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Summary

An integrated platform has been developed which features a geometric, a grid gen-
eration and an aerodynamic analysis module. The main intent is to execute a quick
though reliable preliminary aerodynamic analysis on a generic complex aerodynamic
configuration and, at the same time, provide a mean of exporting the defined geom-
etry or grid to leading CAE/CAD, meshing and analysis softwares, for deep detail

modifications or more accurate, although time consuming, analysis.

In the geometric module, the process of shape definition is easily and intuitively
achieved with the aid of specific features and tools. The geometric description relies
on NURBS, a flexible, accurate and efficient parametric form. Once the configu-
ration has been defined, the user is ready to move on the grid generation module,
or to export it to IGES standard format in order to use CAE/CAD, meshing or

aerodynamic analysis programs.

The grid generation module is capable to build structured or unstructured meshes.
Both of the processes are automatized, even if the user can easily set and control
grid parameters. The structured grid generator is oriented to LaWGS description
standard, while the unstructured grid can be exported to different formats.

The user is now ready to launch Pan Air, a panel method, as the aerodynam-
ic solver. The preprocessor and postprocessor aid to the definition of the flow

parameters and to the graphical visualization of the results.

One of the strength of this code is the user friendly GUI organization of each

module: the user is aided throughout all the steps. Besides this, every module relies



on fast computational algorithms to speed up the overall process.
For all these reasons, this code has a natural lean to be used in pair with an

optimization tool.
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Introduction

Nowadays the preliminary design optimization holds an important role in the overall
design process. To be efficient, optimization needs a high degree of automation,
leaving to the designer only small and fast tasks. The efficiency would be enhanced
if the different modules are part of the same environment, that is, with a unique

integrated platform.

The preliminary aerodynamic property estimations represent the basis from where
to start further investigations and modifications. Although theoretical prediction or
lower order aerodynamic solver, like vortex lattice softwares, may be enough accurate
for an early preliminary design, when investigating innovative configurations, like the
PrandtlPlane one, the order of approximation may be unacceptable, mainly because
its effect can lead to unreliable results. For example, PrandtIPlane stability is highly
sensitive to small aerodynamic load variations, thus more refined analysis should be
undertaken. Moreover, the gained experience with the traditional configurations in

aeronautics, may not always help.

This and other related problems lead to the need of an efficient and fast code for
preliminary evaluation, capable also to export the geometrical shapes to international
standard formats, in order to eventually submit more accurate analysis. Since the
steps for obtaining an aerodynamic analysis consist in a geometrical configuration
definition, a grid generation and a program pre and postprocessing, the main idea is
an integrated environment where preliminary aerodynamic design and optimization

could be easily and quickly undertaken.



In the first chapter an overview of ASD capabilities and tools is given. ASD
(aerodynamic shape design) is a tool written in Matlab language, for geometric
shape design of aerodynamic surfaces purposes. Further, it features an internal
unstructured mesher. In this chapter, the process of generating configurations is
analyzed step by step, mainly from the user perspective; also the use of the tools
is shown. A brief description of the integrated unstructured mesher is also given.
Finally, the geometric limitations of the code are pointed out: they concern the
continuity of the generated NURBS surfaces. The practical drawbacks are discussed,

showing the need of a geometric engine improvement.

Second chapter deals with NURBS, a parametric form. First, a brief historical
survey is given, followed by the definition of some noteworthy parametric forms,
like Bézier and B-spline, fundamental to NURBS understanding. After, NURBS
are analyzed, and some important algorithm important for their manipulation and

implementation are briefly discusses.

The third chapter is of main importance, since it discusses how NURBS are
effectively built over a set data points. The interpolation problem is analyzed in
depth, as well as parameterization problems. Then, continuity is discussed from
three different perspectives; the effects of continuity on shape fairness are briefly
shown. Finally, implementation of new algorithms, based on fairness and variational

modeling, and overcoming the previous limitations, is carried out.

Next chapter shows more in detail the capabilities of the new algorithms compared
with the old ones. The new GUI, where the interpolation parameters are controlled,
is presented. The chapter ends with some pictures of configuration generated with

the new algorithms.

Chapter five treats grid generation. After a short introduction on grid generation
topic, and especially on the structured mesh, the requirements of the aerodynamic
solver Pan Air on the input networks are pointed out. Thus, the logics adopted in
the grid generation process and all its underlying reasons are discussed in depth.
The parameters which control the mesh generation, and the graphical interface are

finally presented, as well as some examples of networks generated.

Chapter six introduces the panel method theory, from the equations to the field
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of application. Then Pan Air, the panel method developed at Boeing and NASA,
and chosen to be integrated with this code, is described; in particular an overview
of its capabilities, its requirements, and some of its applications are presented.

The integration of Pan Air within the platform is pointed out in chapter seven.
Both the preprocessor and the postprocessor are presented in details, with the aid of
pictures of analyzed configurations. A final simple test case is submitted, with the

aim of checking Pan Air predictions and its grid sensitivity.






ASD: Aerodynamic Shape Design

1.1 Introduction

ASD (Aerodynamic Shape Design) is a fully parametric, modular, scriptable aero-
dynamic surface generator. One of ASD peculiarity is the easy and fast new con-
figuration generation and existing configuration modification capability, due to the
parametric approach and the user friendly graphical interface. Another trademark is
the ability to generate non-conventional configurations, such as the PrandtlPlane one,
whose aerodynamic shapes can not be easily designed using conventional CAD soft-
wares. Together with this geometric capabilities, ASD is provided of a meshing tool,
capable of producing triangular meshes and hybrid tri-quad meshes suitable both
for aerodynamic and electromagnetic simulations and featuring automatic wakeline
recognition for aerodynamic panel solvers. ASD surface mesher can export various
formats from panel neutral .dat files to standard .stl tri mesh. The output of the
surface generator can be exported as set of trimmed NURBS into an IGES file or fed
into meshing tool built into the code. Some useful tools aid the users to sketch the
geometric shapes, such as the airfoil manager, the section manager, the Naca airfoil
manager and the flap sketcher.

Due to its characteristics, ASD main field of application is the early stage of
aerodynamic design. In this stage, in fact, ASD can quickly generate a huge number

of configurations, making it possible to analyze many different layouts during the
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1 — ASD: AERODYNAMIC SHAPE DESIGN

initial optimization process.
The ASD code has been written in Matlab, and requires, a part from Matlab,
the Spline Toolbox.

Whereas more details are required, refer to [1; 2; 3; 4].

1.2 ASD Surface Generator

1.2.1 The Main Window

As soon as the program interface starts, the main window (fig.1.1) is brought on focus.
The main window is made up of 8 list boxes and a menu bar. The list boxes show
the features currently in memory, and allow the user to remove or modify existing
features or to add new ones. Double clicking on a feature opens the corresponding
modify window. In every list box feature are listed showing the feature tag and
ordered as they have been defined. The features that contain surface data are marked

[43

with a “ ==> 7 right before the tag. Every list box allows multiple selections. The
Generate selected and Mesh selected pushbuttons pass the selected surfaces to the
surface generation function and to the meshing tool respectively. It is to be noted
that only feature that contain surface data can be meshed. The View pushbutton

opens the Surface Viewer.

1.2.2 The Features and the Feature Windows

It is worth a note that only body, wing and inlet/outlet features are independent,
being the remaining features just connections. Each feature can be added and edited
through its own window, which appears selecting the Edit voice on the menu, or just

double-clicking on the feature.

1.2.3 The Body Feature

The Add/Modify Body interface enables to specify all the parameters involved in
the generation of a Body feature. The interface for this feature is shown in fig.

1.2. Using these parameters, the code generates a skeleton of the body and then

6



1.2— ASD Surface Generator

) ASD 1.0 - a310.asd AEE
File Edit Generate... Wiew Tools
— Body — Fillet
===2310 S ===fillet ala fus -
J B ===Fillet coda fuscliera J
i ; : ===Fillet fin fuzoliera
Generate selected... | Mesh selected. .. |
hd| ||
Wigns
— Wing —Wingbody—————————————— —Tfillet———————————
===glg - - -
===equilibratore J J J
===coda verticale
===""ngglet
[ | = [ |
— Bulk — Inlet/Ontlet ————— — Wround
Bl [ ==>Wround [
[ ] [ [ |
Status Text |

Figure 1.1: The ASD main window.

interpolates it using a bi-cubic NURBS. A scheme of the skeleton along with the
body lines is shown in the picture 1.3. The Tag field lets the user specify a tag for
the feature which will be stored along with all the parameters and will be shown in
the ASD main window list boxes. The Upper/Lower Section list box contains the list
of used body sections. Using the Add and Remowve pushbuttons the user can add or
remove body sections selecting appropriate .dat files. Next to each list box there is
the number of section files listed. The number of upper and lower sections must be
equal for the surface generator to work. The fields X0, YO, ZO are the coordinates
of the first section of the list. The coordinate system used in ASD has the positive
x-axis in the direction of the fuselage, starting from the nose, the positive y-axis is
directed spanwise from the fuselage toward the wing tip, while the positive z-axis is

normal to both x and y and directed upward. If YO is set to 0 the body is assumed
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1 — ASD: AERODYNAMIC SHAPE DESIGN

) Add/Modify Body A= E

Body Tag: I 2310
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Presieny... | Clear | Sawve | Cancel

Figure 1.2: The body feature window.

[0,p0,20]
=

to be on the symmetry plane and no other action is taken, otherwise the shape is
simmetrized on the plane y=Y0. The field Frame Spacing contains the x coordinates
of the body sections relative to X0. The fields Body lines are used to specify the
.dat file containing body lines data. The user can both browse for the file or input
the complete path. Pressing the Preview pushbutton will plot on a separate figure

a preview of the skeleton and of the resulting interpolated surface, as shown in fig.

1.4.



1.2— ASD Surface Generator

_ Side line  Center line
Top line

Boltom lins

T Control section
Bay I
Contraol section 2

Figure 1.3: Parameters involved in the definition of the body feature

Figure 1.4: Preview of the skeleton and resulting interpolated surface for a body feature.

1.2.4 The Wing Feature

The Add/Modify Wing interface lets to specify all the parameters involved in the
generation of a Wing feature. The interface for this feature is shown in fig.1.5.
Using these parameters the ASD code generates a skeleton of the wing which is

then interpolated with a linear-cubic NURBS where the linear direction is spanwise.
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1 — ASD: AERODYNAMIC SHAPE DESIGN

) Add/Modify Wing
Wing Tag: | equilbratore
Wing Airtoiks: i Wing Type: ree -
hACADD12
(2)
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w0 38 Yo ] 20: 18
Lambda [<0.p0.20)
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Alpha I oo oo pea -] 2
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' ¥

Preview .. Clear ‘ Save l Cancel I

FlaptSlat

Figure 1.5: The wing feature window.

Extmsion
lire

Figure 1.6: Wing components
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1.2— ASD Surface Generator

An example is shown in fig. 1.6. The Wing Airfoils list box contains the list of
used airfoils. Using the Add and Remove pushbutton the user can add or remove
airfoils selecting appropriate .dat file. The Add pushbutton opens a standard get
dir dialog which defaults on the standard UUIC AIRFOIL DATABASE directory.

Upon selecting a directory, the Airfoil Viewer window opens and lists all the airfoils

J Airfoil Viewer - C:\UNIVERSITA'\TESI\ASD_04_2006\LibWIUC AIRFOIL DAT... !.E

0.1
03

0
05

0 0.1 0.2 0.3 0.4 0.5 0.6 07 05 (IR] 1
— Calculated Airfoil attributes:

Camber = % Chord =
Thickness = % at x = Calculate Airfoil sttributes ... ‘
— Plot options
Airfoils in current directory (1169 " Origl:i:al
Poirts
ME4212 dat ﬂ " Original (Chorel f x axis)
MEAZ21 22, clat 7 Interpolated Cinesr distr. chord i x axiz) a0

MEA21 20E clat
™ Interpolated (cosing distr. chord 0« axiz)

— Airfoil Info
Airfoil Mame MACAZ411 dat

Original Paints (61

— File Info
File Mame :MACA2411 dat

File Size ;1647 bytes

Last Maodified : 03-mar-2005 19:08: 36

Figure 1.7: The Airfoil Viewer window

found in this directory (fig.1.7). The Airfoil Viewer enables the user to see origi-
nal points in the file selected, re-interpolated airfoil using an arbitrary number of
points. It also enables the user to calculate camber and maximum thickness of the

airfoil selected. All of the plot options act only on the visualization of the airfoil
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1 — ASD: AERODYNAMIC SHAPE DESIGN

on this window. The airfoil loader function loads the original set of points, clos-
es the trailing edge if found open, locates the leading edge, sets the chord parallel
to the x-axis and of unitary length and re-interpolates the points using a chord-
wise cosine distribution of 50 points. The same set of action is performed when the
Interpolated (cosine distr. chord // x axis) radiobutton is selected (see al-
so the Airfoil Generator and the Airfoil Manager sections). The popup Wing type
is used to select if the wing being created is to be freely placed, or is to be connected
with other wings. When the wing is free, the position and shape of the wing is
derived from the information of X0, YO, ZO, dihedron and sweep angle. If the
feature is linked to another wing then the last airfoil is linked to a spanwise section
of another wing. The user must thus specify which airfoil on the linking wing is to
be matched, along with the ID of the linked wing. This is used to constrain a wing

to follow the wing it is linked to. This feature is useful to define T-tails.

The X0, YO, ZO are the coordinates of the nose of the first airfoil on the list
(assumed to be the root airfoil). If YO is set to 0 and the dihedron angles are all 90°
or —90° then the wing is assumed to be on the symmetry plane, so only the upper

or lower side of the airfoil is considered.

The Ribs Spacing field contains the spanwise position of the airfoils relative to
the first airfoil. The Chords field contains the chords of the airfoils listed, Lambda
and Dihedron contain the sweep and the dihedron angle of the defined bays; Alpha,
Beta, Theta contain information on the rotation angle of the airfoils around the three

principal axes, x, y and z, respectively.

If the wing type is set to “linked”, then the Linked Wing ID popup menu is used
to select which wing is to be linked to. Obviously there must be some wing defined
to define a linked wing, as self referencing is not allowed. The Rib Link Spanwise
field is used to select the spanwise section position on the wing is to be linked to.
The user can make use of expressions involving other wing feature, as long as they
have been already defined, which are evaluated before saving the result. For example
the expression

wing(2).y0 + wing(2).ribs_spacing(2)
evaluates to the y position of the second airfoil of wing 2. Next to the field there is

12



1.2— ASD Surface Generator

a textbox where the result of evaluation is displayed.

Figure 1.8: The Preview wing feature

Pressing the Preview pushbutton will plot on a separate figure a preview of the
skeleton and of the resulting interpolated surface, as shown in fig.1.8

Every wing feature can have a variable number of control surfaces defined. They
are all listed in the Flap/Slat list box. Double-clicking on one of the listed features
opens the corresponding Add/Modify Mobile Surface window (fig.1.9.

Within the aim of this window, it is possible to generate mobile surfaces on a
wing, both on LE (slat) and TE (flap, aileron etc). The mobile surface must be
defined within one single bay. Parameters describing the mobile surface are the ribs
spacing, to set the spanwise position, the gap, which specifies the relative gap, in
percentage of the length of the mobile surface, to leave between the mobile surface
and the main wing surface, the chords, to set the chords at fist and last spanwise
section.

The mobile surface sectional geometry is created by a tool called Flap Sketcher
(section 1.4.4).

13



1 — ASD: AERODYNAMIC SHAPE DESIGN

4 Add/Modify mobile surfaces !EE

Tag | Equilibratore
ity Spacing 0& 12

Gap (%) 005

— Load

Surfaces
Flap/=lat.... |
flap_1 ;I

alettone dat loaded

[

— et

Ci I o7 Ci2 I o7
Laad m-lay |

ML _slettone dat loaded

ds dt |T

Save | Cancel |

Figure 1.9: The Add/Modify Mobile Surface window

Figure 1.10: Mobile surface deflection

Finally, a flap/slat motion law is stored in a plain text .dat, so that when selecting

a slat and flap deflection angle, the mobile surface configuration is properly achieved.
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1.2.5 The Bulk Feature

J Add/Modify Bulk BEE
Bulk Tag: | Paratia
— Upper wing
Upper Wing ﬁla Posteriore Baia 2 -
Bulk's upper aitfoil ’7 Add LIt
Uppeer wing control ine: 017 015
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Bulk's lower airfoil Aeld Q L Ciel lime (20
Lot wing cortrol ling: 017 015
Lovwver vWing Round Bay Intervals: 10 L
Previes Clear ‘ Save ‘ Cancel ‘

Figure 1.11: The bulk feature window

The bulk feature is specifically designed to link the two wing tips of a biplane

configuration as shown in fig.1.12. The bulk feature creates a connection element

Figure 1.12: A bulk example

between two wings, by smoothly transform one airfoil to the other, giving the user
the ability to select the bulk start and end airfoil. The airfoil transformation is linear
along the bulk midline (see fig.1.13).
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Figure 1.13: The bulk control parameters

The popup menu Upper Wing and Lower Wing are used to select which wing is to
be the start(end) wing. In the Bulks upper (lower) airfoil the user specify the airfoil
to be used for the upper (lower) end of the bulk feature. It can be selected using
the airfoil viewer. The Upper (Lower) Wing Control Line specify the vertical and
horizontal distance of the linear part of the bulk feature from the wing last airfoil.
Finally, the Upper(Lower) Wing Round Bay Intervals contains the number of sections
that have to be created along the round from the start wing to the beginning of the
linear part of the bulk. The minimum number is two. The intermediate airfoils are
created linearly spacing and morphing the first airfoils to the last one on the other
side of the bulk.

Pressing the Preview pushbutton will plot on a separate figure a preview of the
skeleton and of the resulting interpolated surface in dark transparent gray, and the

two wings that take part at the generation in light transparent gray, as shown in
fig.1.14

1.2.6 The Wingbody Feature

The WingBody feature is a wing-like surface to blend to a generic root section of

a wing. The result is a smoothly blended surface that extends the wing to the

16
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Figure 1.14: The Preview Bulk figure
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Previewy... Clear ‘ Save ‘ Cancel ‘

Figure 1.15: The wingbody feature window

section specified by the user using different options to control section smoothness
and generation. As a wing-like feature, it retains several definitions and parameters

typical of the Wing feature.

17
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The Add/Modify WingBody interface (fig.1.15) enables to specify all the param-
eters involved in the generation of a wingbody feature. The X0, YO, ZO are the
coordinates of the foremost point of the root section. The editable field Root Section
Name is used to specify the .dat file containing root section data. The file should
contain an airfoil-like set of bi-dimensional coordinates, with unit chord. The chord
of the root section is specified in the following field. The Beta and Dihedron editable
fields contain information on the rotation angle of the airfoils around the y axis and
the dihedron angle of the wingbody respectively.

The Linked to Wing and Linked Airfoil ID popup menu list all the wings currently
defined and lets the user select the one to which the wingbody feature is to be linked
to, and lets the user select which airfoil is the one the wingbody feature is to be linked
to. Finally, the LE Fillet Type and TFE Fillet Type popup menus allow the user to
control the type of leading edge and trailing edge connection. The two conditions
are independent and are linearly blended one into the other moving from the LE to

the TE. The 3 types of connections are:

1 z-der = 0 : the derivatives at the wing interface are preserved, thus preserving
the smoothness of the surface; the derivatives at the root section are the same

as the wing derivatives except for the z component which is set to zero;

2 z-der = 0, x-der = 0 : the derivatives at the wing interface are preserved, thus
preserving the smoothness of the surface; the derivatives at the root section
are the same as the wing derivatives except for the z and x component which

are set to zero.

3 Linear: all derivatives both on the wing interface and on the root section are

set equal to the vector connecting the two.

Fig. 1.16 and 1.17 clarify the connection modality.

1.2.7 The Inlet/Outlet Feature

The inlet/outlet feature is a body-like feature specifically designed to generate the

cavity of an inlet or outlet. The inlet/outlet surface is built by interpolation of a set

18
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(a) Type 1 on LE and TE. Front view (b) Type 1 on LE and TE. Top view

7 6 5 4 3 2

(¢) Type 2 on LE and TE. Front view (d) Type 1 on LE and TE. Top view

Figure 1.16: WingBody creation, type 1 (a) and (b), type 2 (c) and (d).

of frames. The interface gives the user the control over the spatial position of these
frames, allowing a quick and easy way to parametrically modify the surface. The
generation of the inlet/outlet feature also takes care of intersecting the feature with
the y = 0 coordinate plane and body, wing ,wingbody features. All other features

are not checked for intersection.

The Add/Modify Inlet/Outlet interface lets to specify all the parameters involved
in the generation of a the feature. Using these parameters, the code generates a

skeleton of the surface and then interpolates it using a bi-cubic NURBS. A scheme
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7 B 5 4 3 2

(a) Type 3 on LE and TE. Front view (b) Type 3 on LE and TE. Top view

=1

(¢) Type 1 on LE and type 3 on TE. Front  (d) Type 1 on LE and type 3 on TE. Top
view view

Figure 1.17: WingBody creation, type 3 (a) and (b), type 2 on leading edge and type 3 on
trailing edge (c) and (d).

of the skeleton along with the center line is shown in fig.1.19. The Section list box
contains the list of sections in use. Using the Add and Remove pushbuttons the
user can add or remove sections by selecting appropriate .dat files. The section files
are normalized plane shapes in the [—1,1] x [—1,1] domain. The actual shape of
the section is derived from these by applying the scale factor independently on each

semi-axis. (see fig.1.21).

The X0, Y0, Z0 fields represent the coordinates of the first section of the list.
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Figure 1.18: The inlet/outlet feature window

Figure 1.19: The inlet/outlet skeleton and center line

Unlike the body feature, the inlet/outlet always generates the complete surface of
the inlet, regardless of its relative position to the symmetry plane. The surface

generator function takes care of all the intersection both with the symmetry plane
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and the other features, and writes the inlet/outlet surface as a trimmed NURBS. The
Interpolated Sections field contains the number of extra sections the code has to add
between each pair of sections. The effect of this automatic adding feature is to force
the feature to follow the centerline without changing shape. In fig.1.20 the effect of
changing the number of interpolated section is clearly visible, being the red sections
the ones defined by the user, and the blue the ones added by the code. The Center

(a) Inlet/Outlet with extra sections (b) Inlet/Outlet without extra sections

Figure 1.20: Effect of the interpolated sections in the geometry of the Inlet/Outlet.

line editable field is used to specify the .dat file containing center line data. The
centerline does have a direction. Inside the code it is essential to know which side is
the one to keep in order to write trims properly. As a convention, the centerline is
supposed to start from the inside and going outside, so that in the case of an engine
inlet and outlet, the first section is the one on the engine face, for both the inlet and
the outlet. The center line has another peculiarity that the body lines do not have:
its defined by 3D points, thus allowing a single line to define a 3-dimensional path
for the feature.

The Section Scale Factors panel give access to the section scale factors. Since the
sections are defined in a normalized square [—1,1] x [—1,1] the scale factors give the
user the possibility to obtain very different shapes of section starting from a simple
.dat file. The scale factors must be specified for both axes and for both the positive

and negative semi-axis (fig.1.21).
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(a) Original section (b) Scaled section

Figure 1.21: Inlet/Outlet Section Scale Factors.

The Section Position panel groups together all the information about section
rotation and spacing. In the Section Rotation Mode the user select the mode of
rotation of the sections: the User mode requires the user to specify for every section
the 3 rotation angles around the 3 principal axes, the Norm mode require the user to
input only the x-rotation (the rotation of the section in its plane), while the other
two rotation are calculated automatically to keep the section plane normal to the
center line, the x mode requires the user to input only the x-rotation (the rotation
of the section in its plane), while the other two rotation are calculated automatically
to keep the section plane normal to x-axis line. The rotation angles are specified in
the X-rot, Y-rot, Z-rot editable fields.

Finally, in the Section Spacing field the x position of the center of the sections

relative to the center line are inserted.

1.2.8 The Fillet Feature

The fillet feature is used to create the fillet between a wing and a body. The Fillet
type field contains the type of fillet to create. If set to smooth then the fillet will be
a round type fillet tangent to the fuselage on the leading edge, and linearly rotating
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Figure 1.22: The inlet/outlet preview

) Add/Modify Fillet AEE

Il ey [ Fillet ala art fus
Fillet Type: Finear - I Piercing ving &irfoil 1D: art -
Piercing14ing - |aja Anteriore Inboard - | Pierced Body I Fusoliera_PRioD4 |

Chiardl Ratio: I 1 Thickness Ratio: I 1

[~ Advanced Fillet Cortrols

Clear | Save | Cancel |

Figure 1.23: The fillet feature window

into perpendicular intersection towards the trailing edge (fig.1.24). If set to linear,
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the fillet is just a linear blending surface from the wing to the surface.

T
,mmm'".':,'.',',',l.l'
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] derv Airfoil

der, Buody

Figure 1.24: Smooth fillet derivatives on wing and body

In the Piercing wing 1D/Pierced body ID the user selects which are the bodies
involved in the fillet creation. The Piercing wing airfoil ID is used to specify if the
fillet starts from the root or the tip airfoil. It is useful when creating double fuselage
configuration, where the fuselage is connected to the center wing by a fillet starting
from the tip of the middle wing. There are two ways to control the geometry of a
fillet feature: a basic and an advanced.

The basic controls strips down to only 2 parameters: a chord ratio and a thickness
ratio. If the advanced Fillet Controls checkbox is checked, advanced control
parameters are visible. With the Basic fillet parameters, the user directly controls
the dimension of the hole on the body, while its shape is controlled by the base wing
airfoil (fig.1.25).

With the Advanced fillet parameters, the user directly controls the dimension
and the shape of the hole on the body, by providing an auxiliary airfoil and its
position (fig.1.26). Both these methods affect the fillet creation by giving different
ways to locate the intersection points on the body surface. Once these points are
determined, the fillet creation follows the same path, by creating a smooth or linear

surface depending on the user selection. The Chord Ratio is a scaling parameter
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Figure 1.25: Creation of fillet with Basic controls

Lo
CLT
27
iy
Figure 1.26: Creation of fillet with Advanced controls

; wn

N

o7

Iy

27

£
s
[7 77

L7

LF

used to define an auxiliary airfoil to intersect with the body feature. This parameter

is the chord-wise scaling factor to be applied to the base wing airfoil to obtain the

new airfoil (fig.1.25).

