 100nm. The origins of these variations are still not fully

understood. However, the effect of the local environment seems to be the

major factor [62, 79, 80, 81, 82]. As it will be discussed later the width of

the emission is determined by the dephasing of the exciton caused by elastic

exciton-phonon interactions. The slight asymmetry of the lineshape is arising

from the non–Markovian nature of this process [83]

For a single straight nanotube, emission and absorption of light should be

preferentially polarized along the nanotube axis [25, 27, 84]. The polarization

of the emission from a single nanotube can be determined by inserting an

analyzer in front of the detector. As in the case of dipole(antenna) emission,

the intensity of the PL should follow a cos2(θ) behavior, where θ is the

angle between the nanotube axis and the analyzer. The Fig. 4.4 visualizes

the polarization dependence of the PL intensity integrated over all spectral

range of the emission (left panel) along with three spectra at different angles

of the polarizer (right panel). Generally the dependance can be nicely fit

with cos2(θ) function, however often there are noticeable deviations from it

as in the case depicted in Fig 4.4. The origin of this deviation is the fact

that nanotubes resting on a glass substrate are not ideally straight as it was

visualized by AFM or near-field optical microscopy measurements [85, 74].

We focus our time-resolved studies mainly on (6,4) tubes which have an
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Figure 4.4: Polarization dependence of the integrated PL intensity from

a single nanotube (right). The red solid line represents a fit to the data

with cos2θ function. Spectra at 3 different positions of the analyzer (left).

emission peak at 880nm, well separated from neighboring tube bands at 835

and 918 nm corresponding to E11 transitions in the (5,4) and (9,1) SWNTs.

In order to locate the tubes with a desired chirality, during the imaging

procedure a narrow bandpass filter is introduced in the detection path which

spectrally selects the emission from the specific SWNT species. The typical

example of such a spectral filtering is shown in Fig 4.5.

After the localization of a nanotube with a certain chirality, it is moved to

the focus of the excitation laser source and the photoluminescence transient

curve of an individual tube can be obtained. A representative transient curve

(blue curve) is shown on Fig. 4.6 with the instrument response function (IRF)

corresponding to elastically scattered laser light (green curve). The width of

the measured transient is clearly wider than the IRF. This means that the

temporal resolution of our setup is sufficient to measure time resolved excited

state dynamics of our samples. Obviously, the measured curve for our PL

signal is the convolution of the true temporal dependance of the signal with

the IRF. To ensure optimum performance, the IRF was recorded repeatedly
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4µm 4µm

Figure 4.5: Confocal images of SWNT PL emission. (a) image with only

800nm longpass filter in the detection path, (b) image of the same sample

area as in (a), but with an additional 880 nm narrow bandpass filter to

identify tubes with (6,4) chirality only.

in between measurements. PL transients were fitted by exponential functions

that were convoluted with the IRF [86]. Due to the high signal to noise

ratio achieved in our experiments and the reproducibility of the IRF the

time-resolution of the setup is about 3 ps, close to 10 % of the FWHM

of the IRF. This reconvolution procedure shows that our transients can be

perfectly fit with a mono–exponential decay function. The result of this

fitting is also shown in Fig. 4.6 (red curve) with the weighted residue below

employed to judge the goodness of the fit. The uniform profile of the residuum

clearly demonstrates that the exciton dynamics at room temperature can be

described by a single-exponential decay covering more than four orders of

magnitude. Note, that a second slow slope is part of the response function.

4.2 Distribution of Lifetimes

Transients measured for several hundred different (6, 4) nanotubes consis-

tently exhibited mono-exponential decay. The determined lifetimes however

showed a broad distribution ranging from about 1 ps to 40 ps. Three tran-
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Figure 4.6: Semilogarithmic plot of a representative transient curve (blue

line) together with the independently recorded Instrument Response Func-

tion (green line). A single-exponential fit function (red line) convoluted

with the IRF describes the transient over four orders of magnitude clearly

showing monoexponential decay dynamics with a lifetime τ = 15 ± 3ps.

The quality of the fit can be seen from the residuum of measured transient

and single exponential fit.

sients are presented in fig. 4.7(a) featuring lifetimes of τ =4 ps, 18 ps and 36

ps. The origin of this variation is very intriguing and it can explain the con-

tradicting results obtained for nanotube ensembles in the literature. It has

been previously observed at cryogenic temperatures and has been attributed

to the different defect concentration of individual nanotubes [9].

The overall excited state depopulation rate of the nanotube can be written

as a sum of radiative and non–radiative decay rates
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Figure 4.7: Example of transients for the three different (6,4) nanotubes

visualizing the variation of exciton lifetime in the range of 4 to 36 ps.

γtot = γrad + γnr (4.1)

The fast lifetime in the several picosecond range is a clear indication of

decay dominated by non–radiative processes. As mentioned previously the

radiative lifetime of CNTs is predicted to be as high as 100ns [47, 39]. The

mono-exponential character of the decay dynamics suggests that the emissive

state is excitonic in its nature rather than free carriers. The latter is generally

expected to lead to second order (i.e., nonmonoexponential) kinetics, unless

free electron and hole concentrations are significantly imbalanced.

The histogram of lifetimes measured for 126 different (6, 4) nanotubes

within the same sample is given in Fig. 4.8. The distribution is centered

at about 11 ps with a width of 16 ps. While no literature data exists for

(6, 4) nanotubes at room temperature, the average lifetime of 14 ps is in gen-

eral agreement with values reported for other nanotube chiralities [62]. The

corresponding distribution established for (6, 5) nanotubes within the same

sample results in an average lifetime of 5 ps and a similar width. Remark-

ably, this value agrees very well with the 6 ps determined by pump-probe
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Figure 4.8: Statistical distribution of measured exciton lifetimes for 126

different (6,4) nanotubes. The distribution is centered at 11 ps with an

average lifetime of 14 ps and a width of 16 ps.

measurements for the same CoMoCat nanotube material allowing for a di-

rect comparison of the results achieved by both techniques [60]. On the other

hand, ensemble measurements need to result in multi-exponential decay pro-

files in which fitted lifetimes will reflect summation over decay times with

different contributions. Extremely long lifetimes in the range of nanosec-

onds as reported in the literature [64] have not been observed in our single

nanotube measurements. In very few cases, less than 5 % of the measured

transients, better fitting results could be achieved using multiple but simi-

lar decay times, probably because of spatial averaging along inhomogeneous

nanotubes or the presence of a second nanotube within the detection area.

