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Chapter 1

Introduction

This thesis belongs to the Computer Graphics and Computer Vision fields, it

copes with the image color to grayscale conversion problem with the purpose

of improving the quality and the accuracy of the results when the grayscale

conversion is applied in the context of stereo matching.

Many different state of the art color to grayscale conversion algorithms

have been evaluated, implemented and tested inside the stereo matching

context, and a new ad-hoc algorithm that optimizes the conversion process

by simultaneously evaluating the whole set of images that has to be matched

has been proposed.

1.1 The project

The color to grayscale problem is a dimensionality reduction problem whose

importance is often undervalued. For example, as it can be seen in Figure 1.1,

isoluminant color changes are not preserved with traditional color to grayscale

conversions. In recent years many methods have been proposed, mainly

in the context of reproduction of the color image with grayscale mediums.

Perceptual accuracy is often the only objective of these results.
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Figure 1.1: Isoluminant changes are not preserved with traditional color to grayscale

conversion. Converting an image of a reddish rectangle whose luminance

matches that of the blue background to grayscale results in a featureless

image.

Stereo matching is a field of Computer Vision that tries to resolve the

problem of the three dimensional reconstruction of a scene from a pair of

two dimensional images. While some standard approaches to this problem

use color images, only few standard solutions are able to take real advantage

from the color information.

In this thesis we have three objectives:

• To analyze the characteristics of many different state of the art color

to gray conversion algorithms.

• To design and implement a new grayscale method based on the existing

one that is best suited for our specific needs.

• To evaluate in a thorough way how the choice of different grayscale con-

versions affects the results computed by the standard stereo matching

algorithms.

It is important to underline that the methodological approach follows the

divide et impera strategy, because it uncouples the color treatment from the

stereo matching process using a sepatate preprocessing step for the conver-

sion.



1.2 Thesis structure 3

1.2 Thesis structure

After the current introduction Chapter, the thesis is structured in the fol-

lowing way:

• In Chapter 2 the minimal theoretical background will be provided.

• In Chapter 3 the state of the art in color to gray conversions is pre-

sented, together with our proposed approach.

• Chapter 4 contains a description of the various implementations.

• In Chapter 5 the experimental evaluation is detailed and the results

are presented.

• In Chapter 6 the conclusion are shown and future works are outlined.

1.3 An important note about the images

Even if high quality printers are used, few specialized printing mediums can

adequately reproduce the subtly visible changes of colors and grayscale in-

tensities that we show in the images of this work.

Just to make an example, the significant differences between images (b)

and (c) in Figure 4.2 on page 46 are almost completely lost when printed on

paper, even if they are easily discernible when seen on a standard computer

monitor. Thus, we strongly recommend to watch the images on a (preferably

calibrated) computer screen.

To ensure the availability of the electronic format, a Portable Document

Format has been proposed (pdf) version of this work is publicly downloadable

from the web pages of the Electronic Theses and Dissertation service of the

University of Pisa at the address: http://etd.adm.unipi.it (as of April

2009).

http://etd.adm.unipi.it


Chapter 2

Background

The background of this work is mainly rooted in the fields of color science,

computer vision and image processing. We will now introduce briefly the

basics of these topics, referencing to more complete sources at the beginning

of each topic section.

In Section 2.1 some basic color theory concepts are introduced, like lumi-

nance (2.1.1), color models and color spaces (2.1.2, 2.1.3), gamma (2.1.4) and

grayscale conversions (2.1.5). We also enumerate, with a brief explanation,

many of the color spaces used by the grayscale conversions that we examined

and implemented (see Chapter 3 and Chapter 4).

In Section 2.2 we give a brief overview about the image based 3D re-

construction world: after a quick description of the problem we introduce

the stereo matching family of algorithms (2.2.1), then we hint about the

multi view stereo matching problem (2.2.2) and eventually we cope with the

grayscale conversion problem in the context of stereo matching (2.2.3).
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2.1 Luminance and chrominance

Visible light is the electromagnetic radiation of a wavelength that is visible

to the human eye in the frequency range between 380 and 750 nm. The

primary properties of light are: intensity, frequency, polarization and the

wave-particle duality. Here we will consider just the distribution of light

energy versus wavelength, that is the spectrum.

A really good introduction to this topic can be found in [1].

2.1.1 Luminance

Luminance is a photometric measure (in
cd

m2
) of the luminous intensity per

unit area of light traveling in a given direction. It describes the amount of

light that passes through or is emitted from a particular area, and falls within

a given solid angle. The luminance indicates how much luminous power will

be perceived by an eye looking at the surface from a particular angle of view.

Luminance is thus an indicator of how bright a surface will appear.

2.1.2 Color

Color is the visual perceptual property corresponding in humans to the cat-

egories called red, yellow, blue and others. Color derives from the spectrum,

interacting in the eye with the spectral sensitivities of the light receptors.

Color categories and physical specifications of color are also associated with

objects, materials, light sources, etc., based on their physical properties such

as light absorption, reflection, or emission spectra.

As already said, the visible spectrum is the portion of the electromag-

netic spectrum that is visible to the human eye. A typical human eye will

respond to wavelengths from about 380 to 750 nm. In terms of frequency,

this corresponds to a band in the vicinity of 790–400 tera hertz.
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The spectrum distribution defines the color perceived by the eye, but it

does not contain all the colors that the human eyes and brain can distinguish.

Unsaturated colors such as pink, and purple colors such as magenta are

absent, for example, because they can only be made by a mix of multiple

wavelengths. Another, often problematic, characteristic of the color is that

different spectrum distributions can be perceived as the same color, this

phenomenon is called metamerism.

The color of an object depends upon its temperature as predicted by

Planck’s formula. This law describes the “ideal” blackbody radiation given

off by any blackbody object above absolute zero. In physics, a black body is

an object that absorbs all electromagnetic radiation that falls on it. Nonblack

objects emit according to the “ideal” blackbody radiation spectrum multi-

plied (frequency by frequency) by the proper absorption coefficient charac-

teristic of its surface.

2.1.3 Color Models and Color Spaces

There are several ways to formally describe colors. A color model is an

abstract mathematical model describing the way colors can be represented

as tuples of numbers, typically as three or four color components. When this

model is associated with a precise description of how the components are to

be interpreted, the resulting set of colors is called color space.

Adding a certain mapping function between the color model and a certain

reference color space results in a definite “footprint” within the reference color

space. This is known as a gamut, and, in combination with the color model,

defines a new color space.
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Figure 2.1: CIE 1931 xy chromaticity diagram showing the gamut of the sRGB color

space and location of the primaries. The D65 white point is shown in the

center.

2.1.3.a Tristimulus models

The human eye has receptors, called cone cells, for short, middle and long

wavelengths. Thus in principle, three parameters can describe a color sen-

sation. The tristimulus values of a color are the amounts of three primary

colors in a three-component additive color model.

Any specific method for associating tristimulus values with each color is

called a color space. CIE XYZ, one of many such spaces, is special because

it is based on direct measurements of human visual perception, and serves

as the basis from which many other color spaces are defined.

Absolute color spaces needs to define a white point. A white point (often

referred to as “reference white” or “target white” in technical documents) is

a set of tristimulus values or chromaticity coordinates that serve to define the

color “white”. Depending on the application, different definitions of white are

needed to give acceptable results. For example, photographs taken indoors
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may be lit by incandescent lights, which are relatively orange compared to

daylight. Defining “white” as daylight will give unacceptable results when

attempting to color correct a photograph taken with incandescent lighting.

2.1.3.b CIE XYZ color space

The CIE 1931 XYZ color space1 is one of the first mathematically defined

color spaces. It was derived from a series of experiments done in the late 1920s

by W. David Wright [2] and John Guild [3]. Their experimental results were

combined into the specification of the CIE RGB color space2, a previous

attempt from which the CIE XYZ color space was derived.

In the CIE XYZ color space, the tristimulus values are not the responses

of the human eye, but rather a set of tristimulus values called X, Y , and

Z, which are a sort of “derived” parameters from the red, green and blue

colors. This derivation has also been choosed in a way that the Y value can

represent the achromatic luminance.

This color space is used directly in the CIE Y grayscale conversion (see

Section 3.1.2.a and Section 4.3.1) and as a base for many other methods.

2.1.3.c RGB color model

The RGB color model is an additive color model in which red, green, and

blue light are added together in various ways to reproduce a broad array of

colors.

The main purpose of the RGB color model is for the sensing, represen-

tation, and display of images in electronic systems, such as televisions and

computers, though it has also been used in conventional photography. Before

1Also known as CIE 1931 color space, CIE stands for Commission internationale de

l’éclairage, the original French name of the International Commission on Illumination.
2Not to be confused with the RGB color model.
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the electronic age, the RGB color model already had a solid theory behind

it, based in human perception of colors.

Unlike the CIE color spaces, that strives to be independent from the

reproduction devices, the RGB color model is a device-dependent color space:

different devices detect or reproduce a given RGB value differently, since

the color elements (such as phosphors or dyes) and their response to the

individual R, G, and B levels vary from manufacturer to manufacturer, or

even in the same device over time. Thus an RGB value does not define the

same color across devices without some kind of color management.

This color space is used directly in the RGB Channel Filter grayscale

conversion (see Section 3.1.1.b) and as a base for many other methods.

2.1.3.d HSV and HSL representations

Figure 2.2: HSL arranged as a double-cone and the conical representation of the

HSV model.

HSL and HSV are two related representations of points in an RGB color

space, which attempt to describe perceptual color relationships more accu-

rately than RGB, while remaining computationally simple. HSL stands for

hue, saturation, lightness, while HSV stands for hue, saturation, value. Both
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HSL and HSV describe colors as points in a cylinder whose central axis ranges

from black at the bottom to white at the top with neutral colors between

them, where angle around the axis corresponds to “hue”, distance from the

axis corresponds to “saturation”, and distance along the axis corresponds to

“lightness”, “value”, or “brightness”.

The two representations are similar in purpose, but differ somewhat in ap-

proach. Both are mathematically cylindrical, but while HSV can be thought

of conceptually as an inverted cone of colors (with a black point at the bot-

tom, and fully-saturated colors around a circle at the top), HSL concep-

tually represents a double-cone or sphere (with white at the top, black at

the bottom, and the fully-saturated colors around the edge of a horizontal

cross-section with middle gray at its center). Note that while “hue” in HSL

and HSV refers to the same attribute, their definitions of “saturation” differ

dramatically.

The HSV color space is used directly in the Value HSV grayscale conver-

sion (see Section 3.1.1.a), while the HSL color space is used directly in the

Lightness HSL grayscale conversion (see Section 3.1.1.c).

2.1.3.e sRGB color space

sRGB is a standard RGB color space created cooperatively by HP and Mi-

crosoft for use on monitors, printers, and the Internet. It uses the ITU-R

BT.709-5 primaries, the same used in studio monitors and HDTV, and a

transfer function (gamma curve) typical of CRTs. his specification allows

sRGB to be directly displayed on typical monitors, a factor which greatly

aided its acceptance.

The sRGB color space has another peculiarity: its gamma3 can not be

3See Section 2.1.4 for the definition of the gamma in general and Section 2.1.4.a for the

specific sRGB gamma.
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expressed as a single numerical value.

The sRGB color space has been endorsed by the W3C, Exif, Intel, Pan-

tone, Corel, and many other industry players; it is also used in proprietary

and open graphics file formats, such as SVG. As the recommended color space

for the Internet, sRGB should be used for editing and saving all images in-

tended for publication to the WWW. The sRGB color space is well specified

and is designed to match typical home and office viewing conditions, rather

than the darker environment typically used for commercial color matching.

