
Università degli Studi di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

Tesi di Laurea Specialistica

Complex Attack Analysis and Safeguard Selection:
a Cost-Oriented Approach

Suk Wah Cristina Tang

Relatore

Prof. Fabrizio Baiardi

Anno Accademico 2007/2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14697122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

When intelligent threats attack a system, they rarely achieve their

goals by exploiting a single vulnerability. Rather, they achieve their

goals by composing attacks and by exploiting structural security

flaws of the target system. Attack graphs have been the de facto

tool for discovering possible complex attacks. This thesis proposes

a cost-effective safeguard selection strategy, which first identifies

a complex attack set that covers all the complex attacks through

the use of attack graphs and later selects a minimal set of coun-

termeasures through the formulation and resolution of an integer

linear programming problem. Multiple goals in conjunction or dis-

junction relation can be analyzed. We have built a working proto-

type system that implements this strategy and that helps maximiz-

ing the return-on-investment by identifying critical stepping-stone

hosts and by suggesting the most cost-effective set of countermea-

sures. The mechanism of this approach is independent of the mod-

eling abstraction level. We have considered both an example model

that goes into the details of elementary attacks and an example

model that targets worst-case analysis.

Acknowledgments

I would like to express my deepest gratitude to my supervisor,

Professor Baiardi, for his insightful advices and patient guidance

in the preparation of this thesis.

I am in debted to my friends, my family and my family-in-law, at

home and abroad, for all their love and care during these years.

Finally, I wish to present my dearest thanks to Massimo. I could

have never accomplished this thesis without his encouragement and

unselfish love.

Contents

Chapter 1. Introduction 7

Chapter 2. Attack Graph 11

2.1. Definitions 11

Chapter 3. Attack Graph: State of the Art 23

3.1. Approach based on Attack Graph Simplification 24

3.2. Approach based on Model Checking 26

3.3. Other approaches 27

Chapter 4. Algorithms 31

4.1. Phase I: Forward Computation of the Set of Reachable Conditions 32

4.2. Phase II: Backward Generation of the Complex Attack Set 33

4.3. Safeguard Selection 53

4.4. Complete example 1 58

4.5. Complete example 2 61

Chapter 5. Attack Graph Toolkit 69

5.1. The Input File 71

5.2. The Output File 74

5.3. The Input Parser 74

5.4. The Complex Attack Set Generator 76

5.5. The Countermeasure Selector 78

Chapter 6. Evaluation 85

6.1. Network model I: Flat Network 85

6.2. Network model II: Enclave Network 87

6.3. Network model II: Enclave Network, firewall explosion 89

6.4. Network model II: Enclave Network, hosts collapsing 90

6.5. Network model II: Enclave Network, better hosts collapsing 91

5

Appendices 93

Chapter A. Grammar of the input file language 95

A.1. An example input file 96

A.2. Grammar of the output file language 97

A.3. An example output file 98

A.4. The output file for the example in Sect.5.5.1 99

Chapter B. Source Code 101

B.1. The Input Parser 101

B.2. The Complex Attack Set Generator 113

B.3. The Countermeasure Selector 129

Bibliography 133

6

Chapter 1

Introduction

As the Internet becomes a tangle of virtually all computer networks, defending an

enterprise network is more and more challenging. The advance in technology only

leverages the task of intruders because attacks that were once impossible become

not only possible, but even automatable. As prebuilt exploits are readily available,

an intruder often only has to assemble existing exploits to execute a complex attack

that was accessible exclusively to hard-core hackers. The diffusion of information

helps intruders to learn about new vulnerabilities and attacks. The game of defend-

ing a network is unfair to begin with because the intruder only needs to know one

complex attack while the defender needs to defend from all complex attacks.

Another difficulty of defending a network arises because of organization vulnerabil-

ities. Most users of computers in a network are unaware of almost all security risks

and they run vulnerable clients [6] that are great entry points to an enterprise net-

work. As soon as an intruder compromises and takes control over some clients, she

can then use them as stepping stones [25] and take advantage of client/server trust

relationships to execute other attacks that would be otherwise impossible. A typical

example is a client that has a certain privilege on a database on an internal server.

In this case, after overtaking the client, the intruder can use the client privileges to

compromise the confidentiality and integrity of the database. In this scenario, tradi-

tional vulnerability scanners like SATAN [11] and Nessus [4] are no more sufficient

to discover complex attacks that are enabled by combining apparently harmless and

7

unrelated vulnerabilities.

Firewalls are still among the main tools in the defensive arsenal of system admin-

istrators. However, firewalls alone can rarely achieve sufficient protection because

of the large number of protocols and encrypted traffic. As most complex attacks

exploit structural security weakness, tools that analyze the interrelationships among

elementary attacks are invaluable. Among these tools, attack graphs are well known.

An attack graph shows all the sequences of elementary attacks that an intruder can

implement to achieve a set of goals because each edge corresponds to an elemen-

tary attack. Each graph node represents a snapshot of the security state of the

infrastructure [18] and a complex attack is a path in the graph. By analyzing the

states crossed by the path that corresponds to a complex attack, it is possible to

understand exactly how the attack happens. Attack trees are closely related di-

agrams, where each node represents an attack, but they are more focused on the

composition of attacks because each internal node shows how an attack can be de-

composed. There are two types of internal nodes in an attack tree: AND nodes and

OR nodes. An AND node n requires the execution of all the attacks represented by

its children nodes in order to execute the attack represented by n. An OR node n′

requires the execution of at least one of the attacks represented by its children in

order to execute the attack represented by n′. Attack trees show why a complex at-

tack happens because the tree structure reveals the causality between attacks. The

approach adopted in this thesis focuses in answering the question “how to stop all

the complex attacks” where countermeasures play a central role. We will see in later

sections that under the monotonicity assumption [8, 13, 12], which assumes that an

attacker never loses any acquired right, it is possible to answer this question without

knowing how and why a complex attack happens. The question is answered in two

steps: the first one computes a complex attack set, which covers all the complex

attacks. The second one computes a minimal set of countermeasures that stops all

the complex attacks in the previous set.

While there are numerous proposals of attack graph generators [18, 22, 10, 19, 8,

12, 20, 23], here we propose yet another attack graph analyzer. The most signif-

icant difference with respect to other tools is the emphasis on safeguard selection

and the separation of the domain specific problem and the underlying problem. The

tractability of the analysis of an enterprise network depends upon careful modeling

8

Chapter 1. Introduction

of the network, which requires expertise in that area. The network and, in conse-

quence, the elementary attacks, should be modeled with just the necessary details

to create a sufficiently expressive model without hindering the tractability of the

analysis. As a side effect of separating the model from the underlying problem, it is

possible to create model transformers that automatically generate complementary

views of the same network at different abstraction levels. Our focus is on the under-

lying problem: given a set of initial capabilities and a model described as a set of

rules, find a minimal set of countermeasures that stops all the complex attacks. In

terms of attack graphs, this can be expressed as the computation of a minimal cut

set that includes at least one edge for each complex attack. If all the attacks cor-

responding to the edges in the cut set are stopped, then no complex attack is feasible.

The thesis has developed a working prototype system that has been tested on both

small case studies and large simulated networks. Experimental results on simulated

networks show that this prototype system can handle networks with thousands of

hosts. However, the results also show that modeling the same network at distinct

detail levels can have drastic impact on the efficiency of the analysis. This enforces

our belief that separating the model is vital for the feasibility of analysis on real

complex networks where the modeling is better left to domain experts.

This thesis is organized as follows:

Chapter 2 - Attack graph

This chapter introduces the formal definitions of terms that will be used throughout

this thesis.

Chapter 3 - Attack Graph: State of the Art

This chapter describes alternative approaches to attack graph analysis that have

been proposed in the literature.

9

Chapter 4 - Algorithms

This chapter describes the algorithms that have been developed in this thesis, their

complexity and correctness. It also describes how the problem of finding a minimal

cut set can be modeled as an integer linear programming problem. Two simple case

studies show some examples of network modeling and exemplify the functioning of

the algorithms.

Chapter 5 - Attack Graph Toolkit

This chapter describes the specification and implementation of the toolkit.

Chapter 6 - Evaluation

This chapter describes the simulated networks and the experimental results. An

example of different views of the same network illustrates the impact of modeling

at different abstraction levels on efficiency.

10

Chapter 2

Attack Graph

An attack graph describes a set of complex attacks against an infrastructure where

each complex attack is composed of several elementary attacks. There are alterna-

tive representations of attack graphs and the efficiency of the generation of these

graphs depends upon the chosen representation. However, these alternative repre-

sentations contain essentially the same information, namely all the steps that an

attacker has to implement in order to achieve a predefined set of goals. This chap-

ter defines the terminology used throughout this thesis and introduces our chosen

representation.

2.1. Definitions

Definition 2.1.1. Information Infrastructure

An information infrastructure consists of a set of interconnected entities. An entity

represents one of several components, among them a physical host, a virtual host, a

set of hosts, a router, a firewall. In other words, an entity is an end-point of a logical

connection, typically at the IP level, or of a physical one. Entities are connected

through interfaces. Each interface of an entity is connected to at least one interface

of another entity and each entity has at least one interface. �

11

2.1. Definitions

In order to define the infrastructure model, we have to define entities. It is impor-

tant to choose the proper level of abstraction, as the complexity of generating an

attack graph is greatly influenced by the number of entities. In general, the proper

level of abstraction depends upon the context. Suppose, as an example that we are

interested in performing a what-if analysis to evaluate alternative firewall configu-

rations and the adoption of an IDS. In this case, the most appropriate choice may

be the one that defines an entity as a set of hosts of a subnet.

Definition 2.1.2. Conditions

A condition is a predicate on the state of the information infrastructure at a cer-

tain instant. C, the set of all conditions of interest is finite and is ranged over

c1, c2, c3, ..., cm. �

A condition can be a predicate on:

v a property of an entity

v a relationship among entities

The correctness of the approach described in subsequent sections depends upon the

monotonicity assumption, which requires that:

(1) after a condition has become true it cannot be reverted to false

(2) no condition is the negation of another one

The monotonicity assumption [8, 13, 12] simplifies the search of complex attacks.

There are three reasons to support the adoption of this assumption:

v most attacks can be modeled as monotonic with reasonable fidelity [8];

v with respect to a non-monotonic model, a monotonic one corresponds to

the worst case where effects of attacks are non reversible. Hence, analyses

that consider this model may yield false positives but not false negatives,

i.e., it may find complex attacks that are actually infeasible but it never

miss any effective attack;

12

Chapter 2. Attack Graph

v the monotonic model greatly simplifies the problem and, therefore, it en-

ables the analysis of larger networks.

The conditions in C are concrete and are not parametric. They are instantiated

from templates such as “privilege x on entity y”.

Example 2.1.3. Example conditions regarding a property of an entity

v root-level privileges on entity A

v control over the confidentiality of entity A

v the existence of a vulnerability on entity A �

Example 2.1.4. Example conditions regarding a relationship among entities

v entity A can access to port 21 of entity B

v entity A trusts entity B, that is, users of entity B can connect to entity A

without authentication �

Definition 2.1.5. State

The state of the information infrastructure at a certain instant is characterized by

the conditions that hold at that instant. �

Definition 2.1.6. Rule

A rule is a pair < preconditions, postconditions > where

v preconditions is a set of conditions that must be true for the rule to be

applicable;

13

2.1. Definitions

v postconditions is a set of conditions that will be true after the application

of the rule. If a postcondition is true before the application of a rule then

it will remain true.

Let R be the finite set of rules and be ranged over r1, r2, r3, ..., rn . We assume that

R is known. A rule can be applied in a state if the rule preconditions are true in

the state. �

Definition 2.1.7. Dependency

A dependency is a pair < C1, C2 > where

v C1 and C2 are sets of conditions

v the validity of all the conditions in C1 implies the validity of all the condi-

tions in C2 �

While rules that describe elementary attacks can be generated automatically, those

that describe dependencies have to be defined according to the infrastructure of

interest as they depend upon the interconnections among components, dictated by

the infrastructure design.

Definition 2.1.8. Elementary Attack

The execution of an elementary attack corresponds to the application of a rule that

describes an exploit. �

However, the application of a rule does not necessarily imply the execution of a

exploit, as a rule may describe a dependency as well. The next example shows an

application of a rule that does not correspond to the execution of an exploit.

Example 2.1.9. Consider a case where

v cA is the condition that expresses user-level privileges on host A

14

Chapter 2. Attack Graph

v cB is the condition that expresses user-level privileges on host B

v the rule < {cA}, {cB} > expresses the trust relationship between A and

B that says “whoever has user-level privileges on host A has user-level

privileges on host B without authentication”

v the rule < {c1}, {cA} > describes an exploit

v the initial state is {c1}

Therefore, the rule < {c1}, {cA} > is applicable in the initial state as the rule precon-

dition is satisfied in that state. After its application, the postcondition cA becomes

valid and the state becomes {c1, cA}. This state transition models an elementary

attack. Now the rule < {cA}, {cB} > becomes applicable as its precondition is

satisfied and the state becomes {c1, cA, cB}. Obviously, this transition does not cor-

respond to any elementary attack and it depends upon the relationships among the

components. �

Definition 2.1.10. Goal

A goal condition is a condition that an intruder aims to achieve. A set of goal

conditions are all the conditions that an intruder aims to achieve. A goal state is a

state in which all the goal conditions are true. �

When there is no ambiguity, the goal refers to the set of goal conditions.

Definition 2.1.11. Initial State

The initial state is the state of the information infrastructure before the application

of any rule. �

Definition 2.1.12. Final State

15

2.1. Definitions

A final state is a state in which all the goal conditions are true. The terms final

state and goal state are interchangeable. �

There can be more than one final state.

Definition 2.1.13. Attack Graph

An attack graph is a quadruple < S, s0, τ, Sf > where

v S is a set of states

v s0 is the initial state

v τ is a set of transitions

v Sf is a set of final states

An attack graph is always relative to a threat, which is characterized in terms of

the initial conditions and the goal conditions. The set of final states includes all the

final states. A state transition corresponds to the application of a rule. The graph

shows all the attack sequences to achieve the goal of interest. �

The vertices of the attack graph correspond to states and the edges correspond to

state transitions. A constructive definition of the attack graph can be the following:

(1) given a set of vertices V , initialized with a single vertex that represents the

initial state

(2) for each vertex v in V and for each applicable rule r, add an outgoing edge

labeled r from v to v′, where v′ is the state after the application of r. If v′

is not already present in V , a new vertex will be created

(3) repeat the above step until no more new edge is found

While this process illustrates the conceptual strategy, we recall that such a construc-

tion is inefficient and does not take place in practice.

16

Chapter 2. Attack Graph

Definition 2.1.14. Complex Attack

A complex attack is a path in the attack graph from the initial state to a final one.

�

Some practical examples of elementary attacks are:

v buffer/stack overflow

v sniffing

v connection stealing

v replay attack

A rule can either be an elementary attack or a dependency, this differs from the

approach that uses a separate dependency graph [10]. In the first case, rules that

describe dependencies may be part of a complex attack. In the latter case, complex

attacks are defined exclusively in terms of elementary attacks. The advantage of

modeling dependencies as rules is that countermeasures, which define how attacks

can be stopped, may refer to dependencies. For example, if a complex attack re-

quires the exploitation of a vulnerability on host h1 and the abuse of the dependency

between host h1 and host h2, then a countermeasure for this complex attack may

remove the dependency. On the contrary, the separation of dependencies in a de-

pendency graph implies that dependencies are non-modifiable and therefore, should

not be considered during the safeguard selection stage.

The following example shows that the two modelings, namely modeling dependencies

as rules and modeling dependencies through the dependency graph, return different

results that describe the same complex attack.

Example 2.1.15. Consider two rules r1 ≡< {c1}, {cIk} > and r2 ≡< {cIk}, {cck} >
that represent respectively

v an elementary attack that has a single precondition c1 and a single post-

condition cIk , which is control over the integrity of the component k

v a dependency that says, cck , the confidentiality of the component k, de-

pends upon cIk , the integrity of the component k

17

2.1. Definitions

Suppose that c1 is one of the initial conditions and that cck is the goal. If the depen-

dency is modeled as a rule, then a complex attack is the composition of r1 and r2,

and only after the application of the latter a goal state is reached. If the dependency

graph is separated from the attack graph, then the complex attack is composed of

only r1 and the state after the application of r1 will be a goal state because of the

transitive closure [10] on the dependency graph. �

We will refer to complex attacks simply as attacks when there is no risk of ambiguity.

Under the assumption of monotonicity, we only need to consider acyclic paths. In

general, an attacker, i.e., a threat, composes elementary attacks to exploit trust

relationships between hosts, so as to achieve privileges that cannot be gained through

attacks on a single host.

The following example shows the case of a cyclic path.

Example 2.1.16. The path shown in this example is cyclic as the node representing

the state s2 is passed through twice.

s0
r1→ s1

r2→ s2
r4→ s2

r3→ sg where

v s0 is the initial state, e.g., {c1}
v sg is a final state if c3 is the goal condition

v s1 = {c1, c4}
v r1 =< {c1}, {c4} >
v r2 =< {c4}, {c2} >
v r3 =< {c2}, {c3} >
v r4 =< {c4}, {c1} >

Two states are identical if they include exactly the same set of conditions. We ob-

serve that under the monotonicity assumption, all the states in a cycle are identical.

�

18

Chapter 2. Attack Graph

Definition 2.1.17. Countermeasure

A countermeasure for an elementary attack inactivates a rule, i.e., it prevents the

application of the rule. A countermeasure for a complex attack inactivates at least

one rule that belongs to the complex attack so that the path corresponding to a

complex attack is split into two segments, where the initial state and the final state

belong to different segments. Therefore, the path is no more viable. �

We assume that we can introduce a countermeasure for each elementary attack. Our

aim is to find a set of countermeasures so that no final state can be reached. Distinct

complex attacks may share the same countermeasure as shown in Ex. 2.1.18.

Example 2.1.18. The following attack graph fragment describes two complex at-

tacks r2r3r1 and r4r1:

The first complex attack is r2r3r1.

The second complex attack is r4r1.

19

2.1. Definitions

Suppose that cr2 , cr3 , cr4 , cr1 are the countermeasures for the rules r2, r3, r4, r1, re-

spectively. Alternative countermeasures for the attack r2r3r1 are cr2 , cr3 and cr1 ,

while those for the attack r4r1 are cr4 and cr1 . In this example, if we choose cr1 as

the countermeasure for both attacks, then they will share the same countermeasure.

�

Some examples of countermeasures are:

v installing a new version of a program

v applying a patch

v eliminating a service relative to a vulnerability

v modifying dependencies between components, i.e., between hosts

The result returned by the toolkit described in this thesis only suggests which rules to

be inactivated. Since, in general, there are alternative ways to inactivate a rule, the

choice of the strategy to be adopted to inactivate a rule is left to users of the toolkit.

For example, there are multiple ways to eliminate a stack overflow vulnerability:

v the adoption of strong typing systems

v checking the length of input strings

v making the stack non-executable

Definition 2.1.19. Complete and minimal set of countermeasures

A set of countermeasures Σ is complete if any complex attack is no more feasible

after the countermeasures in Σ have been adopted. A set of countermeasures Σ is

minimal if none of its proper subset is complete [10]. �

20

Chapter 2. Attack Graph

Properties of interest of attack graphs:

v an attack graph is exhaustive [19] if it describes any possible complex attack

v an attack graph is succinct [19] if it describes only those states from which

a final state can be reached

The attack graph constructed as described in paragraph 2.1 is exhaustive but not

succinct. The approach of Sheyner et al. [22] applies the model checker NuSMV

[5] to build a succinct attack graph by removing the vertices that do not lead to

a final state. The main problem of this approach is scalability. Lippmann and

Ingols [16] have shown that the tools described in the paper have been used on

infrastructures with at most 20 components and that they do not scale adequately

in the case of infrastructures with hundreds of hosts. All these tools share a common

characteristic: the generation of all the attack paths. If we observe the usage of

attack graphs, we will notice that their main use is to help system administrators to

select countermeasures to be adopted [18]. Bearing this in mind, the approach we

advocate exploits the fact that we are interested in finding all the elementary attacks

used to build complex attacks, but this does not implies that we are interested in the

sequences to compose elementary attacks. Therefore, the proposed toolkit generates

a complex attack set Ω bypassing the generation of an attack graph.

Definition 2.1.20. Complex Attack Set Ω

A complex attack set Ω is a set {S1, ..., Sn} where each Si, i = 1..n , is a set of

rules and it corresponds to some complex attacks. It is complete if all the complex

attacks correspond to some elements of Ω. �

Each complex attack is a path in the attack graph, a path consists of a sequence of

edges and each edge corresponds to a rule. Therefore, a complex attack α can be

represented as a set of rules Rα, which includes the rules that belong to the path.

A complex attack α is covered by a set X whose elements are set of rules if there is

an element x of X such that:

v x is non-empty

v x is a subset of Rα

21

2.1. Definitions

Formally, α is covered by X if ∃ x ∈ X such that x 6= ∅ ∧ x ⊆Rα. We are

interested in finding a complex attack set Ω that is complete, that is, it covers every

complex attack.

The same set of rules can cover distinct complex attacks, as shown in Ex. 2.1.21.

Example 2.1.21. The following three complex attacks are covered by the same el-

ement {r1, r2} of the set {{r1, r2}}.

The first and second complex attacks are both composed of r1, r2, r3 and {r1, r2} is

a non-empty subset of {r1, r2, r3}. The third complex attack is composed of r1, r2

and {r1, r2} is a non-empty subset of {r1, r2}. Therefore, all these three complex

attacks are covered by {{r1, r2}}. �

22

Chapter 3

Attack Graph: State of the Art

This chapter reviews works on the topic of complex attack analysis. The goal of

this analysis is to give an overview of all the strategies available to an attacker to

achieve a predefined goal [22]. Attack graphs [16] are recognized as a valuable tool

to discover these complex attacks. All the terms used in this section have been

formally defined in Chapt. 2.

Attack graphs are intrinsically complex because of the state explosion problem and

several papers [8, 13, 18, 22, 19] proposed alternative solutions to tackle this

problem. This section investigates some of these ideas in details. For reference,

Lippmann et al. [16] have presented a review of current attack graph related tools.

It is well accepted that the manual construction of attack graphs is impractical even

for a moderately sized graph [22] because of the ever changing nature of information

infrastructures and the effort required to reconstruct the graphs. There are various

tools that generate attack graphs automatically, most of these tools assumes that

the input data for the construction is known [10, 8, 24, 19].

This data includes:

v the list of vulnerabilities of all the components

v the dependencies among components

v the list of known attacks

23

3.1. Approach based on Attack Graph Simplification

While these data may not be immediately available in a proper format, the imple-

mentation of NetSPA [12] has shown that this information can be readily imported

from common sources such as CVE dictionary [1], NVD [15] and output of Nessus

scans [4], supporting that our assumption is grounded.