Before discussing the possible reasons of the lifetime distribution, we

would like to shortly comment once again on the precision of our measure-

ments and data acquisition. In Fig. 4.9 (a) two relatively fast transients are
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a b

Figure 4.9: (a) Two relatively fast transient curves and the IRF. The

difference in the width seen by the eye supports the precision of the fitting

procedure, (b) the power dependence of the recombination time for two

different tubes showing the absence of any additional processes associated

with high excitation powers.

plotted for which the fitting procedure gives 4ps and 7ps decay times along

with the instrument response function (IRF) of the APD and the TCSPC

electronics. As it can be clearly seen these curves differ significantly in their

width. This proves the high temporal resolution of the setup and accuracy

of the performed statistical analysis. The Fig. 4.9 (b) shows the dependance

of the decay times of certain tubes on the excitation power. The typical pho-

ton fluence used in these experiments is in the order of 1013 photons/cm2 per

pulse. It is known from previous studies that high excitation powers can affect

the lifetime because of exciton–exciton annihilation processes [50, 51, 52, 87]

giving rise to additional fast components. In fact, we have also observed

such phenomenon, however at powers orders of magnitude higher than those

plotted in the Fig. 4.9 (b). Therefore one can safely assume that lifetime

variation observed here is not affected by multiexciton processes. In few

cases we observed irreversible photodegradation of the nanotubes at highest

excitation densities leading to reduced PL intensities and lifetimes.
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4.3 Phonon Assisted Non–Radiative Relax-

ation

While it is clear from low quantum yield and from theoretical considerations

that the fast relaxation is mediated by non–radiative relaxation channels

the exact physical mechanisms of these relaxation are not known. Previ-

ously multi–exponential decay from ensemble samples have been observed

and modeled with a sum of short decay constants in the range of our mea-

surement [49]. In that work authors have speculated that the faster compo-

nents are due to the additional decay channels provided by energy transfer in

the residual small bundles. We cannot completely rule out the probability of

having residual bundles in our samples due to limited spatial resolution and

spectral range and have even observed in few cases several PL peaks for a

single bright spot in the PL image. However, the occurrence of multiple PL

peaks does not correlate anyhow with the observed lifetime. Therefore, we

can state that while bundling can have an effect on the PL lifetime it does

not play a major role in our experiments and cannot exclusively account for

the lifetime variation.

a b

Figure 4.10: (a) Decay time of different (6,4) nanotubes versus their emis-

sion energy, (b) emission width versus emission energy. No correlation

is observed suggesting that non–radiative relaxation channels are not af-

fected by the environmental effects.
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Another possible non–radiative relaxation channel for the optically ac-

tive excitons is their transitions into optically inactive dark excitonic state,

followed by a non–radiative relaxation to the ground state. In this case the

variation of the lifetime could be explained by slightly different excitonic en-

ergies of the nanotubes caused by different dielectric environments. Namely,

slight variations of the environment’s dielectric constant can result in dif-

ferent screening of the excitons and thus different energies of the excitonic

states. The variation of the splitting between the energies of the dark and

bright exciton would in its turn affect the transition rates from bright state

to the dark and vice versa. This would result in variation of the effective PL

decay time of the bright state. If this is the case then we could expect that

decay times of the CNTs should correlate with their spectral properties. To

check this hypothesis in Fig. 4.10 we plot the observed decay times from the

individual nanotubes versus their emission peak maximum (a) along with the

plot of emission width versus emission energy (b). As it can be seen from

these plots there is no obvious correlation which makes the aforementioned

scenario unlikely.

On the other hand there is an interesting pattern when we plot the photo-

luminescence emission width of the nanotube against its decay time. While

no exclusive 1:1 correlation could be observed, the long lifetimes were mostly

associated with narrow emission linewidth and broad linewidth with short

lifetimes (Fig.4.11). But what are the contributing factors in the homoge-

neous broadening (Γ) of nanotube PL? One of them is the finite lifetime τ

of the exciton due to the Heisenberg uncertainty relation and the second is

the exciton dephasing time Tdeph

Γ ∝ 1

τ
+

1

Tdeph

(4.2)

As the measured τ lifetime of the exciton is in the order of several pi-

coseconds, their contribution to the linewidth is negligibly small (< 0.1meV ).

Therefore the exciton dephasing is the dominating process controlling Γ. De-

phasing times Tdeph in the femtosecond range were predicted recently by the-
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Figure 4.11: Correlation between spectral width of detected (6, 4) nan-

otube spectra and lifetimes. Slow decay is observed for narrow linewidth

and broad emission is associated with fast decay times.

oretical calculations [88] and were explained by the presence of structural

defects. The local defect associated vibrational modes were suggested to

couple with the excitonic states resulting in fast dephasing of the exciton

and broad emission linewidth. The correlation observed here suggests that

these local phonon modes also promote the non-radiative relaxation γdeph
nr

and their availability determines the excited state lifetime. But this obvi-

ously cannot be the only depopulation channel as the observed correlation

is not linear but instead all the data points lay under the line that is de-

termined by exciton–phonon coupling. Therefore, we speculate that certain

type of defects simply quench the exciton γquench
nr while others contribute in

both radiationless relaxation and dephasing. Thus the overall non–radiative

rate is

γnr = γideal
nr + γdeph

nr + γquench
nr (4.3)
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where the γideal
nr is the non–radiative decay rate of the ideal defectless

nanotube. Thus we suggest a decay mechanism assisted by defect induced

local phonon mode as one of the contributing factors to non–radiative relax-

ation. According to the recent calculations the multi–phonon scattering are

expected to result in fast lifetimes in the case of localized excitons [89]. Thus

the availability of more vibrational modes will enhance the coupling to the

ground state.

4.4 Influence of the Nanotube Length

As mentioned in the previous section the quenching sites are expected to

strongly affect the exction lifetime in the nanotube. It is well known that

defects like vacancies, kinks, nanotube caps, heptagon–pentagon structures

can change drastically the local electronic structure of the carbon nanotubes

[90, 91, 92, 93]. In most of the cases a nonzero density of state near the

Fermi level emerges as a result of a defect. Therefore, if the exciton spatially

overlaps with such a state it can be easily quenched by non–radiative relax-

ation. By single nanotube quenching experiments using chemical treatment,

it was shown [94] that the transport of strongly bound excitons is realized

by a hopping mechanism rather than ballistic transport. In these experi-

ments it was shown that the interaction of the nanotube with a single donor

molecule that acts as a hole injector results in discrete stepwise reduction of

the luminescence intensity. It was deduced that a single quenching molecule

”switches off” a section of a nanotube that corresponds to the excursion

range of the exciton. The excursion range was found to be around 90 nm

irrespective of chirality. Thus, the motion of the excitons can be described as

1–dimensional diffusion with randomly distributed trap states or quenching

sites. The lifetime of such a process will obviously heavily depends on the

concentration of the traps. Hence, the different concentrations of trap states

or perhaps different kinds of the defects present in the individual tubes can

be a contributing factor in a lifetime variation.
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Figure 4.12: The predicted effective length-dependent lifetimes for exci-

tons in (7,5) SWNTs. All lifetimes lie in the range of 1-27 ps in a good

agreement with the experimental results. From [95]

Moreover, recent studies on ensemble samples based on the estimation

of luminescence quantum yield of solutions with different average nanotube

lengths have suggested that quenching of the exciton at the nanotube end

can be the only non-radiative relaxation channel and that fast exciton life-

times can be solely explained by finite length of the tubes [95]. Here authors

speculate that excitons move diffusively rather than ballistically as quantum

wavepackets spreading and assume that the exciton behaves as a fairly local-

ized classical particle. They use the classical diffusion equation to describe

the motion of the center of the exciton and non–radiative quenching at the

nanotube ends.

