
Università di Pisa

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Specialistica in Informatica

Saturated Transition Systems for Presheaf
Models

Relatore:
Chiar.mo Prof.
Ugo Montanari

Candidato:
Matteo Sammartino

Anno Accademico 2007/2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14697112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“Space [...] is big. Really big. You just won’t
believe how vastly hugely mindboggingly big
it is. I mean you may think it’s a long way
down the road to the chemist, but that’s just
peanuts to space.”

The Hitchhiker’s Guide to the Galaxy,
Douglas Adams

Alla mia famiglia

Table of Contents

1 Introduction . 1
2 Background . 4

2.1 Categories, Algebras and Coalgebras . 4
Algebras and program syntax. 5
Coalgebras and program behaviour. 8

2.2 The π-calculus . 9
3 Indexed Labelled Transition Systems . 14

3.1 The basic transition system . 14
3.2 How to make bisimilarity a congruence . 15

4 Indexed Saturated LTSs as Coalgebras on Presheaves . 17
4.1 Some general properties of coalgebraic bisimulation . 17
4.2 From coalgebras to ISLTSs . 19
4.3 From ISLTSs to coalgebras . 20

5 Examples . 24
5.1 Early bisimilarity . 24
5.2 Late bisimilarity . 26
5.3 Open bisimilarity . 27
5.4 Saturated bisimilarity . 29
5.5 The polyadic case . 30

6 Conclusions and Future Work . 32
Bibliography . 34

1 Introduction

In the last thirty years, category theory established itself as a powerful framework for com-

puter science, capable of representing the syntax and the semantics of programming lan-

guages. Quoting J.C.Reynolds: “substantial leverage can be gained in attacking this problem

if these concepts can be defined concisely in a framework which has already proven its ability

to impose uniformity and generality upon a wide variety of mathematics”.

The most important foundational contribute to the theory was given by F. William

Lawvere in his Ph.D. thesis [1], where an algebraic theory and its models are represented

respectively as a cartesian category and as cartesian functors from this category to a semantic

domain, each one providing a denotational semantics. In the 80s this approach has been

applied to a variety of languages: the typed λ-calculus [2], with types and terms being objects

and morphisms of a cartesian closed category; Algol-like languages [3], where objects and

morphisms represent memory stacks and expansions of memory stacks. All these models

share the idea of decoupling the building blocks of the language and its semantics.

More recently, in [4] the model-theoretic framework of institutions has been introduced: it

provides a general way of embedding logical signatures and models into categories, and then

expressing “truth-preserving” translations from one logical system to another. On the more

concrete side of programming languages modelling, functorial models for process algebras

such as CCS and π-calculus has been proposed [5,6,7]. Since such languages have a notion

of abstract semantics strongly related to the behaviour, i.e. to operational semantics, these

models consist of three levels, one more than the ones previously cited: resources (e.g. names

in the case of π-calculus), syntax, defined through algebras, and behaviour, defined through

the categorical equivalent of labelled transition systems : coalgebras. More specifically: a cat-

egory C represents resources and resource changes as objects and morphisms; the category

of functors C → Set, called presheaves, collects all the associations between resources and

elements using those resources, and between resource changes and functions between sets

of elements, induced by these changes. Then categories of algebras and coalgebras based on

presheaves give the abstract syntax and behaviour. One step further is obtaining a compo-

sitional behaviour: in [8] Turi introduces bialgebras, which combine algebras and coalgebras

to obtain compositional models.

While the general trend is to remain completely category-theoretic, this thesis proposes

a simpler and more circumscribed set-theoretic/category-theoretic approach: starting from a

1

suitable class of transition systems, we want to investigate how, and under what conditions

they can be represented as coalgebras over presheaves.

Let us briefly introduce coalgebras to explain the crucial points of the thesis. Given a

endofunctor B : Set → Set, called behavioural endofunctor, the behaviour of a system can

be categorically represented as a couple 〈S, αS〉, where S is a set of states and αS is a function

S → BS, called structure map, mapping each state to its continuation in BS. For instance,

if BS = Pf (L × S), where Pf is the functor sending a set to its finite powerset and L is

a set of labels, one can obtain a representation of a labelled transition system 〈S,−→〉 by

letting

αS(s) = {(l1, s1), . . . , (ln, sn)} ⇐⇒ s
l1−→S s1, . . . , s

ln−→S sn . (1)

In this setting, a bisimulation on 〈S, αS〉 is a coalgebra 〈R, αR〉 where R ⊆ S × S and αR

is a function obtained (roughly speaking) “quotienting” αS with respect to R. This means

that, if 〈S, αS〉 represents a labelled transition system, R contains pairs of states which can

perform the same paths of computation, i.e. the ordinary notion of bisimulation on labelled

transition systems.

If we move from coalgebras on Set to coalgebras on SetC we gain more structure: a

coalgebra is 〈S, αS〉, where S is a presheaf and αS is a natural transformation (i.e. a family

of functions with some additional conditions). Intuitively: systems have an indexed fam-

ily of states which is closed under the functions generated by S, because Sσ : Sa → Sb;

bisimulations are indexed families of relations and, as we will prove, they have the inher-

ent property of being a congruence with respect to the functions Sσ, for each morphisms

σ of C. This property makes coalgebras over presheaves especially suitable for representing

transition systems whose bisimilarity is a congruence.

After providing the needed background in Chapter 2, in Chapter 3 the set-theoretic

constructions are given: we define a class of labelled transition systems with typed states,

and we call them indexed labelled transition systems ; the associated notion of bisimulation

is an indexed family of relations, one for each type. Then we show that, given a set of

operation symbols and a family of functions interpreting them, one can get the coarsest

bisimulation which is a congruence with respect to such functions by adding transitions of

the form s
σ−→ fσ(s), where fσ is the function interpreting σ. We call indexed saturated labelled

transition systems (ISLTS) the transition systems with the additional transitions.

2

In Chapter 4 we discuss the category-theoretic aspects. Since ISLTSs are based on a

family of states and a family of functions indexed respectively by types and operation sym-

bols, moving to coalgebras over presheaves seems quite straightforward: types and operation

symbols are embedded into a category C, the preasheaf of states is a functor C → Set

induced by the two families and the structure map is obtained from the transition relation.

However, some difficulties are encountered. In particular we deal with two issues: 1) the

definition of a suitable behavioural functor for representing ISLTSs and 2) the conditions a

ISLTS must satisfy in order to be representable as a coalgebra. For issue 1), we show that

the behavioural functor B : SetC → SetC can be defined similarly to that for labelled tran-

sition systems on Set, but it has to employ specific operators due to the indexed nature of

presheaves. Issue 2) is related to the fact that the structure map must be a natural trans-

formation S → BS: we give sufficient and necessary conditions for the transition relation

of a ISLTS to be representable as a natural transformation, and we provide an alternative

behavioural functor B̂ able to represent a transition system which is more complex than the

original ISLTS, but has the same bisimilarity.

In Chapter 5 we apply the theory: we give ISLTSs for early, late and open bisimilarity

[9] for the π-calculus, for saturated bisimilarity [10] and we treat the case of ISLTs with

polyadic operations. For each one we discuss the coalgebraic representation. In particular,

for the case of open bisimilarity a behavioural endofunctor has been defined in [11]: we show

that the ISLTS for open bisimilarity cannot be represented as a coalgebra of such functor,

therefore the alternative behavioural functor must be employed.

3

2 Background

This chapter provides the categorical notions needed to understand the theory and an

overview of π-calculus, upon which most examples will be based.

2.1 Categories, Algebras and Coalgebras

We assume that the reader is familiar with the notions of category, functor, limit, colimit,

initial object and final object [12]. We recall the definition of natural transformation.

Definition 1. Let F,G : C → G be functors between the categories C and G. A natural

transformation η from F to G associates to every object a ∈ |C| a morphism ηa : Fa→ Ga

in G, such that for every morphism σ : a→ b in C the following diagram commutes

Fa
ηa //

Fσ

��

Ga

Gσ

��
Fb ηb

// Gb

Functors and natural transformations give rise to functor categories.

Definition 2. Let C and G be categories. The functor category Func(C,G), also denoted

GC, has as objects the functors from C to G and as morphisms the natural transformations

between such functors.

Limits and colimits in Func(C,G) can be derived from those of category G, as stated by

the following proposition.