3.1. Approach based on Attack Graph Simplification

As the complete attack graph is often too large to be visualized, there are various at-

tempts [18, 12, 7] to simplify it. Ingols et al. [12] proposed the multiple-prerequisite

graph, which differs from the usual attack graph in a number of ways:

v the multiple-prerequisite graph has a non-tree structure1, which contains

cycles and nodes with multiple incoming edges. As a consequence, a com-

mon subpath may be shared among distinct paths in the representation.

In the example shown in Fig. 3.1.2, the subpath a3, a4 is shared instead of

being represented as part of two distinct paths a1, a3, a4 and a2, a3, a4 as in

Fig. 3.1.1 .

v the multiple-prerequisite graph merges nodes of the same class. A class is

defined as follows:

� each node n belongs to a class

� two nodes n1, n2 belongs to the same class if and only if

∗ C1 ={c | c is the class of nprec, nprec is a predecessor of n1}
∗ C2 ={c | c is the class of nprec, nprec is a predecessor of n2}
∗ C1 = C2

∗ C ′
1 = {c | c is the class of nsucc, nsucc is a successor of n1}

∗ C ′
2 = {c | c is the class of nsucc, nsucc is a successor of n2}

∗ C ′
1 = C ′

2

v a node of the multiple prerequisite graph may represent

1For simplicity we name the edges here even if in a multiple-prerequisite graph they are not named.

24

Chapter 3. Attack Graph: State of the Art

Figure 3.1.1. The paths a1, a3, a4 and a2, a3, a4 are distinct.

Figure 3.1.2. The subpath a3, a4 is shared.

� a state where a state is represented as {< host, access level >} and

the access level can be

∗ root: host is reachable (root-level privileges)

∗ user: host is reachable (user-level privileges)

∗ DoS: denial-of-service

∗ other: confidentially and/or integrity loss

� a vulnerability instance: while attack graphs model a vulnerability

instance as an edge, the multiple prerequisite graph models it as a

node. As an example, the multiple prerequisite graph represents the

edge s0
v1→ s1 in an attack graph as s0 → v1 → s1.

� a set of prerequisites: the preconditions for an attack to take place.

An attack graph does not explicitly model the prerequisites, which are

conditions to be checked to determine whether an attack can be exe-

cuted. The multiple prerequisite graph explicitly represents a precon-

dition as a node. Hence, a path is always built by composing segments

with the structure:

state node→ prerequisite node→ vulnerability instance node

Several node types are introduced to simplify the generation of reachable nodes.

For example, if only one type of nodes, state nodes, is introduced, then in order to

compute the reachable nodes from a node si, we have to find:

25

3.2. Approach based on Model Checking

v all the vulnerabilities present in si

v all the attacks enabled by the previous vulnerabilities

v all the states reachable by the execution of the enabled attacks

By defining several node types, the results of these intermediate operations can

be precalculated and stored in one or several arrays. Hence, the set of reachable

states from a state si can be computed by retrieving the proper values from the

precalculated arrays as follows:

v c = S2C(s1) where S2C is an array that maps states into credentials

v v = C2V (c) where C2V is an array that maps credentials into vulnerability

instances enabled by those credentials

v reachable states = V 2S(v) where V2S is an array that maps vulnerability

instances into states

If Q is a queue of nodes that is initialized with the root node, the following procedure

builds the multiple prerequisite graph:

v while Q is not empty

� remove a node n from Q

� for each node r that can be reached from n

∗ add an edge from n to r

∗ if r does not belong to Q, then add r to Q

Under the assumption that the arrays are precalculated and that are accessible in

constant time, the reachable set of nodes can be calculated in constant time as well

and, therefore, the complexity is linear in the number of nodes.

3.2. Approach based on Model Checking

Model checking is a method to verify properties of a formal system. Given a model

M and a property P, the model checker verifies that M satisfies P. In general, if P

is not satisfied, the model checker outputs a counterexample to show how P can be

26

Chapter 3.

violated. In the context of attack graphs, the model describes the evolution of an

information infrastructure, the property of interest is a safety property regarding of

state of the infrastructure. If the safety property is violated, the counterexample

represents a successful attack. The main problem of this approach is that a model

checker does not tell us all the possible attacks that result in a violation of a safety

property.

To overcome this disadvantage, Sheyner et al. [22] have exploited another func-

tionality of model checkers: the one that computes all the states from which it is

possible to reach a state where a property P is satisfied and where P is defined as

the negation of the safety property SP of interest. For example, if SP is “no root-

level privileges” then P is defined as the negation of SP, i.e., “root-level privileges”.

Suppose that sp is a state where P is satisfied, then the model checker outputs a

set of states S = {s′| sp is reachable from s′}. Hence, the approach of Sheyner et

al. [22] applies the model checker in parallel to the construction of the attack graph

G to find the set S. When these operations have been completed, S is used to

prune G. In this way, the pruned attack graph contains only those nodes and edges

that are related to some complex attacks. As noted by the authors, this approach

suffers from scalability problem because of the performance bottleneck due to the

generation of the attack graph G. According to the tests described in the paper,

the time to generate G is orders of magnitudes larger than the one to generate S.

Another test of this tool, described in Ou et al. [18], shows that in the case of an

information infrastructure including 10 hosts, with 5 vulnerabilities each, the tool

requires 15 minutes to generate an attack graph with 10 millions edges. Another

observation is that the attack graph G is computed independently of the generation

of the set S by the model checker, even if the two computations share several sub

computations.

3.3. Other approaches

Since the complexity of an attack graph is mainly influenced by the number of com-

ponents, Baiardi et al. [10] proposed a hierarchical approach. In their approach,

at first the information infrastructure is defined as a coarse grain model, where the

27

3.3. Other approaches

components are abstract entities. Subsequently, each component is considered as an

infrastructure so that the information infrastructure may be repeatedly decomposed

in this manner. Conceptually, the information infrastructure is observed through a

magnifying lens of increasing power.

The dependencies among components are modeled as directed hyperedges in a hy-

pergraph, the Infrastructure Hypergraph. An hyperedge has one head and one or

several tails, each head/tail is labeled with one of the three security attributes:

a, c, i which stand respectively for availability, confidentiality and integrity of the

component connected to that head/tail. For example, C1
a →i C2 means that the

integrity of the component C2 depends upon the availability of the component C1.

Under certain conditions, the components of the decomposed infrastructure can be

analyzed in parallel. Therefore, each component can be considered as a black box

during the infrastructure analysis. When a new component is introduced, the re-

sults of the analysis of other components can be reused. Hence, the analysis needs

to be applied only to the new components and to the edges that relate the new

component to the old ones. When a component C1 is decomposed into subcompo-

nents C1
1 , C

2
1 , ...C

n
1 , the old edges of the Infrastructure Hypergraph relative to C1

are replaced by edges that link directly to the subcomponents.

The evolution of the information infrastructure is described by the Evolution Graph,

which is orthogonal to the Infrastructure Hypergraph. Each node of the Evolution

Graph represents a set of rights

where

v a right is a pair < component, attribute >

v an attribute can be c, a, i which stand for confidentiality, availability and

integrity, respectively

The transitions of states of the Evolution Graph are triggered by successful execu-

tions of elementary attacks. An attack A is a triple

< component, preconditions(A), postconditions(A) > where both preconditions(A)

and postconditions(A) are sets of rights.

28

Chapter 3.

Example 3.3.1. Suppose that

v the state is {< C1, a >, ...} at a certain instant

v there is an attack A ≡< C1, {< C1, a >}, {< C2, a >} >

After the execution of A, the state becomes {< C1, a >,< C2, a >, ...}. �

This example shows that in order to execute an attack A in a state s, the precondi-

tions of A have to be satisfied in s, i.e., s ⊇ preconditions(A). After the execution

of an attack, the rights the attacker has gained will be added to those in the pre-

vious state to define the new state s′, i.e., s′⊇ postconditions(A). In this way, the

rights increase monotonically. After each transition, the state is updated by com-

puting the transitive closure of rights using the information from the Infrastructure

Hypergraph.

Example 3.3.2. Suppose that the Infrastructure Hypergraph contains a dependency

C2
a→c C3, then the execution of the attack A will update the state to {< C1, a >

,< C2, a >,< C3, c >, ...}. Suppose now that

v the component C2 is decomposed into C ′
2 and C2”

v the goal is < C3, c >

Two cases are possible:

(1) the attack A and the dependency both refer to the same subcomponent

of C2, without loss of generality let C ′
2 be that subcomponent. Then, the

attack A can still be executed.

(2) the attack A refers to the subcomponent C ′
2 whereas the dependency refers

to C2”. There are two cases:

(a) there exists some dependencies inside C2 so that < C2”, a > belongs

to the transitive closure of < C ′
2, a >. Therefore, the attack can still

be executed;

(b) < C2”, a > does not belong to the transitive closure of < C ′
2, a >. In

this case, the attack cannot take place and hence, the two views of

the same Infrastructure Hypergraph at two distinct detail levels are

inconsistent. �

29

3.3. Other approaches

The pitfall of this approach is that the analysis that considers the Infrastructure

Hypergraph at an abstract level may return false positives, that is, it may return

complex attacks that are actually infeasible. The main idea of this approach is to

reuse partial results of the analyses to minimize the overall complexity.

30

Chapter 4

Algorithms

This chapter introduces the strategy to generate a minimal set of countermeasures

whose application makes any complex attack ineffective. This strategy consists of

two steps. The first step generates a complex attack set Ω which covers all the

complex attacks. This set is computed in a two-phase algorithm bypassing the gen-

eration of the whole attack graph. The two phases are:

v Phase I: it finds all the reachable conditions given the initial conditions and

it is based upon forward reasoning

v Phase II: it generates the complex attack set and it is based upon backward

reasoning

The main advantage of introducing a two-phase approach is the possibility to reuse

the information generated in Phase I to analyze distinct goals of the attacker because

the results of Phase I is independent of the goals. Furthermore, multiple instances

of Phase II can be executed in parallel. As exemplified in Ingols et al. [12], in the

case of a network with 252 hosts, even a simplified attack graph, which is shrank

by 99% with respect to the full attack graph, is still too complex to be interpreted.

Therefore, we do not attempt to generate the attack graph which includes far more

information than necessary. Instead, we focus on generating the extractable infor-

mation from the attack graph that is useful to the safeguard selection process. The

complex attack set captures this information.

31

4.1. Phase I: Forward Computation of the Set of Reachable Conditions

The second step computes a minimal set of countermeasures that stops all the com-

plex attacks. The problem of selecting a set of rules that includes at least one rule

from each element of the complex attack set is modeled as an integer linear pro-

gramming problem. The minimal set of countermeasures includes countermeasures

corresponding to the selected rules. This set will be further reduced by selecting

the most favorable countermeasures if there are some budgetary constraints. As the

reduced set of countermeasures is no longer complete, complementary countermea-

sures through modifications to security policies are recommended to get rid of the

remaining security holes.

4.1. Phase I: Forward Computation of the Set of Reach-

able Conditions

Our aim is to find the set of all the reachable conditions so that only viable paths are

considered in Phase II. A condition c is reachable if there exist some rules through

whose application c becomes true.

4.1.1. Inputs

v the current set of reachable conditions C, which is initialized to the set of

initial conditions C0

v a set of rules R

We assume that any rule with n postconditions (n > 1) has already been split into n

rules. All these rules share the same identification so that the generated countermea-

sures refer to the original rule. As an example, the rule < {c1, c4}, {c2, c3, c5} > with

ID 18 will be split as < {c1, c4}, {c2} >, < {c1, c4}, {c3} > and < {c1, c4}, {c5} >
and all of them share the same ID 18.

Algorithm 4.1.1. Reachable Conditions Generation (R, C0)

The algorithm repeats the following steps until either R is empty or no more rule is

applicable

32

Chapter 4. Algorithms

(1) mark all the rules R′ ⊆ R which are applicable with the current set of

reachable conditions C
(2) add the postconditions of the marked rules R′ to C
(3) remove R′ from R �

A high level description of this algorithm is shown in Fig. 4.1.1.

4.1.2. Complexity

The worse case time complexity of the algorithm is O(n2) where n is the total num-

ber of rules. This case occurs if all the rules form a chain where the postcondition of

the ith rule is the precondition of the (i+ 1)th one, for i = 1..n− 1. In practice, we

expect a much lower average complexity as C grows monotonically and the number

of applicable rules increases with the size of C. The space complexity is O(n).

The rule splitting described in Sect. 4.1 does not increase the complexity. With

reference to the previous example, if < {c1, c4}, {c2, c3, c5} > is applicable, then

< {c1, c4}, {c2} >, < {c1, c4}, {c3} > and < {c1, c4}, {c5} > will be applicable as

well. Hence, each of the decomposed rules will be visited the same number of times

as the original rule.

4.2. Phase II: Backward Generation of the Complex At-

tack Set

In this phase, the algorithm computes the complex attack set by searching backwards

from the goal condition. Before describing the algorithm, we have to introduce some

definitions.

Definition 4.2.1. Minimal subset set

A minimal subset set S is a set of sets {s1, s2, s3, ...} where no element of S is a

proper subset of another element of S. Formally, ∀si, sj ∈ S. si ⊆ sj ↔ si = sj. �

33

4.2. Phase II: Backward Generation of the Complex Attack Set

1 // R: the s e t o f ru l e s , each r u l e has two f i e l d s :
2 // p r e c o n d i t i o n s o f type { c o n d i t i o n s }
3 // p o s t c o n d i t i o n s o f type { c o n d i t i o n s }
4 // C: a l l the cur rent v a l i d cond i t i ons ,
5 // i n i t i a l l y C = { i n i t i a l c o n d i t i o n s }
6
7 reachab l eCond i t i ons (R, C)
8 modi f i ed := true
9 whi l e (R != Empty && modi f i ed = true) {

10 modi f i ed := f a l s e
11 newConditions := EmptySet
12 // we want to update C only a f t e r scanning a l l the r u l e s in R
13 fo r each r in R {
14 i f (r . p r e c o n d i t i o n s in C) {
15 modi f i ed := true
16 R. remove (r)
17 newConditions . add (r . po s t cond i t i on)
18 }
19 }
20 C := C ‘ union ‘ newConditions
21 }
22 return C

Figure 4.1.1. high level algorithm to compute reachable conditions

⊥ is a special minimal subset set. For any minimal subset set S, the union of ⊥ and

S is ⊥.

Example 4.2.2. {{1, 2}, {2, 3}} is a minimal subset set while {{1}, {1, 2}} is not

because {1} ⊆ {1, 2}. �

Definition 4.2.3. Minimization

µ is a unary operator that takes a set of sets S as input and it returns the minimal

subset set µ(S) of S such that

34

Chapter 4.

v ∀si, sj ∈ µ(S). si ⊆ sj ↔ si = sj

v ∀s′ ∈ µ(S).∃s ∈ S.s′ ⊆ s

v ∀s ∈ S. ((¬∃s′ ∈ S.s′ ⊂ s)→ s ∈ µ(S)) �

The first condition ensures that µ(S) is a minimal subset set. The second condition

ensures that µ(S) does not contain any excess element, i.e., elements that are not

subset of any set in S. The third condition ensures that µ(S) includes any element

of S that is not proper subset of another element of S. All the three conditions

together ensures the uniqueness of µ(S). For example, without the third condition,

µ({{1, 2}, {1, 3}}) could have been {}, {{}}, {{1}}, {{1}, {2}, {3}} or {{1}, {3}}.

If S contains s1 and s2 where s1 ⊆ s2, then only s1 belongs to µ(S). The operator

µ is introduced only to define the operators subset union ⊕ and subset product ⊗.

Definition 4.2.4. Subset union ⊕

The subset union is an n-ary commutative and associative operator that takes min-

imal subset sets as arguments and returns a minimal subset set. It is defined as

follows:

v S ⊕ S = S

v S ⊕ ∅ = S

v S ⊕⊥ = S

v S1 ⊕ S2 ⊕ ...⊕ Sn = µ(S1 ∪ S2 ∪ ... ∪ Sn) �

Example 4.2.5. Example applications of the subset union operator.

v {{1}, {2, 3}} ⊕ {{2, 3, 4}, {5}} = {{1}, {2, 3}, {5}}

v {{2, 4}, {3}}⊕{{1}, {2, 3}}⊕{{2, 5}, {4, 5}, {1, 3}} = {{2, 4}, {3}, {1}, {2, 5}, {4, 5}}

�

35

4.2. Phase II: Backward Generation of the Complex Attack Set

Definition 4.2.6. Subset Product ⊗

The subset product ⊗ is an n-ary commutative and associative operator that takes

minimal subset sets as arguments and returns a minimal subset set. It is defined as

follows:

v S ⊗ S = S

v S ⊗ ∅ = S

v S ⊗⊥ = ⊥

v S1 ⊗ S2 = µ(S1 × S2) where A×B = {a ∪ b : a ∈ A ∧ b ∈ B}

v S1 ⊗ S2 ⊗ ...⊗ Sn = µ(S1 × S2 × ...× Sn) �

Example 4.2.7. Example applications of the subset product operator.

v {{1}, {2, 3}} ⊗ {{2, 4}, {3}} = {{1, 2, 4}, {1, 3}, {2, 3}} = {{2, 4}, {3}} ⊗
{{1}, {2, 3}}

v {{2, 4}, {3}}⊗{{1}, {2, 3}}⊗{{2, 5}, {4, 5}, {1, 3}} = {{1, 2, 4, 5}, {1, 3}, {2, 3, 5}}

�

Definition 4.2.8. The condition graph

A node is a triple < n,ExcludedConditions, IncludedConditions > where

v n is either a single condition or a single rule. This implies that there are

two kinds of nodes: condition nodes and rule nodes

v ExcludedConditions and IncludedConditions are both sets of conditions

36

Chapter 4.

There is a special node ⊥ .

A condition graph is a quintuple < N, root, C0,C,→>where

v N is a set of nodes

v root is the node < g, {g}, {} > where g is the goal of the attacker. The root

node is a condition node. For simplicity, we consider the case where the goal

is a single condition. When there are several goal conditions g1, g2, ..., gk , an

extra rule rg : g1, g2, ..., gk → g will be added where the new goal condition

will be g.

v C0 is the set of initial conditions

v C is the set of reachable conditions computed in phase I

v →⊆ N×N is a reachability relation. There are three cases to be considered:

� case 1. from a condition node to a rule node

This relation describes how the condition c can be obtained. In par-

ticular, the descendant nodes of c correspond to rules that have c as

their postcondition

nc → nr where

∗ nc is a condition node < c,X, I >

∗ nr is a rule node < r,X, I >

∗ c is the postcondition of r

∗ r.preconditions is the set of all the preconditions of r

∗ r.preconditions ⊆ C

� case 2. from a rule node to a condition node

This relation describes when a rule r is applicable. In particular, the

descendant nodes of r correspond to the preconditions of r

nr → nc where

∗ nr is a rule node < r,X, I >

∗ nc is a condition node < c, X ∪ {c}, I ∪ r.preconditions\{c} >
∗ c is a precondition of r

∗ c /∈ X ∪ C0 ∪ I , the reason for introducing this condition will

be discussed in Sect. 4.2.2

37

4.2. Phase II: Backward Generation of the Complex Attack Set

� case 3. from a rule node to a special node ⊥
nr → ⊥ where

∗ nr is a rule node < r,X, I >

∗ ∃c ∈ r.preconditions. c ∈ X

This is the case where the current path in the condition graph repre-

sents a complex attack α that is covered by another complex attack α′.

In this case, if Ra represents the set of rules that take part in a complex

attack a, then Rα′ ⊂ Rα. Therefore, there is no need to further explore

this path. �

With respect to the multiple prerequisite graph [12] , the condition graph has a tree

structure because all the paths are acyclic. The condition graph is not exhaustive

[22] but it does cover all the complex attacks.

Example 4.2.9. An example condition graph. The configuration:

v the rules

� r1 : 1→ 2

� r2 : 2→ 3

� r3 : 3→ 6

� r4 : 1, 3→ 4

� r5 : 4→ 2

� r6 : 5→ 4

v the initial conditions are 1 and 5

v the goal condition is 6

The condition graph for this configuration is shown in Fig. 4.2.1. We have that

nr4 → ⊥ as 3 ∈ r4.preconditions and n3 ∈ Xnr4
= {2, 3, 4, 6} according to Def.

4.2.11. There is no need to further explore this path because, as we shall see in Sect.

4.2.2 , no condition needs to be obtained twice. Hence, for any complex attack α the

contains two elementary attacks with the same postcondition, there exists another

complex attacks α′ which covers α. Formally, ∀complex attack α.

((∃r1, r2 ∈ Rα.r1 6= r2 ∧ r1.postcondition = r2.postcondition)→ ∃α′.Rα′ ⊂ Rα)

38

Chapter 4.

Figure 4.2.1. The condition graph.

Whereas ⊥ is not a successor of nr6 as the only precondition of r6 is 1, which is not

element of Xnr6
= {2, 3, 4, 6}. The generated complex attack set Ω is

{{r1, r2, r3} , {r6, r5, r2, r3}}. �

Example 4.2.10. An example attack graph as described in Chapt.2 would generate

the graph in Fig.4.2.2 with the same configuration as in Ex. 4.2.9. If we neglect

cyclic paths, this attack graph contains the following complex attacks:

v r1, r2, r3

v r1, r2, r4, r3

v r1, r2, r6, r3

v r1, r6, r2, r3

v r6, r1, r2, r3

v r6, r5, r2, r3 �

39

4.2. Phase II: Backward Generation of the Complex Attack Set

Figure 4.2.2. An example attack graph as described in Chapt.2.

We observe that for each complex attack α in Ex. 4.2.10, there exists an element

in the complex attack set Ω generated through the condition graph that is a subset

of α. Therefore, any set of countermeasures that stops all the complex attacks in Ω

stops all the complex attacks generated through the attack graph as well.

The algorithm 4.2.16 computes the complex attack set Ω that covers all the complex

attacks. It is a depth-first visit to the implicitly constructed condition graph. The

complex attack set Ω is built from the graph by propagating upwards an output

from each node, up to the root node, whose output will be the complex attack set

Ω.

4.2.1. Output propagation

The output of a node is computed by applying the following rules:

v The output of a node without any out-going edge is the empty set {}

40

Chapter 4.

v The output of the special node ⊥ is ⊥1

v The output of a condition node nc is o1 ⊕ ...⊕ ok where

� oi = {{ri} ∪ p : p ∈ ni.output} in the usual set builder notation. If

ni.output = {} then oi = {{ri}}.