∂tP (x, t; x0, t0) = D∂2
xP (x, t; x0, t0)− krP (x, t; x0, t0) (4.4)

where P(x, t; x0, t0) is the probability of finding an exciton at position

x at time t, given that it started at x0 at time t0, D is the thermal diffusion

coefficient and kr is the radiative recombination rate. The following boundary

conditions at the ends of the nanotube account for quenching:
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∂xP (x, t; x0, t0) = ke
nrP (x, t; x0, t0) at x = 0, L (4.5)

The result of this one–dimensional diffusion is a non–linear trend in the

dependence of the PL quantum yield versus the nanotube average length

in the sample which explains fairly well their experimental observations. In

addition, this simple model predicts the effective lifetime variation of the

excitons depending on the nanotube length (Fig. 4.12). As it is evident

from this dependence the lifetimes observed in our study could simply be

explained by the presence of the nanotubes with different length from ∼
100nm–∼ 600nm in our sample.

<τPL> = 5.1 ps<τPL> = 5.1 ps<τPL> = 3.8 ps<τPL> = 3.8 ps

Figure 4.13: Lifetime distributions for samples with different lengths.

Higher fraction of ’fast’ tubes in the ’shorter sample’ (a) compared to

the ’longer sample’ is due to quenching by the nanotube ends. In the in-

sets the length distribution of two respective samples determined by AFM

measurements is shown.

To examine this scenario we have preformed experiments with samples

containing nanotubes with different length distributions (Dr. Frank Hen-

nrich, Forschungszentrum Karlsruhe) [72]. Solutions containing different av-

erage length were prepared by size exclusion chromatography. Afterwards

the length distribution of the sample was verified by AFM measurements.

For each sample time–resolved PL measurements were performed for 100 in-

dividual nanontubes. In the Fig. 4.13 the results of such a statistics on the
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lifetimes of two samples with different average length is depicted. In this

example one sample contained tubes with an average length of 〈L〉=250nm

(a) and another almost twice longer 〈L〉=435nm.
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Figure 4.14: Average lifetime vs average length for different sample ma-

terials. For the materials prepared by the same method a variation of

average lifetime is observed for samples with different average nanotube

length.

The outcome of the lifetime measurements on this samples indicates that

the length clearly has an effect on the average exciton decay time. However,

this effect is not as decisive as predicted by the model and is not the only

non-radiative channel. In the Fig. 4.13 the sample with long nanotubes

shows longer lifetimes, the statistical distribution is shifted towards the longer

lifetimes. The mean value for the decay times of 100 nanotubes for each

sample is 3.8ps and 5.1ps respectively for samples with short and long tubes.

Fig. 4.14 shows the results of similar experiments on 8 different samples.

The materials used here were CoMoCat tubes from different sources and were

prepared following different procedures as follows.

1. CoMoCat tubes without surfactant (removed after sonication),from F.

Hennrich, Forschungszentrum Karlsruhe (F.H.).
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2. CoMoCat tubes with sodium cholate (SC) surfactant, F.H.

3. CoMoCat tubes with SC surfactant, different sonication procedure (mild

sonication), F.H.

4. CoMoCat tubes with SC surfactant from A.A. Green and M.C.Hersam,

Northwestern University.

5. CoMoCat tubes with SC surfactant, different batch, F.H.

Only data points marked with the same symbol had exactly the same origin

and preparation procedure. One can see that for each such a pair of points

the small effect of the length on the average lifetime can be observed. Never-

theless, there is no unique general correlation between the length and decay

time for a given nanotube indicating that quenching at the nanotube ends

is not the only contributing factor in the non–radiative relaxation process of

the nanotubes’ excited state.

To sum up, in this chapter we presented time–resolved PL measurements

of a large number of single nanotubes at room temperature. In general, exci-

ton decay is found to be monoexponential with decay times varying between

1 and 40 ps. Our measurements suggest a phonon–assisted mechanism and

quenching at sites with vanishing bandgap as possible reasons causing this

lifetime variation.

62



Chapter 5

Photoluminescence from Dark

Excitonic States

5.1 Spectral Characteristics of Low Energy

PL bands

Excitons determine all electronic properties of nanotubes. The unique struc-

ture of the graphene layer combined with the reduced dimensionality of the

SWNTs leads to a manifold of excitonic states with different symmetries and

multiplicities discussed in Chapter 2. This complex sequence of excitonic

states and the non–radiative relaxation channels associated with them pre-

sumably have an important impact on the low PL quantum yield of SWNTs

and fast exciton decay rates [61, 9, 96]. Detailed studies of the properties

of dark excitonic states are therefore essential both for a complete under-

standing of the excited state dynamics and for, potentially, engineering of

the optical properties of SWNTs.

The direct experimental evidence of the existence of dark excitonic states

in SWNTs was presented applying two–photon photoluminescence excitation

spectroscopy [8, 42] and measurements of magnetic brightening of the SWNT

PL [97, 98]. Low-energy forbidden states were also used to explain the dy-

namics observed in pump–probe experiments [60, 59] and the temperature de-
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pendence of PL intensities [99]. In addition, recent results on ensemble [100]

and individual nanotube samples [101] have shown low energy satellite peaks

in the PL spectra. These peaks were attributed to emission from low ly-

ing dark excitonic states while the mechanisms enabling optically forbidden

transitions and the interplay between bright and dark excited states remain

to be clarified.
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Figure 5.1: Creation of low energy satellites in the PL spectrum of a (6,4)

SWNT (a) and a (5,4) SWNT (b). Initial spectra (black lines) acquired

at low excitation intensity I0=3·1013photons/(pulse cm2) and considerably

modified spectra (red lines) of the same nanotubes acquired after exposure

to high excitation intensities ∼ 17 · I0.

In this chapter we characterize the creation of low-energy emission bands

in the PL spectra of individual (5,4) and (6,4) chirality SWNTs upon high
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power pulsed laser irradiation at room temperature [102]. The persistence of

these bands in subsequent low power measurements indicates that irreversible

distortions of the nanotube structure efficiently “brighten” forbidden states

via disorder induced mixing of excitonic states in agreement with predictions

made in [39, 47]. The unambiguous distinction between additional emissive

features belonging to a certain nanotube and PL bands from other nanotubes

is made possible by observing single nanotube spectra before and after high

power irradiation and by recording the polarization dependence for bright

and dark emission bands. Additionally, we show that similar low energy

emission bands can be generated by adsorption of gold on SWNTs. This

indicates the importance of spin polarized states created by metal atom ad-

sorption or defect formation for brightening of dark states. Thus we suggest

that low energy emission results from triplet exciton recombination facilitated

by high spin density states and magnetic impurities. Time–resolved PL stud-

ies show that in the presence of defect–induced dark excitonic emission, the

lifetime of the bright exciton is reduced significantly. Thus the defects in-

crease the decay rate by introducing new non-radiative relaxation channels.

Furthermore, we present the first time–resolved measurements of the dark

exciton emission for individual SWNTs. While the mono–exponential decay

times of the allowed transition are in the range of 1 to 40 ps (previous chap-

ter) [103], far longer dark state lifetimes up to 177 ps have been observed.

The evaluation of the dark exciton decay shows that this state is predomi-

nantly populated directly upon photoexcitation and not via branching from

the bright exciton.