Due to the standardization of sRGB on the Internet, on computers, and on

printers, many low- to medium-end consumer digital cameras and scanners

use sRGB as the default (or only available) working color space. Used in

conjunction with an inkjet printer, an sRGB image produces what is often

regarded as satisfactory for home use. However, consumer-level camera LCDs

are typically uncalibrated, meaning that even though the image is being

labeled as sRGB, one cannot conclude that the image is color-accurate on

the LCD.

The two dominant programming interfaces for 3D graphics, OpenGL and

Direct3D, have both incorporated sRGB.

Unless otherwise stated, we assume that the input images are encoded in

this color space.

2.1.3.f Color opponent process

The color opponent process is a color theory that states that the human

visual system interprets information about color by processing signals from

cones and rods in an antagonistic manner. The three types of cones have

some overlap in the wavelengths of light to which they respond, so it is more

efficient for the visual system to record differences between the responses of

cones, rather than each type of cone’s individual response. The opponent
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color theory suggests that there are three opponent channels: red versus

green, blue versus yellow, and black versus white. The latter type is achro-

matic and detects light/dark variation, or luminance. -

2.1.3.g CIE L∗ a∗ b∗ color space

The CIE 1976 (L∗, a∗, b∗) color space is a color-opponent space with dimen-

sion L for lightness and a and b for the color opponent dimensions, based on

nonlinearly compressed CIE XYZ color space coordinates. CIE LAB uses a

red/green axis for the a value and a blue/yellow axis for the b value. The in-

tention is to create a space which can be computed via simple formulas from

the XYZ space, but is more perceptually uniform than XYZ. Perceptually

uniform means that a change of the same amount in a color value should

produce a change of about the same visual importance. When storing colors

in limited precision values, this can improve the reproduction of tones.

CIE LAB is relative to the white point of the XYZ data it were converted

from. Lab values do not define absolute colors unless the white point is also

specified. Often, in practice, the white point is assumed to follow a standard

and is not explicitly stated, for “absolute colorimetric” rendering intent the

values are relative to CIE standard illuminant D504.

The lightness correlate in CIE LAB is calculated using the cube root of

the relative luminance.

The CIE LAB color space is used, among others, in the Fairchild Light-

ness grayscale conversion (see Section 3.1.3.a) and in the Gooch Color2Gray

grayscale conversion (see Section 3.2.2).

4All these topics are best explained in [1].
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2.1.3.h CIE L∗ u∗ v∗ color space

The CIE 1976 (L∗, u∗, v∗) color space, is another simple-to-compute trans-

formation of the 1931 CIE XYZ color space, but which attempted perceptual

uniformity. CIE LUV uses chromacity (saturation) for the u value and hue

angle for the v value. It is extensively used for applications such as computer

graphics which deal with colored lights.

The CIE LUV color space is used in the Nayatani Lightness VAC, in the

Nayatani Lightness VCC and in the Smith Apparent grayscale conversions

(see Section 3.1.3.b, Section 3.1.3.c and Section 3.2.8).

2.1.4 Gamma

Figure 2.3: Systems with linear and gamma-corrected cameras. The dashes in the

middle represent the storage and transmission of image signals or data

files. The three curves represent input–output functions of the camera,

the display, and the overall system, respectively.

Gamma correction is a nonlinear operation used to code and decode lumi-

nance or tristimulus values in video or still image systems. Gamma correction

is, in the simplest cases, defined by the following power-law expression:

Vout = V γ
in (2.1)

where the input and output values are non-negative real values, typically in

a predetermined range such as 0 to 1. A gamma value γ < 1 is sometimes
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called an encoding gamma, and the process of encoding with this compressive

power-law nonlinearity is called gamma compression; conversely a gamma

value γ > 1 is called a decoding gamma and the application of the expansive

power-law nonlinearity is called gamma expansion

Almost all grayscale conversion algorithms must work with linearized im-

ages, some conversions are particularly sensitive to this issue (see Section

3.4).

2.1.4.a sRGB gamma

Figure 2.4: Plot of the sRGB standard gamma-expansion nonlinearity (red), and its

local gamma value, slope in log–log space (blue).

Unlike most other color spaces, the sRGB gamma can not be expressed as

a single numerical value. The overall gamma is approximately 2.2, consisting

of a linear (gamma 1.0) section near black, and a non-linear section elsewhere

involving a 2.4 exponent and a gamma (slope of log output versus log input)

changing from 1.0 through about 2.3.

Unless otherwise stated, we use these formulas for gamma encoding and

decoding.
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2.1.5 Color to gray conversion

Colors in an image may be converted to a shade of gray by calculating the

effective brightness or luminance of the color and using this value to create

a shade of gray that matches the desired brightness. This may be useful for

aesthetic purposes, for printing without colors and for image computations

that need (or can be speeded up using) a single intensity value for every pixel.

Color to grayscale conversions perform a reduction of the three dimen-

sional color data into a single dimension. A standard linear technique for

dimensionality reduction is PCA (principal component analysis). As well

explained in [4], PCA is not a good technique for color to gray conversion:

In PCA, a set of orthogonal vectors, the principal components,

lying along the directions of maximal data variation is found. To

reduce the dimensions of the data, a subset of the principal com-

ponents are used to form a subspace onto which the original data

is projected. While preserving the color variation is necessary

for pleasing grayscale images, it is not sufficient. If we have an

image with most of the colors clustered in two regions, red and

green for example, we can envision a “dumbbell”-shaped distri-

bution of pixels in color space. By preserving variance, one end

of the “dumbbell” will be mapped to the light end of the grayscale

gamut while the other will be mapped to the dark end. If we then

examine the histogram of the resulting grayscale image, we will

find a large number of empty gray bins in the center of the range.

As such, any detail within the red and green “dumbbell ”clusters

will be reproduced over a very small gray range and may not be

perceived.

It is evident that some loss of information during the conversion is in-

evitable, so the goal is to save as much information from the original color
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image as possible.

At the same time, the aim is also to produce “the best” grayscale results.

Depending on the context, the best results are either the most perceptually

accurate, or the ones that keeps the maximum image information, often at

the cost of perceptual accuracy, or the ones that maintain some specific global

properties like luminance, dynamic range, contrast, etc.

Recently, various approaches to the color to grayscale conversion problem

have been proposed in [5, 6, 7, 8, 4, 9, 10, 11].

2.2 Image based 3D reconstruction

The projection of light rays onto the retina presents our visual system with

an image of the world that is inherently two-dimensional, yet we are able

to interact with the three-dimensional world, even in situations new to us,

or with objects unknown to us. That we accomplish this task easily implies

that one of the functions of the human visual system is to reconstruct a 3D

representation of the world from its 2D projection onto our eyes.

In computer vision the problem of automatic reconstruction of three-

dimensional objects and environments from sets of two or more photographic

images is being widely studied, because it is important for many applications

that integrate virtual and real data. Many approaches have been used to solve

this problem. Traditional methods are based on matching features from sets

of two or more images.

In this work we test the impact of different advanced grayscale conversions

in the dense stereo matching case, so in this section we will introduce this

case more in depth with respect to the others.

In traditional stereo methods, for a complete 3D model of real object,

many parts of the surface must be computed with respect to a set of base

viewpoints, and these surface patches must be fused into a single consistent
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model. While the classical vision problem of two camera stereo has been

studied for decades, in the last few years there has been a surge of interest in

shape reconstruction from multiple views. A good reference for both stereo

and multi view methods is [12].

In order to compute a 3D reconstruction, a stereo system must first solve

the correspondence problem. Matching algorithms can produce sparse or

dense disparity maps, depending on exactly what features are used as a basis

for the correspondence. In dense stereo matching, the disparity is estimated

for every pixel; In contrast, for sparse stereo matching, the disparity is com-

puted at a subset of “interesting” points in the image, called local features ;

The search for correspondence is restricted to a sparse set of detected fea-

tures.

A local feature is an image pattern which differs from its immediate neigh-

borhood. It is usually associated with a change of an image property or sev-

eral properties simultaneously, although it is not necessarily localized exactly

on this change. The image properties commonly considered are intensity,

color, and texture. Local features can be points, but also edges or small

image patches. Typically, some measurements are taken from a region cen-

tered on a local feature and converted into descriptors. The descriptors can

then be used for various applications, including matching. A comprehensive

survey on this topic can be found in [13].

2.2.1 Stereo matching

Stereo matching is a problem that has been studied over several decades

in computer vision and many researchers have worked at solving it. The

proposed approaches can be broadly classified into feature and correlation

based approaches.

The simplest case occurs when the images have been rectified in a fronto-
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Figure 2.5: A pair of rectified images (a), (b) and the corresponding disparity map

(c).

parallel position with respect to the object. In this case a dense matching

algorithm can compute a map of the horizontal disparity d(x, y) between the

images that is inversely proportional to the distance of every pixel from the

camera. The correspondence between a pixel (x, y) in reference image r and

a pixel (x′, y′) in matching image m is then given by

x′ = x+ sd(x, y), y′ = y (2.2)

where s = ±1 is a sign chosen so that disparities are always positive.

A first problem that occurs is how to obtain the rectified image pair.

Camera calibration and pixel rectification are necessary, and it really helps

to have “well positioned” photos. Then, algorithms performs a series of

computation steps that can be roughly aggregated in:

Figure 2.6: The search space before (a) and after (b) rectification.
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1. matching cost computation

2. cost (support) aggregation

3. disparity computation / optimization

4. disparity refinement

In an effort to measure this subfield’s progresses, a general framework

with many combinable implementations of these steps has been released by

[14]. Many dataset with ground truths have been subsequently produced by

the same authors over the subsequent years. We used this framework and

these datasets to test the effects of our the various grayscale conversions in

the stereo matching results.

2.2.2 Multi view stereo matching

The goal of multi view stereo matching is to reconstruct a complete 3D object

model from a collection of images taken from known camera viewpoints. Over

the last few years, a number of high quality algorithms have been developed,

and the state of the art is improving rapidly.

Multi view stereo matching is beyond the scope of this work, but we are

planning to extend the study of grayscale conversions to this case and we

are already developing a flexible multi view 3D reconstruction framework,

called PipeLAB, which will expand upon the ideas of [15] and [16]. PipeLAB

can already use the various grayscale conversion implementations as modules

(see Section 4.1).

2.2.3 Color and grayscale in matching

Few articles deal with color correlation based matching, the most common

approaches are to take the mean of the three color components or to aggregate
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in some empirical way the information obtained from the single channels.

A grayscale conversion preprocessing step can speed up many image

matching algorithms and, in some cases, can give better results with re-

spect to color processing. A good grayscale preprocessing can, for example,

improve the disparity maps obtained by dense stereo matching algorithms,

generate more robust local features in sparse matching algorithms and im-

prove some steps in multi view algorithms5.

Among the few studies on the correlations between color and grayscale

in matching algorithms we can cite [17] and [18]. We are trying to improve

upon these studies considering advanced grayscale conversion techniques pre-

viously used only for reproduction and aesthetic purposes.

5The fusion step, in particular. Since we will not explain these topics here, please refer

to [15].



Chapter 3

Grayscale conversions

We have examined and implemented many different existing color to gray

conversion algorithms in order to find the best starting point for our specific

needs.

In this chapter we will explain many grayscale conversion techniques,

starting from ten “simple” ones (Section 3.1) and ending with eight advanced

techniques that constitute the state of the art in this field (Section 3.2).