� n1, ..., nk are the successors of nc

� ni =< ri, X, I > for i = 1..k

� ni.output is the output of the node ni , for i = 1..k

v The output of a rule node nr is n1.output⊗ ...⊗ nk.output where n1, ..., nk

are the successors of nr.

Definition 4.2.11. Set of excluded conditions X

The set of excluded conditions X paired with a node n are the conditions represented

by itself or by the direct/indirect parent nodes of n. This parameter is required

to guarantee that for each rule node nr, nc is a descendant of nr only if c is a

precondition of r and that c does not belong to nr.X. The set of excluded conditions

of a node is inherited from those of its parent as follows:

v from a rule node to a condition node nr → nc : nc.X = nr.X ∪ {c}
v from a condition node to a rule node nc → nr : nr.X = nc.X

where the notation n.X denotes the set of excluded conditions paired with the node

n. �

Example 4.2.12. The set of excluded conditions X paired with the node 4 in Fig.

4.2.1 is {2, 3, 4, 6}. �

The following definition closely resembles Def. 4.2.11.

1The first ⊥ denotes the special node; the second ⊥ denotes the special minimal subset set.

41

4.2. Phase II: Backward Generation of the Complex Attack Set

Figure 4.2.3.

Definition 4.2.13. Set of included conditions I

The set of included conditions I paired with a node n are the conditions represented

by the sibling nodes either of itself or of the direct/indirect parent nodes of n. This

parameter is introduced to ensure that, for each condition node nc, nc is a descendant

of a rule node nr only if c does not belong to nr.I. The set of included conditions

of a node is inherited from those of its parent as follows:

v from a rule node to a condition node nr → nc : nc.I = nr.I∪ r.preconditions\{c}
v from a condition node to a rule node nc → nr : nr.I = nc.I

where the notation n.I denotes the set of included conditions paired with the node

n. �

42

Chapter 4.

Example 4.2.14. The set of included conditions I paired with the condition node

4 in Fig. 4.2.3 is {7, 8, 9, 10} where the conditions 9 and 10 are represented by the

sibling nodes of the condition node 4 and the conditions 7 and 8 are represented by

the sibling nodes of the ancestor condition node 3. �

The algorithm 4.2.16 generates the complex attack set Ω by

v visiting the condition graph

v building Ω in parallel

The creation of each condition node in the condition graph corresponds a recursive

application of the function f .

Definition 4.2.15. Reachability index

A reachability index is a function that maps a condition c into the set of rules that

have c as their postconditions. �

This index

v can be constructed in O(|R|) time where |R| is the cardinality of R

v does not change during the recursive application of algorithm

Algorithm 4.2.16. Complex Attack Set Generation (goals, C0, C, index)

1. result← {}
2. if (!goals ⊆ C0 ∧ goals ⊆ C)

3. foreach g in goals

4. result←result⊗f(g, {g}, goals\{g}, C0, C, index)

5. return result

f(c, X, I, C0, C, index)

1. result← {}
2. predecessors← index.get(c)

3. foreach r in predecessors

43

4.2. Phase II: Backward Generation of the Complex Attack Set

4. p← r.preconditions\(C0 ∪ I)

5. if p = ∅
6. result← result⊕ {{r}}
7. else if (p ⊆ C ∧ p ∩X = ∅)
8. subpaths← {}
9. foreach c′ in p

10. subpaths← subpaths⊗f(c′, X ∪ {c′}, I ∪ p\{c′}, C0,C, index)

11. if subpaths = ⊥
12. break

13. result← result⊕ {{r} ∪ e : e ∈ subpaths}
14. if result = {}
15. return ⊥
16. else

17. return result

The algorithm inputs are:

v a set of reachable conditions C generated in phase I

v a set of initial conditions C0

v a condition c, it corresponds to a condition node nc in the condition graph

v a set of excluded conditions X paired with nc

v a set of included conditions I paired with nc

v a reachability index

The code for Complex Attack Set Generation operates as follows:

v the initial call to the function Complex Attack Set Generation creates the

root node of the condition graph

v result is the output of the root node, that is, the complex attack set

v line 2 considers the following special cases:

� the set of goals is a subset of the set of initial conditions

� the set of goals contains an unreachable condition

In either case, the algorithm terminates and returns the empty set. In the

first case there is no set of countermeasures that can stop all the complex

attacks. In the second case, instead, there is no feasible complex attack.

v line 3-4 compute the output of the root node. The descendant nodes of the

root node ng are condition nodes, each representing one of the subgoals.

44

Chapter 4.

The output of a descendant node nc is the complex attack set to reach the

subgoal c. The output of the root node is the subset product of the outputs

of its descendant nodes.

f is an auxiliary function recursively defined. Each call to the function f creates a

condition node nc in the condition graph.

v line 1 initializes the output of nc

v line 2 gets the list of rules that have c as their postconditions

v line 3-13 generate descendant rule nodes of nc and update the output of nc

v line 14-17 return the output of nc. In particular, line 14-15 represent the

special case discussed in Sect. 4.2.1

v each cycle of the for loop of line 3-13 creates a new rule node nr

v line 5-6 represent the case where there is no out-going edges from the rule

node nr according to Def. 4.2.8, as the set of the preconditions of r is a

subset of the union C0 and I

v line 7-13 create descendant condition nodes of nr by calling the function f

recursively

v line 11-12 is the short-circuit evaluation of the operator subset product as

defined in Def. 4.2.6. According to the definition in Sect. 4.2.1, the output

of nr is n1.output⊗ ...⊗ nk.output where n1, ..., nk are descendant nodes of

nr. This is the case when the output of one of the descendant nodes is ⊥.

v line 13 computes the output of nr

4.2.2. Correctness

The algorithm is correct if it returns a complete complex attack set. To begin with

we observe two properties of a generic complex attack:

Property 1. No rule needs to be applied twice in a complex attack.

The existence of a complex attack path a1 ≡ s0
r1→ s1 → · · ·

ri→ si → · · · → sj
ri→

sj+1 → sj+2 · · · → sfinal , where the rule ri is applied twice, implies that sj = sj+1

because of the monotonicity assumption. Therefore, any countermeasure that stops

a2 ≡ s0
r1→ s1 → · · ·

ri→ si → · · · → sj → sj+2 → · · · → sfinal , which is the same as

45

4.2. Phase II: Backward Generation of the Complex Attack Set

a1 except that ri is applied once only, stops also a1.

Property 2. No condition needs to be obtained twice.

This property

v is true in our case as rules are split as single postcondition rules

v does not hold in general, when a rule can have several postconditions as

shown in Ex. 4.2.17.

v is a further consequence of monotonicity. If we group rules with the same

postcondition together, at most one rule from each group is necessary for

any complex attack. An example is shown in Ex. 4.2.18.

Example 4.2.17. This example shows that the property “no condition needs to be

obtained twice” does not hold in general.

Rules:

v r1 : 1, 2→ 3, 4

v r2 : 6→ 3, 5

v r3 : 4, 5→ 8

v r4 : 7→ 1, 6

Initial conditions: {2, 7}
Goal : {8}

Possible complex attack sequences are [r4, r2, r1, r3] and [r4, r1, r2, r3]. Both require

more than one rule from the group of rules that have 3 in their postconditions. �

Example 4.2.18. This example explains why a complex attack requires at most one

rule from each group.

Consider a complex attack a that contains two different rules r1, r2 with the same

postcondition. a is defined as

a ≡ s0 → s1 → s2 → · · · → si → si+1 → · · · → sfinal

a can be partitioned into two subpaths

46

Chapter 4.

a′ ≡ s0 → · · · → si

a” ≡ si → si+1 → · · · → sfinal

such that r1 ∈ Ra′ and r2 ∈ Ra” where Ra′ and Ra” are the set of rules that take part

in, respectively, a′ and a”. The existence of a implies the existence of a complex

attack b ≡ s0 → s1 → s2 → · · · → si → s′i+1 → · · · → s′final and that b can be

partitioned into two subpaths b′ ≡ s0 → · · · → si and b” ≡ si → s′i+1 → · · · → s′final
such that:

v a′ = b′

v Ca′ is the set of postconditions of the rules in Ra′

v Rb” is the set of rules that take part in b”

v Cb” is the set of postconditions of the rules in Rb”

v Cb” ∩ Ca′ = ∅

v Rb” ⊆ Ra”

Therefore, any countermeasure that stops the complex attack b also stops the com-

plex attack a. �

The search of the Complex Attack Set Ω starts with the function call

ComplexAttack SetGeneration(goals, C0,C, index) where

v goals is the set of goals of the attacker

v C0 is the set of initial conditions

The condition graph would have contained all the attack paths as in the case of the

goal-based backward graph if

v each condition node nc had one outgoing edge to a rule node nr for each

rule r that has c as its postcondition

v each rule node nr had one outgoing edge to a condition node nc for each

precondition c of r

Therefore, we consider the difference between the goal-based backward graph and

the condition graph to understand why the latter covers all the attack paths. The

47

4.2. Phase II: Backward Generation of the Complex Attack Set

following cases are those that differ with respect to the goal-based backward graph.

Case 1. Condition node nc ≡< c,X, I >

There is one out-going edge for each rule that has c as its postcondition, except

rules that have at least one precondition that does not belong to the set of reach-

able conditions C. We observe that no complex attack is missed by omitting these

exceptional rules because these rules are not going to be applicable anyway given

that conditions that do not belong to C are not satisfiable.

Another consequence of excluding these rules is that any path explored in the con-

dition graph corresponds to a viable path in the attack graph, where a viable path

is a path from the initial state to a final state. The root node is added to the con-

dition graph if the goal is a reachable condition. The restriction that a rule node

nr is added as a child of a condition node nc only if the preconditions of r are all

reachable ensures that conditions corresponding to the the children nodes of nr are

reachable. For example, we add the edge c → r1 to the graph in Fig. 4.2.4 only if

all the preconditions of r1 are reachable, which implies that c1, ..., cn are reachable,

i.e., there exists some paths in the attack graph s0 → ... → s1, ... , s0 → ... → sn

such that c1 ∈ s1, ..., cn ∈ sn. Under the hypothesis of monotonicity, these paths

cannot be in conflict and therefore, there exists a path s0 → ... → s where ci ∈ s ,

for i = 1..n . By further applying the rule r1, the condition c will become valid. If

c is the goal, then the path s0 → ...→ s
r1→ sfinal is indeed a viable path.

If rules with unreachable conditions were not excluded, the output of the root node

might contain a set that is not a subset of any complex attack, as shown in Ex.

4.2.19.

Case 2. Rule node nr ≡< r,X, I >

There is one out-going edge for each precondition of the rule r, with the exception

of conditions that are elements of C0, of X or of I .

48

Chapter 4.

Figure 4.2.4.

(1) elements of C0

For any complex attack α, a further application of any rule whose postcon-

dition is a initial condition only results in a complex attack α′ such that α

is a subset of α′2. Therefore, there is no need to explore condition nodes in

the condition graph that represent initial conditions.

(2) elements of X

Elements ofX are conditions represented by itself or by some direct/indirect

parents of the node nr. Consider a generic condition c that is a precondition

of r, the fact that c is in X implies that r has to be applied to satisfy c.

In turn, this requires that c is satisfied. Therefore, the complex attack α

represented by the path through nr contains two distinct rules with the same

postcondition c. As we observed that no condition needs to be obtained

twice, the special node ⊥ is assigned as a descendant of nr to represent the

fact that the current path does not need to be further explored, as shown

in Ex. 4.2.20.

The special node ⊥ denotes a path that yields a superfluous complex attack,

this path is nonetheless viable. If we had not added ⊥ as a successor of

nr, then the complex attack set Ω might contain a set s that increases the

complexity of the search of the minimal set of countermeasures without

contributing any useful information because:

2α ⊆ α′ ⇔ r ∈ α→ r ∈ α′

49

4.2. Phase II: Backward Generation of the Complex Attack Set

(a) for any element s′ in Ω different from s, any set of countermeasures

that stops all the complex attacks in Ω\{s} will stop all the complex

attacks in Ω, as shown in Ex. 4.2.21;

(b) if the chosen countermeasure for s is not shared with any other set s′

in Ω, then that countermeasure is not actually necessary and therefore,

the computed set of countermeasures will not be minimal according to

Def. 2.1.19.

(3) elements of I

Elements of I are conditions represented by siblings of itself or of direct

successors of some direct/indirect parents of the node nr. Suppose that:

(a) c is a precondition of r

(b) c is in I

(c) nr′ is the common parent of nr and nc

(d) c1, ..., ck, c are preconditions of r′.

Then, the output of nr′ is unchanged even if we do not add a successor node

that represents the condition c to nr because

v the output of nr′ is given by nc1 .output⊗ ...⊗ nck.output ⊗ nc.output
v for any minimal subset set s, s⊗nc.output = s⊗nc.output⊗nc.output

Example 4.2.19. This example shows that the condition graph cannot include rules

whose preconditions include unreachable conditions. Otherwise, the output of the

root node may contain a set that is not a subset of any complex attack. The

configuration is as follows:

v a single rule r where r.preconditions ={1, 2} and r.postcondition is 3

v goal = {3}
v initial conditions = {1}

If rules that require unreachable conditions as their preconditions were not excluded,

the condition graph would have been:

50

Chapter 4.

We have that

v n2.output= {}
v r1.output = {}
v n3.output = {{r1}}, but {r1} does not correspond to any complex attack

since no attack is possible. �

Example 4.2.20. This example shows why a path that terminates with the special

node ⊥ does not need to be further explored.

The node relative to r4 is nr4 =< r4, {1, 2, g}, {} >. Suppose that the rules are:

r1 : c1 → g

r2 : c2 → c1

r3 : c5 → c1

r4 : c1, c7 → c2

51

4.2. Phase II: Backward Generation of the Complex Attack Set

and C0 = {c5, c7}.

The algorithm adds ⊥ as a successor of nr4 as r4.preconditions ∩ {1, 2} 6= ∅. We

can see that the path r1, r2, r4, r3 is actually viable

{c5, c7}
r3→ {c1, c5, c7}

r4→ {c1, c2, c5, c7}
r2→ {c1, c2, c5, c7}

r1→ {c1, c2, c5, c7, g}.

As r2, r3 have the same postcondition c1, we know that there exists another com-

plex attack α′ which is a subset of {r1, r2, r3, r4}. In fact, the complex attack set

Ω includes {r1, r3} that covers {r1, r2, r3, r4}. Therefore, there is no need to further

explore the node nr4 . �

Example 4.2.21. This example shows that if the special node ⊥ is not used, then

the complex attack set may contain an excess element and, as a consequence, the

set of countermeasures is no more minimal.

The configuration is as follows:

v the rules:

r1 : c1 → g

r2 : c2 → c1

r3 : c3 → c1

r4 : c1, c7 → c2

v initial conditions = {c3, c7}, goal = {g}

If the special node ⊥ is not used, then we have:

52

Chapter 4.

nr4 .output = {}
nc2 .output = {{r4}}
nr2 .output = {{r4}}
nc1 .output = {{r2, r4}, {r3}}
nr1 .output = {{r2, r4}, {r3}}
ng.output = {{r1, r2, r4}, {r1, r3}}

The complex attack covered by {r1, r2, r4} is r3r4r2r1, which is also covered by

{r1, r3}. Therefore, the set {r1, r2, r4} does not provide additional useful informa-

tion to the complex attack set {{r1, r3}}. Furthermore, if the countermeasure cr2 is

chosen as the countermeasure for {r1, r2, r4} and the countermeasure cr1 is chosen

as the countermeasure for {r1, r3}, then the set of countermeasures {cr2 , cr1} is not

minimal, because by eliminating cr2 the set {cr1} is still complete. �

4.2.3. Complexity

The worst case time complexity is O(p ·m+ |R|) where

v p is the number of complex attack paths in the attack graph;

v m is defined as max
α∈p
|α| where α is the complex attack path that involves

the largest number of rules;

v |R| is the total number of rules.

The complexity is output sensitive. As every path in the condition graph corresponds

to at least one attack path in the attack graph and there are no two paths in the

condition graph that correspond to the same attack sequence, therefore, p ·m is the

largest number of generated condition nodes.

4.3. Safeguard Selection

This section discusses the strategy to select countermeasures.

53

4.3. Safeguard Selection

After computing the complex attack set Ω, the remaining problem to be considered

is the selection of a set of countermeasures Σ that stops all the complex attacks.

A set of countermeasures Σ stops all the complex attacks if and only if for each

set ω in the complex attack set Ω, at least one element of ω belongs to the set of

countermeasures Σ. This problem can be modeled as an integer linear programming

problem (ILP). As proved in Sheyner et al. [22], the problem of choosing the min-

imal set of countermeasures is NP-complete. By modeling the problem as an ILP,

we can leverage recent advances in integer programming methods. In particular, we

can exploit the fact that we are interested in finding a solution, not necessarily the

optimal one.

Even if the minimal set of countermeasures is complete, it is not always possible to

adopt all those countermeasures under budgetary constraints. Therefore, a further

selection of a subset is necessary such that the sum of their costs is within the budget.

In order to stop all the complex attacks, the rules corresponding to countermeasures

excluded from the subset should be inactivated via some alternative means. For

example, by inserting a rule in the security policy that forbids the execution of an

application. This subset selection problem can be modeled as a linear knapsack

problem.

4.3.1. The Model

4.3.1.1. Decision variables

Let x1, ..., xn be the decision variables where

v n is the total number of countermeasures

v xi ∈ {0, 1}, i = 1..n

v xi = 0 if the countermeasure associated with xi is adopted; xi = 1 if the

countermeasure associated with xi is not adopted

54

Chapter 4.

4.3.1.2. Objective function

The objective function to be minimized is defined as
∑
i=1..n

ci(1− xi) where

v x1...xn are the decision variables

v ci is the cost of the countermeasure associated with xi

While the interpretation of the cost depends upon the context, we are interested in

minimizing the cost in any case. Some examples of the interpretation of the cost ci

may be:

v the cost of the implementation of the countermeasure

v the complexity of the implementation

v defined as (1− P (ri)) where

� ri is the rule associated with the countermeasure ci

� P (ri) is the probability of successful application of the rule ri

e.g., if ri represents an attack, then P (ri) is the probability of the

successful execution of that attack

4.3.1.3. Constraints

A constraint is introduced for each element ω of the complex attack set Ω. The

constrains are defined as(∑
i=1..n

Mji · xi
)
≤ bj − 1 j = 1..|Ω| where

v M is the matrix representation of the complex attack set Ω where

� each row of M corresponds to an element of Ω

� each column of M corresponds to a countermeasure

� Mji = 1 if xi is a countermeasure for the rule r where

∗ r ∈ ω

55

4.3. Safeguard Selection

∗ ω corresponds to the row j of M

v bj =
∑
i=1..n

Mji

v n is the total number of countermeasures

v |Ω| is the cardinality of Ω

As an example, the set {r2, r3, r4} in Ω generates the constraint x2 + x3 + x4 ≤ 2,

which requires that at least one of x2, x3, x4 has to be zero.

4.3.1.4. The complete model

minimize
∑
i=1..n

ci(1− xi)

subject to
∑
i=1..n

Mji · xi ≤ bj − 1 j = 1..|Ω|

xi ∈ {0, 1} i = 1..n

Example 4.3.1. This example shows how a model can be created from a complex

attack set Ω. The example configuration is:

v the rules:

� r1 :< {c1}, {c2, c3} >
� r2 :< {c3}, {c2, c4} >
� r3 :< {c3}, {c8} >
� r4 :< {c8}, {c5} >
� r5 :< {c1, c4}, {c5} >
� r6 :< {c7}, {c5} >

v the initial conditions: {c1, c3}

v the goal condition: {c5}

v associations between the rules and the countermeasures:

� countermeasure1 is associated with r1

56

Chapter 4.

� countermeasure2 is associated with r2

� countermeasure3 is associated with r3

� countermeasure4 is associated with r4

� countermeasure5 is associated with r5, r6

v costi is the cost of countermeasurei , for i = 1..5

v xi = 0 if countermeasuresi is adopted, for i = 1..5

The above configuration will yield the complex attack set {{r2, r5}, {r3, r4}}
The problem of finding a minimal set of countermeasures can therefore be modeled

as:

min
∑
i=1..5

costi(1− xi)

x2 + x5 ≤ 2− 1

x3 + x4 ≤ 2− 1

xi ∈ {0, 1} i = 1..5 �

Example 4.3.2. With reference to the example in Sect. 4.5, suppose that the

countermeasure costs for the rules are defined as follows:

v r1 : cost = 5

v r2, r5: cost = 4

v r3, r4, r6, .., r17: cost = 1

v r18: cost = max

Then the problem of finding a minimal set of countermeasures may be modeled as

min
∑

i=1..18

costi(1− xi)

x1 + x2 + x5 + x9 + x12 + x18 ≤ 5

x1 + x2 + x5 + x10 + x12 + x15 + x18 ≤ 6

x1 + x2 + x5 + x9 + x13 + x15 + x18 ≤ 6

x1 + x2 + x5 + x10 + x13 + x15 + x18 ≤ 6

57

4.4. Complete example 1

xi ∈ {0, 1} i = 1..18

The computed minimal set of countermeasures for this problem is {x12, x15}, which

means that we should inactivate r12 and r15. �

4.3.2. Countermeasures within budget

After computing a minimal set of countermeasures for each threat profile, a subset

of the minimal set is selected if

v there is a budget defined for that threat profile

v the total cost of countermeasures in the minimal set exceeds the budget

The problem of choosing this subset is modeled as a linear knapsack problem and

is solved using dynamic programming in pseudo-polynomial time [21].

4.4. Complete example 1

This example is based on an example in Sheyner et al. [22].

As shown in Fig. 4.4.1, the network configuration includes three hosts IP1, IP2, IP3.

The intruder launches attacks from the host IP1. The instantiated conditions are

v c1, c2, c3: user-level privileges on IP1, IP2, IP3, respectively

v c4, c5, c6: root-level privileges on IP1, IP2, IP3, respectively

v c11 : sshd running on IP2

v c12, c13: the presence of ftp vulnerabilities on IP2, IP3, respectively

v c15, c16 : the presence of buffer overflow vulnerabilities on IP2, IP3, respec-

tively

v c32, c33, c34: remote login relationship between IP1 and IP2, IP1 and IP3,

IP2 and IP3, respectively

58

Chapter 4.

Figure 4.4.1. The example network configuration

v c21: possibility to connect to IP2 on the sshd port

The set of initial conditions C0 is {c4, c12, c21, c13, c16, c11} . The goal of the attacker

is to gain root-level privileges on IP3 that would enable him to compromise the

database, therefore, goal ={c6}. The rules represent:

v dependencies that express that whoever has root-level privileges on a host

has also user-level privileges on that host.