Proposition 3. In a functor category limits and colimits are computed pointwise, i.e. the

cone

L

F1

η1
==||||||||
. . . Fn

ηn
aaCCCCCCCC

is a limit in GC if and only if for all a ∈ |C| the cones

La

F1a

(η1)a
<<yyyyyyyy
. . . Fna

(ηn)a
bbFFFFFFFF

are limits in G. Analogously for colimits.

4

Corollary 4. The following statements hold:

• Let F,H ∈ |GC| and a ∈ |C|. Then

(F×H)a = Fa×Ha and (F + H)a = Fa+ Ha ;

• The final object in GC is the functor 1 defined as follows:

1a = 1G 1σ = id1G
,

for each object a and each morphism σ in C.

Functor categories SetC, for any category C, are called presheaf categories.

Algebras and program syntax. The syntax of a programming language is usually defined

by a signature Σ, which collects operators and constants; furthermore, Σ specifies a class

of algebraic structures of the form 〈A, {σA | σ ∈ Σ}〉, where A is the carrier and each

σA : An → A is the interpretation of the operator σ. The term algebra TΣ, i.e. the algebra

freely generated by the signature, is exactly the abstract syntax of the language.

We shall now describe two categorical approaches to algebras. The first approach, pre-

sented by F.W.Lawvere in [1], represents the term algebra and the specification as a category

called Lawvere theory.

Definition 5. A Lawvere theory is a cartesian category L with a distinguished object d such

that every other object a in L is a finite power of d, i.e. exists n such that a ∼= dn.

A morphism dn → d in L corresponds to an n-ary operation, in particular morphisms of type

d0 = 1 → d correspond to constants. Therefore, given t1, . . . , tn : 1 → d and σ : dn → d,

the morphism 〈t1, . . . , tn〉;σ : 1→ d corresponds to the term σ(t1, . . . , tn).

Definition 6. A model of a Lawvere theory L is a cartesian functor M : L → Set.

A model M can be regarded as an algebra: its carrier is Md and the interpretation of a

n-ary operation σ of L is Mσ : (Md)n → Md, since M preserves products; a natural

transformation θ : M → N between models acts like an algebra homomorphism, in fact we

5

have

θd(Mσ(v1, . . . , vn)) = (naturality of θ)

Nσ(θdn(v1, . . . , vn)) = (cartesianity of M and N)

Nσ(〈θd; π1, . . . , θd; πn〉(v1, . . . , vn)) =

Nσ(θd(v1), . . . , θd(vn)) .

The category of models and natural transformations between them is denoted by Mod(L).

Lawvere theories, as originally presented, are capable of representing only one-sorted

specifications. However, definition 5 can be generalized to many-sorted specifications by

allowing a set of distinguished objects, one for each sort. Equational specifications Γ = 〈Σ,E〉
are modelled by imposing t1 = t2 in L if and only if the same equation holds in E or,

alternatively, by letting Mt1 = Mt2 in each model M. In the following the Lawvere theory

representing Γ will be denoted by L(Γ).

If Γ is a unary many-sorted specification, then a simpler representation of algebras is

possibile: instead of considering the whole L(Γ) as the base category, we may consider the

full subcategory C(Γ) whose objects are the distinguished objects of L(Γ), since products

are not needed any more, and we can take the whole SetC(Γ) as M. Notice that any category

C may give rise to a specification with sorts |C| and operations ‖C‖, whose category of

algebras is isomorphic to SetC.

The other approch to categorical representation of algebras is described by the following

definition.

Definition 7. Let Σ : Set→ Set be any endofunctor on Set. The category of Σ-algebras,

denoted by Alg(Σ), has as objects pairs 〈X, h〉, with X a set and h : ΣX → X a func-

tion, called interpretation map. The morphisms of the category, called Σ-homomorphisms,

are functions between the underlying sets preserving the algebra structure, i.e. making the

following diagram commute:

ΣX
h //

Σf

��

X

f

��
ΣY g

// Y

The functor Σ represents the signature and it is usually defined as∐
σ∈Σ

Xar(σ) ,

6

namely the disjoint union of the sets obtained by applying (abstractly) each operator to

the elements of the carrier; the disjoint union allows to define the interpretation map of a

Σ-algebra A = 〈X, h〉 as

h = [σA1 , . . . , σ
A
n], σ1, . . . , σn ∈ Σ ,

whose action is

h(σ(v1, . . . , vn)) = σA(v1, . . . , vn), v1, . . . , vn ∈ X, σ ∈ Σ .

The action of Σ on functions is

Σf : σ(v1, . . . , vn) 7→ σ(f(v1), . . . , f(vn)) ,

thus the requirement that f : A = 〈X, h〉 → B = 〈Y, g〉 has to satisfy to be a homomorphism

can be expressed as

f(σA(v1, . . . , vn)) = σB(f(v1), . . . , f(vn)) .

Up until now we analyzed the case of algebras on Set, however definition 7 can be extended

to any endofunctor Σ : C→ C on any category C.

The term algebra is the initial object 0Alg(Σ) in Alg(Σ). This is a consequence of the

following property.

Proposition 8. The initial object 0Alg(Σ) = 〈T, hT 〉 of Alg(Σ) is the least fix points of Σ,

i.e. ΣT ∼= T .

As a consequence of this proposition, a tuple of terms t1, . . . , tn ∈ T , representing the appli-

cation of an operator σ, is sent by hT to the term σ(t1, . . . , tn), again in T .

We now recall the notions of context and congruence. We introduce the following notation:

TΣ(X) denotes the initial (Σ + X)-algebra and ass : X → A an assignment for the set of

variables X into a Σ-algebra A. The free extension of ass is denoted by ass : TΣ(X)→ A.

Definition 9. Given a specification Γ = 〈Σ,E〉, a context over Γ is an element of TΣ({•})
with exactly one occurrence of the single variable •. Given a Γ -algebra A and a ∈ A, we

denote by C[a] the element ass(C) of A, where ass(•) = a. A relation R over A is a

congruence if (a, b) ∈ R implies (C[a], C[b]) ∈ R for every context C over Γ .

7

Coalgebras and program behaviour. The operational semantics of a language defines

how programs are to be executed and what their observable effect is. More specifically, it

aims at specifying the actions that programs can perform and their subsequent transitions,

thus resulting in a suitable labelled transition system (LTS). In a categorical setting, LTSs

are represented by coalgebras [13].

Definition 10. Let B : C → C be an endofunctor on a category C. The category of B-

coalgebras, denoted by Coalg(B), has as objects pairs 〈X, h〉, with X ∈ |C|, and h : X →
BX, called structure map. The morphisms f : 〈X, h〉 → 〈Y, g〉 of the category, called B-

cohomomorphisms, are morphisms f ∈ C(X, Y) preserving the coalgebra structure:

X
h //

f

��

BX

Bf

��
Y g

// BY

A coalgebra 〈X, h〉 represents a system with states in X and whose behaviour is determined

by h: if B is an endofunctor on Set, which is the most common case, then X is a set and h

is a function assigning to each state its continuation in BX. For instance, the coalgebras of

the endofunctor

BX = X ×X + 1

are able to represent binary trees: the structure map sends a node to ? if it does not have

any children, i.e. the node is a leaf, otherwise sends it to its subtrees. The form of B, in case

B-coalgebras are intended to represent non-deterministic LTSs, is:

BX = Pf (L×X) ,

where L is a set of labels and Pf : Set→ Set is the (covariant) finite power-set functor:

PfX = {X ′ | X ′ ⊆ X} Pff : X 7→ { fx | x ∈ X} ;

which models finite non-determinism.

Given a LTS 〈S,−→S〉 over a set of labels L, it can be represented as the coalgebra 〈S, h〉,
where h satisfies:

s
α−→S s

′ ⇐⇒ (α, s′) ∈ h(s) .

We now recall the notion of bisimulation, the standard way to represent behavioural equiv-

alence between states of a LTS.

8

Definition 11. Let 〈S,−→〉 be a LTS. A bisimulation is a symmetric binary relation R on

S satisfying the following: (s, r) ∈ R and s
l−→ s′ implies

∃r′ : r l−→ r′ ∧ (s′, r′) ∈ R .

Given two states s and r, s is bisimilar to r, written s ∼ r, if there is a bisimulation R such

that (s, r) ∈ R.

The equivalent notion in a coalgebraic setting is B-bisimulation.