Then, we present, in Section 3.3, a new grayscale algorithm that is a variant

of the Grundland et al. [7, 8] algorithms (see Section 3.2.4) and is designed

specifically for stereo and multi view stereo matching. We eventually discuss

the effects of gamma correction in the grayscale conversions in Section 3.4.

3.1 Basic Techniques

Ten “simple” grayscale conversion techniques are explained in this section.

All these methods are “simple” in the sense that they are local functions of ev-

ery pixel, e.g. for every pixel of the color image a grayscale value is computed

using a function whose only parameters are the values of the corresponding

color pixel.
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The notation used to specify the function applied to every image pixel is:

Yxy = f(|Cxy|) (3.1)

where x and y are the pixel’s coordinates, Yxy is the grayscale value of that

pixel and |Cxy| is the vector with the (gamma linearized) color values of that

pixel in the starting color space.

The first four (Section 3.1.1) are “quick and dirty” methods, (too) com-

monly used by existing systems. The next three (Section 3.1.2) are standard

methods, good enough for non-specialized uses. The last three (Section 3.1.3)

are listed in this section because they are local but they are actually based

on more advanced color space topics and can mitigate the problem of isolu-

minant colors.

3.1.1 Trivial methods

We begin with the most basic methods, where the grayscale value is the result

of a trivial function of the color values of the same pixel. These methods loses

a lot of the image information because for every pixel they discard one or

two of the three color values and blindly average the remaining ones. These

color to grayscale conversions should never be used in real life applications,

although many systems use them.

We implemented all these methods as PipeLAB modules1 in order to

observe, in future works, the impact of a poorly chosen grayscale conversion

in multi-view stereo matching results.

3.1.1.a Value HSV

The worst method that can be considered is: take the HSV representation

of the image (see Section 2.1.3.d) and use the “Value” value as the grayscale

1See Section 2.2.2 and Section 4.1.
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value.

This is equivalent to:

Yxy = max(Rxy, Gxy, Bxy) (3.2)

As can be easily seen, this method discards more than two thirds of the

original information because for every pixel it discards two of the color values

and, in addition, it loses the information relative to which color value is

keeped for a pixel. Another evident problem of this approach is that the

resulting image luminance is heavily biased toward white.

3.1.1.b RGB Channel Filter

Another quick way to obtain a grayscale image is: choose a channel between

R, G or B and use this channel as Y .

This method discards approximately two thirds of the image information,

with the green filter giving the best results and the blue filter giving the worst

results. This is lightly better than the Value HSV method because the color

value choosed is consistent for all the pixels of the image.

In classic photography, this same effect can be achieved using a black and

white film and a red, green or blue optic filter.

3.1.1.c Lightness HSL

Another “bad” method is: take the HSL representation of the image (see

Section 2.1.3.d) and use the Lightness value as the grayscale value.

This is equivalent to:

Yxy =
max(Rxy, Gxy, Bxy) + min(Rxy, Gxy, Bxy)

2
(3.3)

This method discards more than one third of the original information, be-

cause a color value is discarded from every pixel, the remaining values are
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averaged and it loses the information relative to which color value is discarded

for a pixel.

3.1.1.d Naive Mean

The last of these methods, and the best (from the information) between

these, is: take the mean between the color channels.

This is equivalent to:

Yxy =
Rxy +Gxy +Bxy

3
(3.4)

The advantage of this method with respect to the other trivial ones is that

it takes information from every channel, although it does not consider the

relative spectral power distribution of the RGB channels.

3.1.2 Direct methods

An easy improvement over the trivial methods is to calculate the grayscale

value using a weighted sum over the color channels. Using different weights

for different colors, we can take into account factors such as the relative spec-

tral distribution of the color channels and the human perceptive sensibilities.

The vast majority of the existing grayscale conversion implementations use a

method of this family, often wrongly using the gamma precompressed values

instead of the linear ones.

We implemented, as PipeLAB modules2, two of the most widely used

methods: CIE Y and the NTSC Rec.601. The former method has also been

choosed as the basic techniques representative for the tests with the stereo

matching framework (see Section 4.4). The QT builtin is included here only

as an example of grayscale conversion with integer math.

2See Section 2.2.2 and Section 4.1.
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3.1.2.a CIE Y

A widely used conversion is based on the CIE 1931 color space [2, 3]: take

the XYZ representation of the image (see Section 2.1.3.b) and use the Y

value as the grayscale value. Assuming that the image is in linearized sRGB

(see Section 2.1.4.a) this is equivalent to the following weighted sum over the

color values:

Yxy = 0.212671Rxy + 0.71516Gxy + 0.072169Bxy (3.5)

3.1.2.b NTSC Rec.601

Another widely used conversion is the NTSC Rec.601, created in 1982 by the

ITU-R organization for luma definition in gamma precompensated television

signals:

Yxy = 0.299Rxy + 0.587Gxy + 0.114Bxy (3.6)

Many existing implementations use these values, both with linear and gamma

precompensated images.

3.1.2.c QT builtin

The QT library3, in the qGray function, shows a typical approximation of

the NTSC Rec.601 values:

Yxy =
11Rxy + 16Gxy + 5Bxy

32
(3.7)

This conversion, equivalent to Yxy = 0.34375Rxy + 0.5Gxy + 0.15625Bxy,

is designed to work well with integer representation in the [0 .. 255] range,

because the division by 32 can be implemented using simple bit shifts. Their

implementation ignores any issues regarding gamma compression.

3Used as the main support library through all this project development, see [19].



3.1 Basic Techniques 26

3.1.3 Chrominance direct methods

Figure 3.1: An isoluminant color image (a) converted with the CIE Y method (b)

and with the Fairchild Lightness method (c).

A problem with the previous approaches is that the distinction between

two different colors of similar luminance is lost. In this section we consider

three methods that are based on more advanced color space topics with

respect to the previous ones and try to mitigate this problem. These con-

versions are still local functions of the image pixels, but they assign different

grayscale values to isoluminant colors.

To achieve this result the luminance information is slightly altered using

the chrominance information. To map different colors to increases or de-

creases of the “traditional” luminance, a result from human color perception

studies is used: the Helmholtz-Kohlrausch effect [20, 21, 11].

The Helmholtz-Kohlrausch (H-K) effect states that the perceived light-

ness of a stimulus changes as a function of the chroma: this phenomenon is

predicted by a chromatic lightness term that corrects the luminance based

on the color’s chromatic component and on starting colorspace.

We examined three such predictors: Fairchild Lightness, Nayatani Light-

ness VAC and Nayatani Lightness VCC, and we implemented, as a PipeLAB

module4, only the Nayatani Lightness VAC method (3.1.3.b) that is used as

4See Section 2.2.2 and Section 4.1.
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a base for an advanced technique from Smith et al. [11] explained in Section

3.2.8 and implemented as described in Section 4.3.3.

3.1.3.a Fairchild Lightness

Fairchild’s CIE LAB (see Section 2.1.3.g) chromatic lightness metric is fit to

Wyszecki 1967 [22] data and is defined as:

Yxy = Lxy + (2.5− 0.025Lxy)

(
0.116

∣∣∣sin(Hxy − 90

2

)∣∣∣+ 0.085

)
Cxy (3.8)

where Lxy, Cxy and Hxy are the values of a cylindrical representation of the

CIE LAB color space called CIE LAB LCH (lightness, chroma, hue angle).

For more information see [20].

3.1.3.b Nayatani Lightness VAC

Nayatani [23, 24] defines a chromatic lightness metric based on the CIE LUV

color space (see Section 2.1.3.h) and the Variable-Achromatic-Color (VAC)

approach, in which an achromatic sample’s luminance is adjusted to match a

color stimulus. VAC was used in the seminal 1954 Sanders-Wyszecki study,

and again in Wyszecki’s later 1964 and 1967 studies [22].

Chromatic object lightness is predicted by the following equation:

Yxy = Lxy +
[
−0.1340 q (θxy) + 0.0872KBrxy

]
suvxyLxy (3.9)

where suvxy is a function of u and v that gives the chromatic saturation related

to the strength the H-K effect according to colorfulness, the quadrant metric

q (θxy) predicts the change of the H-K effect for varying hues and constant

KBrxy expresses the H-K effect’s dependence on the eyes’ adapting luminance.

See [23, 24, 11] for more detailed explanations.
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3.1.3.c Nayatani Lightness VCC

Another chromatic lightness metric defined [24] by Nayatani is based on

the CIE LUV color space (see Section 2.1.3.h) and the Variable-Chromatic-

Color (VCC) approach, in which the chromatic content of a color stimulus

is adjusted until its brightness matches a given gray stimulus. VCC is less

common than VAC.

The chromatic object lightness equation is almost identical to the VAC

case:

Yxy = Lxy +
[
−0.8660 q (θxy) + 0.0872KBrxy

]
suvxyLxy (3.10)

A quantitative difference between them is that VCC lightness is twice as

strong VAC lightness (in log space). Moreover, in VCC lightness has been

observed [24, 11] that its stronger effect maps many bright colors to white,

making it impossible to distinguish between very bright isoluminant colors.

3.2 Advanced Techniques

We present, roughly in chronological order, eight advanced techniques that

constitute the state of the art in this field.

In this section we summarize briefly the fundamental ideas behind these

methods, in Chapter 3 we will explain in more detail the algorithms that we

implemented and we will include the relative examples.

For the sake of simplicity we call these method using the surname of one

of the authors and a mnemonic adjective taken from the title of the relative

paper:

• Bala Spatial, in Section 3.2.1, adds high frequency chromatic informa-

tion to the luminance.
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• Gooch Color2Gray, in Section 3.2.2, find gray values that best match

the original color differences through an objective function minimiza-

tion process.

• Rasche Monochromats, in Section 3.2.3, minimizes an energy function

over the colors.

• Grundland Decolorize, in Section 3.2.4, find a global continuous map-

ping that adds lost chromatic information to the luminance channel.

• Queiroz Invertible, in Section 3.2.5, transform colors into high frequency

textures that are applied onto the gray image and can be later decoded

back to color.

• Alsam Sharpening, in Section 3.2.6, aims to create sharp grayscale from

the original color rather than enhancing the separation between colors.

• Neumann Adaptive, in Section 3.2.7, stresses perceptual loyalty by mea-

suring the image’s gradient field by color differences in their Coloroid

color space.

• Smith Apparent, in Section 3.2.8, combines global and local conversions

in a way similar to the Alsam Sharpening method.

3.2.1 Bala Spatial

In their short paper studying chromatic contrast for grayscale conversion,

Bala et al. [5] take a spatial approach and introduce color contrasts in CIE

LAB LCH (already introduced in Section 3.1.3.a) by adding the high-pass

filtered chroma channel to the lightness channel. To prevent overshooting in

already bright areas, this correction signal is locally adjusted and its sign is

taken from the lightness contrast. The algorithm is susceptible to problems

in chroma and lightness misalignment.
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3.2.2 Gooch Color2Gray

A different approach was taken by Gooch et al. [6], who introduced a local

algorithm known as Color2Gray. In this gradient-domain method, the gray

value of each pixel is iteratively adjusted to minimize an objective function,

which is based on local contrasts between all the pixel pairs.

Original contrast between each pixel and its neighbors is measured by a

signed distance, whose magnitude accounts for luminance and chroma differ-

ence and whose sign represents the hue shift with respect to a user defined

hue angle.