� r1 : c4 → c1

� r2 : c5 → c2

v the sshd buffer overflow attack whose preconditions are the presence of ftp

vulnerability on a host t, user-level privileges on a host a, the possibility to

connect to t on the sshd port. The postcondition is root-level privileges on

t.

� r3 : c1, c11, c21 → c5

� r4 : c3, c11, c21 → c5

v the ftp .rhosts attack whose preconditions are the presence of the ftp vulner-

ability on a host t and user-level privileges on a host a. The postcondition

is the establishment of a remote login relationship between a and t.

� r5 : c1, c13 → c33

� r6 : c1, c12 → c32

59

4.4. Complete example 1

� r7 : c2, c13 → c34

� r8 : c3, c12 → c34

v the remote login attack which uses an existing remote login trust relation-

ship between two hosts to gain user-level privileges on the other host with-

out supplying a password.

� r9 : c32 → c2

� r10 : c33 → c3

� r11 : c34 → c3

v the local buffer overflow attack whose preconditions are user-level privileges

on host t and the presence of buffer overflow vulnerability on host t . The

postcondition is root-level privileges on t.

� r12 : c2, c15 → c5

� r13 : c3, c16 → c6

The set of reachable conditions C that is generated by applying the algorithm 4.1.1

is {c1, c2, c3, c4, c5, c6, c11, c12, c13, c16, c21, c32, c33, c34}. The condition graph implicitly

visited by the algorithm is shown in Fig.4.4.3. The complex attack set that is com-

puted is {{r1, r5, r10, r13}, {r1, r2, r3, r7, r11, r13}, {r1, r6, r7, r9, r11, r13}} .

Fig.4.4.4 shows a partial attack graph for the same configuration. The number of

condition nodes in the condition graph is much lower than the number of states in

the attack graph. This is due to the lower amount of information contained in the

condition graph. In particular, paths in the condition graph are not complex attack

sequences as in the case of an attack graph, as shown in Ex. 4.4.1.

Example 4.4.1. This example shows that paths in the condition graph are not com-

plex attack sequences, instead they represent sets of rules that cover some complex

attacks. The configuration is as follows:

v the rules:

� r1 : c2, c3, c4 → cg

� r2 : c3, c4 → c2

� r3 : c10 → c3

� r4 : c11 → c4

60

Chapter 4.

Figure 4.4.2. The condition graph

v the initial conditions are c10 and c11; the goal is cg

The condition graph is shown in Fig. 4.4.2. The path cg → r1 → c2 → r2 is not

a complex attack sequence because the goal cannot be reached by applying r1 and

r2 alone. However, the path does cover the complex attack r1, r2, r3, r4 because

{r1, r2} ⊆ {r1, r2, r3, r4}. �

4.5. Complete example 2

The previous example has shown that the condition graph is much smaller than the

attack graph. This example will show the advantage of the condition graph over the

goal-based backward graph and it is based upon an example in Sheyner and Wing

[23]. The network configuration is shown in Fig. 4.5.1.

There are four hosts IP1, IP2, IP3, IP4. The intruder launches attacks from the host

IP1. The instantiated conditions are defined as follows:

Connectivity related:

v c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25 : physical connectivity between

hosts IP1 and IP1 , IP1 and IP2 , IP2 and IP1, IP2 and IP2, IP2 and IP3,

61

4.5. Complete example 2

Figure 4.4.3. The complete condition graph

IP2 and IP4, IP3 and IP2, IP3 and IP3, IP3 and IP4, IP4 and IP2, IP4

and IP3, IP4 and IP4, respectively

v c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36 : the ability to connect to port 80

between hosts IP1 and IP1, IP1 and IP2, IP2 and IP2, IP2 and IP3 , IP2

and IP4, IP3 and IP2, IP3 and IP3, IP3 and IP4, IP4 and IP2, IP4 and

IP3, IP4 and IP4, respectively

v c37 − c44 : the ability to connect to port 5190 between hosts IP2 and IP3,

IP2 and IP4, IP3 and IP4, IP4 and IP3, and between hosts IPi and IPi for

i = 1..4

Privileges related:

v c8, c7, c6, c53: root-level privileges on host IP1, IP2, IP4, IP3, respectively

v c9, c10, c11, c12 : user-level privileges on host IP2, IP4, IP1, IP3, respectively

62

Chapter 4.

Services related and others:

v c1: a vulnerable version of IIS web service running on IP2

v c2 : a vulnerable version of Squid proxy running on IP4

v c3 : a vulnerable version of Licq running on IP4

v c4: HTML scripting is enabled on IP3

v c5: at executable vulnerable to overflow on IP4

v c13 : the intruder has performed a port scan on the target network

The set of initial conditions C0 is {c1, c2, c3, c4, c5, c8} ∪ {ci : i = 14..44}. The goal

of the intruder is to gain root-level privileges on IP4 to compromise the database,

therefore, goal = {c6}. The rules describe:

v dependencies expressing that whoever has root-level privileges on a host

has also user-level privileges on that host

� r1 : c8 → c11

� r2 : c7 → c9

� r3 : c6 → c10

� r4 : c53 → c12

v the IIS buffer overflow attack. The attack preconditions are user-level priv-

ileges on a host s, that a vulnerable version of IIS web service is running on

IP2 and that IP2 is reachable from s on port 80. The attack postcondition

is root-level privileges on IP2.

� r5 : c11, c1, c27 → c7

� r6 : c9, c1, c28 → c7

� r7 : c12, c1, c31 → c7

� r8 : c10, c1, c34 → c7

v the Squid port scan attack whose preconditions are user-level privileges on

a host s, that a vulnerable version of Squid proxy is running on IP4 and

that IP4 is reachable from s on port 80. The attack postcondition is the

condition that the intruder has performed a port scan on the target network.

� r9 : c30, c9, c2 → c13

� r10 : c33, c12, c2 → c13

63

4.5. Complete example 2

� r11 : c36, c10, c2 → c13

v the Licq remote to user attack. The attack preconditions are user-level priv-

ileges on a host s, that a vulnerable version of Licq is running on IP4, that

IP4 is reachable from s on port 5190 and that the intruder has performed

a port scan on the target network. The attack postcondition is user-level

privileges on IP4.

� r12 : c40, c9, c13, c3 → c10

� r13 : c42, c12, c13, c3 → c10

� r14 : c44, c10, c13, c3 → c10

v the remote-to-user attack. The attack preconditions are user-level privileges

on a host s, that HTML scripting is enabled on IP3 and that IP3 is reachable

from s on port 80. The attack postcondition is user-level privileges on IP3.

� r15 : c31, c9, c4 → c12

� r16 : c32, c12, c4 → c12

� r17 : c33, c10, c4 → c12

v the local buffer overflow attack. The attack preconditions are user-level

privileges on a host IP4 and that a vulnerable at executable is running on

IP4. The attack postcondition is root-level privileges on IP4.

� r18 : c10, c5 → c6

The set of reachable conditions C is generated in six iterations by applying the

algorithm in Fig. 4.1.1. The sets of reachable conditions generated in each iteration

are shown below:

{c1, c2, c3, c4, c5, c8, c14, ..., c44}

r1→ {c1, c2, c3, c4, c5, c7, c8, c14, ..., c44}

r2,r5→ {c1, c2, c3, c4, c5, c7, c8, c9, c11, c14, ..., c44}

r6,r9,r15→ {c1, c2, c3, c4, c5, c7, c8, c9, c11, c12, c13, c14, ..., c44}

r7,r10,r12,r13,r14,r16→ {c1, c2, c3, c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, ..., c44}

r8,r11,r17,r18→ {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, ..., c44}

r3→ {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, ..., c44}

64

Chapter 4.

The condition graph implicitly constructed and visited by the algorithm is shown

in Fig. 4.5.2. The shaded nodes corresponds to recursive calls to the function f ,

sixteen condition nodes are generated in this example. The computed Complex At-

tack Set is {{r1, r2, r5, r9, r12, r18}, {r1, r2, r5, r10, r12, r15, r18},
{r1, r2, r5, r9, r13, r15, r18}, {r1, r2, r5, r10, r13, r15, r18}}.

The complete goal-based backward graph for the same network is too large to be

shown here. We describe some of the pruned branches of the condition graph with

respect to the goal-based backward graph.

v the node n1 would have the subtree rooted at n2 as its successor

v the node n4 would have the subtree rooted at n3 as its successor

v the node n6 would have the subtree rooted at n5 as its successor

v the node n8 would have the subtree rooted at n7 as its successor

The graphical representation of the condition graph is not part of the final output

as it does not help comprehension of attack scenarios because paths in the condition

graph are not complex attack sequences.

65

4.5. Complete example 2

Figure 4.4.4. Part of the attack graph (the nodes at the bottom-
most level are still to be expanded)

66

Chapter 4.

Figure 4.5.1. The example network configuration

67

4.5. Complete example 2

Figure 4.5.2. The condition graph, the nodes labeled “ ” are the
special nodes ⊥.

68

Chapter 5

Attack Graph Toolkit

We have implemented a toolkit to help defending large networks from intelligent

threats by suggesting a minimal set of countermeasures, whose application would

stop the threats from achieving their goals. An threat is intelligent if it is goal-

oriented [10]. We assume that the result of the threat analysis of the infrastructure

is available. In particular, both the goals of the intelligent threats and the resources

at their disposal are known. The toolkit has been designed to be used as a backend

in combination with a frontend and the overall architecture is shown in Fig. 5.0.1.

The frontend analyzes a network and collects information from vulnerability scan-

ners, firewall rules and vulnerability databases. It should also provide a user inter-

face where users specify connectivities of the network and dependencies among the

network components. The connectivities and the dependencies should be relatively

static in time whereas the vulnerability information is more dynamic in nature but

it is more readily collectible automatically. After collecting the input data, the most

complex part is the enumeration of conditions, which depends upon the chosen de-

tail level. For example, the condition “write access to the folder /usr/local/share

on host A” can be substituted by “control over the integrity of A” when modeling

at a coarser grain level. The implementation of the frontend is out of the scope of

this thesis. Alternative implementations of automatic generation of input data are

explored in [23, 12].

69

Figure 5.0.1. The overall architecture

The infrastructure model is specified in the input file and it describes dependen-

cies, vulnerability instances of network components and threat profiles. A threat

profile is relative to a hypothetical adversary and consists of the identification of

the threat profile, the goals and the initial conditions regarding that adversary. For

each threat profile, the backend generates a Complex Attack Set and a minimal set

of countermeasures. The backend is decomposed into three components:

(1) the Input Parser

(2) the Complex Attack Set Generator

(3) the Countermeasure Selector

The interactions between the three components are shown in Fig. 5.0.2. The backend

is implemented in Java and the three components are structured as three packages.

The input file and the output file define the interface between the backend and the

frontend.

70

Chapter 5. Attack Graph Toolkit

Figure 5.0.2. The interactions between the Input Parser, the Com-
plex Attack Set Generator and the Countermeasures Selector

5.1. The Input File

The input file describes the infrastructure model, which is expressed through:

v rules that describe connectivities of the network, dependencies among the

network components and vulnerability instances of the network compo-

nents. Each rule is characterized by a set of preconditions and a set of

postconditions as described in Sect. 2.1.

v threat profiles, each profile is characterized by:

� an identification of the profile

� a set of goal conditions

� a set of initial conditions

5.1.1. Format of the input file

The input file is a text file. Informally, each line can be

v a comment: a comment can start anywhere in a line and is followed by a

double-slash

v a rule: a rule is specified as preconditions→ postconditions where

� preconditions is a list of zero or more conditions, separated by commas

if there are several conditions

71

5.1. The Input File

� postconditions is a list of one or more conditions, separated by commas

if there are several conditions

� a rule can optionally be prefixed by:

∗ a non-negative real number within parentheses that represents

the cost of the countermeasure relative to that rule.

∗ the symbolic value max within parentheses that implies that

there is no countermeasure available for that rule. Therefore,

if the recommended set of countermeasures includes a counter-

measure whose cost is max, no set of countermeasures can stop

all the complex attacks.

When a rule is not prefixed by neither a real number nor the value

max, then the default cost applies. This cost is specified as a variable.

When the default cost variable is undefined, the value 1.0 is used. Some

example rules are shown in Ex. 5.1.1

v a list of rules: more than one rule may be listed on the same line, separated

by semicolons. A single countermeasure, which is associated with all the

rules listed on the same line, stops all or none of the rules.

v a definition of a variable: any line prefixed by # defines a variable. There

are four kinds of variables

(1) default countermeasure cost: it is specified as

#default = RealNumber whereRealNumber can be any non negative

real number.

e.g., #default = 2.3

If the input file does not define the default cost, then the cost 1 is used.

(2) goal conditions: The set of goal conditions can be specified as

#goal(Name) = Conditions where

(a) Name is an identifier of a threat profile

(b) Conditions is a list of one or more conditions, separated by com-

mas and enclosed in curly braces

(3) initial conditions: The set of initial conditions can be specified as

#init(Name) = Conditions where

(a) Name is an identifier of a threat profile

72

Chapter 5. Attack Graph Toolkit

(b) Conditions is a list of zero or more conditions, separated by

commas and enclosed in curly braces

(4) budgets: The budget for countermeasures can be specified as

#budget(Name) = RealNumber where

(a) RealNumber can be any non negative real number

(b) Name is an identifier of a threat profile

When this variable is undefined for a threat profile, the budget is as-

sumed to be infinite.

For each threat profile, both a set of initial conditions and a set of goal

conditions have to be defined. If the set of initial conditions is missing for

a threat profile, then that profile is not considered. If the set of goal condi-

tions is missing for a threat profile, an error is signaled.

When the same variable is defined more than once, the last definition will

override the previous ones. The redefined definitions will be logged.

Unrecognized lines and white spaces are ignored by the parser. The grammar of the

input file language and an example input file can be found in Appendix A.

Example 5.1.1. Example rules in an input file:

v 1, 2 → 3 represents a rule with the conditions enumerated 1 and 2 as pre-

conditions and the condition enumerated 3 as postcondition. The cost of

the corresponding countermeasure is the default one.

v (2.24) 3 → 2 represents a rule with the condition enumerated 3 as precon-

dition and the condition enumerated 2 as postcondition. The cost of the

countermeasure for this rule is 2.24.

v (max) 1→ 2 represents a rule that does not have a countermeasure. �

73

5.3. The Input Parser

5.2. The Output File

The output file lists the minimal set of countermeasures for each threat profile.

5.2.1. Format of the output file

The output file is a copy of the input file, but where:

(1) rule(s) lines are enumerated, where the enumeration of a line represents the

identification of the countermeasure associated with the rule(s) of that line.

(2) there is a new variable for each threat profile, defined as

#countermeasure(Name) = Countermeasures where

v Name is the identifier of a threat profile

v Countermeasures is a list of the zero or more identifications of coun-

termeasures, separated by commas and enclosed in curly braces.

(3) there is a new variable countermeasuresWithinBudget for a threat profile

p if the total cost of countermeasures exceeds the budget relative to p. This

variable is defined as

#countermeasuresWithinBudget(Name) = Countermeasures

The grammar of the output file language can be found in Appendix A.2.

5.3. The Input Parser

The input parser sequentially parses the input file line by line through the use of

regular expressions and thereby implicitly adopts the default-deny policy discarding

illegal lines. The skeleton of the output file is created during the input file parsing,

because most of the output file is just a verbatim copy of the input one. The output

file will be finalized in a latter stage, when the minimal set of countermeasures for

each threat profile is computed. The input parser is the only interface between

the input file and the other components. Therefore, should the input language be

changed, only the input parser needs to be modified.

74

Chapter 5.

5.3.1. Data structures

(1) Conditions

As we have assumed that all the conditions are enumerated, each condition

is represented as an integer.

(2) A Rule

A Rule is a record with three fields:

v id, an integer. When a rule with n postconditions is split into n rules,

all of these rules will share the same id.

v preconditions, an array of integers.

v postcondition, an integer.

(3) Rules

Rules is an abstract data type that represents a set of rules, internally it is

implemented as a linked list of Rule.

(4) Cost of countermeasures

The variable countermeasureCost is a vector of Double . The (i − 1)th

element is the cost of the rule identified by the id i. When the countermea-

sure cost of a rule is the symbolic value max, the corresponding element of

countermeasureCost is null.

5.3.2. The interface

After parsing the input file, the input parser stores the data in its internal format

in the data structures previously described. Subsequent interactions with the input

parser depend upon the memorized data, any modification to the input file from

this stage on does not affect the computation of the minimal set of countermeasures.

Input Parser interfaces with other components of the backend via following functions:

v int[] getGoal (String id) returns an array of integers that represents the

goal conditions of the threat profile identified by id.

v Double getSumOfCountermeasureCosts () returns the sum of the costs of

all countermeasures, this sum is needed to formulate the problem of finding

75

5.4. The Complex Attack Set Generator

a minimal set of countermeasures as an ILP problem. In particular, the

symbolic value max equals to the value m + 1 where m is the sum of the

costs of all countermeasures.

v int[] getInitCond(String id) returns an array of integers that represents

the initial conditions of the threat profile identified by id.

v int getNumOfRules() returns the total number of rules in the input file.

Though not necessary, this value simplifies the generation of the ILP prob-

lem in the CPLEX LP format.

v Set < String > getNames() returns a set of strings which are identifiers

of the threat profiles.

v Double[] getCountermeasureCost() returns the countermeasureCost vec-

tor converted as an array.

v Rules getRules() returns the set of rules represented in the abstract data

type Rules.

v Double getBudget(String id) returns the budget relative to the threat pro-

file identified by id.

5.4. The Complex Attack Set Generator

The complex attack set generator is the core component of the backend. It commu-

nicates with the input parser to get the input data and it generates a complex attack

set for each threat profile. Then, it formulates the problem of finding a minimal set

of countermeasures for each complex attack set as an integer linear programming

problem (ILP). The formulated problem is saved in an intermediate output file in

the CPLEX LP format [2] .

The complex attack set generator implements the algorithms described in Chapt.

4 to generate a complex attack set. Then the set is passed to the countermeasure

selector.

76

Chapter 5.

5.4.1. Data structures

(1) Reachability Index

The variable reachabilityIndex of type Index is a function that maps a

condition c into a set of rules, which have c as their postcondition. This

data structure can be statically computed. The time and space complexity

are linear in the number of rules. The type Index is implemented through

a hashtable.

(2) Attackability

The variable attackability is a function that maps a string into an integer.

The string identifies a threat profile, whereas the integer is used as an enum

and it can assume one of the three possible values:

v NO ATTACK POSSIBLE

v NO POSSIBLE COUNTERMEASURE

v ATTACK POSSIBLE

NO ATTACK POSSIBLE denotes that, given the initial and the goal

conditions of the threat profile, there is no feasible complex attack that the

threat can implement.

NO POSSIBLE COUNTERMEASURE denotes that the set of goal

conditions is a subset of the initial conditions. In other words, the goal

may be immediately achieved without applying any rule. There may be

other complex attacks that achieve the goal but, even if all of those attacks

are stopped, the goal state is still reachable.

In all the other cases, the value ATTACK POSSIBLE will be associated

with the threat profile.

In the first two cases, the countermeasure selector is bypassed and the

minimal set of countermeasures is empty. The final output file specifies

whether the empty set represents the lack of complex attacks or the lack of

feasible countermeasures.

(3) Complex Attack Set

The variable complexAttackSet of type Paths is a minimal subset set.

The type Paths is an implementation of a minimal subset set as discussed

in Sect. 4.2.

77

5.5. The Countermeasure Selector

5.4.2. The generation of a complex attack set

A high level description of the implementation of the complex attack set generator

is shown in Fig. 5.4.1 where the meaning of most lines should be straightforward,

some lines merit a few comments:

v reachableConditionsGeneration is the function that implements the algo-

rithm in Fig. 4.1.1

v complexAttackSetGeneration is the function that implements the algo-

rithm 4.2.16.

v createModelInCPLEXLP is the procedure that generates the intermedi-

ate output file, which is the minimal cut set problem modeled as an ILP

problem in the CPLEX LP format.

v findCountermeasures is the function that interfaces with the countermea-

sure selector.

v finalizeOutputF ile is the procedure that finalizes the output file by ap-

pending the lines that describe the chosen countermeasures for each threat

profile.

5.5. The Countermeasure Selector

The countermeasure selector is essentially an ILP solver. It takes as input the

intermediate output file in CPLEX LP format and it generates a minimal set of

countermeasures. It is implemented using the GLPK [3] package and it calculates

the optimal solution, i.e., the set of countermeasures with the minimum cost. The

output is a minimal set of countermeasures expressed as an array of boolean values.

The length of the array equals to the number of possible countermeasures and an

element is true if the corresponding countermeasure belongs to the minimal set.

This is an optional component and may be substituted by other ILP solvers. In

particular, as we are interested in finding a solution and not necessarily the optimal

one, an ILP solver that computes a heuristic solution efficiently may be a feasible

alternative.

78

Chapter 5.

1 Parser par s e r := new Parser (i n p u t f i l e)
2 Rules r u l e s := par s e r . getRules ()
3 Index r e a c h a b i l i t y I n d e x := f i l l R e a c h a b i l i t y I n d e x (r u l e s)
4 f o r each id in par s e r . getNames () {
5 Set reachab l eCond i t i ons := reachab leCondi t ionsGenerat ion
6 (ru l e s ,
7 pa r s e r . getIn itCond (id))
8 Paths complexAttacksSet := complexAttackSetGeneration
9 (par s e r . getGoal (id) ,

10 par s e r . getIn itCond (id) ,
11 reachab leCondi t ions ,
12 r e a c h a b i l i t y I n d e x)
13 createModelInCPLEXLP (o u t p u t f i l e , complexAttackSet)
14 i f (pa r s e r . getIn itCond (id) in par s e r . getGoal (id))
15 a t t a c k a b i l i t y . put (id , NO POSSIBLE COUNTERMEASURE
16 e l s e i f (complexAttackSet . isEmpty)
17 a t t a c k a b i l i t y . put (id , NO ATTACK POSSIBLE)
18 e l s e a t t a c k a b i l i t y . put (id , ATTACK POSSIBLE)
19 }
20 St r ing r e s u l t := f indCountermeasures (a t t a c k a b i l i t y ,
21 par s e r . getNames () ,
22 par s e r . getNumOfRules ())
23 f i n a l i z e O u t p u t F i l e (r e s u l t)

Figure 5.4.1. A high level description of the implementation of the
complex attack set generator

The countermeasure selector also implements an algorithm that chooses a subset

from the minimal set of countermeasures so that the total cost of countermeasures

in this subset is within the budget as discussed in Sect. 4.3.2. The problem of

choosing this subset is modeled as a linear knapsack problem as follows:

max Σ
i=1..N

xivi

Σ
i=1..N

xiwi ≤ W

xi ∈ {0, 1},∀i ∈ {1, .., N}

where

v N is the cardinality of the minimal set of countermeasures

v xi = 1 if the corresponding countermeasure is in the subset; xi = 0 otherwise

79

5.5. The Countermeasure Selector

v vi is the cost of the corresponding countermeasure

v wi is the cost of the corresponding countermeasure

v W is the budget

The constraint guarantees that the total cost of countermeasures of the subset does

not exceed the budget. The above chosen semantic meaning of vi implies that we

should spend as much as possible, as long as the expenditure is within the budget.

