
Alla mia Famiglia
A Giulia



UNIVERSITÀ DEGLI STUDI DI PISA

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Aerospaziale

Tesi di Laurea

A Code for Surface Modeling and Grid
Generation Coupled to a Panel Method for

Aerodynamic Configuration Design

Relatori:

Prof. Aldo Frediani

Dott.Ing. Giovanni Bernardini

Laureando:

Rauno Cavallaro

Anno Accademico  



Summary

An integrated platform has been developed which features a geometric, a grid gen-

eration and an aerodynamic analysis module. The main intent is to execute a quick

though reliable preliminary aerodynamic analysis on a generic complex aerodynamic

configuration and, at the same time, provide a mean of exporting the defined geom-

etry or grid to leading CAE/CAD, meshing and analysis softwares, for deep detail

modifications or more accurate, although time consuming, analysis.

In the geometric module, the process of shape definition is easily and intuitively

achieved with the aid of specific features and tools. The geometric description relies

on NURBS, a flexible, accurate and efficient parametric form. Once the configu-

ration has been defined, the user is ready to move on the grid generation module,

or to export it to IGES standard format in order to use CAE/CAD, meshing or

aerodynamic analysis programs.

The grid generation module is capable to build structured or unstructured meshes.

Both of the processes are automatized, even if the user can easily set and control

grid parameters. The structured grid generator is oriented to LaWGS description

standard, while the unstructured grid can be exported to different formats.

The user is now ready to launch Pan Air, a panel method, as the aerodynam-

ic solver. The preprocessor and postprocessor aid to the definition of the flow

parameters and to the graphical visualization of the results.

One of the strength of this code is the user friendly GUI organization of each

module: the user is aided throughout all the steps. Besides this, every module relies

I



on fast computational algorithms to speed up the overall process.

For all these reasons, this code has a natural lean to be used in pair with an

optimization tool.

II



Acknowledgements

Alla fine di questo lungo percorso, è giusto fermarsi un momento e guardarsi intorno,

ma soprattutto indietro ed un dovuto e sentito pensiero va a chi mi è stato vicino,

a chi mi ha aiutato ed a chi a contribuito in modo importante al raggiungimento di

questo traguardo.

Volendo percorrere la strada a ritroso, la prima persona alla quale va un caloroso

ringraziamento è il Professor Aldo Frediani, in lui ho trovato entusiasmo, coinvol-

gimento ed ha riacceso in me una passione per lo studio negli ultimi anni un po’

affievolitasi.

Ringrazio anche il mio correlatore Giovanni Bernardini, per l’umanità dimostra-

ta e il tempo e la pazienza che mi ha dedicato, ma cosa ancora più importante lo

ringrazio infinitamente per il grande bagaglio di conoscenze che è riuscito a trasmet-

termi.

Non posso certo dimenticare la Professoressa Maria Vittoria Salvetti che tra una

battuta e l’altra mi ha sempre sostenuto, dimostrando di credere nelle mie capacità,

anche se spesso volubili.

Spostandomi in ambito ludico un ruolo determinante in questi anni lo hannno

ricoperto i miei migliori amici, che hanno contribuito a preservarmi dal logorio dello

studio, facendomi cos̀ı arrivare fresco, ma un po’ in ritardo, a questo appuntamento!

Sicuramente un ringraziamento speciale va alla mia dolce metà Giulia che senza

lasciarsi scoraggiare dal mio carattere impossibile mi è stata vicina negli ultimi due

anni, aiutandomi in maniera decisiva e donandomi la stabilità e la serenità di cui

III



avevo bisogno per affrontare questo percorso.

Il ringraziamento finale va alla mia famiglia, alla quale non sono mai riuscito ad

esprimere direttamente la mia gratitudine, ma alla quale spero di aver regalato in

questa giornata grande gioia e soddisfazione.

IV



Table of contents

Summary I

Acknowledgements III

Introduction 1

1 ASD: Aerodynamic Shape Design 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 ASD Surface Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Main Window . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The Features and the Feature Windows . . . . . . . . . . . . . 6

1.2.3 The Body Feature . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 The Wing Feature . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 The Bulk Feature . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.6 The Wingbody Feature . . . . . . . . . . . . . . . . . . . . . . 16

1.2.7 The Inlet/Outlet Feature . . . . . . . . . . . . . . . . . . . . . 18

1.2.8 The Fillet Feature . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.9 The Tfillet Feature . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.10 The Wround Feature . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.11 Viewing the Results . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 ASD Surface Mesher . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 The ASD tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V



1.4.1 Airfoil Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.2 NACA Airfoil Generator . . . . . . . . . . . . . . . . . . . . . 39

1.4.3 Section Sketcher . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4.4 Flap Sketcher . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5 ASD Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 NURBS (Non Uniform Rational B-Spline) 51

2.1 A Brief Historical Survey . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Curve and Surface Basics . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 Implicit and Parametric Forms . . . . . . . . . . . . . . . . . 54

2.2.2 Advantages and Disadvantages . . . . . . . . . . . . . . . . . 55

2.2.3 Requirements for the parametric forms . . . . . . . . . . . . . 56

2.2.4 Power Basis Form of a curve . . . . . . . . . . . . . . . . . . . 57

2.2.5 Bézier Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.6 Tensor Product Surfaces . . . . . . . . . . . . . . . . . . . . . 62

2.3 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3.1 Shortcoming of polynomial and Bézier forms . . . . . . . . . . 66

2.3.2 B-Spline Basis Functions . . . . . . . . . . . . . . . . . . . . . 67

2.3.3 B-Spline Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.3.4 B-Spline Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Rational B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.4.1 Nurbs Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.4.2 Nurbs Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.5 Fundamental Geometric Algorithms . . . . . . . . . . . . . . . . . . . 92

2.5.1 Knot Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5.2 Knot Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.5.3 Degree Elevation . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5.4 Degree Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.5.5 Other Advanced Geometric Algorithms . . . . . . . . . . . . . 96

3 Free Form Surface Design 97

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VI



3.2 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.1 Global Interpolation . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.2 Local Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.3 Transfinite interpolation . . . . . . . . . . . . . . . . . . . . . 105

3.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.3.1 Uniform Parameterization . . . . . . . . . . . . . . . . . . . . 107

3.3.2 Chord Length Parameterization . . . . . . . . . . . . . . . . . 108

3.3.3 Centripetal Parameterization . . . . . . . . . . . . . . . . . . 108

3.3.4 Performance of the Different Parameterizations . . . . . . . . 108

3.3.5 Knot Vector Selection . . . . . . . . . . . . . . . . . . . . . . 109

3.3.6 Parameterization and Knot Vector Selection for Surfaces . . . 110

3.4 Notion of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.1 Continuity of Curves . . . . . . . . . . . . . . . . . . . . . . . 111

3.4.2 Continuity of Surfaces . . . . . . . . . . . . . . . . . . . . . . 115

3.5 Visual Aspects of Continuity . . . . . . . . . . . . . . . . . . . . . . . 117

3.6 Implementation of G2 or C2 Continuity with Local and Global Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.6.1 Limitations of the Local Approach for G2 or C2 Continuity . . 118

3.6.2 Limitations of the Global Approach for C2 continuity . . . . . 119

3.7 Variational Analysis and Modeling of Free Forms . . . . . . . . . . . 121

3.7.1 Fairness of Curves and Surfaces . . . . . . . . . . . . . . . . . 121

3.7.2 Constrained Optimization . . . . . . . . . . . . . . . . . . . . 123

3.7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4 Surface Modeling in ASD 127

4.1 The old Algorithms featured in ASD . . . . . . . . . . . . . . . . . . 127

4.1.1 ASD Curve Algorithm - local interp crv . . . . . . . . . . 127

4.1.2 ASD Bicubic Surface Algorithm - local interp sfc . . . . . 132

4.2 The new Geometric Algorithms . . . . . . . . . . . . . . . . . . . . . 134

4.2.1 The new Curve Algorithm - global interp crv . . . . . . . . 134

4.2.2 The new Surface Algorithm - global interp sfc . . . . . . . 141

4.2.3 Lofting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 142

VII



4.3 The ASD Advanced NURBS GUI . . . . . . . . . . . . . . . . . . . . 145

4.3.1 C1 Algorithm Parameter . . . . . . . . . . . . . . . . . . . . 145

4.3.2 C2 Algorithm Parameter . . . . . . . . . . . . . . . . . . . . . 146

4.3.3 Lofting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4 Some Results with the new Geometric Engine . . . . . . . . . . . . . 147

4.5 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 Structured Grid Generation Module 153

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.1 Grid Connectivity-Based Classification . . . . . . . . . . . . . 154

5.1.2 An Overview of Structured Mesh Generation . . . . . . . . . . 155

5.2 The New Grid Generation Module . . . . . . . . . . . . . . . . . . . . 157

5.3 Requirements for the Structured Grid Generation . . . . . . . . . . . 158

5.3.1 ASD and the Mesh . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.2 Pan Air and the Mesh . . . . . . . . . . . . . . . . . . . . . . 159

5.4 Logics and Mesh Organization . . . . . . . . . . . . . . . . . . . . . . 160

5.4.1 Subdivision in Logical Subsets . . . . . . . . . . . . . . . . . . 160

5.4.2 Meshing the Logical Subsets . . . . . . . . . . . . . . . . . . . 162

5.4.3 Connections between Logical Subset Grids . . . . . . . . . . . 165

5.5 The Structure Grid Generation Interface . . . . . . . . . . . . . . . . 169

5.5.1 Wing and Body Feature Parameters . . . . . . . . . . . . . . . 169

5.5.2 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5.3 Mesh Analysis and Stats . . . . . . . . . . . . . . . . . . . . . 170

5.5.4 Plotting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5.5 Grid Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5.6 Pan Air Preprocessor Launcher . . . . . . . . . . . . . . . . . 171

5.6 Examples of Structured Grid Generated . . . . . . . . . . . . . . . . 171

5.7 Limitations and Future Improvements . . . . . . . . . . . . . . . . . . 172

6 Panel Method: Pan Air 177

6.1 Panel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1.1 The Prandtl-Glauert equation . . . . . . . . . . . . . . . . . . 178

VIII



6.1.2 Panel Method Theory . . . . . . . . . . . . . . . . . . . . . . 182

6.1.3 Limits of Application of Panel Method . . . . . . . . . . . . . 188

6.2 Pan Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.2.1 Pan Air Capabilities . . . . . . . . . . . . . . . . . . . . . . . 190

6.2.2 Pan Air Technology . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.3 Pan Air Geometry Input . . . . . . . . . . . . . . . . . . . . . 192

6.2.4 An overview of configurations analyzed with Pan Air . . . . . 194

7 Pan Air Pre/Post Processor Module 201

7.1 Pan Air Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2 Pan Air Postprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.3 A simple testcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8 Conclusions 223

List of figures 227

A Evaluation of the stiffness matrix 235

Bibliography 237

IX



X



Introduction

Nowadays the preliminary design optimization holds an important role in the overall

design process. To be efficient, optimization needs a high degree of automation,

leaving to the designer only small and fast tasks. The efficiency would be enhanced

if the different modules are part of the same environment, that is, with a unique

integrated platform.

The preliminary aerodynamic property estimations represent the basis from where

to start further investigations and modifications. Although theoretical prediction or

lower order aerodynamic solver, like vortex lattice softwares, may be enough accurate

for an early preliminary design, when investigating innovative configurations, like the

PrandtlPlane one, the order of approximation may be unacceptable, mainly because

its effect can lead to unreliable results. For example, PrandtlPlane stability is highly

sensitive to small aerodynamic load variations, thus more refined analysis should be

undertaken. Moreover, the gained experience with the traditional configurations in

aeronautics, may not always help.

This and other related problems lead to the need of an efficient and fast code for

preliminary evaluation, capable also to export the geometrical shapes to international

standard formats, in order to eventually submit more accurate analysis. Since the

steps for obtaining an aerodynamic analysis consist in a geometrical configuration

definition, a grid generation and a program pre and postprocessing, the main idea is

an integrated environment where preliminary aerodynamic design and optimization

could be easily and quickly undertaken.

1



In the first chapter an overview of ASD capabilities and tools is given. ASD

(aerodynamic shape design) is a tool written in Matlab language, for geometric

shape design of aerodynamic surfaces purposes. Further, it features an internal

unstructured mesher. In this chapter, the process of generating configurations is

analyzed step by step, mainly from the user perspective; also the use of the tools

is shown. A brief description of the integrated unstructured mesher is also given.

Finally, the geometric limitations of the code are pointed out: they concern the

continuity of the generated NURBS surfaces. The practical drawbacks are discussed,

showing the need of a geometric engine improvement.

Second chapter deals with NURBS, a parametric form. First, a brief historical

survey is given, followed by the definition of some noteworthy parametric forms,

like Bézier and B-spline, fundamental to NURBS understanding. After, NURBS

are analyzed, and some important algorithm important for their manipulation and

implementation are briefly discusses.

The third chapter is of main importance, since it discusses how NURBS are

effectively built over a set data points. The interpolation problem is analyzed in

depth, as well as parameterization problems. Then, continuity is discussed from

three different perspectives; the effects of continuity on shape fairness are briefly

shown. Finally, implementation of new algorithms, based on fairness and variational

modeling, and overcoming the previous limitations, is carried out.

Next chapter shows more in detail the capabilities of the new algorithms compared

with the old ones. The new GUI, where the interpolation parameters are controlled,

is presented. The chapter ends with some pictures of configuration generated with

the new algorithms.

Chapter five treats grid generation. After a short introduction on grid generation

topic, and especially on the structured mesh, the requirements of the aerodynamic

solver Pan Air on the input networks are pointed out. Thus, the logics adopted in

the grid generation process and all its underlying reasons are discussed in depth.

The parameters which control the mesh generation, and the graphical interface are

finally presented, as well as some examples of networks generated.

Chapter six introduces the panel method theory, from the equations to the field

2



of application. Then Pan Air, the panel method developed at Boeing and NASA,

and chosen to be integrated with this code, is described; in particular an overview

of its capabilities, its requirements, and some of its applications are presented.

The integration of Pan Air within the platform is pointed out in chapter seven.

Both the preprocessor and the postprocessor are presented in details, with the aid of

pictures of analyzed configurations. A final simple test case is submitted, with the

aim of checking Pan Air predictions and its grid sensitivity.

3



4



1
ASD: Aerodynamic Shape Design

1.1 Introduction

ASD (Aerodynamic Shape Design) is a fully parametric, modular, scriptable aero-

dynamic surface generator. One of ASD peculiarity is the easy and fast new con-

figuration generation and existing configuration modification capability, due to the

parametric approach and the user friendly graphical interface. Another trademark is

the ability to generate non-conventional configurations, such as the PrandtlPlane one,

whose aerodynamic shapes can not be easily designed using conventional CAD soft-

wares. Together with this geometric capabilities, ASD is provided of a meshing tool,

capable of producing triangular meshes and hybrid tri-quad meshes suitable both

for aerodynamic and electromagnetic simulations and featuring automatic wakeline

recognition for aerodynamic panel solvers. ASD surface mesher can export various

formats from panel neutral .dat files to standard .stl tri mesh. The output of the

surface generator can be exported as set of trimmed NURBS into an IGES file or fed

into meshing tool built into the code. Some useful tools aid the users to sketch the

geometric shapes, such as the airfoil manager, the section manager, the Naca airfoil

manager and the flap sketcher.

Due to its characteristics, ASD main field of application is the early stage of

aerodynamic design. In this stage, in fact, ASD can quickly generate a huge number

of configurations, making it possible to analyze many different layouts during the

5



1 – ASD: Aerodynamic Shape Design

initial optimization process.

The ASD code has been written in Matlab, and requires, a part from Matlab,

the Spline Toolbox.

Whereas more details are required, refer to [1; 2; 3; 4].

1.2 ASD Surface Generator

1.2.1 The Main Window

As soon as the program interface starts, the main window (fig.1.1) is brought on focus.

The main window is made up of 8 list boxes and a menu bar. The list boxes show

the features currently in memory, and allow the user to remove or modify existing

features or to add new ones. Double clicking on a feature opens the corresponding

modify window. In every list box feature are listed showing the feature tag and

ordered as they have been defined. The features that contain surface data are marked

with a “ ==> ” right before the tag. Every list box allows multiple selections. The

Generate selected and Mesh selected pushbuttons pass the selected surfaces to the

surface generation function and to the meshing tool respectively. It is to be noted

that only feature that contain surface data can be meshed. The View pushbutton

opens the Surface Viewer.

1.2.2 The Features and the Feature Windows

It is worth a note that only body, wing and inlet/outlet features are independent,

being the remaining features just connections. Each feature can be added and edited

through its own window, which appears selecting the Edit voice on the menu, or just

double-clicking on the feature.

1.2.3 The Body Feature

The Add/Modify Body interface enables to specify all the parameters involved in

the generation of a Body feature. The interface for this feature is shown in fig.

1.2. Using these parameters, the code generates a skeleton of the body and then

6



1.2– ASD Surface Generator

Figure 1.1: The ASD main window.

interpolates it using a bi-cubic NURBS. A scheme of the skeleton along with the

body lines is shown in the picture 1.3. The Tag field lets the user specify a tag for

the feature which will be stored along with all the parameters and will be shown in

the ASD main window list boxes. The Upper/Lower Section list box contains the list

of used body sections. Using the Add and Remove pushbuttons the user can add or

remove body sections selecting appropriate .dat files. Next to each list box there is

the number of section files listed. The number of upper and lower sections must be

equal for the surface generator to work. The fields X0, Y0, Z0 are the coordinates

of the first section of the list. The coordinate system used in ASD has the positive

x-axis in the direction of the fuselage, starting from the nose, the positive y-axis is

directed spanwise from the fuselage toward the wing tip, while the positive z-axis is

normal to both x and y and directed upward. If Y0 is set to 0 the body is assumed

7



1 – ASD: Aerodynamic Shape Design

Figure 1.2: The body feature window.

to be on the symmetry plane and no other action is taken, otherwise the shape is

simmetrized on the plane y=Y0. The field Frame Spacing contains the x coordinates

of the body sections relative to X0. The fields Body lines are used to specify the

.dat file containing body lines data. The user can both browse for the file or input

the complete path. Pressing the Preview pushbutton will plot on a separate figure

a preview of the skeleton and of the resulting interpolated surface, as shown in fig.

1.4.

8



1.2– ASD Surface Generator

Figure 1.3: Parameters involved in the definition of the body feature

Figure 1.4: Preview of the skeleton and resulting interpolated surface for a body feature.

1.2.4 The Wing Feature

The Add/Modify Wing interface lets to specify all the parameters involved in the

generation of a Wing feature. The interface for this feature is shown in fig.1.5.

Using these parameters the ASD code generates a skeleton of the wing which is

then interpolated with a linear-cubic NURBS where the linear direction is spanwise.

9



1 – ASD: Aerodynamic Shape Design

Figure 1.5: The wing feature window.

Figure 1.6: Wing components

10



1.2– ASD Surface Generator

An example is shown in fig. 1.6. The Wing Airfoils list box contains the list of

used airfoils. Using the Add and Remove pushbutton the user can add or remove

airfoils selecting appropriate .dat file. The Add pushbutton opens a standard get

dir dialog which defaults on the standard UUIC AIRFOIL DATABASE directory.

Upon selecting a directory, the Airfoil Viewer window opens and lists all the airfoils

Figure 1.7: The Airfoil Viewer window

found in this directory (fig.1.7). The Airfoil Viewer enables the user to see origi-

nal points in the file selected, re-interpolated airfoil using an arbitrary number of

points. It also enables the user to calculate camber and maximum thickness of the

airfoil selected. All of the plot options act only on the visualization of the airfoil

11



1 – ASD: Aerodynamic Shape Design

on this window. The airfoil loader function loads the original set of points, clos-

es the trailing edge if found open, locates the leading edge, sets the chord parallel

to the x-axis and of unitary length and re-interpolates the points using a chord-

wise cosine distribution of 50 points. The same set of action is performed when the

Interpolated (cosine distr. chord // x axis) radiobutton is selected (see al-

so the Airfoil Generator and the Airfoil Manager sections). The popup Wing type

is used to select if the wing being created is to be freely placed, or is to be connected

with other wings. When the wing is free, the position and shape of the wing is

derived from the information of X0, Y0, Z0, dihedron and sweep angle. If the

feature is linked to another wing then the last airfoil is linked to a spanwise section

of another wing. The user must thus specify which airfoil on the linking wing is to

be matched, along with the ID of the linked wing. This is used to constrain a wing

to follow the wing it is linked to. This feature is useful to define T-tails.

The X0, Y0, Z0 are the coordinates of the nose of the first airfoil on the list

(assumed to be the root airfoil). If Y0 is set to 0 and the dihedron angles are all 90◦

or −90◦ then the wing is assumed to be on the symmetry plane, so only the upper

or lower side of the airfoil is considered.

The Ribs Spacing field contains the spanwise position of the airfoils relative to

the first airfoil. The Chords field contains the chords of the airfoils listed, Lambda

and Dihedron contain the sweep and the dihedron angle of the defined bays; Alpha,

Beta, Theta contain information on the rotation angle of the airfoils around the three

principal axes, x, y and z, respectively.

If the wing type is set to “linked”, then the Linked Wing ID popup menu is used

to select which wing is to be linked to. Obviously there must be some wing defined

to define a linked wing, as self referencing is not allowed. The Rib Link Spanwise

field is used to select the spanwise section position on the wing is to be linked to.

The user can make use of expressions involving other wing feature, as long as they

have been already defined, which are evaluated before saving the result. For example

the expression

wing(2).y0 + wing(2).ribs spacing(2)

evaluates to the y position of the second airfoil of wing 2. Next to the field there is

12



1.2– ASD Surface Generator

a textbox where the result of evaluation is displayed.

Figure 1.8: The Preview wing feature

Pressing the Preview pushbutton will plot on a separate figure a preview of the

skeleton and of the resulting interpolated surface, as shown in fig.1.8

Every wing feature can have a variable number of control surfaces defined. They

are all listed in the Flap/Slat list box. Double-clicking on one of the listed features

opens the corresponding Add/Modify Mobile Surface window (fig.1.9.

Within the aim of this window, it is possible to generate mobile surfaces on a

wing, both on LE (slat) and TE (flap, aileron etc). The mobile surface must be

defined within one single bay. Parameters describing the mobile surface are the ribs

spacing, to set the spanwise position, the gap, which specifies the relative gap, in

percentage of the length of the mobile surface, to leave between the mobile surface

and the main wing surface, the chords, to set the chords at fist and last spanwise

section.

The mobile surface sectional geometry is created by a tool called Flap Sketcher

(section 1.4.4).

13



1 – ASD: Aerodynamic Shape Design

Figure 1.9: The Add/Modify Mobile Surface window

Figure 1.10: Mobile surface deflection

Finally, a flap/slat motion law is stored in a plain text .dat, so that when selecting

a slat and flap deflection angle, the mobile surface configuration is properly achieved.

14



1.2– ASD Surface Generator

1.2.5 The Bulk Feature

Figure 1.11: The bulk feature window

The bulk feature is specifically designed to link the two wing tips of a biplane

configuration as shown in fig.1.12. The bulk feature creates a connection element

Figure 1.12: A bulk example

between two wings, by smoothly transform one airfoil to the other, giving the user

the ability to select the bulk start and end airfoil. The airfoil transformation is linear

along the bulk midline (see fig.1.13).