Fig.5.1 shows the generation of low energy satellite PL bands for two

individual nanotubes. Initial spectra (black lines) acquired at low excita-

tion power (3·1013photons/(pulse cm2)) show a single emission peak cen-

tered at 1.41 eV (a) and 1.46 eV (b) assigned to the allowed bright ex-

citon (BE) in (6,4) and (5,4) nanotubes, respectively [24]. Irradiation of

the nanotubes for 10–100 seconds with an order of magnitude higher pulse

intensity ∼5·1014photons/(pulse cm2) results in some cases in significantly

65



PHOTOLUMINESCENCE FROM DARK EXCITONIC STATES

modified spectra (red lines in Fig. 5.1) with additional redshifted shoulders

and new spectral features transferring substantial spectral weight to these

satellite peaks. Importantly, no such spectral changes were induced at the

corresponding averaged power levels using continuous–wave (CW) excitation

suggesting that extremely high pulse intensities initiating multi-photon pro-

cesses are crucial to induce these modifications. High power CW excitation,

on the other hand, mainly leads to photobleaching and blinking of nanotube

PL [104]. Satellite peaks for different (6,4) and (5,4) nanotubes consistently

appear at similar energies and can be roughly divided into two groups with

redshifts of ∼ 110−190 meV (DE1) and ∼ 30−60 meV (DE2) in good agree-

ment with Ref. [101]. The same energy splittings (130 and 40 meV) were

predicted theoretically for dark, non-emissive excitons in the (6,4) nanotube

and were attributed to triplet and even parity singlet excitons, respectively

[41]. Thus, as discussed in Chapter 2, due to the change in the symmetry of

the nanotube structure and local spin density we lift the restriction of photon

emission from lowest singlet A2 and triplet excitons.

The polarization analysis of PL emission of the original BE peak and the

newly created satellite DE1 (Fig. 5.2) show the same cos2θ behavior proving

that the emission bands belong to the same nanotube and indicating that

the redshifted emission originates from an intrinsic state of the SWNT.

Based on these experimental observations we conclude that during the

intense irradiation the structure of the nanotube is modified by creation of

local defect sites. These defects alter the local symmetry of the nanotube

partially removing restrictions for the population and subsequent emission

from intrinsic dark states [39] as discussed in Chapter 2.

The intensity of newly induced emission shows little correlation with the

excitation power. The grey lines in Fig.5.1 (a) are the spectra acquired se-

quentially between initial and final spectrum at intermediate intensity∼ 7·I0.

The appearance of the emission is rather step-like and random. This kind

of behavior is consistent with our interpretation of brightening of the dark

states by introducing defect sites as the later process would obviously have
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Figure 5.2: The polarization dependence of the PL emission for the bright

exciton BE (open circles) and the dark exciton DE1 (filled squares) deter-

mined from a series of spectra recorded for the same (6,4) nanotube. The

dashed lines are cos2θ fits to the data.

a random character as well. Although generally the spectral changes were

irreversible, some nanotubes exhibited a reversible power dependence of the

amplitude of the redshifted peak. This could indicate that some reversible

structural defects are stable only at high thermal energies of the nanotube.

While disorder can be inherently present in SWNTs due to e.g. the growth

or post–processing and can lead to multiple PL peaks observed in the lit-

erature [105, 100, 101], their creation might be suppressed especially at low

temperatures, where such effects were not observed under similar experimen-

tal conditions [106].

The possibility that the new PL emission is from outer shell of the double–

walled nanotube (DWNT) that for some reason became emissive after laser

irradiation is highly unlikely based on the small difference of the emissions’

photon energy. If the two peaks would result from inner and outer nanotube
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within a DWNT, their PL energies would be far more different based on the

difference in diameter required to form such as structure. As an example,

the outer shell nanotube for a (6,4) tube would need to have a diameter of

∼ 1, 3 nm corresponding to an emission energy at > 1500 nm. Moreover, the

CoMoCat material used in the current study are practically free of DWNTs.

5.2 Population Dynamics of Dark and Bright

Excitons

To determine the population dynamics of both dark and bright excitonic

states and to study the effect of the created disorder we have performed

time–resolved PL measurements of the different emission bands before and

after creation of emission satellites. Fig.5.3 depicts representative PL tran-

sients detected from the shaded spectral areas (shown in the inset) for two

individual nanotubes of two different chiralities: (6,4) (a) and (5,4) (b).

Black curves here show the decay of the BE state detected in the grey

shaded spectral range in the insets before creation of the low energy satel-

lites. Grey and red curves show the decay of the photoluminescence from

respectively grey and red shaded areas in the spectra after the appearance

of the new emission bands. Two important conclusions can be drawn from

these data. First, upon creation of the satellite peaks the bright exciton life-

time is decreased compared to the initial decay, and second, the decay of the

dark excitonic state DE1, shifted by 110-190 meV with respected to the BE,

is substantially slower. Monoexponential fits (dashed lines) to these tran-

sients give the lifetimes of the main emission peaks before and after creation

of the redshifted band of 20 ps and 6 ps for the (6,4) nanotube Fig.5.3(a)

and 13 ps and 2 ps for the (5,4) tube Fig.5.3(b), respectively. Importantly,

the emission bands with smaller energy shifts in the range of several 10 meV

(DE2) show exactly the same decay behavior as the main peak, confirming

that these states are in thermal equilibrium with the bright exciton at room

temperature (data not shown) [47, 99, 107].
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Figure 5.3: PL transients visualizing the decay dynamics of different emis-

sion peaks in the spectra of individual SWNT (inset) for two different

chirality nanotubes: (6,4) (a) and (5,4) (b).

The decay of dark excitons DE1 is dominated by much longer time con-

stants, 65 ps and 177 ps for the (6,4) and the (5,4) nanotube in the present

example, as would be expected for a weakly-allowed transition. Thus, other

origins of the low-energy bands such as phonon replica and bi-excitons can

be ruled out based on this slow decay dynamics. Additionally, we observed

a fast decay component (8 ps and 2 ps) with far smaller photon flux (about

a factor 1/20) possibly caused by heterogeneities along the nanotube intro-

duced by the defects or by a more complicated structure of the DE1 excitonic
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manifold. Considering the large separation of the emission peaks and the de-

tected spectral windows (shaded areas in insets in Fig. 5.3) overlapping emis-

sion contributions from the BE state appear not to be sufficient to explain

this decay component. On the other hand, the decay dynamics of the dark

exciton is possibly complex since it involves local defects controlling both

initial population and PL emission by making the forbidden state weakly

allowed and possibly also causing non-radiative quenching. Measurements

on a number of other (6,4) and (5,4) nanotubes consistently show the same

effects with dark exciton lifetimes ranging up to 177 ps. Decay times derived

from time–resolved PL and pump–probe data in the range of 50 - 300 ps with

small relative amplitudes have been reported before [49, 56] from ensemble

samples as part of multiexponential decay. We speculate that these decay

times could originate from the newly created states observed here.

Now we discuss the more rapid decay of the bright exciton in the pres-

ence of the redshifted peaks (Fig. 5.3). Since the amplitude of the BE peak

is decreased we conclude that disorder induced defects are responsible for ad-

ditional radiationless relaxation channels depopulating the bright excitonic

state. Two competing channels can be distinguished. First, population trans-

fer to the dark states DE1 mediated by the introduced defects and secondly,

decay to the ground state facilitated by enhanced exciton–phonon coupling

due to the defect associated local phonon modes as discussed in Chapter

4 [88]. Both relaxation channels require diffusional motion of the bright exci-

ton along the nanotube to enable interaction with localized defects, therefore

faster decay also serves as an evidence for the mobility of excitons in nan-

otubes [9].