In other words, we should avoid being skimpy on the selection of the subset. There

are other possible choices of the semantic meaning of vi:

v if vi is defined as 1 for every i, then the preference is to select the largest

subset possible;

v if vi is defined as the probability of the application of the corresponding

rule, then the preference is to stop the more likely complex attacks if no

alternative countermeasure is adopted for the unselected countermeasures;

v if vi is defined as the inverse of the viability of an alternative countermea-

sure that inactivates the corresponding rule(s), then the preference is to

select countermeasures that are unlikely to have alternative solution(s).

However, some of these values are not easily quantifiable and, therefore, they are

not used in the current implementation.

As the countermeasure costs and the budget are non-negative real numbers, they

need to be converted into integers, which can be done by multiplying by 10m, where

m is the maximum number of decimal places among these numbers.

The subset will be empty if the budget is smaller than the cost of the least expensive

countermeasure of the minimal set.

5.5.1. Example 1

This example shows the behavior of the subset selection process and it makes use of

the same example as in Sect. 4.5. In particular, the subset is selected a posteriori to

the selection of the minimal set of countermeasures. In other words, at first we select

a set of countermeasures Σ such that:

v the adoption of these countermeasures stops all the complex attacks;

80

Chapter 5.

v the sum of the costs of these countermeasures is the minimum among those

of alternative complete sets of countermeasures.

Then, we select a subset σm of Σ such that the sum of the attribute1 v corresponding

to the countermeasures in σm is the maximum among those of all the subsets whose

sum of the costs of countermeasures is within the budget. Formally, we select σm

such that ρm = max
i=1..k

{ρi} where

v ρi = Σ
cj∈σi

vj where vj is the value of the attribute v corresponding to the

countermeasure cj, for i = 1..k

v {σ1, ..., σk} is the power set of Σ

The output file can be found in Appendix A.4. Only the output file is shown as the

content of the input file is contained entirely in the output one.

The complex attack set generated is {{1, 2, 5, 8, 12, 18}, {1, 2, 5, 10, 12, 15, 18},
{1, 2, 5, 9, 13, 15, 18}, {1, 2, 5, 10, 13, 15, 18}} and the minimal set of countermeasures

is {12, 13} given the costs in the input file. The total cost of countermeasures in

this set is 10, which exceeds the budget of 8. A subset is selected with preference on

maximizing the expenditure. Therefore, the countermeasure enumerated 13 , whose

cost is 7, is chosen over that enumerated 12, whose cost is 3.

We observe that countermeasures enumerated 1, 2, 5 are common to all the elements

of the complex attack set, which makes them ideal candidates as elements of the

minimal set of countermeasures. However, as their costs are the symbolic value max,

they are not chosen as long as alternative sets of countermeasures are available. The

alternative complete sets of countermeasures are {9, 10}, {9, 15}, {12, 13} , {12, 15},
whose costs are respectively 3 + 8, 3 + 7.7, 3 + 7, 3 + 7.7. Therefore, the set {12, 13}
is chosen. After that, the selection of the subset takes place and the chosen subset

is {13}.

1In this particular case, vi is defined as the cost of the countermeasure i.

81

5.5. The Countermeasure Selector

If these two operations were organized not in cascade, for example, if the subset S

was selected such that the sum of the attribute v of the countermeasures in S is the

minimum among that of other elements in U where U is union of all the power sets

of complete set of countermeasures. Formally, U = {t : t ⊆ T ∧ T ∈ Ψ} and Ψ is

the set of all complete sets of countermeasures. Then, the subset {10} would have

been chosen as the subset. �

5.5.2. Example 2

This example shows the impact of choosing different semantic meanings of vi. Sup-

pose that

v the minimal set of countermeasures is {c1, c2, c3, c4, c5}

v the cost of the countermeasures c1, ..., c5 are 7, 4.5, 3, 9, 1, respectively

v the budget is 17

Then the subset will be:

v {c5, c1, c4} if vi is defined as the cost of ci . In this case, the expenditure is

maximized.

v {c5, c2, c3, c1} if vi is defined as 1, for all the countermeasures. In this case,

a subset of the largest cardinality is preferred.

v {c3, c2, c4} if vi is defined as the probability of the application of the rules

corresponding to the countermeasures and that the probability are

0.5, 0.3, 0.4, 0.7, 0.1. In this case, the preference is to inactivate the more

probable rules.

v {c5, c4, c2} if vi is defined as the inverse of the viability of an alternative

countermeasure relative to ci and that the viability are 5, 4, 10, 2, 5. In this

case, the preference is to choose countermeasures that are unlikely to have

an alternative.

It is up to the user to decide what to do with the leftover countermeasures. For

example, an alternative countermeasure to the removal of a vulnerability may be

to forbid the execution of the corresponding application. If vi is defined as the

82

Chapter 5.

probability of the successful application of the corresponding rule, then the rules

corresponding to the leftover countermeasures may have such a low probability that

the residual risk is acceptable. �

83

Chapter 6

Evaluation

This section presents a set of tests that have been implemented to evaluate the de-

veloped toolkit. The test results are based upon analyses of a simulated network.

All the model networks and their respective parameters are closely based upon Lipp-

man et al. [17]. As the actual collection of input data is not part of this thesis, the

only way to generate a large amount of input data is through a simulated network.

Another reason in favor of considering a simulated network is that each aspect of

the simulated network can be modified so as to investigate the scaling performance

of this toolkit.

The experiments described in this chapter show the scalability of this tool. It is

possible to analyze a complex network through a suitable choice of abstraction level

and network model.

6.1. Network model I: Flat Network

A flat network contains H fully connected hosts with no firewall is shown in Fig.

6.1.1. Each host has 10 open ports, each of which permits access to a single remote-

to-other vulnerability. h% of the hosts have the first remote-to-other vulnerability

replaced with a remote-to-root vulnerability and are therefore compromisable. The

goal of the attacker is to obtain root-level privileges on any of the compromisable

hosts. The attacker can attack all the compromisable hosts, then these compromised

85

6.1. Network model I: Flat Network

Figure 6.1.1. The configuration of a flat network

Figure 6.1.2. Test results of the simulation for a flat network as the
number of hosts varies

hosts can in turn infect other compromisable hosts in the network. The parameters

of interest of the network are H and h . The experiment on the flat model network

uses between 125 and 4000 hosts, of which five percent are compromisable. Fig. 6.1.2

shows the experimental parameters and the data generated. Each row represents

the data generated in a single run. The values of each column have the following

meanings:

v % rootable: the percentage of hosts with remote-to-root vulnerability

v T1: the time used to generate the set of reachable conditions, measured in

milliseconds

v T2: the time used to generate the complex attack set, measured in millisec-

onds

v T3: the time used to generate the minimal set of countermeasures, measured

in milliseconds

v nodes: the number of visited condition nodes in the condition graph

v |R| : the number of rules generated

v |Ω|: the cardinality of the complex attack set

86

Chapter 6.

Figure 6.2.1. Enclave network block diagram

The set of reachable conditions is computed in linear time with respect to the num-

ber of rules. This is due to the fact that the actual complexity of the algorithm in

Fig. 4.1.1 depends upon how many times the list of rules needs to be scanned. If we

assign a value cv to each condition c to represent the minimum number of rules to be

applied to enable c, then the complexity is O(|R| ·max
c∈C
{cv}) where C is the set of all

conditions. In this flat network, for every condition c , a larger number of hosts does

not result in an increase in the minimum number of rules to be applied to enable c.

Therefore, max
c∈C
{cv} remains constant as H varies. The number of nodes generated

shows that the pruning of the condition graph is very effective in this simple example.

In this network, the number of rules explodes as number of hosts grows. We will see

in later sections that by collapsing similar hosts together [12], the number of rules

grows linearly in the number of hosts.

6.2. Network model II: Enclave Network

The enclave model represents a typical network of a medium-sized corporate or a

government site. The network configuration is shown in Fig. 6.2.1. The enclave

network is separated from the Internet by a perimeter firewall with three interfaces:

87

6.3. Network model II: Enclave Network, firewall explosion

Figure 6.2.2. Test results for an enclave network as the number of
hosts varies

one on the Internet, one on the DMZ subset and one on an internal router. There

are at least two subnets S0 and Ssafe connected to this router and up to 253 subnets

of which up to 30 tenants. The characteristics of these subnets are as follows:

v DMZ: all the hosts in this subnet are compromisable via a remote-to-root

vulnerability. The perimeter firewall is set up in a way such that

� from the Internet, only one host in the DMZ is reachable. This host

will then be used as a stepping stone [25] to compromise internal hosts,

� there is only one host in S0 that is reachable from all the hosts in the

DMZ;

v S0: all of the hosts in this subnet are compromisable;

v Ssafe: this subnet contains up to 254 hosts. Each host is fully patched and

without vulnerability;

v tenants: these are subnets separated from the rest of the internal network

through additional firewalls. All the hosts on Tenant 1 are compromisable;

v other subnets: each of these subnets contains up to 254 hosts, 50% of which

are compromisable.

The attacker is located outside the security perimeter. The goal of the attacker is to

compromise as many hosts as possible. The experiment on the enclave network uses

between 267 and 4017 hosts. Fig. 6.2.2 shows the experimental parameters and the

data generated. Each row represents the data generated in a single run.

88

Chapter 6.

Figure 6.3.1. Test results for an enclave network as the degree of a
single-level firewall explosion varies

6.3. Network model II: Enclave Network, firewall ex-

plosion

In the previous network there is only one potential path into the network. In this

experiment, we are going to introduce additional vulnerable hosts into the subnet

S0 so that the attacker can proceed to the compromisation of the rest of the internal

network from any compromised host in S0. The results are shown in Fig. 6.3.1. The

computation is not affected by the insertion of further hosts in S0, because

v the minimum number of rules to be applied to enable any condition does

not increase if additional hosts are inserted into S0. Therefore, T1 remains

fairly constant.

v the complex attack set covers all the complex attacks. Since every complex

attack a that compromises a host h in S0 is covered, there is no need

to consider any complex attack that uses h as stepping stone because if

we prevent an attacker from controlling the stepping stone, subsequent

complex attacks are automatically stopped as well. Therefore, T2 remains

fairly constant.

Fig. 6.3.2 shows the results of firewall explosions in series, where

v “degree of first explosion” indicates the number of hosts placed in the DMZ

v “degree of second explosion” indicates the number of hosts placed in S0

To show in more details the problem of firewall explosion, we change the goal of

the attacker to the compromisation of hosts not belonging to the DMZ nor to S0.

The configuration of the experiment is the same as the one used to generate the

89

6.4. Network model II: Enclave Network, hosts collapsing

Figure 6.3.2. Test results for an enclave network as the degrees of
two firewall explosions varies

Figure 6.3.3. Test results for an enclave network as the degrees of
two firewall explosions varies, with a modified goal

Figure 6.4.1. Test results for an enclave network as the degrees of
two firewall explosions varies, with hosts collapsed

test results in Fig. 6.3.1. The results are shown in Fig. 6.3.3. The phenomenon of

firewall explosion happens in real networks, thereby making impractical the analysis

of even a moderately sized network with a series of filtering devices. This is very

disturbing since these networks results when applying important security strategies

such as “defense in depth”.

6.4. Network model II: Enclave Network, hosts collaps-

ing

To workaround the problem of firewall explosion, we adopt the host collapsing model

in Lippmann et al. [17]. Two hosts are collapsed into a single one if they can be

90

Chapter 6.

compromised at the same level. This often happens in a subnet of real networks

where all the hosts are configured in a fairly similar way. When one of the hosts

in such subnet is compromised, the rest in the same subnet can be compromised

as well. The results are shown in Fig. 6.4.1. Only a single run is executed as the

degree of explosion is irrelevant to the results, be it degree 1 or degree 100, the whole

subnet is collapsed into a single host.

6.5. Network model II: Enclave Network, better hosts

collapsing

The adoption of a collapsing strategy strongly improves the scalability but it results

in a loss of all the details of the inner behavior of a subnet. Therefore, we propose

a different collapsing strategy. For each subnet s we define a variable vs and insert

a rule r : hs → vs for each host hs in the subnet. The cost of the countermeasure

for this rule is the symbolic value max. By adopting this strategy, the analysis

of the network remains tractable. The test results are shown in Fig. 6.5.1. The

configuration of the network is the same as that used in Sect. 6.4.

Example 6.5.1.

Suppose that

v there are two subnets s1 and s2 with hosts h1
s1
, h2

s1
, ..., h

ns1
s1 and h1

s2
, h2

s2
, ..., h

ns2
s2 ,

respectively

v each host has one remote-to-root vulnerability.

v every host in s1 can compromise every host in s2

If the collapsing model is not adopted, there are ns1 · ns2 rules: his1 → hjs2 for

i = 1...ns1 , j = 1..ns2 . The adoption of the collapsing model in Lippmann et al.

[17] results in a single rule that says that subnet s2 is reachable from subnet s1.

The collapsing model we proposed defines ns1 + ns2 rules: his1 → vs1 for i = 1..ns1
and vs1 → hjs2 for j = 1..ns2 .

91

6.5. Network model II: Enclave Network, better hosts collapsing

Figure 6.5.1. Test results for an enclave network as the degrees of
two firewall explosions varies, with an alternative collapsing strategy

92

Appendices

93

Appendix A

Grammar of the input file

language

The grammar of the input language1 is defined by the following productions. The

notational conventions are as follows:

v choices are separated by vertical bars: |
v optional parts are enclosed in square brackets: [...]

v A Kleene star * indicates zero or more repetitions of the immediately pre-

ceding fragment

v literals are enclosed in single quotes: ’ ... ’

v lowercase names refer to tokens representing keywords

v uppercase names refer to grammar productions from this list.

Spec : := Lines
Lines : := Line

| Line Lines
Line : := Var iab le

| Countermeasure
Var iab le : := ’# ’ d e f a u l t ’= ’ Real

| ’# ’ goa l ’ (’ Name ’) ’ ’= ’ ’{ ’ Condit ions ’} ’
| ’# ’ i n i t ’ (’ Name ’) ’ ’= ’ ’{ ’ ZeroOrMoreConditions ’} ’
| ’# ’ budget ’ (’ Name ’) ’ ’= ’ ’{ ’ Real ’} ’

Countermeasure : := [’ (’ Cost ’) ’] Rules

1with the comments stripped

95

A.1. An example input file

Cost : := max
| Real

Rules : := Rule
| Rule ’ ; ’ Rules

Rule : := ZeroOrMoreConditions ’−>’ Condit ions
ZeroOrMoreConditions : := Condit ions

|
Condit ions : := Condit ion

| Condit ion ’ , ’ Condit ions
Condit ion : := Num

| Num Dig i t ∗
Num ::= ’1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’
D ig i t : := ’0 ’ | Num
Real : := Dig i t D ig i t ∗ [’ . ’ D ig i t ∗]
Name : := Alphabet

| Alphabet Alphabet∗
Alphabet : := ’ a ’ | ’b ’ | ’ c ’ | ’d ’ | ’ e ’ | ’ f ’ | ’ g ’ | ’h ’

| ’ i ’ | ’ j ’ | ’ k ’ | ’ l ’ | ’m’ | ’n ’ | ’ o ’ | ’p ’
| ’ q ’ | ’ r ’ | ’ s ’ | ’ t ’ | ’u ’ | ’ v ’ | ’w’ | ’ x ’
| ’ y ’ | ’ z ’ | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F ’
| ’G’ | ’H’ | ’ I ’ | ’ J ’ | ’K’ | ’L ’ | ’M’ | ’N’
| ’O’ | ’P’ | ’Q’ | ’R’ | ’S ’ | ’T’ | ’U’ | ’V’
| ’W’ | ’X’ | ’Y’ | ’Z ’ | ’ ’

A.1. An example input file

// −−−−−−− SECTION: VARIABLES −−−−−−− //

// d e f a u l t countermeasure co s t
d e f a u l t = 1 .0

// goa l cond i t i ons , the re are two threa t p r o f i l e s ,
// i d e n t i f i e d as ” i n s i d e r ” and ” o u t s i d e r ”
goa l (i n s i d e r) = {5}
goa l (o u t s i d e r) = {8}

// i n i t i a l c o n d i t i o n s
i n i t (i n s i d e r) = {1 ,3}
i n i t (o u t s i d e r) = {5}

// −−−−−−− SECTION: RULES −−−−−− //

// the f o l l o w i n g r u l e s have countermeasures with the d e f a u l t co s t
1 −> 2 ,3 // pre cond i t i on : 1 ; p o s t c o n d i t i o n s : 2 and 3
3 −> 2 ,4 // pre cond i t i on : 3 ; p o s t c o n d i t i o n s : 2 and 4

96

Chapter A. Grammar of the input file language

6 −> 7 // pre cond i t i on : 6 ; po s t cond i t i on : 7

// a r u l e whose countermeasure co s t i s 5 . 5
(5 . 5) 2 −> 1

// a s i n g l e countermeasure that s tops two r u l e s
(7) 1 ,4 −> 5 ; 7 −> 5

// there i s no countermeasure f o r the f o l l o w i n g r u l e
(max) 7 −> 8

A.2. Grammar of the output file language

The output file language is just a slight modification of the input file language as
discussed in Sect. 5.2.1

Spec : := Lines
Lines : := Line

| Line Lines
Line : := Var iab le

| Countermeasure
Countermeasure : := [’ (’ Cost ’) ’] Rules
Var iab le : := ’# ’ d e f a u l t ’= ’ Real

| ’# ’ goa l ’ (’ Name ’) ’ ’= ’ ’{ ’ Condit ions ’} ’
| ’# ’ i n i t ’ (’ Name ’) ’ ’= ’ ’{ ’ Condit ions ’} ’
| ’# ’ countermeasure ’ (’ Name ’) ’ ’= ’ ’{ ’ Countermeasures ’} ’
| ’# ’ budget ’ (’ Name ’) ’ ’= ’ ’{ ’ Real ’} ’
| ’# ’ countermeasuresWithinBudget ’ (’ Name ’) ’ ’= ’ ’{ ’ Countermeasures ’} ’

Countermeasures : := Enumeration ’ . ’ [’ (’ Cost ’) ’] Rules
Cost : := max

| Real
Rules : := Rule

| Rule ’ ; ’ Rules
Enumeration : := Num

| Num Dig i t ∗
Rule : := ZeroOrMoreConditions ’−>’ Condit ions
ZeroOrMoreConditions : := Condit ions

|
Condit ions : := Condit ion

| Condit ion ’ , ’ Condit ions
Condit ion : := Num

| Num Dig i t ∗
Num ::= ’1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’
D ig i t : := ’0 ’ | Num
Real : := Dig i t D ig i t ∗ [’ . ’ D ig i t ∗]
Name : := Alphabet

| Alphabet Alphabet∗

97

A.3. An example output file

Alphabet : := ’ a ’ | ’b ’ | ’ c ’ | ’d ’ | ’ e ’ | ’ f ’ | ’ g ’ | ’h ’
| ’ i ’ | ’ j ’ | ’ k ’ | ’ l ’ | ’m’ | ’n ’ | ’ o ’ | ’p ’
| ’ q ’ | ’ r ’ | ’ s ’ | ’ t ’ | ’u ’ | ’ v ’ | ’w’ | ’ x ’
| ’ y ’ | ’ z ’ | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F ’
| ’G’ | ’H’ | ’ I ’ | ’ J ’ | ’K’ | ’L ’ | ’M’ | ’N’
| ’O’ | ’P’ | ’Q’ | ’R’ | ’S ’ | ’T’ | ’U’ | ’V’
| ’W’ | ’X’ | ’Y’ | ’Z ’ | ’ ’

A.3. An example output file

The example input file in A.1 will generate the following output file:

// −−−−−−− SECTION: VARIABLES −−−−−−− //
// d e f a u l t countermeasure co s t
d e f a u l t = 1 .0

// goa l cond i t i ons , the re are two threa t p r o f i l e s ,
// i d e n t i f i e d as ” i n s i d e r ” and ” o u t s i d e r ”
goa l (i n s i d e r) = {5}
goa l (o u t s i d e r) = {8}

// i n i t i a l c o n d i t i o n s
i n i t (i n s i d e r) = {1 ,3}
i n i t (o u t s i d e r) = {5}

// −−−−−−− SECTION: RULES −−−−−− //

// the f o l l o w i n g r u l e s have countermeasures with the d e f a u l t co s t
1 . 1 −> 2 ,3
2 . 3 −> 2 ,4
3 . 6 −> 7

// a r u l e whose countermeasure co s t i s 5 . 5
4 . (5 . 5) 2 −> 1

// a s i n g l e countermeasure that s tops two r u l e s
5 . (7 . 0) 1 ,4 −> 5 ;7 −> 5

// there i s no countermeasure f o r the f o l l o w i n g r u l e
6 . (max) 7 −> 8

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ RESULT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

countermeasure (o u t s i d e r) = {} // no complex attack p o s s i b l e
countermeasure (i n s i d e r) = {2}

98

Chapter A.

A.4. The output file for the example in Sect.5.5.1

// d e f a u l t countermeasure co s t
d e f a u l t = 1 .0

// goa l cond i t i on
goa l (i n s i d e r) = {6}

// i n i t i a l c o n d i t i o n s
i n i t (i n s i d e r) = {14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32 , \
33 ,34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,8 , 1 , 2 , 3 , 4 , 5}

// budget
budget (i n s i d e r) = 8

// dependenc ies : root−l e v e l p r i v i l e g e s i m p l i e s user−l e v e l p r i v i l e g e s
1 . (max) 8 −> 11
2 . (max) 7 −> 9
3 . (max) 6 −> 10
4 . (max) 53 −> 12

// I IS b u f f e r over f l ow
5 . (max) 11 , 1 , 27 −> 7
6 . (5 . 5) 9 , 1 , 28 −> 7
7 . (5 . 5) 12 , 1 , 31 −> 7
8 . (5 . 5) 10 , 1 , 34 −> 7

// squid port scan
9 . (3) 30 , 9 , 2 −> 13
10 . (8) 33 , 12 , 2 −> 13
11 . (2 . 9) 36 , 10 , 2 −> 13

// LICQ remote−to−user
12 . (3) 40 , 9 , 13 , 3 −> 10
13 . (7) 42 , 12 , 13 , 3 −> 10
14 . (3) 44 , 10 , 13 , 3 −> 10

// c l i e n t s c r i p t i n g
15 . (7 . 7) 31 , 9 , 4 −> 12
16 . (4) 32 , 12 , 4 −> 12
17 . (4) 33 , 10 , 4 −> 12

// l o c a l s e t u i d b u f f e r over f l ow
18 . (max) 10 , 5 −> 6

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ RESULT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

99

A.4. The output file for the example in Sect.5.5.1

countermeasure (i n s i d e r) = {12 , 13}

// Budget exceeded . Total co s t o f countermeasures f o r i n s i d e r = 10 .0
countermeasuresWithinBudget (i n s i d e r) = {13}

100

Appendix B

Source Code

The source code of the toolkit, structured into three components.