The computational complexity of this method is really high: O(N4), this

can be improved by limiting the number of considered differences (e.g. by

color quantization). A recent extension to a multi resolution framework by

Mantiuk et al. [25] improves the algorithm’s performance: in their approach

the close neighborhood of a pixel is considered on fine levels of a pyramid,

whereas the far neighborhood is covered on coarser levels. The authors claim

that this enables them to convert bigger images and perform computations

faster.

3.2.3 Rasche Monochromats

Another conversion was introduced by Rasche et al. [4]. Their method aims

to preserve contrast while maintaining consistent luminance. The authors

formulate an error function based on matching the gray differences to the

corresponding color differences. The goal is minimizing the error function

to find an optimal conversion. The authors propose using color quantization

to reduce the considerable computational costs of the error minimization

procedure.
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3.2.4 Grundland Decolorize

Grundland and Dodgson [7, 8] proposed the Decolorize algorithm for con-

trast enhancement as well as converting color to grayscale. They perform a

global grayscale conversion by expressing grayscale as a continuous, image

dependent, piecewise linear mapping of the primary RGB colors and their

saturation.

In their YPQ color space5, the color differences are projected onto the two

predominant chromatic contrast axes and are then added to the luminance

image. Unlike principal component analysis6 which optimizes the variability

of observations, predominant component analysis optimizes the differences

between observations. The predominant chromatic axis aims to capture,

with a single chromatic coordinate, the color contrast information that is

lost in the luminance channel. A saturation-controlled adjustment of the

output dynamic range is then adaptively performed to balance between the

original range and the desired amount of enhancement.

Their algorithm achieves linear-time performance thanks to Gaussian

pairing sampling which limits the amount of processed color differences.

Three parameters are used to control contrast enhancement, scale selection

and noise suppression, and image-independent default values for these pa-

rameters have been proposed.

3.2.5 Queiroz Invertible

Queiroz and Braun [9] have proposed an invertible conversion to grayscale.

The idea is to transform colors into high frequency textures that are applied

onto the gray image and can be later decoded back to color. The method

is based on wavelet transformations and on the replacement of subbands by

5A simple color opponent space, see Section 2.1.3.f.
6Introduced in Section 2.1.5.
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chrominance planes.

3.2.6 Alsam Sharpening

Alsam and Kol̊as [26] introduced a conversion method that aims to create

sharp grayscale from the original color rather than enhancing the separation

between colors. The approach resembles the Bala Spatial method (Section

3.2.1): first, a grayscale image is created by a global mapping to the image-

dependent gray axis. Then, the grayscale image is enhanced by a correction

mask in a way similar to unsharp masking (see Section 4.2 and reference

[27]).

3.2.7 Neumann Adaptive

Recently, Neumann et al. [10] presents a local gradient-based technique with

linear complexity that requires no user intervention.

It aims to obtain the best perceptual gray gradient equivalent by exploit-

ing their Coloroid system and its experimental background. The gradient

field is corrected using a gradient inconsistency correction method. Finally,

a 2D integration yields the grayscale image.

In the same paper they also introduce another technique that is a gen-

eralization of the CIE LAB formula [21] (see Section 2.1.3.g): it introduces

a signed power function to give a signum to the weighted Lab components

that can be used as an alternative to the Coloroid gray gradient field.

3.2.8 Smith Apparent

A recent method by Smith et al. [11] combines global and local conversions

in a way similar to the Alsam Sharpening method (see Section 3.2.6). The

method first applies global “absolute” mapping based on the H-K effect (see
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Section 3.1.2), and then locally enhances chrominance edges using adaptively

weighted multi scale unsharp masking [28].

While the global mapping is image independent, the local enhancement

reintroduces lost discontinuities only in regions that insufficiently represent

the original chromatic contrast [11]. The goal of the method is perceptual

accuracy, not the exaggeration of discriminability.

3.3 Gray4Matching: an ad-hoc idea

We present a new grayscale method based on the Grundland Decolorize al-

gorithm (see Section 3.2.4) that is designed specifically for stereo and multi

view stereo matching.

The basic idea is to transform the image set preserving the consistence

between the images that are to be matched and in the meantime optimiz-

ing the transformation to preserve as much as possible of the original color

information with respect to the matching requirements.

To achieve these objectives we must fulfill these requirements:

• Feature Discriminability : the method must preserve as much as possi-

ble of the image features discriminability to be matched, even at the

cost of decreased perceptual accuracy of the image7.

• Chrominance Awareness : the method must distinguish between isolu-

minant colors.

• Color Consistency : a color must be mapped to the same grayscale value

in every image of the set to be matched.

7We will talk about the interesting correlations between perceptual and matching re-

sults in Section 5.4.
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• Global Mapping : while the algorithm can use spatial information to

determine the mapping, the same mapping must be used for every

pixel of the image set.

• Grayscale preservation: if a pixel in the color image is already achro-

matic it should maintain the same gray level in the grayscale image.

• Low Complexity : if we consider the application of this algorithm in the

prospect of multi view stereo matching, where a lot of images are to be

processed, the computational complexity gains importance.

3.3.1 Analysis of the requirements

The choice of the starting point for the development of the Gray4Matching

specification derives from an accurate analysis of the previous requirements.

We examined every advanced technique from those listed in Section 3.2 and

discarded the inapplicable ones for the theoretical reasons that follows.

Bala Spatial has been discarded because the spatial frequency based

weighting of the importance of the H-K effect with respect to the base light-

ness violates the consistency and the globalist requisites. As already said, it

is also susceptible to problems in chroma and lightness misalignment.

Gooch Color2Gray violates mainly the low complexity requirement: its

O(N4) computational complexity is really too much for our context of ap-

plication, and even Mantiuk’s O(N2) improvement does not give us enough

confidence with respect to quality versus complexity. Moreover there are

issues with the algorithm’s dependence on parameters that can arbitrarily

affect the grayscale mapping: this can be good for artistic purposes but it

is a serious issue for our objectives. At last, by applying gradient based

minimization process it violates the color consistency, the globality and the

grayscale preservation requirement.
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Queiroz Invertible is totally inapplicable because is designed for “hiding”

the color information in “invisible” parts of the grayscale image, this does

not improve feature discriminability in any way with respect to the classical

conversions.

Rasche Monochromats has problems regarding the tradeoff between com-

plexity and quality of the results because it quantizes colors. Moreover it

applies an energy minimization process that violates the color consistency,

the globality and the grayscale preservation requirement.

Neumann Adaptive is not appropriate for matching because image details

and salient features may be lost by unpredictable behavior in inconsistent

regions of the gradient field. Another problem is that this approach is too

much oriented toward human perception.

The main problem with Alsam Sharpening and Smith Apparent is that,

like Bala’s approach, they violate our consistency and globality requisites

because of their “unsharp masking”-like filtering of the images.

For these reasons, we develop an extension of the Grundland Decolorize,

because it respects all our requisites. In Section 4.3.4 we will explain the

original algorithm in more detail and in Section 4.3.5 we will explain how we

adapted it for our goals.

3.4 Gamma compression and grayscale

Every step of an image processing should be applied over the linear repre-

sentation of the image, not over the gamma precompensated one. In the real

world this issue is ignored in the vast majority of the applications.

The main problem is that, often, we do not known anything about the

image’s gamma.

Excluding Value HSV and RGB channel filter, that does not manipu-

late the color values but only choose one of them, the grayscale conversions
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considered in this chapter are all more or less affected by this issue.

The other basic techniques are relatively robust from this point of view,

even if applying these conversion to gamma precompensated values make

theoretically no sense.

It is difficult to predict the impact of this issue for the advanced tech-

niques, even if we can speculate that Bala Spatial, Alsam Sharpening and

Smith Apparent are the most robust ones, because they are basically weight-

ings of the color values with spatial driven perturbations that enhance them.

A study of the effects of this issue in approaches like Gooch Color2Gray,

Rasche Monochromats, Neumann Adaptive and Queiroz invertible would be

very complex and is completely out of the scope of this work, even if it is

really interesting and we will probably make a dedicated study in future

works.

Here we must say that Grundland Decolorize and (consequently) Gray4-

Matching are very sensible to this issue, because they use saturation and

the proportions between the image chromaticies to choose the mapping of a

color hue to increases or decreases of the basic lightness. If the values are not

linear, these ratios change significantly and the resulting mapping is heavily

affected.

To highlight the importance of this issue, in Section 5.1 we repeat the

same experiments with two version of our Gray4Matching: a version assumes

that the images are stored in the sRGB format and consequently linearize

the values prior to the computation, while the other version assume that the

images are already linear.



Chapter 4

Implementations

From a development point of view, this work is not a standalone project but

it is part of an ongoing effort in expanding the fields of interests of the Visual

Computing Laboratory research group toward the Computer Vision1.

As such, it was necessary to implement our grayscale conversions accord-

ing to the laboratory’s software context, explained in Section 4.1, building

our system as an expansion of the VCG Library already used in our long

term PipeLab project.

In Section 4.2 we will explain our generic image processing library module.

In Section 4.3 we will describe the color to gray conversions that we choosed

1The other research areas of the Laboratory are 3D Scanning (Low cost acquisition

devices, improved acquisition methods, development of software tools for model construc-

tion, color acquisition and stitching), Visualization Tools for Cultural Heritage (Software

tools for interactive visualization of 3D models, Polynomial Texture Maps), Triangulated

Surfaces Processing and Rendering (Data structures and algorithms for surface manage-

ment, surface simplification, multiresolution representation and visualization), Deformable

Object Modeling (Multiresolution deformable object modeling), Scientific Visualization

(Surface fitting techniques, Volume data processing), Computational Geometry and Com-

puter Graphics (Basic geometric algorithms, Computational geometry, Computer graphics

techniques).
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to implement, including also some examples of conversion. Grundland Decol-

orize algorithm (Section 4.3.4) is explained in much more detail with respect

to the other conversions because is the basis of our Gray4Matching optimiza-

tion (Section 4.3.5).

We then focus on the stereo matching related work, describing the used

framework in Section 4.4 and explaining the semi-automatic pre and post

processing utilities that we built around it in Section 4.5.

4.1 Software context

The Visual Computing Laboratory research group has a well defined software

context, that will be described in this section. The vast majority of the

programming efforts are implemented in the C++ language [29, 30], together

with some libraries such as OpenGL [31], QT [19] and others.

The Laboratory stresses the importance of good programming practices

such as reutilization of the code, modularity and a uniform programming

style. To achieve these objectives a single library has been built and is used

for almost every project of the group.

VCGLib is a portable C++ templated library for manipulation and pro-

cessing of triangle and tetrahedral meshes. This advanced mesh processing

library is at the basis of all the Laboratory software tools. Composed by

more than 50000 lines of code it currently includes a lot of algorithm for

mesh processing task, like high quality quadric simplification, mesh cleaning,

mesh smoothing and de-noising, file format parsing and so on.

The bigger and most widely used application of the Laboratory is Mesh-

Lab [32], that is a free and open-source general purpose mesh processing

system aimed to help the management of the typical “not so small” unstruc-

tured 3D models that arise in the pipeline of processing of the data coming

form 3D scanning activities in the context of Cultural Heritage. For this
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purposes MeshLab provides a set of tools for editing, cleaning, healing, in-

specting, rendering and converting these kinds of meshes. The first stable

version was downloaded 30000 times on a nine months period. The last ver-

sion has been downloaded more than 5000 times in just the first three weeks.

MeshLab serves as a single interface for most of the VCGLib functionality.