Definition 12. Let 〈X, h〉 and 〈Y, g〉 be B-coalgebras, for B : C → C. A B-bisimulation

between 〈X, h〉 and 〈Y, g〉 is an object R ∈ |C| satisfying the conditions:

• X Rr1oo r2 //Y is a jointly-monic span, i.e. for any object A ∈ |C| and any morphisms

f, g : A → R such that r1; f = r2; g and r2; f = r2; g, we must have f = g (in Set this

means R ⊆ X × Y);

• There is a structure map f : R → BR making the following diagram commute:

X

h

��

R
r1oo r2 //

f

���
�
� Y

g

��
BX BR

Br1
oo

Br2
// BY

If C is Set, bisimulation has an alternative characterization.

Proposition 13. Let 〈X, h〉 and 〈Y, g〉 be B-coalgebras, for B : Set→ Set. Then the kernel

of each f : 〈X, h〉 → 〈Y, g〉 in Coalg(B) is a bisimulation. If 〈Y, g〉 is a final object, then the

kernel of the unique morphism from 〈X, h〉 is the bisimilarity relation.

The final object of Coalg(B) represents the abstract semantics, just like initial algebra

represents abstract syntax. Moreover, the existence of a final coalgebra ensures that each

class of bisimilar systems has a minimal representative. It is known that final coalgebras

exist for any accessible endofunctor on locally presentable categories (see [14] for details).

2.2 The π-calculus

Let N be the set of names. We introduce the syntax of π-calculus agents.

9

Definition 14. Let p, q range over agents and x, y ∈ N . The set of agents is defined as

follows:

α := τ p := 0

| xy | α.p

| x(y) | (νx)p

| [x = y]p

| p | q

| p+ q

The operators shown above have the following meaning:

1. 0 is a 0-ary operator representing a no-op agent.

2. Prefixes : x(y). enables the input of an arbitrary name z at port x; xy. enables the

output of the name y at port x; x(y). enables the output of the bound (see definition

15) name y at port x; τ. , enables to perform the silent action τ .

3. Restriction (νx) makes the name x private, i.e. input/output actions at ports x and x are

prohibited (communications between components of the process to which the restriction

is applied are not prohibited).

4. Match [x = y] allows the “execution” of its argument only if names x and y are identical.

5. Composition | enables its two arguments to act in parallel: they may act indipendently

or synchronize, i.e. communicate with each other.

6. Summation + enables the whole agent to behave like one of the + arguments.

Input and restriction are binding operators : the name y in xy.p and (νy).p is bound, and in

both case the scope of the occurence is p. A name which is not bound is said to be free.

The set of all names occuring in p is denoted by n(p), the set of bound names is charac-

terized as follows.

10

Definition 15. Let p be an agent, the set bn(p) of its bound names is defined by structural

induction as follows:

bn(0) = ∅

bn(xy.p) = bn(τ.p) = bn([x = y]p) = bn(p)

bn(x(y).p) = {y} ∪ bn(p)

bn((νx)p) = {x} ∪ bn(p)

bn(p | q) = bn(p+ q) = bn(p) ∪ bn(q)

The set of free names fn(p) clearly is n(p) \ bn(p).

As well as for other calculi, an α-equivalence relation is defined: it partitions the set of

agents in equivalence classes, each containing the agents with the same structure.

Definition 16. The relation of α-equivalence for π-calculus agents, denoted by ≡α, is defined

as follows:

x(y).p ≡α x(y′).p{y′/y}

(νy).p ≡α (νy′).p{y′/y}

in both cases we must have y′ /∈ fn(p).

A function σ : N → N is called renaming and its action can be extended to agents.

Definition 17. pσ denotes the agent obtained from p by substituting σ(z) for each occurrence

of z in p for each z, with change of bound names to avoid captures.

The expression “with change of bound names to avoid captures” means that, if σ maps a

free name to a name in bn(p), the agent is first α-converted and then the substitution is

applied.

After describing the syntax, we shall now describe the behaviour of π-calculus agents by

means of a LTS. Four kinds of actions are available:

1. Silent action τ : the transition p
τ−→ q means that p performs an action without interacting

with the environment. Such actions arise from agents of the form τ.p′ or p′ | p′′.
2. Free output action xy: the transition p

xy−→ q means that p emits the free name y on the

port x. Free output arise from the output prefix form xy.p.

11

pref
−

α.p
α−→ p

sum
p

α−→ q

p+ q
α−→ q

match
p

α−→ q

[x = x]p
α−→ q

par
p

α−→ p′

p | q α−→ p′ | q
bn(α) ∩ fn(q)=∅

com
p

u(x)−−→ p′ q
uy−→ q′

p | q τ−→ p′ | q′{y/x}
open

p
xy−→ p′

(νy)p
x(y)−−→ p′

y 6=x close
p

u(y)−−→ p′ q
u(y)−−→ q′

p | q τ−→ (νy)(p′ | q′)

res
p

α−→ p′

(νy)p
α−→ (νy)p′

y /∈ n(α)

Fig. 1. Inference rules for the late π-calculus transition system. Rules involving operators +

and | additionally have symmetric forms.

3. Input action x(y): the transition p
x(y)−−→ q means that p receives any name w on the port

x and then evolves to q{w/y}. Input actions arise from the input prefix form x(y).p.

4. Bound output action x(y): the transition p
x(y)−−→ q means that p emits a bound name

on the port x and (y) is the reference to where this name occurs. Bound output actions

arise from free output actions which carry names out of their scope, as e.g. in the agent

(νy)xy.p.

Definition 18. The transition relation for π-calculus is the smallest relation satisfying the

rules in Figure 1.

We shall now look at some notions of behavioural equivalence for the π-calculus transition

system. In the following we will use the phrase “a is fresh” to mean that the name a is

different from any free name occurring in any of the agents in the definition.

Definition 19. A (strong) late bisimulation is a symmetric binary relation R on agents

satisfying the following: (p, q) ∈ R and p
α−→ p′ where bn(α) is fresh implies that

• If α = a(x) then ∃q′ : q a(x)−−→ q′ ∧ ∀u : (p′{u/x}, q′{u/x}) ∈ R;

• Otherwise ∃q′ : q α−→ q′ ∧ (p′, q′) ∈ R.

p and q are (strongly) late bisimilar, written p
·∼ q, if they are related by a late bisimulation.

12

Definition 20. A (strong) early bisimulation is a symmetric binary relation R on agents

satisfying the following: (p, q) ∈ R and p
α−→ p′ where bn(α) is fresh implies that

• If α = a(x) then ∀u ∃q′ : q a(x)−−→ q′ ∧ (p′{u/x}, q′{u/x}) ∈ R;

• Otherwise ∃q′ : q α−→ q′ ∧ (p′, q′) ∈ R.

Early (strong) bisimilarity is denoted by
·∼E.

Notice that the input case is treated in a special manner: the bound name is a placeholder

for something to be received, therefore we must require that p′ and q′ are related for each

value received. Early and late bisimilarities are not congruences, since they are not preserved

by input prefix.

Sangiorgi in [9] introduces open bisimulation, which relates two agents if and only if,

after being instantiated in (almost) all possible ways, they are able to perform the same

action, ending up with agents which are related as well. Actually, not all instantiations are

considered, but only those obtained by renamings σ such that, if a is a free name, formerly

restricted and “freed” by a bound output, and b is any other free name, then σ(a) 6= σ(b).

Such restriction is motivated by the fact that a originally was a local name, thus intended

to be fresh at any step of computation, for any instantiation of the agent.

The formal definition of open bisimulation employs relation on names, called distinctions,

to “remember” names which must be kept distinct.

Definition 21. A distinction is a finite, symmetric and irreflexive relation on names. A

renaming σ respects D iff (a, b) ∈ D implies σ(a) 6= σ(b).

Definition 22. An open bisimulation is an indexed family R = {RD} of symmetric, bi-

nary relations on agents satisfying the following: for all distinctions D and all renamings σ

respecting D, (p, q) ∈ RD implies that

• If pσ
α−→ p′, with bn(α) fresh, then ∃q : qσ

α−→ q′ ∧ (p′, q′) ∈ RDσ;

• If pσ
a(b)−−→ p′, with b fresh, then ∃q : qσ

a(b)−−→ q′ ∧ (p′, q′) ∈ RD′, where D′ = Dσ ∪ {{b} ×
(fn(pσ) ∪ fn(qσ))}.

We write p ∼OD q if there is an open bisimulation R such that (p, q) ∈ RD.