The population transfer from bright to dark states would result in a

delayed rise of the DE1 emission with a rise time equal to the decay time

of the bright state. Such a delayed rise, that would be detectable in our

measurements especially for nanotubes with relatively longer decay times

of the BE state ranging up to 25 ps, was not observed suggesting that a

substantial fraction of the dark state population is built up directly upon
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photoexcitation. Importantly, the fact that the bright exciton maintains a

different and finite lifetime in the presence of the dark state shifted by up to

190 meV clearly shows that these two states are not in thermal equilibrium.

Possible transitions between the bright and low-lying dark exciton therefore

need to occur on timescales much longer than several picoseconds.

5.3 The Mechanism of The Brightening of

Dark Excitonic States

Having characterized the behavior of the new emissive states spectrally and

dynamically the next very crucial question is the possible mechanisms of the

defect creation by intense laser pulse and the properties of these defect sites

enabling the coupling to the dark states. In this context it is very interesting

to investigate the role of environment in the observation of the effect. To

study this issue we have repeated our experiments with nanotubes coated

with different surfactant and also embedded in different media.

Fig 5.4 shows PL spectra from a DNA wrapped nanotube embedded

in Poly(methyl methacrylate) (PMMA) matrix. Here, an aqueous solu-

tion of DNA wrapped SWNTs was deposited on a microscope cover slide

by spin-coating and was covered by a solution of 0.5 mass percent PMMA

in toluene. The initial spectrum (black line) shows broad emission from the

BE state, characteristic for DNA-wrapped nanotubes [108]. In the PL spec-

trum (red line) of the same nanotube after illumination with high power

(1.5·1015photons/(pulse cm2)) pulsed excitation at 1.63 eV the same new

emission bands can be identified as in the case of nanotubes with sodium

cholate as surfactant. Thus, the observation of the effect is not due to a

chemical reaction specific to sodium cholate surfactant. On the other hand

the isolation of the nanotube from the air by covering it with polymer or

microscope immersion oil results in significant less cases of brightening of

the dark states. One reason for this can be the lack of oxygens in the en-

vironment. Oxygen plays a critical role in the photochemical stability of
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Figure 5.4: Photoluminescence (PL) spectra for an individual DNA

wrapped (6,4) Single-Walled Carbon nanotube (SWNT) [71] covered by a

thin layer of PMMA.

carbon nanotubes [104]. The availability of physisorbed oxygen appears to

be controlled not only by the oxygen concentration in the atmosphere but

also by the surface morphology and coverage. Our studies showed that both

photobleaching and the creation of the dark state emission are suppressed by

embedding nanotubes in quasi oxygen-free environments. Alternatively, the

reason can be the different thermal conductivity of these media compared to

the air. If the defects induced by the laser pulse are sidewall modifications

of the robust sp2 hybridized structure of the nanotube then the modification

barrier, much bigger than the excitation photon energy, will probably be very

sensitive to the thermal conductivity of the system.

Finally, the most intriguing issue of the novel emission is the nature of the

excitonic state that it is originating from. The strongly polarized emission of

the DE1 state depicted in Fig. 5.2 makes the possibility of simply having lu-
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minescent defects unlikely. Recent experimental studies on ensemble samples

enriched with (6,5) chirality nanotubes have attributed low energy emission

bands to K momentum Eµ(k0) excitons described in Chapter 2 [109]. The

authors speculate that though these excitons have higher energy than the

emissive A2 exciton they emit redshifted photons because of simultaneous

emission of a phonon. They suggest that the absorption shoulder observed

by many groups is the reverse process of simultaneous absorption of a pho-

ton and a phonon [75, 77]. Thus, by comparing the energy separation of the

absorption and emission satellites with the main PL peak they identify the

phonon with the energy of ∼ 167meV (D band, totally symmetric A′
1 mode

at K point) responsible for this phonon induced emission. However, from

Fig. 5.1 b) it is evident the energy separation of the peaks can be as big as

190 meV, making the above mentioned scenarios impossible.

Spin density a b

Figure 5.5: Theoretical calculations showing high spin densities at Au

metal adatom site on graphene a), at the vacancy in SWNT lattice,

from [110, 111].

On the other hand the energy separation for the triplet state calculated

for the (6,4) chirality in Ref. [41] is in good agreement with our experimental

data. The intersystem crossing leading to triplet emission can be assisted

by coupling to high spin density states created by sidewall modification of

the nanotube such as vacancy creation [111, 112]. The energy of about 5 eV

needed to create a vacancy [111] can be provided through multi-photon exci-
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tation processes explaining the high pulse energies required for the creation

of DE1. In general, magnetic impurities increasing spin-orbit coupling could

also be formed by trace amounts of residual catalyst materials explaining

the observation of dark state emission in other nanotube materials reported

in literature. Fig. 5.5 shows the high spin densities formed as a result of

adsorption of a gold atom on a graphene surface a) and at the vacancy on

the sidewall of carbon nanotube.

To test the possibility of having an itersystem crossing in the nanotubes

due to increased spin–orbit coupling we treated the SWNTs with a pH neu-

tralized, aqueous solution of gold. The metal atoms, and in particular gold

atoms, induce spin polarized states with significant magnetic moments when

adsorbed on SWNT [113] or graphene surface [110]. The solution was pre-

pared by reduction of HAuCl4 by acetone and was pH neutralized by addition

of NaOH [114]. The resulting solution was centrifuged to remove colloidal

gold nanoparticles and was diluted with distilled water until a nearly trans-

parent, violet solution was obtained. Strikingly, covering the sample with a

gold solution results in similar changes in the single nanotube PL spectrum

without requiring high power pulsed excitation (Fig 5.6) thus proving the

triplet emission hypothesis. The efficiency of brightening of the dark states

is especially high when the aqueous solution SWNTs is premixed with the

gold solution before being spin coated on the substrate thus facilitating the

surface adsorption of the metal. In the samples prepared with this procedure

the majority of the (6,4) nanotubes exhibited low energy emission satellites,

indicating that the same emissive DE1 state is brightened. This has been

further confirmed by time resolved measurements showing a broad distribu-

tion of lifetimes in the range of 7 to 150 ps, considerably longer than for the

BE emission [103]. Thus this simple method allows tuning of the properties

of the SWNTs’ excited state.

Although the emission energy of the satellite peak and its lifetime leaves

no doubt that with the treatment of gold solution the new emissive states

have identical nature as in the case of high pulsed excitation there is a note-
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Figure 5.6: PL spectrum of an individual (6,4) SWNT before (black line)

and after (red line) surface adsorption of gold atoms. The origin of the

redshifted bands generated by this method was confirmed to be the same

as in the case of high power pulsed excitation by time resolved PL mea-

surements. The small features centered at 1.437 eV and 1.314 are G and

G’ Raman modes of the SWNT, respectively.

worthy difference between the two cases. After a gold treatment the new

emission bands show pronounced spectral shifting and blinking even at low

power cw excitation. As is shown in Fig. 5.7 the characteristic emission of

DE1 at 950 nm is varying with time and can be observed here in the time

intervals 0-40 s and 100-160 s. This kind of behavior was observed for the

high power pulsed excitation (without gold adsorption) far less frequently.

This indicates that the adsorption of gold and the resulting interaction with

the nanotube is less stable e.g. due to to the mobility of the adsorbed gold

atoms on the nanotube surface [115].

Importantly, no additional PL bands have been observed in control exper-
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iments on single nanotubes deposited on gold films as well as near-field optical

experiments using sharp gold tips [108] indicating that the new PL bands are

not created by metal surface induced electromagnetic field enhancement.