15



1 – ASD: Aerodynamic Shape Design

Figure 1.13: The bulk control parameters

The popup menu Upper Wing and Lower Wing are used to select which wing is to

be the start(end) wing. In the Bulks upper (lower) airfoil the user specify the airfoil

to be used for the upper (lower) end of the bulk feature. It can be selected using

the airfoil viewer. The Upper (Lower) Wing Control Line specify the vertical and

horizontal distance of the linear part of the bulk feature from the wing last airfoil.

Finally, the Upper(Lower) Wing Round Bay Intervals contains the number of sections

that have to be created along the round from the start wing to the beginning of the

linear part of the bulk. The minimum number is two. The intermediate airfoils are

created linearly spacing and morphing the first airfoils to the last one on the other

side of the bulk.

Pressing the Preview pushbutton will plot on a separate figure a preview of the

skeleton and of the resulting interpolated surface in dark transparent gray, and the

two wings that take part at the generation in light transparent gray, as shown in

fig.1.14

1.2.6 The Wingbody Feature

The WingBody feature is a wing-like surface to blend to a generic root section of

a wing. The result is a smoothly blended surface that extends the wing to the

16



1.2– ASD Surface Generator

Figure 1.14: The Preview Bulk figure

Figure 1.15: The wingbody feature window

section specified by the user using different options to control section smoothness

and generation. As a wing-like feature, it retains several definitions and parameters

typical of the Wing feature.

17



1 – ASD: Aerodynamic Shape Design

The Add/Modify WingBody interface (fig.1.15) enables to specify all the param-

eters involved in the generation of a wingbody feature. The X0, Y0, Z0 are the

coordinates of the foremost point of the root section. The editable field Root Section

Name is used to specify the .dat file containing root section data. The file should

contain an airfoil-like set of bi-dimensional coordinates, with unit chord. The chord

of the root section is specified in the following field. The Beta and Dihedron editable

fields contain information on the rotation angle of the airfoils around the y axis and

the dihedron angle of the wingbody respectively.

The Linked to Wing and Linked Airfoil ID popup menu list all the wings currently

defined and lets the user select the one to which the wingbody feature is to be linked

to, and lets the user select which airfoil is the one the wingbody feature is to be linked

to. Finally, the LE Fillet Type and TE Fillet Type popup menus allow the user to

control the type of leading edge and trailing edge connection. The two conditions

are independent and are linearly blended one into the other moving from the LE to

the TE. The 3 types of connections are:

1 z-der = 0 : the derivatives at the wing interface are preserved, thus preserving

the smoothness of the surface; the derivatives at the root section are the same

as the wing derivatives except for the z component which is set to zero;

2 z-der = 0, x-der = 0 : the derivatives at the wing interface are preserved, thus

preserving the smoothness of the surface; the derivatives at the root section

are the same as the wing derivatives except for the z and x component which

are set to zero.

3 Linear: all derivatives both on the wing interface and on the root section are

set equal to the vector connecting the two.

Fig. 1.16 and 1.17 clarify the connection modality.

1.2.7 The Inlet/Outlet Feature

The inlet/outlet feature is a body-like feature specifically designed to generate the

cavity of an inlet or outlet. The inlet/outlet surface is built by interpolation of a set

18



1.2– ASD Surface Generator

(a) Type 1 on LE and TE. Front view (b) Type 1 on LE and TE. Top view

(c) Type 2 on LE and TE. Front view (d) Type 1 on LE and TE. Top view

Figure 1.16: WingBody creation, type 1 (a) and (b), type 2 (c) and (d).

of frames. The interface gives the user the control over the spatial position of these

frames, allowing a quick and easy way to parametrically modify the surface. The

generation of the inlet/outlet feature also takes care of intersecting the feature with

the y = 0 coordinate plane and body, wing ,wingbody features. All other features

are not checked for intersection.

The Add/Modify Inlet/Outlet interface lets to specify all the parameters involved

in the generation of a the feature. Using these parameters, the code generates a

skeleton of the surface and then interpolates it using a bi-cubic NURBS. A scheme

19



1 – ASD: Aerodynamic Shape Design

(a) Type 3 on LE and TE. Front view (b) Type 3 on LE and TE. Top view

(c) Type 1 on LE and type 3 on TE. Front
view

(d) Type 1 on LE and type 3 on TE. Top
view

Figure 1.17: WingBody creation, type 3 (a) and (b), type 2 on leading edge and type 3 on
trailing edge (c) and (d).

of the skeleton along with the center line is shown in fig.1.19. The Section list box

contains the list of sections in use. Using the Add and Remove pushbuttons the

user can add or remove sections by selecting appropriate .dat files. The section files

are normalized plane shapes in the [−1,1] × [−1,1] domain. The actual shape of

the section is derived from these by applying the scale factor independently on each

semi-axis. (see fig.1.21).

The X0, Y0, Z0 fields represent the coordinates of the first section of the list.

20



1.2– ASD Surface Generator

Figure 1.18: The inlet/outlet feature window

Figure 1.19: The inlet/outlet skeleton and center line

Unlike the body feature, the inlet/outlet always generates the complete surface of

the inlet, regardless of its relative position to the symmetry plane. The surface

generator function takes care of all the intersection both with the symmetry plane

21



1 – ASD: Aerodynamic Shape Design

and the other features, and writes the inlet/outlet surface as a trimmed NURBS. The

Interpolated Sections field contains the number of extra sections the code has to add

between each pair of sections. The effect of this automatic adding feature is to force

the feature to follow the centerline without changing shape. In fig.1.20 the effect of

changing the number of interpolated section is clearly visible, being the red sections

the ones defined by the user, and the blue the ones added by the code. The Center

(a) Inlet/Outlet with extra sections (b) Inlet/Outlet without extra sections

Figure 1.20: Effect of the interpolated sections in the geometry of the Inlet/Outlet.

line editable field is used to specify the .dat file containing center line data. The

centerline does have a direction. Inside the code it is essential to know which side is

the one to keep in order to write trims properly. As a convention, the centerline is

supposed to start from the inside and going outside, so that in the case of an engine

inlet and outlet, the first section is the one on the engine face, for both the inlet and

the outlet. The center line has another peculiarity that the body lines do not have:

its defined by 3D points, thus allowing a single line to define a 3-dimensional path

for the feature.

The Section Scale Factors panel give access to the section scale factors. Since the

sections are defined in a normalized square [−1,1]× [−1,1] the scale factors give the

user the possibility to obtain very different shapes of section starting from a simple

.dat file. The scale factors must be specified for both axes and for both the positive

and negative semi-axis (fig.1.21).

22



1.2– ASD Surface Generator

(a) Original section (b) Scaled section

Figure 1.21: Inlet/Outlet Section Scale Factors.

The Section Position panel groups together all the information about section

rotation and spacing. In the Section Rotation Mode the user select the mode of

rotation of the sections: the User mode requires the user to specify for every section

the 3 rotation angles around the 3 principal axes, the Norm mode require the user to

input only the x-rotation (the rotation of the section in its plane), while the other

two rotation are calculated automatically to keep the section plane normal to the

center line, the x mode requires the user to input only the x-rotation (the rotation

of the section in its plane), while the other two rotation are calculated automatically

to keep the section plane normal to x-axis line. The rotation angles are specified in

the X-rot, Y-rot, Z-rot editable fields.

Finally, in the Section Spacing field the x position of the center of the sections

relative to the center line are inserted.

1.2.8 The Fillet Feature

The fillet feature is used to create the fillet between a wing and a body. The Fillet

type field contains the type of fillet to create. If set to smooth then the fillet will be

a round type fillet tangent to the fuselage on the leading edge, and linearly rotating

23



1 – ASD: Aerodynamic Shape Design

Figure 1.22: The inlet/outlet preview

Figure 1.23: The fillet feature window

into perpendicular intersection towards the trailing edge (fig.1.24). If set to linear,

24



1.2– ASD Surface Generator

the fillet is just a linear blending surface from the wing to the surface.

Figure 1.24: Smooth fillet derivatives on wing and body

In the Piercing wing ID/Pierced body ID the user selects which are the bodies

involved in the fillet creation. The Piercing wing airfoil ID is used to specify if the

fillet starts from the root or the tip airfoil. It is useful when creating double fuselage

configuration, where the fuselage is connected to the center wing by a fillet starting

from the tip of the middle wing. There are two ways to control the geometry of a

fillet feature: a basic and an advanced.

The basic controls strips down to only 2 parameters: a chord ratio and a thickness

ratio. If the advanced Fillet Controls checkbox is checked, advanced control

parameters are visible. With the Basic fillet parameters, the user directly controls

the dimension of the hole on the body, while its shape is controlled by the base wing

airfoil (fig.1.25).

With the Advanced fillet parameters, the user directly controls the dimension

and the shape of the hole on the body, by providing an auxiliary airfoil and its

position (fig.1.26). Both these methods affect the fillet creation by giving different

ways to locate the intersection points on the body surface. Once these points are

determined, the fillet creation follows the same path, by creating a smooth or linear

surface depending on the user selection. The Chord Ratio is a scaling parameter

25



1 – ASD: Aerodynamic Shape Design

Figure 1.25: Creation of fillet with Basic controls

Figure 1.26: Creation of fillet with Advanced controls

used to define an auxiliary airfoil to intersect with the body feature. This parameter

is the chord-wise scaling factor to be applied to the base wing airfoil to obtain the

new airfoil (fig.1.25). The Thickness Ratio is a scaling parameter used to define an

26



1.2– ASD Surface Generator

auxiliary airfoil to intersect with the body feature. This parameter is the thickness-

wise scaling factor to be applied to the base wing airfoil to obtain the new airfoil. In

the Advanced Fillet parameters the user is requested to set up the auxiliary airfoil

that defines the shape of the fillet. The fillet is indeed defined connecting the wing

to this auxiliary airfoil located according to these parameters. Figure 1.26 shows

the wing airfoil, the wing extension to intersect the fuselage, and the auxiliary bay

defined by the wing airfoil and the auxiliary airfoil. The result of the intersections

between this bay and the fuselage is the starting point to construct the fillet NURBS

surface.

Figure 1.27: Example of smooth and linear fillet on the same configuration.

1.2.9 The Tfillet Feature

The Tfillet feature is used to create the fillet between two wings and works as the

fillet feature, except that only the basic controls are available. The field TFillet type

contains the type of fillet to create. If set to smooth then the fillet will be a round

type fillet tangent to both wings, with a variable radius from the leading edge to

the trailing edge (fig. 1.29). If its set to linear, the fillet is just a linear blending

surface from the intersecting wing to the other.

27



1 – ASD: Aerodynamic Shape Design

Figure 1.28: The Tfillet feature window

Figure 1.29: Smooth fillet derivatives on wing TFillet

The Piercing wing ID/Pierced wing ID specify which are the wings involved in

the fillet creation, and the Piercing wing airfoil ID distinguish if the fillet starts from

the root airfoil or the tip airfoil.

The chord ratio and thickness ratio are scaling parameters used to define an

auxiliary airfoil to intersect with the wing feature; they are respectively the chord-

wise and thickness-wise scaling factor to be applied to the base wing airfoil to obtain

the new airfoil (fig.1.30)

28



1.2– ASD Surface Generator

Figure 1.30: Auxiliary airfoil definition and surface intersection

Figure 1.31: Smooth TFillet on T-tail configuration

1.2.10 The Wround Feature

The wround feature is used to create a connection element between two wings, con-

necting their extreme airfoil with a smooth continuous surface. There is no control

over the shape of the wround, depending only on the position of the two airfoils

29



1 – ASD: Aerodynamic Shape Design

Figure 1.32: The Wround feature window

involved and the surface derivatives on them. To create a Wround feature at least

2 wings must be defined. In the Start Wing panel the user selects from a dropdown

menu the first wing and the airfoil to be connected to the second wing. The same

is done with the End Wing panel for the second wing. Pressing the Preview push-

button will plot on a separate figure a preview of the skeleton and of the resulting

interpolated surface in dark transparent gray, and the two wings that take part at

the generation in light transparent gray, as shown in fig.1.33.

1.2.11 Viewing the Results

Every surface generated is passed to the Surfaces Viewer window and is automatically

selected for plotting. The user can now select which features to plot and what kind

of plot to perform. The options are:

1. Render : the surfaces are rendered in different color depending on the type of

surface using a metal like look (fig.1.35).

30



1.2– ASD Surface Generator

Figure 1.33: The wround feature window

Figure 1.34: The Surface Viewer window

2. Render Shaded : the surfaces are rendered in different color depending on the

type of surface using a metal-like look and a half transparent effect(fig. 1.36).

3. Three Plane View: the surfaces are rendered in gray using a metal-like look

and displaced on the figure in 4 views, 3 principal plus an isometric view (fig.

31



1 – ASD: Aerodynamic Shape Design

Figure 1.35: Surface Viewing: Render

Figure 1.36: Surface Viewing: Render Shaded

1.37).

By default the plots are not symmetrized, and the trim lines calculated during surface

generation are not shown. The user can turn on the symmetization or the trim lines

plot by clicking on the corresponding checkbox (see fig.1.34). However, only surfaces

are symmetrized, while trim lines are plotted only for the y > 0 plane.

32



1.3– ASD Surface Mesher

Figure 1.37: Surface Viewing: Three-Plane View

1.3 ASD Surface Mesher

From the ASD main window it is possible to launch the ASD Surface Mesher on the

selected features. Obviously the features selected must contain surface data. The

ASD Surface Mesher is a GUI designed to help the user manage all the parameters

and functions underlying the process of mesh generation. The ASD Surface Mesher

sub-function are specifically designed to generate triangular meshes with maximum

chord distance and maximum element size specified by user. The interface also

enables the user to perform different tasks on the mesh, ranging from Delaunay

flip to triangular-to-mixed mesh transform, plotting and analyzing meshes. In this

section only a brief illustration is given, for more details on the surface mesher refer

to [1], for more details on grid topics see also section 5.

The Mesh Data and Mesh stats panel (active only after a mesh has been ana-

lyzed) summarize the mesh properties. The mesh generation controls are grouped in

the Mesh Parameters panel. From this panel its possible to define and generate a

mesh. The Max Chord Distance parameter specifies the maximum distance from the

33



1 – ASD: Aerodynamic Shape Design

Figure 1.38: ASD Surface MESHER, the interface window

real surface to the mesh (fig.1.39), whereas the Max Element side length parameter

Figure 1.39: Mesh parameters: max chord distance

specifies the maximum element side length. The Collapse Ratio can only assume

values greater than 0 and lower than 0.5. When the conform mesh box is checked

34



1.3– ASD Surface Mesher

the conform algorithm uses this value to decide whether to move a point on the

interface of two surfaces or to add a triangle. The ratio is the maximum value of

the ratio point_to_add_distance/segment_length that the user allows to move

points. Above that value a new triangle is added. This conform procedure is only

applied to the inlet/outlet and wingbody mesh creation, and will thus not affect all

other surface meshes.

Figure 1.40: Mesh parameters: collapse ratio

The ASD Surface Mesher meshes all the surfaces separately, then trims the meshes

created according to the trim lines calculated by ASD Surface Generator. The meshes

so created might not be correctly connected at the interface of two surfaces (see

fig.1.41). When correct mesh connection is desired the Conform Mesh box should

be checked.

When a mesh is calculated, all the surfaces are meshed independently. All these

partial meshes are stored inside the relative feature structure. At the end of the

meshing procedure, whether it has been conformed or not, all the partial meshes

are concatenated into one single mesh. Most of the following function work on this

mesh, few of them work on the element mesh.

35



1 – ASD: Aerodynamic Shape Design

Figure 1.41: Non conform mesh and conform mesh

The Rebuild tri mesh function rebuilds the complete mesh starting from the mesh

contained into single features. This is useful to recover the original mesh.

The set of tools within Plot Option Panel are used to plot the full mesh, calculate

and plot the edges and plot the results of the mesh analysis. All these functions work

on the full mesh and do not modify it. The interface is similar to the one of the new

structured mesher (section 5.5) thus it won’t be reported here.

The Mesh Transform Panel groups all the mesh transform options. All the func-

tions inside this panel work on the complete mesh and only if the type is “tri”.

Triangular meshes are converted to mixed (quad-tri) meshes by recursively bonding

together two adjacent triangles which meet the requested characteristics. The control

parameters are the maximum angle between the triangles normal to allow union of

the two triangles into one quadrilateral element, and the maximum value of skewness

allowed for the resulting quadrilateral element. Finally, the Tri2mixed button starts

the conversion, which modifies only the complete mesh.

The Tri Mesh Operations panel groups all the mesh operation options, which

are mesh analysis, to perform a mesh geometric analysis, mesh symmetrization, in

order to symmetrize the mesh taking care of normal reversing wherever needed, node

equivalence to perform a node equivalence based on the specified tolerance with the

intent of collapsing all the points that are closer, and mesh closure, to close open

meshes with a simple triangulation. The last function is useful to prepare meshes

for softwares that do not allow open surfaces.

36



1.4– The ASD tools

(a) Open mesh (b) Closed mesh

Figure 1.42: Tri-mesh operation: closure of a mesh.

The Mixed Mesh Operations panel groups all the mixed mesh operation options,

aimed to automatic LE and TE wake lines search. This functions are used when

preparing an input file for an aerodynamic panel method, where wake separation

lines must be specified into the code. And, finally Feature Operations panel groups

the Delaunay Flip, which perform a cycle of Delaunay flips in 3D space (if the Full

checkbox is selected the cycles are repeated until no flips are left), and the Align

Normal functions, which aligns the element normals according to the sign of the

global feature normal determined during surface generation.

1.4 The ASD tools

1.4.1 Airfoil Manager

Airfoil Manager is a graphical user interface (GUI) designed to manage airfoil databas-

es stored in .dat files. The interface is currently capable of reading a folder containing

the .dat files, displaying it in a listbox and plotting the selected airfoil along with the

information on the file and the airfoil. The interface can operate on plain coordinate

file as well as labeled coordinate files, as long as the points are stored starting from

the trailing edge and ending on the trailing edge itself.

37



1 – ASD: Aerodynamic Shape Design

(a) Mesh before Delaunay flip (b) Mesh after Delaunay flip

Figure 1.43: Feature operations: full Delaunay flip.

The only section accessible by the user the Plot Option panel, where the user can

select if and how the airfoil must be interpolated and how many points must be used

for interpolation. This number is the same number the airfoil is saved, so it does

not only affect the quality of the plot, but also the quality of the exported airfoil

.dat file. The options are among the original airfoil coordinates as loaded from the

.dat file, the original airfoil coordinates with the chord forced parallel to the x axis,

the interpolated airfoil with linear distribution and cosine distribution. The editable

text box allows the user to set the number of points for the interpolated airfoil.

The airfoil attributes panel is used to estimate camber, thickness information

of the currently selected airfoil, based on the interpolated curve calculated on the

original points. There may be a little disagreement with the actual thickness and

camber values.

In the airfoil info panel are collected all the information regarding the selected

airfoil: the name and the number of points stored in the .dat file.

38



1.4– The ASD tools

Figure 1.44: Airfoil Manager GUI

1.4.2 NACA Airfoil Generator

NACA Airfoil Generator is a graphical user interface (GUI) designed to create NACA

4-digit and NACA 5-digit airfoil series.

The interface gives the user the capability to explore different airfoils by simul-

taneously plotting thickness distribution, camber line and the airfoil itself on two

graphical windows. The tool is currently capable of dealing with 4-digit and 5-digit

standard (non-modified) NACA airfoils such as, for example the NACA4415 or the

NACA23012 airfoil.

The user could only introduce the name of the airfoil and the number of points

to generate. This number is the same number the airfoil is saved, so it does not only

affect the quality of the plot, but also the quality of the exported airfoil .dat file.

The points are calculated every time the user changes any of the two editable texts,

39



1 – ASD: Aerodynamic Shape Design

Figure 1.45: NACA Airfoil Generator GUI

and are distributed along the chord using a cosine-law. For equations of the NACA

4 or 5-digit series refer to [5].

1.4.3 Section Sketcher

The interface gives the user the capability to create a section with any shape, or to

explore a section in a database by plotting the section coordinates as stored in the

.dat file, on a graphical window. Finally, the interface includes a Save As command

to save the result as a plain coordinate .dat ASCII file.

The interface is very simple and consists of only one window. This window is

divided in a plot box where the section is shown along with the current parametriza-

tion, one modify box where the user can modify the section inserting, adding or

moving some control points, one visualization box where the users decide the rep-

resentation of the section, one zoom box containing the details about the zoom of

the file representation, one interpolation box where the user controls interpolation

parameter, one export box.

The simplify curve pushbutton causes the curve to be simplified. Recursively

40



1.4– The ASD tools

Figure 1.46: Section Sketcher GUI

all the points in the curve are checked if removable maintaining the curve into the

prescribed tolerance. The Redistribute points redistributes the interpolation points

of the NURBS uniformly in the parametric space. The number of points used in

redistribution process is set by the user in the dialog box.

1.4.4 Flap Sketcher

Flap Sketcher is a graphical user interface designed to help defining 2-dimensional

mobile curves on different airfoils by means of NURBS. The interface gives the user

the capability to create any Flap/Slat configuration starting from the base airfoil, or

to modify an existing configuration.

The idea is to create a description of the mobile surfaces that is, to some extent,

independent from the original airfoil it was created on. To achieve this, the mobile

surfaces are saved in a parametric format and automatically adjusted to the loaded

41



1 – ASD: Aerodynamic Shape Design

Figure 1.47: Flap Sketcher GUI

airfoil.

The Flap/Slat creation process consists of 3 basic steps:

• select the base airfoil,

• draw the flap/slat lines using the sketch assist tools of the flap sketcher

• position the center of rotation of every surface.

In the first step, an airfoil is easily loaded by means of the menu. Once loaded the

airfoil is shown on both windows. The upper window shows the lines and should be

used to sketch, while the lower window shows the results of the operations. Besides

this, both windows can be used to enter points.

There are several methods to input the lines that define a flap/slat surface. Every

line added modifies the flap configuration and the result is displayed on the lower

window. There are 3 different types of lines, that differ essentially for the end

derivatives.

42



1.4– The ASD tools

The C type line is tangent to the airfoil surface and both end derivatives point

towards the trailing edge. The first points to input are the ones on the airfoil border,

upper and lower, then all the points that define the line between these two. The

user can input an unlimited number of points in any order, but usually 3 to 5 are

sufficient. In the lower window the user sees the result of the splitting. If the free-

hand radiobutton is selected the user can freely input the points that define the line,

while if the arc of parabola radiobutton is selected the user must input only one

intermediate point, and the parabola arc will be automatically generated.

Figure 1.48: Flap Sketcher: C type line

The S type line is tangent to the airfoil surface with the upper end derivative

pointing towards the trailing edge and the lower pointing towards the leading edge.

The process is identical to the C type line, however a cubic curve instead of an arc

of parabola is given.

The O type line is a closed line used to define those parts of the control surface

that completely lay inside the airfoil. To define these type of surfaces the user must

first provide the point that will be treated as a TE of the surface, then the one that

will be treated as the LE, then all the points on the left and finally the points on the

right. The sketch of this surface is currently only available in free-hand mode only.

43



1 – ASD: Aerodynamic Shape Design

Figure 1.49: Flap Sketcher: S type line

Figure 1.50: Flap Sketcher: O type line

To input the points is also available a coordinate mode, that asks the user to

manually input the coordinates of the points.