In [9] it is shown that open bisimilarity is a congruence with respect to all the operators.

13

3 Indexed Labelled Transition Systems

In this chapter we define a general notion of typed transition system, the associated typed

bisimilarity and we show how such transition systems can be modified in order to make

bisimilarity the largest bisimulation which is a congruence with respect to a given set of

functions.

3.1 The basic transition system

Let T be a set of types and {Sa}a∈T an indexed family of sets. This family can be seen as

the family of states of an indexed labelled transition system.

Definition 23. A indexed labelled transition system (ILTS) over {Sa}a∈T and L is a couple

〈S,−→〉, where S =
∐

a∈T Sa and −→⊆ S × L× S.

In the following we write sa for s, if s ∈ Sa. Now we define the associated notion of bisimu-

lation, which we call indexed bisimulation.

Definition 24. An indexed bisimulation is a family of relations R = {Ra}a∈T such that:

1. (sb, tc) ∈ Ra =⇒ b = a ∧ c = a ;

2. (sa, ta) ∈ Ra ∧ sa
l−→ s′b =⇒ ∃t′b : ta

l−→ t′b ∧ (s′b, t
′
b) ∈ Rb.

Two states sa, ta are bisimilar, written sa ∼Ia ta, if there is an indexed bisimulation R such

that (sa, ta) ∈ Ra.

This definition may sound artful, but the requirement that only two states with the same

type can be bisimilar seems logical and in some interesting cases is not restrictive.

Example 25. Let T be the set of finite subsets of N . Then the π-calculus late transition

system can be represented as a ILTS on the family of sets of agents {Πa}a∈T :

Πa = {p | fn(p) ⊆ a}

and labels {τ, x(y), xy, x(y) | x, y ∈ N}. The transition relation −→Π is generated by the

following rules:

p
τ−→ q p ∈ Πa

pa
τ−→Π qa

p
x(y)−−→ q p ∈ Πa

pa
x(y)−−→Π qa∪{y}

p
xy−→ q p ∈ Πa

pa
xy−→Π qa

p
x(y)−−→ q p ∈ Πa

pa
x(y)−−→Π qa∪{y}

It easy to see that in this case ∼I coincides with strong ground bisimilarity, i.e. the ordinary

bisimilarity for the late π-calculus transition system. Moreover, one can check if two agents

pa, qb are bisimilar, with a 6= b: it is enough to check sa∪b, ta∪b instead.

14

3.2 How to make bisimilarity a congruence

Let us consider a set O of operation symbols of the form σ : a → b, where a, b ∈ T , which

is closed under composition, i.e. σ ∈ O and ρ ∈ O implies σ ◦ ρ ∈ O, associative and

contains the special symbols ida, which satisfy ida ◦ σ = σ ◦ ida = σ. We fix a well-behaved

interpretation of such symbols, that is a family of functions {fσ}σ∈O satisfying the rules:

σ : a→ b

fσ : Sa → Sb

s ∈ Sa
fida(s) = s

σ1 : a→ b σ2 : b→ c

fσ2 ◦ fσ1 = fσ2◦σ1

Then, given a ILTS 〈S,−→〉, the indexed bisimulations which are congruences with respect

to {fσ}σ∈O can be characterized explicitly: they are families R of relations on S such that,

for each (sa, ta) ∈ Ra, if fσ(sa)
l−→ s′c then there is t′c such that fσ(ta)

l−→ t′c and (s′c, t
′
c) ∈ Rc.

This is an extension of dynamic bisimulation [15], defined for one-sorted monadic signatures

and their contexts; in [15] it is also shown that dynamic bisimilarity is the coarsest ordinary

bisimulation which is a congruence.

This notion of bisimulation is quite far from the ordinary one, but it suggests how 〈S,−→〉
can be modified to make its ordinary bisimulations satisfy it: we add transitions of the form

sa
σ−→ fσ(sa). Formally, we define a saturation function Sat.

Definition 26. Sat maps a ILTS 〈S,−→〉 to 〈S,−→SAT 〉, where:

−→SAT =−→ ∪
⋃
a,b∈T

{(sa, σ, fσ(sa)) | sa ∈ S ∧ σ : a→ b ∈ O}

We call indexed saturated labelled transition system the ILTSs with the additional transitions.

Definition 27. An indexed saturated labelled transition system (ISLTS) over {Sa}a∈T ,

{fσ}σ∈O and L is a ILTS 〈S,−→〉 over {Sa}a∈T and L ∪ O such that, for each sa and

σ : a→ b ∈ O:

sa
σ−→ fσ(sa) .

We call action labels the labels in L and operation labels those in O.

It’s easy to see that, for a ISLTS, indexed bisimulations and ordinary bisimulations are indeed

the same thing: condition 1 of definition 24 is automatically satisfied by ordinary bisimula-

tions, because two bisimilar states must also have the same operation-labelled transitions,

15

and this is true only if they have the same type. In the following, we choose to mantain the

indexed version.

Now, let ilts = 〈S,−→〉 be a ILTS and islts = Sat(ilts). Let us denote by C the set of con-

gruences on S and by B,B′ the set of indexed bisimulations of the two systems, respectively.

We have the following properties.

Lemma 28. R ∈ B ∩ C =⇒ R ∈ B′.

Proof. Given (sa, ta) ∈ Ra, the two states have the same action-labelled transitions and, for

each fσ : Pa → Pb, we have that (fσ(sa), fσ(ta)) ∈ Rb, which implies sa
σ−→ fσ(sa),ta

σ−→ fσ(ta)

in islts. ut

Proposition 29. ∼I on islts is the coarsest bisimulation of ilts which is a congruence.

Proof. Since ∼I=
⋃
R∈B′R (here

⋃
returns a family whose stages are the union of the

arguments’ stages with the same index), from lemma 28 we have that ∼I⊇
⋃
R∈B∩CR. But

∼I∈ B ∩ C, by definition of ISLTS and bisimulation, therefore ∼I=
⋃
R∈B∩CR. ut

Notice that, if the bisimilarity on ilts is already a congruence with respect to {fσ}σ∈O, then

islts has exactly the same bisimilarity.

16

4 Indexed Saturated LTSs as Coalgebras on Presheaves

In this chapter we will show how ISLTSs can be represented in a categorical setting. The

basic idea is that the sets T and O can be seen as a category C, with |C| = T and ‖C‖ = O,

and the association between types and states can be expressed through a presheaf C→ Set.

More specifically, the families {Sa}a∈T and {fσ}σ∈O at the base of each ISLTS define a

presheaf by letting Pa = Pa and Pσ = fσ (the conditions characterizing {fσ}σ∈O makes

P a proper functor). Then P can be employed as the carrier of a coalgebra for a functor

B : SetC → SetC.

We consider only ISLTSs, and not generic ILTSs, because coalgebraic bisimulations in

a category of presheaf-based coalgebras are always congruences, as we will see in the first

section. This restriction does not exclude ILTSs for which bisimilarity is already a congruence:

they can be turned into ISLTSs through Sat without their bisimilarities being affected.

4.1 Some general properties of coalgebraic bisimulation

We first give an explicit characterization of B-bisimulations, for any B : SetC → SetC.

Definition 30. A B-bisimulation between the B-coalgebras 〈P, γ〉 and 〈Q, γ′〉 is a presheaf

R such that Ra ⊆ Pa×Qa, for all a ∈ |C|, and such that there is a natural transformation

γR which makes the following diagram commute:

P

γ

��

Rπ1
oo π2

//

γR

���
�
�
� Q

γ′

��
BP BR

Bπ1
oo

Bπ2
// BQ

Now we show that each B-bisimulation is a congruence. As said in the background chapter,

every presheaf can be seen as a unary many-sorted algebra and viceversa, therefore it makes

sense to speak of congruence in this setting.

In the following the expression “B-bisimulation on 〈P, γ〉” stands for “B-bisimulation

between 〈P, γ〉 and itself”.

Proposition 31. Let B : SetC → SetC be an endofunctor on SetC. Then each B-bisimulation

is a congruence with respect to all σ ∈ ‖C‖.

17

Proof. Given any B-bisimulation R on a B-coalgebra 〈P, γ〉, by the naturality of π1 and π2

the diagram

Pa

Pσ

��

Ra
π1
aoo

Rσ

��

π2
a // Pa

Pσ

��
Pb Rb

π1
b

oo
π2
b

// Pb

commutes, for all a, b ∈ |C| and σ : a→ b. Therefore (Pσ(sa),Pσ(ta)) = Rσ(sa, ta) ∈Rb.

ut

Corollary 32. Bisimilarity is a congruence with respect to all σ ∈ ‖C‖.