The Thickness Ratio is a scaling parameter used to define an
26
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auxiliary airfoil to intersect with the body feature. This parameter is the thickness-
wise scaling factor to be applied to the base wing airfoil to obtain the new airfoil. In
the Advanced Fillet parameters the user is requested to set up the auxiliary airfoil
that defines the shape of the fillet. The fillet is indeed defined connecting the wing
to this auxiliary airfoil located according to these parameters. Figure 1.26 shows
the wing airfoil, the wing extension to intersect the fuselage, and the auxiliary bay
defined by the wing airfoil and the auxiliary airfoil. The result of the intersections
between this bay and the fuselage is the starting point to construct the fillet NURBS

surface.

Figure 1.27: Example of smooth and linear fillet on the same configuration.

1.2.9 The Ttillet Feature

The Tfillet feature is used to create the fillet between two wings and works as the
fillet feature, except that only the basic controls are available. The field T'Fillet type
contains the type of fillet to create. If set to smooth then the fillet will be a round
type fillet tangent to both wings, with a variable radius from the leading edge to
the trailing edge (fig. 1.29). If its set to linear, the fillet is just a linear blending

surface from the intersecting wing to the other.
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) Add/Modify TFillet HEE
TFillet Tag: | Fin cowen - Ala post
TFillet Type: ' inear - Fiercing vwing Airfoil I0: - -
Piercing Wing ID: r:in down j Pierced wing |D: IAIa Fosteriore Inboard j

Chard Ratio: 1 Thickneszs Ratio: 1

Clear ‘ Save ‘ Cancel ‘

Figure 1.28: The Tfillet feature window

—“:s»l:leru Airfail
—=der, Body
—:-clerv Airfail
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Figure 1.29: Smooth fillet derivatives on wing TFillet

The Piercing wing ID/Pierced wing ID specify which are the wings involved in
the fillet creation, and the Piercing wing airfoil ID distinguish if the fillet starts from
the root airfoil or the tip airfoil.

The chord ratio and thickness ratio are scaling parameters used to define an
auxiliary airfoil to intersect with the wing feature; they are respectively the chord-
wise and thickness-wise scaling factor to be applied to the base wing airfoil to obtain
the new airfoil (fig.1.30)
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Auxiliary airfoil definition and surface intersection

.
.

Figure 1.30

Figure 1.31: Smooth TFillet on T-tail configuration

10 The Wround Feature

1.2.

The wround feature is used to create a connection element between two wings, con-

necting their extreme airfoil with a smooth continuous surface. There is no control

over the shape of the wround, depending only on the position of the two airfoils
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) Add/Modify Wround !.n
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Figure 1.32: The Wround feature window

involved and the surface derivatives on them. To create a Wround feature at least
2 wings must be defined. In the Start Wing panel the user selects from a dropdown
menu the first wing and the airfoil to be connected to the second wing. The same
is done with the End Wing panel for the second wing. Pressing the Preview push-
button will plot on a separate figure a preview of the skeleton and of the resulting
interpolated surface in dark transparent gray, and the two wings that take part at

the generation in light transparent gray, as shown in fig.1.33.

1.2.11 Viewing the Results

Every surface generated is passed to the Surfaces Viewer window and is automatically
selected for plotting. The user can now select which features to plot and what kind

of plot to perform. The options are:

1. Render : the surfaces are rendered in different color depending on the type of

surface using a metal like look (fig.1.35).
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Figure 1.33: The wround feature window
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Figure 1.34: The Surface Viewer window

. Render Shaded : the surfaces are rendered in different color depending on the

type of surface using a metal-like look and a half transparent effect(fig. 1.36).

. Three Plane View: the surfaces are rendered in gray using a metal-like look

and displaced on the figure in 4 views, 3 principal plus an isometric view (fig.

31



1 — ASD: AERODYNAMIC SHAPE DESIGN

Figure 1.35: Surface Viewing: Render

Figure 1.36: Surface Viewing: Render Shaded

1.37).

By default the plots are not symmetrized, and the trim lines calculated during surface
generation are not shown. The user can turn on the symmetization or the trim lines
plot by clicking on the corresponding checkbox (see fig.1.34). However, only surfaces

are symmetrized, while trim lines are plotted only for the y > 0 plane.
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Figure 1.37: Surface Viewing: Three-Plane View

1.3 ASD Surface Mesher

From the ASD main window it is possible to launch the ASD Surface Mesher on the
selected features. Obviously the features selected must contain surface data. The
ASD Surface Mesher is a GUI designed to help the user manage all the parameters
and functions underlying the process of mesh generation. The ASD Surface Mesher
sub-function are specifically designed to generate triangular meshes with maximum
chord distance and maximum element size specified by user. The interface also
enables the user to perform different tasks on the mesh, ranging from Delaunay
flip to triangular-to-mixed mesh transform, plotting and analyzing meshes. In this
section only a brief illustration is given, for more details on the surface mesher refer
to [1], for more details on grid topics see also section 5.

The Mesh Data and Mesh stats panel (active only after a mesh has been ana-
lyzed) summarize the mesh properties. The mesh generation controls are grouped in
the Mesh Parameters panel. From this panel its possible to define and generate a

mesh. The Max Chord Distance parameter specifies the maximum distance from the
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Figure 1.38: ASD Surface MESHER, the interface window

real surface to the mesh (fig.1.39), whereas the Maz Element side length parameter

Max chord distance

Figure 1.39: Mesh parameters: max chord distance

specifies the maximum element side length. The Collapse Ratio can only assume

values greater than 0 and lower than 0.5. When the conform mesh box is checked
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the conform algorithm uses this value to decide whether to move a point on the
interface of two surfaces or to add a triangle. The ratio is the maximum value of
the ratio point_to_add_distance/segment_length that the user allows to move
points. Above that value a new triangle is added. This conform procedure is only
applied to the inlet/outlet and wingbody mesh creation, and will thus not affect all

other surface meshes.

Collapse ratio= 0.4
0.7L | 03L

Meshl / i , g

4
Mesh2 v

Collapse ratio= 0.1 /

Figure 1.40: Mesh parameters: collapse ratio

The ASD Surface Mesher meshes all the surfaces separately, then trims the meshes
created according to the trim lines calculated by ASD Surface Generator. The meshes
so created might not be correctly connected at the interface of two surfaces (see
fig.1.41). When correct mesh connection is desired the Conform Mesh box should
be checked.

When a mesh is calculated, all the surfaces are meshed independently. All these
partial meshes are stored inside the relative feature structure. At the end of the
meshing procedure, whether it has been conformed or not, all the partial meshes
are concatenated into one single mesh. Most of the following function work on this

mesh, few of them work on the element mesh.
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Figure 1.41: Non conform mesh and conform mesh

The Rebuild tri mesh function rebuilds the complete mesh starting from the mesh
contained into single features. This is useful to recover the original mesh.

The set of tools within Plot Option Panel are used to plot the full mesh, calculate
and plot the edges and plot the results of the mesh analysis. All these functions work
on the full mesh and do not modify it. The interface is similar to the one of the new
structured mesher (section 5.5) thus it won’t be reported here.

The Mesh Transform Panel groups all the mesh transform options. All the func-
tions inside this panel work on the complete mesh and only if the type is “tri”.
Triangular meshes are converted to mixed (quad-tri) meshes by recursively bonding
together two adjacent triangles which meet the requested characteristics. The control
parameters are the maximum angle between the triangles normal to allow union of
the two triangles into one quadrilateral element, and the maximum value of skewness
allowed for the resulting quadrilateral element. Finally, the Tri2mized button starts
the conversion, which modifies only the complete mesh.

The Tri Mesh Operations panel groups all the mesh operation options, which
are mesh analysis, to perform a mesh geometric analysis, mesh symmetrization, in
order to symmetrize the mesh taking care of normal reversing wherever needed, node
equivalence to perform a node equivalence based on the specified tolerance with the
intent of collapsing all the points that are closer, and mesh closure, to close open
meshes with a simple triangulation. The last function is useful to prepare meshes

for softwares that do not allow open surfaces.
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Figure 1.42: Tri-mesh operation: closure of a mesh.

The Mixed Mesh Operations panel groups all the mixed mesh operation options,
aimed to automatic LE and TE wake lines search. This functions are used when
preparing an input file for an aerodynamic panel method, where wake separation
lines must be specified into the code. And, finally Feature Operations panel groups
the Delaunay Flip, which perform a cycle of Delaunay flips in 3D space (if the Full
checkbox is selected the cycles are repeated until no flips are left), and the Align
Normal functions, which aligns the element normals according to the sign of the

global feature normal determined during surface generation.

1.4 The ASD tools

1.4.1 Airfoil Manager

Airfoil Manager is a graphical user interface (GUI) designed to manage airfoil databas-
es stored in .dat files. The interface is currently capable of reading a folder containing
the .dat files, displaying it in a listbox and plotting the selected airfoil along with the
information on the file and the airfoil. The interface can operate on plain coordinate
file as well as labeled coordinate files, as long as the points are stored starting from

the trailing edge and ending on the trailing edge itself.
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(a) Mesh before Delaunay flip (b) Mesh after Delaunay flip

Figure 1.43: Feature operations: full Delaunay flip.

The only section accessible by the user the Plot Option panel, where the user can
select if and how the airfoil must be interpolated and how many points must be used
for interpolation. This number is the same number the airfoil is saved, so it does
not only affect the quality of the plot, but also the quality of the exported airfoil
.dat file. The options are among the original airfoil coordinates as loaded from the
.dat file, the original airfoil coordinates with the chord forced parallel to the x axis,
the interpolated airfoil with linear distribution and cosine distribution. The editable

text box allows the user to set the number of points for the interpolated airfoil.

The airfoil attributes panel is used to estimate camber, thickness information
of the currently selected airfoil, based on the interpolated curve calculated on the
original points. There may be a little disagreement with the actual thickness and

camber values.

In the airfoil info panel are collected all the information regarding the selected

airfoil: the name and the number of points stored in the .dat file.
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Figure 1.44: Airfoil Manager GUI

1.4.2 NACA Airfoil Generator

NACA Airfoil Generator is a graphical user interface (GUI) designed to create NACA
4-digit and NACA 5-digit airfoil series.

The interface gives the user the capability to explore different airfoils by simul-
taneously plotting thickness distribution, camber line and the airfoil itself on two
graphical windows. The tool is currently capable of dealing with 4-digit and 5-digit
standard (non-modified) NACA airfoils such as, for example the NACA4415 or the
NACA23012 airfoil.

The user could only introduce the name of the airfoil and the number of points
to generate. This number is the same number the airfoil is saved, so it does not only
affect the quality of the plot, but also the quality of the exported airfoil .dat file.

The points are calculated every time the user changes any of the two editable texts,
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Figure 1.45: NACA Airfoil Generator GUI

and are distributed along the chord using a cosine-law. For equations of the NACA
4 or 5-digit series refer to [5].

1.4.3 Section Sketcher

The interface gives the user the capability to create a section with any shape, or to
explore a section in a database by plotting the section coordinates as stored in the
.dat file, on a graphical window. Finally, the interface includes a Save As command
to save the result as a plain coordinate .dat ASCII file.

The interface is very simple and consists of only one window. This window is
divided in a plot box where the section is shown along with the current parametriza-
tion, one modify box where the user can modify the section inserting, adding or
moving some control points, one visualization box where the users decide the rep-
resentation of the section, one zoom box containing the details about the zoom of
the file representation, one interpolation box where the user controls interpolation
parameter, one export box.

The simplify curve pushbutton causes the curve to be simplified. Recursively
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Figure 1.46: Section Sketcher GUI

all the points in the curve are checked if removable maintaining the curve into the
prescribed tolerance. The Redistribute points redistributes the interpolation points
of the NURBS uniformly in the parametric space. The number of points used in

redistribution process is set by the user in the dialog box.

1.4.4 Flap Sketcher

Flap Sketcher is a graphical user interface designed to help defining 2-dimensional
mobile curves on different airfoils by means of NURBS. The interface gives the user
the capability to create any Flap/Slat configuration starting from the base airfoil, or
to modify an existing configuration.

The idea is to create a description of the mobile surfaces that is, to some extent,
independent from the original airfoil it was created on. To achieve this, the mobile

surfaces are saved in a parametric format and automatically adjusted to the loaded
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Figure 1.47: Flap Sketcher GUI

airfoil.

The Flap/Slat creation process consists of 3 basic steps:

e select the base airfoil,

e draw the flap/slat lines using the sketch assist tools of the flap sketcher
e position the center of rotation of every surface.

In the first step, an airfoil is easily loaded by means of the menu. Once loaded the
airfoil is shown on both windows. The upper window shows the lines and should be
used to sketch, while the lower window shows the results of the operations. Besides
this, both windows can be used to enter points.

There are several methods to input the lines that define a flap/slat surface. Every
line added modifies the flap configuration and the result is displayed on the lower
window. There are 3 different types of lines, that differ essentially for the end

derivatives.
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The C' type line is tangent to the airfoil surface and both end derivatives point
towards the trailing edge. The first points to input are the ones on the airfoil border,
upper and lower, then all the points that define the line between these two. The
user can input an unlimited number of points in any order, but usually 3 to 5 are
sufficient. In the lower window the user sees the result of the splitting. If the free-
hand radiobutton is selected the user can freely input the points that define the line,
while if the arc of parabola radiobutton is selected the user must input only one

intermediate point, and the parabola arc will be automatically generated.
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Figure 1.48: Flap Sketcher: C type line

The S type line is tangent to the airfoil surface with the upper end derivative
pointing towards the trailing edge and the lower pointing towards the leading edge.
The process is identical to the C type line, however a cubic curve instead of an arc
of parabola is given.

The O type line is a closed line used to define those parts of the control surface
that completely lay inside the airfoil. To define these type of surfaces the user must
first provide the point that will be treated as a TE of the surface, then the one that
will be treated as the LE, then all the points on the left and finally the points on the

right. The sketch of this surface is currently only available in free-hand mode only.
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Figure 1.49: Flap Sketcher: S type line
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Figure 1.50: Flap Sketcher: O type line

To input the points is also available a coordinate mode, that asks the user to

manually input the coordinates of the points.

Every line added is given a default name and it is listed on the left of the window.

The program automatically creates the surfaces that are defined by the current lines,

starting from the LE to the first line, from the second line to the third line and so
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on.
To complete the flap/slat creation, all the movable surfaces must be assigned a
hinge point; this is achieved by selecting the point directly on the plotting window,

otherwise by entering the coordinates in a popup window.

1.5 ASD Limitations

ASD limitations are documented and reported in [1; 2]. However, different problems
arises during program utilization in conjunction with other softwares. In fact, when
exporting the surfaces generated from ASD to an IGES format, and then importing
this file with the multi platform CAE/CAD/CAM commercial software CATIA, or
other similar softwares, an unexpected difficulty occurs. Advanced softwares like
CATIA and Pro/ENGINEER, being oriented also to automotive and industrial de-
sign where the freeform surfaces should meet strict requirements to near perfect
aesthetical reflection quality, implement a severe surface analysis. As will be shown
in section 3.5, high quality surfaces require curvature and tangency alignment. On
the other hand, ASD geometrical engine relies on an interpolation surface algorithm
capable of generating surfaces with just tangency alignment. Thus, in the process
of importing an ASD generated surfaces, the advanced softwares recognizes the cur-
vature discontinuities, and splits the shape in a multitude of patches at the internal
whom also the curvature is continuous.

On the visual side, this inconvenient could be overcome, at least on CATIA, by
selecting the appropriate visualization filters (see fig.1.51 and 1.52). But, on the
practical side, this split process create a multitude of entities which not only slow
down the program, but cause the work to be impractical.

The most sever drawback arises when other programs import the CATIA or
Pro/ENGINEER configuration in order to do some operations, like grid generation.
A typical usage is the CATIA and GAMBIT pairing in order to create an high
quality mesh for an accurate CFD analysis with FLUENT software, for example.
When GAMBIT recognizes all the patches, the grid generation problem becomes

prohibitive. Further, the CFD postprocessing is cumbersome: to know the forces
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(b) Visualization option: shading with edge without smooth edges

Figure 1.51: A surface generated with ASD and imported with CATIA. Note the patch
subdivision.

acting on a wing, the patches should be merged. An optimization, which relies on
automation, is thus not possible for grid generation and CFD analysis processes.

To overcome this first limitation, modifications on the geometric engine are need-
ed. Referring to figure 1.53 and figure 1.54, the modifications should focus on the
NURBS subblock.

Other main ASD limitation is the inability to generate a structured grid. In order
to interface the grid generated from the internal mesher to a preliminary aerodynamic
analysis program, like a panel method code, some restrictions on the mesh should be
met. These programs, and in particulary Pan Air, require a structured grid as input

geometry.
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(a) Visualization option: shading with edges

(b) Visualization option: shading with edge without smooth edges

Figure 1.52: A surface generated with ASD and imported with CATIA. Note the patch
subdivision.

Thus, close to the actual mesher, fig.1.55, a structured mesher module should

join the grid generation process.
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Figure 1.53: Main decomposition of ASD code
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NURBS (Non Uniform Rational B-Spline)

Starting from a brief historical summary on CAGD (computer aided geometric de-
sign), this chapter deals with parametric forms. For the most important of them,
detailed mathematical model are reported, main characteristics are depicted, ben-
efit and drawbacks are analyzed; especially for NURBS (non uniform rational B-
Spline). Most outstanding algorithms aimed to NURBS manipulation are also briefly

presented. Lastly, a short treatise on continuity is provided.

2.1 A Brief Historical Survey

The earliest recorded use of curves in a manufacturing environment seems to go back
to early AD Roman times, for the purpose of shipbuilding. A ship’s ribs were pro-
duced based on templates which could be reused. Later Venetians perfectionate these
technique. Drawing became popular only in the 1600s in England, the classic spline
was probably invented then. This connection between drawing and manufacturing in
shipbuilding was the earliest use of constructive geometry to define free-form shapes.

Another keypoint originated in aeronautics, with Liming (NAA, North American
Aviation): he realized that to store a design in terms of numbers was more efficient
instead of manually traced curves. Thus he translated the classical drafting con-
structions into numerical algorithms. Liming’s work became very influential in the

1950s when it was adopted by U.S. aircraft companies.
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The turning point was the advent of numerical control in the 1950s: machining
of 3d shapes out of blocks of wood or steel became reality. Soon was found the need-
ing of adequate software, in terms of producing a computer compatible description
of shapes. The most promising description was found to be in terms of parametric
surfaces. At that time the theory of parametric surfaces was well understood in
differential geometry, but their potential for the representation of surfaces in a Com-
puter Aided Design (CAD) environment was not known at all. This exploration can
be viewed as the origin of Computer Aided Geometric Design (CAGD) *. Only large
corporations could afford the computers capable of performing the calculations, so
the developments were internal at each company and kept secrets.

In the 1960s-1980s one of the major contribution to CAGD development was the
work of of Bézier (at Renault), who defined a particular polynomial parametric form,
milestone for the subsequent development; this leads in 1971 to UNISURF, car body
design and tooling.

Stand-alone from Bézier’s work was mathematician de Casteljau activity at Cit-
roén. He adopted the use of Bernstein polynomials for his curve and surface defini-
tions from the very beginning, together with what is now known as the de Casteljau
algorithm; another of the breakthrough insight of his work was to use control poly-
gons, a technique that was never used before. After it was found that his parametric
curve is mathematically identical to Bézier’s one. His work was publicized only in
1967.

In the US, the development was linked mainly to the aerospace industry. Ferguson
(at Boeing) used piece cubic curves together so that they formed composite curves
which were overall twice differentiable; these curves, referred as spline curves could
easily interpolate to a set of points. The meaning of the term spline curve has since
undergone a subtle change. Instead of referring to curves that minimize certain
functionals, spline curves are now mostly thought of as piecewise polynomial (or
rational polynomial) curves with certain smoothness properties. Ferguson’s first

works was printed in 1964.

!This term was introduced by Barnhill and R. Riesenfeld in 1974, during the first famous
conference on that topic, at the University of Utah.
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Coons (MIT researcher and FORD consultant) developed the patch theory using
cubic piecewise polynomials in the Hermite form. Coons devised a simple formula
to fit a patch between any four arbitrary boundary curves. His famous report were
publicized in the 1967. Improvements about this topic (called transfinite interpo-
lation) were done by Gordon (at General Motors) who developed a generalization,

capable of interpolating a rectangular network of curves, and Gregory.

De Boor (at General Motors) was the first to introduce the tensor product surface.
He also was the first to use B-Splines (short for Basis Splines) as a tool for geometric
representation. The recursive evaluation of B-spline curves is due to him and is
now known as the de Boor algorithm: it is based on a recursion for B-splines. It
was this recursion that made B-splines a truly viable tool in CAGD. Before its
discovery, B-splines were defined using a tedious divided difference approach which

was numerically very unstable.

Spline functions are important in approximation theory, but in CAGD, para-
metric spline curves are much more important. These were introduced in 1974 by
Riesenfeld and Gordon who realized that de Boor’s recursive B-spline evaluation was
the natural generalization of the de Casteljau algorithm. B-spline curves include
Bézier curves as a proper subset and soon became a core technique of almost all
CAD systems. A first B-spline-to-Bézier conversion was found by W.Boehm. Sev-
eral algorithms were soon developed that simplified the mathematical treatment of

B-spline curves.

The generalization of B-spline curves to NURBS has become the standard curve
and surface form in the CAD/CAM industry. They offer a unified representation of
spline and conic geometries: every conic as well as every spline allows a piecewise
rational polynomial representation. The development at Boeing is exemplary for the
emergence of NURBS. The company realized that different departments employed
different kinds of geometry software; worse, those geometries were incompatible.
Thus NURBS were adopted as a standard since they would allow a unified geometry

representation. Companies such as Boeing, SDRC, or Unigraphics soon initiated
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making NURBS an IGES standard 2.
In the last twenty-thirty years the technological development brings CAD tools

area of application outside industry and brought them till inside the medium user

computer. Such a change hauled with him CAGD research and development.
Today in totally different from industrial areas arises typical geometric model-

ing problems. For example, subjects like geology, weather forecast, medicine are

concerned with surface fitting problems.

For a more detailed discussion about the history and the development of CAGD
refer to [6; 7].

2.2 Curve and Surface Basics

The two most common methods of representing curves and surfaces in geometric
modeling are implicit equations and parametric functions. Sometimes other rep-
resentations can be used (for example explicit representation), but the previously
mentioned are predominant in the academic, industrial and commercial world. For

more details refer to [7; 8; 9].

2.2.1 Implicit and Parametric Forms
Implicit Forms

In the implicit forms, one or two equation describes a relation between the spatial
coordinates of the points of the form. For an implicit surface: f(x,y,z) = 0. Every
form has his unique representation, a part for a multiplier constant. The description

of a curve in the three dimensional space is obtained as intersection of two implicit

surfaces: fi1(z,y,2) = fao(x,y,2) = 0.

2Initial Graphics Exchange Standard, developed to facilitate geometry data exchange between
different companies.

54



2.2— Curve and Surface Basics

Parametric Forms

In the parametric forms, each of the coordinates of a point is represented separately as
an explicit function of one or more independent parameters. For a surface: C'(u,v) =
(x(u,w),y(u,v),z(u,v)), with u and v being the two independent parameters: hence,
it is essentially a mapping of a domain D C R? in R? (usually the domain D is
normalized to [0 1] x [0 1] ). The description is not unique for a form. In the curve

case, the independent parameter is only one.

2.2.2 Advantages and Disadvantages

There is no answer to the question of which form is better. Every form can be more
appropriate, depending from the application. Anyway, a comparison follows about

capabilities and limits of the previously mentioned forms:

e The parametric form is more suited for simultaneous two and three dimension-
al representation: adding or removing third coordinate switches between the
cases. On the other hand implicit aren’t so flexible: a curve in two-dimensional
spaces is represented with an implicit equation, but the generalization to the
three dimensional space need adding, apart from the third coordinate, also

another implicit equation.

e [t is cumbersome to represent bounded curve segments or surface patches
with the implicit form. However, boundness is built into the parametric form
(through the bound of the parameter value). On the other implicit forms are

well suited for unbounded geometry; the opposite states for parametric forms

e Parametric form introduce a direction; for the curves the natural direction
should be defined concordant to the parameter. Hence, it is easy to generate
ordered sequences of point along a parametric curve, and meshes of points on

surfaces.

e The parametric form is more natural for designing and representing shape

in a computer. The coefficients of the most used parametric forms possess
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considerable geometric significance. This leads to an intuitive design method

and numerically stable algorithms with a distinctly geometric flavor.

e The complexity of many geometric operations depends greatly on the method
of representation. For example, to compute a point on a curve or surface is
difficult in the implicit form, but determine if a given point lies on the curve

or surface is difficult in the parametric form.

e Sometimes in the parametric form one must deal with anomalies, unrelated to
true geometry. A classic example is the unit sphere: here the parametric cal-
culations of the pole is critical, even if geometrically this points aren’t different

from the other points on the surface.

Since we are concerned almost exclusively with bounded surfaces, computer use and
the geometric insight of the coefficient is important, the parametric form will be the

preferred one.

2.2.3 Requirements for the parametric forms

In order to fulfill the CAD/CAE demands, a parametric representation should be
efficiently implemented on the computer, should allow the description of the geome-
tries of interest and should allow the local post-editing of part of that shape (that is
modify, after created, the shape in a specific point should not modify the rest of the
shape). In particular the choice would be restricted to the representation capable of

satisfying the following points:

1. ability to describe geometries like straight lines, continuous curves and piece-

wise curves, aerodynamic surfaces with mathematical accuracy
2. capability of easy processing in a computer contest, in particular:

(a) easy and efficient points and derivatives evaluation,
(b) calculation insensitivity to trunk and round-off errors,

(c) small memory allocation request for storage;

3. simplicity and mathematically well understood.
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2.2.4 Power Basis Form of a curve

A widely used class of functions is the polynomials. Although they satisfy the second
and third point of the previous list, they fail to represent precisely a number of im-
portant curves. There are two common methods of expressing polynomial functions,
the first is power basis (the other one is Bézier). A nth-degree power basis curve is

given by:
C(u) = [x(u),y(u),z(u)]" = Zaiui with 0<u<1 (2.1)

where a; are vectors, u the parameter. In matrix form it holds:
C(u) = [A] - [u] = [a;]" [u] (2.2)

3...]T are the basis functions. The

where A =[ay a; ... a,] and v’ = [1,u, v u

power basis form has the following disadvantages:

e is not well suited with interactive shape design; the coefficients a; carry very

little geometric insight about the shape of the curve;

e the algorithms for processing power basis (e.g., Horner’s method [8]) are alge-

braic rather than geometric oriented;

e the algorithms are prone to round-off error if the coefficients vary greatly in

magnitude.