Figure 5.7: Series of PL spectra from a (6,4) SWNT after treatment with

the gold solution. The series shows the temporal evolution of the emission

with blinking and spectral shifts under low power CW excitation.

The lifetime of the triplet state around 100ps deduced from our exper-

iments can seem to be somewhat faster than one would expect from such

a system. On the other hand the theoretically calculated and experimen-

tally estimated radiative lifetime of the bright singlet exciton is much longer

than the measured excited state depopulation times indicating that the latter

process is dominated by non–radiative relaxation. Therefore, though the ra-

diative lifetime of the triplet state most probably would be much longer than

several hundreds of picoseconds, the non–radiative depopulation of the state
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is relatively fast resulting in the lifetimes measured here. Then a valid ques-

tion arises: what is the origin of the difference between the lifetimes of singlet

and triplet states if they are both dominated by non–radiative processes? The

answer is probably hidden in the nature of the non-radiative process itself.

If it is e.g. a phonon related process like multi–phonon scattering [89] then

the differences will be determined by the different exciton–phonon coupling

of the singlet and triple states.

5.4 Simultaneous PL and Raman Character-

ization of Defect Induction

Additional information on defect induced brightening of the forbidden ex-

citon states can be obtain from inelastic Raman scattering measurements.

Disorder or defects in carbon nanotubes are generally expected to result in

increased D-band intensities in the Raman spectra [13]. Therefore, monitor-

ing the intensity of the D-band during the creation of dark excitonic emission

can further reinforce our arguments on defect induced brightening of origi-

nally dark states. To record Raman scattering spectra it is desired to have

the excitation beam operated in CW mode as the short 150 fs excitation has

a spectral width of 10 meV which would result in spectral broadening of

Raman bands. As the scattering signal from single nanotubes is relatively

small its spectral broadening can decrease the signal-to-noise ratio below

the detection limit. The next prerequisite for obtaining high–quality Raman

data spectrally well separated from the PL, the fundamental photon energy

should match the E22 transition of the nanotube. On the other hand for

a modification of the nanotube structure a pulsed excitation is needed. To

combine all these requirements we have implemented a new excitation arm

in the experimental setup consisting of a HeNe CW laser operating at 594

nm that matches the second excitonic transition of (6,4) tubes and combined

it with the Mira laser beam with a beamsplitter. Thus after each irradiation

cycle with a pulsed laser the Raman and PL spectrum were recorded with
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CW excitation.
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Figure 5.8: a) Raman- and PL spectra of a single DNA-wrapped (6,4)

SWNT before (black line) and after (red line) exposure to high power

pulsed laser irradiation at 760 nm (6 ∗ 1013 photons/(pulse ∗ cm2)) for 20

s. Both spectra have been acquired using 594 nm CW excitation with a

power of 81µW .

The Fig 5.8(a) visualizes the modification of both the Raman signal and

the PL as a result of high power pulsed excitation. A new emission band is

introduced in the DE1 spectral region and significant changes in the corre-

sponding Raman spectrum can be observed. While the initial spectrum in

Fig 5.8(b) (black line) shows only weak intensities for the D- and G’-Raman

modes at 1300 cm-1 respectively 2600 cm-1, those bands are increased in the

modified spectrum (red line). An increase in the intensity ratio I(D)/I(G),

which can be attributed to the introduction of additional defects [13], can be

observed. The relative decrease of PL vs. Raman scattering here indicates a

reduction of photoluminescence quantum yield.

Fig. 5.9 shows another example of relative increase of I(D)/I(G) intensity

ratio accompanied with the appearance of new low energy PL bands. In ad-
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Figure 5.9: Series of Raman- and PL Spectra obtained for a single DNA-

wrapped (6,4)-SWNT after consecutive illumination for 20s with high

power laser pulses at 760 nm (6∗1013photons/(pulse∗ cm2)). The spectra

have been acquired using 594 nm CW excitation with an excitation power

of 81 µW .

dition to photobleaching a new PL-emission band in the DE2 spectral region

is created upon pulsed laser excitation. Further illumination only results in

changes of the BE/DE2 PL-intensity ratio. Fig. 5.10 shows magnified Ra-

man spectra of Fig. 5.9. The first order Raman modes D (b) and G (c) and

the second order band G’ ( 2600 cm−1) are found to be modified after each

illumination period with the pulsed laser. An overall increase in the D-band

intensity and decrease in the G-band intensity can be observed (spectrum

(1) to (5)), which results in an increase of the I(D)/I(G) ratio, indicating an

introduction of additional defect sites.

These changes in the I(D)/I(G) ratio however cannot be attributed to the

creation of the new emission bands exclusively, as they also occur for pure
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Figure 5.10: a) Magnified Raman spectra of Fig. 5.9 showing an increase

of defect–induced D mode upon excitation with intense pulsed laser beam.

photobleaching. In Fig.5.11 the steady decrease of the PL intensity is accom-

panied by changes in the corresponding Raman spectra. These spectra were

obtained with CW excitation without pulsed irradiation. The defect related

D-Raman mode is increasing, resulting in an increase of the I(D)/I(G) ra-

tio. Thus, the quenching sites, that decrease quantum yield of the nanotube,

are obviously defect sites and also contribute in D-band intensity making

its one-to-one correlation with the occurrence of the dark excitonic bands

difficult.

While these data clearly confirm our assignment of the new emission

band to result from introduction of disorder, no additional information on

the details of the structural or chemical nature of the defect can be obtained.

Besides the increase of the D/G-ratio, no other significant changes have been

observed in the Raman spectra.

In conclusion we demonstrated that nominally dark excitonic states in

carbon nanotubes can become emissive after exposure to high excitation in-

tensities and by adsorption of gold. The lowest–lying PL emission band is

attributed to the luminescence from triplet excitonic state never observed be-

fore. We suggest that local defects induce mixing of different excitonic states
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Figure 5.11: Bleaching of a (6,5) DNA-wrapped CoMoCat SWNT excited

at 594 nm (cw) with an excitation power of 50 W. Each spectrum was

obtained by integrating for 30 s.

and relaxation of selection rules via perturbation of the electronic structure.

Our single nanotube measurements show that the recombination time of the

excitons can be modified by the presence of disorder and that PL from the

same nanotube can have decay rates varying by 2 orders of magnitude de-

pending on the detected spectral range. In addition to fundamental interest,

these results also have significant implications for nanotube opto-electronics

because the approach provides a route of engineering SWNT optical proper-

ties in a manner not available previously.
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Conclusions

The carbon nanotubes are unique systems that combine the well known prop-

erties of the solid state materials with those characteristic for the single

molecules. The fascinating optical properties that emerge as a result of this

combination lead to intriguing and sometimes unexpected and unusual phe-

nomena. One of such surprising properties is the very low quantum yield

(QY) of the nanotubes and a fast depopulation of its excited state, ∼ 104

times faster than their radiative lifetime. However, despite such a low QY

of the material we have succeeded in measuring time–resolved luminescence

from single nanotubes at ambient conditions using a confocal microscopy.

We have shown that exciton dynamics follow a fast monoexponential decay

with varying time constants for different individual nanotubes. Our find-

ings suggest that this fast decay is a result of multiple contributing factors.