In the background chapter a coalgebraic bisimulation on Set has been characterized as the

kernel of a cohomomorphism. This definition can be extended to the case of coalgebras over

SetC, thanks to the following characterization of the kernel of a natural transformation.

Definition 33. Let F,G : C → Set be functors and let η : F → G be a natural transfor-

mation between them. Then its kernel is a functor Kη : C→ Set defined by:

Kηa = ker(ηa) Kησ(x, y) = (Fσ(x),Fσ(y)) .

Theorem 34. Let B : SetC → SetC be an endofunctor on SetC which preserves weak

pullbacks (i.e. pullbacks for which the mediating morphism need not be unique). Then each

B-bisimulation is the kernel of a B-cohomomorphism and viceversa.

Proof. Given a coalgebra 〈P, γ〉 and a B-bisimulation R on it, we consider the quotient

presheaf P/R:

(P/R)a = Pa/Ra (P/R)σ : C 7→ {Pσ(c) | c ∈ C} .

Then the family of functions εa = [−]Ra is a morphism ε : P→ P/R (naturality is straight-

forward). If we equip P/R with the structure map β defined by βaC = γa(sa); (Bε)a, where

C ∈ (P/R)a and s is any element of C, then ε becomes a B-cohomorphism between (P, γ)

and (P/R, β).

For the converse, let η : 〈P, γ〉 → 〈Q, γ′〉 be a B-cohomomorphism. Since pullbacks in

SetC are computed pointwise, we have that P Kη
π1

oo π2
//Q is a pullback of P

η //Q Q
ηoo

18

and its image through B is a weak pullback. Then there is at least a κ : Kη → BKη which

makes the following diagram commute.

Kη

κ

""D
D

D
D

D π1;γ

!!

π2;γ′

""

BKη
Bπ1

//

Bπ2

��

BP

Bη

��
BQ

Bη
// BQ

ut

4.2 From coalgebras to ISLTSs

Our first goal is to define a suitable behavioural endofunctor. If we consider the “naive”

functor

BP = Pf (L×P) ,

where L is a chosen presheaf of labels, then B-coalgebras model transition systems where

the source and the target always have the same type, which is very restrictive. We need a

functor which allows to select states from other stages of the carrier presheaf.

This can be achieved by employing endofunctors on SetC which, applied to a presheaf,

modify the way it indexes the sets in its image. We derive such functors by “lifting” endo-

functors on C, which determine how indices are “renamed” in the resulting presheaf.

Definition 35. Let G : C → C be an endofunctor on C. Then the functor δG : SetC →
SetC is defined on objects by

δGPa = P(Ga) δGPσ = P(Gσ)

and on morphisms η by (δGη)a = ηGa.

We are now able to define a more suitable behavioural functor: given a family G = {Gi}i∈I ,
with Gi : C→ C, the functor can be defined on presheaves as:

BP = Pf (L×
∐
i∈I

δGi
P) (2)

19

and on natural transformations η : P→ Q as:

(Bη)a = Pf〈Lida,
∐
i∈I

(δGi
η)a〉 .

Theorem 36. Each B-coalgebra can be represented as a ISLTS.

Proof. Let 〈P, γ〉 be a B-coalgebra. Then we can define a ISLTS over {Pa}a∈|C| and {Pσ}σ∈‖C‖
with set of labels L̂ =

⋃
a∈|C| La, whose transition relation satisfies

sa
l−→ tb ⇐⇒ (l, tb) ∈ γa(sa)

and we denote it by 〈S,−→〉.
Now we show that B-bisimulations are isomorphic to the indexed bisimulations on 〈S,−→〉.

Given a B-bisimulation R, let us consider the indexed family R = {Ra}a∈|C| and let

γ̂ : R→ BR be the natural transformation

γ̂a(sa, ta) = {(l, (s′b, t′b)) | (l, s′b) ∈ γa(sa) ∧ (l, t′b) ∈ γa(ta)} , (3)

which clearly makes the bisimulation diagram for R commute. To prove thatR is an indexed

bisimulation on 〈S,−→〉, let us consider (sa, ta) ∈ Ra: by definition of 〈S,−→〉 and γ̂ we have

that (l, (s′b, t
′
b)) ∈ γ̂a(sa, ta) if and only if sa

l−→ s′b, ta
l−→ t′b, and by the definition of B and

R we have (s′b, t
′
b) ∈ Rb; furthermore, sa, ta can perform only transitions with the same

label, due to the B-bisimulation diagram. This covers the case of labels in L̂. The case of

operation-labelled transitions follows from proposition 31.

Conversely, given an indexed bisimulation R, the presheaf R defined as:

Ra = Ra Rσ(sa, ta) = (Pσ(sa),Pσ(ta))

can be equipped with the structure map (3) so to satisfy the definition of B-bisimulation. ut

4.3 From ISLTSs to coalgebras

The translation from ISLTSs to coalgebras is more difficult because, if we mantain a functor

of the form (2), we are able to represent only those ISLTSs whose transition relation is

expressible as a natural transformation. This is stated formally in the following proposition.

20

Proposition 37. Let 〈S,−→〉 be a ISLTS on {Sa},{fσ} and
⋃
a∈|C| La such that for each

transition sa
l−→ tb there is a Gi ∈ G such that Gia = b, and we denote it by Ga,b. Let P be

the presheaf Pa = Sa,Pσ = fσ. Then the family of functions γa(sa) = {(l, tb) | sa
l−→ tb ∧ tb ∈

δGa,b
Pa} is a natural transformation P→ BP if and only if:

(i) sa
l−→ tb =⇒ fσ(sa)

Lσ(l)−−−→ fGa,bσ(tb) ;

(ii) fσ(sa)
l−→ tb =⇒ ∃sa

l′−→ rc : Lσ(l′) = l ∧ fGa,cσ(rc) = tb .

Proof. By the definition of γ, condition (i) is equivalent to 〈Lσ, δGa,b
Pσ〉(l, tb) ∈ γb(Pσ(sa)),

that is BPσ(γasa) ⊆ γb(Pσ(sa)). Condition (ii) is specular and is equivalent to BPσ(γa(sa)) ⊇
γb(Pσ(sa)). Both conditions are then equivalent to γa; BPσ = Pσ; γb, for all a, b ∈ |C|, i.e.

the naturality condition. ut

Notice that the coalgebraic representation of a ISLTS is not unique: any behavioural endo-

functor satisfying the conditions on G given in this proposition is suitable, since the particular

choice of G does not affect the structure map’s definition and thus the bisimulations. How-

ever, some interesting transition systems do not satisfy conditions (i) and (ii), and we will

show an example in next chapter.

An alternative representation is possible through the following behavioural endofunctor.

Definition 38. The behavioural endofunctor B̂ : SetC → SetC is defined on objects by:

B̂Pa = Pc(
∐
b∈|C|

(C(a, b)× Lb×
∐
c∈|C|

Pc))

B̂Pσ : A 7→ {(σ2, l, pa) | (σ1, l, pa) ∈ A ∧ σ;σ2 = σ1} ;

where Pc is the functor sending a set to its countable subsets, and on morphisms µ : P→ Q

by:

B̂µa : A 7→
⋃

σ∈C(a,b)

{(σ, l, µb(pb)) | (σ, l, pb) ∈ A} ,

where A ∈ B̂Pa in the whole definition.

This functor represents a transition as a triple (σ, l, pc), which intuitively groups two actions:

the embedding of the starting state into the context σ, whose interpretation is given by the

carrier presheaf, and a transition from this modified state to pc, labelled with l. In next

proposition we show that any ISLTS gives rise to a B̂-coalgebra which groups the ISLTS’s

transitions as just described and whose bisimulations are isomorphic to those of the ISLTS.

21

Theorem 39. Each ISLTS is representable as a B̂-coalgebra.