2.2.5 Bézier Curves

The Bézier curves were developed independently by Bézier (at Renault) and de
Casteljau (at Citroén). From a mathematical point of view they are exactly the
same as power basis, but they remedy the latter’s shortcomings. A nth-degree Bézier

curve is defined by

C(u) =) Bin(u)P; with 0<u<1 (2.3)
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where P;, the geometric coefficients, are the control points, and B, ,,(u), the basis (or

blending) functions, are the classical nth-degree Bernstein polynomials, given by:

Bi(u) = MLLZ)' ul (1 — ) (2.4)

The union of the control points is called control polygon. In addition Bézier curves

Control

Polygon Control

Polygon

Figure 2.1: Two examples of cubic Bézier curves.

are invariant under the usual transformations such as rotations, translations and
scalings; that is, one applies the transformation to the curve by applying it to the
control polygon.

In any representation scheme, the choice of the basis functions determines the

geometric characteristics. These functions have these properties:
P.1.1 nonnegativity: B;,(u) > 0 for all i,n and 0 < u < 1;
P.1.2 partition of unity: > . B;,(u) =1 for all 0 < u < 1;

P.1.3 By,(0) = B,.(1) = 1;

P.1.4 B;,(u) attains exactly one maximum on the interval [0,1], exactly at u =

.
n ?

P.1.5 symmetry: the set of polynomials B, (u) is symmetric with respect to u = 2

N
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Figure 2.2: The Bernstein polynomials

P.1.6 recursive definition: B;,(u) = (1 — u)B;,—1(u) + uBi—1p-1(u); if ¢ < 0 or
i > n then it is set B;,(u) =0 ;

P.1.7 derivatives:
dBi,n

Bin(u) = du

in =n(Bi-1n-1(u) = Bin-1(u)) (2.5)
with

B_Ln_l(u) = an_l(ll,) =0

The sixth properties yields simple and efficient algorithm to compute values of the
Bernstein polynomials at fixed values of u. Combining the above mentioned linear

interpolation and the Bézier mathematical definition (eq.(2.3)), fixing u = uy and
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Figure 2.3: The recursive definition of the Bernstein polynomial, By 3

u=1/3

Figure 2.4: Evaluation of a point at u = % with repeated linear interpolation, i.e. deCasteljau
algorithm

denoting P; by P, yields the deCasteljau Algorithm :

Pkﬂ'(Uo) = (1 — Uo) Pkfl,i(UO) “+ U Pkfl’lqu (UO) for ) o (26)
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This is a corner cutting process, as shown in fig.2.4.

Bl,3 B
82,3 3,3
0
BO,S
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u

Figure 2.5: Derivatives: (a) the derivatives of the cubic Bernstein polynomials; (b) the derivative
Bj 5 in terms of By and By o

Using property seven:

) — i OBM ZB
N (2.7)
—n Z Bip1(u)(Pip1 — Py)

and

C/<O) = TL(Pl — Po) C//(O) = n(n — 1)(P0 — 2P1 + PQ)

(2.8)
C'(1)=n(P,—P,y) C"(1)=n(n—1)(P, —2P,_, + P,_,)

That is, from eq.(2.7) and eq.(2.8)

e the derivative of an nth-degree Bézier curve is an (n-1)th-degree Bézier curve;

e the expressions for the end derivatives are symmetric (this is a consequence of

symmetry of the blending functions);

e the kth derivative at an endpoint depends only on the k+1 control points at
that end.
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As a polynomial, even the Bézier form can’t represent precisely some geometric
shapes, e.g., circles, hyperbolas, ellipses, cylinders, cones, spheres. This limitation
is overcome using rational basis functions, which yields to the definition of Rational
Bézier forms. For more detail refer to [7; 8]. Anyway, conceptually is the same as

for B-Splines and Rational B-Splines, section(2.4).

2.2.6 Tensor Product Surfaces

The curve C(u) is a vector valued function of one parameter. It is a mapping of
straight line into Euclidean three dimensional space. A surface is a vector valued
function of two parameters and represent a mapping of a region, R, of the u v plane
(with u and v being the two parameters) into Euclidean three dimensional space.
There are many schemes for representing surfaces. The most simple, and the one
most widely used in geometric modeling applications, is the tensor product scheme. A
drawback is the inability to model complex topologies, problem overcome with other
techniques (triangular patches, n-sided patches, hierarchical approaches ...). This
scheme is the unique used in the present work. The tensor product surfaces were
first investigated from de Casteljau, even if the popularity of this type of surfaces is
due to work of Bézier. Initially Bézier patches were only used to approximate a given
surface. Later it was found that any B-Spline surface can be written in piecewise
Bézier form (patches). This method is basically a bidirectional curve scheme. It
uses basis functions and geometric coefficients. The basis functions are bivariate
functions of  and v, which are constructed as products of univariate basis functions.
The geometric coefficients are arranged (topologically) in a bidirectional, n x m net.

Thus, a tensor product surface has the following form:

S(U,U) - (ZL‘(U,U), y(”?”)? Z(“?“)) - Z ZfZ(u) gj<v) bi,j
B (2.9)
b;; = (xz',ja Yijgs Zi,j)

0<u,v<1

where
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The domain (u,v) of the mapping is a square (a rectangle, in general), that’s why

the tensor product surfaces can be also called rectangular patches. The matrix form:

S(u.v) = [fi(w)]" [biy] [g;(v)] (2.10)

with [f;(u)]” being a (1) x (n+1) row vector, [g;(v)] a (m +1) x (1) column vector,
[b;;] a (n+1) x (m + 1) matrix of three dimensional points. Fixing one parameter,

for example u = uy:

Cuy(v) = S(ugv) = Y (Z bi,jfi(uo)> i) = cj(un)g;(v)

7=0 \i=0 7=0 (2.11)
where c;j(ug) = Zbi,jfi(uo)
i=0

C,, is a curve, lying on the surface S, and is called isoparametric curve.

Gy, (v) 5(1,1)

2 S(1,0)

(’Uo, ‘Uo)

———

Figure 2.6: A tensor product surface showing isoparametric curves (from [8])

The Bézier surfaces are obtained by taking a bidirectional net of control points

and products of the univariate Bernstein polynomials:

S(u,v) => Y Bin(u) Bjm(v) Py 0<up <1 (2.12)

i=0 j=0
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Fixing u = ug leads to a Bézier curve lying on the surface.

By 2(w)

S
.Q'Q SR
R
o
R

Cuo(v) = S(ug,v) = Z B (o) Bjm(v) Pij
=0 j=0
= Z B],m(v) Bl,n(”O) Pz,]
e (2.13)
=2 Bim(v) Qj(uo)
7=0
where Qj(UO) = Z Bm(uo) Pi,j j = 0, .o,
=0

Since the basis functions remain the same, Bézier curve properties transfer to surface.
Also the deCasteljau algorithm can be easily extended to compute points on a Bézier
surface. Fixing ug,v9, and applying deCasteljau algorithm to the j, row of control
points, i.e. to P;;, with i =0, ...,n, creates the points Q;,(ug). Therefore, applying
deCasteljau Algorithm (m+-1) times yields C,,(v). Then, applying it again to C,,(v)

with v = vy yields C,,(vg) = S(ug,vp). This process requires

nn+1)(m+1) N m(m + 1)

; 3 (2.14)
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2.3— B-Splines

Figure 2.8: Bézier surface: note that the Q; (eq.(2.13)) don’t lie on the surface.

linear interpolations. By symmetry, computing C,, (u) first and then C,,(ug) =

S(ug,vo) requires
m(m+1)(n+1) n(n+1)
2 * 2

linear interpolations. As a consequence is more economical to compute first C,,(u)

(2.15)

or C,,(v) depending which one between n and m is larger. More about surfaces will
be analyzed in sections 2.3.4 and 2.4.2. However for a detailed treatise on surfaces,

even with generic topology, refer to [7].

2.3 B-Splines

There are different way to treat B-splines, due their historical different development.
In fact B-splines were first investigated in the statistical an probability field (since
1940s). After de Boor, Cox and Mansfield independently discover the recurrence

relation. It was this recursion that made B-splines a truly viable tool in CAGD.
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Before its discovery, B-splines were defined using a tedious divided difference ap-
proach which was numerically very unstable. An important step was the parametric
use of B-splines, 1974 by Riesenfeld and Gordon who realized that de Boor’s recur-
sive B-spline evaluation was the natural generalization of the deCasteljau algorithm.
B-spline curves include Bézier curves as a proper subset and soon became a core tech-
nique of almost all CAD systems. A first B-spline-to-Bézier conversion was found by
W.Boehm. Several algorithms were soon developed that simplified the mathemat-
ical treatment of B-spline curves; these include Boehm’s knot insertion algorithm,
the Oslo algorithm by Cohen, Lyche, and Riesenfeld, and the introduction of the
blossoming principle by Ramshaw and deCasteljau [7; 8].

The adopted approached here is the classic de Boor one, yet probably not the

easiest to understand but surely with the most computing oriented flavor.

2.3.1 Shortcoming of polynomial and Bézier forms

The shortcomings of curves of just one polynomial or rational segment are:

e a high degree is required in order to satisfy a large number of constraints: a
Bézier curve interpolating n points should be of n — 1 degree. High degrees

leads to inefficiency and numerical instability;
e complex shapes require high degrees;

e a powerful interactive shape design requires local control which is not suffi-

ciently achieved with single-segment curves (surfaces), even Bézier.

The natural solution is to piece together many segments obtaining a piecewise poly-
nomial or piecewise rational polynomial, as depicted in fig.2.9. However the quality

of this forms is not satisfying since:

e they show a lack of efficiency (storing more coefficients than required, think at

the coincident points)
e little flexibility in control point positioning while maintaining continuity
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2.3— B-Splines

Figure 2.9: A piecewise cubic polynomial curve with three segments represented in Bézier form

e many computations are needed for determining the continuity of the geometric

shape

What one is looking for is, in the case of a univariate shape, a curve representation

of the form

Clu) =D filw) P; (2.16)

where P; are control points, and f; are generic piecewise polynomial functions forming
a basis for the vector space of all piecewise polynomial functions of the desired degree
and continuity. Here continuity is a matter of only the basis functions. Furthermore
the blending functions should have all the previous seen analytic properties, which

will transfer to nice geometric properties.

2.3.2 B-Spline Basis Functions

Let U = (up, - - . ,u,) be a nondecreasing sequence of real numbers (u; < u;yq, @ =
0,...,m—1). The u; are the knots , U is the knot vector. The i-th basis function of
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p—degree, denoted by N;,(u), is recursively defined as :

1 it u; <u<wigg

NZ'70(U) =
0 otherwise (2.17)
U — Uy Ujppt1 — U
N;,(u) = — N;,_1(u) + ———— N1 1,-1(u
7p( ) Uity — Ui P 1( ) Uipi1 — Uit +1,p 1( )

The half-open interval [u;,u;41) is called the ith knot span; it can have zero length
since knots need not be distinct. A few basis functions are shown in fig.(2.10) for

different degrees and knot vectors. Is important to notice that:
e N, is a step function, zero everywhere except on the ith knot span;
e N, is a linear combination of two (p — 1)-degree basis (fig.(2.11));
o if the eq.(2.17) yields the quotient %, then his value will be set to zero;

e the computation of the generic N;, passes through the computation of zero-
th degree basis from N, to N;i,0. It generates a truncated triangular table,
shown in fig.(2.12).

Even if the basis function are defined on the whole real line, generally only the knot

vector interval [ug u,,] is of interest. The blending functions’ properties are:

P.2.1 Local support: Nj,(u) = 0 if u is outside the interval [u;,u;+pt1). For a proof

look at the triangular scheme of fig.2.12.

P.2.2 In a given knot span [u;,u;1] at most p+1 of the IV;,, are nonzero, namely the

functions N;_j, ,,...,N;,. Again refer to the mentioned scheme for a proof.
P.2.3 Non negativity: N;, > 0 for every p, < and w.
P.2.4 Partition of unity: for an arbitrary knot span AU = [u;,u;41] it holds:
> Njyw=1 VYue AU
Jj=i—p
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2.3— B-Splines

p=5 U=1[0,0,0,0,0,0,1,2,3,4,5,6,7,7,7,7,7,7]

Figure 2.10: Non zero basis functions for different degrees and knot vectors

P.2.5 All derivatives of NNV;, exist in the interior region of a knot span. At a knot,
the basis function is p — k times continuously differentiable, where k is the

multiplicity of the knot.

P.2.6 A part from p = 0 (zeroth degree basis), INV;, attains exactly one maximum
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(Ujps — u) (u—u;)
(tita — uit1) (Witrs — u;)

u
i i+1 Uiro Uirs i+4

Figure 2.11: The recursive definition of B-spline basis: N; 3 obtained as linear interpolation of
N; 2 and Nijiq2

No.o
No,1
N1 No 2
h N
N
/ 1,1\ / 0,3
N2~0 N1,2
7
N2,l N113
N
Ns,o Nz,z
DU
N3,1 N2,3
~ ~ .. 7
N4,o N3,2
N
Ny N3,3

Figure 2.12: Dependencies between the basis functions

value.

Once the degree is fixed the knot vector completely determines the basis N;,. In

literature there are more than one kind of knot vectors. The non periodic (or clamped,
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2.3— B-Splines

or open) knot vectors have the following form:

U={a,...,a,Upi1,- . Um—p,b,....b} (2.18)

p+1 p+1

in simple words, the first and last knots have multiplicity p + 1. As will be shown
in the next section, the use of repeated knots ensures that the end points of the
spline coincide with the end points of the control polygon. This representation
is the most used in the CAGD, and will be implicitly assumed in the rest of the
dissertation®. Additionally a knot vector is uniform if all interior knots are equally
spaced, otherwise it is monuniform. For a nonperiodic knot vectors there are two

additional properties of the basis functions:
P.2.7 A knot vector of the form

U=1{0,...0,1,...,1}
—— N —
p+1 p+1
yields the Bernstein polynomials of the same degree p.

P.2.8 If the number of knots is m + 1, then there are n + 1 basis functions, where
n=m-—p—1; Nyyla)=N,,(b) =1.

Derivatives of the basis functions

The derivative of a basis function is

N = L Nipoaw) = ——L Ny (w) (2.19)

i7p - y
Ujpp — UL Uitp+1 — Uil

The derivative expression, like eq.(2.17), leave space for recursive definition; an

examples is depicted in fig.2.14.

3is important to point out that the algorithms still hold, with small modifications, in case of

periodic or unclamped knot vector
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Basis functionsNip p=3 U=[0,0,0,0,1,2,3,4,4,4,4]

Derivatives N’ ip

Figure 2.13: Cubic basis functions and corresponding derivatives

The repeated differentiation leads to the general formula

A= A GD
N(k) ('U,) _ p ( i,p—1 . i+1,p—1 (220)

l?p
Uitp — WUy Ujqp+1 — Uy

Another expression, giving the kth derivative of N; ,(u) in terms of kth derivative of

Ni,p—l and Ni+17p—1 1S

L,p p— k Uity — U t,p—1 Uiypi1 — Uiyl i+1,p—1 ( )

Effects of multiple knots

Is important to understand the effect of multiple knots. Recalling property P.2.5

of the basis functions, let’s take a deeper look with an easy but straightforwarding
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2.3— B-Splines

Figure 2.14: The recursive definition of B-spline derivatives: N5 as combination of N;o and
Nit1,2

example. Let’s assume there is just a double interior knot, v; = wu;. ;. From the
recursive basis definition (eq.2.17) it follows that the basis function NN, is set to
zero, thus N;_;; reaches the unity at his end and NN;; starts from the unity. The
second degree basis function, NV;_; 5 (which has the double knot inside his support)
is the linear interpolation of N;_1; and N;; (look at fig.2.15). From eq.(2.19), his
derivative is also a combination of N;_; ; and N; ;. It’s easy to ascertain, with the aid
of the aforementioned equation, that the right and left limits for u — w; are different,
and thus the function is not differentiable for u = u;. Hence, a p-order basis function

is p — k times differentiable at u = u;, with k being the knot multiplicity.

Another effect of multiple knots is to reduce the extension of the interval on which
a basis function is nonzero. The implication will be more clear in the next section,
when dealing with curves. On the geometric side, the basis functions involved with
multiple knots will have a smaller support, look more distorted, like leaning toward

the interested knots, and look less smooth.
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=1 u=u
P 0 p U,
1

=2 U =u u. u. =

p . o~ Y% i-2 i-1 U=u., i+2
N.
N i-3,3 i-2,3 N i-1,3 N N
i3 i+l,3

=3 u,=u =

P 0o p Ui Uiy U=ty 2

Figure 2.15: B-spline basis functions on a knot vector with a knot of multiplicity 2

2.3.3 B-Spline Curves

A p-th degree B-spline curve is defined by
Clu) =) Niy(wP; u € [a} (2.22)
i=0

where P; are the n control points and N;, are the previously defined pth-degree basis

functions, defined on the nonperiodic knot vector:
U=A{a,...,a Upt1,... Um—p-1,b,...,b}
—— N——
p+1 p+1

Unless otherwise stated, the knot vector amplitude is normalized to the unity, i.e.
a =0and b = 1. Much of the B-spline curve properties arises from the basis

function properties:

P31 Ifn=pand U ={0,...,0,1...,1}, then C(u) is a Bézier curve.
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Ps

Figure 2.16: Cubic basis function over the knot vector U = {0,0,0,0,%,%,%,l,l,l,l}, and
associated cubic curve with control points P;.

P.3.2 1t yields the relation m = n 4 p 4+ 1 which relates the knots and control point

numbers and the degree.

P.3.3 The curve interpolates the control polygon endpoints, that is C(0) = Py and
c) =P,

P.3.4 Any affine transformation is applied to the curve by applying it to the control

points (it follows from the partition of unit property of the basis functions).

P.3.5 Strong convex hull property: the curve is contained in the convex hull of its
control polygon. If u € [u;, u;t1), with p <i <m —p— 1 then C(u) is in the

convex hull of the control points P;_,, ... ,P;, due to properties from P.2.2 to
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u,_=u

Figure 2.17: Fifth degree basis function over the knot vector
U:{0,0,0,0,0,0,%,%,%,%,%%,1,1,1,1,1,1}, and associated fifth degree B-spline

curve with control points P;.

P.2.4 of the basis functions. This property has practical application in many

contests, like form manipulation, intersection etc.

P.3.6 Local modification scheme: moving a generic control point P; changes the curve
C(u) only in the interval [u;,u;4,+1) (fig.2.18). This is a direct consequence of

the local support of the basis function N, ,(u).

P.3.7 The control polygon represent a piecewise linear approximation to the curve;

as a general rule, the lower the degree the closer the curve follows its control

polygon.

P.3.8 The basis functions act likes switches in the movement along the curve from
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Figure 2.18: Cubic curve on U = {0,0,0,0,4,3,2,1,1,1,1}. Moving P; changes the curve in the
interval [w;,Uiqpt1].

u =0 to u = 1; as v moves past a knot u;, N;_,, switches off (and so does the

associated control point P;_,) and N, switches on.

P.3.9 Variation diminishing property: no plane has more intersections with the curve

than with his control polygon.

P.3.10 The continuity and differentiability of C(u) follow from that of the V;, (since
C(u) is just a linear combination of the N;,). Thus, C(u) is infinitely differen-
tiable in the interior of knots interval, and is at least p — k times continuously
differentiable at a knot of multiplicity %k (fig.2.19). Anyway, sometimes even
discontinuous functions can be combined in such way that the result is continu-
ous, therefore a proper control point configuration can lead to continuity order

higher than the one following from the basis functions, as shown in fig.2.20.

P.3.11 It is possible and sometimes useful to use multiple control points.
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Figure 2.19: Quadratic curve on U = {070,0,%7%,1—72,%,%7171,1}. Notice the cusp at u = us = ug

Figure 2.20: Cubic curve on U = {0,0,0,%,%,%,l—g,%,l,l,l}. Even if the knot us has multiplicity

two, there aren’t any cusps at u = us = ug

Derivatives of a B-spline curve

From eq.(2.22) it follows
CHw) =S N )P, (2.23)
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Manipulating the last equation, with the aid of eq.(2.19), yields to a recursive scheme,

particulary suited for computational purposes:

n—k
CH(u) = > Nip i(u) P
=0
2.24
with P = k]
_pohtE (Pgﬁ;” _ ng*U) k>0
Uitp+1 — Witk
The first order derivative is:
P, —P;
= (2.25)

n—1
C(u)=>» Ni1p1(u)Q;  where Q=p————
()= 3 Nonpa()Q Q-p
Let U’ be the knot vector obtained from U dropping the first and last knot

U/ — {0, . ,0 yUpt+1s - - - s Um—p—1, 1, c. ,].}

p p

The function Njiq,_; computed on U is equal to N; ,_; computed on U’, thus:

C/<'LL> = Ni7p,1(U)Qz (226)
=0
Hence, C' is a (p — 1)th-degree B-spline curve.
The endpoints first derivatives of a B-spline curve are given by
/ p

C(O)—Qozu (Pl—Po)
SR (2.27)

C/(l) anl = 1 (Pn Pnfl)

— Um—p—1

Equation (2.27) has a noticeable geometric interpretation: the derivative at the

endpoints is the vector joining the two end control points, in the increasing sense.
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Figure 2.21: Cubic curve on U = {0,0,0,0, 1,
spline on knot vector U = {0,0,0
eq.(2.25).

b

%, %,1,1,1,1}. First derivative is a quadratic B-
I3 %,1,1,1} with control points @; defined as in

The second derivative at endpoints :

—1 P P P

Cc®(0) = pp—1) ( o (Upi1 + Upy2) Py 4 =2 ) (2.28)

Up+1 Up+1 Up+1Up+2 Up+2

-1
c@qy = =1
L=ty (2.29)
< Pn N (2 — Um—p-1 — um—p—Z)Pn—l + Pn—2 ) '
L= tmp (1 = tm—p-1)(1 = tp—p-2) L= tpp2
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C (1)

Figure 2.22: A cubic curve on U = {0,0,0,04,3,3.1,1,1,1} and his first and second derivatives

at endpoints, and at v = 0.4 (the first derivatives are scaled of a ten factor, the
second of a twenty factor).

2.3.4 B-Spline Surfaces

Given a bidirectional net of control points, two knot vectors and the associated

univariate B-spline functions, a B-spline surface is defined by:

S(uw) = ‘ > Nip(u)Nj4(v) P (2.30)
with

U= {0,...,O,up+1,...,u,,_p_1,1,...,1}
p+1 p+1
V={0,...,0,0441, - Us—g-1,1,...,1}
N—— N——

q+1 q+1

U and V are the knot vectors, and have respectively r+1 and s+1 knots. Extending
property P3.3 of B-Spline curves (section 2.3.3) yields to: » = n+p+1 and s =
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m + q + 1. Using the matrix form yields to:

S(u.0) = [Nip(w)]" [Pry] [Nig(v)] (2.31)

Tensor product basis functions

The tensor product (or bivariate) basis functions properties arises from the corre-

sponding properties of the univariate basis functions (listed in section 2.3.2):
P.4.1 Nonnegativity: N;,(u) N;,(v) > 0 for all 4, 5, p, ¢, u, v.
P.4.2 Partition of unity: » ;"> "% o Nip(u)Njg(v) =1 for all (u,0) € [0,1] x [0,1].

P.4.3 The functions degenerate to products of Bernstein polynomials of the same de-
ree, that is, N;,(u) N;.(v) = B;,(u) B;,(v) forall 4,5 ,ift U ={0,...,0,1,...,1
8 p(1) Njg(v) »(1) Bjg(v) J { }

p+1 p+1

and V ={0,...,0,1,...,1}.
—— ——

q+1 q+1

P.4.4 Local support: N;,(u) Nj,(v) =0 if (u,v) is outside [w;,ti1pr1) X [Uj,0j14+1)-

P.4.5 In any domain [u;,,u;, + 1) X [vj,,05, + 1) at most (p+ 1)(g+ 1) basis functions

are nonzero, in particular the N; , N;, for ig —p < i <ip and jo — ¢ < 7 < Jo.
P.4.6 If p,q > 0 then N, , N;, attains exactly one maximum.

P.4.7 In the interior region of every domain defined by u and v knot lines, all the
partial derivatives of N;, N;, exist; at a u(v) knot it is p — k(¢ — k) times

differentiable with respect to u(v), where k is the knot multiplicity.

B-spline surfaces

Again, the B-spline surfaces properties arises from the basis function properties:

P.5.1 Any surface defined over the knot vectors depicted in basis functions property

P.4.3 is a Bézier surface.
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Asse Z

(a) Nuz(u) Na2(v)

Figure 2.23: Cubic x quadratic basis functions. Uu = {0,0,0,0,%,%,%,1,1,1,1},

P.5.2

P.5.3

P5.4

P.5.5

P.5.6

V= {050707 %7 %7 %7171a1}

Due to property P.4.2, the surface interpolates the four corner control points:
S(0,0) =Py, S(1,0) = P, 0,5(0,1) = Py,,,,S(1,1) =P, ,,

Affine invariance: an affine transformation is applied to the surface by applying

it to the control points; this follows from P.4.2.

Strong convex hull property: if (u,v) € [wi,Uig+1] X [Vj,Vjo+1], then S(u,v) is in
the convex hull of the control points P; ;, o —p < ¢ <ip and jo — ¢ < j < jo;
this follow from P.4.1, P.4.2, P.4.5.

Triangulation of the control net forms a piecewise planar approximation to the
surface. As for the curves, the lower the degree the better the approximation
(see P.3.7).

Local modification scheme: movement of the control point P;; affects the
surface only in the rectangle [u;,uiyp11) X [Uj,0j44+1); this is a consequence of

property local support of the basis functions (P.4.4).
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P.5.7 Continuity and differentiability: follows from that of the basis functions. That
is, S(u,v) is p — k (¢ — k) times differentiable in the u (v) direction at a u (v)
knot of multiplicity k. Again, as for the curves, it is possible to position the
control points in such a way to overcome the effect of discontinuities of the

basis functions. It is also possible to use multiple coincident control points.

Unlike univariate case, there is no known variation diminishing property for B-spline

surfaces.

Fixed u = ug the respective v-isoparametric curve on S(u,v) has the following

expression:

Cup(v) = S(ug,v) = Z <ZN,p up) w) ZNM v)Q;(uo)

where  Qj(ug) = > Nip(uo) Py

=0

(2.32)

In fig.2.24 a B-spline surface with the control polygon is shown.