Our long term objective is to build PipeLab, a general multi view stereo

matching framework, or, in other words, a modular pipeline for image based

3D reconstruction that can be viewed as MeshLab’s equivalent high level

program. To accomplish this goal we built two new library modules: one for

image processing and one for computer vision, and we also already laid the

core mechanisms of PipeLab. The grayscale conversions are implemented as

functions of the computer vision module and both PipeLab and the prepro-

cessing utilities of Section 4.5 use them.

Both MeshLab and the library are released under the GPL license and are

available through anonymous svn. PipeLab will be released with the same

license.

4.2 Implementation of the image processing

module

An image processing module of VCGLib has been designed and built from

scratch in order to support the grayscale conversion algorithms. This mod-

ule has also been designed in order to substitute the ad-hoc small solutions

developed for the various Laboratory projects2.

The module is composed of a templated generic image class, an auxil-

iary system for management of the metadata attributes and a long series of

separate functions.

2Until now a common image processing codebase was not necessary.
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The image class is templated over three parameters:

• The number of the image channels : an image can have from one to an

arbitrary large number of channels, i.e. values per pixel. The default

is to have 3 color channels.

• The type of the values : the image stores the pixels’ values in floating

point variables. The default is to have double floating point precision,

the other option is to have single floating point precision. Static asser-

tions are used to ensure that the value type of an image is a floating

point number.

• The safeness : the image throws runtime exceptions when its member

functions are called with “wrong” parameters. This behavior, active

by default, can be disabled in order to speed up the computation. The

parameter correctness is also independently checked with the dynamic

assertions mechanism that can be disabled by compiling the code in

“release” mode.

The image data is packed by the pixel, to optimize multichannel processing

efficiency. The image class interface is restricted to pixel and metadata access,

processing and I/O are entirely delegated to external functions. The data

is accessible in multiple ways: value and pixel wise, using float coordinates

with nearest and bilinear interpolation, viewing the image with clamping,

direct access to the data and so on.

An auxiliary structured attribute contains all the metadata information,

currently this data consists in the specification of the numeric range of the

values, the image color space, the white point and the gamma compression of

the image. The various functions checks these data before processing, failing

if the image is not compatible with the operation in course.



4.3 Grayscale conversion implementations 41

As the rest of VCGLib, the core of the library does not rely in other

libraries, external wrapping modules have been implemented, for example, to

implement the interactions with QT’s platform independent I/O mechanisms.

We implemented many image processing functions that are “format safe”

and that can operate efficiently. Between those there are normalization func-

tions, color space transformations, color space aware gamma correction func-

tions and many image filters such as a Generic Convolution filter (that can

take a generic n by m convolution kernel), a Mean filter (noise reduction noise

removal using mean of neighborhood), a Gaussian Smoothing filter (noise re-

duction using convolution with a Gaussian smoothing kernel), a Laplacian

filter (edge detection filter), a Laplacian of Gaussian filter (edge detection

filter), a Difference of Gaussian filter (a bandpass filter), a Unsharp Mask

filter (edge enhancement) and a Median filter (noise reduction using median

of neighborhood).

The various grayscale implementations described in Section 4.3 have not

been included in this module but in a preprocessing submodule of the com-

puter vision module, a default CIE Y implementation has also been included

here for basic RGB to grayscale conversions.

The image processing module is designed to be used inside other projects,

for example to support multispectral textures in MeshLab and High Dynamic

Range images in other Laboratory projects.

4.3 Grayscale conversion implementations

After the theoretical review of the state of the art in color to gray conversion

that we explained in Chapter 3, we had to choose the subset of the algorithms

that had to be implemented and tested in the matching context.

We implemented all these conversions in the preprocessing submodule of
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the new computer vision module in the VCGLib3.

We decided to first implement almost all of the basic techniques of Section

3.1 as a quick way to get a preliminary grasp of the practical effects of different

conversions in stereo matching. These preliminary results were not relevant

to the scopes of our work and all but one of them have been excluded from

the results of Chapter 5. All the implementations remains in the submodule,

ready to be used to test their impact in future multi view stereo matching

works.

We implemented and tested three advanced techniques between the eight

described in Section 3.2 for the following motivations:

• Queiroz Invertible has been immediately discarded because, as we al-

ready said in Section 3.3.1, does not improve feature discriminability

in any way with respect to the classical conversions.

• Rasche Monochromats and Neumann Adaptive have been discarded re-

spectively for the color quantization problem and for the unpredictable

behavior in inconsistent regions of the gradient field.

• between the three similar techniques Bala Spatial, Alsam Sharpening

and Smith Apparent we choosed to implement the most recent one,

Smith Apparent.

• Gooch Color2Gray has been implemented in order to demonstrate how

its computationally heavier complexity does not improve in practice

the quality of the results, at least in our context.

• Grundland Decolorize has been implemented in order to show the dif-

ferences between its performance and Gray4Matching’s one.

3The other implemented submodules are not relevant to this work’s objectives and will

not be explained here.
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We finally implemented our Gray4Matching extension of the Grundland

Decolorize conversion.

4.3.1 Implementation of the basic methods

We quickly implemented functions for Value HSV, RGB Channel Filter,

Lightness HSL, Naive Mean, NTSC Rec.601, CIE Y and Lightness Nayatani

VAC methods. The QT qGray was already implemented, and even if it is

possible to implement Fairchild Lightness and Lightness Nayatani VCC we

found that it was not necessary.

There is not much to say about these implementation over what we al-

ready explained in Section 3.1.

As can be easily seen in the example provided in Figure 4.1, the first three

conversions ((b), (c) and (d)) are to be avoided in every occasion because

they discards too much informations and loose features, channel averaging

(e) begins to give “acceptable” results and there are not many noticeable

differences between the last three cases ((f), (g) and (h)). In Figure 3.1 at

page 26 the difference between Lightness Nayatani VAC and CIE Y can be

seen much more evidently.

In the following, only CIE Y is used in the experimental results.

4.3.2 Implementation of Gooch Color2Gray

The Gooch Color2Gray algorithm is composed by three steps:

1. The color image is converted in a perceptually uniform color space.

2. Target differences are computed in order to combine luminance and

chrominance differences.

3. A least squares optimization is used to selectively modulate the source
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(a) Original colors (b) Value HSV (c) Green Filter (d) Lightness HSL

(e) Naive Mean (f) NTSC Rec.601 (g) CIE Y (h) Nayatani VAC

Figure 4.1: An example of the implemented basic techniques.

luminance differences in order to reflect changes in the source images

chrominance.

The first step takes a linear RGB image and converts it in the CIE LAB

representation. See Section 2.1.3.c and Section 2.1.3.g for details about these

spaces.

The color differences between pixels in the color image are expressed

as a set of signed scalar values. For each pixel i and neighbor pixel j a

signed distance scalar δij based upon luminance and chrominance differences

between i and j is found. Using these values, g values for the grayscale image
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are then derived. The grayscale difference between pixel i and a neighboring

pixel j is (gi − gj).
The conversion objective consists of finding g such that all (gi−gj) values

closely match the corresponding δij values. Specifying δij is fairly involved,

and user interaction is needed in order to obtain acceptable results.

The output image g is found by an iterative optimization process: given a

set of desired signed differences δij, the gray image g is found by minimizing

the following objective function, f(g), where K is a set of ordered pixel pairs

(i, j):

f(g) =
∑

(i,j)∈K

((gi − gj)− δij)2 (4.1)

Where g is initialized to be the luminance channel of the source image, and

then descends to a minimum using conjugate gradient iterations [33]. In order

to choose a single solution from the infinite set of optimal g, the solution is

shifted until it minimizes the sum of squared differences from the source

luminance values.

The algorithm’s behavior heavily relies on the choice of the three user

parameters:

• θ controls whether chromatic differences are mapped to increases or

decreases in luminance value.

• α determines how much chromatic variation is allowed to change the

source luminance value.

• µ sets the neighborhood size used for chrominance estimation and lu-

minance gradients, a 0 value means full neighborhood.

As already said in Section 3.2.2, the algorithm has a O(N4) computational

complexity, when a full neighborhood is used (µ = 0). Mantiuk’s approach

[25] can speed up the computation using a multiresolution framework but,
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given the “experimental” approach of this work, we implemented the original

version.

The implementation, executed on a Intel Core 2 Duo T7100 @ 1.80 GHz

laptop with 2GB of ram and a Gentoo Linux operative system takes:

• approximately 11 minutes for a 256× 256 image.

• approximately 3 hours for a 512× 512 image.

• approximately 22 hours for a 1024× 1024 image.

For an example of the conversion, Figure 4.2 shows a comparison between

Color2Gray and CIE Y on a small image, where can be noticed that Gooch’s

approach (c) strongly overemphasizes the little details of the wood texture

with respect to both the original image (a) and the classical method (b).

(a) Original colors (b) CIE Y (c) Gooch Color2Gray

Figure 4.2: An example of a Gooch Color2Gray conversion with a CIE Y reference on

a 192 × 128 image. Gooch’s parameter are θ = 45, α = 10 and µ = 0

(full neighborhood), the conversion took 106.5 seconds for Color2Gray,

and 0.002 seconds for CIE Y.

4.3.3 Implementation of Smith Apparent

The Smith Apparent algorithm can be summarized by the following two

steps:
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1. The color image is converted in grayscale using the Lightness Nayatani

VAC technique.

2. The image contrast is enhanced using unsharp masking adaptively

weighted using the chrominance information.

The first step takes a linear RGB image and converts it in the CIE LUV

representation. See Section 2.1.3.c and Section 2.1.3.h for details about these

spaces.

The lightness channel is then altered according to the H-K effect (see

Section 3.1.3) according to Formula 3.9.

To counter the reduction of local contrast in the grayscale image, un-

sharp masking is used to better represent the local contrast of the original

color image. At this point our implementation slightly differ from the tech-

nique described in [11]: while they use a general adaptively weighted multi

scale unsharp masking technique [28], we make a simplification and use a

single scale unsharp masking. The technique is adapted according to the

ratio between color and grayscale contrast, so that increases occur at under-

represented color edges without unnecessarily enhancing edges that already

represent the original.

For an example of the conversion, Figure 4.3 shows a comparison between

Smith Apparent, Lightness Nayatani VAC and CIE Y on a colorful image ,

where can be noticed how Nayatani VAC (c) improves over CIE Y (b) in the

hue change of the red parrot’s wing and how Smith Apparent (d) restores

the details of the image almost to the original quality (a).

4.3.4 Implementation of Grundland Decolorize

The Grundland Decolorize algorithm has five steps:

1. The color image is converted in a color opponent color space.
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(a) Original colors (b) CIE Y (c) Nayatani VAC (d) Smith Apparent

Figure 4.3: An example of a Smith Apparent conversion, compared to CIE Y and to

the algorithm’s intermediate step Lightness Nayatani VAC.

2. The color differences are measured with Gaussian sampling.

3. The chrominance projection axis is found by predominant component

analysis

4. Luminance and chrominance information are merged.

5. The dynamic range is adjusted using the saturation information.

The process is controlled by three parameters: the degree of image en-

hancement, λ, the typical size of relevant image features in pixels, σ, and

the proportion of image pixels assumed to be outliers, η. Defaults values are

λ = 0.5, σ = 25 and η = 0.001.

The first step takes a linear RGB image (with values in [0 .. 1] range) and

converts it in their YPQ representation.

The YPQ color space consists in a luminance channel Y and two color

opponent channels: a yellow-blue P and a red-green Q. The formula for

Y is the NTSC Rec.601 one (see Section 3.1.2.b), while P = R+G
2
− B and

Q = R − G. The perpendicular chromatic axes support easy calculation of

hue H = 1
π
tan−1

(
Q
P

)
and saturation S =

√
P 2 +Q2.