Proof. Let 〈S,−→〉 be a ISLTS over {Sa},{fσ}, and L. Then the carrier presheaf P is:

Pa = Sa Pσ = fσ ,

the label presheaf is any L : C→ Set such that
⋃
a∈|C| La = L (e.g. La = L and Lσ = idL,

for all a ∈ |C| and σ ∈ ‖C‖) and the structure map γ : P→ B̂P is defined by:

(σ, l, s′b) ∈ γa(sa) ⇐⇒ sa
σ−→ fσ(sa)

l−→ s′b ,

where l is an action label. To prove that it defines a proper natural transformation, we have

to check that the diagram

Pa

Pσ

��

γa // B̂Pa

bBPσ
��

Pb γb
// B̂Pb

commutes. Let sa ∈ Pa, then the upper path leads to the result of B̂Pσ applied to the

triplets in γa(sa), which represent transitions of the form sa
σ′−→ fσ′(sa)

l−→ tb: if σ′ can be

written as σ;σ′′, then B̂Pσ “removes” σ and generates the new chain of transitions
σ′′−→ l−→,

which are exactly those of fσ(sa). Naturality follows from the fact that the lower path leads

to the set of triplets representing all the transitions

fσ(sa)
σ′′′−−→ fσ;σ′′′(sa)

l−→ s′d ,

for all the morphism σ′′′ with domain b.

We now prove that B̂-bisimulations on 〈P, γ〉 and indexed bisimulations on 〈S,−→〉 are

in one-to-one correspondence. Given an indexed bisimulation R, we define the equivalent

B̂-bisimulation R as follows:

Ra = Ra Rσ(sa, ta) = (Pσ(sa),Pσ(ta)) .

It actually is a B̂-bisimulation, since it can be equipped with the structure map γ̂:

γ̂a(sa, ta) = {(σ, l, (s′b, t′b)) | (σ, l, s′b) ∈ γa(sa) ∧ (σ, l, t′b) ∈ γa(ta)} ,

clearly making the bisimulation diagram commute.

22

Conversely, given a B̂-bisimulation R equipped with the structure map γ̂ defined above,

the family of relations Ra = Ra is an indexed bisimulation on 〈S,−→〉. In fact, let us

consider (sa, ta) ∈ Ra: by the definition of γ̂ and by the bisimulation diagram we have that

sa
σ−→ fσ(sa)

l−→ s′b if and only if ta
σ−→ fσ(ta)

l−→ t′b, which implies, for σ = ida, the two states

can perform the same action l ∈ L, becoming then elements related in Rb, since (s′′b , t
′′
b) ∈Rb

by the definition of B̂. From proposition 31 we get that sa and ta can also perform the same

operation-labelled transitions and result in two related states. ut

23

5 Examples

In this chapter we apply the theory to some concrete examples: early, late and open bisimi-

larity for the π-calculus and saturated bisimilarity. In the end we analyze the case of ISTLSs

based on a set of polyadic operations.

5.1 Early bisimilarity

To construct a ISLTS for early bisimilarity we represent names as natural numbers and we

define the set of types Tπ as the set of finite cardinals (we denote the set {1, . . . , n} by n)

and the set of operations Oπ as the set of injective functions between them; they represent

respectively sets of names and injective renamings. We use injective renamings because it is

a known fact that early bisimilarity is closed under these operations (see e.g. proposition 2

in [16]).

Agents are typed with the set of their free names, but we do not consider the whole set of

agents, instead we construct an abstract syntax containing only canonical agents, i.e. agents

which are representatives of α-equivalence classes. The family of agents {Πn}n∈Tπ is defined

by the method of De Bruijn levels [17], according to the rules in figure 2. As we can see from

the rules for input prefix and restriction, the name bound by a binding prefix is always n+1:

this is how canonical agents are generated.

The transition system for early bisimilarity satlsE = 〈ΠE,−→E〉 is the ISLTS on {ΠE
n }n∈Tπ ,

{fEσ : p 7→ pσ}σ∈Oπ and LE = {τ, xy, xy, x(), x() | x, y ∈ N} whose action-labelled transi-

tions are generated by the rules in figure 3, where the transitions in the premises belong

to the early π-calculus transition relation, i.e. the transition relation obtained replacing the

0 ∈ Π∅
p ∈ Πn m ∈ Tπ m ⊇ n

p ∈ Πm

p ∈ Πn q ∈ Πn

p | q ∈ Πn

p ∈ Πn x, y ∈ n

[x = y]p ∈ Πn

p ∈ Πn+1 x ∈ n

x(n+ 1).p ∈ Πn

p ∈ Πn x, y ∈ n

xy.p ∈ Πn

p ∈ Πn+1

(ν n+ 1)p ∈ Πn

Fig. 2. Rules generating the family of agents.

24

p
τ−→ q p ∈ Πn

pn
τ−→E qn

e-input1

p
xy−→ q p ∈ Πn y ∈ n

pn
xy−→E qn

e-input2

p
xn+1−−−→ q p ∈ Πn

pn
x()−→E qn+1

p
xy−→ q p ∈ Πn

pn
xy−→E qn

p
x(n+1)−−−−→ q p ∈ Πn

pn
x()−→E qn+1

Fig. 3. Inference rules for the ISLTS for early bisimilarity.

rules for input and parallel composition in figure 1 with the following:

−

x(y).p
x(u)−−→ p{u/y}

p
x(u)−−→ p′ q

xu−→ q′

p | q τ−→ p′ | q′

Notice that an agent x(n+ 1).p can input either a known name (rule E-INPUT1) or a fresh

name, represented by n+1 (rule E-INPUT2). This is consistent, since receiving a fresh name

is the same thing as first α-converting and then removing the prefix (recall that agents are

representatives of α-equivalence classes, then α-converting is meaningless). Besides, notice

that bound input/output labels do not carry the bound name in order to avoid redundancy:

it is know to be n+ 1.

The construction explained so far leads to the following result.

Proposition 40. pn
·∼E qn if and only if pn ∼In qn with respect to isltsE.

If we let Oπ contain all renamings, and we modify isltsE by adding the transitions for non-

injective renamings, then ∼I coincide with early congruence, i.e. the coarsest early bisimu-

lation which is preserved by all renamings.

Now we consider coalgebras. We denote by I the category induced by Tπ and Oπ. Since it

is a known property that, for any injective renaming σ, if p
l−→ q then pσ

lσ−→ qσ and viceversa

(see e.g. [18] lemma 3 and 4), if we define a suitable endofunctor of the form (2) we can

apply proposition 37 to isltsE.

The needed constructions are:

• The presheaf of names N : I→ Set, which is just the embedding in Set.

25

• The presheaf of labels

Lπ = 1 (Silent Action)

+N ×N (Free Input/Output)

+N (Bound Input/Output)

• The dynamic allocation operator δ : SetI → SetI, generated, according to definition 35,

by the endofunctor on I which sends n to n+ 1 and σ to [σ, id1].

Finally, the behavioural functor is

BP = Pf (Lπ × (P + δP)) . (4)

Remark 41. The abstract syntax defined in figure 2 can be obtained, more elegantly, as

the initial Σ-algebra TΣ for a functor Σ : SetI → SetI. For instance, let us consider the

endofunctor given in [6]:

ΣP = 1 + P×P +N × δP +N ×N ×P + δP +N ×N ×P ,

each addend modeling respectively: the inert process, parallel composition, input prefix,

output prefix, restriction and match.

Notice the usage of δ: it selects subagents with one additional free name, which will be

bound in the resulting agent; e.g. an agent in TΣn with an input prefix is represented by

the couple (i, p), where i ∈ n and p ∈ TΣ(n+ 1): the additional name in n+ 1 is considered

as the bound name of the prefix. In other words: TΣ is the presheaf of agents quotiented by

α-equivalence.

5.2 Late bisimilarity

Unlike early bisimilarity for the early transition system, late bisimilarity is not the standard

bisimilarity of the late transition system, because it requires a quantification over names

for input transitions. Then we must consider an ad-hoc transition system, in which this

quantification is operationally represented.

This can be done by defining an additional syntactic construct λx.p, called abstraction

prefix, which intuitively means that p has performed an input transition but it is still waiting

to receive the actual data; as soon as the value u is received, the agent becomes p{u/x}. We

let fn(λx.p) = fn(p) \ {x}.

26

We employ again Tπ and Oπ, because late bisimilarity is closed under injective renaming.