Derivatives of a B-spline surface

The derivatives are obtained computing derivatives of the basis functions.

ak—i—l n

S S SONSING (2.33)

=0 7=0

Formally differentiating S(u,v) and using eq.(2.26) yields to:

—_

S.(u,v) =

7

1,0
Nip—1(u) Njq(v) Pz(,j ) (2.34)
=0

J

I
=)
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Figure 2.24: A B-spline surface and its control net (in red). Note the isoparametric curves on
the surface.

where

Pij1; —Pij
Uitpt+1 — Uit
1
U( ) — {O, e ,0 ,Up+1, .. 7ur—p—17 1, e ,1}
S~—— ——

p p

VO =v

In a symmetrical way:

n—1 m
S, (u,w) = N (1) Nj gt (0) POV (2.35)

i?j
J=0

]

Il
=)
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where

Pijri — Py

Ujt+q+1 — Ujt1

pOt —

1,7 -
v =u

V(l) = {0, R ,O yUg+1y -+ - Us—g—1, 17 te 71}

q q

Applying first eq.(2.34), then eq.(2.35) yields

where

(1,0) (1,0)
1) quH P

Ujt+qt+1 = U+l
The general formula is given from

ak_H n—k m—I

= (k1)
FragiS@0) = 3D Nips(w) Ngi(v) P

i=0 j=0
where
(k,l—1) (k1)
— Pij

P = (g — 1+ 1)
’ Ujtat+1 — Ujtl
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It would be useful to derive formulas for corner derivatives; using equations from
(2.34) to (2.37):

8.(0,0) =Py = PP - Poo)

Up+1
S.(0,0) = Pé(,)él) - 1 (Po1 — Poyp)
Ug+1
(2.38)
1,1 q 1,0 1,0
Suv(0,0) = PE),O ) = (P((),l )~ P((),o )>
Ug+1
= &(Pm —Py1 —Pio+Poyp)
Up+1Vg+1

Now let up = 0 and vy = 0. Recalling basis function properties is easy to state

that the isocurves C,,(v) and C,,(u) are given by:

m n

Cug(v) = Y Njo(v) Poy Cup(u) = Y Nip(u) Pig (2.39)

j=0 =0

From eq.(2.27) it follows that:

S,,(0,0) = C., (0) S,(0,0) = C, (0) (2.40)

2.4 Rational B-Splines

Although B-spline introduction give a versatile and powerful tool to model com-
plex shapes, they can’t represent precisely important geometric shapes as conics. In
fact, B-splines basis are basically non-rational polynomials, thus are not capable of
representing the over mentioned class of shapes. It is known from classical mathe-
matics that all the conic curves can be represented using rational functions, that is
functions that are defined as the ratio of two polynomials. Therefore, to use such
class of functions as basis functions yields to Nurbs, Non uniform rational B-splines,
a generalization of B-splines with the same advantages but with a bigger design
flexibility.
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2.4.1 Nurbs Curves

A pth-degree NURBS curve is defined as:

_ 2o Nip(w) wiPs
im0 Nip(u) wi

where N;, are the B-spline basis functions defined over the same non periodic knot

C(u) u € [a,b] (2.41)

vector (see section 2.3.3), w; are the weights. Assume, unless otherwise stated that
a=0and b=1, and w; >0 V. Defining the rational basis functions R;, as
NLP(U) w;

Ri)==i——"7~ (2.42)
g ijo Njp(u)

allows to rewrite eq.(2.41) in the form

C(u) = Z Rip(u) P; (2.43)

The properties of the NURBS basis functions follows the properties of B-spline basis
functions and eq.(2.42). The R, , have the same properties of N;,, with only a one

more consideration:
- if w=w (w # 0) for all ¢, then N;, = R, ,, for all 7.

NURBS curve properties arise from rational basis functions and are, a part from
the properties related with weights w;, coincident with the B-spline curve properties

(2.3.3). The weights add a further flexibility since:

- if weight w; is changed, it affects only the portion of the curve on the interval
U € [UiUirps1). Qualitatively an increment of w; pulls the portion of curve
C(u) with v € [u;,ui1pr1) toward P;; the opposite does a decrement of w;.
Varying w; the movement of C(u) for fixed u, is along a straight line passing
for P;.

Figure 2.25 illustrate such a behavior. Thereby, both control point movements and
weight modification give a local shape control, providing great flexibility in interactive

shape design.
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2.4— Rational B-Splines

Figure 2.25: Effect of weight modification (w4) on a NURBS curve.

Rational curves with coordinate functions in the form of ratio of two polynomials,
with the same denominator for each of the coordinate, have an elegant geometric
interpretation. Defining a perspective map, H, with center at the origin, which

maps from a four-dimensional space to a three-dimensional Euclidean space

XY Z
) if W £ 0

P = H{P"} = H{(X.Y.ZW)} = (W’W’W
direction (X,Y,Z) if W =0

(2.44)

For a given set of control points, {P;}, and weights {w;}, let’s construct the four
dimensional weighted control points P = (w;x;, w;y;, w;z;,w;) and define the nonra-

tional B-spline curve in four dimensional space as
C"(u) =Y  N;p(u)Py (2.45)
i=0
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Applying the perspective map, H, to C*¥(u) yields the following rational B-spline

curve:

(2.46)

Figure 2.26: A geometric construction of a rational B-spline curve.

This is an important point since leads to efficient processing and data storage: the
NURBS curves can be efficiently handled as B-splines in a four-dimensional space.
In some situation of free form shape design, like interpolation of set of points with
fair geometric shapes, the mapping leads to a linear problem instead of a non linear
one [10].
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2.4— Rational B-Splines

Derivatives of NURBS curves

Derivatives of rational functions are complicated, involving denominators to high
powers. The easiest way to compute derivatives is relying on the four dimensional
B-spline representation, for which applies the previous formulas derived for three-
dimensional space (section 2.3.3). For a detailed analysis refer to [8]. Evaluation of

first order derivative at endpoints yields to:

p w

C'(0) = —— (P, — Py) (2.47)

Up4+1 Wo

and
P Wy — 1

(1) =

1— Um—p—1 Wn,

(P —Poy) (2.48)

2.4.2 Nurbs Surfaces

The generalization from univariate to bivariate NURBS basis functions can be de-
ducted from the same B-spline generalization, depicted in section 2.3.4. A NURBS
surface of degree p, ¢ in the u and v directions is a bivariate vector-valued piecewise

rational function described by

S(u.0) = > ico 2o Nip(u) Njqw; ; P

= = — 0 <uov<1 2.49
> im0 Zj:() Nip(u) Njqg(v) wi (249

where the terminology is the same as for NURBS curve and B-spline surfaces (see

sections 2.4.1 and 2.3.4). Introducing the bivariate rational basis functions

Nip(u) Njg(v) wi;

Ri, '('LL,U) = n m (250)
’ > k0 Dheo Nep(1) Nig(v) wi
the surface can be written as
S(u,v) = R; j(u,v) P, (2.51)
i=0 =0

The bivariate rational basis functions properties are the same as the B-spline one’s.
Note that
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- if all weights w; ; = W with @ # 0 then R; ;(u,v) = N; ,(u) N;,(v) for all 4, j.

The same properties of B-spline surfaces are carried here, (with the proper gener-
alization from non rational to rational polynomials). Added property is the local
shape modification through the weights movements. Increasing a weight w;; pulls
the points of the surface S(u,v) with (u,v) € [wi,Uitpr1) X [Vj,Vj1q+1) toward P, ;,
the opposite does a weight decrement. As for the curves, the movements of S(u,v)

is along a straight line passing for P; ;.

The homogeneous coordinates representation is convenient also for NURBS sur-

faces:

S”(uw) =Y ) N;p(u) Njg(v) PY, (2.52)

i=0 j=0
where PP, = (wi; x45,wi Yij,wij 2i5). Thus S(u,v) = H{S"(u,v)}.
Isoparametric on NURBS surfaces are easily defined with homogeneous coordinates.
Fixed u = wuyg:

C¥ (v) = 8" (ug,v) = Z N; (1) Nj 4(v) P (2.53)

uo [2¥}

(2.54)

2.5 Fundamental Geometric Algorithms

In order to implement and manipulate NURBS, a group of fundamental algorithms
is necessary. In this section only a brief discussion on some of the most important
processes is given. For deeper analysis and mathematical details refer to [8]. It
is worth a note that some of this algorithms are conceptually extendible to other

parametric forms, and are not just NURBS concerned.
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2.5— Fundamental Geometric Algorithms

2.5.1 Knot Insertion

Let C(u) be a B-spline* defined on the generic knot vector U = {uy,...,u,}, and
with control points P;. Now consider U obtained from U adding a knot @ € [0, Un)].

This algorithm determines a new set of control point (); such that :

n n+1
=0 =0

Actually the results show that only p new control points must be computed. It is also
possible to insert knot multiple times, or many knots at time (such an algorithm is
called knot refinement). Due to tensor product surface characteristics, the algorithm
is easily extended to surfaces.

Knot insertion is one of the most important of all the B-spline algorithms, being

useful to:

e valuating points and derivatives on curves and surfaces,
e subdividing curves and surfaces,

e adding control points in order to increase flexibility in shape control (interactive

design).

Figure 2.27 shows an example of knot insertion on a B-spline curve.

2.5.2 Knot Removal

Knot removal is the reverse process of knot insertion. However, it is more complicated
since it’s not always possible to remove a knot; thus a knot removal algorithm must
first determine if the knot is removable and how many times, then eventually compute

the new control points, Q;. Knot removal utility carries out in these situations:

e converting a spline curve or surface presented in power basis form to B-spline

form;

4generalization to NURBS is easily obtained expressing the control points in homogeneous
coordinates
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P=Q s 3 Po= Qo

Q;
Py

& & 4

|

=8

(b) Original (solid) and the new (dashed) basis functions before and
after knot insertion.

Figure 2.27: Knot insertion into a cubic curve defined over the knot vector
U ={0,0,0,0,1,2,3,4,5,5,5,5} (drawn from [8]).

e when interactively shaping B-spline knots are sometimes added to increase
flexibility; then, after manipulation, a knot removal can be invoked in order to

obtain the most compact representation of the curve or surface.

Fig.2.28 summarizes the steps of knot removal from a B-spline curve .
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Pg:Pg Pg..—...Pg

el
it

Up = Uy = Uy = Ug Uy = U5 = Ug Uy = Ug = Ug = U

Figure 2.28: Knot removal from a cubic curve with triple knot (from [8]).

2.5.3 Degree Elevation

Given a B-spline curve (surface), degree elevation is the process of obtaining an
higher degree curve (surface) identical to the original one, both geometrically and
parametrically. Thus, referring to the following mathematical problem, involving a

single degree elevation for a curve
Cp(u) = Z NipPi = Cpia(u) = Z Ni,p+1 Qi (2.56)
=0 =0

degree elevation computes the unknown Q; and U. Figure 2.29 summarizes degree

elevation of a third degree B-spline curve.

The two typical situations in which degree elevation is involved are:

e construction of surfaces from a set of curves. Using tensor product surfaces
requires that these curves have a common degree (as will be seen in subsequent

chapters).
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Figure 2.29: Degree elevation on a third degree B-spline curve, U = {0,0,0,0,1,2,3,4,4,4,4}. The
new control polygon is the one in red.

e combining two NURBS curves with a common endpoint in a unique NURBS

curve. The first step requires to elevate the curves to a common degree.

2.5.4 Degree Reduction

As for knot refinement, also degree reduction is not always possible. However, due to
floating point round off error, C(u) and C(u) are not expected to coincide precisely
even in an ideal situation, thus a maximum allowable error (TOL) is defined, and a

curve or surface is declared to be degree reducible if

max|C(u) — C(u)| < TOL (2.57)

2.5.5 Other Advanced Geometric Algorithms

Many other fundamental algorithms are involved in NURBS manipulation. Algo-
rithms like point inversion and projection, surface tangent vector inversion, curves
and surfaces transformations and projections, and others, are of main importance.
For a complete treatise refer to chapter 6 of [8].

Another class of algorithms used in ASD is the surface intersection algorithms.
These are typically used in calculating intersections between fillets and bodies, or
tfillet and wings (features encountered in chapter 1). For an exhaustive analysis see
3].
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Free Form Surface Design

3.1 Introduction

Traditionally NURBS shape modification and manipulation was achieved with in
an indirect way, that is, controlling the degree of freedoms (control points for B-
splines, control points and weights for NURBS) till the desired shape is achieved.
This technique is very easy but it has several drawbacks [10]. One of the them is that
the control points or weights are not directly related to the modified shape of curves
or surfaces. Therefore, interactive design using this scheme is often cumbersome.
Sometimes a large number of control points must be manipulated in order to modify
even a small piece of a curve segment. It is also not clear which degree of freedom
should be manipulated and how it should be manipulated. On the other hand, the
direct manipulation method provides the designer a higher level interface and shape
design is more intuitive. In this scheme, arbitrary constraints on a curve or a surface
can be set. For example, a point on a curve can be selected and moved to a desired
positions. The new DOF's, which satisfy the specified constraints, are automatically

computed.

It’s plain that ASD relies on a direct approach, since the control points are
arranged in such way to fit the prescribed data points and derivatives vectors in a

direct mathematical way, and not with a trial and error approach.
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3.2 Fitting

Fitting consists in the construction of curves and surfaces which fit a rather arbi-
trary set of geometric data, such as points and derivative vectors. There can be
distinguished two types of situations, interpolation and approximation.

The intent of interpolation is to construct a form (NURBS in this instance) which
satisfies the given data precisely. For example the curve passes through the given
points and assume the given derivatives at the prescribed points.

In approximation, the forms couldn’t satisfy the given data precisely, but only
approximately. Usually the maximum bound on the deviation from the given data

is specified (fig.3.1). From a practical point of view, approximation is well suited

Ve

/

o

(a) A curve interpolating five points and two  (b) A curve approximating m + 1 points
end derivatives

Figure 3.1: Difference between interpolation and approximation (from [8]).

in all the situations where the fitting data are affected from errors or noise. Clas-
sical examples are scanning and acquisition devices which introduce measurement
noise, or surface to surface intersection algorithms (marching methods) which leads
to computational noise. In such of situation, it is important to capture the shape of
the data, not to wiggle its way through every point.

On the opposite scenario, when the NURBS must satisfy exactly given data,
interpolation methods should be used. The interpolation algorithms are simpler and
faster than the approximation algorithms.

In ASD only interpolation techniques are implemented, assuming that all the

input data are unaffected from errors. However, it should be noticed that surface or
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curve intersection algorithms are used in the modeling process; this data are possi-
bly affected from numerical noise, and interpolating them could lead to unpleasant

results.

Literally hundreds of paper have been written on fitting topic; many of the re-
ported techniques are heuristic. The problem arises because fitting process never
determines a unique solution. In fact there are infinite NURBS curves (surfaces)
that interpolate or approximate a set of data. As a result the interpolating curve

(surface) obtained could be far from the expected shape.

Very little has been published on setting the weights in the fitting process. Most
often, all weights are simply set to 1, so the interpolating NURBS degenerate to
interpolating B-spline. In ASD only B-spline interpolation problems are handled.

Most fitting methods are further classified into global and local.

3.2.1 Global Interpolation

With a global algorithm a set of equations or an optimization problem is set up
and solved. If the given data consist only of points and derivatives, if the degree of
the NURBS, the knots and weights have been somehow preselected, and the only
unknown are the control points, then the system is linear, hence easy to solve. If
given data consist on curvature and knots or weights are system unknowns, then the

resulting problem would be nonlinear.

Since desired level of continuity at each point is easy to set, due to NURBS char-
acteristics (summarized in section 2.4), results are usually pleasant looking shapes.
One of the drawbacks is the inability to cope with straight segments: if three or more
points of the data set are collinear it would be desirable, most of times, an interpo-
lating straight segment (see fig.3.2). On the contrary global interpolation leads to a
wavy shape if only positional constraints are specified. Finally, a perturbation of any
one input data item can change the shape of the entire curve or surface; however, the
magnitude of the change decreases with increasing distance from the affected data

item.
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2561

15+
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Figure 3.2: Global interpolation with three collinear points

Global curve interpolation

Suppose a given set of points {Q}, k = 0,...,n would be interpolated with a pth
degree B-spline. First step is to assign a parameter value, g, to each Qg, and to select
an appropriate knot vector U = {uy, ... ,u,}. The corresponding (n+ 1) x (n+ 1)

linear system is

Qr=C(u) = Y Ni () Py (3.1)

Here the n + 1 control points P; are the unknowns. In matrix form:

(@] = [N]-[P] (3:2)

If also derivatives appear as input data, then both the control point (unknowns) and
knot vector number should be raised. Expressing the derivatives in terms of basis
function derivatives and control points (see eq.(2.23)) the linear system is easily set.

Usually the fitting data consist in interpolation points, first and second order
derivatives. Greater order derivatives are seldom used. That’s related with the
geometric relationship between derivatives and curve shape: first order derivative is

locally tangent to the curve and his magnitude depends on the parameterization,
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second order derivative is related with the curvature (see section 3.4 for more details

on connection between derivatives and geometry). Thus,
Q. = C(ug) = ZNi,p(ﬂk) P;
i=0

Q) =C'(w)=) N, ()P,
i=0
Q:;L = C”(ﬂm) - Z Nz‘l,/p(ﬂm) P;
i=0
and the linear system is easily obtained. Worth a note that the selection of the knot
vector and the parameter values should be carefully undertaken, in order to avoid a
singular matrix. See section 3.3 for explanation about how to set these parameters.

In fig.3.3(a) is shown a curve interpolating 5 points. If an horizontal derivative at

(a) A curve interpolating five points (b) The same curve with first end derivative
specified

Figure 3.3: Curve interpolation, and curve interpolation with derivative specified.

the first end is added as fitting data, then the curve is modified as shown in the
fig.3.3(b). Note the added control point (which implies also one more knot).
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Global surface interpolation

Let {Qy,}, with £ =0,...,n and [ =0,...,m beaset of (n+1) x (m+ 1) data
points. The interpolating (p x ¢)th degree B-spline surface would be of the form

Qi1 = S(,) = Y > Nip(tix) Njg(0) Py (3.3)

i=0 j=0
Suppose the parameters (uy,7;) and the knot vector U and V' are computed in a
reasonable way. Then eq.(3.3) represents a set of (n + 1) x (m + 1) linear equations
in the unknowns P; ;. However, since S(u,v) is a tensor product surface, the P; ; can

be obtained more simply and efficiently as a sequence of curve interpolations. For

fixed [ eq.(3.3) can be rearranged as

Qi1 =Y Nip(ux) (Z Nj q(01) Pm‘) = Nip(u) Ry (3.4)

=0

where
Rii= N (0)Pi; (3.5)
5=0
Eq.(3.4) is just a curve interpolation through the points Qx; &k = 0,...,n. The
R, ; are the control points of the isoparametric curve on S(u,v) at fixed v;. Then,
fixing ¢ and letting [ vary, eq.(3.5) represent curve interpolation through the points
Rio,...,.Ri m, with P;g,...,P;,, as the computed control points. Thus, the algo-

rithm to obtain all the P; ; consist in the following steps:

e (m+1) curve interpolations through the points Q; o, ...,Qn (forl =0,...,m)
using U and the parameters #y; this yields the R; ;;

e (n + 1) curve interpolations through R; o,... . R;, (for i = 0,....n) using V
and the parameters v;; this yields the P; ;.

Obviously the algorithm is symmetric, the same holds inverting the interpolation
sequence. An example of surface interpolation is depicted in fig.3.4. Derivative

constraints can also be incorporated, conceptually with the same approach as for the
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(c) Interpolating the wv-direction through con- (d) The surface interpolant with control points
trol points of the w-directional interpolants

Figure 3.4: Surface interpolations through subsequent curve interpolations.

curves. However difficulties arises if the number of data constraints is not the same
in every row or column; with clever use of curve knot insertion and surface knot

removal the algorithm can be extended to general situations [8].

3.2.2 Local Interpolation

The local scheme interpolation is usually more geometric in nature. The typical con-
struction proceeds piecewise, between every data constraint, leading to local prop-
erties: a perturbation in a data item affects the curve or surface only locally. These
algorithms are usually computationally less expensive than global methods. Anoth-
er benefit is the capability of dealing with cusps, straight lines segments and other

local anomalies in an efficient way. On the other hand, achieving desired level of
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continuity at segment boundaries is cumbersome, and local methods often result in

multiple interior knots.

Local curve interpolation

Let {Qx}, k£ = 0,...,n be a set of point to be interpolated. Local curve interpo-
lation consist in constructing n polynomial or rational curve segments, C;(u), i =
0,...,n—1 such that the Q; and Q,,; are the endpoints of C;(u). Neighboring
segments are joined with prescribed level of continuity, and the construction pro-
ceeds segment-wise. Any equation which arises are locally to only a few neighboring

segments.

Figure 3.5: Local interpolation: curve segments endpoints are coincident with the data points
Q (in red). The internal control points of every curve segment should somehow be
computed.

In the framework of NURBS the segments are polynomial or rational Bézier
curves, then corresponding NURBS is obtained selecting a suitable knot vector. No-
tice that to obtain the Bézier segments, C;(u), the inner Bézier control points have
be computed. If the fitting data comprises also derivatives, they should be used to
compute the inner control points. If don’t, or the unknown are more than the con-

straint equations, then some geometric consideration (as have be done in order solve
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the problem. Usually, local algorithms rely on local tangent estimator algorithms
[11; 12] to overcome these difficulties.
An example of a local curve interpolation algorithm, on which relies ASD, is

provided in section 4.1.1.

Local surface interpolation

Generalizing to the bivariate case, a surface is obtained through definition of n - m
Bézier patches. It holds what stated for the univariate situation, even if the added
geometric constraints necessary for closing the problem are a little more tricky. An
example of a local surface interpolation algorithm, on which relies ASD, is provided

in section 4.1.2.

3.2.3 Transfinite interpolation

In transfinite interpolation a curve network is interpolated through a surface. This
method has a different flavor than the set of points interpolation, and is due mainly
to Coon and Gordon with respectively the Coons patches and Gordon surfaces. Since
this methods are not directly implemented in ASD, they won’t be described here (see
[7; 8] for a treatise). However, the lofting capability, which is a particular form of

transfinite interpolation, has been added to the geometric modeler.

Lofting (or Skinning)

Let {Ck(u)}} , k=0, ...,K be a set of curves, called sectional curves. Skinning
is a process of blending these section curves together to form a surface. The blend
direction is usually called the longitudinal direction.

Lofting dates back many decades, before computers, and the earliest computer-
ized system to incorporate lofting was CONSURF. That system was based on rational
cubic curves.

Based on B-splines, the skinning is defined as follows. Let

Cyu) =Y NipwPy, k=0, K (3.6)
=0
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be the rational or nonrational section curves, all defined on the same knot vector, U,
and with the same degree p (if necessary the curves can be brought to a common p
and U by means of the algorithms of section 2.5). Then, for the v direction a degree
q is chosen, and parameters {v;}, £ = 0,...,K and a knot vector V' are computed.
These are then used to do n+1 interpolations across the control points of the section
curves, yielding the control points Q}’; of the skinned surface. Therefore, Q}’; is the
Jth control point of the interpolating curve through P}y, ... P ;. The process of

skinning is reported in fig.3.6.

o
B

(a) Cross sectional curves (b) Cross sectional curves made compatible

(c) Control points (d) Skinned surface

Figure 3.6: The process of surface skinning [8].
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The process of transforming the cross sectional curves to a compatible form raises
the number of control points in the u direction, and thus the overall control point
number. This is the price to pay for flexibility and quality.

In fact, during B-spline(NURBS) surface interpolation the determination of one
knot vector for column points, and one for the row points. This can lead to a
unpleasant surface, regardless the choice of the knot vector and knot parameters.
Taking advantage of the surface interpolation as subsequent curve interpolations, all
curves should fit to a unique knot vector, which even if reasonable in mean terms,
could be inappropriate for the interpolation of some particular curves. That won’t

happen to lofted surfaces, since the curves are already defined.

3.3 Parameterization

Till now the set of knot parameters and the knot vector has been assumed as known.
In this section it will be shown how properly determine both of them. This fixing is a
keypoint, since the quality of any interpolant curve depends strongly on the selection
on the parameters uy, and knot vector choice. There are several parameterization

techniques in the literature, three of the most relevant are reported in the following.

3.3.1 Uniform Parameterization

Known also as equally space, this kind of parameterization states that:
Au; = ;1 — U; = constant (3.7)

It is the most primitive one, and performs poorly, especially when the data points are
scattered in a very unevenly fashion. The reason for the overall poor performance
can be blamed on the fact that it ignores the geometry of the data points.

As an heuristic explanation, the parameter u can be interpreted as time, and
C(u) as the trajectory. If the distance between two successive points is very large,
the speed would be high in order to cover the segment in the fixed time. If the next

two data points are close to each other, there will be an overshooting because the
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speed can not be changed abruptly (it is assumed at least a C! trajectory, thus a

continuous velocity).

3.3.2 Chord Length Parameterization

This method, known also as chordal parameterization, selects the parametric values

according to the distances
[P =Py || o @1 —w (3.8)

or, equivalently
Au;  [[Pip —Pi |
Aty || Pipo — Piga ||

(3.9)

The idea here is that the distance approximate the arc distances between two sub-

sequent points.

3.3.3 Centripetal Parameterization

or, equivalently
1
Su_(1Pa-ply "
At | Pive — Piga ||

3.3.4 Performance of the Different Parameterizations

Not reported above, even if one of the most famous parameterization, is the Foley pa-
rameterization; anyway in literature a multitude of method for choosing parameters
exists, each with his advantages and disadvantages. ([7; 13]).

In fig.(3.7) are depicted results with different parameterizations. The knot vector

is distributed uniformly.
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Figure 3.7: Various parameterizations with uniform knot vector. x indicates the parameter
values, + the knot values.

3.3.5 Knot Vector Selection

The knot vector selection is as important as the selection of the parameter values;
experimentations indicate that the knot vector selection similar to parameter distri-
bution provide the more natural looking curves. Results of similar parameterization

and knot vector is shown in fig.3.8
A comparison between figures 3.7 and 3.8 shows the improvements in shape,
indicating that knot vector selection is no less important than parameterization.
Further, such a choice has the advantage of speed up the computation of the
matrix [/N] in eq.(3.2) since there are p — 1 nonzero terms N; ,(ug) in most of its

rows instead of p nonzero terms, as in the conventional knot selection.
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P

a) Equidistant parameterization ) Chord length parameterization
c¢) Centripetal parameterization d) Foley parameterization

Figure 3.8: The effect of choosing knot values similar to parameter values.