B.1. The Input Parser

package input;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.Hashtable;

import java.util.Set;

import java.util.Vector;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import utils.Log;

import utils.Misc;

import main.Rules;

/∗ ∗
∗ Input p a r s e r

∗ The on ly i n t e r f a c e between the input f i l e and the o th e r components o f the

∗ t o o l k i t . Should the input f i l e fo rmat be changed , modi fy t h i s f i l e

101

B.1. The Input Parser

∗ a c c o r d i n g l y , p r o v i d i n g the same g e t t e r methods

∗/
public class Parser{

private double defaultCost = 1;

private Vector <Double > countermeasureCost = new Vector <Double >();

private double sumOfCountermeasureCosts = 0;

private Rules rules;

private int nextID = 1; // the next r u l e ID to be a s s i gn ed , s t a r t i n g from 1

// Tota l number o f c oun t e rmea su r e s . Each r u l e l i n e i n the input f i l e i s

// counted as one counte rmeasure . A s i n g l e counte rmeasure c o r r e s p ond s to

// mu l t i p l e r u l e s when :

// 1 . A r u l e has more than one p o s t c o n d i t i o n

// OR

// 2 . Mu l t i p l e r u l e s a r e l i s t e d on the same l i n e

private int numOfRules = 0;

// the f o l l o w i n g ha sh t ab l e maps the i d e n t i f i e r o f a t h r e a t p r o f i l e to

// the s e t o f goa l s , the s e t o f i n i t i a l c o n d i t i o n s and the budget r e s p e c t i v e l y

private Hashtable <String , int[]> goal = new Hashtable <String , int[]>();

private Hashtable <String , int[]> condInit = new Hashtable <String , int[]>();

private Hashtable <String , Double > budget = new Hashtable <String , Double >();

/∗ ∗
∗ REQUIRES : f i l e e x i s t s and i s r e ad ab l e

∗ @param f i l e the input f i l e

∗ @throws I l l e g a lA r gumen tExc ep t i on i f the p r e c o n d i t i o n i s v i o l a t e d

∗ @throws I l l e g a l G o a l E x c e p t i o n i f f a i l e d to pa r s e a v a l i d g o a l from f i l e

∗/
public Parser(String file , String outputFileName)

throws IllegalGoalException , IllegalInitialConditionException {

rules = new Rules ();

// p r epa r i n g input f i l e

FileInputStream fstream = null;

try { fstream = new FileInputStream(file);

} catch (FileNotFoundException e) {

throw new IllegalArgumentException(”The f i l e ” + file +

” i s not found . ”);}
DataInputStream in = new DataInputStream(fstream);

BufferedReader br = new BufferedReader(new InputStreamReader(in));

// p r epa r i n g output f i l e

FileWriter foutstream = null;

try { foutstream = new FileWriter(outputFileName);

} catch (IOException e) {

102

Chapter B. Source Code

throw new IllegalArgumentException(” t h e f i l e ” + outputFileName +

” cannot be opened f o r w r i t i n g ”);}
BufferedWriter out = new BufferedWriter(foutstream);

String line;

try {

while ((line = br.readLine ()) != null) {

String lineCopy = line; // copy the l i n e to the output f i l e

String content = line.split(”//”)[0]. trim(); // s t r i p comments

if (! content.equals(””)) {

if (content.matches

(”ˆ\\ s ∗#\\ s ∗ [dD] [eE] [fF] [aA] [uU] [lL] [tT]\\ s ∗=\\ s ∗ .∗ ”))
parseDefaultCost(content);

else if (content.matches

(”ˆ\\ s ∗#\\ s ∗ [gG] [oO] [aA] [lL]\\ s ∗\\ (\\ s ∗\\w∗\\ s ∗\\) \\ s ∗=\\ s ∗ .∗ ”))
parseGoal(content);

else if (content.matches

(”ˆ\\ s ∗#\\ s ∗ [i I] [nN] [i I] [t I]\\ s ∗\\ (\\ s ∗\\w∗\\ s ∗\\) \\ s ∗=\\ s ∗ .∗ ”))
parseInitCond(content);

else if (content.matches

(”ˆ\\ s ∗#\\ s ∗ [bB] [uU] [dD] [gG] [eE] [tT]\\ s ∗\\ (\\ s ∗\\w∗\\ s ∗\\) \\ s ∗=\\ s ∗ .∗ ”))
parseBudget(content);

else if (content.matches(”ˆ\\ s ∗#.∗”)) {

Log.errorLog(”Unknown v a r i a b l e d e f i n e d in t h e l i n e : ” + line);

lineCopy = ””; } // do not copy unknown l i n e s to the output f i l e

else

lineCopy = parseRule(content);

}

try { out.append(lineCopy + ”\n”);
} catch (IOException e) {

Log.errorLog(” e r r o r in o u t p u t i n g t h e l i n e : ” + nextID + ” . \ t ” +

content + ”\n” + ” to t h e ou t pu t f i l e ”); }

} // end wh i l e

// c l o s i n g f i l e s

in.close();

out.close();

} catch (IOException e) {}

finally {

if (in != null)

try {in.close();}

catch (IOException e) {e.printStackTrace ();}

103

B.1. The Input Parser

if (out != null)

try {out.close();}

catch (IOException e) {e.printStackTrace ();}

}

}

// Parse the budget l i n e (c a s e i n s e n t i v e , wh i t e space i gno r ed)

// #budget (<Name>) = <Pos i t iveRea lNumber>

private void parseBudget(String content) {

Matcher m = Pattern.compile

(”ˆ\\ s ∗#\\ s ∗ [bB] [uU] [dD] [gG] [eE] [tT]\\ s ∗\\ (\\ s ∗(\\w∗) \\ s ∗\\) \\ s ∗” +

”=\\ s ∗(\\ d+\\ .?\\ d ∗) \\ s ∗”).matcher(content);
// group (1) i s the t h r e a t p r o f i l e i d e n t i f i e r

// group (2) i s the budget

if (m.matches () && m.group (1) != null && m.group (2) != null)

try {

double budgetValue = Double.parseDouble(m.group (2));

Double old = budget.put(m.group (1), new Double(budgetValue));

if (old != null)

Log.errorLog(”The bud g e t o f ” + m.group (1) +

” a l r e a d y e x i s t s . The p r e v i o u s v a l u e ” +

old + ” w i l l be r e p l a c e d . \ n”);
else Log.log(”The bud g e t o f ” + m.group (1) + ” i s ”+budgetValue);

} catch (Exception e) {

Log.error(” i n v a l i d l i n e : ”+content+”\ n I n v a l i d budge t , no budg e t ”
+ ” w i l l be d e f i n e d f o r ” + m.group (1));

}

else

Log.errorLog(”Error in p a r s i n g bud g e t from th e l i n e : ” + content);

}

// Parse the r u l e l i n e (c a s e i n s e n t i v e , wh i t e space i gno r ed)

// [\ (max|<NonNegativeRealNumber >\)] <Rule> (;<Rule>)∗
// Rule : := [< Int >](,< Int >)∗ −> <Int >(,< Int >)∗
// [] = op t i o na l , () = grouping , <Int> = p o s i t i v e i n t e g e r > 0

private String parseRule(String content) {

String result = ””;
Double cost = defaultCost;

boolean defaultCost = true;

String rulePattern = ”\\ s ∗ (? : \\ d+\\ s ∗) ?+(?: ,\\ s ∗\\ d+\\ s ∗) ∗\\ s∗−>” +

”\\ s ∗ (? : \\ d+\\ s ∗ ,\\ s ∗) ∗\\ d+\\ s ∗”;
Matcher m = Pattern.compile

(” (? : \ \ (\ \ s ∗ ((? : [mM] [aA] [xX]) | \ \ d+\\ .?\\ d ∗) \\ s ∗\\)) ? ? ((? : ” +

rulePattern + ” ;\\ s ∗) ∗” + rulePattern + ”) ”).matcher(content);
if (m.matches () && m.group (2) != null) {

// pa r s e counte rmeasure c o s t

104

Chapter B. Source Code

try {

if (m.group (1) != null)

if (m.group (1).equalsIgnoreCase(”max”))
cost = null;

else { cost = Double.parseDouble(m.group (1));

defaultCost = false;

}

} catch (Exception e) {

Log.error(”Error in p a r s i n g countermeasure c o s t f o r t h e r u l e ”
+ content + ” . \ nThe d e f a u l t countermeasure c o s t ” +

defaultCost + ” w i l l be used . ”);}

// pa r s e r u l e s

result += nextID + ” . \ t ” +

(cost == null? ” (max) ” : (defaultCost? ”” : ” (” + cost + ”) ”));
String [] contents = m.group (2).split(” ; ”);
boolean ok = false;

for (String c : contents) {

content = c.trim();

int[] preconditions = null;

int[] postconditions = null;

try {

String [] preconditionString =

content.split(”−>”)[0]. trim().split(” , ”);
String [] postconditionString =

content.split(”−>”)[1]. trim().split(” , ”);
preconditions = new int[””.equals(preconditionString [0]) ? 0 :

preconditionString.length];

postconditions = new int[postconditionString.length];

ok = true;

for (int i = 0; i < preconditions.length; i++) {

preconditions[i] =

Integer.parseInt(preconditionString[i].trim());

if (preconditions[i] <= 0) throw new Exception (); }

for (int i = 0; i < postconditions.length; i++) {

postconditions[i] =

Integer.parseInt(postconditionString[i].trim());

if (postconditions[i] <= 0)

throw new Exception (); }

} catch (Exception e) { ok = false; }

if (ok) {

for (int i = 0; i < postconditions.length; i++)

rules.insert(new Rule(nextID ,preconditions ,postconditions[i]));

result += content + ” ; ”;
}

else Log.error(”Error in p a r s i n g t h e r u l e : ” + content +

105

B.1. The Input Parser

” . This r u l e w i l l no t be c on s i d e r e d ”);
} // end f o r

if (ok) { // the whole l i n e i s c o r r e c t

countermeasureCost.add(cost);

if (cost != null) sumOfCountermeasureCosts += cost;

numOfRules ++;

nextID ++;

}

return result.substring(0,result.length () -1) +”\n”;
}

else {

Log.errorLog(” un r e co gn i z e d l i n e : ” + content);

return result ;}

}

/∗
∗ Parse p r o f i l e s p e c i f i c c o n d i t i o n s which a r e i n the form

∗ # <p r o f i l eType >(<pro f i l eName >) = {<Cond i t i ons >}
∗ The par s ed c o n d i t i o n s w i l l be mapped to the keys o f the c o r r . h a s h t ab l e

∗ @param p r o f i l e s the ha sh t ab l e where the par s ed i n f o i s saved

∗ @param p r o f i l eTyp e the type o f p r o f i l e , i n the c u r r e n t implement ion i t can

∗ be e i t h e r ” g o a l ” or ” i n i t ” which s tand r e s p e c t i v e l y f o r g o a l

∗ p r o f i l e s and i n i t i a l c o n d i t i o n p r o f i l e s

∗ @param con t en t the l i n e to be par s ed

∗ @throws I l l e g a l V a r i a b l e E x c e p t i o n i f the l i n e i s i l l −f o rmat t ed

∗/
private void parseProfileSpecificConditions(Hashtable <String , int[]> profiles ,

String profileType , String content) throws IllegalVariableException {

assert(profiles != null && profileType != null && content != null);

String varName = ””;
for (char c : profileType.toCharArray ())

varName += ” [” + String.valueOf(c).toLowerCase () +

String.valueOf(c).toUpperCase () + ”] ”;
Matcher m = Pattern.compile(”#\\ s ∗”+varName+”\\ s ∗\\ (\\ s ∗(\\w∗) \\ s ∗\\) ” +

”\\ s ∗=\\ s ∗\\{\\ s ∗ ((? : \ \ d+ ,\\ s ∗) ∗\\ d+)∗\\ s ∗\\}\\ s ∗”).matcher(content);

// i n i t i a l i z a t i o n f o r the empty i n i t i a l c o n d i t i o n c a s e

int[] conditions = new int [0];

String name = ””;
// t h e r e i s a bug in the r eg ex imp l ementa t i on o f Java , i t g i v e s s t a c k

// ov e r f l ow e r r o r when the input s t r i n g i s too l ong

// r e f ht tp : / / bugs . sun . com/ bugdatabase / v iew bug . do ? bug id =5050507

// r e f ht tp : / / bugs . sun . com/ bugdatabase / v iew bug . do ? bug id =4675952

if (content.length () < 2700) {

if (m.matches ()) {

106

Chapter B. Source Code

name = m.group (1).trim();

if (!(m.group (2) == null)) { // non empty s e t o f i n i t conds

String [] conds = m.group (2).split(” , ”);
conditions = new int[conds.length];

for (int i = 0; i < conds.length; i++) {

try {

int val = Integer.parseInt(conds[i].trim());

if (val <= 0) throw new Exception ();

conditions[i] = val;

} catch (Exception e) {

throw new IllegalVariableException

(”Error in p a r s i n g t h e ” + profileType +

” c o n d i t i o n s from th e l i n e ” + content);}}}

int[] old = profiles.put(name , conditions);

if (old != null)

Log.errorLog(”The name ” + name +” a l r e a d y e x i s t s f o r ”+
” ano the r p r o f i l e . The p r e v i o u s v a l u e : ” +

old != null ? Misc.intArrayToString(old) : ”{}” +

” w i l l be r e p l a c e d . \ n”);
else Log.log(”The ” + profileType + ” c o n d i t i o n s f o r ” +

name + ” are : ” + Misc.intArrayToString(conditions));

} // end i f m. matches ()

else Log.errorLog(”The l i n e : \n” + content + ”\ n i s supposed t o ” +

” d e s c r i b e t h e ”+ profileType +” c o n d i t i o n s p r o f i l e ” +

” bu t f o r some rea son s i t i s not pa r s ed ”);
} // end i f c on t en t . l e n g t h () < 2700

else { // l e n g t h >= 2700

String [] tmp = content.split(”=”);
boolean validInput = (tmp.length == 2);

if (validInput) {//# i n i t (i n s i d e r)

Matcher m1 = Pattern.compile(”#\\ s ∗” + varName +

”\\ s ∗\\ (\\ s ∗(\\w∗) \\ s ∗\\) \\ s ∗”).matcher(tmp [0]);
validInput = m1.matches ();

name = m1.group (1).trim();

String [] conditionsStrings =tmp [1]. replace(’ { ’ , ’ ’).
replace(’ } ’ , ’ ’).split(” , ”);

conditions = new int[conditionsStrings.length];

int i = 0;

while (validInput && i < conditionsStrings.length) {

try {

int val = Integer.parseInt(conditionsStrings[i].trim());

if (val <= 0)

throw new Exception ();

conditions[i] = val;

} catch (Exception e) {

validInput = false; }

107

B.1. The Input Parser

i++;

} // end wh i l e

if (validInput) {

int[] old = profiles.put(name , conditions);

if (old != null)

Log.errorLog(”The name ” + name + ” a l r e a d y e x i s t s f o r ”+
” ano the r p r o f i l e . The p r e v i o u s v a l u e : ” +

old != null ? Misc.intArrayToString(old) : ”{}”
+ ” w i l l be r e p l a c e d . \ n”);

else Log.log(”The ” + profileType + ” c o n d i t i o n s f o r ” +

name + ” are : ” + Misc.intArrayToString(conditions));

}

else Log.errorLog(”The l i n e : \n” + content

+ ”\ n i s supposed t o d e s c r i b e t h e ”+ profileType +

” c o n d i t i o n s p r o f i l e bu t f o r some rea son s i t i s not par s ed ”); }

} // end e l s e (l e n g t h >= 2700)

}

/∗ ∗
∗ Parse the i n i t i a l c o n d i t i o n s l i n e (c a s e i n s e n t i v e , wh i t e space i g no r ed)

∗ #i n i t (<Name>) = {[<Pos i t iveRea lNumber >] (, <Pos i t iveRea lNumber >)∗}
∗ @throws I l l e g a l I n i t i a l C o n d i t i o n s E x c e p i t o n i f f a i l e d to pa r s e the i n i t i a l

∗ c o n d i t i o n s

∗/
private void parseInitCond(String content)

throws IllegalInitialConditionException {

try {

parseProfileSpecificConditions(condInit ,” i n i t ”, content);

} catch (IllegalVariableException e) {

throw new IllegalInitialConditionException(e.toString ());

}

}

/∗ ∗
∗ Parse the g oa l c o n d i t i o n s l i n e (c a s e i n s e n t i v e , wh i t e space i gno r ed)

∗ #goa l (<Name>) = {<Pos i t iveRea lNumber> (, <Pos i t iveRea lNumber >)∗}
∗ @throws I l l e g a l G o a l E x c e p t i o n i f f a i l to pa r s e a v a l i d g o a l from f i l e

∗/
private void parseGoal(String content) throws IllegalGoalException {

try {

parseProfileSpecificConditions(goal ,” g o a l ”, content);

} catch (IllegalVariableException e) {

throw new IllegalGoalException(e.toString ());

}

}

108

Chapter B. Source Code

// Parse the d e f a u l t c o s t l i n e (c a s e i n s e n t i v e , wh i t e space i gno r ed)

// #d e f a u l t = <Pos i t iveRea lNumber>

private void parseDefaultCost(String content) {

Matcher m = Pattern.compile(”#\\ s ∗ [dD] [eE] [fF] [aA] [uU] [lL] [tT]\\ s∗=” +

”\\ s ∗(\\ d+\\ .?\\ d ∗) \\ s ∗”).matcher(content);
if (m.matches () && m.group (1) != null)

try {

defaultCost = Double.parseDouble(m.group (1));

Log.log(”The d e f a u l t countermeasure c o s t i s ” + defaultCost);

} catch (Exception e) {

Log.errorLog(” i n v a l i d l i n e : ”+ content

+ ”\nThe d e f a u l t countermeasure c o s t 1 w i l l be used ”);
}

else

Log.errorLog(”Error in p a r s i n g t h e d e f a u l t countermeasure c o s t ” +

” from th e l i n e : ” + content

+ ”\nThe d e f a u l t countermeasure c o s t 1 w i l l be used ”);
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Get te r Methods ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ ∗
∗ Get the l i s t o f g o a l s g i v en the i d e n t i f i e r o f a t h r e a t p r o f i l e

∗ @param name i d e n t i f i e r o f a t h r e a t p r o f i l e

∗ @throws I l l e g a l G o a l E x c e p t i o n i f t h e r e i s no g oa l a s s o c i a t e d with name

∗ @return the l i s t o f g o a l s

∗/
public int[] getGoal(String name) throws IllegalGoalException {

if (goal.containsKey(name)) {

int[] result = goal.get(name);

if (result != null)

return result;

else

throw new IllegalGoalException(”There i s no g o a l s p e c i f i e d f o r ” +

” t h e p r o f i l e ” + name);

}

else throw new IllegalGoalException(”The g o a l p r o f i l e ” + name +

” does not e x i s t . ”);
}

/∗ ∗
∗ Get the sum o f c o s t s o f a l l the count e rmea su r e s whose c o s t s a r e not ”max”

∗ For d e f i n i n g ”max” as sum+1

∗ @return the sum

∗/
public double getSumOfCountermeasureCosts () {

109

B.1. The Input Parser

return sumOfCountermeasureCosts ;}

/∗ ∗
∗ @param name i d e n t i f i e r o f a t h r e a t p r o f i l e

∗ @return the i n i t i a l c o n d i t i o n s a s s o c i a t e d with name . I f the s e t o f i n i t i a l

∗ c o n d i t i o n s i s empty , then an a r r ay o f l e n g t h z e r o (new i n t [0])

∗ w i l l be r e t u rn ed .

∗ @throws I l l e g a lA r gumen tExc ep t i on i f name does not c o r r e spond to any

∗ t h r e a t p r o f i l e

∗/
public int[] getInitCond(String name) {

// we cannot check i f c o nd I n i t . g e t (name) i s n u l l a s an i n i t i a l c o n d i t i o n s

// p r o f i l e may have z e r o c o nd i t i o n s , which i s v a l i d . I n s t e ad i t i s an

// e x c e p t i o n i f the s p e c i f i e d name does not c o r r e spond to any name

if (condInit.containsKey(name))

return condInit.get(name);

else throw new IllegalArgumentException(”The name ” + name +

” does not co r r e spond to any i n i t a l c o n d i t i o n p r o f i l e . ”);
}

/∗ ∗
∗ Get the t o t a l number o f r u l e l i n e s (i . e . t o t a l no . o f c oun t e rmea su r e s)

∗ @return the t o t a l number o f r u l e l i n e s

∗/
public int getNumOfRules () {

return numOfRules ;}

/∗ ∗
∗ Get names o f a l l the t h r e a t p r o f i l e s

∗ @return the s e t o f t h r e a t p r o f i l e names

∗/
public Set <String > getNames () {

return condInit.keySet (); }

/∗ ∗
∗ Get an a r r ay o f counte rmeasure c o s t s . The counte rmeasure c o s t o f a r u l e

∗ with ID i i s the (i −1) th e l ement o f the a r r ay .