We have shown that the exciton lifetime correlates with the number of the

available local, defect induced, vibrational modes through the PL spectral

width. Thus, one of the channels of ground state recovery in the nanotubes

was identified as a phonon-assisted mechanism. However, we have shown

additionally that this is not the only non-radiative relaxation channel for the

excitons. Our studies on samples with different average nanotube length have

revealed a dependence of the excited state lifetime on the nanotube length.

In agreement with the generally accepted picture of a mobile exciton ran-

domly hopping along the nanotube axis we have attributed this dependence

to the quenching of excitons at the ends of the nanotube where its band gap

vanishes. Thus, the longer is the nanotube the longer ”lives” the exciton.
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The next fascinating property of the carbon nanotubes explored in this

work is the possibility of tuning its optical properties by changing locally its

structure. We have shown that those excitons that were thought to be non-

emissive in ideal case due to the symmetry of their wave function or the total

spin quantum number, can turn into emissive if there is a local perturbation of

the electronic structure of the nanotube. The PL spectra of semiconducting

nanotubes were modified and new emission bands were created by introducing

disorder in the sidewalls of the nanotube due to intense laser excitation and

by adsorption of metal atoms on nanotube surface. As in both of these

cases not only the local symmetry of the excitonic wave function is altered

but also spin polarized states are created we have identified the lowest PL

band as an emission from triplet state. The nature of the state was further

confirmed by measuring its lifetime which was up to two orders of magnitude

longer than the decay time of the bright state. This finding explains the

long standing issue in the literature on the origin of long lived components in

the time–resolved PL measurements on ensemble samples. The existence of

such components gave rise to many speculations and different models for the

excited states dynamics. The main suggestion was that these long lifetimes

with very small relative amplitudes should be attributed to the true radiative

recombination of the bright state. However, our single molecule experiments

have shown that different excitonic states from the same nanotube can have

very different decay times. Additionally, we have shown that it is possible

to modify the lifetime of the excitonic state. Upon introducing additional

defect sites by intense pulsed laser irradiation the observed exciton decay

times became faster than were initially, proving the importance of the defect

concentration present in the nanotube as discussed in the first part of the

work.
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Appendix A

Rayleigh Imaging of Graphene

and Graphene Layers

As discussed in the first two chapters of this work graphene is a parent mate-

rial for carbon nanotubes. Here we present optical contrast measurements on

graphene and graphene layers resting on a dielectric substrate. Using white-

light elastic scattering (Rayleigh) microscopy we demonstrate that a single

atomic layer can be ”optically visible” due to interferometric enhancement

of the signal. For a few layers the contrast is found to be linearly dependent

on the number of layers indicating that the optical properties of graphene

layers are not altered heavily by interlayer interactions.

Graphene is a newly emerging material with unique and fascinating prop-

erties and promising future applications [18]. Its electron transport is de-

scribed by the (relativistic-like)Dirac equation, and this allows access to the

rich and subtle physics of quantum electrodynamics in a relatively simple con-

densed matter experiment [116, 117, 118, 119]. The scalability of graphene

devices to true nanometer dimensions [120, 121, 122] makes it a promising

candidate for future electronics because of its ballistic transport at room

temperature combined with chemical and mechanical stability. Remarkable

properties extend to bilayers and few layers [123, 117].

Three main routes are possible for graphene sample preparation. The first
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method is the micromechanical cleavage of graphite [116]. In this relatively

straightforward method high quality graphite is placed between two pieces

of adhesive tape and cleaved multiple times. Thus, among other thicker lay-

ers single layer graphene is also produced and can be identified if adhesive

tape is solved in a solution and the material sticking to it is deposited on

the substrate. The graphene samples used in the current study were pro-

duced by this procedure. Alternative methods include chemical exfoliation

of graphite [124] or epitaxial growth by thermal decomposition of SiC [125].

Although being a very cheap way to obtain graphene the micromechani-

cal cleavage has a very low yield as the graphene is a minority among thicker

layers produced by this approach. Moreover, the identification of a single

layer in an optical microscope is a very difficult and on most of the sub-

strates an impossible task. Currently, optically visible graphene layers are

obtained by placing them on the top of oxidized Si substrates with typically

300 nm SiO2 and these substrates were used in the current work. For the

unambiguous determination of the graphene flake thickness the AFM is used.

However AFM measurements have several difficulties, including differences

between the apparent and real height due to substrate interaction [116], that

make other additional characterization of the layer thickness desirable. High-

resolution transmission electron microscopy is the most direct identification

tool [126], however, it is destructive and very time-consuming, being viable

only for fundamental studies.

Optical detection relying on light scattering is especially attractive be-

cause it can be fast, sensitive, and not destructive. Light interaction with

matter can be elastic or inelastic, and this corresponds to Rayleigh and Ra-

man scattering, respectively. Raman scattering has recently emerged as a

viable, nondestructive technique for the identification of graphene [127]. De-

pending on the shape of the G’ (alternatively 2D) peak the thickness of up to

10 layers thick graphitic flake can be determined. However, Raman-scattered

photons are a minority compared to those elastically scattered. Here, we show

that the elastically scattered photons provide another very efficient and quick
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means to identify single and multilayer samples and a direct probe of their

dielectric constant.

Rayleigh scattering was previously used to monitor size, shape, con-

centration, and optical properties of nanoparticles, carbon nanotubes, and

viruses [128, 129, 130]. Rayleigh scattering experiments can be performed

by using two different strategies. In one, the background signal is mini-

mized by making free-standing samples, as done in the case of carbon nan-

otubes [131, 132], or by dark-field configurations[133]. Alternatively, the

background intensity is utilized as a reference beam, while the sample signal

is detected interferometrically [128, 129, 130]. Here, we combine the second

approach with the interferometric modulation of the contributing fields and

show that the presence of a background is essential to enhance the detection

of graphene over a certain wavelength range.
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Figure A.1: a) Schematic experimental setup for Rayleigh scattering spec-

troscopy. The inset shows a cross–sectional view of the interaction between

the optical field and graphene deposited on Si covered with SiO2. b) A

spectrum of the supercontinuum white-light laser source generated by the

photonic crystal fiber

The schematics of the experimental setup used in these experiments is

depicted in Fig. A.1. To measure the contrast of the graphene layers at

different wavelengths the sample is illuminated with a collimated white-light

supercontinuum. To generate the coherent white–light pulses a photonic

crystal fiber(PCF) is placed in the excitation path and the output of the
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Ti:Sapphire laser operated at 760 nm is focused by a focusing objective on

the entrance facet of the fiber [134]. A cascade of nonlinear effects in the

PCF give rise to a spectrum extending from the visible to the near infrared

(Fig A.1 b). The divergent beam at the output of the fiber is collimated

by two positive lenses in a telescope configuration. The beam is focused

on the sample and the signal is detected by a spectrometer (CCD) and/or

the APD as described in the experimental chapter. In the case of imaging

with the CCD the full spectrum of the white–light reflected by the sample is

acquired at each position during the raster scanning. The image is formed

by integrating the intensity of the reflected light over the desired spectral

window. The acquisition time per pixel is few milliseconds and the spatial

resolution is ∼ 800nm.