3.3.6 Parameterization and Knot Vector Selection for Sur-

faces

For a tensor product surface the problems arises from topology. In fact, a unique
knot vector and parameterization for each of the two directions could be defined.
Thus, in order to satisfy in mean terms the geometric distribution of the points, the

usually choose is to perform an average of all the row/column related parameters.
_ 1 .
Up=——>» u k=0,...n (3.12)

where the notation is the same of eq.(3.3), and for each fixed [, i} is computed with
one of the aforementioned methods. Clearly this construction can’t be so flexible
to model in a nice looking way all the rows or columns of data points. In fact, is
nowhere guaranteed that @ and u} are even very different, thus the knot vector
would be inappropriate for description of some rows/columns of points, leading to

far from optimal shapes. This states especially for very unevenly distributed points.
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3.4 Notion of Continuity

For parametric forms the notion of continuity assumes different meaning, depending
on the sphere of analysis. Before going further on the topic, is important to define
the arc-length parametrization. Given a curve C(u) with u € [u,,up), the arc-length

s as a function of wu, is defined as

s(u) = /u | C'(u) || du (3.13)

which is the length of C from C(u,) to C(up). The curve C(s) = C(u'(s))
is the corresponding arc-length parameterized curve. Although the arc-length is
conceptually important, it is used primarily for theoretical purposes.

A detailed survey on continuity is reported in [14].

3.4.1 Continuity of Curves

Let r(u) and s(v) be two segments of two parametric curves, joining at their endpoints

so that r(ug) = s(vo).

Figure 3.9: Two curve segments joining with derivative of same direction but different
magnitude.

Parametric continuity

Parametric continuity is the classical notion of continuity in analysis: if the nth

order derivatives of a function exist and are continuous, then the function is nth
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order parametric continuous. In this context, the

- two curves are nth order parametric continuous at ug, vy if and only if r™ (ug) =

S(n) (Uo).

Anyway, two curve segment need not have the same derivative vector at joining point
(C') in order to have the same tangent line. In an similar way, they don’t need to be
C? to be curvature continuous. The crucial observation is that derivatives depend
also on parametrization of curves, while tangent and curvature are intrinsic properties

of the geometric shape, so they are not dependent from the parameterization.

Geometric continuity

A more intrinsic notion of continuity should avoid to depend from parameterization.

This leads to a definition of continuity called geometric, or visual continuity.

Figure 3.10: Relation between derivative vectors for geometric continuity.

- Curves r(u) and s(v) are nth order geometric continuous at g, vg , if and only
if there exists a reparameterization u = u(@) such that () = r(u(z)) and s(v)

are C" at s(vp).

Geometric continuity is denoted by G"; the term geometric continuity was first used
by Barsky, the term visual continuity by Farin.
The chain and product rule of differentiation show that #*) (@) can be written in

terms of " () du(i)
r(u u(w
aw dii

with =1,....k
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For example:

daz ~  du2 \ da du da?

P’ d%r(u) ( du)2 dr d%u

Letting 3; indicate u(” (i), then the following equations hold:

s (vg) = ¥ (up) (3.14a)
s (o) = Br e (up) (3.14b)
s (vo) = B7 v (uo) + B M (ug) (3.14c)
s (v) = B r® (o) + 3 B182t® (ug) + B3t (uo) (3.14d)

Equation (3.14a) amounts to positional continuity, eq.(3.14b) means that the deriva-
tive vectors differ only a scalar factor, eq.(3.14c) prescribes a dependency as depicted
in fig.3.10.

The parameters (3; are called shape handles because they can be used to model
shape of the curve. In particular, 3 is called bias and (35 tension, due to their specific
shape changing effect. One particular spline that satisfies the [(-constraints is the
[-spline. More on such topics can be found in [15; 16; 17].

It can be shown [16] that another equivalent formulation can be provided by the

following.

- Curves r(u) and s(v) are nth order geometric continuous at uy and vy, if and
only if the corresponding arc length parameterized curves r(t) and §(w) are C"
at §(w(vp)).

Differential geometry approach

From a purely geometrical point of view, the direction of the tangent line is de-
termined by the tangent vector, the normalized derivative vector which has unit
length. Two curves need not have the same derivative vector in order to have the
same tangent vector. There is a particular parameterization that gives a unit length
derivative vector at every point, so that the derivative and tangent vector are equal:

the arc-length parameterization.

113



3 — FREE FORM SURFACE DESIGN

Let s(w) be an arc-length parameterized curve. The tangent vector t is then
ty(w) =sP(w) |t =1 (3.15)

The normal curvature vector is defined as

£
t = 3.16
Q(w) Hl(’ll)) ( )
where k1(w), called curvature, is a scalar such that [[to(w)| = 1. The binormal

curvature vector, normal to t; and to, is defined as:

t5" (w) + Ky (W)t (w)

tg(w) = /fz(w)

where ko(w), called torsion is a scalar such that |[tz(w)|| = 1. Planar curves have
zero torsion. Curvature and the opposite of torsion have an intuitive geometrical
meaning, being the angular velocities of t;(w) and te(w) respectively. The plane
spanned by the tangent and the normal curvature vector is called the osculating
plane.

The notions of tangent, normal curvature and binormal curvature can be gener-

alized to the so called generalized curvatures:

t(w) = s(l)(w)

ro =0 (3.17)
s () = £ (w) + i (w) i (w)
where x;(w) is such that [[t;;;(w)|| = 1.
In RY, the Frenet frame is defined as the first d curvature vectors (t1(w), . .. ,tq(w)).

Thus, the following definition of Frenet frame continuity:

- Two curves r(u) and s(v) are nth order (n > 0) Frenet frame continuous (F™)
at ug and vy if and only if the first n curvature vectors and scalar curvatures

coincide.
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(1

osculating
“__plane

Figure 3.11: Frenet frame.

For n =1 and n = 2, F™ and G™ continuity agree. Thus, G' condition requires
the same tangent vectors, G? requires also the same normal curvature vectors and

the same curvature.

3.4.2 Continuity of Surfaces

The generalization of the continuity notion at surfaces is a little more tricky, thus
only a brief discussion is submitted. For more details refer to [7; 14; 17; 18]. The
practical situation of interest is the continuity of two parametric surfaces r(t,u) and

s(v,w), in particular along a common curve or edge. To avoid potential problems

#(1.0) #(0.1)
ritu) >

b

u S (01)

¥ siv,w)

Figure 3.12: Two surfaces joining at the common edge, and their first partial derivatives.

with the parameterization assume a regular parameterization, that is first derivatives

exist and are linearly independent.
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Parametric continuity

- Two surfaces r(t,u) and s(v,w) are C"-continuous at (¢g,up) and (ug,wy), if and

only if v (t,ug) = s (vg,wp), i + 7 =0,...,n.

Note that the two surfaces need not have the same first order partial derivatives in
order to have the same tangent plane [18]. Moreover, on closed surfaces singularities

occur where the derivative of the surface is not defined [14].

Geometric continuity

- Two surfaces r(t,u) and s(v,w) are G"-continuous at (o,ug) and (ug,wy) if and
only if there exist a reparameterization ¢t = ¢({,%1) and u = wu(f,%) such that

t(,a) = r(t(t,a),u(t,u)) and s(v,w) are C"-continuous at r(to,up) and s(ug,wp).

Applying the bivariate chain and product rule, and following the steps as for the
above seen univariate situation, leads to a set of equation analogous to eq.(3.14) [14;
17].

Differential geometry approach

The tangent plane at s(vg,wp) is spanned by the vectors s(b% (vg,w0) and s(Ob (vg,w0)
[14; 18]. Equivalently, the tangent plane is normal to the surface normal vector
S(l’o) (’Uo,wo) X S(O’l) (Uo,w0>

_ 3.18
(v, o) |89 (wg,wp) x 80D (wg,w) | ( |

Thus, the tangent planes at r(tg,u0) and s(vy,wp) coincide if and only if v (4,uy),
rOD (tg,u0), s (ug,v0), 8OV (ug,v0) are coplanar, and geometric continuity is achieved
at the common point.

Note that for continuity along a common curve, the continuity at every point
should be achieved.

The second order continuity is based on curvature. The definition is a little bit
more involving, thus it will be omitted. As before, [7; 14; 17; 18] are valuable sources

of detailed information about the topic.
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3.5 Visual Aspects of Continuity

Although tangent and tangent plane discontinuities are easy to detect, human eyes is
also capable of detecting curvature discontinuities, due to light reflection discontinu-
ities. An example is provided in figure 3.13, where a light reflection analysis on two
surfaces is depicted. Note how the first surface, which is not curvature continuous,

shows discontinuities in light ray reflection.

(a) G1 surface

(b) G2 surface

Figure 3.13: Differences in light reflection between G and G? surfaces.

The care directed to fair shapes by the automotive design, or design process in
general, led to surface classification in relation of their geometric properties. Class A
surfaces is a term used to describe a set of freeform surfaces of high quality, that is,

strictly speaking, the surfaces have curvature and tangency alignment to near perfect
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aesthetical reflection quality. However, many technicians interpret class A surfaces
to be G? (or even G?), both in their internal domain than at the common edges with

other surfaces.

3.6 Implementation of G* or C? Continuity with
Local and Global Algorithms

To meet the requirements mentioned in section 1.5 on surface continuity, at least G2
continuous algorithms should be implemented. In this section the problems which
arise adopting both a global and local approach will be discussed.

As first step just rearrange derivatives equation for a parametric curve in order
to split geometric and parametric characteristics. For a generic curve with a generic

parameterization it holds (using eq.(3.14, 3.15, 3.16)):

dC ds ds
Clu)=——"=—"t=at
(u) ds du du @
" 1 1 (3.19)
" S t 2 t 2
= t+a— =yt+a’— =yt +a’k
C™(u) du? ta du it du it

where s is the arc-length, t the tangent versor, k the curvature vector.

3.6.1 Limitations of the Local Approach for G? or C? Conti-

nuity

In ASD all the interpolation algorithms are local and features (bi)cubic B-spline.
However,it can be easily shown that third degree is not enough flexible. Assume a
Bézier curve as the ith segment of the interpolant curve. Then, at the edge points it
holds:

C(0) = i(P —-Py)  C/(0) =6(P;— 2P +Pyp) (3.20)

/ 7
i 1 [
C/(1)=3(Py~P))  Cl(1) =6(P,—2P)+P)

()

where, with the aid of fig.3.5, the notation is straightforward. To ensure G? conti-

nuity, according to what gained in section 3.4.1, the tangent and curvature vector of
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the adjacent Bézier segments should coincide at the common point, thus, according
to eq.(3.19)

)

, ) ) (3.21)
C/(1) = Bitiyr C/(1) = ditip1 + Bikina

Assume that the tangent and curvature vectors are known through an estimation
based on the data point distribution. Combining equations (3.20, 3.21), a system of
twelve scalar equations on the unknown P}, P%, oy, 5;, v, d; is finally obtained. The
degree of freedom are not enough, and the system is generally not solvable.

It should be noted that, without estimating the tangent and curvature vector at
the data points, the continuity conditions are imposed only at the point in common
with the precedent or the subsequent Bézier segment, depending from the direction
of building. In this way, there are two degree of freedom (the bias and tension of
section 3.4.1), for each segment.

However, is not possible to force straight segments, not even impose a particular
tangent or curvature vector at any point. The reduced flexibility is not satisfactory.

With higher degree curves, the problem of flexibility is overcome. But, two classes

of problems arises:

- no universal method to select the degree of freedom of each segment in a

reasonable and well performing way exists;

- unlike tangent, no curvature estimator performs well universally.

An example of how to avoid the first class of shortcoming is represented by a
fifth-degree piecewise Bézier, with C? imposition at the edge points. Anyway, to
complete the building a first and second order derivative estimation should be done
for every point.

The generalization to surfaces adds more difficulties. At the end, the local

approach is distinctly not well suited for handling G* continuity.

3.6.2 Limitations of the Global Approach for C? continuity

With a global approach is more practical to work with C? continuity, since the

continuity requirement is immediately controlled by the degree of the B-spline and the
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number of multiple knots (see section 2.3.3). Most of the problems are related with
the extra flexibility needed for straight segment imposition and derivative constraints.
For a curve, knot insertion will be useful to account for this extra constraints, however
for tensor product surfaces the process will be more tricky due to the common knot
vector.

Should also pointed out, that with a global approach the constraints on tangent
and curvature vector are more easy formulated taking into account the parameteri-

zation. In fact,

=0

with oy fixed in a proper way, is simpler than

because, in the resolution of the final linear system [Q] = [N] - [P], the latter couples
the three spatial components, returning a more complex and time consuming system
to solve (see [19; 20; 21] for a deeper discussion about constraints).

For curvature constraints:

n
C"(ur) = N/, (t)P; = ity + o’ Ky (3.24)
=0
with oy and v fixed in a proper way, leads to a linear system, where imposing just
the k; and t; leads to a non linear constraint.
The method chosen to fix the parameter dependent terms can not behave properly
in all the situations. This is even more problematic when working with surfaces, due
to the tensor product surface limitations.

What needed is then a frame capable of:

- handling all the applicable constraints, avoiding the involvement of sequences

of knot insertion;

- setting the unconstrained degree of freedom, i.e. control points, when these are
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more than the constraints; if possible these degree of freedom should be handled
in order to override as much as possible the singular behavior it may arise
from presetting the knot vector, the parameterization and the parameterization

dependent terms of the simple constraint formulation;
- generating fair interpolated curves and surfaces.

Indeed, the ratio underlying the positioning of the extra degree of freedom should be
robust, in order to have a unique flexible algorithm which give raise always to likely

and fair shapes.

3.7 Variational Analysis and Modeling of Free Forms

Generally speaking, interpolation data set admits infinite solutions: there exist an
infinite number of B-splines that interpolate the data. Likewise, in situations with
more control points than the data to fit, there exist an infinite number of solutions.

The question arises of which one of these infinite existing curves/surfaces should
be chosen. As a parameter for selecting the solution, fairness criteria could be

adopted.

3.7.1 Fairness of Curves and Surfaces

The inherent subjectivity to assessing the appearance of a curve or surface makes
the definition of pleasing appearance and fairness not straightforward. This difficul-
ty is compounded by the application specificity character, which leads to different
definitions.

Much of the work on curve and surface design has been to develop methods that
behave naturally in response to user specification. The draftsman’s spline was used to
draw fair curves. Mathematical modeling of such spline suggested that the obtained
shape was the one minimizing his strain energy, and thus, the squared curvature.
That is, the functional

b= /k;2 ds (3.25)
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where k is the curvature and s the arc-length, is taken as measure of fairness and
thus minimized.
For surfaces, fairing were again related to minimization of the strain energy, that

is, minimizing the area integral of the sum of the principal curvatures squared.
b = /k% + k3 dA (3.26)

Some authors observed that if the length of the curve is not restricted in any way;,
the bend energy decreases by introducing large loops. Therefore a stretch energy term
was also added [21; 22].

The earliest discussion about fairness was submitted from Birkhoff [23]. In ana-
lyzing various art form, when talking about vases, he describes the Requirements for

Regularity of Contour. In particular he concluded that:

e the curvature should vary gradually, and should not oscillate more than once

on any arc of the contour not containing a point of inflection

e the maximum rate of change of curvature should be as small as possible; this
eliminates both unnecessarily large curvatures and rapid changes in curvature

along the contour

Draw on Birkoff’s work Moreton defined the minimum variation curve (MVC)

[24; 25], curves which minimizes the variation of curvature:

@:/(%)2 ds (3.27)

Moreton generalized his univariate approach by defining the minimum variation
surfaces (MVS), surfaces minimizing the arc integral of the sum of the squared mag-

nitudes of the derivatives of the normal curvatures taken in the principal direction.

dk,, \? dk, \
oo [ () () o .

where, the normal curvature k,, is the curvature of the curve projected onto the

plane containing the curves tangent t and the surface normal n.
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Such schemes can give rise to very fair surfaces, but the associated non linear
optimization problem prevents them for being used for interactive surface design. A

linearization of the above fairing functionals yields to:

@:/HC"(U)H? du  or QP:/HC”'(U)HZ du (3.29)

which gives a linear system to solve. The same approximation is done for surfaces:

P = / (%)2 + (%)2 du dv (3.30)

with ¢ begin the degree of derivative used for optimization. The approximation
is parameterization dependent, and will be worse when the absolute value of the
derivative of the curve is fluctuating more [22]. Among the literature, the following
papers could be consulted as example of variational modeling: [10; 21; 22; 26; 27;
28].

3.7.2 Constrained Optimization
Curves

The problem then becomes the optimization of the functional chosen as fairness

indicator, with the constraints given from the data to fit and the imposed derivatives.

For a curve, the first step consist in expressing the functional in terms of the

unknown, which are the control points

P = %/C(C(d)(u))Q du = %/C (ZO N () Pi> du (3.31)

where a functional of the d-th order derivative is chosen as example. In matrix form

o= -/C([Nd] P))? du = —/C[P]T INDTING [P du (332)
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The control points are not parameter dependent, thus

b = % " </C [NT [N du) P (3.33)

Just observe the similarity with the variational principle in finite elements method.
The matrix K, defined with

(K] = /C (NY [N du (3.34)

is called the stiffness matrix.

Thus the unconstrained variational problem takes the following form:

Minimize @ = —[P]" [K][P] (3.35)

To take into account the constraints, two main approaches can be undertaken:
the Lagrange multiplier method, or the penalty method [29; 30; 31]. Using Lagrange
multiplier all the specified constraints can be satisfied exactly. However, its drawback
is that the total number of equations to be solved will increase. On the contrary, the
penalty method does not possess this drawback, but it can only ensure the constraints
to be satisfied approximately. Actually many other considerations about advantages
and disadvantages of these two method could be done, look at [27; 28; 31].

In the present work a Lagrange multiplier approach has been adopted, due to its

simple implementation. The constraints can be expressed as

( n
> Niplur) Pi—Qr =0
i=0

gP)=0—14 > N/ ()P;i—Q =0 (3.36)
=0

> N/ (i) Py — Q=0

\ =0

or in the matrix form
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9] = [N [P] = [Q] = 0 (3.37)

The constrained variational problem can be reduced to an unconstrained variational

problem with the following modified functional:

¢ = [P]" [K][P]+[\]"[g] (3.38)

|
[

where [)\] is the Lagrange multiplier column vector, and has the same dimension as
the number of constraint equations. Differentiating eq.(3.38) in order to find the

stationary points:

6@ = [6P)" [K][P] + 6 ((N"[g])) =0 (3.39)

which gives, with the aid of equations (3.37, 3.38)

OP

9% o [K)[P]+ N[NJ] =0

op . (3.40)
9% _ [NJ[P] - [Q] =0

oA

The above is a linear system of n 4 n. equations, where n. are the number of the

constraints, which can be represented in this form:

................. | = (3.41)

The linear system is defined as long the matrices [K] and [N.] are computed (see
appendix A for details). Since the B-spline basis NV; , are piecewise polynomial of
order p, the Gaussian quadrature can be used to evaluate exactly the integral inside
the stiffness matrix (eq.(3.34)). The computation of the constraints matrix [N, is

easily achieved since it is nothing more than evaluation of the B-spline basis functions
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and their derivatives at the knot parameters associated with the constraints.

It is worth a note that, in the above matrix form, [P] is intended as a column
vector, even if its three spatial components would have required [P] to be a matrix.
The generalization is conceptually easy to do, but the notation would have been
labored. Moreover, due to the constraints which set directly the derivatives, the
development and resolution of the equations could be done separately for the three
coordinates.

A final note should be devoted to similar algorithms developed for general case
of NURBS. Thanks to the perspective mapping from the 3D Cartesian coordinate
space to the 4D homogeneous coordinate space, the variational approach could be
extended to NURBS. However, the weights at the control points should be pre-

selected somehow [10].

Surfaces

The same process can be generalized to surfaces . However, taking advance of the
tensor product properties, a scheme interpolating curves along one parameter, and

then interpolating the control points in the other direction would be more efficient.

3.7.3 Conclusions

The basis to build an algorithm which meet the requirements of section 3.6.2 have
been roughed in. In the next chapter the new interpolating algorithm will be analyzed

in detail, both from the theoretical and capability point of view.
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Surface Modeling in ASD

In this section will be first shown in details the main old geometric algorithms imple-
ment in ASD. After discussing their advantages and drawbacks, the new algorithms

are presented.

4.1 The old Algorithms featured in ASD

The geometric modeling in ASD is achieved through local, G! algorithms. Their
behavior is excellent in terms of speed of computation, numerical stability and ro-
bustness. The collinear points are managed as well. However, the generated shapes
can seldom lead to non-optimum fairness, due also to the merely first order geometric

continuity achieved across the interpolating points.

4.1.1 ASD Curve Algorithm - local interp crv

Let Q; be a set of n + 1 points to be interpolated. The local cubic G' curve inter-
polating algorithm is built joining cubic Bézier segments. The four control points
of the ith Bézier curve are denoted as P; The ends control points of each Bézier

segment are coincident with the two data points to interpolate, that is:

P,=Q P,=Qi Vi< N-1 (4.1)
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Let t; be the tangent vectors at each point: if they are not part of the interpolation

PZ, i+1

P
= 1,i+2
Q i+2 I:)0, i+2

Figure 4.1: Piecewise Bézier curve

problem then an evaluation method should be adopted. Denote the line segments
with q; = Q; — Q;_1. One of the most interesting method was created by Akima
[11]. He sets: o

A

t; Ci=(1—0)q + o qip

(4.2)
_ | qi—1 Xq; |
| Qi1 X Qi | + | Qig1 X iy |

Q;

The advantage is that three collinear points, Qx_1, Qx, Qrs1 yield a t; which is
parallel to the line segment. At the same time, if the points Qg_o, Qr_1, Qr and
Qk, Qrr1, Qreo are collinear, the denominator of eq.(4.2) vanishes. This implies
either a corner at Q; or a straight line segment from Q;_s to Q;,2. In such situations

a; can be defined in a number of ways:
e «; = 1, which implies C; = q;41 ; that is a corner at Q;;
° o = %, which implies C; = %(qZ + q;+1) ; this smoothes out the corner.
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Figure 4.2: Setting local tangent with Akima’s method

Figure 4.3: Straight line segment with three collinear points

When calling the algorithm, a flag would specify the required behavior. The end

conditions should be treated in a different manner, if they are not specified of course.
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A method which gives good results is:

Qo = 2q1 — Q2 q-1 =290 —q
dn+1 = 2qn — Qn-1 An+2 = 2qn+1 —dqn

If the desired curve should be a closed curve with at least G! continuity, then:

Qo=Cqn —qn — 1 d-1 = dp—1 — gn—2
qn+1 = 41 — Qo Qn+2 = d2 — 1

that is, the tangents are the same at the (coincident) end points. If the curve is a

closed one, a flag will tell the algorithm which interpolation method to adopt. In

Figure 4.4: Close curve with G* continuity

fact, airplane surfaces consist of both closed curve with edges (most of the airfoils)

and smooth closed curve (sections of the fuselage).

From eq.(2.8) for the internal control points P% and P}
i i Lo i i1
P1:P0+§ﬁoti P2:P3_§63ti+1
with G = [IC| B = [|Ci
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T

Figure 4.5: Supercritical airfoil NASASC2 interpolated with ASD algorithm.

The two unknowns are related with the internal parameterization. A good choice
is to set, for each segment, equal derivatives magnitude at the endpoints and the

middle point, that is (omitting the segment index ):
p=C0)l = [[CG)I =lIcO)l (4.4)

Using de Casteljau algorithm (section 2.2.5) to evaluate the middle point derivative

yields to ;
B=]CE) =7 IPs+Pr—Pr—Py| (4.5)

Finally, using equation (4.3) leads to the following equation:
1662 = 3 |[to + t3]|° — 128 (P53 — Py) - (to + t3) + 36 ||P3 — Py’ (4.6)

The equation admits two real solutions, only one of them is positive. Given [ it’s
easy to compute the internal control points. Applying the scheme for every segment

leads to the complete definition of the control points of all the Bézier curves.

Now the piecewise Bézier curve should be expressed in B-spline form. It is possible
to obtain a C! continuous cubic and to achieve a good approximation to uniform

parameterization setting
Uiy = U + 3 ||P] — P (4.7)
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This choice equals the speed (respect the B-spline parameter u) at every segment.

Finally, the B-spline curve is defined from the control points:
Qo, PY,PY, P, P, P ... P P Q, (4.8)

and knot vector:

U ={0,0,0,0, -4, 21 22 22 Tenl Tl 1) (4.9)

Ty ey
Up Up Up Up Up—1 Up—1

4.1.2 ASD Bicubic Surface Algorithm - local interp sfc

This scheme leads to C*, bicubic B-spline surfaces. Let
{Qr.:}, k=0,....n and [(=0,....,m (4.10)

be a set of points, and let {(u,v;)} be the corresponding parameter pairs, computed
by chord length averaging (section 3.3.6). The surface is obtained by joining n - m
bicubic Bézier patches, {By;(u,v)}, where Qg 1, Qri1.1, Qk i+1, Qrt1,141 are the
corner points of the patch. Except for the surface boundaries, all rows and columns
of control points containing the original {Q,;} are removed leaving (2n+2)(2m+2)

control points in the final B-spline surface. The knot vectors are:

U=+{0,0,0,0,uy,uy, Ug,Ug, - .. yUp_1,Up_1, U, Up, Up, Up } (4.11)
V = {Oa 07 07 07 61) ﬁla {)27@% cee 7’[)71—1’ ’Dn—la ’D’na ,Dna T}na @n}

Every patch has 16 control points. The 12 boundary points are obtained looping
through the m + 1 rows and n + 1 columns of data and using a cubic interpolation
scheme. The scheme is slightly different from the previously detailed one, since all
the rows (columns) must have the same parameterization in a tensor product surface.
Thus, C*! continuity at the segments endpoints can be still forced, but is not possible
to force equal speed at the midpoint of the Bézier segments. In detail, consider the
interpolation of the row [ = [, (consisting of the points Qo sy, -- -, Qun.1, ), Of total

chord length 7, . The tangent estimation could be done again with Akima’s method,
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and denote with t , the unit tangent in the u direction at the point Qg j,-

The interior Bézier point on this row are then computed by

k1 k1
Pg,oo) = Q1 + 8t P;,oo) = Qri1,0 — Btiyrg,

4.12
1o (Ug+1 — U) ( )

f= 3

For the computation of the four internal control points of each Bézier patch, some
estimations for the mixed partial derivative, Dy, at each Qy,; should be done. A

good choice is the three point Bessel method. In the univariate situation it states:

dx
dk:A_ﬂk Dy = (1—ap)dp + apdps
4.13
ith At -
wi ay = —————
T Ay + Al
Let 7, and s, denote the total chord length of the /th row and kth column.
Then, set
Dy, —Dj_y, Dj,.,— Dy,
=0 —a : ~+a ’ :
k1= 2 Ay, " Awgp
. . . . (4.15)
wo_ (1) Dy, —Dg . Dy . — Dy,
! l A, : Aty
with A Ao
ax = % b= % (4.16)
Auk + AukH Avl + Avl+1
Finally
w Qg d%})l + bl dz?l

Qg + bl
The four interior control points of the (k, [)th patch are now computed using eq.(4.17)
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and eq.(2.38)

k,l ) k,l k,l k,1
P1,1 = VDk,l + PO,l + Pl,o - Po,o
k,l wv k,l k,l
P2,1 = _’7Dk+1,l + P3,1 - Ps,o +
k,l uv k,1 k,
Py =—D+Pis—Pos+

(4.18)
k,l uv k,l k,1 k,1
P2,2 = YD1 T P2,3 + P3,2 - P3,3
with
_ Aty AV
9

4.2 The new Geometric Algorithms

The requirements for the new algorithms have been stated in the above chapter. A

summary of the key points are here reported:

C? continuity at each interpolation point (and off course in the interior domain);

flexibility and the capability of handling straight segments (or flat patches);

capability of handling up to second order derivative constraints;

generation of fair curves (surfaces).