∗ e . g . The counte rmeasure c o s t o f a r u l e with i d 5 i s g i v en by

∗ getCountermeasureCost () [4]

∗ @return an a r r ay o f counte rmeasure c o s t s

∗/
public Double [] getCountermeasureCost () {

Double [] result = new Double[numOfRules];

int i = 0;

for (Double v : countermeasureCost) {

if (v == null) result[i] = sumOfCountermeasureCosts +1;

110

Chapter B. Source Code

else result[i] = v;

i++;

}

return result;

}

/∗ ∗
∗ Get the r u l e s

∗ @return the r u l e s

∗/
public Rules getRules () {

return rules;

}

/∗ ∗
∗ Get the count e rmea su r e s budget r e l a t i v e to a t h r e a t p r o f i l e

∗ @param name i d e n t i f i e r o f a t h r e a t p r o f i l e

∗ @return the count e rmea su r e s budget , n u l l i f t h e r e i s no budget

∗ (budget = i n f i n i t e)

∗/
public Double getBudget(String name) {

if (budget.containsKey(name))

return budget.get(name);

else return null;

}

}

package input;

/∗ ∗∗
∗ Implementat ion o f the a b s t r a c t r e p r e s e n t a t i o n o f a r u l e

∗ An example r u l e :

∗ 2 0 . 2 , 3 , 4 −> 5

∗ where 20 i s the id , 2 , 3 , 4 a r e the p r e c o n d i t i o n s and 5 i s the p o s t c o n d i t i o n

∗/
public class Rule {

// id , p r e c o nd i t i o n s , p o s t c o n d i t i o n must be > 0

// the i d o f the ru l e , the i d i s NOT unique

// i n p a r t i c u l a r , when a r u l e with mu l t i p l e p o s t c o n d i t i o n s i s s p l i t i n t o

// mu l t i p l e s ub ru l e s , a l l t h e s e s u b r u l e s w i l l have the same id

private int id;

private int[] preconditions;

private int postcondition;

111

B.1. The Input Parser

/∗ ∗ Cons t ru c t o r

∗ REQUIRES : i d > 0 , p o s t c o n d i t i o n > 0 , [c > 0 | c <− p r e c o n d i t i o n s]

∗ p r e c o n d i t i o n s can be nu l l , i n tha t case , the r u l e can a lways be a c t i v a t e d

∗ @param id the ID o f the r u l e

∗ @param p r e c o n d i t i o n s p r e c o n d i t i o n s o f the r u l e

∗ @param po s t c o n d i t i o n p o s t c o n d i t i o n o f the r u l e

∗ @throws I l l e g a lA r gumen tExc ep t i on i f the p r e c o n d i t i o n i s v i o l a t e d

∗/
public Rule(int id , int[] preconditions , int postcondition) {

if (id <= 0 || postcondition <= 0)

throw new IllegalArgumentException(” i n v a l i d i d or p o s t c o n d i t i o n ”);
if (preconditions != null)

for (int c : preconditions)

if (c <= 0)

throw new IllegalArgumentException

(” i n v a l i d p r e c o n d i t i o n o f t h e r u l e w i t h i d ” + id);

this.id = id;

this.preconditions = preconditions;

this.postcondition = postcondition;

}

/∗ ∗
∗ two r u l e s a r e equa l when they have the same id

∗/
public boolean equals(Object o) {

if (o instanceof Rule)

return this.id == ((Rule)o).id;

return false;

}

public String toString () {

String output = id + ” : ”;
if (preconditions != null)

for (int c : preconditions)

output += c + ” , ”;
output += ”$−> ” + postcondition; // avo id the l a s t comma

return output.replaceFirst(” , \\ $”, ” ”).replace(’ $ ’ , ’ ’);
}

public int getID() {

return id; }

public int[] getPreconditions () {

return preconditions; }

112

Chapter B. Source Code

public int getPostcondition () {

return postcondition; }

}

B.2. The Complex Attack Set Generator

package main;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.Hashtable;

import java.util.TreeSet;

import riskMitigation.GLPKerrorException;

import riskMitigation.Knapsack;

import riskMitigation.NoSolutionException;

import riskMitigation.Solve;

import riskMitigation.TimeoutException;

import utils.Log;

import utils.Set;

import input.IllegalGoalException;

import input.IllegalInitialConditionException;

import input.Parser;

import input.Rule;

/∗ ∗
∗ Implementat ion o f the Complex Attack Set Generator component

∗/
public class Main {

private final static Integer NO_POSSIBLE_COUNTERMEASURE = 1;

private final static Integer NO_ATTACK_POSSIBLE = 2;

private final static Integer ATTACK_POSSIBLE = 0;

// (f o r s t a t i s t i c s on ly) count the number o f c o n d i t i o n nodes g en e r a t ed

private static int counter = 0;

/∗ ∗
∗ main en t ry po i n t o f t h i s t o o l k i t

∗ @throws F i l eFormatExcept i on i f t h e r e i s a f a t a l e r r o r i n p a r s i n g f i l e

∗/
public static void main(String [] args) throws FileFormatException{

// i n i t i a l i z e the p a r s e r

Parser p;

113

B.2. The Complex Attack Set Generator

String inputFile = ” r e g o l e . t x t ”; // input f i l e name

String outputFileName = ” r e g o l e (ou t pu t) . t x t ”; // output f i l e name

try {

p = new Parser(inputFile , outputFileName);

} catch (IllegalGoalException e) {

throw new FileFormatException(” i l l e g a l f i l e format : I l l e g a l g o a l ”);
} catch (IllegalInitialConditionException e) {

throw new FileFormatException

(” i l l e g a l f i l e format : I l l e g a l i n i t i a l c o n d i t i o n s ”); }

Index reachabilityIndex = fillReachabilityIndex(p.getRules ());

Hashtable <String ,Integer > attackability = new Hashtable <String ,Integer >();

for (String name : p.getNames ()) {

// l ong s ta r tT ime = System . c u r r e n tT imeM i l l i s () ;

Set reachableConditions =

reachableConditionsGeneration(p.getRules (), p.getInitCond(name));

// l ong stopTime = System . c u r r e n tT imeM i l l i s () ;

// l ong runTime = stopTime − s ta r tT ime ;

// System . out . p r i n t l n (” r e a c h ab l e s e t g e n e r a t i o n run t ime : ” + runTime) ;

Paths complexAttacksSet;

try {

// s ta r tT ime = System . c u r r e n tT imeM i l l i s () ;

complexAttacksSet = complexAttackSetGeneration(

reachableConditions ,

p.getGoal(name),

new Set(p.getInitCond(name)),

reachabilityIndex);

// stopTime = System . c u r r e n tT imeM i l l i s () ;

// runTime = stopTime − s ta r tT ime ;

// System . out . p r i n t l n (” complex a t t a c k s e t g e n e r a t i o n run t ime : ”

// + runTime) ;

Log.log(” S t a t i s t i c s : \ nTota l number o f nodes g en e r a t e d = ” +

counter + ”\n”);

// i n t e rmed i a t e output f i l e name

String modelFile = ”model (” + name + ”) . l p ”;

createModelInCPLEXLP(modelFile ,

complexAttacksSet ,

p.getCountermeasureCost (),

p.getNumOfRules (),

p.getSumOfCountermeasureCosts ());

114

Chapter B.

if (new Set(p.getInitCond(name)).contains(p.getGoal(name)))

attackability.put(name , NO_POSSIBLE_COUNTERMEASURE);

else if (complexAttacksSet.isEmpty ())

attackability.put(name , NO_ATTACK_POSSIBLE);

else attackability.put(name , ATTACK_POSSIBLE);

} catch (IllegalGoalException e1) {

throw new FileFormatException(” mi s s i n g g o a l in t h e i n pu t f i l e ” +

” f o r t h e t h r e a t p r o f i l e : ” + name);

}

}

// l ong s ta r tT ime = System . c u r r e n tT imeM i l l i s () ;

String result = findCountermeasures(

attackability ,

p.getNames (),

p.getNumOfRules (),

p.getCountermeasureCost (),

p);

// l ong stopTime = System . c u r r e n tT imeM i l l i s () ;

// l ong runTime = stopTime − s ta r tT ime ;

// System . out . p r i n t l n (” counte rmeasure g e n e r a t i o n run t ime : ” + runTime) ;

// System . out . p r i n t l n (” number o f r u l e s : ” + p . getNumOfRules ()) ;

finalizeOutputFile(outputFileName , result);

}

/∗ ∗
∗ compute the s e t c o n d i t i o n s r e a c h ab l e from the i n i t i a l s t a t e

∗ @param r u l e s the s e t o f r u l e s

∗ @param in i tCond s the s e t o f i n i t i a l c o n d i t i o n s

∗ @return the s e t o f r e a c h ab l e c o n d i t i o n s

∗/
private static Set reachableConditionsGeneration(Rules rules ,int[] initConds){

// i n i t

boolean modified = true;

Set conditions = (initConds == null) ? new Set() : new Set(initConds);

Queue q = new Queue ();

for (Rule r : rules)

q.add(r);

// temporary ho l d e r o f the l i s t s o f r u l e s dur ing one pa s s o f the r u l e s

Queue tmp = new Queue ();

Set newConditions = new Set();

// This d i f f e r s from the pseudocode as the l i s t i s mod i f i e d dur ing

// i t e r a t i o n . A temporary l i s t i s used to s i m p l i f y the imp l ementa t i on .

// There i s a g r e a t d i f f e r e n c e i n e f f i c i e n c y o f a c t u a l l y d e l e t i n g i t ems

// from the l i s t than s imp ly marking e l ement s as d e l e t e d .

115

B.2. The Complex Attack Set Generator

while (!q.isEmpty ()) {

Rule element = q.remove ();

if (conditions.contains(element.getPreconditions ())) {

modified = true;

newConditions.addElement(element.getPostcondition ());

}

else tmp.add(element);

// when one pas s o f the r u l e s i s completed

if (q.isEmpty () && modified) {

modified = false;

conditions.union(newConditions);

newConditions = new Set();

q = tmp;

tmp = new Queue();

}

}

return conditions;

}

/∗ ∗
∗ compute the Complex Attack Set

∗ @param r e a c h ab l eCond i t i o n s s e t o f c o n d i t i o n s r e a c h ab l e from i n i t s t a t e

∗ @param g o a l s s e t o f g o a l c o n d i t i o n s

∗ @param i n i t C o n d i t i o n s s e t o f i n i t c o n d i t i o n s

∗ @param r e a c h a b i l i t y I n d e x

∗ @return the Complex Attack Set

∗/
private static Paths complexAttackSetGeneration(Set reachableConditions ,

int[] goals , Set initConditions , Index reachabilityIndex) {

if (goals == null || goals.length == 0)

throw new IllegalArgumentException(” t h e g o a l cannot be empty ”);
Paths result = new Paths ();

if (! initConditions.contains(goals)&& reachableConditions.contains(goals)){

goals = Set.exclude(initConditions , goals); // G = G \ I n i t

for (int i = 0; i < goals.length; i++) {

Set included = new Set(goals);

included.exclude(goals[i]); // I = G \ {g}

result = Paths.product(result , findAttackPaths(

goals[i],

new Set(new int[]{ goals[i]}),

included ,

initConditions ,

reachableConditions ,

reachabilityIndex ,

116

Chapter B.

true)); }}

return result;

}

// the a u x i l i a r y f u n c t i o n f , each c a l l to i t c r e a t e s a c o n d i t i o n node

// @param i sGoa l t r u e i f c i s one o f the g o a l c o n d i t i o n AND f i s c a l l e d

// d i r e c t l y from f i ndAt ta ckPa th s ; f a l s e o t h e rw i s e

// @param c the c o nd i t i o n c o r r e s p ond i n g to the c o n d i t i o n node be ing g en e r a t ed

private static Paths findAttackPaths(int c, Set excludedCondition ,

Set includedCondition , Set initConditions ,

Set reachableConditions , Index reachabilityIndex , boolean isGoal){

counter ++; // count no . o f c o n d i t i o n nodes g en e r a t ed

Paths result = new Paths ();

Rules predecessors = reachabilityIndex.get(c);

for (Rule r : predecessors) {

// Op t im i t i z a t i o n :

// Given a goa l g , i f t h e r e e x i s t s a r u l e r : c −> g where c i s the

// s o l e p r e c ond i t i o n , then when we c o n s i d e r ano the r r u l e

// r ’ : c1 , c2 , . . . , cn −> g , we a r e s u r e tha t any complex a t t a c k

// d i s c o v e r e d through the e x p l o r a t i o n o f the c h i l d node r ’ tha t

// r e q u i r e s c i n some o f i t s r u l e s i s go ing to be cove r ed by anothe r

// complex a t t a c k d i s c o v e r e d through the e x p l o r a t i o n o f the node r

// This i s what the f o l l o w i n g l i n e s do :

//

// C = s e t o f c o n d i t i o n s such tha t

// f o r each c ’ i n C th e r e e x i s t s r : c ’ −> g

// X = X ‘ union ‘ C \ P

// where P = {} i f r has more than 1 p r e c o n d i t i o n s

// = { c ”} i f c ” i s the s o l e p r e c o n d i t i o n o f r

if (isGoal) {

excludedCondition = Set.union(excludedCondition ,

singlePreconditions(c, reachabilityIndex));

if (r.getPreconditions ().length == 1)

excludedCondition.exclude(r.getPreconditions ()[0]);

}

// end op t im i z a t i o n

// p = r . p r e c o n d i t i o n s \ (i n i t ‘ union ‘ i n c l ud edCond i t i o n)

int[] p = Set.exclude(includedCondition ,

Set.exclude(initConditions , r.getPreconditions ()));

if (p.length == 0)

result.sum(new Paths(new Set(new int []{r.getID()})));

// e l s e i f p i s s ub s e t o f r e a c h ab l eCond i t i o n s && p ‘ i n t e r s e c t ‘ X = 0

else if (reachableConditions.contains(p) &&

excludedCondition.emptyIntersection(p)) {

117

B.2. The Complex Attack Set Generator

Paths subpaths = new Paths ();

for (int i = 0; i < p.length; i++) {

// I = I ‘ union ‘ p \ {p [i] }
Set included = Set.union(includedCondition , p);

included.exclude(p[i]);

subpaths = Paths.product(subpaths , findAttackPaths(

p[i],

Set.union(excludedCondition , p[i]), //X ‘ union ‘ {p [i] }
included ,

initConditions ,

reachableConditions ,

reachabilityIndex ,

false));

if (subpaths == Paths.bottom)

break;

}

// imp l ementa t i on o f l i n e 12 o f the pseudocode

subpaths = Paths.cons(subpaths ,r.getID ());

result.sum(subpaths);

}

} // end f o r

if (result.isEmpty ())

return Paths.bottom;

else

return result;

}

/∗ ∗
∗ @param o u t f i l e the f i l e n ame o f the i n t e rmed i a t e output f i l e

∗ @param a t t a c kS e t the Complex Attack Set

∗ @param c o s t s an a r r ay o f counte rmeasure c o s t s

∗ @param numOfRules the t o t a l number o f r u l e s

∗ @param maxCost the sum o f the c o s t o f a l l counte rmeasure s , f o r the

∗ d e f i n i t i o n o f the o b j e c t i v e f u n c t i o n

∗ @throws I l l e g a lA r gumen tExc ep t i on i f f a i l e d to c r e a t e the output f i l e

∗/
private static void createModelInCPLEXLP(String outfile , Paths attackSet ,

Double [] costs , int numOfRules , Double maxCost) {

if (outfile == null)

throw new IllegalArgumentException(” e r r o r in w r i t i n g t o t h e ” +

” i n t e rm i d a t e ou t pu t f i l e ” + outfile);

BufferedWriter out;

try {

FileWriter fstream = new FileWriter(outfile);

118

Chapter B.

out = new BufferedWriter(fstream);

// Minimize

// ob j : sum −x1 −x2 −x3 −x4

// Sub j e c t To −x1−x2 . . . >= −b

out.append(”Minimize \n”);
out.append(” o b j : sum ”);
String objectiveFunctionParts = ””;
Double [] cost = costs;

for (int i = 1; i <= numOfRules; i++)

objectiveFunctionParts += ” − ” + cost[i-1] + ” x” + i;

out.append(objectiveFunctionParts);

out.append(”\ nSub j e c t To\n”);
} catch (Exception e) {

throw new IllegalArgumentException(” e r r o r in w r i t i n g t o t h e ”
+ ” i n t e rme d i a t e ou t pu t f i l e ” + outfile); }

int constraintID = 1; // c o n s t r a i n t ID o f the c u r r e n t r u l e

// whether the a t t a c k i s used i n at l e a s t one path

boolean [] attacks = new boolean[numOfRules];

for (int i = 0; i < attacks.length; i++) attacks[i] = false;

if (! attackSet.isEmpty ()) {

for (Set s : attackSet) {

try {

String output = ” c” + constraintID + ” : ”;
int numElementaryAttacks = 0; // f o r c a l c u l a t i n g b

int[] rules = s.getElements ();

if (rules != null) {

for (int i = 0; i < rules.length; i++) {

output += ”− x” + rules[i];

attacks[rules[i]-1] = true;

numElementaryAttacks ++;

}

constraintID ++;

out.append(output + ” >= − ” +

(numElementaryAttacks == 0? 0: numElementaryAttacks -1)

+ ”\n”);
}

} catch (Exception e) {

throw new IllegalArgumentException(” e r r o r in w r i t i n g t o t h e ”
+ ” i n t e rme d i a t e ou t pu t f i l e ” + outfile);

}

}

119

B.2. The Complex Attack Set Generator

// System . out . p r i n t l n (” no o f c o n s t r a i n t s : ” + (c on s t r a i n t ID −1)) ;

}

try {

out.append(”Bounds\n”);
out.append(” sum = ” + maxCost + ”\n”);
for (int i = 0; i < attacks.length; i++)

if (attacks[i] == false)

out.append(” x” + (i+1) + ” = 1\n”);
out.append(”Binary \n”);
for (int i = 0; i < attacks.length; i++)

if (attacks[i])

out.append(” x” + (i+1) + ”\n”);
out.append(”End\n”);
out.close();

} catch (Exception e) {

}finally {

if (out != null)

try { out.close();}

catch (IOException e) {e.printStackTrace ();}

}

}

/∗
∗ @param a t t a c k a b i l i t y Given a name o f a t h r e a t p r o f i l e , r e t u r n t r u e i f

∗ t h e r e e x i s t s a f e a s i b l e complex a t t a c k

∗ @param p r o f i l e s the s e t o f t h r e a t p r o f i l e names

∗ @param numOfRules the t o t a l number o f r u l e s

∗ @param count e rmeasu r eCos t s an a r r ay o f counte rmeasure c o s t s , the

∗ counte rmeasure c o s t o f the r u l e with ID i i s count e rmeasu r eCos t s [i −1]

∗ @param p input p a r s e r

∗/
private static String findCountermeasures(

Hashtable <String ,Integer > attackability ,

java.util.Set <String > profiles , int numOfRules ,

Double [] countermeasureCosts , Parser p) {

String result = ” //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ RESULT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//\n”;
double sumOfCountermeasureCost = 0;

for (String name : profiles) {

if (attackability.get(name) == ATTACK_POSSIBLE) {

boolean [] countermeasures = null;

try {

countermeasures = Solve.solve(”model (” + name + ”) . l p ”,
numOfRules);

} catch (TimeoutException e) { // not used at the moment

e.printStackTrace ();

} catch (NoSolutionException e) { // no f e a s i b l e s o l u t i o n

120

Chapter B.

e.printStackTrace ();

} catch (GLPKerrorException e) { // o th e r GLPK e r r o r s

e.printStackTrace ();

}

result += ”# countermeasure (” + name + ”) = {”;

// to avo id memory a l l o c a t i o n e r r o r as Java has problem with the

// ” s u b s t r i n g ” method when i t i s a pp l i e d to l ong s t r i n g s

TreeSet <Integer > v = new TreeSet <Integer >();

for (int i = 0; i < countermeasures.length; i++)

if (countermeasures[i]) {

// the enumerat ion o f count e rmea su r e s b e g i n s with 1 , not 0

v.add(new Integer(i+1));

sumOfCountermeasureCost += countermeasureCosts[i];

}

String contromisureString = v.toString ();

result += contromisureString.substring

(1, contromisureString.length () -1)+”}”;
// System . out . p r i n t l n (” sum o f counte rmeasure c o s t f o r ” + name +

//” i s ” + sumOfCountermeasureCost) ;

// compute the s ub s e t o f c oun t e r emea su r e s such tha t the sum o f

// t h e i r c o s t s i s w i th i n the budget

if (p.getBudget(name) != null &&

sumOfCountermeasureCost > p.getBudget(name)) {

Log.log(” bud g e t e x c e eded f o r ” + name);

result += ”\n\n// Budget e x c e eded . To ta l c o s t o f ” +

” coun te rmeasure s f o r ” + name + ” = ” +

sumOfCountermeasureCost + ”\n”;
result += ”# counte rmeasure sWi th inBudge t (” + name + ”) = {”;
result += findCountermeasuresWithinBudgetConstraints

(countermeasureCosts ,

p.getBudget(name),

countermeasures ,

v.size(),

sumOfCountermeasureCost)

+ ”}\n”;
}

}

else if (attackability.get(name) == NO_ATTACK_POSSIBLE)

result += ”# countermeasure (” + name +

”) = {} // no complex a t t a c k p o s s i b l e \n”;
else if (attackability.get(name) == NO_POSSIBLE_COUNTERMEASURE)

result += ”# countermeasure (” + name +

”) = {} // no countermeasure can s t o p a l l t h e complex a t t a c k s \n”;
}

121

B.2. The Complex Attack Set Generator

return result;

}

/∗ compute the s ub s e t o f c oun t e rmea su r e s such tha t the sum o f t h e i r c o s t s i s

∗ wi th i n the budget .

∗ @param count e rmeasu r eCos t s an a r r ay o f counte rmeasure c o s t s

∗ @param budget the budget

∗ @param count e rmea su r e s c h a r a c t e r i s t i c f u n c t i o n o f the minimal s e t

∗ @param numOfCountermeasures c a r d i n a l i t y o f the minimal s e t

∗ @param sumOfCountermeasureCost sum o f the c o s t s o f c oun t e rmea su r e s i n the

∗ minimal s e t

∗/
private static String findCountermeasuresWithinBudgetConstraints(

Double [] countermeasureCosts , Double budget ,

boolean [] countermeasures , int numOfCountermeasures ,

double sumOfCountermeasureCost) {

// c o n t a i n s r u l e IDs r e l a t i v e to count e rmea su r e s i n the minimal s e t

int[] countermeasuresID = new int[numOfCountermeasures +1];

// sum o f the c o s t s o f c oun t e rmea su r e s i n the s ub s e t

Double sumOfSubsetCountermeasureCost = 0.0; // f o r s t a t i s t i c s on ly

// counte rmeasure c o s t s i n the minimal s e t

Double [] weight = new Double[numOfCountermeasures +1];

int j = 1; // index f o r the a r r ay counte rmeasure s ID

weight [0] = sumOfCountermeasureCost; // use the f i r s t p o s i t i o n o f the

// a r r ay as a temporary p l a c e h o l d e r f o r the sum o f counte rmeasure c o s t .

// As tha t va lu e needs to be no rma l i z ed as o th e r c o s t s and tha t the f i r s t

// p o s i t i o n o f the a r r ay i s not used .