Every line added is given a default name and it is listed on the left of the window.

The program automatically creates the surfaces that are defined by the current lines,

starting from the LE to the first line, from the second line to the third line and so

44



1.5– ASD Limitations

on.

To complete the flap/slat creation, all the movable surfaces must be assigned a

hinge point; this is achieved by selecting the point directly on the plotting window,

otherwise by entering the coordinates in a popup window.

1.5 ASD Limitations

ASD limitations are documented and reported in [1; 2]. However, different problems

arises during program utilization in conjunction with other softwares. In fact, when

exporting the surfaces generated from ASD to an IGES format, and then importing

this file with the multi platform CAE/CAD/CAM commercial software CATIA, or

other similar softwares, an unexpected difficulty occurs. Advanced softwares like

CATIA and Pro/ENGINEER, being oriented also to automotive and industrial de-

sign where the freeform surfaces should meet strict requirements to near perfect

aesthetical reflection quality, implement a severe surface analysis. As will be shown

in section 3.5, high quality surfaces require curvature and tangency alignment. On

the other hand, ASD geometrical engine relies on an interpolation surface algorithm

capable of generating surfaces with just tangency alignment. Thus, in the process

of importing an ASD generated surfaces, the advanced softwares recognizes the cur-

vature discontinuities, and splits the shape in a multitude of patches at the internal

whom also the curvature is continuous.

On the visual side, this inconvenient could be overcome, at least on CATIA, by

selecting the appropriate visualization filters (see fig.1.51 and 1.52). But, on the

practical side, this split process create a multitude of entities which not only slow

down the program, but cause the work to be impractical.

The most sever drawback arises when other programs import the CATIA or

Pro/ENGINEER configuration in order to do some operations, like grid generation.

A typical usage is the CATIA and GAMBIT pairing in order to create an high

quality mesh for an accurate CFD analysis with FLUENT software, for example.

When GAMBIT recognizes all the patches, the grid generation problem becomes

prohibitive. Further, the CFD postprocessing is cumbersome: to know the forces

45



1 – ASD: Aerodynamic Shape Design

(a) Visualization option: shading with edges

(b) Visualization option: shading with edge without smooth edges

Figure 1.51: A surface generated with ASD and imported with CATIA. Note the patch
subdivision.

acting on a wing, the patches should be merged. An optimization, which relies on

automation, is thus not possible for grid generation and CFD analysis processes.

To overcome this first limitation, modifications on the geometric engine are need-

ed. Referring to figure 1.53 and figure 1.54, the modifications should focus on the

NURBS subblock.

Other main ASD limitation is the inability to generate a structured grid. In order

to interface the grid generated from the internal mesher to a preliminary aerodynamic

analysis program, like a panel method code, some restrictions on the mesh should be

met. These programs, and in particulary Pan Air, require a structured grid as input

geometry.

46



1.5– ASD Limitations

(a) Visualization option: shading with edges

(b) Visualization option: shading with edge without smooth edges

Figure 1.52: A surface generated with ASD and imported with CATIA. Note the patch
subdivision.

Thus, close to the actual mesher, fig.1.55, a structured mesher module should

join the grid generation process.

47



1 – ASD: Aerodynamic Shape Design

Figure 1.53: Main decomposition of ASD code

48



1.5– ASD Limitations

Figure 1.54: Decomposition of the ASD geometrical engine

49



1 – ASD: Aerodynamic Shape Design

Figure 1.55: Decomposition of ASD mesher

50



2
NURBS (Non Uniform Rational B-Spline)

Starting from a brief historical summary on CAGD (computer aided geometric de-

sign), this chapter deals with parametric forms. For the most important of them,

detailed mathematical model are reported, main characteristics are depicted, ben-

efit and drawbacks are analyzed; especially for NURBS (non uniform rational B-

Spline). Most outstanding algorithms aimed to NURBS manipulation are also briefly

presented. Lastly, a short treatise on continuity is provided.

2.1 A Brief Historical Survey

The earliest recorded use of curves in a manufacturing environment seems to go back

to early AD Roman times, for the purpose of shipbuilding. A ship’s ribs were pro-

duced based on templates which could be reused. Later Venetians perfectionate these

technique. Drawing became popular only in the 1600s in England, the classic spline

was probably invented then. This connection between drawing and manufacturing in

shipbuilding was the earliest use of constructive geometry to define free-form shapes.

Another keypoint originated in aeronautics, with Liming (NAA, North American

Aviation): he realized that to store a design in terms of numbers was more efficient

instead of manually traced curves. Thus he translated the classical drafting con-

structions into numerical algorithms. Liming’s work became very influential in the

1950s when it was adopted by U.S. aircraft companies.

51



2 – NURBS (Non Uniform Rational B-Spline)

The turning point was the advent of numerical control in the 1950s: machining

of 3d shapes out of blocks of wood or steel became reality. Soon was found the need-

ing of adequate software, in terms of producing a computer compatible description

of shapes. The most promising description was found to be in terms of parametric

surfaces. At that time the theory of parametric surfaces was well understood in

differential geometry, but their potential for the representation of surfaces in a Com-

puter Aided Design (CAD) environment was not known at all. This exploration can

be viewed as the origin of Computer Aided Geometric Design (CAGD) 1. Only large

corporations could afford the computers capable of performing the calculations, so

the developments were internal at each company and kept secrets.

In the 1960s-1980s one of the major contribution to CAGD development was the

work of of Bézier (at Renault), who defined a particular polynomial parametric form,

milestone for the subsequent development; this leads in 1971 to UNISURF, car body

design and tooling.

Stand-alone from Bézier’s work was mathematician de Casteljau activity at Cit-

roën. He adopted the use of Bernstein polynomials for his curve and surface defini-

tions from the very beginning, together with what is now known as the de Casteljau

algorithm; another of the breakthrough insight of his work was to use control poly-

gons, a technique that was never used before. After it was found that his parametric

curve is mathematically identical to Bézier’s one. His work was publicized only in

1967.

In the US, the development was linked mainly to the aerospace industry. Ferguson

(at Boeing) used piece cubic curves together so that they formed composite curves

which were overall twice differentiable; these curves, referred as spline curves could

easily interpolate to a set of points. The meaning of the term spline curve has since

undergone a subtle change. Instead of referring to curves that minimize certain

functionals, spline curves are now mostly thought of as piecewise polynomial (or

rational polynomial) curves with certain smoothness properties. Ferguson’s first

works was printed in 1964.

1This term was introduced by Barnhill and R. Riesenfeld in 1974, during the first famous
conference on that topic, at the University of Utah.

52



2.1– A Brief Historical Survey

Coons (MIT researcher and FORD consultant) developed the patch theory using

cubic piecewise polynomials in the Hermite form. Coons devised a simple formula

to fit a patch between any four arbitrary boundary curves. His famous report were

publicized in the 1967. Improvements about this topic (called transfinite interpo-

lation) were done by Gordon (at General Motors) who developed a generalization,

capable of interpolating a rectangular network of curves, and Gregory.

De Boor (at General Motors) was the first to introduce the tensor product surface.

He also was the first to use B-Splines (short for Basis Splines) as a tool for geometric

representation. The recursive evaluation of B-spline curves is due to him and is

now known as the de Boor algorithm: it is based on a recursion for B-splines. It

was this recursion that made B-splines a truly viable tool in CAGD. Before its

discovery, B-splines were defined using a tedious divided difference approach which

was numerically very unstable.

Spline functions are important in approximation theory, but in CAGD, para-

metric spline curves are much more important. These were introduced in 1974 by

Riesenfeld and Gordon who realized that de Boor’s recursive B-spline evaluation was

the natural generalization of the de Casteljau algorithm. B-spline curves include

Bézier curves as a proper subset and soon became a core technique of almost all

CAD systems. A first B-spline-to-Bézier conversion was found by W.Boehm. Sev-

eral algorithms were soon developed that simplified the mathematical treatment of

B-spline curves.

The generalization of B-spline curves to NURBS has become the standard curve

and surface form in the CAD/CAM industry. They offer a unified representation of

spline and conic geometries: every conic as well as every spline allows a piecewise

rational polynomial representation. The development at Boeing is exemplary for the

emergence of NURBS. The company realized that different departments employed

different kinds of geometry software; worse, those geometries were incompatible.

Thus NURBS were adopted as a standard since they would allow a unified geometry

representation. Companies such as Boeing, SDRC, or Unigraphics soon initiated

53



2 – NURBS (Non Uniform Rational B-Spline)

making NURBS an IGES standard 2.

In the last twenty-thirty years the technological development brings CAD tools

area of application outside industry and brought them till inside the medium user

computer. Such a change hauled with him CAGD research and development.

Today in totally different from industrial areas arises typical geometric model-

ing problems. For example, subjects like geology, weather forecast, medicine are

concerned with surface fitting problems.

For a more detailed discussion about the history and the development of CAGD

refer to [6; 7].

2.2 Curve and Surface Basics

The two most common methods of representing curves and surfaces in geometric

modeling are implicit equations and parametric functions. Sometimes other rep-

resentations can be used (for example explicit representation), but the previously

mentioned are predominant in the academic, industrial and commercial world. For

more details refer to [7; 8; 9].

2.2.1 Implicit and Parametric Forms

Implicit Forms

In the implicit forms, one or two equation describes a relation between the spatial

coordinates of the points of the form. For an implicit surface: f(x,y,z) = 0. Every

form has his unique representation, a part for a multiplier constant. The description

of a curve in the three dimensional space is obtained as intersection of two implicit

surfaces: f1(x,y,z) = f2(x,y,z) = 0.

2Initial Graphics Exchange Standard, developed to facilitate geometry data exchange between
different companies.

54



2.2– Curve and Surface Basics

Parametric Forms

In the parametric forms, each of the coordinates of a point is represented separately as

an explicit function of one or more independent parameters. For a surface: C(u,v) =

(x(u,v),y(u,v),z(u,v)), with u and v being the two independent parameters: hence,

it is essentially a mapping of a domain D ⊂ R2 in R3 (usually the domain D is

normalized to [0 1] x [0 1] ). The description is not unique for a form. In the curve

case, the independent parameter is only one.

2.2.2 Advantages and Disadvantages

There is no answer to the question of which form is better. Every form can be more

appropriate, depending from the application. Anyway, a comparison follows about

capabilities and limits of the previously mentioned forms:

• The parametric form is more suited for simultaneous two and three dimension-

al representation: adding or removing third coordinate switches between the

cases. On the other hand implicit aren’t so flexible: a curve in two-dimensional

spaces is represented with an implicit equation, but the generalization to the

three dimensional space need adding, apart from the third coordinate, also

another implicit equation.

• It is cumbersome to represent bounded curve segments or surface patches

with the implicit form. However, boundness is built into the parametric form

(through the bound of the parameter value). On the other implicit forms are

well suited for unbounded geometry; the opposite states for parametric forms

• Parametric form introduce a direction; for the curves the natural direction

should be defined concordant to the parameter. Hence, it is easy to generate

ordered sequences of point along a parametric curve, and meshes of points on

surfaces.

• The parametric form is more natural for designing and representing shape

in a computer. The coefficients of the most used parametric forms possess

55



2 – NURBS (Non Uniform Rational B-Spline)

considerable geometric significance. This leads to an intuitive design method

and numerically stable algorithms with a distinctly geometric flavor.

• The complexity of many geometric operations depends greatly on the method

of representation. For example, to compute a point on a curve or surface is

difficult in the implicit form, but determine if a given point lies on the curve

or surface is difficult in the parametric form.

• Sometimes in the parametric form one must deal with anomalies, unrelated to

true geometry. A classic example is the unit sphere: here the parametric cal-

culations of the pole is critical, even if geometrically this points aren’t different

from the other points on the surface.

Since we are concerned almost exclusively with bounded surfaces, computer use and

the geometric insight of the coefficient is important, the parametric form will be the

preferred one.

2.2.3 Requirements for the parametric forms

In order to fulfill the CAD/CAE demands, a parametric representation should be

efficiently implemented on the computer, should allow the description of the geome-

tries of interest and should allow the local post-editing of part of that shape (that is

modify, after created, the shape in a specific point should not modify the rest of the

shape). In particular the choice would be restricted to the representation capable of

satisfying the following points:

1. ability to describe geometries like straight lines, continuous curves and piece-

wise curves, aerodynamic surfaces with mathematical accuracy

2. capability of easy processing in a computer contest, in particular:

(a) easy and efficient points and derivatives evaluation,

(b) calculation insensitivity to trunk and round-off errors,

(c) small memory allocation request for storage;

3. simplicity and mathematically well understood.

56



2.2– Curve and Surface Basics

2.2.4 Power Basis Form of a curve

A widely used class of functions is the polynomials. Although they satisfy the second

and third point of the previous list, they fail to represent precisely a number of im-

portant curves. There are two common methods of expressing polynomial functions,

the first is power basis (the other one is Bézier). A nth-degree power basis curve is

given by:

C(u) = [x(u),y(u),z(u)]T =
n∑

i=0

aiu
i with 0 ≤ u ≤ 1 (2.1)

where ai are vectors, u the parameter. In matrix form it holds:

C(u) = [A] · [u] = [ai]
T [ui] (2.2)

where A = [a0 a1 . . . an] and ui = [1, u, u2, u3 ...]T are the basis functions. The

power basis form has the following disadvantages:

• is not well suited with interactive shape design; the coefficients ai carry very

little geometric insight about the shape of the curve;

• the algorithms for processing power basis (e.g., Horner’s method [8]) are alge-

braic rather than geometric oriented;

• the algorithms are prone to round-off error if the coefficients vary greatly in

magnitude.

2.2.5 Bézier Curves

The Bézier curves were developed independently by Bézier (at Renault) and de

Casteljau (at Citroën). From a mathematical point of view they are exactly the

same as power basis, but they remedy the latter’s shortcomings. A nth-degree Bézier

curve is defined by

C(u) =
n∑

i=0

Bi,n(u) Pi with 0 ≤ u ≤ 1 (2.3)

57



2 – NURBS (Non Uniform Rational B-Spline)

where Pi, the geometric coefficients, are the control points, and Bi,n(u), the basis (or

blending) functions, are the classical nth-degree Bernstein polynomials, given by:

Bi,n(u) =
n!

i!(n− i)!
ui (1− u)n−i (2.4)

The union of the control points is called control polygon. In addition Bézier curves

0
P

0

P
1

P
1

P
3 P

0
=P

3

P
2

P
2

Control
Polygon

Control
Polygon

Figure 2.1: Two examples of cubic Bézier curves.

are invariant under the usual transformations such as rotations, translations and

scalings; that is, one applies the transformation to the curve by applying it to the

control polygon.

In any representation scheme, the choice of the basis functions determines the

geometric characteristics. These functions have these properties:

P.1.1 nonnegativity: Bi,n(u) ≥ 0 for all i,n and 0 ≤ u ≤ 1;

P.1.2 partition of unity:
∑n

i=0 Bi,n(u) = 1 for all 0 ≤ u ≤ 1;

P.1.3 B0,n(0) = Bn,n(1) = 1;

P.1.4 Bi,n(u) attains exactly one maximum on the interval [0,1], exactly at u = i
n

;

P.1.5 symmetry: the set of polynomials Bi,n(u) is symmetric with respect to u = 1
2

58



2.2– Curve and Surface Basics

0 0.2 0.4 0.6 0.8 1
0

1

u

n = 1

0 0.2 0.4 0.6 0.8 1
0

1

u

n = 2

0 0.2 0.4 0.6 0.8 1
0

1

u

n = 3

0 0.2 0.4 0.6 0.8 1
0

1

u

n = 5

B
0,1

B
0,1

B
0,2

B
1,2

B
2,2

B
0,3

B
0,5

B
1,5

B
3,3

B
5,5

Figure 2.2: The Bernstein polynomials

P.1.6 recursive definition: Bi,n(u) = (1 − u)Bi,n−1(u) + u Bi−1,n−1(u); if i < 0 or

i > n then it is set Bi,n(u) ≡ 0 ;

P.1.7 derivatives:

B′
i,n(u) =

dBi,n

du
= n (Bi−1,n−1(u)−Bi,n−1(u)) (2.5)

with

B−1,n−1(u) ≡ Bn,n−1(u) ≡ 0

The sixth properties yields simple and efficient algorithm to compute values of the

Bernstein polynomials at fixed values of u. Combining the above mentioned linear

interpolation and the Bézier mathematical definition (eq.(2.3)), fixing u = u0 and

59



2 – NURBS (Non Uniform Rational B-Spline)

0 0.2 0.4 0.6 0.8 1
0

1

u

u
1−u

B
1,3

B
0,2

B
1,2

Figure 2.3: The recursive definition of the Bernstein polynomial, B1,3

 u = 1/3

P
0

P
3

P
3,0

P
1 P

1,1
P

2

P
1,2

P
1,0 P

2,0

P
2,1

Figure 2.4: Evaluation of a point at u = 1
3 with repeated linear interpolation, i.e. deCasteljau

algorithm

denoting Pi by P0,i yields the deCasteljau Algorithm :

Pk,i(u0) = (1− u0) Pk−1,i(u0) + u0 Pk−1,i+1(u0) for





k = 1, . . . ,n

i = 0, . . . ,n
(2.6)

60



2.2– Curve and Surface Basics

This is a corner cutting process, as shown in fig.2.4.

0 0.2 0.4 0.6 0.8 1

0

u
0 0.2 0.4 0.6 0.8 1

0

u

B’
3,3

B’
0,3

B’
1,3

B
2,2

B
1,2

B
2,3

B’
2,3

B’
2,3

Figure 2.5: Derivatives: (a) the derivatives of the cubic Bernstein polynomials; (b) the derivative
B′

2,3 in terms of B1,2 and B2,2

Using property seven:

C′(u) =
d (

∑n
i=0 Bi,n(u)Pi)

du
=

n∑
i=0

B′
i,n(u)Pi

= n

n−1∑
i=0

Bi,n−1(u)(Pi+1 −Pi)

(2.7)

and

C′(0) = n(P1 −P0) C′′(0) = n(n− 1)(P0 − 2P1 + P2)

C′(1) = n(Pn −Pn−1) C′′(1) = n(n− 1)(Pn − 2Pn−1 + Pn−2)
(2.8)

That is, from eq.(2.7) and eq.(2.8)

• the derivative of an nth-degree Bézier curve is an (n-1 )th-degree Bézier curve;

• the expressions for the end derivatives are symmetric (this is a consequence of

symmetry of the blending functions);

• the kth derivative at an endpoint depends only on the k+1 control points at

that end.

61



2 – NURBS (Non Uniform Rational B-Spline)

As a polynomial, even the Bézier form can’t represent precisely some geometric

shapes, e.g., circles, hyperbolas, ellipses, cylinders, cones, spheres. This limitation

is overcome using rational basis functions, which yields to the definition of Rational

Bézier forms. For more detail refer to [7; 8]. Anyway, conceptually is the same as

for B-Splines and Rational B-Splines, section(2.4).

2.2.6 Tensor Product Surfaces

The curve C(u) is a vector valued function of one parameter. It is a mapping of

straight line into Euclidean three dimensional space. A surface is a vector valued

function of two parameters and represent a mapping of a region, R, of the u v plane

(with u and v being the two parameters) into Euclidean three dimensional space.

There are many schemes for representing surfaces. The most simple, and the one

most widely used in geometric modeling applications, is the tensor product scheme. A

drawback is the inability to model complex topologies, problem overcome with other

techniques (triangular patches, n-sided patches, hierarchical approaches ...). This

scheme is the unique used in the present work. The tensor product surfaces were

first investigated from de Casteljau, even if the popularity of this type of surfaces is

due to work of Bézier. Initially Bézier patches were only used to approximate a given

surface. Later it was found that any B-Spline surface can be written in piecewise

Bézier form (patches). This method is basically a bidirectional curve scheme. It

uses basis functions and geometric coefficients. The basis functions are bivariate

functions of u and v, which are constructed as products of univariate basis functions.

The geometric coefficients are arranged (topologically) in a bidirectional, n×m net.

Thus, a tensor product surface has the following form:

S(u,v) = (x(u,v), y(u,v), z(u,v)) =
n∑

i=0

m∑
j=0

fi(u) gj(v) bi,j

where





bi,j = (xi,j, yi,j, zi,j)

0 ≤ u, v ≤ 1

(2.9)

62



2.2– Curve and Surface Basics

The domain (u,v) of the mapping is a square (a rectangle, in general), that’s why

the tensor product surfaces can be also called rectangular patches. The matrix form:

S(u,v) = [fi(u)]T [bi,j] [gj(v)] (2.10)

with [fi(u)]T being a (1)× (n + 1) row vector, [gj(v)] a (m + 1)× (1) column vector,

[bi,j] a (n + 1)× (m + 1) matrix of three dimensional points. Fixing one parameter,

for example u = u0:

Cu0(v) = S(u0,v) =
m∑

j=0

(
n∑

i=0

bi,jfi(u0)

)
gj(v) =

m∑
j=0

cj(u0)gj(v)

where cj(u0) =
n∑

i=0

bi,jfi(u0)

(2.11)

Cu0 is a curve, lying on the surface S, and is called isoparametric curve.

Figure 2.6: A tensor product surface showing isoparametric curves (from [8])

The Bézier surfaces are obtained by taking a bidirectional net of control points

and products of the univariate Bernstein polynomials:

S(u,v) =
n∑

i=0

m∑
j=0

Bi,n(u) Bj,m(v) Pi,j 0 ≤ u,v ≤ 1 (2.12)

63



2 – NURBS (Non Uniform Rational B-Spline)

Fixing u = u0 leads to a Bézier curve lying on the surface.

Figure 2.7: The Bézier tensor product basis function B0, 2(u)B1, 3(v) (from [8])

Cu0(v) = S(u0,v) =
n∑

i=0

m∑
j=0

Bi,n(u0)Bj,m(v) Pi,j

=
m∑

j=0

Bj,m(v)

(
n∑

i=0

Bi,n(u0) Pi,j

)

=
m∑

j=0

Bj,m(v) Qj(u0)

where Qj(u0) =
n∑

i=0

Bi,n(u0) Pi,j j = 0, . . . ,m

(2.13)

Since the basis functions remain the same, Bézier curve properties transfer to surface.

Also the deCasteljau algorithm can be easily extended to compute points on a Bézier

surface. Fixing u0,v0, and applying deCasteljau algorithm to the j0 row of control

points, i.e. to Pi,j0 with i = 0, . . . ,n, creates the points Qj0(u0). Therefore, applying

deCasteljau Algorithm (m+1) times yields Cu0(v). Then, applying it again to Cu0(v)

with v = v0 yields Cu0(v0) = S(u0,v0). This process requires

n(n + 1)(m + 1)

2
+

m(m + 1)

2
(2.14)

64



2.3– B-Splines

Figure 2.8: Bézier surface: note that the Qj (eq.(2.13)) don’t lie on the surface.

linear interpolations. By symmetry, computing Cv0(u) first and then Cv0(u0) =

S(u0,v0) requires
m(m + 1)(n + 1)

2
+

n(n + 1)

2
(2.15)

linear interpolations. As a consequence is more economical to compute first Cv0(u)

or Cu0(v) depending which one between n and m is larger. More about surfaces will

be analyzed in sections 2.3.4 and 2.4.2. However for a detailed treatise on surfaces,

even with generic topology, refer to [7].

2.3 B-Splines

There are different way to treat B-splines, due their historical different development.