4.2.1 The new Curve Algorithm - global interp crv

The problem is better approached from the piecewise Bézier of the local algorithms.
Is quite straightforward that a fifth degree Bézier, with its four inner control points,
provide the necessary flexibility in order to match the first and second order deriva-
tive, imposed as constraints or as continuity condition with the adjacent Bézier
segments.

Regardless of the degree, the first step to build B-spline joining together this
Bézier segments is to define a knot vector and a knot parameter set, with one of the

method talked about in section 3.3. Whatever the choice, knot parameter and knot
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vector are chosen with the same distribution. The knot vector would be of this form:

U=A{0,...,0 , Uy, ..Uy, .. Uk, -veyUpyeeyUN_1y -+, Un—1,1,...,1} (4.19)
, N N Y — ——

p+1 p D p p+1

Due to B-spline properties, the multiplicity of the internal knot vector is related with
the continuity. Therefore, adjusting the internal points of each Bézier segments to
meet C? continuity, means that the B-spline could be refined till internal knots have

multiplicity p — 2. Thus, the final knot vector would be of the form

U=A0,...,0,t1,U1,Uy, ... U, U, U .-, UN_1,UN_1,UN_1,1,...,1}
—— —— —— ~ ~~ 7 N——
p+1 p—2 p—2 p—2 p+1

The number of the control points is then immediately defined, due to B-spline

properties, from

n:\(N—Q)~(p—2)+2~N'(p—i—1)—p—1 (4.20)

where N is the number of point to be interpolated, n is the number of control points,

m is the knot vector length. Assume a set of points to be interpolated

{Qr} k=0,...,N
and d and dd constraints on first and second order derivatives:

[Q} k=0,... K
QY k=0,... KK

The last step in defining the problem is the selection of the fairing functional,

which would be of the form

1
¢ = _/ IC9)” du (4.21)
2 Jc
with d being the optimized order derivative. At that point, provided
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- the degree p of the B-Spline,

- the distribution of the knot vector and the parameterization,

- the fitting data

the linear system is of section 3.7.2 is easily achieved in explicit terms.

It is worth a comment on the above points. Interpolating points are part of the
input data. Also derivative constraints can be imposed at edges, in order to join
the curve with the desired smoothness. But, if straight segments are wished when
three or more points are collinear, first and second order derivative constraints have
to be set also in the inner region of the curve. Derivative constraints at the inner
region are also needed if a local flavor of the interpolating curve is required. For the
aforementioned reasons fifth degree B-spline is the choice when seeking for flexibility,
the third order not being able to satisfy second order derivative constraints (it leads

to an over determined system).

The imposition of the derivatives, when actually only shape constrains are need-
ed, leads to a fair choice of the parameterization parameters. For the first order

derivative:
C'=at (4.22)

a reasonable estimation of o would be [§]

«

N
Z Q1 — Qill = ctor (4.23)
k=0

which performs well with chord length parameterization. For the second order

derivative:
C"=dt+a’k (4.24)

a usually well behaving estimation of & would be

a=0 (4.25)
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Note that, in an interactive environment, o and & can be used as additional shape
controls.

A final note should be devoted to closed curve, with or without continuity. If
smooth closure is needed, then the following condition, which can be easily integrated

in the system, is added:

C'(0) = C'(1) ;Nlip(O)Pi - ;NZCP(DPZ
” (R = - (4.26)
C"(0) = C"(1) > N/ (0P => N/ (1)P;

Finally, the algorithm offers the following capabilities:

e possibility of choosing between smooth or not smooth closed curve interpola-

tion;

e possibility of interpolating the data points with local tangents estimated with
Akima’s method;

e choose if aligned points should be interpolated with straight segments, and

eventually settings the tolerance for which points should be considered aligned;
e choose between three different parameterization;

e choose the derivative order of the shape optimization functional;

choose between third or fifth degree B-spline.

The flexibility of the algorithm is shown in the figures 4.6 - 4.9.
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ASD old algorithm
- = =c?p=5 opt=2

O  Points

Figure 4.6: New algorithm behavior with three collinear points, for both fifth degree B-spline
with fairing over second or third order derivative.

ASD old

— — — NEW p=5, 0=2, Local Flag

----- New, p=5, 0=3, Local Flag
O Points

Figure 4.7: New algorithm behavior with three collinear points, for both fifth degree B-spline
with fairing over second or third order derivative, and the same tangent vectors of
the old local algorithm.
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New Alg:
— p=5 opt=3 New Alg: o
exact p=5opt=2
¢ points ex;_act
¢ points

—— ASD original
exact
¢ points

Figure 4.8: New algorithm behavior with 5 points with smooth flag. The third order derivative
fairing based curve matches nearly exactly the circumference.
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new p=5 opt=3
old
points

Figure 4.9: Airfoil interpolation with the new and old algorithms. Note that, if the points to
interpolate are many and properly distributed, the two interpolant curves are nearly
matching each other.
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4.2.2 The new Surface Algorithm - global interp sfc

If Qg is a N1 x N2 matrix of points to be interpolated with a (p,¢)th degree
B-spline, then it holds :

Qr,: = S(tx, vy) = Ni,p(tug) Njq(01) Pij (4.27)

The product tensor surfaces enables to extend effortless the curves algorithm for
surface interpolation. Thus, the same frame should de adapted to fit the bivariate

situation. The two knot vectors are obtained through the usual average process:

1 &
Uy, = 0] k=0,...,m
k m2—|—1 ; k !
) ;l (4.28)
_ _k
) 1 ;0”1 ) M2

where the parameters %}, and the barvy are obtained with one of the method adopted
in the univariate problem. Just note that it still holds the eq.(4.20) applied to both
the directions.

Bringing back the surface interpolation to a sequence of curve interpolation

ny
Qr,: = Z N; p(ur) Ry (4.29)

i=0

with .
R, = Z Nj (1) P (4.30)

=0

Thus, the process consist in fairing
- first the n; + 1 isoparametric curves,
- then the ny + 1 curves interpolating the isoparametric curve control points.

Capabilities of this algorithm are strictly related with those of the univariate

one. However, due to the sequence of curve interpolation, some restrictions arises.
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(b) Alignment Flag ON

Figure 4.10: Behavior of the algorithm with and without the alignment flag option activat-
ed. Note how the interpolating algorithm is capable of detecting and drawing flat
patches

As an example, the imposition of derivative constraints in both the directions is a
little tricky. Besides this, the algorithm behaves in a satisfactory way in front of the
typical aeronautical surfaces to be interpolated and, due to its flexibility, even to

more generic shapes.

Some results and capabilities of the algorithm are shown in fig.4.10 and 4.11.

4.2.3 Lofting Algorithm

If the sections to be interpolated differ much in shape, and at the same time exact

section reproduction is required, it may happen that the unique knot vector, obtained
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(b) Corner Flag OFF

Figure 4.11: Behavior of the algorithm with and without the corner flag option activated. Note

how the interpolating algorithm is capable of closing with smoothness a closed
surface

as average of section knot vectors, represents for a some sectional curve a unhappy
choice, leading to unsatisfactory results. Look back at section 3.3 to realize the
consequence of a not proper knot vector and parameterization.

For aeronautical shapes, is particulary important to avoid not accurate shapes,
especially when dealing with airfoils. An example is shown in fig. 4.12.

At the moment, lofting is implemented only for wing features, with the sectional

curves being the airfoils (the spanwise direction interpolation is linear). The process

consists in:

- definition of each sectional curve (airfoil) starting from its points interpolation

through the above univariate algorithm ;
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(a) Lofting

(b) Normal Interpolation

Figure 4.12: Wing with quite dissimilar airfoil shapes at tip and root. Each airfoil is interpolated
with just twenty points.

- knot insertion when correspondent knots differ to a selected amount;

- linear interpolation of the sectional curves in the spanwise direction.

Lofting tend to be redundant if the sectional curves are defined through a high

number of interpolation points.
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4.3 The ASD Advanced NURBS GUI

The implementation of the new algorithm gives a consistent versatility of ASD in
terms of shape generation. For each feature, the Advanced NURBS GUI gives ad-
vanced control of the geometric shape generation. Thus, the most appropriate inter-
polating algorithm could be used depending on the particular needs. In fig.4.13 is
depicted a general example of the interface. Although similar, the GUI is specialized

for every feature. For body, bulk, wround, wingbody features the properties refer

) Adv_NURBS BEEN -/ Adv_NURrsS - [] ]
Advanced NURBS Settings Advanced NURBS Settings
— 2 Global interpalstion
Hurbs Degres v 5"  3°
Optim. Deriv. ¥ 3th " 2th
Local Tangent ™~ Yes (+ Mo
Alined Flag v ‘ez " Mo It:I:_r—;j;m
Corner Flag £ Yes (s Mo
Knot Vector  Uniform ¢ Chord Length Centripetal

C1 Local Interpolation C1 Local Interpalation
|7 = |7Curner Flag ~ Yes = No [v ES

Lofting Lofting
tolerance tolerance
* Mo "~ Yes % * Mo " Yes %

confirm & Exit Confirn & Exit

Figure 4.13: The Advanced NURBS GUI

to both directions, for wing the properties refer only to the direction running along

chord, since the wings are interpolated in a linear way along spanwise direction.

4.3.1 (C! Algorithm Parameter

It is possible to choose if to maintain the original C! local algorithm or to move

to a C? global one. If the data set are very large and curvature continuity is not
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important the former one is the choice to do. In fact, it leads to very fast geomet-
ric generation without problems of numerical instability. Anyway, the flexibility is
reduced, the shape with few data set couldn’t be the most fair and the use of other
parameterization is not supported. In this interpolating scheme, handle of continuity

of closed curves is also provided.

4.3.2 (C? Algorithm Parameter

When high quality surfaces or greater flexibility is required, it is necessary to choose

the global algorithm.

Degree selection

The global algorithm permits to choose between third or fifth degree B-spline. Any-
way, only the fifth permits to handle the parameters, in third degree algorithm this
is not yet supported. The use of third degree B-spline should be undertaken when
the data set to interpolate is very unevenly spaced, and fifth degree could lead to
unwanted bulges (in this situation the effects of linearization of the optimization

functional come out).

Optimization derivative selection

It is possible to choose between second or third order derivative square minimization
as fairness functional. For third degree B-spline only second order derivative based
functional is supported. This options has relevance when only a few points to inter-
polate are provided and/or particular shapes, like circular section shapes, are desired
as most closely as possible (see also fig.4.8 for a different performance of the fairness

functional on a circumference, or fig.4.6 for another particular situation).

Local tangent selection

To force the global algorithm to interpolate the same data set as the local algorithm,

is possible to impose at each point tangent vector estimated with Akima’s method.
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This will be useful to achieve C? maintaining the shapes obtained with the local
method. Again this feature is addressed to quintic B-spline.
Aligned flag selection

When selected the interpolating algorithm draws straight segments between three or
more aligned points. The tolerance field permits to set the gap within to consider the
points to be aligned. This capability is not yet supported for third order algorithm.

Corner flag selection

When closed curve are encountered, a smooth (C?) or not smooth closure can be
imposed. Fuselage and wings represent classical examples of the two situations. For
instance, a wing trailing edge is not desirable to be closed with a smooth curve.

Knot vector selection

The knot vector can be built using uniform, chord length and centripetal param-
eterization. For a few and unevenly spaced data points the results can be much

different.

4.3.3 Lofting

The field tolerance sets the limits to which add or not the new knot. Lofting gives
high quality surfaces at the price of high computational cost. It should be used only

when necessary.

4.4 Some Results with the new Geometric Engine

In the following section some results obtained with the new geometric engine of ASD

are shown.
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Figure 4.14: A complex configuration built to verify the new algorithm capabilities. The CA-
TTA visualization option is the Shading with edges one. As shown, no curvature
discontinuities is detected in the inner region of the surfaces.

Figure 4.15: A PrandtlPlane Canadair configuration.
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Figure 4.16: A PrandtlPlane Canadair configuration.

Figure 4.17: The PrandtlPlane ULV Tandem.
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Figure 4.18: The body of an Helicopter similar to the Agusta A109 .

150



4.5— Future Improvements

4.5 Future Improvements

Surely the improved flexibility raises ASD value in terms of geometric modeling.

Improvements can still be made, for the C? algorithm, in the following area:

e on the efficiency side, the algorithms should be revised to avoid matrices close
to singular for very large sets of interpolation points. In fact, as for FEM
methods, the matrix are stiff if considerable large problems are handled. It may
be considered to use penalty method approach instead of Lagrange multiplier

one. An idea may be also the use of wavelets, as described in [32].

e [t should be checked if some constrains tend to be linearly dependent, at least

considering numerical roundoff;

e implementation of robust simultaneous both direction derivative constraints

capability;

Talking about the geometric engine in general terms, it feels the need of an
approximation fitting algorithm, in order to avoid bulges and waves especially at
intersections, where, due also to numerical errors of the intersection algorithms, they
most frequently arise. In this sense the flexibility of the fifth degree algorithm is

counter-productive, and all the limitations of the linear fairing functional come out.
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Structured Grid Generation Module

As shown in section 1.3, ASD features an internal powerful mesher, yet capable to
generate only unstructured grid. On the other side, PanAir, such as many other pro-
grams, requires a structured quadrilateral mesh as input geometry, thus an internal
structured grid generator should be implemented in order to have an unique inte-
grated environment. Moreover, due to Pan Air grid requirements, particular caution
should be reserved for network edges connected along common interface, as indicated

in section 6.2.3.

5.1 Introduction

The partial differential equations that govern physics are not usually amenable to
analytical solutions, except for very simple cases. Therefore, the domains of com-
putation are split into smaller subdomains (made up of geometric primitives like
hexahedra and tetrahedra in 3D and quadrilaterals and triangles in 2D) and the
governing equations are then discretized and solved inside each of these subdomains.
The subdomains are often called elements or cells, and the collection of all elements

or cells is called a mesh or grid.

The accuracy of numerical computations is influenced to a large extent by the

quality of the grid used, hence grid generation techniques should allow to control the
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grid structure an the distribution of grid points. At the same time, since grid genera-
tion is an intermediate stage between the geometric definition and the mathematical
solver, it should ideally be fast and automatic, requiring minimal user intervention.

Despite tremendous advances in grid generation in the last decades, it still repre-
sents one of the major bottleneck in terms of time and automation [33]. This holds
especially for complex three-dimensional configuration and CFD analysis, where the
requirements of deeply refined and smooth grid to avoid considerable numerical error
can be met with much more effort.

However, surface meshes are easier to generate, and at the same time panel meth-
ods are less sensitive than CFD to grid quality, this being especially true for higher
order panel method like PanAir. Moreover, the NURBS parametric description of
the surfaces is advantageous for accurate grid generation. All these aspects enable
to achieve an acceptable grid generation at almost interactive speed, this being of
primary importance in an optimization optic. It is cumbersome to build a structured
grid for complex geometric shapes, and the limitations of the structured grid topol-
ogy arise. It is then necessary, for a successful meshing, to split the surface in more
regions, and mesh every block. Fulfillment of requirements at the common interfaces

of this blocks represent a further trouble.

5.1.1 Grid Connectivity-Based Classification

The most basic form of mesh classification is based upon the connectivity of the

mesh: structured or unstructured.

Structured grid

A structured mesh is characterized by regular connectivity that can be expressed as
a two or three dimensional array. This restricts the element choices to quadrilaterals
in 2D or hexahedra in 3D. The regularity of the connectivity allows to conserve space
since neighborhood relationships are defined by the storage arrangement. Additional
classification can be made upon whether the mesh is conformal or not, that is, the

intersection between any two elements is a sub-element of both (a face, an edge, a
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node or nothing) and the maximal dimensional shared element must be only one and

complete. An example of a structured surface mesh is shown in fig.5.1(b).

(a) Unstructured surface grid (b) Structured surface grid

Figure 5.1: An example of two different class of surface grids.

Unstructured grid

An unstructured mesh is characterized by irregular connectivity that is not readily
expressed as a two or three dimensional array in computer memory. This allows for
any possible element that a solver might be able to use. Compared to structured
meshes, the storage requirements for an unstructured mesh can be substantially
larger since the neighborhood connectivity must be explicitly stored. An example of

a unstructured surface mesh is shown in fig.5.1(a).

5.1.2 An Overview of Structured Mesh Generation

Nurbs are a very powerful representation for grid generation. First of all, modern
CAD represent shapes with NURBS, thus it is an easy choice to import the surface
with the same description in the grid generator module. Further, with NURBS it is
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possible to maintain high level of accuracy, efficiency and numerical stability during
the grid generation.

The grid generation process starts either with the specification of the boundary
condition along the physical boundaries or with the distribution of grid points directly
on the parametric boundaries. A point inversion algorithm give immediately the
correspondence between physical boundaries points and parameter values. Then the
grid is generated in the parametric space using different methods, and finally it is

mapped back into physical space [34; 35]. This process is classified as algebraic
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(a) Mesh in the physical b) Mesh in the parametric space

space

Figure 5.2: Correspondence between parametric and physical space mesh.

method; it is easy to implement, fast and efficient, but results may not be smooth,
the main reason being a bad parameterization. In fact, parameterization changes the
distribution of points, thus can affect the grid distribution, leading to highly skewed
meshes. It is worth a note that slope discontinuities in the boundary is propagating in
the inner region. The most successful smoothing schemes are based on elliptic system
of partial differential equations that relate the physical and computational variables.
This algorithms are time consuming, but capable of generating very smooth grids
[36; 35].

To overcome topological limitations of the structured grid when handling extreme-

ly complex shapes, a multi-block approach can be adopted. The main drawback of
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this approach is the large amount of time and effort required, since usually grid
points must coincide at the common interfaces of the blocks [37].

By moving (or even adding) grid points it is possible to improve accuracy of the
solution: g¢rid adaptation is the technique to concentrate grid points in regions of
high gradients allowing accurate results without the use of an excessively fine grid

in the entire computational domain [38; 39].

5.2 The New Grid Generation Module

The new meshing module couples the ASD unstructured mesher with a new struc-
tured grid generator. After selection of the desired features to mesh, structured or
unstructured mesh generator can be launched from the main GUI (fig.5.3). Obvi-

ously the selected features should contain generated surface data. In the following

) ASD 1.0 - PPTO03mod_trim2new.asd BE E
File Edit Generate... wiew Tools
— Body — Fillet
===Flzoliera PPTO03 ﬂ ===Ala_anteriore_fusolier: .
===Fin_LIp_Fusoliera
Unstruet. Grd Generator -
ﬂ Generate selected... b
Structured Grid Genergtor
“Wigw
— Wing — Wingbody ) — Tfillet
===M5 anteriore inboard . j ==>Fin_Up_AIaJaosteriorej
===l anteriore outhoard
==54la posteriore inboard
===Al3 posteriore outhoar
===Fin_Lp - -
A et ﬂ . .
— Bulk — Inlet/Outlet — Wround
===Paratis ﬂ ﬂ ﬂ
| || |
Status Text |

Figure 5.3: ASD main window
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sections description of the structured grid generator is provided. The capabilities of

the unstructured mesher have been already analyzed in section 1.3.

5.3 Requirements for the Structured Grid Gener-

ation

The grid generation capabilities are aimed to fulfil Pan Air input grid requirements,

dealing with ASD surface generation particularities.

5.3.1 ASD and the Mesh

ASD represents every surface feature with NURBS, being thus naturally oriented to
gridding. It is not possible, a part from simple configurations, to reduce complex
geometry description to a unique NURBS due the insight topological limits of tensor
product surfaces. Thus, a multi-block grid approach is needed. In practical terms,
every feature generated in ASD and selected for gridding represents a separate block,
and further, pierced fuselage and wing should be split in two or more simply connect-
ed region, each of this region representing a block. In fact, to obtain a proper mesh,
every pierced surface should be split in simply connected sub-regions, as depicted in
fig.5.4. The subdivision wouldn’t represent a problem from a pure grid generation
perspective, since every block is described with NURBS and thus easy to mesh; this
however holds if no constraints, such as point matching condition, are imposed at
the boundaries. But, even if each analysis program has different requirements for
the input network, the blocks have almost always some kind of constraints on the
grid points at the block boundary edges, even just for having a coherent geometric
description. In the next section it will be shown how for complete aircraft config-
urations the required geometric flexibility will affect the process of structured grid

generation, in term of price and grid quality control.
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5.3— Requirements for the Structured Grid Generation

Figure 5.4: Structured mesh for a not simply connected surface: the network is split in two
sub networks representing simply connected regions. The common edge points are
marked in red.

5.3.2 Pan Air and the Mesh

Pan Air requirements in terms of mesh will be described in section 6.2.3. Briefly, the
network edges connected along a common interface, called abutment, should satisfy
particular conditions. In fact, the panel edge points should match along the common
edge, or should fall in the straight line between the other network points. Figure 5.5
clarify abutment rules. Final result is an interface without gaps between the panel
edges of the networks.

Pan Air has some internal geometric functions that look for connected networks

and move the point to fill the gaps. However, it would be better if the grid generation

Figure 5.5: Correct distribution of points at the common edge of two networks.
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process immediately takes care of this requirement. Relying on Pan Air internal
functions won’t be a smart strategy: just consider that these functions are not always
able to recognize the proper facing networks, due also to numerical errors in the
input geometry, and disasters could easily occur. A robust strategy will rely on ASD
features definition, which Pan Air couldn’t access, to detect the connected networks.
Once mesh on the common boundary are correctly defined, the grid generation could
proceed with the internal domain meshing.

Such a process leads to a generality loss since meshing of connected networks is
no longer independent each from the other. However, it should be stated that many

other powerful codes require the same, or at least similar, network specifications.

5.4 Logics and Mesh Organization

The grid generation procedure should reach a compromise between flexibility and

simplicity. Thus, a clever underlying logic should be adopted.

5.4.1 Subdivision in Logical Subsets

The first step is a subdivision of the configuration in logical subsets. This process

keeps to the following key points:

e a generic wing or wingbody feature, not yet owing other defined logical subsets,

is considered as a starting point;

e then starting from one side of the feature, the adjacent feature is added as
element of the subset and removed from the list of available features; exception
are tfillet features, which will be added later. If the feature has free boundaries,
or the next neighbor feature is a body, the process has to be interrupted, and if
not yet done, restarted from the opposite side of the starting feature; whatever
the situation, every feature added to a subset should be removed from the list

of available feature.
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e Tfillet are then added to the subset containing the piercing wing, only if the
pierced wing is not a member of the same subset. This is needed to avoid

self-intersections inside a logical subset (fig.5.6).

Figure 5.6: Wing pierced from tfillet of the same logical subset.

The final picture shows one or more logical subsets, connected each other only
through a body or tfillet feature. An example of results of this process on a complex

configuration is depicted in fig. 5.7

Wround 1 Wing 3 Tillet 1

Fillet 3

\

Fillet 2

Wing 1

; Fillet 1 Body 2
Body 1

Figure 5.7: Subdivision of a complex configuration in logical subsets. The color of the name of
the features identifies the different subsets elements.
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5.4.2 Meshing the Logical Subsets

Next step provides a mean of selecting the features that dictate the mesh. First of all,
a common nominal chordwise grid distribution is defined by the user. The choice is
between a uniform and cosinusoidal chordwise distribution. The cosinusoidal should
be the preferred one, since the magnitude of the gradients of flow properties are
especially preeminent at leading and trailing edges, thus a finer grid is necessary
there.

Next, for each logical subset a nominal chordwise number of panels is defined.
This could be done in two ways: defining the number of panels in regard to the
overall largest (in terms of chord) wing, or directly setting it for each subset. The
logics of the first choice aims to bound the coarsest (in chordwise direction) mesh
region to the prescribed level.

Also a common mean aspect-ratio for wing grid is defined. This parameter fixes
the spanwise grid distribution in such a way that, for every panel row, the mean
spanwise dimension is the product of the aspect ratio with the mean chordwise
dimension (in the parameter space). In fig.5.8 it is shown how these parameters

influence the grid of a logical subset composed of two wings and one wround features.

The way these grid parameters are carried throughout all the mesh is summarized

in the following.

e Inside every logical subset a hierarchy between wings is defined, starting from
pierced wings with larger to smaller surface plant, ending with not pierced

wings, again from larger to smaller.

e Starting from the dominant wing, the mesh is developed from the boundaries
to the inner surface. If the boundary vertices aren’t already fixed, then the
wished (cosinusoidal or uniform) chordwise distribution can be easily imposed,
and then, according to the aspect-ratio parameter, the same should be done for
the spanwise distribution. If for one boundary edges the vertices are already
fixed (induced from an adjacent dominant wing), then, on the opposite edge,
the wished chordwise vertex distribution should be built. Once defined the

162



5.4— Logics and Mesh Organization

(a) Uniform distribution (b) Cosinusoidal distribution

(c) Cosinusoidal distribution and finer spanwise
distribution

Figure 5.8: Uniform and cosinusoidal chordwise distributions for a logical subset composed of
two wings and one wround feature.

boundary grid points, the mesh is naturally built by a linear combination of

the corresponding points on the boundaries.

e The grid generation on the remaining features of the subset is easily obtained
in the same way. In fact, bulk and wround features connect wings, thus the
grid at common edges with wings are imposed from the latter. Fillet and tfillet
features have the grid at the common edge with the wing imposed from the

latter, and the opposite edge free (due to the rules of definition of the subsets).