To analyze the distribution of color contrasts between image features,

color differences between pixels are considered. The algorithm uses a novel

randomized scheme, sampling by Gaussian pairing.
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Each image pixel is paired with a pixel chosen randomly according to a

displacement vector from an isotropic bivariate Gaussian distribution. The

horizontal and vertical components of the displacement are each drawn from

a univariate Gaussian distribution with mean 0 and variance 2
π
σ. The dis-

placement is carried out under symmetric boundary conditions. Each pixel

contributes to at least one color contrast. Repeatable results are guaranteed

by initializing the random number generator with a fixed seed4.

To find the color axis that represents the chromatic contrasts lost when

the luminance channel supplies the color to grayscale mapping, predominant

component analysis is used. In the PQ chrominance plane, the predominant

axis of chromatic contrast is determined through a weighted sum of the ori-

ented chromatic contrasts of the paired pixels. The weighs are determined

by the contrast loss ratio5 and the ordering of the luminance.

Unlike principal component analysis which optimizes the variability of

observations, predominant component analysis optimizes the differences be-

tween observations. The predominant chromatic axis aims to capture the

color contrast information that is lost in the luminance channel. The direc-

tion of the predominant chromatic axis maximizes the covariance between

chromatic contrasts and the weighted polarity of the luminance contrasts.

Next, luminance and chrominance information are combined. The pre-

dominant chromatic data values are obtained by projecting the chromatic

data onto the predominant chromatic axis.

To appropriately scale the dynamic range of the predominant chromatic

channel the algorithm ignores the extreme values due to the level η of image

4We use the improved Marsenne Twister uniform generator [34] and then use the polar

form of the Box-Muller transformation [35] to obtain a Gaussian distribution. Our fixed

seed is 42, obviously.
5The relative loss of contrast incurred when luminance differences are used to represent

the RGB color differences.
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noise. To detect outliers, a linear time selection algorithm is used to calculate

the outlying quantiles of the image data. It is applied to discount the extreme

absolute values of the projected chromatic data when scaling the predominant

chromatic channel.

The predominant chromatic channel is combined with the luminance

channel to produce the desired degree λ of contrast enhancement. At this

intermediate stage of processing, the enhanced luminance is an image depen-

dent linear combination of the original color, mapping linear color gradients

to linear luminance gradients.

The final step uses saturation to calibrate luminance while adjusting its

dynamic range and compensating for image noise. When the dynamic range

of the enhanced luminance is evaluated, the effects of image noise are ex-

cluded. The corrected dynamic range expands the luminance channels origi-

nal dynamic range to accommodate the desired degree λ of contrast enhance-

ment.

The corrected luminance is obtained by linearly rescaling the enhanced

luminance to fit the corrected dynamic range. Saturation channel is used

to derive the bounds on the distortion permitted in achieving the degree

λ of contrast enhancement. To ensure that achromatic pixels retain their

luminance as their gray level, the discrepancy between luminance and gray

level needs to be suitably bounded. The output gray levels are obtained

by clipping the corrected luminance to conform to the saturation dependent

bounds.

The resulting transformation to gray levels is a continuous, piecewise lin-

ear mapping of color and saturation values. To produce its output image,

the algorithm linearly combines the luminance channel with feedback from

either the predominant chromatic channel or the saturation channel. Hence,

the enhanced contrast originates from either a linear or a polar represen-

tation of chromatic data. In both cases, the polarity of the predominant
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chromatic channel serves to determine whether the feedback is positive or

negative. Moreover, the predominant chromatic channel acts as a bridge

between positive and negative saturation feedback. The contrast enhance-

ment parameter moderates the predominant chromatic channel feedback, the

saturation channel feedback, and the dynamic range expansion.

For an example of the conversion, Figure 4.4 shows a comparison be-

tween Grundland Decolorize and CIE Y on a “difficult” image, where can

be noticed that Grundland’s approach (c) strongly improves feature discrim-

inability with respect to the classical method (b), restoring almost every

feature of the color image (a).

(a) Original colors (b) CIE Y (c) Grundland Decolorize

Figure 4.4: An example of a Grundland Decolorize conversion with a CIE Y reference.

As already mentioned in Section 3.4, Grundland Decolorize is really sen-

sible to the issue of gamma compression. In Figure 4.5 we show two examples

of how a wrong gamma assumption can decrease the quality of the results.

A color image (a) has been linearized and then converted correctly assuming

linearity (b) and wrongly assuming sRGB gamma compression (c). To show

the complementary case, an sRGB image (d) has been converted wrongly

assuming linearity (e) and correctly assuming its gamma compression (f).

The loss of information is evident in the conversion that makes the wrong

assumption: light areas (c) or dark areas (e) loses most of the features be-

cause the saturation balancing interacts wrongly with the outliers detection.
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Moreover, the predominant chromatic axis is perturbed and consequently the

chromatic projection does not retain its original meaning anymore, see for

example how the red hat and the pink skin (d), that should be mapped to

similar gray intensities (f), are instead mapped to very different intensities

(e).

(a) Original colors (b) Correct linear (c) Wrong sRGB

(d) Original colors (e) Wrong linear (f) Correct sRGB

Figure 4.5: Two examples of right and wrong gamma assumptions with Grundland

Decolorize.

4.3.5 Implementation of Gray4Matching

As said before, Gray4Matching is an adaptation of the Grundland Decolorize

algorithm that evaluates the whole set of images to be matched simultane-

ously. To achieve this, we modified our implementation of Grundland’s al-

gorithm in order to execute each of the five steps simultaneously for every

image of the set.
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Excluding a factor, this seems equivalent to the following procedure:

1. Stitch together, side by side, all the images of the set in order to make

a single big image.

2. Compute the Grundland Decolorize algorithm on the “stitched” image.

3. Cut back the grayscale version of the original images.

Nevertheless, this hypothetical implementation would not work correctly be-

cause, in the Gaussian sampling step, near the common borders of the images

would occur that a pixel could be paired with a pixel near the border of an-

other image and the color differences estimation would be altered.

The original requirements of our conversion, explained in Section 3.3, were

Feature Discriminability, Chrominance Awareness, Color Consistency, Global

Mapping, Grayscale preservation and Low Complexity. With Gray4Matching

these advantages of the Grundland Decolorize algorithm are applied consis-

tently in the set of the images. Moreover, the results can benefit from the

following proprieties of the transformation:

• Contrast Magnitude: the magnitude of the grayscale contrasts visibly

reflects the magnitude of the color contrasts.

• Contrast Polarity : the positive or negative polarity of gray level change

in the grayscale contrasts visibly corresponds to the polarity of lumi-

nance change in the color contrasts.

• Dynamic Range: the dynamic range of the gray levels in the grayscale

image visibly accords with the dynamic range of luminance values in

the color image.

• Continuous mapping : the transformation from color to grayscale is a

continuous function. This reduces image artifacts, such as false con-

tours in homogeneous image regions.
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• Luminance ordering : when a sequence of pixels of increasing luminance

in the color image share the same hue and saturation, they will have

increasing gray levels in the grayscale image. This reduces image arti-

facts, such as local reversals of image polarity.

• Saturation ordering : when a sequence of pixels having the same lumi-

nance and hue in the color image has a monotonic sequence of satura-

tion values, its sequence of gray levels in the grayscale image will be a

concatenation of at most two monotonic sequences.

• Hue ordering : when a sequence of pixels having the same luminance

and saturation in the color image has a monotonic sequence of hue

angles that lie on the same half of the color circle, its sequence of gray

levels in the grayscale image will be a concatenation of at most two

monotonic sequences.

In Figure 4.6 we show how our approach improves over the original one

in the stereo matching context. An example of two stereo image pair is

shown. While Grundland’s approach gives better results when considering

the images separately, its results are completely inappropriate when the pair

of images is considered together. For example see the “L–G–1” corner of the

cube:

• In the “right” image (a), both Grundland (c) and Gray4Matching (e)

have to cope with the presence of the green “1” side, and they obtain

similar results.

• In the “left” image (b), where the green “1” side does not appear,

Grundland (d) better distinguishes the background of the “L” from

the letter color with respect to Gray4Matching (f).

• If the “left” and “right” images were to be matched, the vast majority

of the algorithms would simply fail in matching the Grundland pair
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(a) Original colors “right” (b) Original colors “left”

(c) Grundland Decolorize “right” (d) Grundland Decolorize “left”

(e) Gray4Matching “right” (f) Gray4Matching “left”

Figure 4.6: Difference between Gray4Matching and Grundland Decolorize in a stereo

pair where chrominance changes significantly.
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(c) and (d), while the Gray4Matching pair (e) and (f) has an high

probability to give good matching results.

Please note that this example has been made to emphasize the differences

of the two approaches and better explain the advantages of our adaptation,

in real life scenarios these situation occurs in a softer way, at least in stereo

matching. In multi view stereo matching, where more images are involved,

the benefits of a consistent mapping will be much more relevant even in

standard scenarios.

As Grundland Decolorize, Gray4Matching is sensible to alterations of the

image gamma and, as such, knowledge of the starting image encoding is really

necessary.

This first Gray4Matching implementation is just a proof of concept and

issues of efficiency and scalability have not been considered. For example,

while the algorithm has linear computational complexity, the memory occu-

pation requirements of the current implementation are relatively heavy and

does not scale well in the number and in the size of the images. These issues

will be resolved in future implementations, as explained in Section 6.1.

4.4 The StereoMatcher framework

Stereo matching is one of the most active research areas in computer vision.

While a large number of algorithms for stereo correspondences estimation

have been developed, relatively little work has been done on characteriz-

ing their performance until 2002, when Scharstein and Szeliski presented a

taxonomy paper [14] of dense two frame stereo methods.

Their taxonomy is designed to assess the different components and de-

sign decisions made in individual stereo algorithms. Using this taxonomy,

they compare existing stereo methods and present experiments evaluating
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the performance of many different variants. In order to establish a common

software platform and a collection of data sets for evaluation, they designed

StereoMatcher, a standalone, flexible C++ software that enables the evalu-

ation of individual components and that can easily be extended to include

new algorithms. They also produced several new multi frame stereo data sets

with groundtruth and made both the code and the datasets available on the

Web. They concludes the taxonomy paper with a comparative evaluation of

a large set of the best performing stereo algorithms that were available in

2002.

To test the impact of the different color to gray conversions in the stereo

matching results, we used their widely known StereoMatcher.

The implementation is closely tied to the taxonomy presented in their

paper and includes window-based algorithms, diffusion algorithms, as well as

global optimization methods using dynamic programming, simulated anneal-

ing, and graph cuts. While many published methods include special features

and post processing steps to improve the results, StereoMatcher implements

the basic versions of such algorithms, in order to assess their respective mer-

its most directly6. The implementation is modular and can be extended to

include other algorithms or their components. The implementation contains

a mechanism for specifying parameter values that supports recursive script

files for performance comparisons on multiple data sets. Once a script is

parsed and a dataset has been loaded the four steps that we described in

Section 2.2.1 are (optionally) executed in sequence, and the performance

quality evaluator is then invoked.

For the above reasons StereoMatcher is not an implementation of “state

of the art” stereo methods, but includes many widely diffused standard al-

gorithms.