In fact B-splines were first investigated in the statistical an probability field (since

1940s). After de Boor, Cox and Mansfield independently discover the recurrence

relation. It was this recursion that made B-splines a truly viable tool in CAGD.

65



2 – NURBS (Non Uniform Rational B-Spline)

Before its discovery, B-splines were defined using a tedious divided difference ap-

proach which was numerically very unstable. An important step was the parametric

use of B-splines, 1974 by Riesenfeld and Gordon who realized that de Boor’s recur-

sive B-spline evaluation was the natural generalization of the deCasteljau algorithm.

B-spline curves include Bézier curves as a proper subset and soon became a core tech-

nique of almost all CAD systems. A first B-spline-to-Bézier conversion was found by

W.Boehm. Several algorithms were soon developed that simplified the mathemat-

ical treatment of B-spline curves; these include Boehm’s knot insertion algorithm,

the Oslo algorithm by Cohen, Lyche, and Riesenfeld, and the introduction of the

blossoming principle by Ramshaw and deCasteljau [7; 8].

The adopted approached here is the classic de Boor one, yet probably not the

easiest to understand but surely with the most computing oriented flavor.

2.3.1 Shortcoming of polynomial and Bézier forms

The shortcomings of curves of just one polynomial or rational segment are:

• a high degree is required in order to satisfy a large number of constraints: a

Bézier curve interpolating n points should be of n − 1 degree. High degrees

leads to inefficiency and numerical instability;

• complex shapes require high degrees;

• a powerful interactive shape design requires local control which is not suffi-

ciently achieved with single-segment curves (surfaces), even Bézier.

The natural solution is to piece together many segments obtaining a piecewise poly-

nomial or piecewise rational polynomial, as depicted in fig.2.9. However the quality

of this forms is not satisfying since:

• they show a lack of efficiency (storing more coefficients than required, think at

the coincident points)

• little flexibility in control point positioning while maintaining continuity

66



2.3– B-Splines

Figure 2.9: A piecewise cubic polynomial curve with three segments represented in Bézier form

• many computations are needed for determining the continuity of the geometric

shape

What one is looking for is, in the case of a univariate shape, a curve representation

of the form

C(u) =
n∑

i=0

fi(u)Pi (2.16)

where Pi are control points, and fi are generic piecewise polynomial functions forming

a basis for the vector space of all piecewise polynomial functions of the desired degree

and continuity. Here continuity is a matter of only the basis functions. Furthermore

the blending functions should have all the previous seen analytic properties, which

will transfer to nice geometric properties.

2.3.2 B-Spline Basis Functions

Let U = (u0, . . . ,um) be a nondecreasing sequence of real numbers (ui ≤ ui+1, i =

0, . . . , m− 1). The ui are the knots , U is the knot vector. The i-th basis function of

67



2 – NURBS (Non Uniform Rational B-Spline)

p−degree, denoted by Ni,p(u), is recursively defined as :

Ni,0(u) =





1 if ui ≤ u ≤ ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u)

(2.17)

The half-open interval [ui,ui+1) is called the ith knot span; it can have zero length

since knots need not be distinct. A few basis functions are shown in fig.(2.10) for

different degrees and knot vectors. Is important to notice that:

• Ni,0 is a step function, zero everywhere except on the ith knot span;

• Ni,p is a linear combination of two (p− 1)-degree basis (fig.(2.11));

• if the eq.(2.17) yields the quotient 0
0
, then his value will be set to zero;

• the computation of the generic Ni,p passes through the computation of zero-

th degree basis from Ni,0 to Ni+p,0. It generates a truncated triangular table,

shown in fig.(2.12).

Even if the basis function are defined on the whole real line, generally only the knot

vector interval [u0 um] is of interest. The blending functions’ properties are:

P.2.1 Local support: N1,p(u) = 0 if u is outside the interval [ui,ui+p+1). For a proof

look at the triangular scheme of fig.2.12.

P.2.2 In a given knot span [uj,uj+1] at most p+1 of the Ni,p are nonzero, namely the

functions Nj−p,p, . . . ,Nj,p. Again refer to the mentioned scheme for a proof.

P.2.3 Non negativity: Ni,p ≥ 0 for every p, i and u.

P.2.4 Partition of unity: for an arbitrary knot span ∆U = [ui,ui+1] it holds:

i∑
j=i−p

Nj,p(u) = 1 ∀u ∈ ∆U

68



2.3– B-Splines

0 1 2 3 4

1

p=1   U = [0,0,1,2,3,4,4,4]

0 1 2 3 4

1

p=2   U = [0,0,0,1,2,3,4,4,4]

0 1 2 3 4 5 6

1

p=3   U = [0,0,0,0,1,2,3,4,5,6,6,6,6]

0 1 2 3 4 5 6 7

1

p=5   U = [0,0,0,0,0,0,1,2,3,4,5,6,7,7,7,7,7,7]

N
0,1 N

1,1

N
0,1

N
2,1 N

3,1

N
3,1

N
4,1

N
1,1

N
1,1

N
2,1

N
0,1

N
3,1

N
4,1

N
4,1

N
5,1

N
5,1 N

6,1
N

7,1

N
8,1

N
0,1

N
2,1

N
1,1 N

2,1
N

3,1
N

4,1
N

6,1 N
7,1 N

8,1
N

5,1 N
9,1

N
10,1

N
11,1

Figure 2.10: Non zero basis functions for different degrees and knot vectors

P.2.5 All derivatives of Ni,p exist in the interior region of a knot span. At a knot,

the basis function is p − k times continuously differentiable, where k is the

multiplicity of the knot.

P.2.6 A part from p = 0 (zeroth degree basis), Ni,p attains exactly one maximum

69



2 – NURBS (Non Uniform Rational B-Spline)

u
i+3

u
i+1 u

i+2
u

i+4u
i

N
 i,2 N

 i,3
N

 i+1,2

(ui+4 − u)

(ui+4 − ui+1)
(u − ui)

(ui+3 − ui)

Figure 2.11: The recursive definition of B-spline basis: Ni,3 obtained as linear interpolation of
Ni,2 and Ni+1,2

N0,0

N1,1

N0,1

N4,0

N3,0

N2,0

N1,0 N0,2

N1,3

N2,2

N1,2

N0,3

N3,2

N2,1

N3,1

N4,1

N2,3

N3,3

Figure 2.12: Dependencies between the basis functions

value.

Once the degree is fixed the knot vector completely determines the basis Ni,p. In

literature there are more than one kind of knot vectors. The non periodic (or clamped,

70



2.3– B-Splines

or open) knot vectors have the following form:

U = {a, . . . ,a︸ ︷︷ ︸
p+1

, up+1, . . . ,um−p, b, . . . ,b︸ ︷︷ ︸
p+1

} (2.18)

in simple words, the first and last knots have multiplicity p + 1. As will be shown

in the next section, the use of repeated knots ensures that the end points of the

spline coincide with the end points of the control polygon. This representation

is the most used in the CAGD, and will be implicitly assumed in the rest of the

dissertation3. Additionally a knot vector is uniform if all interior knots are equally

spaced, otherwise it is nonuniform. For a nonperiodic knot vectors there are two

additional properties of the basis functions:

P.2.7 A knot vector of the form

U = {0, . . . ,0︸ ︷︷ ︸
p+1

, 1, . . . ,1︸ ︷︷ ︸
p+1

}

yields the Bernstein polynomials of the same degree p.

P.2.8 If the number of knots is m + 1, then there are n + 1 basis functions, where

n = m− p− 1 ; N0,p(a) = Nn,p(b) = 1 .

Derivatives of the basis functions

The derivative of a basis function is

N ′
i,p =

p

ui+p − ui
Ni,p−1(u) − p

ui+p+1 − ui+1

Ni+1,p−1(u) (2.19)

The derivative expression, like eq.(2.17), leave space for recursive definition; an

examples is depicted in fig.2.14.

3is important to point out that the algorithms still hold, with small modifications, in case of
periodic or unclamped knot vector

71



2 – NURBS (Non Uniform Rational B-Spline)

0 1 2 3 4

1

Basis functions N
 i,p

      p=3   U = [0,0,0,0,1,2,3,4,4,4,4]

0 1 2 3 4

1

Derivatives  N’
 i,p

    

N
0,3

N
1,3

N
2,3

N’
0,3

N
3,3

N’
2,3 N’

3,3

N
4,3

N’
4,3

N
5,3

N
6,3

N’
5,3

N’
1,3 N’

6,3

Figure 2.13: Cubic basis functions and corresponding derivatives

The repeated differentiation leads to the general formula

N
(k)
i,p (u) = p

(
N

(k−1)
i,p−1

ui+p − ui

− N
(k−1)
i+1,p−1

ui+p+1 − ui

)
(2.20)

Another expression, giving the kth derivative of Ni,p(u) in terms of kth derivative of

Ni,p−1 and Ni+1,p−1 is

N
(k)
i,p =

p

p− k

(
u− ui

ui+p − ui

N
(k)
i,p−1 +

ui+p+1 − u

ui+p+1 − ui+1

N
(k)
i+1,p−1

)
(2.21)

Effects of multiple knots

Is important to understand the effect of multiple knots. Recalling property P.2.5

of the basis functions, let’s take a deeper look with an easy but straightforwarding

72



2.3– B-Splines

u
i+3

u
i+2

u
i+4u

i
u

i+1

N
 i+1,2

N
 i,2

N’
 i,3

N
 i,3

Figure 2.14: The recursive definition of B-spline derivatives: N ′
i,3 as combination of Ni,2 and

Ni+1,2

example. Let’s assume there is just a double interior knot, ui = ui+1. From the

recursive basis definition (eq.2.17) it follows that the basis function Ni,0 is set to

zero, thus Ni−1,1 reaches the unity at his end and Ni,1 starts from the unity. The

second degree basis function, Ni−1,2 (which has the double knot inside his support)

is the linear interpolation of Ni−1,1 and Ni,1 (look at fig.2.15). From eq.(2.19), his

derivative is also a combination of Ni−1,1 and Ni,1. It’s easy to ascertain, with the aid

of the aforementioned equation, that the right and left limits for u → ui are different,

and thus the function is not differentiable for u = ui. Hence, a p-order basis function

is p− k times differentiable at u = ui, with k being the knot multiplicity.

Another effect of multiple knots is to reduce the extension of the interval on which

a basis function is nonzero. The implication will be more clear in the next section,

when dealing with curves. On the geometric side, the basis functions involved with

multiple knots will have a smaller support, look more distorted, like leaning toward

the interested knots, and look less smooth.

73



2 – NURBS (Non Uniform Rational B-Spline)

1

p=1   u
0
=u

p

1

p=2   u
0
 = u

p
1

p=3   u
0
 = u

p

u
i+2

u
i+2

u
i−2 u

 i−1

u
i
 = u

i+1

u
i
 = u

i+1

N
 i−3, 3

N
 i−2, 3 N

 i−1, 3 N
 i, 3 N

 i +1, 3

N
 i−2, 2

N
 i−1, 2 N

 i, 2

N
 i−1, 1

N
 i, 1

u
i −2

u
i
 = u

i+1
u

i+2u
i −1

u
i−2

u
i −1

Figure 2.15: B-spline basis functions on a knot vector with a knot of multiplicity 2

2.3.3 B-Spline Curves

A p-th degree B-spline curve is defined by

C(u) =
n∑

i=0

Ni,p(u) Pi u ∈ [a,b] (2.22)

where Pi are the n control points and Ni,p are the previously defined pth-degree basis

functions, defined on the nonperiodic knot vector:

U = {a, . . . ,a︸ ︷︷ ︸
p+1

,up+1, . . . ,um−p−1, b, . . . ,b︸ ︷︷ ︸
p+1

}

Unless otherwise stated, the knot vector amplitude is normalized to the unity, i.e.

a = 0 and b = 1. Much of the B-spline curve properties arises from the basis

function properties:

P.3.1 If n = p and U = {0, . . . ,0,1 . . . ,1}, then C(u) is a Bézier curve.

74



2.3– B-Splines

0 1 2 3 4 5

0

1

P
0

P
5

N
0,3

N
1,3

N
2,3

N
4,3

N
3,3 N

5,3

N
6,3

u
0
=u

3
u

4
u

5 u
6 u

7
=u

10

P
3

P
2

P
4

P
1

P
6

u
7
=u

10

u
4

u
0
=u

3

u
5

u
6

Figure 2.16: Cubic basis function over the knot vector U = {0,0,0,0, 14 , 12 , 34 ,1,1,1,1}, and
associated cubic curve with control points Pi.

P.3.2 It yields the relation m = n + p + 1 which relates the knots and control point

numbers and the degree.

P.3.3 The curve interpolates the control polygon endpoints, that is C(0) = P0 and

C(1) = Pn

P.3.4 Any affine transformation is applied to the curve by applying it to the control

points (it follows from the partition of unit property of the basis functions).

P.3.5 Strong convex hull property: the curve is contained in the convex hull of its

control polygon. If u ∈ [ui, ui+1), with p ≤ i < m− p− 1 then C(u) is in the

convex hull of the control points Pi−p, . . . ,Pi, due to properties from P.2.2 to

75



2 – NURBS (Non Uniform Rational B-Spline)

0 2 4 6 8 10

0

1

P
0

P
1

P
4

P
2 P

3

P
5

P
6

P
7

N
0,5

N
1,5

u
0
=u

5

u
6

u
6

u
0
=u

5
u

7
u

8
u

9 u
10

u
12

=u
17

u
12

=u
17

u
11

N
11,5

N
10,5N

9,5
N

6,5N
3,5

N
2,5

N
5,5N

4,5
N

7,5 N
8,5

u
8

u
7

u
9

u
10

u
11

P
10

P
9

P
8

P
11

Figure 2.17: Fifth degree basis function over the knot vector
U = {0,0,0,0,0,0, 17 , 27 , 37 , 47 , 57

6
7 ,1,1,1,1,1,1}, and associated fifth degree B-spline

curve with control points Pi.

P.2.4 of the basis functions. This property has practical application in many

contests, like form manipulation, intersection etc.

P.3.6 Local modification scheme: moving a generic control point Pi changes the curve

C(u) only in the interval [ui,ui+p+1) (fig.2.18). This is a direct consequence of

the local support of the basis function Ni,p(u).

P.3.7 The control polygon represent a piecewise linear approximation to the curve;

as a general rule, the lower the degree the closer the curve follows its control

polygon.

P.3.8 The basis functions act likes switches in the movement along the curve from

76



2.3– B-Splines

P
6

P
3

P
2

P
1

P
0

P
5

P
4

P
4
’

Figure 2.18: Cubic curve on U = {0,0,0,0, 14 , 12 , 34 ,1,1,1,1}. Moving Pi changes the curve in the
interval [ui,ui+p+1].

u = 0 to u = 1; as u moves past a knot ui, Ni−p,p switches off (and so does the

associated control point Pi−p) and Ni+1,p switches on.

P.3.9 Variation diminishing property: no plane has more intersections with the curve

than with his control polygon.

P.3.10 The continuity and differentiability of C(u) follow from that of the Ni,p (since

C(u) is just a linear combination of the Ni,p). Thus, C(u) is infinitely differen-

tiable in the interior of knots interval, and is at least p− k times continuously

differentiable at a knot of multiplicity k (fig.2.19). Anyway, sometimes even

discontinuous functions can be combined in such way that the result is continu-

ous, therefore a proper control point configuration can lead to continuity order

higher than the one following from the basis functions, as shown in fig.2.20.

P.3.11 It is possible and sometimes useful to use multiple control points.

77



2 – NURBS (Non Uniform Rational B-Spline)

P
0

P
3

P
4

P
5

P
2

P
1

P
6

P
7

Figure 2.19: Quadratic curve on U = {0,0,0, 16 , 13 , 7
12 , 7

12 , 56 ,1,1,1}. Notice the cusp at u = u5 = u6

P
0

P
2

P
1

P
6

P
7

P
5

P
3

P
4

Figure 2.20: Cubic curve on U = {0,0,0, 16 , 13 , 7
12 , 7

12 , 56 ,1,1,1}. Even if the knot u5 has multiplicity
two, there aren’t any cusps at u = u5 = u6

Derivatives of a B-spline curve

From eq.(2.22) it follows

C(k)(u) =
n∑

i=0

N
(k)
i,p (u)Pi (2.23)

78



2.3– B-Splines

Manipulating the last equation, with the aid of eq.(2.19), yields to a recursive scheme,

particulary suited for computational purposes:

C(k)(u) =
n−k∑
i=0

Ni,p−k(u)P
(k)
i

with P
(k)
i =





Pi k = 0

p− k + 1

ui+p+1 − ui+k

(
P

(k−1)
i+1 −P

(k−1)
i

)
k > 0

(2.24)

The first order derivative is:

C′(u) =
n−1∑
i=0

Ni+1,p−1(u)Qi where Qi = p
Pi+1 −Pi

ui+p+1 − ui+1

(2.25)

Let U ′ be the knot vector obtained from U dropping the first and last knot

U ′ = {0, . . . ,0︸ ︷︷ ︸
p

,up+1, . . . ,um−p−1, 1, . . . ,1︸ ︷︷ ︸
p

}

The function Ni+1,p−1 computed on U is equal to Ni,p−1 computed on U ′, thus:

C′(u) =
n−1∑
i=0

Ni,p−1(u)Qi (2.26)

Hence, C′ is a (p− 1)th-degree B-spline curve.

The endpoints first derivatives of a B-spline curve are given by

C′(0) = Q0 =
p

up+1

(P1 −P0)

C′(1) = Qn−1 =
p

1− um−p−1

(Pn −Pn−1)
(2.27)

Equation (2.27) has a noticeable geometric interpretation: the derivative at the

endpoints is the vector joining the two end control points, in the increasing sense.

79



2 – NURBS (Non Uniform Rational B-Spline)

0 1 2 3 4
0

1

2 3 4 5 6
−5

0

5

10

P
2 P

3

P
4

P
5

P
6

P
0

Q
0

Q
2

Q
3

Q
4

Q
1

P
1

C’(u*)

Q
5

Figure 2.21: Cubic curve on U = {0,0,0,0, 1
4 , 3

4 , 3
4 ,1,1,1,1}. First derivative is a quadratic B-

spline on knot vector U = {0,0,0, 1
4 , 3

4 , 34 ,1,1,1} with control points Qi defined as in
eq.(2.25).

The second derivative at endpoints :

C(2)(0) =
p(p− 1)

up+1

(
P0

up+1

− (up+1 + up+2)P1

up+1up+2

+
P2

up+2

)
(2.28)

C(2)(1) =
p(p− 1)

1− um−p−1

·
(

Pn

1− um−p−1

− (2− um−p−1 − um−p−2)Pn−1

(1− um−p−1)(1− um−p−2)
+

Pn−2

1− um−p−2

) (2.29)

80



2.3– B-Splines

P
0

P
1

P
3

P
4

P
5

P
2

P
6

C’’ (0)

C’’ (0.4)
C’ (0)

C’ (1)

C’’ (1)
C’ (0.4)

Figure 2.22: A cubic curve on U = {0,0,0,0 1
4 , 34 , 34 ,1,1,1,1} and his first and second derivatives

at endpoints, and at u = 0.4 (the first derivatives are scaled of a ten factor, the
second of a twenty factor).

2.3.4 B-Spline Surfaces

Given a bidirectional net of control points, two knot vectors and the associated

univariate B-spline functions, a B-spline surface is defined by:

S(u,v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pi,j (2.30)

with

U = {0, . . . ,0︸ ︷︷ ︸
p+1

,up+1, . . . ,ur−p−1, 1, . . . ,1︸ ︷︷ ︸
p+1

}

V = {0, . . . ,0︸ ︷︷ ︸
q+1

,vq+1, . . . ,vs−q−1, 1, . . . ,1︸ ︷︷ ︸
q+1

}

U and V are the knot vectors, and have respectively r+1 and s+1 knots. Extending

property P3.3 of B-Spline curves (section 2.3.3) yields to: r = n + p + 1 and s =

81



2 – NURBS (Non Uniform Rational B-Spline)

m + q + 1. Using the matrix form yields to:

S(u,v) = [Nk,p(u)]T [Pk,l] [Nl,q(v)] (2.31)

Tensor product basis functions

The tensor product (or bivariate) basis functions properties arises from the corre-

sponding properties of the univariate basis functions (listed in section 2.3.2):

P.4.1 Nonnegativity: Ni,p(u) Nj,q(v) ≥ 0 for all i, j, p, q, u, v.

P.4.2 Partition of unity:
∑n

i=0

∑m
j=0 Ni,p(u)Nj,q(v) = 1 for all (u,v) ∈ [0,1]× [0,1].

P.4.3 The functions degenerate to products of Bernstein polynomials of the same de-

gree, that is, Ni,p(u) Nj,q(v) = Bi,p(u) Bj,q(v) for all i, j , if U = {0, . . . ,0︸ ︷︷ ︸
p+1

, 1, . . . ,1︸ ︷︷ ︸
p+1

}

and V = {0, . . . ,0︸ ︷︷ ︸
q+1

, 1, . . . ,1︸ ︷︷ ︸
q+1

} .

P.4.4 Local support: Ni,p(u) Nj,q(v) = 0 if (u,v) is outside [ui,ui+p+1)× [vj,vj+q+1).

P.4.5 In any domain [ui0 ,ui0 + 1)× [vj0 ,vj0 + 1) at most (p + 1)(q + 1) basis functions

are nonzero, in particular the Ni,p Nj,q for i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0.

P.4.6 If p, q > 0 then Ni,p Nj,q attains exactly one maximum.

P.4.7 In the interior region of every domain defined by u and v knot lines, all the

partial derivatives of Ni,p Nj,q exist; at a u(v) knot it is p − k(q − k) times

differentiable with respect to u(v), where k is the knot multiplicity.

B-spline surfaces

Again, the B-spline surfaces properties arises from the basis function properties:

P.5.1 Any surface defined over the knot vectors depicted in basis functions property

P.4.3 is a Bézier surface.

82



2.3– B-Splines

(a) N4,3(u) N4,2(v) (b) N4,3(u) N2,2(v)

Figure 2.23: Cubic x quadratic basis functions. U = {0,0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1,1},

V = {0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1}

P.5.2 Due to property P.4.2, the surface interpolates the four corner control points:

S(0,0) = P0,0, S(1,0) = Pn,0,S(0,1) = P0,m,S(1,1) = Pn,m

P.5.3 Affine invariance: an affine transformation is applied to the surface by applying

it to the control points; this follows from P.4.2.

P.5.4 Strong convex hull property: if (u,v) ∈ [ui0 ,ui0+1]× [vj0 ,vj0+1], then S(u,v) is in

the convex hull of the control points Pi,j, i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0;

this follow from P.4.1, P.4.2, P.4.5.

P.5.5 Triangulation of the control net forms a piecewise planar approximation to the

surface. As for the curves, the lower the degree the better the approximation

(see P.3.7).

P.5.6 Local modification scheme: movement of the control point Pi,j affects the

surface only in the rectangle [ui,ui+p+1) × [vj,vj+q+1); this is a consequence of

property local support of the basis functions (P.4.4).

83



2 – NURBS (Non Uniform Rational B-Spline)

P.5.7 Continuity and differentiability: follows from that of the basis functions. That

is, S(u,v) is p− k (q − k) times differentiable in the u (v) direction at a u (v)

knot of multiplicity k. Again, as for the curves, it is possible to position the

control points in such a way to overcome the effect of discontinuities of the

basis functions. It is also possible to use multiple coincident control points.