It should be pointed that the uniform or cosinusoidal distribution are easily obtained
in the parameter space, and due to the proper parameterization of the representing

NURBS, a reasonable consistent distribution in the real space is expected.
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(a) Complete configuration to mesh

Fillet1

(b) One logical subset and its component features.

Figure 5.9: Process of meshing the logical subset of the complete aircraft surface.

An elucidating example is shown in fig.5.9. Here, the largest is wingl, but dom-
inant is wing4, since it is the unique pierced wing of the subset. Thus, it is first
meshed according to the parameters selected (number of subdivisions in the chord-
wise and spanwise directions, chordwise distribution). Second in the hierarchy comes
wingl, which has a common edge with the dominant wing4. Thus, the grid point of
wingl at the common edge are imposed. To do this, a point inversion algorithm is
necessary to evaluate the parameters corresponding to those points in the NURBS
describing wingl. Selecting independently the opposite edge mesh points, the grid is
finally generated with a linear interpolation. The process continues for all the wings,

following the hierarchy. Once meshed all the wings, the bulkl common edges with

164



5.4— Logics and Mesh Organization

wingl and wing2 are fixed, and the spanwise distribution of points is determined
with the intent of maintaining the same panel medium aspect ratio as that imposed
for the wings.

A note ends this process; common edges of different NURBS are not always
coincident along the interface. Referring to fig.5.10, the two wing surfaces are build
through interpolation of a set of data, usually coincident at the common edge. But,
due to the tensor product surface characteristics, the knot vector is obtained through
an average process of the section points distribution. Thus, if different airfoils are
used at tip and root of the same wing, it could happen that chordwise direction
knot vectors of wing A and wing B are different. As a results, it is possible that
the surface edges at interface doesn’t completely match, leaving some small gaps. In
such a situation, when trying to impose the points of wing A to wing B along the
common edge, the point inversion algorithm gives back parameter corresponding to
the closest points. Usually, these gaps are very small but, to avoid problems with the
PanAir internal functions, it is better to fix this issue moving the respective points

to be coincident.

Common Edge

Figure 5.10: Structured mesh for a not simply connected surface: the network is split in two
sub networks representing simply connected regions. The common edge points are
marked in red.

5.4.3 Connections between Logical Subset Grids

Even if the grid is well developed inside every logical subset, their interfaces should
still undergone some fixing process. As stated, the two possible scenario of subset

connections are through fillet-body or tfillet-wing features.
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With reference to fig.5.11, the intersection with tfillet and wing features is ad-

dressed in the following way:

- the grid points induced at the common edge from the tfillet and from the wing

grids are compared.

- If some points are closer than a specified tolerance, they are modified to

coincide.

- The not matching points belonging the tfillet grid are added to the wing grid,
and used to define new corresponding points on the opposite edge, with the
intent to add induced lines grid on the wing (in dashed red line). This new
points should be adjusted in order to let them be aligned with two adjacent

points of the wing3 grid.

Figure 5.11: Process of connecting two logical subset (characterized by blue and black grid
color) trough a tfillet-wing connection. The red dashed lines represent the mesh
lines induced from the tfillet.

The grid generation of body features is a little more cumbersome, since more fillet
features induce grid points on the boundary edges at the same time. The process

follows these steps:

- The body feature is subdivided in simply connected regions (as shown in
fig.5.12)
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Figure 5.12: Subdivision in simply connected regions

- The natural mesh of the body feature is controlled through two main param-
eters. A first deviation from straightness parameter defines when to draw a
transversal line mesh. Starting from the origin, the top line curve segment is
compared with the length of the straight line connecting both ends. When the
difference is greater than the parameter, grid points on the opposite sides of the
surfaces are drawn, in order to define a line mesh. Such control helps to have

a mesh that reproduces the original shape of the body (fig.5.13). The other

(a) 3% deviation from straightness (b) 0.5% deviation from straightness.

Figure 5.13: Different body mesh obtained with two different values of deviation from
straightness parameter.

parameter is the manual frame specification, which allows the user to add one

or more line mesh at the desired location, specified by cartesian coordinate x.

- The fillet and body natural mesh points at the interfaces are compared. If they
are not to close, for each mesh point of the fillet is sketched a line mesh in the
body, as depicted in fig.5.14. Of course, at the interfaces the points should be

adjusted in order to follow the usual requirements of no gaps.
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Figure 5.14: Mesh lines (in red and blue) induced from the fillet grids in the body

- This process is not optimal since induced grid lines may fall close, and thus
aspect ratio of some panels could have values far from the unity: it is nec-
essary to control this grid quality parameter. This is done by adding further
horizontal or vertical mesh lines until the required maximum aspect ratio is
obtained. An example of grid obtained with different values of this parameter
is shown in fig.5.15. It is worth a note that it is not always possible to fulfil
this requirement, thus the number of iterations (lines added) must be limited

to a value. In fact, adding a line could help in some regions, an worsen in other

areas.

.\‘- \
oo,
N
Wiy,
- lni S

(a) Grid with maximum body panel aspect ratio (b) Grid with maximum body panel aspect
of 20 ratio of 5.

Figure 5.15: Different body mesh obtained with two different values of the body panel maximum
aspect ratio parameter.
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5.5— The Structure Grid Generation Interface

5.5 The Structure Grid Generation Interface

The main interface is depicted in fig.5.16
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Figure 5.16: ASD main window

5.5.1 Wing and Body Feature Parameters

Mesh parameters are those described in the previous sections, both for wing and
body features. To aid the user to define the chordwise number of panels for each

logical subset, when selected, a view of the subsets is given.
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5.5.2 Mesh Generation

When the user has defined the wished parameters, mesh is ready to be generated.
The status bar gives information about the generation status. Ones generated, the
grid could be stored in the ASD feature fields, or could be written in an external file

according to LaWGS format ([40]). The mesh is also ready to be plotted or analyzed.

5.5.3 Mesh Analysis and Stats

Mesh analysis is an instrument to check quantitatively grid quality. The results
are given in the mesh stats panel, separately for body and not body features. The
statistics include the maximum, minimum and average value of the mesh geometric
parameters aspect ratio, skew, area. Also the number of panels is supplied within
the statistics. The statistics could or not account for wing plugger and body bases,
panels needed for closing wing and bodies edges respectively, in order to bound the

internal and external region.

5.5.4 Plotting Tools

The plotting panel gives the opportunity of a graphic visualization of the mesh quality
parameters. A filter is also applicable, in order to detect the critical area in terms of
grid quality.

The tools provide also the capacity of plotting the outgoing normal vector for each
panel, following the LaWGS definition ([40]). This is more a tool for developers, and
should be used to check that the grid is properly described.

5.5.5 Grid Storing

If grid are stored in ASD, on each feature the field structured mesh is added. This
field reports the grid coordinate in a three dimensional array and in the Pan Air
input format. Thus, when saving an ASD session, also the grid is saved. In such
situations, loading the structured grid module won’t delete the mesh, until the Clear

mesh from ASD button is triggered.
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Figure 5.17: Grid Generation GUI: note the Mesh stats panel, reporting grid statistics

5.5.6 Pan Air Preprocessor Launcher

Once the mesh is saved, the Pan Air preprocessor could be launched from the menu.

5.6 Examples of Structured Grid Generated

In this section some examples of structured grid generated on conventional and

unconventional aircraft configurations are reported.
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Panel Aspect-Ratio Plot

ratio plot of a grid

(a) Aspect

336 elements with aspect ratio < 0.2

e

-ratio smaller than 0.2

(b) Panels with aspect

Plot of panels aspect-ratio. Note how this feature could be used to see the overall

mesh parameter, or to look for mesh panels satisfying a user defined filter.

Figure 5.18

d Future Improvements

itations an

11m1i

5.7 L

and the mesh are created in a few

)

The structured grid generator is very easy to use

This is very important in an optimization optic. The main shortcomings

seconds.
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Panel Mesh Normals
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Figure 5.20: Grid of a PrandtlPlane configuration.

are about the integration of the subset meshes. In fact, some regions present a very
enriched grid in order to avoid low mesh quality. An example is the aft region, where
fin and tail meshes induce a grid on the body. In this region may be not of interest
to have a so refined grid. It should be implemented another way to mesh this region

in a more efficient way. Is important to underline that many of this problems arise
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==

s

Grid of a PrandtlPlane configuration.

Figure 5.21

Grid of a conventional aircraft configuration.

Figure 5.22

from the topological limitation of quadrilateral structured grid.
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Figure 5.23: Grid of a PrandtlPlane configuration
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Panel Method: Pan Air

Panel methods are numerical schemes which can be used for solving linear, inviscid,
irrotational flow at subsonic or supersonic free-stream Mach numbers, represented by
a linear partial differential equation (the Prandtl-Glauert equation). The differential
equation, through a standard mathematical process, could be expressed as an integral
equation over a boundary domain. This domain is then approximated with a set
of panels on which unknown singularity strengths are defined. Imposing boundary
conditions at a discrete set of points, such as panel centers, yields to a system of linear
equations relating the unknown singularity strengths. The equations are then solved
to obtain the singularity strengths, which, one known, provide complete information
about the flow.
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6.1 Panel Methods

6.1.1 The Prandtl-Glauert equation
Navier-Stokes equations

The basic equations describing the flow of a viscous compressible, heat-conducting

fluid are the Navier-Stokes equations'. These are [41; 42]:

(a) The continuity equation

dp _Op =0V
S TV (V) =54 =0 (6.1)

where V = < By 622, a%) is the gradient operator with respect to the location
vector x = (1, %2, x3). Be aware that hereinafter location vector may be also
expressed in the alternative notation x = (x,y, z) for practical purposes. In

addition t is time, p (x.t) is the density, and V (x.t) is the total velocity.

(b) The momentum equation

3

Z

0Tji _
+Z S tef;  i=123 (62)

where 7;; is the deviatoric portion of the stress tensor which vanishes for a
frictionless fluid, f(x,t) is an external force per unit mass exerted on the fluid,

and p(x,t) is the pressure.

'To be rigorous, the term Navier Stokes equation refers strictly to the momentum equation,
being then generalized to indicate the whole set of equations
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(¢) The energy equation

0 1 L9 1 B
&(P€+§P|V| ) +;a”% [(P€+§P|V| >‘/;:| =

> L0 L) oT
p;fiW—izlaxi (Vi) + Y o (Timvmwaxi) (6.3)

. (2
i,m=1

where e(x,t) is the internal energy of the fluid, k£ is the heat conductivity

coefficient for the fluid, and 7T'(x,t) is the temperature.

(d) The equation of state

where the function f depends on the type of fluid; for a perfect gas, eq.(6.4)
can be written as

p=pRT (6.5)

where R is the gas constant.

Euler’s equation

The Navier-Stokes equations can be simplified by neglecting the viscosity effects,
which is equivalent to setting the deviatoric stress tensor 7;; = 0. Combining the

momentum and continuity equations leads to

dV; op

P&t = o +pf; (6.6)

where the usual convective derivative operator is defined,
d 0 0
Fr + ; Vif)_xi (6.7)

Eq.(6.6) is called Euler’s equation. The derivation of a full system of equations is

obtained as follows. By means of the continuity equation, the energy equation can
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be split in two parts [41], the first expressing the conservation of mechanical energy

d /1
T (5 |V|2) =-V.-Vp+pV-f (6.8)

and the other the conservation of thermal energy

1 de d /1
— V. T) = — — = )
4 pv (kVT) dt TP dt (p> (6.9)

The steady non-linear potential flow

With further assumptions the Euler’s equation can be reduced to a single equa-
tion, decoupled from the momentum equation (which transforms into the Bernoulli

equation). First, assume an isoentropic flow so that no heat is added to the fluid
q=0 (6.10)

Then, assuming irrotationality, or V xV = 0, implies the existence of a potential
function @(x,t) such that
Vo=V (6.11)

If a freestream potential @, whose gradient is the uniform velocity V., exist, it can
be written

¢ =P — Do (6.12)

and

V=V =Vd, +V¢=V+ Vo (6.13)

The quantity ¢ is called the perturbation potential, and v = V¢ is the perturbation
velocity. Assume now, without loss of generality, that the freestream is aligned in

the x direction. Thus, the velocity can be expressed as

+u

=
= < o
TR

S
g

I
g
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where u, v, w are the perturbation velocity components. Finally, refer to the so

called small perturbation ? assumption
V| << as (6.14)

everywhere, where a., is the freestream speed of sound.

Based on all the previous assumptions it can be obtained the unsteady potential
equation (refer to [41; 42] for details). With the further assumption of steady flow
all the time derivatives can be eliminated, obtaining [43] (denoting differentiation by

subscript)

(1 - Mc?o) ¢xa: + ¢yy + ¢zz = MOQO [%(7 - 1) (QU + |V|2) V2¢
+ (2u + u2) G + V? Gyy + 20w @y, + w? ¢, +2(1 +u) (v Gzy + W Py)] (6.15)

where v = % is the ratio of the specific heats.

The Prandtl-Glauert equation

The linearization of equation (6.15) leads to the Prandtl-Glauert equation (see ap-
pendix A of [42]):
(1 - Mzo) ¢xaz + ¢yy + ¢zz =0 (616)

The linearization is well advised if:
M2 |v]* << |1 — M2 (6.17)
and

M2 v]* << 1 (6.18)

2 other small perturbation assumptions exist in the literature
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Like as eq.(6.14) also eq.(6.17) and eq.(6.18) are called small perturbation assump-

tions. The consequences of the above simplifications are discussed in section 6.1.3.

6.1.2 Panel Method Theory

This section will outline the process by which the Prandtl-Glauert equation is con-
verted to an integral equation, and the way in which a general panel method solves

that integral equation.

Coordinate scaling

Eq. (6.16) can be further simplified by performing a scaling of the coordinate system.
Defining the compressibility scale factor 3 by

(1 - M)

azm B=I[1- M| (6.19)

the required scaled coordinate are given by

T=x
y=_>0y (6.20)
z=pz
Thus, the transformed Prandtl-Glauert equation is
adiz + ¢gg + ¢z =0 (6.21)
where a = 1 for subsonic flows (Laplace’s elliptic equation) and a = —1 for supersonic

flows (hyperbolic equation). Both equations occurs also in other branches of physics.

Boundary conditions

The physical description of a real flow at a surface is given by the no-slip condition

V=0 (6.22)
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However, for inviscid flow, the tangential component of the velocity cannot be pre-
scribed (unless the pressure is known) thus the above is replaced with the imperme-
ability boundary condition, representing the inability of fluid to pass through solid
surfaces

V.n=0 (6.23)

or

Vo-n=-V, - n (6.24)

There is also an alternative formulation of the above boundary condition; it can be
shown ([44]) that neglecting terms of the same order as those neglected in reducing
equation (6.15) to the Prandtl-Glauert equation, it holds:

PV = psW =~ poo (Vo + Vo) (6.25)

where W = iV is called the mass fluz, V¢ + Vo is called the total linearized
Poo_
mass flux, and V¢ (also denoted as w) is called the linearized perturbation mass

flux. Thus the boundary condition becomes:

Vé-n=-Vg-n (6.26)

Sw

Figure 6.1: Body Si and wake Sy, surfaces.

Panel method may impose different boundary conditions with the aim of modeling
the particular physical problem. Wakes, separation area, like body bases, or flow
through surfaces, like fan faces, are also modeled. Note that, in the latter situation,
the surface where to impose the boundary conditions doesn’t represent a physical

surface.
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Integral formulation for non lifting body

Assume a fluid region denoted by V), internally bounded from the body surface Sg,
and externally bounded from the surface Sz, and remember that the fluid is not
viscous and initially irrotational. With the aid of the Green’s third identity and
the Gauss theorem, and moving the external contour surface Sz to the infinity, the

Laplace equation admits the following integral representation [45; 46; 47]:

E(P)cb(P):—ﬁ ; (%@—MQ)HV%) ds (6.27)

where P and Q are points such that P € V and Q € Sg, R = ||P — Q||, n is the

unit normal to the surface, assumed positive if pointing toward the region V, and

1 if Pe V
E(P) = (6.28)
if Pe Sz

DN | —

Once determined the values of V¢ and ¢ on the boundary Sg, the perturbation
potential can be evaluated for all the points inside V. Eq.(6.27) is the fundamental
integral representation formula which a panel method uses to obtain a solution to
the potential flow problem. When combined with appropriate boundary conditions
it can be manipulated to yield an integral equation on the singularity surface Sg.
A panel method then obtains an approximate solution of this integral equation by

means of the numerical method of collocation.

Two function defined on Sp are generally introduced because of their importance

in the manipulation of eq.(6.27). The first is the source strength defined by

o(Q) =n-Ve(Q) (6.29)

and the second is the doublet strength, defined by

Q) =9(Q) (6.30)
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These quantities are called singularity strengths since they measure the singular
behavior of ¢ on Sg; using these quantities eq.(6.27) for points in the inner region

(E = 1), becomes:
1 o

O(P) = —— . [}—3 — un- v%] ds (6.31)

The generalization to arbitrary Mach number is easily achieved, as follows. For
subsonic flows is enough to use the scaled coordinates to obtain a formally identical
solution, being immediately achieved the expression of the above equations in terms
of original coordinates. In fact, defined the compressible gradient operator as V=
(a3? 8%, 8%, %), eq.(6.31) turns into

&(P) = —i : [}% —Mnﬁ%} ds (6.32)

where now every term is expressed in the original coordinate system, and where

R= \/(xP - xQ)2 +af?(yp — ?JQ)2 + af?(zp — ZQ)2

0(Q) =n-Ve(Q)

For supersonic flows (M, > 1) the above equations should be adapted substitut-
ing 47 with 27, and extending the integral to just the portion of Sg that lies in the
upstream Mach cone emanating from the influenced point P (Dp) [46; 47]

1 o ~ 1

Once ¢ is determined on Sg, is possible to evaluate the pressure everywhere in

the field by means of Bernoulli equation.

Integral formulation for lifting body

Wake should be taken into account. There are a few aspects related with wakes.
First, if no wake would exist, the singularity surface (Sp) is closed and bounded,
thus, for D’Alembert’s paradox [48; 49] the overall load on Sp is null (this is true
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only for steady problems).

Another notice is about the pertinence of considering the flow irrotational in all
the volume V. In fact, the irrotationality condition holds true only in the inner
region of V), while for the material points which have been get in contact with the
body surface Kelvin’s theorem is not valid [48; 49]; the region made up by these fluid
particles is called potential wake, Sy, and the potential is not defined on it. The
vorticity generated through the dynamic interaction between fluid and body surface
is thus convected through the trailing edge in the field, and forms the wake surface.
This vorticity, besides providing a more close modeling of the physics, the more
closer as well as Reynolds number increases [50], doesn’t contradict the hypothesis of
potential fluid: the vorticity can be confined to a layer with zero thickness considered
as part of the boundary.

The process of obtaining the integral formulation still holds if the inner boundary
is a surface surrounding the body and the wake, and approaching the union of them,

or briefly, Spww = Sg + Sy [48]. The boundary conditions to be applied on the wake

are
A(Vep-n)=0 (6.34)
and 146
— =0 6.35
where A stays for the difference between the absolute value of a generic quantity on

d
dt

the jump of the potential function is constant following the wake material point.

the two faces of Syy, and - is the material derivative. Equation (6.35) states that

The potential equation reduces to:

P = [ (25 s@nvy) as-
1 1

and the normal surface vector on the wake is defined from side L to side U in
agreement with A¢p = ¢y — ¢r.

The condition to impose at the trailing edge, where body (wing) and wake connect
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each other, is

(¢v — ¢1)

= A¢>‘ (6.37)
TFE w

where (¢y — ¢r) in the first member is referred to the trailing edge of the body
surface. The physical motivation beyond the last mathematical condition relies on
the Joukowsky condition, which stated that no concentrated vortex exists at the

trailing edge. More details are reported in [48; 50; 49|

Discretization

The first part of discretization process consists of the development of a finite dimen-
sional representation of ¢ and p. The singularity surface Sz and Sy are approximated
by a collection of N and M panels respectively. Next a collection of N points on
the body panels are chosen, such as panel centers, edges or corners®. The values of
o and p at these points are identified as unknowns and are called the singularity
parameters, and are x;, ¢; for the body panels, Ay for the wake panels. In Pan Air,
approximate distributions o(Q) and px(Q) are then developed applying a combina-
tion of linear least squares fitting techniques and polynomial interpolation processes
to extend the discrete values of the singularity parameters to all the points on the

surface. The following representation for o and u is then obtained:

7(Q) = inst) Q) = Z omi(Q) (6.38)
for the body, and
Q) =D Adpmi(Q) (6.39)

for the wake, where the functions s; and m; are called the source and doublet basis

functions. Next, using eq.(6.31) with the specified functional form of o and p, it is

3it should be pointed that the control points are close but not exactly lying on the panel edges
and corners, in order to avoid singular behaviors.
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possible to express the perturbation potential in terms of singularity parameters

B(P) 6(P) = (i (xi / () a5 =0 [ m 0V ds)> i

M

% <Z <A¢k /SW my, 1 - V}% dS)) (6.40)

k=1

Finally,
e applying eqs.(6.35) and (6.37) in order to express the Agy in terms of the ¢;,
e recalling the source expression (eq.(6.29)),

e imposing the N linear boundary conditions, V¢ - n = —V - n on the points

of the body panels

yields a linear system of N unknowns in N equations. In matrix form:

[AIC[{¢} = {b} (6.41)

where [AIC] is called the matrix of aerodynamic influence coefficients, {¢} is the
vector of the unknown perturbation potential at the control points, and the elements
of {b} are known from boundary conditions. Solving the linear system makes it
possible to compute from the eq.(6.31) the potential and subsequently the velocity
field for each point of the region V.

6.1.3 Limits of Application of Panel Method

All the simplifications done to obtain the Prandtl-Glauert equation, restrict the field
of application, since the underlying equation is not longer able to model the main
aspects of the physical problem. Thus Prandtl-Glauert (eq.(6.16)) is not able to
model flows where viscous, heat and rotational behavior are not negligible. Finally,
all the small perturbation assumptions have restricted further the modeling capabil-

ity. Equations (6.17) and (6.18) should be carefully considered. Clearly transonic
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flow (Mo ~ 1) and hypersonic flow (M, >> 1) are not consistent with the afore-
mentioned assumptions, thus Prandtl-Glauert equation can not described such flows.
But, another restriction is set from the magnitude of the perturbation quantity v:
for high angles of attack, or thick configuration, the perturbation velocity tend to be
large, and thus eq.(6.17),(6.18) hold for a narrow range of Mach number.

As known, flows around aerodynamic (at low angles of attack) bodies present
only a limited region where viscosity and rotational effects are not negligible. Thus,
for a correct modeling is necessary to assume that those regions have negligible
effects on the overall potential flow. Of course in region of separated flow, as the
aft fuselage region, results given from a panel method are not reliable; however,
this wouldn’t mean that the overall prediction, like configuration lift and induced
drag are not realistic. Another problem is related with wake positioning. In fact,
wakes are generally inserted in a roughly streamwise direction emanating from the
trailing edge of all lifting surfaces such as wings, fins, .... However, several major
exceptions exist. One is the case in which wake passes near other lifting surfaces (like
tail of the airplane): the wake influence on this surfaces is significant. Another is the
case of the leading edge vortex, a phenomenon that occurs at the leading edge of a
highly swept wing at large angles of attack. The wake tends to roll up, and its exact
location is important in determining the aerodynamic behavior of the configuration.
However, some panel codes are able to iteratively determine wake position and shape,
improving thus results of simulations at expense of computational time ([49]).

Other panel method codes are capable of resolving unsteady potential lows. The
flexibility of these codes can be successfully used to solve complex problems like
helicopter rotor flux ([49], [51]).

Finally, codes like Tran Air are capable of simulating transonic flows through

numerical resolution of the non-linear potential flow equation ([52]).

6.2 Pan Air

Pan Air (acronym of Panel Aerodynamics) is generally considered to be the first

actual surface panel code with reliable numerics, even for supersonic flows. Relative
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insensitivity and stability of computed results to paneling was a key for its success. In
addition, the boundary condition flexibility allowed users to experiment with various
types of modeling, leading to a wide variety of applications never entirely envisioned
by the developers. Thus, within the limitations of linear potential flow theory, it
could be used as an analytical wind tunnel for the analysis of completely arbitrary
configurations. The code was first developed in the early 1970s at NASA and Boeing
(were it was known as A502 code). Later, many featured were added. The code was
successfully used in the project of big transport airplanes (Boeing 737, 707, 747) and
military fighters. Sometimes it was used in conjunction with A598 (a Boeing code
for boundary layer analysis), even in fields like yacht design.

Today, A502 is still used to provide quick estimates for preliminary design studies.
A relative new feature takes advantage of available linear sensitivities to predict a
large number of perturbation to stability and control characteristics and stability
derivatives, including control surface sensitivities. A typical application may involve
many subcases submitted in a single run, with solutions available in an hour or so.
Within the limitations of the code, all major stability and control derivatives can
be generated in a single run (at a single Mach). The method is typically used to
calculate increments between similar configurations. As an example, the code was
recently used to calculate stability and control increments between a known baseline
and a new configuration. A total of 2400 of characteristics were computed for eight

configurations by one engineer in a two-day period.

6.2.1 Pan Air Capabilities

Pan Air can handle the simple configurations considered in preliminary design, and
at the same time serve as an analytical wind tunnel for the analysis of flow about
detailed, complex configurations. Capabilities of Pan Air version 3.0 (which is the

version integrated with the code subject of the thesis) include:

e the ability to handle, within limitations of linear potential flow theory, com-
pletely arbitrary configurations, using either exact or linearized boundary con-

ditions;

190



6.2— Pan Air

the ability to handle asymmetric configurations as well as those with one or

two planes of symmetry;

the ability to handle symmetric configurations in either symmetric or asym-

metric flow;

the ability to superimpose an incremental velocity on the freestream, either
locally or globally, in order to simulate effects such as a rotational motion,
differing angles of attack for different portions of a configuration, or a propeller

slipstream;

the ability to calculate pressures, forces and moments using a variety of pressure
formulas (such as isoentropic, linear ... ), including the forces and moments due

to momentum flux through the surface;

the ability to calculate leading edge and side edge thrust forces and moments

for thin configurations;

the ability to perform non-iterative design of a configuration, a process in which
a desired pressure or tangential velocity distribution is specified. The program
then determines the residual normal flow through the surface required to obtain

the desired pressure distribution;

the ability to calculate streamlines and to evaluate flow properties at user

specified off body points.