6Please note that they exclude post processing steps and special features, their color

treatment is the “normal” one.
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Regardless of the algorithmic combination selected by the script, the

treatment of the color is executed in the first step, the matching cost com-

putation one. In the taxonomy paper, the matching cost computation is

explained in the following way:

“The simplest possible matching cost is the squared or absolute

difference in color / intensity between corresponding pixels. To

approximate the effect of a robust matching score [36, 37], we

truncate the matching score to a maximal value. When color

images are being compared, we sum the squared or absolute in-

tensity difference in each channel before applying the clipping. If

fractional disparity evaluation is being performed, each scanline

is first interpolated up using either a linear or cubic interpola-

tion filter [38]. We also optionally apply Bircheld and Tomasi’s

sampling insensitive interval-based matching criterion [39], i.e.,

we take the minimum of the pixel matching score and the score

at ±1
2
-step displacements, or 0 if there is a sign change in either

interval. We apply this criterion separately to each color chan-

nel, which is not physically plausible (the sub-pixel shift must be

consistent across channels), but is easier to implement.”

While this treatment has the advantage of using the color information, it is

inappropriate from our point of view, because when a color image is given

it blindly sums the absolute or the squared differences. Moreover, when

the sampling insensitive matching criterion is used, it introduces relevant

inconsistencies in the theoretical model.

While this situation may seem subpar, it is representative of the underes-

timation of the color treatment’s importance in existing standard matching

techniques, and strengthen our conviction that the separation of color treat-

ment and matching cost computation is the best practice.
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Strong of this conviction we did not modify their code but we built a

preprocessing program, explained in Section 4.5, and we used the resulting

grayscale datasets as inputs for StereoMatcher. As can be seen in the results,

our approach often improves over the original one.

4.5 Pre and post processing of the Stereo-

Matcher datasets

For our experiments we used many dataset with groundtruths mainly pro-

vided by the StereoMatcher authors [40, 41, 42, 43]. A first “preprocessing”

step had to be the manual conversion of the datasets they published in the

years after 2002 to a format usable by their own StereoMatcher7.

We then preprocess the color datasets in two semiautomatic steps:

1. A step that duplicates the color dataset in the various grayscale copies

and adapts the dataset parameters accordingly.

2. A step that creates the sequence of scripts that are needed in order to

configure and control the StereoMatcher algorithms

The first step is configured with the list of the datasets that are to be

converted and the list of conversion that are to be executed. Because of the

large number of images that had to be converted and the presence of slow

conversions8, we implemented a dispatcher/worker parallel process system,

able to take advantage of the modern multicore processor parallel features.

Another expedient that really speeded up the experiments has been to au-

tomatically skip a conversion if it was already present in the destination

directory. Per-dataset input configuration files are modified as needed.

7They probably use an unpublished newer version of their software and publish the

datasets in the newer format.
8Gooch Color2Gray, in particular.
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The second step takes the list of StereoMatcher algorithms that are to be

executed and automatically generates the hundreds of ad-hoc StereoMatcher

scripts needed to perform the evaluations. It also groups them in organized

batches in order to better distribute the workload in multiple machines. The

complexity of some iterative stereo matching algorithms made the experi-

mentation times really long, requiring in total over a month of computations

over four different machines9.

After the experimental phase, we implemented and used an automatic

post processing tool in order to:

• Extract the relevant input images, the groundtruths and the computed

disparity maps from the dataset.

• Extract the numerical data from the output dataset files and rearrange

it in order to compare the results of the different grayscale conversions.

• Generate and execute scripts for the Gnuplot tool that we used to

generate the histograms of the rearranged numerical results shown in

Chapter 5

9As explained in Chapter 5, we made a lot of experiments with different algorithms,

different conversions and different dataset that are not included here for space reasons.
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Results

This Chapter will describe and discuss the results of the experimental evalu-

ation of the proposed algorithm for grayscale conversion when it is applied to

the stereo matching context. We will show how the choice of the preprocessed

algorithms can improve the precision in the reconstruction of a depth map

from a single stereo pair, independently from the reconstruction algorithm.

In Section 5.1, the settings of the performed experiments are explained, and

in Section 5.2 the results are commented. A relatively small selection of the

StereoMatcher obtained results is shown in more detail in Section 5.3.

In Section 5.4 we will also compare the observed results in this field of

application with a recent study [44] of the perceptual performances of the

various grayscale conversions.

5.1 The experiments

To evaluate in a thorough way how the choice of different grayscale con-

versions affects the results computed by the StereoMatcher algorithms we

have performed a large battery of tests. More than 2300 error measures has

been taken in total, crossing different grayscale conversions with different
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StereoMatcher algorithms and with different error measures.

To describe the experiments in an orderly fashion, we can catalog them

according to the following classification:

1. The dataset : we used twelve different datasets with groundtruth, these

dataset are some of the standard ones used in the Computer Vision

community.

2. The StereoMatcher algorithmic combination: we used three different

standard algorithms to obtain the depth maps.

3. The class of error measure: we used two different kinds of measures of

the computed depth maps errors.

4. The area of interest of the error measure: we measured the errors in

four differently characterized “areas” of the depth maps.

5. The grayscale preconversion: we used both the original color datasets,

two versions of our proposed grayscale conversion and five other differ-

ent grayscale conversions.

This classification facilitates the comparison of the various relative advan-

tages and disadvantages of the grayscale conversions with respect to both

the StereoMatcher algorithms and the peculiarities of the datasets. We will

explain each of these elements in more detail in the following Sections.

5.1.1 The datasets

The used dataset comes mainly from many subsequent works of the Stere-

oMatcher authors. Except one dataset, proposed in [40] and redistributed

by them, they were proposed in subsequent years [41, 42, 43] and they are

commonly used in the Computer Vision community.
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• The 1996 “tsukuba” dataset.

• Three 2001 datasets: “sawtooth”, “venus” and “map”

• Three 2005 datasets: “dolls”, “laundry” and “reindeer”.

• Three 2006 datasets: “aloe”, “cloth” and “plastic”.

• Two variations of the datasets “aloe” and “dolls” where the illumina-

tion significantly changes between the left and the right images.

The “map” dataset is originally in grayscale and has been used in order to

validate our theoretical prevision that our conversion preserves the image

quality when the colors are already achromatic.

For obvious space reasons we report only the results relative to four

datasets: “tsukuba” in Section 5.3.1, “aloe” in Section 5.3.2, “dolls” in Sec-

tion 5.3.3 and “laundry” in Section 5.3.4. Partial results and the motivations

for the illuminant variations experiments that use the modified versions of

the “aloe” and the “dolls” datasets are given in Section 5.3.5

5.1.2 The StereoMatcher algorithmic combinations

As explained in Section 2.2.1, the stereo matching process takes two rectified

images of a three dimensional scene and computes a disparity map, an image

that represents the relative shift of the scene features between the images.

The magnitude of this shift is inversely proportional to the distance between

the observer and the feature. In the experiments, to obtain the computed

depth maps we used the following StereoMatcher algorithmic combinations:

• WTA-AD: a Winner Take All disparity computation with Absolute Dif-

ferences matching cost computation.

• WTA-SD: a Winner Take All disparity computation with Squared Dif-

ferences matching cost computation.
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• GC-AD: a Graph Cuts disparity computation with Absolute Differences

matching cost computation.

The Winner Take All disparity computation algorithm simply picks the

lowest matching cost as the selected disparity at each pixel. The Graph

Cuts disparity computation is an iterative energy minimization algorithm

that tries to enhance the smoothness term of the computed disparity maps.

Explaining in detail these algorithms is out the scope of this work, see [45]

for the Graph Cuts algorithm and [14] for both the used algorithm and the

other StereoMatcher implementations. As already explained in Section 4.4,

the Absolute Differences matching cost computation simply sums the abso-

lute RGB differences between two pixels, while Squared Differences sums the

squared RGB differences. Both cost computations truncate the sum to a

maximal value in order to approximate the effect of a robust matching score.

For every algorithm we use a fixed aggregation window (the spatial neigh-

borhood considered in the matching of a pixel) and no sub-pixel refinements

of the disparities1.

5.1.3 The classes of error measures

To evaluate the performance of the various grayscale preconversions, we need

a quantitative way to estimate the quality of the computed correspondences.

A general approach to this is to compute error statistics with respect to

the groundtruth data. The current version of StereoMatcher computes the

following two quality measures based on known groundtruth data:

• rms-error: root-mean-squared error (measured in disparity units) be-

tween the computed disparity map dC(x, y) and the groundtruth map

1Again, see [14] for the details of the StereoMatcher algorithms.
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dT (x, y), i.e.,

R =

 1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2
 1

2

(5.1)

where N is the total number of pixels.

• bad-pixels: the percentage of bad matching pixels:

B =
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y) > 1|) (5.2)

5.1.4 The areas of interest of the error measures

In addition to computing the statistics over the whole image, we also focus on

three different kinds of regions. These regions are computed by preprocessing

the reference image and the groundtruth disparity map to yield the following

three binary segmentations:

• textureless regions : regions where the squared horizontal intensity gra-

dient averaged over a square window of a given size is below a given

threshold;

• occluded regions : regions that are occluded in the matching image, i.e.,

where the forward-mapped disparity lands at a location with a larger

(nearer) disparity;

• depth discontinuity regions : pixels whose neighboring disparities differ

by more than a predetermined gap, dilated by a window of predeter-

mined width.

These regions were selected to support the analysis of matching results in

typical problem areas.

We report the measures for the whole image (all), for the regions that

are not occluded (nonocc), for the textureless regions (textureless) and

for the depth discontinuity regions (discont).
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5.1.5 The grayscale preconversion

We executed the StereoMatcher algorithms and measured the various error

measures for the following versions of every dataset:

• Original color version, because we obviously needed a starting point to

understand if our conversions would give worse, equal or even better

results with respect to the standard color approach.

• CIE Y has been choosed as the representative of the standard grayscale

conversions.

• Gooch Color2Gray, Grundland Decolorize and Smith Apparent have

been included.

• Gray4Matching have been included in two flavors: a version that as-

sumes linearity of the input images and a version that assumes sRGB

gamma compression.

5.2 Comment on the results

From the observations of the experiment results we can draw some conclu-

sions, summarized in this section.

We can observe that the pre-2002 StereoMatcher algorithms cannot cope

with “difficult” datasets like most of the 2005 and the 2006 series. How-

ever this not invalidates our experiments, because it is important to assert

the impact of different grayscale conversions in these widely used standard

algorithms.

From the results relative to the grayscale “map” dataset we can con-

firm our prevision of Section 3.3.1 that only Gooch Color2Gray damages the

images that are already in grayscale.
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The experiments with the change of luminance shows that, as expected,

no grayscale preprocessing step can recover from the incapacity of the stan-

dard matching algorithms when extreme changes of luminance are present

between the images (see Section 5.3.5 for more details).

We have no official informations about the gamma encoding of our dataset

but, by means of empirical measures of the images histogram distributions,

we deduced that only the datasets from 2006 are gamma compressed. Com-

parisons between the results of the linear and the sRGB versions of our

Gray4Matching conversion seem to confirm this hypothesis.

StereoMatcher’s standard approach to the color information is often inap-

propriate: the original color versions frequently gives equal or worsen results

with respect to the “good” grayscale conversions.

The grayscale conversions performances can be summarized with the fol-

lowing statements:

• CIE Y has a good ratio between complexity and performance, in general

the other conversion are better.

• Gooch Color2Gray gives bad results, especially when considering its

computational complexity.

• Grundland Decolorize has varied results, but it is constantly worse than

Gray4Matching.

• Smith Apparent gives interesting results, its chrominance driven un-

sharp masking gives results that are often equal or better with respect

to Gray4Matching.