Unlike univariate case, there is no known variation diminishing property for B-spline

surfaces.

Fixed u = u0 the respective v-isoparametric curve on S(u,v) has the following

expression:

Cu0(v) = S(u0,v) =
m∑

j=0

Nj,q(v)

(
n∑

i=0

Ni,p(u0)Pi,j

)
=

m∑
j=0

Nj,q(v)Qj(u0)

where Qj(u0) =
n∑

i=0

Ni,p(u0)Pi,j

(2.32)

In fig.2.24 a B-spline surface with the control polygon is shown.

Derivatives of a B-spline surface

The derivatives are obtained computing derivatives of the basis functions.

∂k+1

∂ku ∂lv
S(u,v) =

n∑
i=0

m∑
j=0

N
(k)
i,p N

(l)
j,q Pi,j (2.33)

Formally differentiating S(u,v) and using eq.(2.26) yields to:

Su(u,v) =
n−1∑
i=0

m∑
j=0

Ni,p−1(u) Nj,q(v)P
(1,0)
i,j (2.34)

84



2.3– B-Splines

Figure 2.24: A B-spline surface and its control net (in red). Note the isoparametric curves on
the surface.

where

P
(1,0)
i,j = p

Pi+1,j −Pi,j

ui+p+1 − ui+1

U (1) = {0, . . . ,0︸ ︷︷ ︸
p

,up+1, . . . ,ur−p−1, 1, . . . ,1︸ ︷︷ ︸
p

}

V (0) = V

In a symmetrical way:

Sv(u,v) =
n−1∑
i=0

m∑
j=0

Ni,p(u) Nj,q−1(v)P
(0,1)
i,j (2.35)

85



2 – NURBS (Non Uniform Rational B-Spline)

where

P
(0,1)
i,j = q

Pi,j+1 −Pi,j

uj+q+1 − uj+1

U (0) = U

V (1) = {0, . . . ,0︸ ︷︷ ︸
q

,vq+1, . . . ,us−q−1, 1, . . . ,1︸ ︷︷ ︸
q

}

Applying first eq.(2.34), then eq.(2.35) yields

Suv(u,v) =
n−1∑
i=0

m−1∑
j=0

Ni,p−1(u) Nj,q−1(v)P
(1,1)
i,j (2.36)

where

P
(1,1)
i,j = q

P
(1,0)
i,j+1 −P

(1,0)
i,j

vj+q+1 − vj+1

The general formula is given from

∂k+1

∂ku∂lv
S(u,v) =

n−k∑
i=0

m−l∑
j=0

Ni,p−k(u) Nj,q−l(v)P
(k,l)
i,j (2.37)

where

P
(k,l)
i,j = (q − l + 1)

P
(k,l−1)
i,j+1 −P

(k,l−1)
i,j

vj+q+1 − vj+l

86



2.4– Rational B-Splines

It would be useful to derive formulas for corner derivatives; using equations from

(2.34) to (2.37):

Su(0,0) = P
(1,0)
0,0 =

p

up+1

(P1,0 −P0,0)

Sv(0,0) = P
(0,1)
0,0 =

q

vq+1

(P0,1 −P0,0)

Suv(0,0) = P
(1,1)
0,0 =

q

vq+1

(P
(1,0)
0,1 −P

(1,0)
0,0 )

=
p q

up+1vq+1

(P1,1 −P0,1 −P1,0 + P0,0)

(2.38)

Now let u0 = 0 and v0 = 0. Recalling basis function properties is easy to state

that the isocurves Cu0(v) and Cv0(u) are given by:

Cu0(v) =
m∑

j=0

Nj, q(v)P0,j Cv0(u) =
n∑

i=0

Ni, p(u)Pi,0 (2.39)

From eq.(2.27) it follows that:

Su(0,0) = C′
v0

(0) Sv(0,0) = C′
u0

(0) (2.40)

2.4 Rational B-Splines

Although B-spline introduction give a versatile and powerful tool to model com-

plex shapes, they can’t represent precisely important geometric shapes as conics. In

fact, B-splines basis are basically non-rational polynomials, thus are not capable of

representing the over mentioned class of shapes. It is known from classical mathe-

matics that all the conic curves can be represented using rational functions, that is

functions that are defined as the ratio of two polynomials. Therefore, to use such

class of functions as basis functions yields to Nurbs, Non uniform rational B-splines,

a generalization of B-splines with the same advantages but with a bigger design

flexibility.

87



2 – NURBS (Non Uniform Rational B-Spline)

2.4.1 Nurbs Curves

A pth-degree NURBS curve is defined as:

C(u) =

∑n
i=0 Ni,p(u) wiPi∑n

i=0 Ni,p(u) wi

u ∈ [a,b] (2.41)

where Ni,p are the B-spline basis functions defined over the same non periodic knot

vector (see section 2.3.3), wi are the weights. Assume, unless otherwise stated that

a = 0 and b = 1, and wi > 0 ∀ i. Defining the rational basis functions Ri,p as

Ri,p =
Ni,p(u) wi∑n
j=0 Nj,p(u)

(2.42)

allows to rewrite eq.(2.41) in the form

C(u) =
n∑

i=0

Ri,p(u)Pi (2.43)

The properties of the NURBS basis functions follows the properties of B-spline basis

functions and eq.(2.42). The Ri,p have the same properties of Ni,p, with only a one

more consideration:

- if w = w (w 6= 0) for all i, then Ni,p = Ri,p for all i.

NURBS curve properties arise from rational basis functions and are, a part from

the properties related with weights wi, coincident with the B-spline curve properties

(2.3.3). The weights add a further flexibility since:

- if weight wi is changed, it affects only the portion of the curve on the interval

u ∈ [ui,ui+p+1). Qualitatively an increment of wi pulls the portion of curve

C(u) with u ∈ [ui,ui+p+1) toward Pi; the opposite does a decrement of wi.

Varying wi the movement of C(u) for fixed u, is along a straight line passing

for Pi.

Figure 2.25 illustrate such a behavior. Thereby, both control point movements and

weight modification give a local shape control, providing great flexibility in interactive

shape design.

88



2.4– Rational B-Splines

P
3

P
2

P
4

P
5

P
6

P
0

P
1 1 2w= 0.5

Figure 2.25: Effect of weight modification (w4) on a NURBS curve.

Rational curves with coordinate functions in the form of ratio of two polynomials,

with the same denominator for each of the coordinate, have an elegant geometric

interpretation. Defining a perspective map, H, with center at the origin, which

maps from a four-dimensional space to a three-dimensional Euclidean space

P = H{Pw} = H{(X,Y,Z,W )} =





(
X

W
,
Y

W
,
Z

W

)
if W 6= 0

direction (X,Y,Z) if W = 0

(2.44)

For a given set of control points, {Pi}, and weights {wi}, let’s construct the four

dimensional weighted control points Pw
i = (wixi, wiyi, wizi,wi) and define the nonra-

tional B-spline curve in four dimensional space as

Cw(u) =
n∑

i=0

Ni,p(u)Pw
i (2.45)

89



2 – NURBS (Non Uniform Rational B-Spline)

Applying the perspective map, H, to Cw(u) yields the following rational B-spline

curve:

C(u) = H{Cw(u)} = H

{
n∑

i=0

Ni,p(u)Pw
i

}

=

∑n
i=0 Ni,p(u) wiPi∑n

i=0 Ni,p(u) wi

=
n∑

i=0

Ri,p(u)Pi

(2.46)

P0 P3
w

P2
w

P1
w

P0
w

P3

P2

P1

(x,y)

(X,Y,W)

X

W

Y

x
y

W=1

Figure 2.26: A geometric construction of a rational B-spline curve.

This is an important point since leads to efficient processing and data storage: the

NURBS curves can be efficiently handled as B-splines in a four-dimensional space.

In some situation of free form shape design, like interpolation of set of points with

fair geometric shapes, the mapping leads to a linear problem instead of a non linear

one [10].

90



2.4– Rational B-Splines

Derivatives of NURBS curves

Derivatives of rational functions are complicated, involving denominators to high

powers. The easiest way to compute derivatives is relying on the four dimensional

B-spline representation, for which applies the previous formulas derived for three-

dimensional space (section 2.3.3). For a detailed analysis refer to [8]. Evaluation of

first order derivative at endpoints yields to:

C′(0) =
p

up+1

w1

w0

(P1 −P0) (2.47)

and

C′(1) =
p

1− um−p−1

wn − 1

wn

(Pn −Pn−1) (2.48)

2.4.2 Nurbs Surfaces

The generalization from univariate to bivariate NURBS basis functions can be de-

ducted from the same B-spline generalization, depicted in section 2.3.4. A NURBS

surface of degree p, q in the u and v directions is a bivariate vector-valued piecewise

rational function described by

S(u,v) =

∑n
i=0

∑m
j=0 Ni,p(u) Nj,q wi,j Pi,j∑n

i=0

∑m
j=0 Ni,p(u) Nj,q(v) wi,j

0 ≤ u, v ≤ 1 (2.49)

where the terminology is the same as for NURBS curve and B-spline surfaces (see

sections 2.4.1 and 2.3.4). Introducing the bivariate rational basis functions

Ri,j(u,v) =
Ni,p(u) Nj,q(v) wi,j∑n

k=0

∑m
k=0 Nk,p(u) Nl,q(v) wk,l

(2.50)

the surface can be written as

S(u,v) =
n∑

i=0

m∑
j=0

Ri,j(u,v)Pi,j (2.51)

The bivariate rational basis functions properties are the same as the B-spline one’s.

Note that

91



2 – NURBS (Non Uniform Rational B-Spline)

- if all weights wi,j = w with w 6= 0 then Ri,j(u,v) = Ni,p(u) Nj,q(v) for all i, j.

The same properties of B-spline surfaces are carried here, (with the proper gener-

alization from non rational to rational polynomials). Added property is the local

shape modification through the weights movements. Increasing a weight wi,j pulls

the points of the surface S(u,v) with (u,v) ∈ [ui,ui+p+1) × [vj,vj+q+1) toward Pi,j,

the opposite does a weight decrement. As for the curves, the movements of S(u,v)

is along a straight line passing for Pi,j.

The homogeneous coordinates representation is convenient also for NURBS sur-

faces:

Sw(u,v) =
n∑

i=0

m∑
j=0

Ni,p(u) Nj,q(v)Pw
i,j (2.52)

where Pw
i,j = (wi,j xi,j,wi,j yi,j,wi,j zi,j). Thus S(u,v) = H{Sw(u,v)}.

Isoparametric on NURBS surfaces are easily defined with homogeneous coordinates.

Fixed u = u0:

Cw
u0

(v) = Sw(u0,v) =
2∑

i=0

n∑
j=0

Ni,p(u0) Nj,q(v)Pw
i,j (2.53)

(2.54)

2.5 Fundamental Geometric Algorithms

In order to implement and manipulate NURBS, a group of fundamental algorithms

is necessary. In this section only a brief discussion on some of the most important

processes is given. For deeper analysis and mathematical details refer to [8]. It

is worth a note that some of this algorithms are conceptually extendible to other

parametric forms, and are not just NURBS concerned.

92



2.5– Fundamental Geometric Algorithms

2.5.1 Knot Insertion

Let C(u) be a B-spline4 defined on the generic knot vector U = {u0, . . . ,un}, and

with control points Pi. Now consider Ū obtained from U adding a knot ū ∈ [u0,un].

This algorithm determines a new set of control point Qi such that :

C(u) =
n∑

i=0

Ni,p Pi =
n+1∑
i=0

N̄i,p Qi (2.55)

Actually the results show that only p new control points must be computed. It is also

possible to insert knot multiple times, or many knots at time (such an algorithm is

called knot refinement). Due to tensor product surface characteristics, the algorithm

is easily extended to surfaces.

Knot insertion is one of the most important of all the B-spline algorithms, being

useful to:

• valuating points and derivatives on curves and surfaces,

• subdividing curves and surfaces,

• adding control points in order to increase flexibility in shape control (interactive

design).

Figure 2.27 shows an example of knot insertion on a B-spline curve.

2.5.2 Knot Removal

Knot removal is the reverse process of knot insertion. However, it is more complicated

since it’s not always possible to remove a knot; thus a knot removal algorithm must

first determine if the knot is removable and how many times, then eventually compute

the new control points, Qi. Knot removal utility carries out in these situations:

• converting a spline curve or surface presented in power basis form to B-spline

form;

4generalization to NURBS is easily obtained expressing the control points in homogeneous
coordinates

93



2 – NURBS (Non Uniform Rational B-Spline)

(a) Control polygon after inserting ū = 5
2 into the knot vector U

(b) Original (solid) and the new (dashed) basis functions before and
after knot insertion.

Figure 2.27: Knot insertion into a cubic curve defined over the knot vector
U = {0,0,0,0,1,2,3,4,5,5,5,5} (drawn from [8]).

• when interactively shaping B-spline knots are sometimes added to increase

flexibility; then, after manipulation, a knot removal can be invoked in order to

obtain the most compact representation of the curve or surface.

Fig.2.28 summarizes the steps of knot removal from a B-spline curve .

94



2.5– Fundamental Geometric Algorithms

Figure 2.28: Knot removal from a cubic curve with triple knot (from [8]).

2.5.3 Degree Elevation

Given a B-spline curve (surface), degree elevation is the process of obtaining an

higher degree curve (surface) identical to the original one, both geometrically and

parametrically. Thus, referring to the following mathematical problem, involving a

single degree elevation for a curve

Cp(u) =
n∑

i=0

Ni,p Pi = Cp+1(u) =
n̄∑

i=0

N̄i,p+1 Qi (2.56)

degree elevation computes the unknown Qi and Ū . Figure 2.29 summarizes degree

elevation of a third degree B-spline curve.

The two typical situations in which degree elevation is involved are:

• construction of surfaces from a set of curves. Using tensor product surfaces

requires that these curves have a common degree (as will be seen in subsequent

chapters).

95



2 – NURBS (Non Uniform Rational B-Spline)

 

 

Figure 2.29: Degree elevation on a third degree B-spline curve, U = {0,0,0,0,1,2,3,4,4,4,4}. The
new control polygon is the one in red.

• combining two NURBS curves with a common endpoint in a unique NURBS

curve. The first step requires to elevate the curves to a common degree.

2.5.4 Degree Reduction

As for knot refinement, also degree reduction is not always possible. However, due to

floating point round off error, C(u) and C̄(u) are not expected to coincide precisely

even in an ideal situation, thus a maximum allowable error (TOL) is defined, and a

curve or surface is declared to be degree reducible if

max|C(u)− C̄(u)| ≤ TOL (2.57)

2.5.5 Other Advanced Geometric Algorithms

Many other fundamental algorithms are involved in NURBS manipulation. Algo-

rithms like point inversion and projection, surface tangent vector inversion, curves

and surfaces transformations and projections, and others, are of main importance.

For a complete treatise refer to chapter 6 of [8].

Another class of algorithms used in ASD is the surface intersection algorithms.

These are typically used in calculating intersections between fillets and bodies, or

tfillet and wings (features encountered in chapter 1). For an exhaustive analysis see

[3].

96



3
Free Form Surface Design

3.1 Introduction

Traditionally NURBS shape modification and manipulation was achieved with in

an indirect way, that is, controlling the degree of freedoms (control points for B-

splines, control points and weights for NURBS) till the desired shape is achieved.

This technique is very easy but it has several drawbacks [10]. One of the them is that

the control points or weights are not directly related to the modified shape of curves

or surfaces. Therefore, interactive design using this scheme is often cumbersome.

Sometimes a large number of control points must be manipulated in order to modify

even a small piece of a curve segment. It is also not clear which degree of freedom

should be manipulated and how it should be manipulated. On the other hand, the

direct manipulation method provides the designer a higher level interface and shape

design is more intuitive. In this scheme, arbitrary constraints on a curve or a surface

can be set. For example, a point on a curve can be selected and moved to a desired

positions. The new DOFs, which satisfy the specified constraints, are automatically

computed.

It’s plain that ASD relies on a direct approach, since the control points are

arranged in such way to fit the prescribed data points and derivatives vectors in a

direct mathematical way, and not with a trial and error approach.

97



3 – Free Form Surface Design

3.2 Fitting

Fitting consists in the construction of curves and surfaces which fit a rather arbi-

trary set of geometric data, such as points and derivative vectors. There can be

distinguished two types of situations, interpolation and approximation.

The intent of interpolation is to construct a form (NURBS in this instance) which

satisfies the given data precisely. For example the curve passes through the given

points and assume the given derivatives at the prescribed points.

In approximation, the forms couldn’t satisfy the given data precisely, but only

approximately. Usually the maximum bound on the deviation from the given data

is specified (fig.3.1). From a practical point of view, approximation is well suited

(a) A curve interpolating five points and two
end derivatives

(b) A curve approximating m + 1 points

Figure 3.1: Difference between interpolation and approximation (from [8]).

in all the situations where the fitting data are affected from errors or noise. Clas-

sical examples are scanning and acquisition devices which introduce measurement

noise, or surface to surface intersection algorithms (marching methods) which leads

to computational noise. In such of situation, it is important to capture the shape of

the data, not to wiggle its way through every point.

On the opposite scenario, when the NURBS must satisfy exactly given data,

interpolation methods should be used. The interpolation algorithms are simpler and

faster than the approximation algorithms.

In ASD only interpolation techniques are implemented, assuming that all the

input data are unaffected from errors. However, it should be noticed that surface or

98



3.2– Fitting

curve intersection algorithms are used in the modeling process; this data are possi-

bly affected from numerical noise, and interpolating them could lead to unpleasant

results.

Literally hundreds of paper have been written on fitting topic; many of the re-

ported techniques are heuristic. The problem arises because fitting process never

determines a unique solution. In fact there are infinite NURBS curves (surfaces)

that interpolate or approximate a set of data. As a result the interpolating curve

(surface) obtained could be far from the expected shape.

Very little has been published on setting the weights in the fitting process. Most

often, all weights are simply set to 1, so the interpolating NURBS degenerate to

interpolating B-spline. In ASD only B-spline interpolation problems are handled.

Most fitting methods are further classified into global and local.

3.2.1 Global Interpolation

With a global algorithm a set of equations or an optimization problem is set up

and solved. If the given data consist only of points and derivatives, if the degree of

the NURBS, the knots and weights have been somehow preselected, and the only

unknown are the control points, then the system is linear, hence easy to solve. If

given data consist on curvature and knots or weights are system unknowns, then the

resulting problem would be nonlinear.

Since desired level of continuity at each point is easy to set, due to NURBS char-

acteristics (summarized in section 2.4), results are usually pleasant looking shapes.

One of the drawbacks is the inability to cope with straight segments: if three or more

points of the data set are collinear it would be desirable, most of times, an interpo-

lating straight segment (see fig.3.2). On the contrary global interpolation leads to a

wavy shape if only positional constraints are specified. Finally, a perturbation of any

one input data item can change the shape of the entire curve or surface; however, the

magnitude of the change decreases with increasing distance from the affected data

item.

99



3 – Free Form Surface Design

Figure 3.2: Global interpolation with three collinear points

Global curve interpolation

Suppose a given set of points {Qk}, k = 0, . . . ,n would be interpolated with a pth

degree B-spline. First step is to assign a parameter value, ūk, to each Qk, and to select

an appropriate knot vector U = {u0, . . . ,um}. The corresponding (n + 1) × (n + 1)

linear system is

Qk = C(ūk) =
n∑

i=0

Ni,p (ūk)Pi (3.1)

Here the n + 1 control points Pi are the unknowns. In matrix form:

[Q] = [N ] · [P ] (3.2)

If also derivatives appear as input data, then both the control point (unknowns) and

knot vector number should be raised. Expressing the derivatives in terms of basis

function derivatives and control points (see eq.(2.23)) the linear system is easily set.

Usually the fitting data consist in interpolation points, first and second order

derivatives. Greater order derivatives are seldom used. That’s related with the

geometric relationship between derivatives and curve shape: first order derivative is

locally tangent to the curve and his magnitude depends on the parameterization,

100



3.2– Fitting

second order derivative is related with the curvature (see section 3.4 for more details

on connection between derivatives and geometry). Thus,

Qk = C(ūk) =
n∑

i=0

Ni, p(ūk)Pi

Q′
l = C′(ūl) =

n∑
i=0

N ′
i, p(ūl)Pi

Q′′
m = C′′(ūm) =

n∑
i=0

N ′′
i, p(ūm)Pi

and the linear system is easily obtained. Worth a note that the selection of the knot

vector and the parameter values should be carefully undertaken, in order to avoid a

singular matrix. See section 3.3 for explanation about how to set these parameters.

In fig.3.3(a) is shown a curve interpolating 5 points. If an horizontal derivative at

(a) A curve interpolating five points (b) The same curve with first end derivative
specified

Figure 3.3: Curve interpolation, and curve interpolation with derivative specified.

the first end is added as fitting data, then the curve is modified as shown in the

fig.3.3(b). Note the added control point (which implies also one more knot).

101



3 – Free Form Surface Design

Global surface interpolation

Let {Qk, l}, with k = 0, . . . ,n and l = 0, . . . ,m be a set of (n + 1) × (m + 1) data

points. The interpolating (p× q)th degree B-spline surface would be of the form

Qk, l = S(ūk,v̄l) =
n∑

i=0

m∑
j=0

Ni,p(ūk) Nj,q(v̄l)Pi,j (3.3)

Suppose the parameters (ūk,v̄l) and the knot vector U and V are computed in a

reasonable way. Then eq.(3.3) represents a set of (n + 1)× (m + 1) linear equations

in the unknowns Pi,j. However, since S(u,v) is a tensor product surface, the Pi,j can

be obtained more simply and efficiently as a sequence of curve interpolations. For

fixed l eq.(3.3) can be rearranged as

Qk, l =
n∑

i=0

Ni,p(ūk)

(
m∑

j=0

Nj, q(v̄l)Pi,j

)
=

n∑
i=0

Ni,p(ūk)Ri, l (3.4)

where

Ri, l =
m∑

j=0

Nj, q(v̄l)Pi,j (3.5)

Eq.(3.4) is just a curve interpolation through the points Qk, l k = 0, . . . ,n. The

Ri, l are the control points of the isoparametric curve on S(u,v) at fixed v̄l. Then,

fixing i and letting l vary, eq.(3.5) represent curve interpolation through the points

Ri,0, . . . ,Ri, m, with Pi,0, . . . ,Pi,m as the computed control points. Thus, the algo-

rithm to obtain all the Pi,j consist in the following steps:

• (m+1) curve interpolations through the points Qi, 0, . . . ,Qn, l (for l = 0, . . . ,m)

using U and the parameters ūk; this yields the Ri, l ;

• (n + 1) curve interpolations through Ri, 0, . . . ,Ri, m (for i = 0, . . . ,n) using V

and the parameters v̄l; this yields the Pi, j.

Obviously the algorithm is symmetric, the same holds inverting the interpolation

sequence. An example of surface interpolation is depicted in fig.3.4. Derivative

constraints can also be incorporated, conceptually with the same approach as for the

102



3.2– Fitting

(a) A set of data points (b) Interpolating the u-directional data points

(c) Interpolating the v-direction through con-
trol points of the u-directional interpolants

(d) The surface interpolant with control points

Figure 3.4: Surface interpolations through subsequent curve interpolations.

curves. However difficulties arises if the number of data constraints is not the same

in every row or column; with clever use of curve knot insertion and surface knot

removal the algorithm can be extended to general situations [8].