5 µm

a

graphene

bilayer

3 layers

6 layers

5 µm

b

Figure A.2: Confocal Rayleigh imaging of graphene with white–light. a)

Contrast at 546nm -585 nm, b) at 812nm - 850nm

The main difference in this experimental configuration is that one must

use an air objective to illuminate the sample in contrast to the previous

studies on SWNTs. As the substrate consists of Si covered with a 300 nm

SiO2 and the graphene resting on top of it, the illumination of the sample

through the holder is no more possible due to the opacity of the Si. This

makes the use of the oil immersion oil objective impossible for this experi-
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ments reducing the NA to 0.95. However, the high NA is no more critical

in these kind of experiments as the signal is not as small as in the case of

single nanotube emission and can be arbitrarily enhanced by increasing the

power of the excitation beam. Moreover, as numerical calculation show the

decrease in NA increases the contrast in these type of experiments [12].

Fig. A.2 shows the image of a graphene flake integrated for two different

spectral windows 546nm -585 nm a) and 812nm - 850nm b). The contrast of

the flake depends on its thickness, smaller number of graphene layers having

smaller contrast. This simple dependence of the contrast on the sample

thickness does not hold for thicker flakes as will be discussed later. This is

an important point and one should keep it in mind while identifying of the

flake thickness by eye in the optical microscope. The color of the flake can

be deceptive changing from blue to yellow to gray, i.e the darkness of the

flake does not necessarily correlate with its thickness. The number of layers

at different parts of the flake are indicated in the Fig. A.2 a) 1, 2, 3 and 6

layers, and were determined independently by AFM and Raman spectroscopy

(by Dr. Cinzia Casiraghi, University of Cambridge). Thus, the contrast of

the same flake can be negative (intensity from the flake is higher than from

the substrate) or positive depending on the wavelength of the imaging beam.
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Figure A.3: White light imaging of graphene. a) Contrast 546nm -585

nm, b) 812nm - 850nm

Fig. A.3 shows the dependence of the graphene layers’ contrast on the
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imaging beam wavelength. The contrast δ is defined as the difference be-

tween substrate and sample intensity normalized to the substrate intensity

(Eq. A.3). To increase the signal to noise ratio the intensity of the signal

from 16 scan points were averaged for a given layer thickness. To minimize

the inaccuracies arising from the white–light intensity instability the the ref-

erence (substrate) and signal intensity were taken from the same scan line.

From the Fig. A.3 can be concluded that (i) the maximum of the single layer

contrast is at 585nm - 622nm and is ∼ 0.09, (ii) the contrast scales with the

number of layers, (iii) there is no phase shift in this layer thickness range.

The formation of the contrast and its sign can be understood in the

terms of interference from multiple reflections. The inset in Fig. A.1 shows

a schematic of the interaction between the light and graphene on Si + SiO2.

When the light impinges on a multilayer, multiple reflections take place [135].

Thus, the detected signal (I) results from the superposition of the reflected

field from the air–graphene (EG), graphene–SiO2 (ESiO2), and SiO2 − Si

interfaces (ESi). The background signal (IBg) results from the superposi-

tion of the reflected field from the air–SiO2 interface and the Si substrate.

Theses complete quantitative calculations can be found in our original pub-

lication [12] and its central result is depicted in Fig.A.4 b).

Here we present a simplified picture that captures the basic physics and

illustrates why a single atomic layer can be visualized optically. The field

at the detector is dominated by two contributions: the reflection by the

graphene layer and the reflection from the Si after transmission through

graphene and after passing through the SiO2 layer twice. Thus, the intensity

at the detector can be approximated as:

I ∼ | ~EG + ~ESi|2 = | ~EG|2 + | ~ESi|2 + 2| ~EG|| ~ESi| cos φ (A.1)

where φ is the total phase difference. This includes the phase change due

to the optical path length of the oxide, dSiO2 , and that due to the reflection

at each boundary, ϑSi and ϑG:
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φ = ϑG − (ϑSi + 2πnSiO22dSiO2/λ0) (A.2)

where nSio2 is the refractive index of the oxide and λ0 is the wavelength

of the light in vacuum. Assuming the field reflected from graphene to be

very small, |EG|2 ' 0, the image contrast δ results from interference with the

strong field reflected by the Si:

δ = (ISi − I)/ISi ' −2| ~EG|/| ~ESi| cos φ (A.3)

The sign of δ depends on the sign of cos φ, which is given by Eq.A.2.

The reflectance, R, is the ratio between the reflected power to the incident

power [135]. Assuming the Si reflectance as one, Eq. A.3 can be written as:

δ = −2
√

RG cos φ (A.4)

where RG is the reflectance of graphene. This is in turn related to the

reflection coefficient rG [135]:

rG =
√

RG exp(iϑG) (A.5)

Eq. A.4 shows that the main role of the SiO2 is to act as a spacer: the

contrast is defined by the phase variation of the light reflected by the Si.

Thus, the contrast for a given wavelength can be tailored by adjusting the

spacer thickness or its refractive index.

Thus, from Eqs. A.2 and A.4 and assuming ϑSi = π (phase change upon

reflection from optically denser medium [135]), the phase of graphene is

ϑG ' π, as expected for an ultrathin film where the absorption losses can

be neglected [135]. The contrast decreases in the near IR because the wave-

length becomes larger than twice the optical path length provided by the

SiO2 spacer. From Eqs. A.4 and A.5 and taking cos φ = −1 at maximum

contrast (at λ0 ' 570nm Fig. A.3 a)) we get rG= 0.05 and RG=0.003.

Though this simple model is sufficient to describe qualitatively the op-

tical properties of the few layers of graphene, it certainly needs additional
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Figure A.4: a) Experimental contrast of the thicker graphene layers. b)

Calculated contrast as a function of number of graphene layers (N) and

excitation wavelength, from [12]

development to predict the quantitative behavior of the signal and the cases

of the thicker layers. The contributions like the absorption losses within

the layers, numerical aperture of the experiment, the Gaussian profile of the

beams intensity has to be taken into account. Fig. A.4 a) visualizes the con-

trast dependence for graphene flakes thicker than 10 layers compared with

the single and 6 layers. Here we see that a phase change due to the optical

path in graphite emerges. As is evident from the theoretical calculations A.4

b) (Dr. E. Lidorikis, University of Ioannina) at the wavelength with maxi-

mum contrast for graphene, the contrast first saturates as N increases, then

decreases and red-shifts, finally becoming negative, as found experimentally.

It is also interesting to note that, for small N, the variation along the vertical

(wavelength) axis is largely between zero and positive (i.e., reflectivity reduc-

tion only), while for a large number of layers, the variation is from positive

to negative (i.e., both reflectivity reduction and enhancement). This points

to two different mechanisms. For small N, the effect of the graphene layers

is just to change the reflectivity of the air-SiO2 interface, while they offer no

significant optical depth. For large N, on the other hand, the reflectivity of

the air-graphene interface saturates while the effect of the increasing optical

path within the now thick graphite layer becomes significant. This change
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is not a monotonic function of N. While these two effects are different, they

both contribute to a shift of the reflectivity resonance condition, and thus

explain the increasing visibility of thicker graphene layers, when measured

for a fixed excitation energy.

In conclusion we showed that a single atomic layer can be visualized

using elastic scattering microscopy due to interferometric enhancement of the

signal. For a few layers (< 6), the contrast of the sample increases linearly

with thickness indicating that the samples optically behave as a superposition

of single sheets that act as independent two-dimensional electron gases. Thus,

Rayleigh imaging is a general, simple, and quick tool to identify graphene

layers.
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