• The “right” gamma version of Gray4Matching is constantly one of the

best conversions, together with Smith Apparent and the original ver-

sion.
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5.3 Detailed samples of the StereoMatcher

results

In this section we show a (relatively) small selection of the experimental

datasets, with full details of four datasets and a summary of the luminance

experiment.

Figure 5.1: The legend of the histograms.

For every dataset, first a brief explanation is given, then the disparity

map (DM) groundtruth is shown, followed by the display of the stereo pair

and the three computed disparity maps for every color conversion, lastly the

histograms of the error measures are given. Every histogram follows the

color scheme of Figure 5.1 and, for each class of errors, the same scale is

used consistently between the datasets in order to give an idea of the overall

difficulty of the various datasets. As already explained, every dataset has an

intrinsic scene complexity and the most recent ones, like “aloe”, are more

difficult with respect to the older ones, like “tsukuba”.



5.3 Detailed samples of the StereoMatcher results 69

5.3.1 Results for dataset “tsukuba”

The “tsukuba” dataset is one of the first datasets made that is equipped

with groundtruth informations. Is also one of the most widely used in the

Computer Vision community.

For this dataset every used algorithm works fine with every conversion,

because this depicts a really simple scene, mainly composed by planar and

almost planar pieces. The most difficult feature of the dataset, when working

in grayscale, is the lamp support beams, that are almost isoluminant with

respect to the background.

When the GC-AD algorithm is used, our conversion is the only one that

obtains the same quality of the original colors.

For a gamma compression point of view this dataset seems to be already

linear, but there is only this dataset from 1994 and so we cannot be confident

of this hypothesis as with the other datasets.

(a) Reference Frame (b) Match Frame (c) DM groundtruth

(d) DM from WTA-AD (e) DM from WTA-SD (f) DM from GC-AD

Figure 5.2: “tsukuba” original dataset
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.3: “tsukuba” dataset with CIE Y preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.4: “tsukuba” dataset with Gooch Color2Gray preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.5: “tsukuba” dataset with Grundland Decolorize preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.6: “tsukuba” dataset with Smith Apparent preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.7: “tsukuba” dataset with Gray4Matching (linear) preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.8: “tsukuba” dataset with Gray4Matching (sRGB) preprocessing
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Figure 5.9: Error measures for the “tsukuba” dataset. Legend is in Figure 5.1
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5.3.2 Results for dataset “aloe”

The “aloe” is the simplest of the 2006 datasets and the standard algorithms

gives reasonable results with it.

The critical parts of this dataset are the discontinuities and the occluded

areas on the border of the leaves, the grayscale versions have also problems

with some isoluminant regions near a fold of the background cloth in the

mid-low/right part of the image.

The best conversions seems to be Smith Apparent and the Gray4Matching

version that assumes an sRGB colorspace, because, as previously said, the

2006 datasets are probably the only ones in sRGB.

(a) Reference Frame (b) Match Frame (c) DM groundtruth

(d) DM from WTA-AD (e) DM from WTA-SD (f) DM from GC-AD

Figure 5.10: “aloe” original dataset
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.11: “aloe” dataset with CIE Y preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.12: “aloe” dataset with Gooch Color2Gray preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.13: “aloe” dataset with Grundland Decolorize preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.14: “aloe” dataset with Smith Apparent preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.15: “aloe” dataset with Gray4Matching (linear) preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.16: “aloe” dataset with Gray4Matching (sRGB) preprocessing
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Figure 5.17: Error measures for the “aloe” dataset. Legend is in Figure 5.1
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5.3.3 Results for dataset “dolls”

The “dolls” dataset, from the 2005 group, depicts a complex but still simple

scenario, where the standard algorithms still gives reasonable results.

In this dataset, the benefits of Smith Apparent’s chrominance driven un-

sharp masking are evident even at a visual inspection, and their results are

the best ones.

This is also one of the few datasets where the original color version ob-

tains constantly the best results, helped by the “pastel” color gradients that

predominates in the scene.

As the other 2005 datasets, “dolls” seems to have a linear gamma encod-

ing.

(a) Reference Frame (b) Match Frame (c) DM groundtruth

(d) DM from WTA-AD (e) DM from WTA-SD (f) DM from GC-AD

Figure 5.18: “dolls” original dataset
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.19: “dolls” dataset with CIE Y preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.20: “dolls” dataset with Gooch Color2Gray preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.21: “dolls” dataset with Grundland Decolorize preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.22: “dolls” dataset with Smith Apparent preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.23: “dolls” dataset with Gray4Matching (linear) preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.24: “dolls” dataset with Gray4Matching (sRGB) preprocessing
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Figure 5.25: Error measures for the “dolls” dataset. Legend is in Figure 5.1
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5.3.4 Results for dataset “laundry”

The “laundry” dataset, also from the 2005 group, contains elements, such as

the background, that are really difficult for the the standard algorithms.

Our conversion is clearly the best one for this complex dataset, followed

by Smith Apparent.

Another result that may seem surprising at a first examination is the rel-

atively good performance of the CIE Y conversion with respect to Grundland

Decolorize and Gooch Color2Gray.

The “disappearing” in the Match Frame of most of the red bottle at

the left of the image is a typical cause of Grundland Decolorize’s weakness

in the multi view applications, because the chromatic predominant axis of

projection changes between the left and the right images.

As the other 2005 datasets, “laundry” seems to have a linear gamma

encoding.

(a) Reference Frame (b) Match Frame (c) DM groundtruth

(d) DM from WTA-AD (e) DM from WTA-SD (f) DM from GC-AD

Figure 5.26: “laundry” original dataset
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.27: “laundry” dataset with CIE Y preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.28: “laundry” dataset with Gooch Color2Gray preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.29: “laundry” dataset with Grundland Decolorize preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.30: “laundry” dataset with Smith Apparent preprocessing
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(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.31: “laundry” dataset with Gray4Matching (linear) preprocessing

(a) Reference Frame (b) Match Frame

(c) DM from WTA-AD (d) DM from WTA-SD (e) DM from GC-AD

Figure 5.32: “laundry” dataset with Gray4Matching (sRGB) preprocessing
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Figure 5.33: Error measures for the “laundry” dataset. Legend is in Figure 5.1



5.4 Matching results and perceptual results 89

5.3.5 Results for the illumination variants

We show the partial results of an experiment in which the left and right

images of the stereo pair to be matched are exposed to a heavy change of

illumination.

While this situation rarely occurs in the stereo case, where just two images

are included, when multiple images are used the illumination often changes.

How it can be clearly seen from the results, the standard StereoMatcher

algorithms cannot cope with drastic changes, they are not robust to this kind

of variations and the tested standard algorithms cannot obtain significant

results.

From our point of view we can see that every grayscale preprocessing

helps, the worst results are the original color ones.

Future works are needed in order to show if, with more advanced (multi

view) matching algorithms, our conversion helps.

5.4 Matching results and perceptual results

In this section we discuss the similarities of our results with respect to an

external study of the perceptual performances of many grayscale conversion

that we used in this work. A quick description of the perceptual results will

show how the matching results that we showed in this Chapter are surpris-

ingly similar to the perceptual ones.

Grayscale conversion are often designed for the optimization of the “black

and white” reproduction, for the preservation of overall perceptual proper-

ties, or with “artistic” purposes. Methods performing the conversion of color

images to grayscale aim to retain as much information about the original

color image as possible, while simultaneously producing perceptually plausi-

ble grayscale results.
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(a) Reference Frame (b) Match Frame (c) DM groundtruth (d) DM WTA-SD

(e) Bad pixels for the WTA-SD algorithm

Figure 5.34: Sample from the results of the illuminance-modified “aloe” dataset

(a) Reference Frame (b) Match Frame (c) DM groundtruth (d) DM WTA-SD

(e) Bad pixels for the WTA-SD algorithm

Figure 5.35: Sample from the results of the illuminance-modified “aloe” dataset
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In a recent paper [44], Čad́ık presents the results of two subjective exper-

iments in which a total of 24 color images were converted to grayscale using

seven grayscale conversion algorithms and evaluated by 119 human subjects

using a paired comparison paradigm. Čad́ık surveyed nearly 20000 human

responses and used them to evaluate the accuracy and preference of the color

to grayscale conversions. To the best of our knowledge, the study presented

in Čad́ık’s paper is the first perceptual evaluation of color to grayscale con-

versions.

The grayscale conversion perceptually compared are CIE Y, Bala Spatial,

Gooch Color2Gray, Rasche Monochromats, Grundland Decolorize, Neumann

Adaptive and Smith Apparent. The results are summarized in Table 5.1 and

in Figure 5.362.

It is really interesting that, in both the fields of application:

• Grundland Decolorize and our Gray4Matching variation of it are be-

tween the best conversions.

• Smith Apparent is one of the best conversion.

• Gooch Color2Gray gives poor results with respect to its own complex-

ity.

• CIE Y performs well notwithstanding its simplicity.

These results

2In Čad́ık’s image the conversions are called differently, but they are easily recognizable.
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Grundland Decolorize 0.544 CIE Y 0.158

Smith Apparent 0.487 Gooch Color2Gray 0.149

Rasche05 -0.203 Bala Spatial -0.819

Neumann07 -0.317

Table 5.1: Overall perceptual performances of the conversions inquired by Čad́ık.

Results of the multiple comparison across all input images in both exper-

iments. The conversions in the same boxes are considered perceptually

similar.

Figure 5.36: The aggregated perceptual results taken from Čad́ık’s paper. The orig-

inal caption follows: “Overall results separately for the two experiments.

Left: overall scores for both the accuracy and preference experiments.

Error bars show intervals of 95% confidence. Right: comparison of

accuracy and preference experiments.”



Chapter 6

Conclusions

According to our original objectives:

• We examined and implemented many different state of the art color to

gray conversion algorithms.

• We designed and implemented Gray4Matching, a new grayscale method

based on the best existing algorithm for our specific needs.

• We evaluated in a thorough way how the choice of different grayscale

conversions affects the results computed by the standard stereo match-

ing algorithms.

Our approach has been successful, the standard stereo matching algo-

rithms that used our advanced grayscale conversion preprocessing often im-

proved the results with respect to the original color images.

An unexpected and interesting side result is that the our stereo matching

results coincides with the human perceptual preferences.

6.1 Future Work

This work laid the grounds for many possible future projects.
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First of all, in the multi view stereo matching context of our long term

PipeLab project1 the benefits of our Gray4Matching consistent grayscale

conversion will be much more evident even in standard scenarios. Thus, we

plan to extend our evaluations to this much more complex and much more

recent field, in order to find the grayscale conversion that is best suited for

this difficult problem.

Our experimentation also highlighted the merits of Smith Apparent’s

chrominance driven unsharp masking, and this stimulated the design of a

novel algorithm that will combine the advantages of this technique with the

merits of our Gray4Matching conversion.

We also plan to reimplement more efficient versions of our algorithm in

order to further improve its performance:

• A first improvement will allow a greater scalability in the number of the

images, this will be accomplished by a more sophisticated out of core

memory management that will use only the minimal needed amounts

of memory.

• A second improvement will be the reimplementation of the algorithm

in the CUDA GPGPU subset of the C language, in order to exploit

the massive parallelization features of the recent Nvidia graphic cards.

Moreover, we are also planning the design of two more Gray4Matching

approximated variations:

• A version that can process the images of the set one by one in by

converting them in a pipelined way.

• A video conversion filter that can work in real time and can convert

a video stream keeping the temporal consistence between the video

frames.
1Briefly explained in Section 4.1.
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