3.2.2 Local Interpolation

The local scheme interpolation is usually more geometric in nature. The typical con-

struction proceeds piecewise, between every data constraint, leading to local prop-

erties: a perturbation in a data item affects the curve or surface only locally. These

algorithms are usually computationally less expensive than global methods. Anoth-

er benefit is the capability of dealing with cusps, straight lines segments and other

local anomalies in an efficient way. On the other hand, achieving desired level of

103



3 – Free Form Surface Design

continuity at segment boundaries is cumbersome, and local methods often result in

multiple interior knots.

Local curve interpolation

Let {Qk}, k = 0, . . . ,n be a set of point to be interpolated. Local curve interpo-

lation consist in constructing n polynomial or rational curve segments, Ci(u), i =

0, . . . , n− 1 such that the Qi and Qi+1 are the endpoints of Ci(u). Neighboring

segments are joined with prescribed level of continuity, and the construction pro-

ceeds segment-wise. Any equation which arises are locally to only a few neighboring

segments.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Q
i

Q
i+5

Q
i+6

P
i
0

P
i
1

P
i
2

= P
i
3

P
i+1
2

P
i+1
1

P
i+1
1

P
i+1
2

P
i+5
2

P
i+5
1

P
i+4
2

= P
i+1
0Q

i+1

= P
i+1
3Q

i+2
= P

i+2
0

= P
i+3
0

P
i+3
1

= P
i+2
3Q

i+3

P
i+4
1P

i+3
2

Q
i+4

= P
i+4
0 = P

i+3
3

Figure 3.5: Local interpolation: curve segments endpoints are coincident with the data points
Q (in red). The internal control points of every curve segment should somehow be
computed.

In the framework of NURBS the segments are polynomial or rational Bézier

curves, then corresponding NURBS is obtained selecting a suitable knot vector. No-

tice that to obtain the Bézier segments, Ci(u), the inner Bézier control points have

be computed. If the fitting data comprises also derivatives, they should be used to

compute the inner control points. If don’t, or the unknown are more than the con-

straint equations, then some geometric consideration (as have be done in order solve

104



3.2– Fitting

the problem. Usually, local algorithms rely on local tangent estimator algorithms

[11; 12] to overcome these difficulties.

An example of a local curve interpolation algorithm, on which relies ASD, is

provided in section 4.1.1.

Local surface interpolation

Generalizing to the bivariate case, a surface is obtained through definition of n ·m
Bézier patches. It holds what stated for the univariate situation, even if the added

geometric constraints necessary for closing the problem are a little more tricky. An

example of a local surface interpolation algorithm, on which relies ASD, is provided

in section 4.1.2.

3.2.3 Transfinite interpolation

In transfinite interpolation a curve network is interpolated through a surface. This

method has a different flavor than the set of points interpolation, and is due mainly

to Coon and Gordon with respectively the Coons patches and Gordon surfaces. Since

this methods are not directly implemented in ASD, they won’t be described here (see

[7; 8] for a treatise). However, the lofting capability, which is a particular form of

transfinite interpolation, has been added to the geometric modeler.

Lofting (or Skinning)

Let {Ck(u)}} , k = 0, . . . , K be a set of curves, called sectional curves. Skinning

is a process of blending these section curves together to form a surface. The blend

direction is usually called the longitudinal direction.

Lofting dates back many decades, before computers, and the earliest computer-

ized system to incorporate lofting was CONSURF. That system was based on rational

cubic curves.

Based on B-splines, the skinning is defined as follows. Let

Cw
k (u) =

n∑
i=0

Ni,p(u)Pw
i,k k = 0, . . . ,K (3.6)

105



3 – Free Form Surface Design

be the rational or nonrational section curves, all defined on the same knot vector, U ,

and with the same degree p (if necessary the curves can be brought to a common p

and U by means of the algorithms of section 2.5). Then, for the v direction a degree

q is chosen, and parameters {v̄k}, k = 0, . . . ,K and a knot vector V are computed.

These are then used to do n+1 interpolations across the control points of the section

curves, yielding the control points Qw
i, j of the skinned surface. Therefore, Qw

i,j is the

jth control point of the interpolating curve through Pw
i, 0, . . . ,P

w
i, K . The process of

skinning is reported in fig.3.6.

(a) Cross sectional curves (b) Cross sectional curves made compatible

(c) Control points (d) Skinned surface

Figure 3.6: The process of surface skinning [8].

106



3.3– Parameterization

The process of transforming the cross sectional curves to a compatible form raises

the number of control points in the u direction, and thus the overall control point

number. This is the price to pay for flexibility and quality.

In fact, during B-spline(NURBS) surface interpolation the determination of one

knot vector for column points, and one for the row points. This can lead to a

unpleasant surface, regardless the choice of the knot vector and knot parameters.

Taking advantage of the surface interpolation as subsequent curve interpolations, all

curves should fit to a unique knot vector, which even if reasonable in mean terms,

could be inappropriate for the interpolation of some particular curves. That won’t

happen to lofted surfaces, since the curves are already defined.

3.3 Parameterization

Till now the set of knot parameters and the knot vector has been assumed as known.

In this section it will be shown how properly determine both of them. This fixing is a

keypoint, since the quality of any interpolant curve depends strongly on the selection

on the parameters ūk, and knot vector choice. There are several parameterization

techniques in the literature, three of the most relevant are reported in the following.

3.3.1 Uniform Parameterization

Known also as equally space, this kind of parameterization states that:

∆ūi = ūi+1 − ūi = constant (3.7)

It is the most primitive one, and performs poorly, especially when the data points are

scattered in a very unevenly fashion. The reason for the overall poor performance

can be blamed on the fact that it ignores the geometry of the data points.

As an heuristic explanation, the parameter u can be interpreted as time, and

C(u) as the trajectory. If the distance between two successive points is very large,

the speed would be high in order to cover the segment in the fixed time. If the next

two data points are close to each other, there will be an overshooting because the

107



3 – Free Form Surface Design

speed can not be changed abruptly (it is assumed at least a C1 trajectory, thus a

continuous velocity).

3.3.2 Chord Length Parameterization

This method, known also as chordal parameterization, selects the parametric values

according to the distances

‖ Pi+1 −Pi ‖ ∝ ūi+1 − ūi (3.8)

or, equivalently
∆ūi

∆ūi+1

=
‖ Pi+1 −Pi ‖
‖ Pi+2 −Pi+1 ‖ (3.9)

The idea here is that the distance approximate the arc distances between two sub-

sequent points.

3.3.3 Centripetal Parameterization

‖ Pi+1 −Pi ‖ 1
2 ∝ ūi+1 − ūi (3.10)

or, equivalently

∆ūi

∆ūi+1

=

( ‖ Pi+1 −Pi ‖
‖ Pi+2 −Pi+1 ‖

) 1
2

(3.11)

3.3.4 Performance of the Different Parameterizations

Not reported above, even if one of the most famous parameterization, is the Foley pa-

rameterization; anyway in literature a multitude of method for choosing parameters

exists, each with his advantages and disadvantages. ([7; 13]).

In fig.(3.7) are depicted results with different parameterizations. The knot vector

is distributed uniformly.

108



3.3– Parameterization

(a) Equidistant parameterization (b) Chord length parameterization

(c) Centripetal parameterization (d) Foley parameterization

Figure 3.7: Various parameterizations with uniform knot vector. x indicates the parameter
values, + the knot values.

3.3.5 Knot Vector Selection

The knot vector selection is as important as the selection of the parameter values;

experimentations indicate that the knot vector selection similar to parameter distri-

bution provide the more natural looking curves. Results of similar parameterization

and knot vector is shown in fig.3.8

A comparison between figures 3.7 and 3.8 shows the improvements in shape,

indicating that knot vector selection is no less important than parameterization.

Further, such a choice has the advantage of speed up the computation of the

matrix [N ] in eq.(3.2) since there are p − 1 nonzero terms Ni, p(ūk) in most of its

rows instead of p nonzero terms, as in the conventional knot selection.

109



3 – Free Form Surface Design

(a) Equidistant parameterization (b) Chord length parameterization

(c) Centripetal parameterization (d) Foley parameterization

Figure 3.8: The effect of choosing knot values similar to parameter values.

3.3.6 Parameterization and Knot Vector Selection for Sur-

faces

For a tensor product surface the problems arises from topology. In fact, a unique

knot vector and parameterization for each of the two directions could be defined.

Thus, in order to satisfy in mean terms the geometric distribution of the points, the

usually choose is to perform an average of all the row/column related parameters.

ūk =
1

m + 1

m∑

l=0

ūl
k k = 0, . . . ,n (3.12)

where the notation is the same of eq.(3.3), and for each fixed l, ūl
k is computed with

one of the aforementioned methods. Clearly this construction can’t be so flexible

to model in a nice looking way all the rows or columns of data points. In fact, is

nowhere guaranteed that ūk and ūl
k are even very different, thus the knot vector

would be inappropriate for description of some rows/columns of points, leading to

far from optimal shapes. This states especially for very unevenly distributed points.

110



3.4– Notion of Continuity

3.4 Notion of Continuity

For parametric forms the notion of continuity assumes different meaning, depending

on the sphere of analysis. Before going further on the topic, is important to define

the arc-length parametrization. Given a curve C(u) with u ∈ [ua,ub], the arc-length

s as a function of u, is defined as

s(u) =

∫ u

ua

‖ C′(u) ‖ du (3.13)

which is the length of C from C(ua) to C(ub) . The curve C(s) = C(u−1(s))

is the corresponding arc-length parameterized curve. Although the arc-length is

conceptually important, it is used primarily for theoretical purposes.

A detailed survey on continuity is reported in [14].

3.4.1 Continuity of Curves

Let r(u) and s(v) be two segments of two parametric curves, joining at their endpoints

so that r(u0) = s(v0).

Figure 3.9: Two curve segments joining with derivative of same direction but different
magnitude.

Parametric continuity

Parametric continuity is the classical notion of continuity in analysis: if the nth

order derivatives of a function exist and are continuous, then the function is nth

111



3 – Free Form Surface Design

order parametric continuous. In this context, the

- two curves are nth order parametric continuous at u0, v0 if and only if r(n)(u0) =

s(n)(v0).

Anyway, two curve segment need not have the same derivative vector at joining point

(C1) in order to have the same tangent line. In an similar way, they don’t need to be

C2 to be curvature continuous. The crucial observation is that derivatives depend

also on parametrization of curves, while tangent and curvature are intrinsic properties

of the geometric shape, so they are not dependent from the parameterization.

Geometric continuity

A more intrinsic notion of continuity should avoid to depend from parameterization.

This leads to a definition of continuity called geometric, or visual continuity.

Figure 3.10: Relation between derivative vectors for geometric continuity.

- Curves r(u) and s(v) are nth order geometric continuous at u0, v0 , if and only

if there exists a reparameterization u = u(ũ) such that r̃(ũ) = r(u(ũ)) and s(v)

are Cn at s(v0).

Geometric continuity is denoted by Gn; the term geometric continuity was first used

by Barsky, the term visual continuity by Farin.

The chain and product rule of differentiation show that r̃(k)(ũ) can be written in

terms of
dir(u)

dui
and

du(ũ)

dũi
with i = 1, . . . ,k

112



3.4– Notion of Continuity

For example:
d2r̃

dũ2
=

d2r(u)

du2

(
du

dũ

)2

+
dr

du

d2u

dũ2

Letting βi indicate u(i)(ũ0), then the following equations hold:

s(0)(v0) = r(0)(u0) (3.14a)

s(1)(v0) = β1 r(1)(u0) (3.14b)

s(2)(v0) = β2
1 r(2)(u0) + β2 r(1)(u0) (3.14c)

s(3)(v0) = β3
1 r(3)(u0) + 3 β1β2 r(2)(u0) + β3 r(1)(u0) (3.14d)

. . .

Equation (3.14a) amounts to positional continuity, eq.(3.14b) means that the deriva-

tive vectors differ only a scalar factor, eq.(3.14c) prescribes a dependency as depicted

in fig.3.10.

The parameters βi are called shape handles because they can be used to model

shape of the curve. In particular, β1 is called bias and β2 tension, due to their specific

shape changing effect. One particular spline that satisfies the β-constraints is the

β-spline. More on such topics can be found in [15; 16; 17].

It can be shown [16] that another equivalent formulation can be provided by the

following.

- Curves r(u) and s(v) are nth order geometric continuous at u0 and v0, if and

only if the corresponding arc length parameterized curves r̃(t) and s̃(w) are Cn

at s̃(w(v0)).

Differential geometry approach

From a purely geometrical point of view, the direction of the tangent line is de-

termined by the tangent vector, the normalized derivative vector which has unit

length. Two curves need not have the same derivative vector in order to have the

same tangent vector. There is a particular parameterization that gives a unit length

derivative vector at every point, so that the derivative and tangent vector are equal:

the arc-length parameterization.

113



3 – Free Form Surface Design

Let s(w) be an arc-length parameterized curve. The tangent vector t is then

t1(w) = s(1)(w) ‖t1‖ = 1 (3.15)

The normal curvature vector is defined as

t2(w) =
t
(1)
1

κ1(w)
(3.16)

where κ1(w), called curvature, is a scalar such that ‖t2(w)‖ = 1. The binormal

curvature vector, normal to t1 and t2, is defined as:

t3(w) =
t
(1)
2 (w) + κ1(w)t1(w)

κ2(w)

where κ2(w), called torsion is a scalar such that ‖t3(w)‖ = 1. Planar curves have

zero torsion. Curvature and the opposite of torsion have an intuitive geometrical

meaning, being the angular velocities of t1(w) and t2(w) respectively. The plane

spanned by the tangent and the normal curvature vector is called the osculating

plane.

The notions of tangent, normal curvature and binormal curvature can be gener-

alized to the so called generalized curvatures:

t1(w) = s(1)(w)

κ0 = 0

ti+1(w) =
t
(1)
i (w) + κi−1(w) ti−1(w)

κi(w)

(3.17)

where κi(w) is such that ‖ti+1(w)‖ = 1.

In Rd, the Frenet frame is defined as the first d curvature vectors (t1(w), . . . ,td(w)).

Thus, the following definition of Frenet frame continuity :

- Two curves r(u) and s(v) are nth order (n > 0) Frenet frame continuous (F n)

at u0 and v0 if and only if the first n curvature vectors and scalar curvatures

coincide.

114



3.4– Notion of Continuity

Figure 3.11: Frenet frame.

For n = 1 and n = 2, F n and Gn continuity agree. Thus, G1 condition requires

the same tangent vectors, G2 requires also the same normal curvature vectors and

the same curvature.

3.4.2 Continuity of Surfaces

The generalization of the continuity notion at surfaces is a little more tricky, thus

only a brief discussion is submitted. For more details refer to [7; 14; 17; 18]. The

practical situation of interest is the continuity of two parametric surfaces r(t,u) and

s(v,w), in particular along a common curve or edge. To avoid potential problems

Figure 3.12: Two surfaces joining at the common edge, and their first partial derivatives.

with the parameterization assume a regular parameterization, that is first derivatives

exist and are linearly independent.

115



3 – Free Form Surface Design

Parametric continuity

- Two surfaces r(t,u) and s(v,w) are Cn-continuous at (t0,u0) and (u0,w0), if and

only if r(i,j)(t0,u0) = s(i,j)(v0,w0), i + j = 0, . . . ,n.

Note that the two surfaces need not have the same first order partial derivatives in

order to have the same tangent plane [18]. Moreover, on closed surfaces singularities

occur where the derivative of the surface is not defined [14].

Geometric continuity

- Two surfaces r(t,u) and s(v,w) are Gn-continuous at (t0,u0) and (u0,w0) if and

only if there exist a reparameterization t = t(t̃,ũ) and u = u(t̃,ũ) such that

r̃(t̃,ũ) = r(t(t̃,ũ),u(t̃,ũ)) and s(v,w) are Cn-continuous at r(t0,u0) and s(u0,w0).

Applying the bivariate chain and product rule, and following the steps as for the

above seen univariate situation, leads to a set of equation analogous to eq.(3.14) [14;

17].

Differential geometry approach

The tangent plane at s(v0,w0) is spanned by the vectors s(1,0)(v0,w0) and s(0,1)(v0,w0)

[14; 18]. Equivalently, the tangent plane is normal to the surface normal vector

n(v0,w0) =
s(1,0)(v0,w0)×s(0,1)(v0,w0)

‖s(1,0)(v0,w0)×s(0,1)(v0,w0)‖ (3.18)

Thus, the tangent planes at r(t0,u0) and s(v0,w0) coincide if and only if r(1,0)(t0,u0),

r(0,1)(t0,u0), s
(1,0)(u0,v0), s

(0,1)(u0,v0) are coplanar, and geometric continuity is achieved

at the common point.

Note that for continuity along a common curve, the continuity at every point

should be achieved.

The second order continuity is based on curvature. The definition is a little bit

more involving, thus it will be omitted. As before, [7; 14; 17; 18] are valuable sources

of detailed information about the topic.

116



3.5– Visual Aspects of Continuity

3.5 Visual Aspects of Continuity

Although tangent and tangent plane discontinuities are easy to detect, human eyes is

also capable of detecting curvature discontinuities, due to light reflection discontinu-

ities. An example is provided in figure 3.13, where a light reflection analysis on two

surfaces is depicted. Note how the first surface, which is not curvature continuous,

shows discontinuities in light ray reflection.

(a) G1 surface

(b) G2 surface

Figure 3.13: Differences in light reflection between G1 and G2 surfaces.

The care directed to fair shapes by the automotive design, or design process in

general, led to surface classification in relation of their geometric properties. Class A

surfaces is a term used to describe a set of freeform surfaces of high quality, that is,

strictly speaking, the surfaces have curvature and tangency alignment to near perfect

117



3 – Free Form Surface Design

aesthetical reflection quality. However, many technicians interpret class A surfaces

to be G2 (or even G3), both in their internal domain than at the common edges with

other surfaces.

3.6 Implementation of G2 or C2 Continuity with

Local and Global Algorithms

To meet the requirements mentioned in section 1.5 on surface continuity, at least G2

continuous algorithms should be implemented. In this section the problems which

arise adopting both a global and local approach will be discussed.

As first step just rearrange derivatives equation for a parametric curve in order

to split geometric and parametric characteristics. For a generic curve with a generic

parameterization it holds (using eq.(3.14, 3.15, 3.16)):

C′(u) =
dC

ds

ds

du
=

ds

du
t = α t

C ′′(u) =
d2s

du2
t + α

dt

du
= γ t + α2 dt

du
= γ t + α2k

(3.19)

where s is the arc-length, t the tangent versor, k the curvature vector.

3.6.1 Limitations of the Local Approach for G2 or C2 Conti-

nuity

In ASD all the interpolation algorithms are local and features (bi)cubic B-spline.

However,it can be easily shown that third degree is not enough flexible. Assume a

Bézier curve as the ith segment of the interpolant curve. Then, at the edge points it

holds:
C ′

i(0) = 3(Pi
1 −Pi

0) C ′′
i (0) = 6 (Pi

2 − 2Pi
1 + Pi

0)

C ′
i(1) = 3(Pi

3 −Pi
2) C ′′

i (1) = 6 (Pi
3 − 2Pi

2 + Pi
1)

(3.20)

where, with the aid of fig.3.5, the notation is straightforward. To ensure G2 conti-

nuity, according to what gained in section 3.4.1, the tangent and curvature vector of

118



3.6– Implementation of G2 or C2 Continuity with Local and Global Algorithms

the adjacent Bézier segments should coincide at the common point, thus, according

to eq.(3.19)

C ′
i(0) = αiti C ′′

i (0) = γi ti + α2
i ki

C ′
i(1) = βiti+1 C ′′

i (1) = δi ti+1 + β2
i ki+1

(3.21)

Assume that the tangent and curvature vectors are known through an estimation

based on the data point distribution. Combining equations (3.20, 3.21), a system of

twelve scalar equations on the unknown Pi
1, Pi

2, αi, βi, γi, δi is finally obtained. The

degree of freedom are not enough, and the system is generally not solvable.

It should be noted that, without estimating the tangent and curvature vector at

the data points, the continuity conditions are imposed only at the point in common

with the precedent or the subsequent Bézier segment, depending from the direction

of building. In this way, there are two degree of freedom (the bias and tension of

section 3.4.1), for each segment.

However, is not possible to force straight segments, not even impose a particular

tangent or curvature vector at any point. The reduced flexibility is not satisfactory.

With higher degree curves, the problem of flexibility is overcome. But, two classes

of problems arises:

- no universal method to select the degree of freedom of each segment in a

reasonable and well performing way exists;

- unlike tangent, no curvature estimator performs well universally.

An example of how to avoid the first class of shortcoming is represented by a

fifth-degree piecewise Bézier, with C2 imposition at the edge points. Anyway, to

complete the building a first and second order derivative estimation should be done

for every point.

The generalization to surfaces adds more difficulties. At the end, the local

approach is distinctly not well suited for handling G2 continuity.

3.6.2 Limitations of the Global Approach for C2 continuity

With a global approach is more practical to work with C2 continuity, since the

continuity requirement is immediately controlled by the degree of the B-spline and the

119



3 – Free Form Surface Design

number of multiple knots (see section 2.3.3). Most of the problems are related with

the extra flexibility needed for straight segment imposition and derivative constraints.

For a curve, knot insertion will be useful to account for this extra constraints, however

for tensor product surfaces the process will be more tricky due to the common knot

vector.

Should also pointed out, that with a global approach the constraints on tangent

and curvature vector are more easy formulated taking into account the parameteri-

zation. In fact,

C ′(ūk) =
n∑

i=0

N ′
i, p(ūk)Pi = αk tk (3.22)

with αk fixed in a proper way, is simpler than

(
n∑

i=0

N ′
i, p(ūk)Pi

)
× tk = 0 (3.23)

because, in the resolution of the final linear system [Q] = [N ] · [P ], the latter couples

the three spatial components, returning a more complex and time consuming system

to solve (see [19; 20; 21] for a deeper discussion about constraints).

For curvature constraints:

C ′′(ūk) =
n∑

i=0

N ′
i, p(ūk)Pi = γk tk + α2 kk (3.24)

with αk and γk fixed in a proper way, leads to a linear system, where imposing just

the kk and tk leads to a non linear constraint.

The method chosen to fix the parameter dependent terms can not behave properly

in all the situations. This is even more problematic when working with surfaces, due

to the tensor product surface limitations.

What needed is then a frame capable of:

- handling all the applicable constraints, avoiding the involvement of sequences

of knot insertion;

- setting the unconstrained degree of freedom, i.e. control points, when these are

120



3.7– Variational Analysis and Modeling of Free Forms

more than the constraints; if possible these degree of freedom should be handled

in order to override as much as possible the singular behavior it may arise

from presetting the knot vector, the parameterization and the parameterization

dependent terms of the simple constraint formulation;

- generating fair interpolated curves and surfaces.

Indeed, the ratio underlying the positioning of the extra degree of freedom should be

robust, in order to have a unique flexible algorithm which give raise always to likely

and fair shapes.

3.7 Variational Analysis and Modeling of Free Forms

Generally speaking, interpolation data set admits infinite solutions: there exist an

infinite number of B-splines that interpolate the data. Likewise, in situations with

more control points than the data to fit, there exist an infinite number of solutions.