6.2.2 Pan Air Technology

Reliable supersonic analysis needs careful modeling, since numerical stability prob-

lems arises if doublet distribution is not continuous at panel interfaces. In fact, a

spurious line vortex of strength Ay is produced from doublet value jump at edges.

Thus a velocity field is introduced from discretization. In subsonic flow these spu-

rious velocities decay rapidly with distance from the edge and usually do not cause

serious problems. In supersonic flows these velocities persist, their effect propagating

down to Mach cones. Consequently, erroneous incremental flows continue to exist at
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control points, thereby introducing errors in the aerodynamic influence coefficients
matrix. These errors are frequently serious enough to produce a totally incorrect
solution for the flow. As a first requirement, panels should then meet exactly each
other at edges. Then, the doublet basis functions couldn’t obviously be piecewise
constant on each panel. Pan Air employs a linear source variation and quadratic dou-
blet variation. Detailed explanation of why piecewise linear for source and piecewise
quadratic for doublets is presented in [42].
For more details about Pan Air refer to [53],[42],[54],[55].

6.2.3 Pan Air Geometry Input

Network description should be in LaWGS format. For details refer to [40]. Briefly,
assume that a network is composed of N x M grid points, where N and M represent
respectively columns and rows. If an order is established for the columns (or rows)
description (from first to last or vice versa), then the order of description of the rows
(columns) should follow a right hand convention coherent with the outward pointing
normal to the surface, that is the order of representation defines which side of the
surface has to be considered external (and thus facing the flow). This is a key point
in order to set boundary condition consistently with the real flow. Worth a note
that, since the code accepts only structured grid, for each network the number of
elements for each rows and columns is constant; if more flexibility is needed for a
satisfying geometric reproduction, then the surface must be split in more networks.
Particular attention may be devoted to network edges connected along a common
interface. Such connection are called abutment. As stated, edges abutments ensures
continuity of the doublet strengths across network edges. The program requires that
abutting network edges must have exact panel edge points which match along the
network edge, or panel edge points which are on the straight line between the exact
points. Thus, the interfaces of two or more doublet network surfaces must match,
i.e. have no gaps between adjacent networks. To meet this requirements one or a

combination of the following may be ensured:

e Input geometry has exact matching of every panel edge point along abutting

network edges.
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Figure 6.2: Abutment between network 1 and 2. Note the panels with matching and not match-
ing points at abutment. Note also the order of description of rows and columns,
consistent with a correct outward surface normal

e Input geometry nearly matches for every panel edge point along abutting net-
work edges, and the liberalized abutment capability (an internal function of
Pan Air) makes the abutment identical for points within a single tolerance.
Small adjustments are made to the network edge points to make them abut
without any gaps and to help them eliminate the small round-off error in the

input network geometry.

e Input geometry contains some mismatched points along abutting network edges.
These edges must be identified by the user for special treatment. The partial
(full) network edge abutment (another internal function of Pan Air) has the
capability to form a new common edge from matching points along a network.

All non matching points are projected onto the new network edge.
Note that the latter two situations modify the original input geometry along abutting
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network edges. Attention should be paid to set the tolerance values, since extraneous

abutment could be created by the internal Pan Air functions assisting abutments.

6.2.4 An overview of configurations analyzed with Pan Air

In the following section some application of Pan Air are reported. Fig. from 6.3 to
6.5 shows Pan Air application for big transport aircrafts. One of the first important
employ of Pan Air goes back at the precertification flight testing of the then new
737-300 [56]. The aircraft was not demonstrating the preflight wind tunnel based
prediction of take-off lift /drag ratio. A fix was needed quickly to meet certification
and delivery schedules. Specialized flight testing was undertaken to find the cause
and to fix the performance shortfall. A Pan Air study was immediately undertak-
en to enhance understanding and provide guidance to the flight program. Eighteen
complete configuration analysis were carried out over a period of three months (see
fig.6.4). These included different flap settings, wind tunnel and flight wing twist, flow
through and powered nacelle simulations, free air and wind tunnel walls, ground ef-
fect, seal and slotted flaps, and other geometric variations. These solutions explained
and clarified the limitations of previous low speed wind tunnel test techniques and
provided guidance in recovering the performance shortfall through tuning of the flap
settings during the flight testing. The aircraft was certified and delivered on schedule.
A comparison of the computation L/D predictions with flight is shown in fig.6.4(d).

A502 studies have been used to support other flight programs on a time critical
basis. In particular, the code was used to support engine-airframe installation studies
in the early 1980s, to evaluate wind tunnel tare and interference effects, and to
provide Mach blockage corrections for testing large models. In addition, the code
was used for the design of the wingtip pod for the Navy E6-A, a version of the Boeing
707. No wind tunnel testing was done before flight. The FAA has accepted A502
analysis for certification of certain aircraft features that were shown to have minimal
change from previous accepted standards. Finally, A502 was used to develop a skin
waviness criteria and measurement technique that led to the virtual elimination of

failed altimeter split testing during the first flight of every B747-400 aircraft coming
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(a) Paneling of B747 like aircraft (b) Paneling of a subsonic aircraft

Figure 6.3: Paneling of two big transport aircrafts. Note the particular wakes arrangements for
both the configurations.

off the production line. Initially, one of every three aircraft was failing this test,
requiring several days down time to fix the problem. The A502-based procedure
could identify excessive skin waviness before first flight and led to manufacturing

improvements to eliminate the root cause of the problem.

One of the most impressive early uses of the precursor code of Pan Air occurs
in the initial design phase of the B747 Space Shuttle Carrier Aircraft. The purpose
of the initial design phase was to define the modifications needed to accomplish the
following missions: to ferry the Space Shuttle Orbiter; to air-launch the Orbiter; and
to ferry the external fuel tank. To keep the cost of the program to a minimum, CFD
was extensively used to investigate the Orbiter attitude during the ferry mission, the
Orbiter trajectory and attitude during the launch test, and the external tank location
and attitude during the ferry mission. At the conclusion of the design phase, the
final configurations selected were tested in the wind tunnel to verify predictions. A
typical example of a paneling scheme of the B747 with the Space Shuttle Orbiter
is depicted in fig. 6.5(a). In this example, the Orbiter incidence angle was 8° with
respect to the B747 reference plane. The predicted lift coefficient, Cp, , as a function
of wing angle of attack for this configuration is shown in fig. 6.5(c). The agreement

between the analyses and wind tunnel data shown is excellent.
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Figure 6.4: Pan Air study of the high-lift system of the Boeing 737-300.

However, one of the most important features at time of Pan Air, was the reliable

supersonic analysis (at least from a numerical point of view). Thus, many military

aircraft configurations were designed with Pan Air aid. In fig. 6.6 is depicted the

paneling scheme of a F15, a supersonic fighter.

As another example, in [57] development of an SR-71 aerospike rocket flight test

configuration were sustained with both Pan Air and Tran Air analyses, supported

with wind tunnel. In fig. 6.7 a pressure maps from Pan Air simulation is shown.

Pan Air use was not limited to aeronautic field. In fact, sailing both and yachts
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(b) Paneling of Orbiter
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Figure 6.5: Boeing 747 with Space Shuttle Orbiter.

were also planned with the aid of the code. A paneling of a sailing both is shown in

fig.6.8.
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Figure 6.6: Paneling of a F15 fighter.

C]J= 0.5

CF-'= -1.0

Figure 6.7: Pan Air surface pressure maps at Mach 0.6 and 4° angle of attack for a SR-71
aircraft.
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Figure 6.8: Sailing both paneling
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Pan Air Pre/Post Processor Module

In this chapter the PanAir preprocessor and postprocessor GUI module is briefly
presented. The preprocessor allows to easily set the flows properties and whatever
necessary to begin an aerodynamic simulation, and eventually to start it. After
Pan Air has completed the task, the results output file can be reviewed with a user

friendly postprocessor.

7.1 Pan Air Preprocessor

After a structured mesh has been associated with a configuration, it is possible, from
the structured grid generation module, to launch the PanAir input generator. The
preprocessor enables to set most of the parameters defining a flow simulation on the
input network. The main window is shown in fig. 7.1.

In the Title an modality run panel, the name to assess to the file is chosen, as
well as the run modality. PanAir is capable of three main modalities of execution:
datacheck, which validates inputs for a solution run, solution, which solves all the
step defining and inverting the AIC! in order to calculate the solution, and restart,
to use when additional solution run or flow property evaluation are needed on the

same basic data, thus reusing the previous calculated and inverted AIC or the SIN

! Aerodynamic influence coefficients matrix
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Figure 7.1: The Pan Air input generator GUI

(singularity strengths) matrix. All these options have more peculiarities, explained
in depth in [53; 54].

Flow symmetry conditions are assessed on the next panel. It is possible to submit
simulation considering symmetric and/or antisymmetric configurations respect both
planes XY and ZX. In such a situation, the input network could be only a part
of the whole. This approach represents a considerable savings over an analysis of

the complete configuration. Remember that flow should be symmetric, thus the yaw

202



7.1- Pan Air Preprocessor

Figure 7.2: Angle of attack o and yaw angle (.

angle and/or angle of attack are forced to consistent value when needed.

The next panel enables to define onset flow parameters. Just one Mach number
can be specified for each simulation, as well as one direction of compressibility, defined
by the angles v and (3 depicted in fig.7.2. This direction should be coincident with
the onset flow one, but if different solutions are required within the same run, a
mean value could be selected. However, usually 5° degree of deviation for subsonic,
2° for supersonic don’t produce significant errors. Up to four simultaneous number
of solutions are possible for every run, for each of the solution being definable the
free stream direction from the angle of attack and sideslip.

In the reference data box, the user can set:

- the full airplane reference area, used to normalize the forces and moments,

- the point with respect to which the moments are calculated,

- the reference length for the three components, used to normalize the moments.

The Forces/Moments summary panel allows one to compute the overall forces
and moments acting on a configuration, defined by the user, consisting of just some
between all the networks of the configuration. More details on this capability are
explained in [53].

In the Printout control panel (fig.7.3) it is possible to define some parameters
that determine program (PanAir) outputs concerned with the formulation of the

boundary value problem, the resulting surface flow properties, and the resulting
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Figure 7.3: Advanced printout control.

surface forces and moments. The default printout is usually enough, since many of
the advanced option are for diagnostic and development purposes, and not much of
interest for the usual analysis. Again, refer to [53; 54| for a detailed explanation.

The boundary layer and velocity correction options are handled in the following
panel. Both of them improve the flow property for flow slower than the onset flow
(where, with reference to the small perturbation approximation of 6.1.1, the u mag-
nitude is not longer less than the U, and the perturbations are not longer small).
The biggest corrections are made near the stagnation point. The correction changes
the surface velocity, and thus pressures and Mach number. These modified values
replace the uncorrected ones in the printout, however, the program uses uncorrected
velocity to calculate all forces and moments. The boundary layer correction formula
is used with boundary layer analysis; the results from the correction are stored on an
output file, available for a boundary layer analysis with the A598 code. The velocity
correction are instead used for inlet flows.

The Abutment Control panels allows to set the basic or advanced parameter

which control the behavior of the Pan Air internal functions employed to maintain
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the continuity of doublet across network edges (more is written in section 6.2.3).
Briefly, in the basic control modality the tolerances for the PEA (forced partial or
full edge abutment) and EAT (liberalized abutments) functions are set, thus two
points closer than the specified given tolerances are considered to be coincident for

the given function. For a deeper control, the advanced modality is available.
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Figure 7.4: Advanced abutment control.

The PEA panel enables to control how to move points which doesn’t satisfy the
requirements, and how to write the modifications in the printout. The FAT panel
features similar capabilities, both in moving the points that in the printout control.
More about abutment handling can be found in [53; 54]. It should be stressed that
abutment control process is of primarily importance, leading a not correct definition
to unreliable results. Even if the structured grid generation module is built in such a
way to automatically move the abutting edge points to fulfill PanAir requirements,
the user is warmly suggested to checkout the abutment printout in the output file in

order to avoid unreliable results.
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Figure 7.5: PEA processing for simple abutment of two network edges (from [53]).
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Figure 7.6: The wake generator GUIL.
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The wake generator GUI (fig.7.6) provide a mean to define and place the wakes.
The interface enables to select each network (the selected is represented in red), to
choose an edge of the network (represented in blue), and to place a wake starting from

this edge downstream, as depicted in fig.7.7. At now, the placed wakes are parallel

) WakesG l‘n
WAKE GENERATOR Fotate [’Zoﬁ @ Laad WWAKES

Standard WAKE (kt = 18)

Select Metwork --= having1

Select Netwaork Edoe ﬁ i

Showy Wake I Store Wiakel ‘

Connection WAKE (kt = 20)

Select Body Eodw -
Select ikt Filett i

Shawe Wyake Store Wake

Hide Vake

{0 S S I~ R |

Stored Wakes

= 45
Stop at X=
B0
|

Delete selected!
Write & Exit]
SHOW ALL

Figure 7.7: Placing a wake behind a wing in the wing generator GUI

to the XY plane. If the wake satisfies user requirements it can be stored. Note that,
the wake generator distinguishes automatically between the different kind of wakes.
For example, on a wake shedding from a bodybase, different boundary conditions
are imposed than on a wake shedding from a sharp trailing edge (a wing). However,
for further flexibility, the user should manually edit the .inp file. The connection
wakes are needed to avoid zero doublet strength, and thus lift dropping to a null
value, at the unabutted edges. This is the situation of root section of the wing. If
the doublet strength is zero there, then, due to Kutta condition, it is zero at the
trailing edge and the wing strip has null lift. Of course this is not acceptable, since
the lift distribution doesn’t fall to zero in the fuselage section. Thus, a wake with

constant doublet strength is placed between this inner region of the wake and the
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Figure 7.8: The connection wake between wing wake and fuselage.

fuselage. This procedure requires great knowledge of the physical problem, and is
discussed in [42; 54]. If more flexibility is needed, it is possible to input the wake
networks by a .dat file. This capability are still under development.

As last option, with the aid of the flow field properties panel, the user can define
points and grid of points where flow properties are evaluated, and trace streamlines.
The flow properties can be computed from all the surfaces or from a selected group
of surface networks. The point locations can be entered directly, or as a network,
defining the origin, three points defining thus the three directions, the distances and
the number of points for each direction. Figure 7.10 clarifies the process. For the
determination of streamlines, the starting points should be first defined, followed by
the step size for spatial integration. The maximum allowed travel (stopping criteria)
stops the integration when one of the three component reaches the specified value.
Many other parameters can be set; for more details refer to [53]. However, in the

Array streams panel, it is possible to set an array of starting points by setting the
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Figure 7.9: The flow field properties GUIL
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Figure 7.10: Definition of a grid of points where to evaluate flow properties.

two edge lengths and the number of points for each edge. This will speed up the
process of defining streamlines.

At the moment, the preprocessor is not able to control all the PanAir capabilities.

Important features like the sectional properties, where sectional forces, moments
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and pressures are calculated along a specific plane, are not yet implemented in the

preprocessor.

7.2 Pan Air Postprocessor

There are two ways to launch the postprocessor. The first is to click the pushbutton
in the PanAur input generator window, the other is to use the menu in the ASD main
window. In the first modality, the postprocessor will display results of the simulation
run on the configuration displayed in the preprocessor, whereas in the latter modality
the user should specify which PanAir output file is the one to analyze. Remember
that results of PanAir runs are stored in these .out files. The file selection takes place

through the Load .out file pushbutton, in the postprocessor main window. When the
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Load .out file ol 1| Sol.2| solz| [Sdl4
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Reference Data — Streamlines
streamline n®3.2 S
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Reference Area 142 streamline n"34
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Figure 7.11: Main PostProcessor GUI with shown statistics and results.

file is selected, a window with the configuration networks is automatically plotted
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(fig.7.12). In this same window it is possible to plot, for the solution submitted and
one at the time, the flow or singularity characteristics for points on the surface. The
values of the solution are shown by means of coloration of the surface, and a color
bar gives the relation between colors and solution values. Both the selected flow
characteristic and the onset flow angles (angle of attack and yaw angle) are recalled

directly in the window. To change between solutions and flow characteristics it

Mesh

Figure 7.12: Configuration mesh.

suffices to push the proper buttons on the main postprocessor GUI. An example of
results for pressure coefficient and local mach number is depicted in fig.7.13.

Summary of the most important onset flow conditions are reported, for each so-
lution run. For the selected solution, down in the reference data panel, the reference
point location, lengths and surface are shown, whereas in the result summary pan-
el the most significant simulation results on the whole configuration and the total
paneled area value are reported .

It may be useful to have a visualization of the forces compared to the angle of
attack; pushing the proper button displays such a graph for the lift (Cf), induced
drag (Cp;), and moment (C)y,,, moment in respect of axis y) coefficients, as depicted
in fig.7.14.
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o = 10°

Figure 7.13: Coefficient pressure (C}) and local mach number for two different solutions, one at
angle of attack of 0°, the other at 10°.

The postprocessor enables also the visualization of the streamlines. In the proper
listbox, all the streamlines defined at the preprocessing stage are listed. It is possible
then to select more of the elements of the list and plot them. Of course the displayed
streamlines refer to the selected solution. An example of streamline visualization is
depicted in fig.7.15
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o Angle of attack

Figure 7.14: Plot of Cr, Cp;, Cy, versus a.

a=10° g=0°

Figure 7.15: Streamlines.

Another useful tool implemented in the postprocessor is the ability to plot the

two dimensional lift coefficient along the y direction for every selected network. In
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the sectional forces panel just select the networks of interest, and add them to the
listbox. Then, selecting the plot option, the lift coefficient versus the y-direction
coordinate is plotted. An example is shown in fig.7.16 for the ULM PrandtlPlane
configuration Tandem of fig.7.12. The wings and the bulk have been selected, and

the plot shows the different behavior of upper and lower wings.

1.2

0.8 b

0.6 b

c,0)

0.4F : 1

0.2f b

-0.2 I I I I I I I I

Figure 7.16: C; — y for the wings and bulk of the Tandem configuration at o = 10°.

At the moment some other features are implemented but not yet completely
working. For example, the visualization of the pressure coefficient along the airfoil
is an important tool to work with. An example of results obtained with this tool are
presented in the next section.

To close the section also some graphics obtained from a traditional configuration

analysis are shown.

214



Z
]

30

7.2— Pan Air Postprocessor

Oo

B

a=0°

VO NON

Cp

Pressure coefficient over a traditional configuration aircraft (A310 like) for zero

angle of attack.

Figure 7.17
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Figure 7.18
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a=5 g=0°

Figure 7.19: Streamlines at o = 5°.
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7.3 A simple testcase

As a simple testcase, comparison between experimental results reported in [58] and
results obtained with PanAir is carried out. In the aforementioned report, experi-
mental results for a wing are given. The wing geometry is depicted in fig.7.20. The
airfoil are the NACA 65-210 with 10% thickness. The wing presents a 2° washout
at the tip, with a linear spanwise distribution. The Mach number is 0.17. The first

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 7.20: Wing tested in the report [58].

modeling step is fast achieved with ASD. The wing is depicted in fig.7.21. Very

Figure 7.21: Geometrical definition of the wing with ASD.
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fast and efficient is also the process of grid generation. A quite fine grid has been

generated, as shown in fig.7.22. And finally, with aid of the preprocessor, input con-

Panel Mesh plot

Figure 7.22: The meshed wing obtained with the structured grid generation module.

figuration file has been created for PanAir, and simulation has run. Once Pan Air
has completed his task, through the postprocessor, the results have been immediate-
ly compared with the paper’s data. The lift coefficient versus wingspan shows a very
good agreement with the experimental results, even at configuration of max C7, for
the wing. The value of ', is also predicted in a very accurate way.

As an additional mean to check Pan Air simulation results, a plotting of the
pressure coefficient along the chord at different spanwise sections is displayed, as
shown in fig.7.24.

As a final validation problem, grid sensitivity and converge of the solution are
investigated. For a = 2° the sensitivity of the solution from the grid is depicted
in fig.7.25. It easy to ascertain that the solution reliance on both chordwise and
spanwise grid refinement is limited to satisfactory results; in detail, the solution vary

of a 0.2% value when the grid is three times finer on both directions.
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Figure 7.23: Comparison between numerical and experimental results, for M = 0.17 and a =
12.5. In spite of the Cf, nax configuration, the agreement is very good.
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Figure 7.24: Pressure coefficient (in red) versus chord at different spanwise sections, for o = 7°.
The airfoil sections are drawn in black.
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Figure 7.25: Grid sensitivity. The grid is refined in both chordwise and spanwise directions.
Chordwise the grid has a cosinusoidal distribution, spanwise the distribution is
linear.
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Conclusions

This code was developed with the main objective to help in the preliminary design
of PrandtlPlane configurations. The preliminary aerodynamic properties estimation
represent the basis from where to start further investigations and modifications. The
main problems to deal with are the aerodynamic optimization, in order to increase
as much as possible the efficiency, stability and trim, where the aerodynamic deriva-
tives should be estimated to check if the examined configuration is stable and to set
the trim conditions, and dynamics, which studies the aircraft behavior in response of
flight commands. The PrandtlPlane innovative configuration carries some peculiar-
ities which lead to unpredictable behavior if relying only to classical results. As an
example, small modifications to the wings can change the stability to a great extent.

During the research activity on PrandtlPlane the persistent lack of:
- a tool where geometric definition and modifications can be easily submitted;

- a tool which enables a fast grid generation, avoiding the bothersome and time
consuming process of exporting the geometry, importing it in the meshing pro-
gram, generating the grid and make it be compatible with the format required

from the solver program;

- a tool where the aerodynamic flow characteristics are simply set, and run

solutions are immediately displayed, avoiding thus long network import and
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standardization processes, and cumbersome flow characteristics definitions and

results visualization (for solver without pre and postprocessing).

- a tool which enables the exportation of configuration geometry and grid to the

international most recognized standards.

made feel the strong need of a code which settles the above flaws. The geomet-
ric flexibility needed for the geometric design of the unconventional configurations
guarantees that also conventional configuration can be sketched and analyzed.

Results at each stage are depicted in the corresponding chapters. However, it
should be stressed that the overall process, consisting in a new geometric shape
definition, grid generation and PanAir analysis, is usually completed in not more
than tens of minutes.

The flexibility of the geometric engine, the NURBS lean to grid generation, the
fast, easy and user friendly GUI, have appealed the interest of some universities and

consulting societies.

The future improvements run in different ways.

Future geometric improvements

First, a more robust and faster geometric shape generation algorithm should be
implemented, especially for high quality surfaces. This task must deal with the
numerical implementation in order to avoid close to singular matrices that could be
generated when interpolating a big amount of points. A pre conditioner or the use
of variational multiresolution curves and surfaces wavelets may be an optimal choice
[32].

Always on the geometrical side, both direction derivative constraints should be

implemented for the C? interpolating algorithm.

Further, it feels the needs for a smoothing routine or an approximation algorithm,
in order to avoid unwanted bulging of the surfaces due to numerical errors introduced

mainly from the intersection algorithms.
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Future grid generation improvements

Surely one of the first needs is the generalization of the structured grid generator to
flapped configurations.

The structured grid generation undergoes smoothness and efficiency limitations,
in particular in the body regions intersected from wings. Here, to fulfill both PanAir
network requirements and mesh quality restrictions, a finer grid is usually built
leading to inefficient increased total number of panels. The logics should be revised,
and a more advanced grid technique should be adopted. At the same time, an
elliptical grid generation or smoothing technique may be a solution if the grid is

built for more severe solvers.

Future pre-postprocessor improvements

The preprocessor needs basically a more advanced wake interface. In fact, when the
shape is known from experience or other means, it would be useful to draw the wake
in an interactive environment providing thus more flexibility. The postprocessor

needs also a sectional force and moments GUI.

Future aerodynamic solver improvements

Current trends seem to prefer low order panel method than higher order like Pan
Air. Beyond this trend, a non stationary panel method would surely extend the
field of application of the aerodynamic analysis. Integration of codes like TranAir,
capable of Transonic analysis, and the Boeing code A598, which features a viscous
panel analysis, would be easy since they requires input similar to PanAir, thus little
work has to be done to integrate them in the platform. It should however kept in
mind that more accurate analysis cost more, thus at a preliminary design stage they

may be not convenient.

Addition of other modules

To improve platform capabilities, a flight mechanics module could be added. In

this section, the results from the aerodynamic analysis would be used to evaluate
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stability, and trim.
Surely, interfacing the code with a simple or an advanced external optimizer, like
modeFrontier, would really improve the value of the present code. Future efforts

should be addressed in this way.
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A

Evaluation of the stiffness matriz

The stiffness matrix (eq.(3.31)) must be evaluated in order to solve the linear system

shown in equation (3.41). This matrix is defined as:

K / N (u) N (w) du (A1)

Due to local support of the B-spline basis functions, at a given u, belonging the knot
span [uj,uj41], at most p + 1 of the generic basis functions V;, are nonzero, namely
N, N

j—pps -+ Vjp, hence:

Uitp+1
K. = / N (u) N (w) du (A.2)

where j > 4. If j > i+ p+ 1 then K;; = 0.
Further, eq.(A.2) can be simplified by:

i+p

Uk 41
K;, Z / N () NI (u) du (A.3)

B-spline basis derivatives NZS‘? are piecewise polynomial of order p — d, thus the

terms inside the integral are polynomials of order 2(p—d). The Gaussian quadrature
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A — EVALUATION OF THE stiffness matriz

can be used to evaluate exactly eq.(A.3). In fact, it states that:

/_ ) den Y uf @) (A4)

where t; are designated evaluation points (called Gaussian points), and w; are the
prescribed weight of that point in the sum. The order of precision of the formula is
of 2n — 1, thus, if f(¢) is a polynomial of order p, at least 1%1 points are needed for
an exact evaluation of the integral (clearly n must be an integer number, so it must
be rounded if p is even).

Then, the integral of eq.(A.3) can be expressed from:
Uk+1
/ Ni(’i)(u) N;i) (w) du = = (g1 — ug Zwl <Nl(§l, N](;? (ﬁl)> (A.5)
ug

where w; are the weights, and ' are the points, corresponding to the Gaussian
points, where to evaluate the basis function derivatives, and are obtained through
the transformation needed for changing the integration limits from to [uy wuyq] to
-1 1]

o= % (1 —t)ug + (L +t))ugs1) (A.6)
In this way, the problem of evaluating the stiffness matrix brings back to summation
and multiplication of basis function derivatives evaluated at points set from the Gauss

quadrature.
Jr

) DT (M9 @) N ) (A7)

k=j =1
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