// f i l l counte rmeasure s ID

for (int i = 0; i < countermeasures.length; i++)

if (countermeasures[i]) {

countermeasuresID[j] = i+1; // counte rmeasure ID , i . e . r u l e i d

weight[j] = countermeasureCosts[i];

j++;

}

boolean [] subsetOfCountermeasures =

Knapsack.knapsack(weight , budget , numOfCountermeasures);

// output f o rma t t i n g

TreeSet <Integer > v = new TreeSet <Integer >();

for (int i = 1; i < subsetOfCountermeasures.length; i++)

if (subsetOfCountermeasures[i]) {

v.add(new Integer(countermeasuresID[i]));

sumOfSubsetCountermeasureCost +=

122

Chapter B.

countermeasureCosts[countermeasuresID[i]-1]; }

// System . out . p r i n t l n (” Tota l c o s t o f c oun t e rmea su r e s (w i th i n budget) : ”

// + sumOfSubsetCountermeasureCost) ;

String result = v.toString ();

return result.substring(1, result.length () -1);

}

/∗ the r e a c h a b i l i t y index i s a data s t r u c t u r e tha t g i v en a c o nd i t i o n c ,

∗ r e t u r n s the l i s t o f r u l e s tha t have c as t h e i r p o s t c o n d i t i o n s

∗/
private static Index fillReachabilityIndex(Rules rules) {

Index result = new Index ();

for (Rule r : rules)

result.add(r.getPostcondition (), r);

return result;

}

/∗
∗ F i n a l i z e the output f i l e by appending the c h o i c e o f c oun t e rmea su r e s f o r

∗ each t h r e a t p r o f i l e

∗ @param outputFi leName name o f the output f i l e

∗ @param r e s u l t the s t r i n g to be appended to the output f i l e

∗/
private static void finalizeOutputFile(String outputFileName , String result){

FileWriter foutstream = null;

try {

foutstream = new FileWriter(outputFileName , true);

} catch (IOException e) {

throw new IllegalArgumentException(” t h e f i l e ” + outputFileName +

” cannot be opened f o r w r i t i n g ”);}
BufferedWriter out = new BufferedWriter(foutstream);

try {

out.append(result);

out.close();

} catch (Exception e) {

Log.error(”Error in append ing t h e r e s u l t o f t h e c h o i c e o f ” +

” coun te rmeasure s t o t h e f i l e ” + outputFileName);

} finally {

if (out != null)

try {out.close();}

catch (IOException e) {e.printStackTrace ();}

}

}

/∗ Given a c o nd i t i o n c , compute the s e t o f c o n d i t i o n s S such tha t

∗ f o r a l l s i n S , t h e r e e x i s t s a r u l e r such tha t s i s the s o l e p r e c o n d i t i o n

123

B.2. The Complex Attack Set Generator

∗ and c i s the p o s t c o n d i t i o n o f r

∗/
private static Set singlePreconditions(int c, Index reachabilityIndex) {

Rules predecessors = reachabilityIndex.get(c);

Set result = new Set();

for (Rule r : predecessors) {

int[] pre = r.getPreconditions ();

if (pre != null && pre.length == 1)

result.addElement(pre [0]);

}

return result;

}

}

package main;

import java.util.Iterator;

import java.util.Vector;

import utils.Set;

/∗ ∗
∗ Paths i s a s e t o f s e t s o f i n t e g e r s , which a r e i d e n t i f i e r s o f r u l e s

∗/
public class Paths implements Iterable <Set > {

public static Paths bottom = new Paths();

private Vector <Set > v = new Vector <Set >();

Paths () {}

public Paths(Set set) {

v.add(set);}

boolean isEmpty () {

return v.isEmpty ();}

// Given a s e t o f s e t s p and a s e t o f s e t s q , compute a minimal s ub s e t s e t p ’

// such tha t

// 1 . f o r each e l ement e1 i n p and f o r each e l ement e2 i n q ,

// t h e r e e x i s t s an e l ement e3 i n p ’ such tha t e3 i s a s ub s e t o f the

// union o f e1 and e2

// 2 . f o r each e l ement e i n p ’ , t h e r e e x i s t s an e l ement e1 i n p and an e l ement

// e2 i n q such tha t e i s a s ub s e t o f the union o f e1 and e2

// In o th e r words , i t implements the s ub s e t product op e r a t o r

// The i npu t s a r e unmod i f i ed

124

Chapter B.

static Paths product(Paths p, Paths q) {

if (q == bottom || p == bottom)

return bottom;

if (p.isEmpty ())

return q;

else if (q.isEmpty ())

return p;

else {

Paths result = new Paths ();

for (Set original : p.v)

for (Set s : q)

result.sum(Set.union(original , s));

return result; }

}

// 1 . s i s added to ” t h i s ” i f i t i s not a s u p e r s e t o f any e x i s t i n g e l ement

// 2 . a l l the e l emen t s i n ” t h i s ” tha t a r e p rope r s u p e r s e t o f s a r e removed .

// The above c o n d i t i o n s gua r an t e e s tha t ” t h i s ” remains a minimal s ub s e t s e t

private void sum(Set s) {

Vector <Set > toBeRemoved = new Vector <Set >();

for (Set s2 : v) {

if (s2.contains(s.getElements ()))

toBeRemoved.add(s2);

else if (s.contains(s2.getElements ()))

return;

}

v.add(s);

for (Set del : toBeRemoved)

v.remove(del);

}

// Add a minimal s ub s e t s e t p to ” t h i s ” such tha t f o r a l l s i n p

// 1 . s i s added to ” t h i s ” i f i t i s not a s u p e r s e t o f any e x i s t i n g e l ement

// 2 . a l l the e l emen t s i n ” t h i s ” tha t a r e p rope r s u p e r s e t o f s a r e removed .

// REQUIRES : t h i s != bottom

public void sum(Paths p) {

assert(this != bottom);

if (p != bottom && !p.isEmpty ())

for (Set s : p.v)

sum(s);

}

// Given a s e t o f s e t s p and an i n t e g e r r , compute p ’ such tha t

// p ’ = { e ‘ union ‘ { r } : e i n p}
public static Paths cons(Paths p, int r) {

Paths result = new Paths ();

125

B.2. The Complex Attack Set Generator

if (p == bottom) // s p e c i a l c a s e

return p;

else if (p.isEmpty ()) // s p e c i a l c a s e

return new Paths(new Set(new int []{r}));

else

for (Set s : p.v)

result.sum(Set.union(s, r));

// we cou ld have used r e s u l t . v . add (Set . union (s , r)) above

return result;

}

public Iterator <Set > iterator () {

return v.iterator (); }

public String toString () {

if (this == bottom) return ” bot tom ”;
String result = ”{”;
for (Set s : v)

result += s + ” , ”;
return (v.isEmpty ()? result : result.substring(0, result.length () -1))+”}”;

}

}

package main;

import input.Rule;

import java.util.Hashtable;

/∗ ∗∗
∗ An index tha t maps r u l e s to c o n d i t i o n s .

∗ Given a c o nd i t i o n c , i t computes the s e t o f r u l e s tha t have c as p o s t c o n d i t i o n

∗
∗ I t can be r e p r e s e n t e d l o g i c a l l y as :

∗ c1 : r1 , r3 , r4

∗ c2 : r1 , r2

∗ c3 : r8

∗ . . .

∗/
public class Index {

private Hashtable <Integer ,Rules > t;

Index () {

t = new Hashtable <Integer ,Rules >(); }

126

Chapter B.

/∗ ∗
∗ Add a new r u l e to the l i s t a s s o c i a t e d with the c o n d i t i o n . I f the c o n d i t i o n

∗ i s not a l r e a dy p r e s e n t i n the index , a new l i s t w i l l be c r e a t e d with r as

∗ the s o l e e l ement i n the l i s t

∗ REQUIRES : 0 < c o n d i t i o n && r != n u l l

∗ @param c ond i t i o n a c o nd i t i o n

∗ @param r a r u l e

∗ @throws I l l e g a lA r gumen tExc ep t i on i f the p r e c o n d i t i o n i s v i o l a t e d

∗/
void add(int condition , Rule r) {

if (condition <= 0 || r == null)

throw new IllegalArgumentException(” i n v a l i d c o n d i t i o n or r u l e : ” +

” c o n d i t i o n = ” + condition + ” ; r u l e = ” + r);

if (t.containsKey(new Integer(condition)))

t.get(new Integer(condition)).insert(r);

else {

Rules tmp = new Rules ();

tmp.insert(r);

t.put(new Integer(condition), tmp);

}

}

/∗ ∗
∗ Get the l i s t o f r u l e s a s s o c i a t e d with the c o n d i t i o n c

∗ REQUIRES : c o n d i t i o n > 0

∗ @param c the c o nd i t i o n

∗ @return the l i s t o f r u l e s tha t have the c o n d i t i o n c as p o s t c o n d i t i o n

∗ n u l l i f no r u l e has c as p o s t c o n d i t i o n

∗ @throws I l l e g a lA r gumen tExc ep t i on i f the p r e c o n d i t i o n i s v i o l a t e d

∗/
Rules get(int c) {

if (c <= 0) throw new IllegalArgumentException(” i n v a l i d c o n d i t i o n : ” + c);

Rules result = t.get(new Integer(c));

return result;

}

public String toString () {

return t.toString (); }

}

package main;

import input.Rule;

import java.util.Iterator;

127

B.2. The Complex Attack Set Generator

import java.util.LinkedList;

/∗ ∗
∗ A l i s t o f r u l e s

∗/
public class Rules implements Iterable <Rule > {

private LinkedList <Rule > list = new LinkedList <Rule >();

/∗ ∗
∗ Add a r u l e to the c u r r e n t c o l l e c t i o n o f r u l e s

∗ REQUIRES : r != n u l l

∗ @param r the r u l e to be added

∗ @throws I l l e g a lA r gumen tExc ep t i on i f r == n u l l

∗/
public void insert(Rule r) {

if (r == null)

throw new IllegalArgumentException

(” t h e o b j e c t n u l l cannot be added t o t h e l i s t o f r u l e s ”);
list.addFirst(r); }

/∗ ∗
∗ Return the t o t a l number o f r u l e s

∗ @return the t o t a l number o f r u l e s

∗/
public int size() {

return list.size(); }

public String toString () {

String output = ””;
for (Rule r : this)

output += r + ”\n”;
return output; }

/∗ ∗∗
∗ The i t e r a t o r i t e r a t e s through the e l ement s i n a LIFO orde r .

∗/
public Iterator <Rule > iterator () {

return new RulesIterator(this); }

public class RulesIterator implements Iterator <Rule >{

int nextIndex = 0;

Rules rules;

private RulesIterator(Rules rules) {

assert rules != null;

this.rules = rules; }

128

Chapter B.

public boolean hasNext () {

return nextIndex < rules.list.size(); }

public Rule next() {

Rule result = rules.list.get(nextIndex);

nextIndex ++;

return result; }

public void remove () { /∗ no e f f e c t ∗/ }

}

}

B.3. The Countermeasure Selector

package riskMitigation;

import org.gnu.glpk.GlpkSolver;

/∗ ∗
∗ Implementat ion o f the Countermeasure S e l e c t o r component

∗/
public class Solve {

/∗ ∗
∗ So l v e a MIP problem saved in the CPLEX LP format

∗ i . e . compute the minimal s e t o f c oun t e rmea su r e s

∗ In the c u r r e n t imp l ementa t i on the problem i s s o l v e d to o p t ima l i t y u s i n g the

∗ bu i l t −i n branch−and−cut method u s i ng c on t i n ou s r e l a x a t i o n . No c a l l b a c k

∗ method i s d e f i n ed , s e e Chapter 5 o f the documentat ion o f GLPK f o r d e t a i l s .

∗ @param model the name o f the input f i l e , which shou ld be l o c a t e d at the

∗ base d i r (i f i t i s not the case , s p e c i f y the f u l l path o f the input f i l e)

∗ @param numCol the t o t a l number o f v a r i a b l e s . In t h i s case , the t o t a l number

∗ o f count e rmea su r e s .

∗ @return An ar r ay o f boo l ean o f l e n g t h numCol . Element i i s t r u e i f the

∗ c o r r e s p ond i n g counte rmeasure i s i n the minimal s e t .

∗ Return n u l l i f the MIP problem i s not s o l v e d to o p t ima l i t y .

∗ @throws TimeoutExcept ion i f the t ime l i m i t f o r the s o l v e r i s exceeded

∗ (c u r r e n t l y no t ime l i m i t i s s e t)

∗ @throws NoSo lu t i onExcep t i on i f t h e r e i s no f e a s i b l e s o l u t i o n , i n the

∗ c u r r e n t imp l ementa t i on t h e r e i s a lways a s o l u t i o n (the one with a l l

∗ the count e rmea su r e s s e l e c t e d)

∗ @throws GLPKerrorException o th e r GLPK e r r o r s

∗/
public static boolean [] solve(String model , int numCol)

throws TimeoutException , NoSolutionException , GLPKerrorException {

// no check i s implemented to en su r e tha t the i n t e rmed i a t e output

129

B.3. The Countermeasure Selector

// f i l e has not been mod i f i e d e x t e r n a l l y

GlpkSolver solver = GlpkSolver.readCpxlp(model);

// o p t i o n a l tweaks f o r the s o l v e r , can be commented out e n t i r e l y

// s e e documentat ion o f GLPK con s t an t f o r more op t i o n s

solver.setIntParm(GlpkSolver.LPX_K_PRESOL , 1);

solver.setIntParm(GlpkSolver.LPX_K_DUAL , 1);

/∗ s e t t imeout (i n s e cond s)

−1 i s the d e f a u l t va lue , which means no t ime l i m i t ∗/
// s o l v e r . setRealParm (GlpkSo lve r . LPX K TMLIM, −1) ;

/∗ c r e a t e a copy o f the f o rmu l a t ed problem in the MPS format , i t may be

∗ u s e f u l i f you want to use o th e r s o l v e r s i n s t e a d o f GLPK ∗/
// s o l v e r . writeMps (model +”.mps ”) ;

int simplexReturnCode = solver.simplex (); // LP r e l a x a t i o n

switch (simplexReturnCode) {

case GlpkSolver.LPX_E_TMLIM:

throw new TimeoutException(”GLPK time l i m i t e x hau s t e d ”);
case GlpkSolver.LPX_E_NOFEAS:

throw new NoSolutionException(”GLPK: No f e a s i b l e (r e a l) s o l u t i o n ”);
case GlpkSolver.LPX_E_INSTAB:

throw new GLPKerrorException(”GLPK: numer i ca l i n s t a b i l i t y ”);
}

int integerReturnCode = solver.integer ();

switch (integerReturnCode) {

case GlpkSolver.LPX_E_TMLIM:

throw new TimeoutException(”GLPK time l i m i t e x hau s t e d ”);
case GlpkSolver.LPX_E_NOFEAS:

throw new NoSolutionException(”GLPK:No f e a s i b l e i n t e g e r s o l u t i o n ”);
case GlpkSolver.LPX_E_INSTAB:

throw new GLPKerrorException(”GLPK: numer i ca l i n s t a b i l i t y ”);
case GlpkSolver.LPX_E_FAULT:

throw new GLPKerrorException(”GLPK: not p o s s i b l e t o s t a r t t h e ” +

” s ea r ch o f i n t e g e r s o l u t i o n , p o s s i b l y t imeou t ”);
}

if (simplexReturnCode == GlpkSolver.LPX_E_OK &&

integerReturnCode == GlpkSolver.LPX_E_OK) {

boolean [] result = new boolean[numCol];

for (int i = 0; i < result.length; i++)

result[i] = solver.mipColVal(i+2) <= 0;

return result;

}

return null; // i f t h e r e i s any e r r o r

}

130

Chapter B.

}

package riskMitigation;

/∗ ∗
∗ S e l e c t i o n o f the s ub s e t o f the minimal s e t such tha t the t o t a l c o s t s

∗ o f count e rmea su r e s i n the s ub s e t does not exceed the budget

∗/
public class Knapsack {

/∗ ∗ Based on an a l g o r i t hm in the book

∗ ” I n t r o d u c t i o n to Programming in Java : An I n t e r d i s c i p l i n a r y Approach ”

∗ @param we ight c o s t s o f the count e rmea su r e s i n the minimal s e t

∗ @param capa c i t y the budget

∗ @param numItems c a r d i n a l i t y o f the minimal s e t

∗/
public static boolean [] knapsack(Double [] weight , Double capacity ,

int numItems) {

int[] normalizedWeight = normalize(weight); // conve r t c o s t s to i n t e g e r s

int sumOfWeight = normalizedWeight [0];

normalizedWeight [0] = 0; // r e s e t the va lu e as we have used tha t p l a c e as

// a temporary p l a c e h o l d e r

int normalizedCapacity =

new Double ((sumOfWeight/weight [0])*capacity).intValue ();

// i n t h i s case , we have d e f i n e d the p r o f i t the same as the c o s t

// however , o t h e r c h o i c e s a r e p o s s i b l e as d i s c u s s e d i n the t h e s i s

int[] profit = normalizedWeight;

int [][] opt = new int[numItems +1][normalizedCapacity +1];

boolean [][] sol = new boolean[numItems +1][normalizedCapacity +1];

for (int n = 1; n <= numItems; n++)

for (int w = 1; w <= normalizedCapacity; w++) {

// don ’ t take i tem n

int option1 = opt[n-1][w];

// take i tem n

int option2 = Integer.MIN_VALUE;

if (normalizedWeight[n] <= w) option2 =

profit[n] + opt[n-1][w-normalizedWeight[n]];

// s e l e c t b e t t e r o f two op t i o n s

opt[n][w] = Math.max(option1 , option2);

sol[n][w] = (option2 > option1);

}

131

B.3. The Countermeasure Selector

// de t e rmine which i t ems to take

boolean [] take = new boolean[numItems +1];

for (int n = numItems , w = normalizedCapacity; n > 0; n--) {

if (sol[n][w]) { take[n] = true; w = w - normalizedWeight[n]; }

else { take[n] = false; }

}

return take;

}

/∗
∗ Given an a r r ay o f doub le s , c onv e r t i t to an a r r ay o f i n t e g e r s by

∗ mu l t i p l y i n g each e l ement by 10ˆm where

∗ m i s the maximum number o f dec ima l p l a c e s

∗/
private static int[] normalize(Double [] d) {

String [] str = new String[d.length];

int maxNumOfDecimalPlaces = 0;

for (int i = 0; i < d.length; i++) {

str[i] = d[i]. toString ();

int whereIsDecimalPt = str[i]. indexOf(’ . ’);
if (whereIsDecimalPt != -1 &&

Integer.parseInt(str[i]. substring(whereIsDecimalPt +1)) != 0) {

int numDecimalDigits = str[i]. length ()-whereIsDecimalPt -1;

if (numDecimalDigits > maxNumOfDecimalPlaces)

maxNumOfDecimalPlaces = numDecimalDigits;

}

}

int[] result = new int[d.length];

for (int i = 0; i < d.length; i++)

result[i] = (new Double(d[i] *

Math.pow(10, maxNumOfDecimalPlaces))).intValue ();

return result;

}

}

132

Bibliography

[1] Common vulnerabilities and exposures dictionary. http://cve.mitre.org
[2] CPLEX LP Format http://www.ilog.com/products/cplex/product/represent.cfm
[3] GLPK. http://www.gnu.org/software/glpk/
[4] Nessus Scanner. http://www.nessus.org
[5] NuSMV. NuSMV: A New Symbolic Model Checker. http://afrodite.itc.it:1024/˜nusmv/.
[6] SANS Top-20 2007 Security Risks (2007 Annual Update)

http://www.sans.org/top20/2007/top20.pdf
[7] P. Ammann, J.Pamula, R.Ritchey and J.Street. A host-based approach to network attack

chaining analysis. In ACSAC ’05: Proceedings of the 21st Annual Computer Security Appli-
cations Conference, pages 72-84. IEEE Computer Society, 2005.

[8] P.Ammann, D.Wijesekera and S.Kaushik. Scalable, graph-based network vulnerability analy-
sis. In Proceedings of 9th ACM Conference on Computer and Communications Security, pages
217-224. ACM Press, 2002.

[9] F. Baiardi, M. Pioli, S. Suin and C. Telmon, Assessing the Risk of an Information Infrastruc-
ture through Security Dependencies, First Workshop on Critical Information Infrastructure
Security, Samo, August 2006.

[10] F. Baiardi, C. Telmon and D. Sgandurra, Hierarchical, Model-Based Risk Management of
Critical Infrastructures. Reliability Engineering and System Safety, Elsevier Press, to appear.

[11] M. Freiss. Protecting Networks with SATAN, O’Reilly, 1999.
[12] K. Ingols, R. Lippmann and K. Piwowarski. Practical Attack Graph Generation for Network

Defense. In Proceedings of the 22nd Annual Computer Security Applications Conference.
[13] S. Jajodia, S. Noel and B. O’Berry. Topological analysis of network attack vulnerability. In V.

Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats: Issues, Approaches
and Challanges, chapter 5. Kluwer Academic Publisher, 2003.

[14] S. Jha, O. Sheyner and J. Wing, Two Formal Analysis of Attack Graphs, 15th IEEE Computer
Security Foundations Workshop, p.49, June 2002.

[15] P. Meil, T. Grance et al. NVD national vulnerability database. http://nvd.nist.gov.
[16] R. P. Lippmann and K. W. Ingols. An annotated review of past papers on attack graphs.

Technical report, MIT Lincoln Laboratory, Lexington, MA, 2005. ESC-TR-2005-054.
[17] R.P. Lippmann et al. Evaluating and strengthening enterprise network security using attack

graphs. Technical report. MIT Lincoln Laboratory. Lexington, MA, 2005. ESC-TR-2005-064.

133

[18] X. Ou, W. F. Boyer and M. A. McQueen. A Scalable Approach to Attack Graph Generation.
2006

[19] C. Philips and L. P. Swiler. A graph-based system for network vulnerability analysis. In
Proceedings of the 1998 workshop on New security paradigms, p.71-79, September 22-26, 1998,
Charlottesville, Virginia, United States.

[20] R. W. Ritchey and P. Ammanna. Using model checking to analyze network vulnerabilites. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 156-165, Oakland,
CA, May 2000.

[21] R. Sedgewick, K. Wayne. Introduction to Programming in Java: An Interdisciplinary Ap-
proach. Addison Wesley, 2007.

[22] O.Sheyner, J.Haines, S.Jha, R.Lippmann and J. Wing. Automated generation and analysis of
attack graphs. In Proceedings of IEEE Symposium on Security and Privacy, May 2002

[23] O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs. FMCO 2003,
LNCS 3188, pp. 344–371, 2004.

[24] Swarup, Jajodia, Pamula. Rule-based Topological Vulnerability Analysis. In Computer Net-
work Security, selected papers from the 3rd International Workshop on Mathematical Meth-
ods, Models, and Architectures for Computer Network Security, 2005.

[25] Y. Zhang and V. Paxson. Detecting stepping stones. In Proceedings of the 9th USENIX Secu-
rity Symposium, August 2000.

134