The question arises of which one of these infinite existing curves/surfaces should

be chosen. As a parameter for selecting the solution, fairness criteria could be

adopted.

3.7.1 Fairness of Curves and Surfaces

The inherent subjectivity to assessing the appearance of a curve or surface makes

the definition of pleasing appearance and fairness not straightforward. This difficul-

ty is compounded by the application specificity character, which leads to different

definitions.

Much of the work on curve and surface design has been to develop methods that

behave naturally in response to user specification. The draftsman’s spline was used to

draw fair curves. Mathematical modeling of such spline suggested that the obtained

shape was the one minimizing his strain energy, and thus, the squared curvature.

That is, the functional

Φ =

∫
k2 ds (3.25)

121



3 – Free Form Surface Design

where k is the curvature and s the arc-length, is taken as measure of fairness and

thus minimized.

For surfaces, fairing were again related to minimization of the strain energy, that

is, minimizing the area integral of the sum of the principal curvatures squared.

Φ =

∫
k2

1 + k2
2 dA (3.26)

Some authors observed that if the length of the curve is not restricted in any way,

the bend energy decreases by introducing large loops. Therefore a stretch energy term

was also added [21; 22].

The earliest discussion about fairness was submitted from Birkhoff [23]. In ana-

lyzing various art form, when talking about vases, he describes the Requirements for

Regularity of Contour. In particular he concluded that:

• the curvature should vary gradually, and should not oscillate more than once

on any arc of the contour not containing a point of inflection

• the maximum rate of change of curvature should be as small as possible; this

eliminates both unnecessarily large curvatures and rapid changes in curvature

along the contour

Draw on Birkoff’s work Moreton defined the minimum variation curve (MVC)

[24; 25], curves which minimizes the variation of curvature:

Φ =

∫ (
dk

ds

)2

ds (3.27)

Moreton generalized his univariate approach by defining the minimum variation

surfaces (MVS), surfaces minimizing the arc integral of the sum of the squared mag-

nitudes of the derivatives of the normal curvatures taken in the principal direction.

Φ =

∫ (
dkn

de1

)2

+

(
dkn

de2

)2

dA (3.28)

where, the normal curvature kn, is the curvature of the curve projected onto the

plane containing the curves tangent t and the surface normal n.

122



3.7– Variational Analysis and Modeling of Free Forms

Such schemes can give rise to very fair surfaces, but the associated non linear

optimization problem prevents them for being used for interactive surface design. A

linearization of the above fairing functionals yields to:

Φ =

∫
‖C ′′(u)‖2

du or Φ =

∫
‖C ′′′(u)‖2

du (3.29)

which gives a linear system to solve. The same approximation is done for surfaces:

Φ =

∫ (
∂iS(u,v)

∂ui

)2

+

(
∂iS(u,v)

∂vi

)2

du dv (3.30)

with i begin the degree of derivative used for optimization. The approximation

is parameterization dependent, and will be worse when the absolute value of the

derivative of the curve is fluctuating more [22]. Among the literature, the following

papers could be consulted as example of variational modeling: [10; 21; 22; 26; 27;

28].

3.7.2 Constrained Optimization

Curves

The problem then becomes the optimization of the functional chosen as fairness

indicator, with the constraints given from the data to fit and the imposed derivatives.

For a curve, the first step consist in expressing the functional in terms of the

unknown, which are the control points

Φ =
1

2

∫

C

(
C(d)(u)

)2
du =

1

2

∫

C

(
n∑

i=0

N
(d)

i, p (u)Pi

)2

du (3.31)

where a functional of the d-th order derivative is chosen as example. In matrix form

Φ =
1

2

∫

C

([
N d

]
[P ]

)2
du =

1

2

∫

C

[P ]T
[
N d

]T [
N d

]
[P ] du (3.32)

123



3 – Free Form Surface Design

The control points are not parameter dependent, thus

Φ =
1

2
[P ]T

(∫

C

[
N d

]T [
N d

]
du

)
[P ] (3.33)

Just observe the similarity with the variational principle in finite elements method.

The matrix K, defined with

[K] =

∫

C

[
N d

]T [
N d

]
du (3.34)

is called the stiffness matrix.

Thus the unconstrained variational problem takes the following form:

Minimize Φ =
1

2
[P ]T [K] [P ] (3.35)

To take into account the constraints, two main approaches can be undertaken:

the Lagrange multiplier method, or the penalty method [29; 30; 31]. Using Lagrange

multiplier all the specified constraints can be satisfied exactly. However, its drawback

is that the total number of equations to be solved will increase. On the contrary, the

penalty method does not possess this drawback, but it can only ensure the constraints

to be satisfied approximately. Actually many other considerations about advantages

and disadvantages of these two method could be done, look at [27; 28; 31].

In the present work a Lagrange multiplier approach has been adopted, due to its

simple implementation. The constraints can be expressed as

g(P) = 0 →





n∑
i=0

Ni, p(ūk)Pi −Qk = 0

n∑
i=0

N ′
i, p(ūl)Pi −Q ′

l = 0

n∑
i=0

N ′′
i, p(ūm)Pi −Q ′′

m = 0

(3.36)

or in the matrix form

124



3.7– Variational Analysis and Modeling of Free Forms

[g] = [Nc] [P ]− [Q] = 0 (3.37)

The constrained variational problem can be reduced to an unconstrained variational

problem with the following modified functional:

Φ̃ =
1

2
[P ]T [K] [P ]

︸ ︷︷ ︸
Φ

+[λ]T[g] (3.38)

where [λ] is the Lagrange multiplier column vector, and has the same dimension as

the number of constraint equations. Differentiating eq.(3.38) in order to find the

stationary points:

δΦ̃ = [δP ]T [K] [P ] + δ
(
[λ]T[g]

)
= 0 (3.39)

which gives, with the aid of equations (3.37, 3.38)





∂Φ̃

∂P
= 0

∂Φ̃

∂λ
= 0

−→





[K][P ] + [λ]T[Nc] = 0

[Nc] [P ]− [Q] = 0

(3.40)

The above is a linear system of n + nc equations, where nc are the number of the

constraints, which can be represented in this form:




[K] [N c]T

[N c] 0







P

λ




=




0

Q




(3.41)

The linear system is defined as long the matrices [K] and [Nc] are computed (see

appendix A for details). Since the B-spline basis Ni, p are piecewise polynomial of

order p, the Gaussian quadrature can be used to evaluate exactly the integral inside

the stiffness matrix (eq.(3.34)). The computation of the constraints matrix [Nc] is

easily achieved since it is nothing more than evaluation of the B-spline basis functions

125



3 – Free Form Surface Design

and their derivatives at the knot parameters associated with the constraints.

It is worth a note that, in the above matrix form, [P ] is intended as a column

vector, even if its three spatial components would have required [P ] to be a matrix.

The generalization is conceptually easy to do, but the notation would have been

labored. Moreover, due to the constraints which set directly the derivatives, the

development and resolution of the equations could be done separately for the three

coordinates.

A final note should be devoted to similar algorithms developed for general case

of NURBS. Thanks to the perspective mapping from the 3D Cartesian coordinate

space to the 4D homogeneous coordinate space, the variational approach could be

extended to NURBS. However, the weights at the control points should be pre-

selected somehow [10].

Surfaces

The same process can be generalized to surfaces . However, taking advance of the

tensor product properties, a scheme interpolating curves along one parameter, and

then interpolating the control points in the other direction would be more efficient.

3.7.3 Conclusions

The basis to build an algorithm which meet the requirements of section 3.6.2 have

been roughed in. In the next chapter the new interpolating algorithm will be analyzed

in detail, both from the theoretical and capability point of view.

126



4
Surface Modeling in ASD

In this section will be first shown in details the main old geometric algorithms imple-

ment in ASD. After discussing their advantages and drawbacks, the new algorithms

are presented.

4.1 The old Algorithms featured in ASD

The geometric modeling in ASD is achieved through local, G1 algorithms. Their

behavior is excellent in terms of speed of computation, numerical stability and ro-

bustness. The collinear points are managed as well. However, the generated shapes

can seldom lead to non-optimum fairness, due also to the merely first order geometric

continuity achieved across the interpolating points.

4.1.1 ASD Curve Algorithm - local interp crv

Let Qi be a set of n + 1 points to be interpolated. The local cubic G1 curve inter-

polating algorithm is built joining cubic Bézier segments. The four control points

of the ith Bézier curve are denoted as Pi
j. The ends control points of each Bézier

segment are coincident with the two data points to interpolate, that is:

Pi
0 = Qi Pi

3 = Qi+1 ∀ i ≤ N − 1 (4.1)

127



4 – Surface Modeling in ASD

Let ti be the tangent vectors at each point: if they are not part of the interpolation

P
1, i

P
2, i

Q
 i+2

=P
0, i+2

P
1, i+2

P
2, i+1

P
1, i+1

Q
 i+1

 = P
0, i+1

Q
 i
 = P

0, i

Figure 4.1: Piecewise Bézier curve

problem then an evaluation method should be adopted. Denote the line segments

with qi = Qi − Qi−1. One of the most interesting method was created by Akima

[11]. He sets:

ti =
C′

i

| C′
i |

C′
i = (1− αi)qi + αi qi+1

αi =
| qi−1×qi |

| qi−1×qi | + | qi+1×qi+2 |

(4.2)

The advantage is that three collinear points, Qk−1,Qk,Qk+1 yield a ti which is

parallel to the line segment. At the same time, if the points Qk−2,Qk−1,Qk and

Qk,Qk+1,Qk+2 are collinear, the denominator of eq.(4.2) vanishes. This implies

either a corner at Qi or a straight line segment from Qi−2 to Qi+2. In such situations

αi can be defined in a number of ways:

• αi = 1, which implies C′
i = qi+1 ; that is a corner at Qi;

• αi = 1
2
, which implies C′

i = 1
2
(qi + qi+1) ; this smoothes out the corner.

128



4.1– The old Algorithms featured in ASD

Q
 i

Q
 i−1

(1−α
i
 ) q

i

α
i
 q

i+1

Q
 i+1

t
 i

q
 i

q
 i+1

Figure 4.2: Setting local tangent with Akima’s method

Figure 4.3: Straight line segment with three collinear points

When calling the algorithm, a flag would specify the required behavior. The end

conditions should be treated in a different manner, if they are not specified of course.

129



4 – Surface Modeling in ASD

A method which gives good results is:

q0 = 2q1 − q2 q−1 = 2q0 − q1

qn+1 = 2qn − qn−1 qn+2 = 2qn+1 − qn

If the desired curve should be a closed curve with at least G1 continuity, then:

q0 = qn − qn − 1 q−1 = qn−1 − qn−2

qn+1 = q1 − q0 qn+2 = q2 − q1

that is, the tangents are the same at the (coincident) end points. If the curve is a

closed one, a flag will tell the algorithm which interpolation method to adopt. In

Q
2

Q
3

Q
4

Q
1
 = Q

5

Figure 4.4: Close curve with G1 continuity

fact, airplane surfaces consist of both closed curve with edges (most of the airfoils)

and smooth closed curve (sections of the fuselage).

From eq.(2.8) for the internal control points Pi
1 and Pi

2

Pi
1 = Pi

0 +
1

3
βi

0 ti Pi
2 = Pi

3 −
1

3
βi

3 ti+1

with βi
0 = ‖C′

i‖ βi
3 =

∥∥C′
i+1

∥∥
(4.3)

130



4.1– The old Algorithms featured in ASD

Figure 4.5: Supercritical airfoil NASASC2 interpolated with ASD algorithm.

The two unknowns are related with the internal parameterization. A good choice

is to set, for each segment, equal derivatives magnitude at the endpoints and the

middle point, that is (omitting the segment index i):

β = ‖C′(0)‖ =
∥∥C′(1

2
)
∥∥ = ‖C′(1)‖ (4.4)

Using de Casteljau algorithm (section 2.2.5) to evaluate the middle point derivative

yields to

β =
∥∥C

(
1
2

)∥∥ =
3

4
‖P3 + P2 −P1 −P0‖ (4.5)

Finally, using equation (4.3) leads to the following equation:

16β2 = β2 ‖t0 + t3‖2 − 12β (P3 −P0) · (t0 + t3) + 36 ‖P3 −P0‖2 (4.6)

The equation admits two real solutions, only one of them is positive. Given β it’s

easy to compute the internal control points. Applying the scheme for every segment

leads to the complete definition of the control points of all the Bézier curves.

Now the piecewise Bézier curve should be expressed in B-spline form. It is possible

to obtain a C1 continuous cubic and to achieve a good approximation to uniform

parameterization setting

ūi+1 = ūi + 3
∥∥Pi

1 −Pi
0

∥∥ (4.7)

131



4 – Surface Modeling in ASD

This choice equals the speed (respect the B-spline parameter u) at every segment.

Finally, the B-spline curve is defined from the control points:

Q0,P
0
1,P

0
2,P

1
1,P

1
2,P

1
3, . . . ,P

n−1
1 ,Pn−1

2 ,Qn (4.8)

and knot vector:

U = {0, 0, 0, 0, ū1

ūn

,
ū1

ūn

,
ū2

ūn

,
ū2

ūn

, . . . ,
ūn−1

ūn−1

,
ūn−1

ūn−1

,1 ,1 ,1 ,1} (4.9)

4.1.2 ASD Bicubic Surface Algorithm - local interp sfc

This scheme leads to C1, bicubic B-spline surfaces. Let

{Qk, l}, k = 0, . . . ,n and l = 0, . . . ,m (4.10)

be a set of points, and let {(ūk,v̄l)} be the corresponding parameter pairs, computed

by chord length averaging (section 3.3.6). The surface is obtained by joining n ·m
bicubic Bézier patches, {Bk,l(u,v)}, where Qk, l, Qk+1, l, Qk, l+1, Qk+1, l+1 are the

corner points of the patch. Except for the surface boundaries, all rows and columns

of control points containing the original {Qk, l} are removed leaving (2n+2)(2m+2)

control points in the final B-spline surface. The knot vectors are:

U = { 0, 0, 0, 0, ū1, ū1, ū2,ū2, . . . ,ūn−1, ūn−1, ūn, ūn, ūn, ūn}
V = { 0, 0, 0, 0, v̄1, v̄1, v̄2,v̄2, . . . ,v̄n−1, v̄n−1, v̄n, v̄n, v̄n, v̄n}

(4.11)

Every patch has 16 control points. The 12 boundary points are obtained looping

through the m + 1 rows and n + 1 columns of data and using a cubic interpolation

scheme. The scheme is slightly different from the previously detailed one, since all

the rows (columns) must have the same parameterization in a tensor product surface.

Thus, C1 continuity at the segments endpoints can be still forced, but is not possible

to force equal speed at the midpoint of the Bézier segments. In detail, consider the

interpolation of the row l = l0 (consisting of the points Q0, l0 , . . . ,Qn, l0 ), of total

chord length rl0 . The tangent estimation could be done again with Akima’s method,

132



4.1– The old Algorithms featured in ASD

and denote with tu
k, l0

the unit tangent in the u direction at the point Qk, l0 .

The interior Bézier point on this row are then computed by

P
(k, l0)
1, 0 = Q k, l0 + β tu

k, l0
P

(k, l0)
2, 0 = Qk+1, l0 − β tu

k+1, l0

β =
rl0(ūk+1 − ūk)

3

(4.12)

For the computation of the four internal control points of each Bézier patch, some

estimations for the mixed partial derivative, Du v
k, l, at each Qk, l should be done. A

good choice is the three point Bessel method. In the univariate situation it states:

dk =
qk

∆ūk

Dk = (1− ak)dk + ak dk+1

with ak =
∆ūk

∆ūk + ∆ūk+1

(4.13)

Let rl and sk denote the total chord length of the lth row and kth column.

Du
k, l = rl t

u
k, l Dv

k, l = sk tv
k, l (4.14)

Then, set

duv
k, l = (1− ak)

Dv
k, l −Dv

k−1, l

∆ūk

+ ak

Dv
k+1, l −Dv

k, l

∆ūk+1

duv
k, l = (1− bl)

Du
k, l −Du

k, l−1

∆v̄l

+ bl

Du
k, l+1 −Du

k, l

∆v̄l+1

(4.15)

with

ak =
∆ūk

∆ūk + ∆ūk+1

bl =
∆v̄l

∆v̄l + ∆v̄l+1

(4.16)

Finally

Duv
k, l =

ak duv
k, l + bl d

vu
k, l

ak + bl

(4.17)

The four interior control points of the (k, l)th patch are now computed using eq.(4.17)

133



4 – Surface Modeling in ASD

and eq.(2.38)

Pk, l
1, 1 = γDuv

k, l + Pk, l
0, 1 + Pk, l

1, 0 −Pk, l
0, 0

Pk, l
2, 1 = −γDuv

k+1, l + Pk, l
3, 1 −Pk, l

3, 0 + Pk, l
2, 0

Pk, l
1, 2 = −γDuv

k, l+1 + Pk, l
1, 3 −Pk, l

0, 3 + Pk, l
0, 2

Pk, l
2, 2 = γDuv

k+1, l+1 + Pk, l
2, 3 + Pk, l

3, 2 −Pk, l
3, 3

with

γ =
∆ūk+1 ∆v̄l+1

9

(4.18)

4.2 The new Geometric Algorithms

The requirements for the new algorithms have been stated in the above chapter. A

summary of the key points are here reported:

- C2 continuity at each interpolation point (and off course in the interior domain);

- flexibility and the capability of handling straight segments (or flat patches);

- capability of handling up to second order derivative constraints;

- generation of fair curves (surfaces).

4.2.1 The new Curve Algorithm - global interp crv

The problem is better approached from the piecewise Bézier of the local algorithms.

Is quite straightforward that a fifth degree Bézier, with its four inner control points,

provide the necessary flexibility in order to match the first and second order deriva-

tive, imposed as constraints or as continuity condition with the adjacent Bézier

segments.

Regardless of the degree, the first step to build B-spline joining together this

Bézier segments is to define a knot vector and a knot parameter set, with one of the

method talked about in section 3.3. Whatever the choice, knot parameter and knot

134



4.2– The new Geometric Algorithms

vector are chosen with the same distribution. The knot vector would be of this form:

U = {0, . . . ,0︸ ︷︷ ︸
p+1

, ū1, . . . , ū1︸ ︷︷ ︸
p

, . . . , ūk, . . . , ūk︸ ︷︷ ︸
p

, . . . , ūN−1, . . . , ūN−1︸ ︷︷ ︸
p

, 1, . . . ,1︸ ︷︷ ︸
p+1

} (4.19)

Due to B-spline properties, the multiplicity of the internal knot vector is related with

the continuity. Therefore, adjusting the internal points of each Bézier segments to

meet C2 continuity, means that the B-spline could be refined till internal knots have

multiplicity p− 2. Thus, the final knot vector would be of the form

U = {0, . . . ,0︸ ︷︷ ︸
p+1

, ū1, ū1, ū1︸ ︷︷ ︸
p−2

, . . . , ūk, ūk, ūk︸ ︷︷ ︸
p−2

, . . . , ūN−1, ūN−1, ūN−1︸ ︷︷ ︸
p−2

, 1, . . . ,1︸ ︷︷ ︸
p+1

}

The number of the control points is then immediately defined, due to B-spline

properties, from

n = (N − 2) · (p− 2) + 2 ·N · (p + 1)︸ ︷︷ ︸
m

−p− 1 (4.20)

where N is the number of point to be interpolated, n is the number of control points,

m is the knot vector length. Assume a set of points to be interpolated

{Qk} k = 0, . . . ,N

and d and dd constraints on first and second order derivatives:

{Q ′
k} k = 0, . . . ,K

{Q ′′
kk} k = 0, . . . ,KK

The last step in defining the problem is the selection of the fairing functional,

which would be of the form

Φ =
1

2

∫

C

∥∥C(d)
∥∥2

du (4.21)

with d being the optimized order derivative. At that point, provided

135



4 – Surface Modeling in ASD

- the degree p of the B-Spline,

- the distribution of the knot vector and the parameterization,

- the fitting data

the linear system is of section 3.7.2 is easily achieved in explicit terms.

It is worth a comment on the above points. Interpolating points are part of the

input data. Also derivative constraints can be imposed at edges, in order to join

the curve with the desired smoothness. But, if straight segments are wished when

three or more points are collinear, first and second order derivative constraints have

to be set also in the inner region of the curve. Derivative constraints at the inner

region are also needed if a local flavor of the interpolating curve is required. For the

aforementioned reasons fifth degree B-spline is the choice when seeking for flexibility,

the third order not being able to satisfy second order derivative constraints (it leads

to an over determined system).

The imposition of the derivatives, when actually only shape constrains are need-

ed, leads to a fair choice of the parameterization parameters. For the first order

derivative:

C ′ = αt (4.22)

a reasonable estimation of α would be [8]

α =
N∑

k=0

‖Qk+1 −Qk‖ = ctot (4.23)

which performs well with chord length parameterization. For the second order

derivative:

C ′′ = α̇ t + α2k (4.24)

a usually well behaving estimation of α̇ would be

α̇ = 0 (4.25)

136



4.2– The new Geometric Algorithms

Note that, in an interactive environment, α and α̇ can be used as additional shape

controls.

A final note should be devoted to closed curve, with or without continuity. If

smooth closure is needed, then the following condition, which can be easily integrated

in the system, is added:





C ′(0) = C ′(1)

C ′′(0) = C ′′(1)
=⇒





n∑
i=0

N ′
i, p(0)Pi =

n∑
i=0

N ′
i, p(1)Pi

n∑
i=0

N ′′
i, p(0)Pi =

n∑
i=0

N ′′
i, p(1)Pi

(4.26)

Finally, the algorithm offers the following capabilities:

• possibility of choosing between smooth or not smooth closed curve interpola-

tion;

• possibility of interpolating the data points with local tangents estimated with

Akima’s method;

• choose if aligned points should be interpolated with straight segments, and

eventually settings the tolerance for which points should be considered aligned;

• choose between three different parameterization;

• choose the derivative order of the shape optimization functional;

• choose between third or fifth degree B-spline.

The flexibility of the algorithm is shown in the figures 4.6 - 4.9.

137



4 – Surface Modeling in ASD

 

 

ASD old algorithm

C2 p=5  opt =2

C2 p=5  opt =3
Points

Figure 4.6: New algorithm behavior with three collinear points, for both fifth degree B-spline
with fairing over second or third order derivative.

 

 ASD old
NEW p=5, o=2, Local Flag
New, p=5, o=3, Local Flag
Points

Figure 4.7: New algorithm behavior with three collinear points, for both fifth degree B-spline
with fairing over second or third order derivative, and the same tangent vectors of
the old local algorithm.

138



4.2– The new Geometric Algorithms

 

 New Alg:
 p=5 opt=3
exact
points

 

 New Alg:
p=5 opt=2
exact
points

 

 ASD original
exact
points

Figure 4.8: New algorithm behavior with 5 points with smooth flag. The third order derivative
fairing based curve matches nearly exactly the circumference.

139



4 – Surface Modeling in ASD

 

 

new p=5 opt=3
old
points

Figure 4.9: Airfoil interpolation with the new and old algorithms. Note that, if the points to
interpolate are many and properly distributed, the two interpolant curves are nearly
matching each other.