The family of agents {ΠL
n }n∈Tπ is {ΠE

n }n∈Tπ plus the abstract agents constructed by the rule

p ∈ ΠL
N+1

λn+ 1.p ∈ ΠL
N

The transition system for late bisimilarity is the ISLTS isltsL = 〈ΠL,−→L〉 on {ΠL
n }n∈Tπ ,

{fLσ : p 7→ pσ}σ∈Oπ and LL = {τ, x, xy, x(), x() | x, y ∈ N}, whose action-labelled transitions

are derived by the late π-calculus transition system and the inference rules in figure 3, with

the exception that E-INPUT1 and E-INPUT2 are replaced by the rules:

l-input1

p
x(n+1)−−−−→ q p ∈ ΠL

n

pn
x()−→ qn+1

l-input2

p
x(n+1)−−−−→ q p ∈ ΠL

n , y ∈ n

pn
x−→L (λn+ 1.p)n

y−→L q{y/n+ 1}n

The rule L-INPUT1 adds a transition “declaring” that pn can perform an input on channel

x, and another one which performs the actual reception; the rules L-INPUT2 treats the case

of a fresh name input. The following result is an immediate consequence.

Proposition 42. pn
·∼ qn if and only if pn ∼In qn with respect to isltsL.

Employing all renamings instead of just injective ones, with a suitable modification of isltsL,

makes ∼I equivalent to late congruence, i.e. the coarsest late bisimulation which is preserved

by all renamings.

The behavioural functor is again (4), the only different thing is how labels are modeled:

the component of Lπ for bound input/output is also used for the new input actions.

5.3 Open bisimilarity

As seen in the background, distinctions and distinction-preserving renamings play a central

role in defining open bisimilarity, therefore we let the set of types TO be the set of distinctions,

which we denote by (n, dn), where n is the carrier of the relation dn, and we let the set of

operations OO be the set of all the distinction-respecting functions, represented as functions

between distinctions, i.e. if σ : n → m is such that (a, b) ∈ (n, dn) implies (σ(a), σ(b)) ∈
(m, dm), then σ : (n, dn) → (m, dm) ∈ OO. Furthermore, we define two operators δ−, δ+ on

distinctions:

δ−(n, dn) = (n+ 1, dn) δ+(n, dn) = (n+ 1, dn+1) ,

27

where dn+1 is the symmetric closure of dn ∪ {(n+ 1, i) | i ∈ n}.
The family of agents {ΠO

d }d∈TO is defined as ΠO
(n,dn) = ΠE

n , and the interpretation of

morphisms is given by the family {fOσ : p 7→ pσ}σ∈OO . Then the transition system for

open bisimilarity isltsO = 〈ΠO,−→O〉 is the ISLTS on {ΠO
d }d∈TO , {fOσ }σ∈OO and the set of

labels {τ, x(), xy, x() | x, y ∈ N}, whose action-labelled transitions are induced by the late

π-calculus transition relation as follows:

p
τ−→ q p ∈ ΠO

d

pd
τ−→O qd

p
x(n+1)−−−−→ q p ∈ ΠO

d

pd
x()−→O qδ−d

p
xy−→ q p ∈ ΠO

d

pd
xy−→O qd

p
x(n+1)−−−−→ q p ∈ ΠO

d

pd
x()−→O qδ+d

The key points is the way types are changed by a bound output transition: the resulting agent

has an enriched distinction, ensuring that the extruded name will be kept distinct from all

the other free names by any later operation-labelled transition. This represents exactly the

generation of a new distinction for the bound output transition case in the open bisimulation

step. All the other transitions do not alter the distinction (input just changes the carrier).

Therefore we have the following fact.

Proposition 43. pd ∼Od qd if and only if pd ∼Id qd with respect to isltsO.

To build a coalgebra representing isltsO, we first check if it is possible to build a coalgebra

over a functor of the form (2). Let D be the category induced by TO and OO, we need the

following constructions:

• Presheaf of names N : D → Set, which sends (n, dn) to the set n and σ : (n, dn) →
(m, dm) to the function σ : n→ m.

• Dynamic allocation operators δ+, δ− : SetD → SetD induced, according to definition 35,

by the endofunctors on D having δ+, δ− as actions on objects and sending a morphism

σ : d → d′ to [σ, id1], seen respectively as a morphism δ+d → δ+d′ and as a morphism

δ−d→ δ−d′.

In [11] an endofunctor B : SetD → SetD is given:

BP = Pf (P (Silent Action)

+N ×N ×P (Output)

+N × δ+P (Bound Output)

+N × δ−P) (Input)

28

which, setting LO = 1 +N +N ×N , can be rewritten in the form (2) as

BP = Pf (LO × (P + δ+P + δ−P))

(the two functors are naturally isomorphic). However, a B-coalgebra representing isltsO does

not exists.

To see this, let us consider the agent p = [1 = 2]34.0 ∈ ΠO
(4,∅): it has no outgoing

transitions. Let σ : (4, ∅)→ (4, ∅) be the function in OO defined by

σ(1) = 1, σ(2) = 1, σ(3) = 3, σ(4) = 4,

then fOσ (p)
34−→O 0, but this violates condition (ii) in proposition 37. Hence we have to

employ the endofunctor of definition 38, whose action on objects in this case can be refined

as follows:

B̂Pd = Pc(
∐
d′∈|D|

(D(d, d′)× Ld′ × (Pd+ δ+Pd+ δ−Pd))) .

5.4 Saturated bisimilarity

In [10] Bonchi and Montanari present a general theory of bisimilarity. They define an in-

teractive system as a state-machine which can interact with the environment through an

evolving interface.

Definition 44. A context interactive system (CIS) I is a quadruple 〈〈S,Σ〉,A, O, tr〉 where

• 〈S,Σ〉 is a unary many-sorted signature closed under composition;

• A is a 〈S,Σ〉-algebra, with carriers {As}s∈S;

• O is a set of observations;

• tr ⊆ |A| ×O × |A| is a labelled transition relation.

Intuitively, sorts represent interfaces and the operations in Σ, interpreted in A, if applied to

a state represent an interaction of that state with the environment.

The associated notion of bisimilarity is saturated bisimilarity, which is the coarsest bisim-

ulation closed under the operations in Σ.

Definition 45. Let 〈〈S,Σ〉,A, O, tr〉 be a context interactive system. Then an indexed family

of relations R = {Rs}s∈S, with Rs ⊆ As × As, is a saturated bisimulation if and only if

∀s, s′, t ∈ S,∀σ ∈ Σs,s′, whenever (ps, qs) ∈ Rs:

σA(ps)
o−→ p′t =⇒ σA(qs)

o−→ q′t ∧ (p′t, q
′
t) ∈ Rt .

29

We write ps ∼Ss qs if and only if there is a saturated bisimulation R such that (ps, qs) ∈ Rs.

Deriving a ISLTS isltsI for saturated bisimilarity from a CIS I is straightforward: if we

let the set of types TI be S and that of operations OI be Σ, then isltsI is the ISLTS on

{As}s∈TI , {σA}σ∈OI , and O whose action-labelled transitions are those of tr. The equivalence

of bisimilarities is obvious.

Proposition 46. ps ∼Ss qs if and only if ps ∼Is qs with respect to isltsI.

Let us consider the CIS for π-calculus Iπ = 〈〈Sπ, Σπ〉, Π,Oπ, trπ〉, where 〈Sπ, Σπ〉 is the

one-sorted signature defined as follows:

sort Agent

operations

0 :→ Agent p | :Agent→ Agent

α. :Agent→ Agent (νx) :Agent→ Agent

p+ :Agent→ Agent [x = y] :Agent→ Agent

where α is a prefix, x, y ∈ N and p : Agent, Π is the initial 〈Sπ, Σπ〉-algebra, Oπ is the

set {τ, xy, xy, x(y) | x, y ∈ N} and trπ is the early π-calculus transition relation. Then the

relation ∼I on the resulting ISLTS is the largest congruence in early bisimilarity (analogously

for late bisimilarity).

Finally, let us consider the coalgebraic point of view. Since we cannot make assump-

tions about the representability of tr as a natural transformation, we have to employ the

behavioural functor of definition 38, with L the constant presheaf sending each s ∈ |C| to

O. Notice that, in this case, the carrier presheaf is just the algebra A in functorial form.

5.5 The polyadic case

In the examples seen so far the family {fσ} contains only monadic functions, but this is

not a requirement. For instance, we might consider a signature for π-calculus with | :

Agent × Agent → Agent as parallel composition, which certainly is more natural than

considering a distinct parallel composition operator | p for each agent p. Now we show how

to treat the polyadic case, slightly modifying the general theory if needed.

30

Let us consider a ILTS 〈S,−→〉 on {Sa}a∈T and L, and a set of basic operation symbols

O of the form σ : a1 × · · · × an → an+1, where a1, . . . , an+1 ∈ T , interpreted by the family

{opσ}.
To construct the ISLTS we consider the set of types T× =

⋃
n∈{1,2,... } T n and that of

operations O× generated by the following rules

σ ∈ O

σ ∈ O×

σ1 : a1 → b1, . . . , σn : an → bn ∈ O

σ1 × · · · × σn : a1 × · · · × an → b1 × · · · × bn ∈ O×

plus identities, closure under composition and associativity. Then we define a new family of

states {S ′a}a∈T× :

S ′a1×···×an = Sa1 × · · · × San (5)

and a family of functions {fσ}σ∈O× such that: fσ = opσ if σ ∈ O, fida is the identity function,

for each a ∈ T×, and

fσ1×···×σn : (s1, . . . , sn) 7→ (fσ1(s1), . . . , fσn(sn)) . (6)

In addition, {fσ}σ∈O× is closed under composition.

Then the ISLTS corresponding to 〈S,−→〉 is 〈
∐

a∈T× S
′
a,−→×〉, where the transition

relation is −→ with the additional transitions:

(s(1)
a1
, . . . , s(n)

an)
σ−→ fσ(s(1)

a1
, . . . , s(n)

an) ,

for each σ ∈ O× with domain a1 × · · · × an. Notice that we had to use a larger family of

states, unlike what done in section 3.2, due to the polyadicity of the operations.

To coalgebrically represent such ISLTSs we employ the Lawvere theory L(T ,O) (i.e. the

Lawvere theory modeling the polyadic signature 〈T ,O〉) as the presheaves domain category.

However we cannot consider the whole SetL(T ,O), because the functor P : L(T ,O) → Set

induced by {S ′a}a∈T× and {fσ}σ∈O× must satisfy P(a1 × · · · × an) = Pa1 × · · · × Pan and

P(〈σ1, . . . , σn〉) = 〈Pσ1, . . . ,Pσn〉, which are restatements of (5) and (6) respectively, i.e. it

must be cartesian. Thus the correct base category for coalgebras is Mod(L(T ,O)).

31

6 Conclusions and Future Work

The theory described in this thesis allows to pass from set-based transition systems, provided

that bisimilarity is a congruence, to presheaf-based coalgebras mantaining the bisimulations

of the original transition system.

We think this could have interesting applications, for instance in partition refinement

algorithms [19,20], widely used in tools for checking bisimulations equivalences and for com-

puting minimal realizations. In fact some of these algorithms operate on coalgebras and in

particular, for coalgebras on Set, they exploit the fact that the minimal realization of a

coalgebra can be reached by a “path” made of surjective cohomomorphisms, incrementally

quotienting the space state according to their kernels; thanks to the fact that kernels are

bisimulations, the obtained equivalence classes contain states with the same behaviour. Since

we proved that there is an analogous notion of kernel also for coalgebras over presheaves,

such algorithms should also be applicable effortlessly in a presheaf setting.

As a future development, we would like to investigate further examples:

• The explicit fusion calculus [21], a version of π-calculus with additional explicit fusion

agents x = y, where x, y ∈ N . Fusion agents represent identifications of names which

are activated by parallel composition: for any agent p, p | x = y allows p to use x and y

interchangeably. They induce an equivalence relation on names for each agent p, which

contains (x, y) if and only if the fusion x = y is active (hence α.p has empty equivalence

relation, for any prefix α). In this case resources are not just names, but equivalence

relations between (free) names, which are modified during the computation as follows:

a transition p
l−→ q can either activate fusions which are not active in p, e.g. if l is a

prefix, or turn a bound name into a free name, if l is a bound output label, which in q

may already be involved in a fusion; in the former case the equivalence classes of p are

enlarged, in the latter case a new element is added to the relation: as a new singleton

equivalence class if it does not appear in any of q’s active fusions, otherwise it is added

to an existing class. The categorical representation might be similar to that given in

[22], where the presheaves index category is E, incorporating equivalence relations and

equivalence preserving morphisms, and presheaves E → Set are used to associate each

equivalence relation to the agents for which the relation hold. To apply our theory, suitable

endofunctors on E has to defined, modeling the just described operations on equivalence

relations.

32

• CC-Pi [23], a version of π-calculus with constraints. Constraints are defined as elements

of an algebraic structure, called named c-semirings, that equip them with a mechanism

of constraint combination; the extended syntax provides the prefixes tell c, ask c, check

c and retract c for adding, testing and removing constraints. It is reasonable to think

of constraints as resources that can be allocated and deallocated, and thus as objects of

a category with endofunctors for allocation and deallocation. This observation might be

the key idea for a categorical model.

As a step further, an ambitious goal would be organizing our results into an effective meta-

theory.

Acknowledgments Ringrazio innanzitutto il prof. Ugo Montanari, sempre disponibile e

prodigo di consigli preziosi. Ringrazio la mia famiglia e ringrazio Sabrina, che come al solito

mi ha offerto appoggio incondizionato, e infine ringrazio tutti i miei amici. Ringraziamenti

speciali a Robertino, che mi ha fatto da meticoloso correttore di bozze, a Daniele che ha

fornito i mezzi tipografici, a Giancarmelo e Michele, che mi hanno dato ottimi consigli per

la presentazione; ringrazio Michele anche per avermi offerto occasioni di svago geometrico.

33

References

1. Lawvere, F.W.: Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of

Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University (1963)

2. Lambek, J.: Cartesian closed categories and typed λ-calculi. In: Combinators and Functional Programming

Languages. (1985) 136–175

3. Tennent, R.D.: Functor - category semantics of programming languages and logics. In: CTCS. (1985) 206–224

4. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM

39(1) (1992) 95–146

5. Cattani, G.L., Stark, I., Winskel, G.: Presheaf models for the π-calculus. In: Category Theory and Computer

Science: Proceedings of the 7th International Conference CTCS ’97. Number 1290 in Lecture Notes in Computer

Science, Springer-Verlag (1997) 106–126

6. Fiore, M., Turi, D.: Semantics of name and value passing. In: Proc. 16th LICS, IEEE Computer Society Press

(2001) 93–104

7. Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus. Information and Computation

179(1) (November 2002) 76–117

8. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proc. 12th LICS Conf., IEEE, Computer

Society Press (1997) 280–291

9. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Inf. 33(1) (1996) 69–97

10. Bonchi, F., Montanari, U.: Symbolic semantics revisited. In Amadio, R.M., ed.: FoSSaCS. Volume 4962 of

Lecture Notes in Computer Science., Springer (2008) 395–412

11. Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. Electr. Notes

Theor. Comput. Sci. 106 (2004) 105–120

12. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall (1995)

13. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1) (2000) 3–80

14. Adamek, J.: Introduction to coalgebra. Mathematical Structures in Computer Science (15) (2005) 409–432

15. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for ccs. Fundam. Inform. 16(1)

(1992) 171–199

16. Parrow, J. In: An Introduction to the pi-calculus. (2001) 479–543

17. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,

with application to the church-rosser theorem. Indagationes Mathematicae (Proceedings) 75(5) (1972) 381–392

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes pt.2. Information and Computation 100(1)

(September 1992) 41–77

19. Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state processes, and three problems of equivalence. In:

PODC ’83: Proceedings of the second annual ACM symposium on Principles of distributed computing, New

York, NY, USA, ACM (1983) 228–240

20. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6) (1987) 973–989

21. Wischik, L.: Explicit fusions. In: Proc. MFCS 2000. LNCS 1893, Springer-Verlag (2000) 373–382

22. Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A category of explicit fusions. (2008) 544–562

23. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service level agreements. In:

ESOP. (2007) 18–32

34

	Introduction
	Background
	Categories, Algebras and Coalgebras
	Algebras and program syntax.
	Coalgebras and program behaviour.

	The -calculus

	Indexed Labelled Transition Systems
	The basic transition system
	How to make bisimilarity a congruence

	Indexed Saturated LTSs as Coalgebras on Presheaves
	Some general properties of coalgebraic bisimulation
	From coalgebras to ISLTSs
	From ISLTSs to coalgebras

	Examples
	Early bisimilarity
	Late bisimilarity
	Open bisimilarity
	Saturated bisimilarity
	The polyadic case

	Conclusions and Future Work
	Bibliography