140



4.2– The new Geometric Algorithms

4.2.2 The new Surface Algorithm - global interp sfc

If Qk, l is a N1 × N2 matrix of points to be interpolated with a (p, q)th degree

B-spline, then it holds :

Qk, l = S(ūk, v̄l) =

n1∑
i=0

n2∑
j=0

Ni, p(ūk) Nj,q(v̄l) Pi,j (4.27)

The product tensor surfaces enables to extend effortless the curves algorithm for

surface interpolation. Thus, the same frame should de adapted to fit the bivariate

situation. The two knot vectors are obtained through the usual average process:

ūk =
1

m2 + 1

m2∑

l=0

ūl
k k = 0, . . . ,m1

v̄l =
1

m1 + 1

m1∑

k=0

v̄k
l l = 0, . . . ,m2

(4.28)

where the parameters ūl
k and the barvk

l are obtained with one of the method adopted

in the univariate problem. Just note that it still holds the eq.(4.20) applied to both

the directions.

Bringing back the surface interpolation to a sequence of curve interpolation

Qk, l =

n1∑
i=0

Ni, p(ūk)Ri,l (4.29)

with

Ri, l =

n2∑
j=0

Nj, q(v̄l)Pi,j (4.30)

Thus, the process consist in fairing

- first the n1 + 1 isoparametric curves,

- then the n2 + 1 curves interpolating the isoparametric curve control points.

Capabilities of this algorithm are strictly related with those of the univariate

one. However, due to the sequence of curve interpolation, some restrictions arises.

141



4 – Surface Modeling in ASD

2

4

6

8

1
2

3
4

5
6

7
8

9

0

0.5

1

(a) Alignment Flag OFF

2

4

6

8

1
2

3
4

5
6

7
8

(b) Alignment Flag ON

Figure 4.10: Behavior of the algorithm with and without the alignment flag option activat-
ed. Note how the interpolating algorithm is capable of detecting and drawing flat
patches

As an example, the imposition of derivative constraints in both the directions is a

little tricky. Besides this, the algorithm behaves in a satisfactory way in front of the

typical aeronautical surfaces to be interpolated and, due to its flexibility, even to

more generic shapes.

Some results and capabilities of the algorithm are shown in fig.4.10 and 4.11.

4.2.3 Lofting Algorithm

If the sections to be interpolated differ much in shape, and at the same time exact

section reproduction is required, it may happen that the unique knot vector, obtained

142



4.2– The new Geometric Algorithms

(a) Corner Flag ON

2
4

6
8

10−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Corner Flag OFF

Figure 4.11: Behavior of the algorithm with and without the corner flag option activated. Note
how the interpolating algorithm is capable of closing with smoothness a closed
surface

as average of section knot vectors, represents for a some sectional curve a unhappy

choice, leading to unsatisfactory results. Look back at section 3.3 to realize the

consequence of a not proper knot vector and parameterization.

For aeronautical shapes, is particulary important to avoid not accurate shapes,

especially when dealing with airfoils. An example is shown in fig. 4.12.

At the moment, lofting is implemented only for wing features, with the sectional

curves being the airfoils (the spanwise direction interpolation is linear). The process

consists in:

- definition of each sectional curve (airfoil) starting from its points interpolation

through the above univariate algorithm ;

143



4 – Surface Modeling in ASD

(a) Lofting

(b) Normal Interpolation

Figure 4.12: Wing with quite dissimilar airfoil shapes at tip and root. Each airfoil is interpolated
with just twenty points.

- knot insertion when correspondent knots differ to a selected amount;

- linear interpolation of the sectional curves in the spanwise direction.

Lofting tend to be redundant if the sectional curves are defined through a high

number of interpolation points.

144



4.3– The ASD Advanced NURBS GUI

4.3 The ASD Advanced NURBS GUI

The implementation of the new algorithm gives a consistent versatility of ASD in

terms of shape generation. For each feature, the Advanced NURBS GUI gives ad-

vanced control of the geometric shape generation. Thus, the most appropriate inter-

polating algorithm could be used depending on the particular needs. In fig.4.13 is

depicted a general example of the interface. Although similar, the GUI is specialized

for every feature. For body, bulk, wround, wingbody features the properties refer

Figure 4.13: The Advanced NURBS GUI

to both directions, for wing the properties refer only to the direction running along

chord, since the wings are interpolated in a linear way along spanwise direction.

4.3.1 C1 Algorithm Parameter

It is possible to choose if to maintain the original C1 local algorithm or to move

to a C2 global one. If the data set are very large and curvature continuity is not

145



4 – Surface Modeling in ASD

important the former one is the choice to do. In fact, it leads to very fast geomet-

ric generation without problems of numerical instability. Anyway, the flexibility is

reduced, the shape with few data set couldn’t be the most fair and the use of other

parameterization is not supported. In this interpolating scheme, handle of continuity

of closed curves is also provided.

4.3.2 C2 Algorithm Parameter

When high quality surfaces or greater flexibility is required, it is necessary to choose

the global algorithm.

Degree selection

The global algorithm permits to choose between third or fifth degree B-spline. Any-

way, only the fifth permits to handle the parameters, in third degree algorithm this

is not yet supported. The use of third degree B-spline should be undertaken when

the data set to interpolate is very unevenly spaced, and fifth degree could lead to

unwanted bulges (in this situation the effects of linearization of the optimization

functional come out).

Optimization derivative selection

It is possible to choose between second or third order derivative square minimization

as fairness functional. For third degree B-spline only second order derivative based

functional is supported. This options has relevance when only a few points to inter-

polate are provided and/or particular shapes, like circular section shapes, are desired

as most closely as possible (see also fig.4.8 for a different performance of the fairness

functional on a circumference, or fig.4.6 for another particular situation).

Local tangent selection

To force the global algorithm to interpolate the same data set as the local algorithm,

is possible to impose at each point tangent vector estimated with Akima’s method.

146



4.4– Some Results with the new Geometric Engine

This will be useful to achieve C2 maintaining the shapes obtained with the local

method. Again this feature is addressed to quintic B-spline.

Aligned flag selection

When selected the interpolating algorithm draws straight segments between three or

more aligned points. The tolerance field permits to set the gap within to consider the

points to be aligned. This capability is not yet supported for third order algorithm.

Corner flag selection

When closed curve are encountered, a smooth (C2) or not smooth closure can be

imposed. Fuselage and wings represent classical examples of the two situations. For

instance, a wing trailing edge is not desirable to be closed with a smooth curve.

Knot vector selection

The knot vector can be built using uniform, chord length and centripetal param-

eterization. For a few and unevenly spaced data points the results can be much

different.

4.3.3 Lofting

The field tolerance sets the limits to which add or not the new knot. Lofting gives

high quality surfaces at the price of high computational cost. It should be used only

when necessary.

4.4 Some Results with the new Geometric Engine

In the following section some results obtained with the new geometric engine of ASD

are shown.

147



4 – Surface Modeling in ASD

Figure 4.14: A complex configuration built to verify the new algorithm capabilities. The CA-
TIA visualization option is the Shading with edges one. As shown, no curvature
discontinuities is detected in the inner region of the surfaces.

Figure 4.15: A PrandtlPlane Canadair configuration.

148



4.4– Some Results with the new Geometric Engine

Figure 4.16: A PrandtlPlane Canadair configuration.

Figure 4.17: The PrandtlPlane ULV Tandem.

149



4 – Surface Modeling in ASD

0
1

2
3

4
5

6
7

8
9

10

−0.5
0

0.5

Figure 4.18: The body of an Helicopter similar to the Agusta A109 .

150



4.5– Future Improvements

4.5 Future Improvements

Surely the improved flexibility raises ASD value in terms of geometric modeling.

Improvements can still be made, for the C2 algorithm, in the following area:

• on the efficiency side, the algorithms should be revised to avoid matrices close

to singular for very large sets of interpolation points. In fact, as for FEM

methods, the matrix are stiff if considerable large problems are handled. It may

be considered to use penalty method approach instead of Lagrange multiplier

one. An idea may be also the use of wavelets, as described in [32].

• It should be checked if some constrains tend to be linearly dependent, at least

considering numerical roundoff;

• implementation of robust simultaneous both direction derivative constraints

capability;

Talking about the geometric engine in general terms, it feels the need of an

approximation fitting algorithm, in order to avoid bulges and waves especially at

intersections, where, due also to numerical errors of the intersection algorithms, they

most frequently arise. In this sense the flexibility of the fifth degree algorithm is

counter-productive, and all the limitations of the linear fairing functional come out.

151



4 – Surface Modeling in ASD

152



5
Structured Grid Generation Module

As shown in section 1.3, ASD features an internal powerful mesher, yet capable to

generate only unstructured grid. On the other side, PanAir, such as many other pro-

grams, requires a structured quadrilateral mesh as input geometry, thus an internal

structured grid generator should be implemented in order to have an unique inte-

grated environment. Moreover, due to Pan Air grid requirements, particular caution

should be reserved for network edges connected along common interface, as indicated

in section 6.2.3.

5.1 Introduction

The partial differential equations that govern physics are not usually amenable to

analytical solutions, except for very simple cases. Therefore, the domains of com-

putation are split into smaller subdomains (made up of geometric primitives like

hexahedra and tetrahedra in 3D and quadrilaterals and triangles in 2D) and the

governing equations are then discretized and solved inside each of these subdomains.

The subdomains are often called elements or cells, and the collection of all elements

or cells is called a mesh or grid.

The accuracy of numerical computations is influenced to a large extent by the

quality of the grid used, hence grid generation techniques should allow to control the

153



5 – Structured Grid Generation Module

grid structure an the distribution of grid points. At the same time, since grid genera-

tion is an intermediate stage between the geometric definition and the mathematical

solver, it should ideally be fast and automatic, requiring minimal user intervention.

Despite tremendous advances in grid generation in the last decades, it still repre-

sents one of the major bottleneck in terms of time and automation [33]. This holds

especially for complex three-dimensional configuration and CFD analysis, where the

requirements of deeply refined and smooth grid to avoid considerable numerical error

can be met with much more effort.

However, surface meshes are easier to generate, and at the same time panel meth-

ods are less sensitive than CFD to grid quality, this being especially true for higher

order panel method like PanAir. Moreover, the NURBS parametric description of

the surfaces is advantageous for accurate grid generation. All these aspects enable

to achieve an acceptable grid generation at almost interactive speed, this being of

primary importance in an optimization optic. It is cumbersome to build a structured

grid for complex geometric shapes, and the limitations of the structured grid topol-

ogy arise. It is then necessary, for a successful meshing, to split the surface in more

regions, and mesh every block. Fulfillment of requirements at the common interfaces

of this blocks represent a further trouble.

5.1.1 Grid Connectivity-Based Classification

The most basic form of mesh classification is based upon the connectivity of the

mesh: structured or unstructured.

Structured grid

A structured mesh is characterized by regular connectivity that can be expressed as

a two or three dimensional array. This restricts the element choices to quadrilaterals

in 2D or hexahedra in 3D. The regularity of the connectivity allows to conserve space

since neighborhood relationships are defined by the storage arrangement. Additional

classification can be made upon whether the mesh is conformal or not, that is, the

intersection between any two elements is a sub-element of both (a face, an edge, a

154



5.1– Introduction

node or nothing) and the maximal dimensional shared element must be only one and

complete. An example of a structured surface mesh is shown in fig.5.1(b).

(a) Unstructured surface grid (b) Structured surface grid

Figure 5.1: An example of two different class of surface grids.

Unstructured grid

An unstructured mesh is characterized by irregular connectivity that is not readily

expressed as a two or three dimensional array in computer memory. This allows for

any possible element that a solver might be able to use. Compared to structured

meshes, the storage requirements for an unstructured mesh can be substantially

larger since the neighborhood connectivity must be explicitly stored. An example of

a unstructured surface mesh is shown in fig.5.1(a).

5.1.2 An Overview of Structured Mesh Generation

Nurbs are a very powerful representation for grid generation. First of all, modern

CAD represent shapes with NURBS, thus it is an easy choice to import the surface

with the same description in the grid generator module. Further, with NURBS it is

155



5 – Structured Grid Generation Module

possible to maintain high level of accuracy, efficiency and numerical stability during

the grid generation.

The grid generation process starts either with the specification of the boundary

condition along the physical boundaries or with the distribution of grid points directly

on the parametric boundaries. A point inversion algorithm give immediately the

correspondence between physical boundaries points and parameter values. Then the

grid is generated in the parametric space using different methods, and finally it is

mapped back into physical space [34; 35]. This process is classified as algebraic

(a) Mesh in the physical
space

(b) Mesh in the parametric space

Figure 5.2: Correspondence between parametric and physical space mesh.

method; it is easy to implement, fast and efficient, but results may not be smooth,

the main reason being a bad parameterization. In fact, parameterization changes the

distribution of points, thus can affect the grid distribution, leading to highly skewed

meshes. It is worth a note that slope discontinuities in the boundary is propagating in

the inner region. The most successful smoothing schemes are based on elliptic system

of partial differential equations that relate the physical and computational variables.

This algorithms are time consuming, but capable of generating very smooth grids

[36; 35].

To overcome topological limitations of the structured grid when handling extreme-

ly complex shapes, a multi-block approach can be adopted. The main drawback of

156



5.2– The New Grid Generation Module

this approach is the large amount of time and effort required, since usually grid

points must coincide at the common interfaces of the blocks [37].

By moving (or even adding) grid points it is possible to improve accuracy of the

solution: grid adaptation is the technique to concentrate grid points in regions of

high gradients allowing accurate results without the use of an excessively fine grid

in the entire computational domain [38; 39].

5.2 The New Grid Generation Module

The new meshing module couples the ASD unstructured mesher with a new struc-

tured grid generator. After selection of the desired features to mesh, structured or

unstructured mesh generator can be launched from the main GUI (fig.5.3). Obvi-

ously the selected features should contain generated surface data. In the following

Figure 5.3: ASD main window

157



5 – Structured Grid Generation Module

sections description of the structured grid generator is provided. The capabilities of

the unstructured mesher have been already analyzed in section 1.3.

5.3 Requirements for the Structured Grid Gener-

ation

The grid generation capabilities are aimed to fulfil Pan Air input grid requirements,

dealing with ASD surface generation particularities.

5.3.1 ASD and the Mesh

ASD represents every surface feature with NURBS, being thus naturally oriented to

gridding. It is not possible, a part from simple configurations, to reduce complex

geometry description to a unique NURBS due the insight topological limits of tensor

product surfaces. Thus, a multi-block grid approach is needed. In practical terms,

every feature generated in ASD and selected for gridding represents a separate block,

and further, pierced fuselage and wing should be split in two or more simply connect-

ed region, each of this region representing a block. In fact, to obtain a proper mesh,

every pierced surface should be split in simply connected sub-regions, as depicted in

fig.5.4. The subdivision wouldn’t represent a problem from a pure grid generation

perspective, since every block is described with NURBS and thus easy to mesh; this

however holds if no constraints, such as point matching condition, are imposed at

the boundaries. But, even if each analysis program has different requirements for

the input network, the blocks have almost always some kind of constraints on the

grid points at the block boundary edges, even just for having a coherent geometric

description. In the next section it will be shown how for complete aircraft config-

urations the required geometric flexibility will affect the process of structured grid

generation, in term of price and grid quality control.

158



5.3– Requirements for the Structured Grid Generation

Figure 5.4: Structured mesh for a not simply connected surface: the network is split in two
sub networks representing simply connected regions. The common edge points are
marked in red.

5.3.2 Pan Air and the Mesh

Pan Air requirements in terms of mesh will be described in section 6.2.3. Briefly, the

network edges connected along a common interface, called abutment, should satisfy

particular conditions. In fact, the panel edge points should match along the common

edge, or should fall in the straight line between the other network points. Figure 5.5

clarify abutment rules. Final result is an interface without gaps between the panel

edges of the networks.

Pan Air has some internal geometric functions that look for connected networks

and move the point to fill the gaps. However, it would be better if the grid generation

Figure 5.5: Correct distribution of points at the common edge of two networks.

159



5 – Structured Grid Generation Module

process immediately takes care of this requirement. Relying on Pan Air internal

functions won’t be a smart strategy: just consider that these functions are not always

able to recognize the proper facing networks, due also to numerical errors in the

input geometry, and disasters could easily occur. A robust strategy will rely on ASD

features definition, which Pan Air couldn’t access, to detect the connected networks.

Once mesh on the common boundary are correctly defined, the grid generation could

proceed with the internal domain meshing.

Such a process leads to a generality loss since meshing of connected networks is

no longer independent each from the other. However, it should be stated that many

other powerful codes require the same, or at least similar, network specifications.

5.4 Logics and Mesh Organization

The grid generation procedure should reach a compromise between flexibility and

simplicity. Thus, a clever underlying logic should be adopted.

5.4.1 Subdivision in Logical Subsets

The first step is a subdivision of the configuration in logical subsets. This process

keeps to the following key points:

• a generic wing or wingbody feature, not yet owing other defined logical subsets,

is considered as a starting point;

• then starting from one side of the feature, the adjacent feature is added as

element of the subset and removed from the list of available features; exception

are tfillet features, which will be added later. If the feature has free boundaries,

or the next neighbor feature is a body, the process has to be interrupted, and if

not yet done, restarted from the opposite side of the starting feature; whatever

the situation, every feature added to a subset should be removed from the list

of available feature.

160



5.4– Logics and Mesh Organization

• Tfillet are then added to the subset containing the piercing wing, only if the

pierced wing is not a member of the same subset. This is needed to avoid

self-intersections inside a logical subset (fig.5.6).

Figure 5.6: Wing pierced from tfillet of the same logical subset.

The final picture shows one or more logical subsets, connected each other only

through a body or tfillet feature. An example of results of this process on a complex

configuration is depicted in fig. 5.7

Figure 5.7: Subdivision of a complex configuration in logical subsets. The color of the name of
the features identifies the different subsets elements.

161



5 – Structured Grid Generation Module

5.4.2 Meshing the Logical Subsets

Next step provides a mean of selecting the features that dictate the mesh. First of all,

a common nominal chordwise grid distribution is defined by the user. The choice is

between a uniform and cosinusoidal chordwise distribution. The cosinusoidal should

be the preferred one, since the magnitude of the gradients of flow properties are

especially preeminent at leading and trailing edges, thus a finer grid is necessary

there.

Next, for each logical subset a nominal chordwise number of panels is defined.

This could be done in two ways: defining the number of panels in regard to the

overall largest (in terms of chord) wing, or directly setting it for each subset. The

logics of the first choice aims to bound the coarsest (in chordwise direction) mesh

region to the prescribed level.

Also a common mean aspect-ratio for wing grid is defined. This parameter fixes

the spanwise grid distribution in such a way that, for every panel row, the mean

spanwise dimension is the product of the aspect ratio with the mean chordwise

dimension (in the parameter space). In fig.5.8 it is shown how these parameters

influence the grid of a logical subset composed of two wings and one wround features.

The way these grid parameters are carried throughout all the mesh is summarized

in the following.

• Inside every logical subset a hierarchy between wings is defined, starting from

pierced wings with larger to smaller surface plant, ending with not pierced

wings, again from larger to smaller.

• Starting from the dominant wing, the mesh is developed from the boundaries

to the inner surface. If the boundary vertices aren’t already fixed, then the

wished (cosinusoidal or uniform) chordwise distribution can be easily imposed,

and then, according to the aspect-ratio parameter, the same should be done for

the spanwise distribution. If for one boundary edges the vertices are already

fixed (induced from an adjacent dominant wing), then, on the opposite edge,

the wished chordwise vertex distribution should be built. Once defined the

162



5.4– Logics and Mesh Organization

Wing 1

Wround 1

Wing 2

(a) Uniform distribution

Wing 1

Wround 1

Wing 2

(b) Cosinusoidal distribution

Wing 1

Wround 1

Wing 2

(c) Cosinusoidal distribution and finer spanwise
distribution

Figure 5.8: Uniform and cosinusoidal chordwise distributions for a logical subset composed of
two wings and one wround feature.

boundary grid points, the mesh is naturally built by a linear combination of

the corresponding points on the boundaries.

• The grid generation on the remaining features of the subset is easily obtained

in the same way. In fact, bulk and wround features connect wings, thus the

grid at common edges with wings are imposed from the latter. Fillet and tfillet

features have the grid at the common edge with the wing imposed from the

latter, and the opposite edge free (due to the rules of definition of the subsets).

It should be pointed that the uniform or cosinusoidal distribution are easily obtained

in the parameter space, and due to the proper parameterization of the representing

NURBS, a reasonable consistent distribution in the real space is expected.

163



5 – Structured Grid Generation Module

(a) Complete configuration to mesh

(b) One logical subset and its component features.

Figure 5.9: Process of meshing the logical subset of the complete aircraft surface.

An elucidating example is shown in fig.5.9. Here, the largest is wing1, but dom-

inant is wing4, since it is the unique pierced wing of the subset. Thus, it is first

meshed according to the parameters selected (number of subdivisions in the chord-

wise and spanwise directions, chordwise distribution). Second in the hierarchy comes

wing1, which has a common edge with the dominant wing4. Thus, the grid point of

wing1 at the common edge are imposed. To do this, a point inversion algorithm is

necessary to evaluate the parameters corresponding to those points in the NURBS

describing wing1. Selecting independently the opposite edge mesh points, the grid is

finally generated with a linear interpolation. The process continues for all the wings,

following the hierarchy. Once meshed all the wings, the bulk1 common edges with

164



5.4– Logics and Mesh Organization

wing1 and wing2 are fixed, and the spanwise distribution of points is determined

with the intent of maintaining the same panel medium aspect ratio as that imposed

for the wings.

A note ends this process; common edges of different NURBS are not always

coincident along the interface. Referring to fig.5.10, the two wing surfaces are build

through interpolation of a set of data, usually coincident at the common edge. But,

due to the tensor product surface characteristics, the knot vector is obtained through

an average process of the section points distribution. Thus, if different airfoils are

used at tip and root of the same wing, it could happen that chordwise direction

knot vectors of wing A and wing B are different. As a results, it is possible that

the surface edges at interface doesn’t completely match, leaving some small gaps. In

such a situation, when trying to impose the points of wing A to wing B along the

common edge, the point inversion algorithm gives back parameter corresponding to

the closest points. Usually, these gaps are very small but, to avoid problems with the

PanAir internal functions, it is better to fix this issue moving the respective points

to be coincident.

Figure 5.10: Structured mesh for a not simply connected surface: the network is split in two
sub networks representing simply connected regions. The common edge points are
marked in red.

5.4.3 Connections between Logical Subset Grids

Even if the grid is well developed inside every logical subset, their interfaces should

still undergone some fixing process. As stated, the two possible scenario of subset

connections are through fillet-body or tfillet-wing features.

165



5 – Structured Grid Generation Module

With reference to fig.5.11, the intersection with tfillet and wing features is ad-

dressed in the following way:

- the grid points induced at the common edge from the tfillet and from the wing

grids are compared.

- If some points are closer than a specified tolerance, they are modified to

coincide.

- The not matching points belonging the tfillet grid are added to the wing grid,

and used to define new corresponding points on the opposite edge, with the

intent to add induced lines grid on the wing (in dashed red line). This new

points should be adjusted in order to let them be aligned with two adjacent

points of the wing3 grid.

Figure 5.11: Process of connecting two logical subset (characterized by blue and black grid
color) trough a tfillet-wing connection. The red dashed lines represent the mesh
lines induced from the tfillet.

The grid generation of body features is a little more cumbersome, since more fillet

features induce grid points on the boundary edges at the same time. The process

follows these steps:

- The body feature is subdivided in simply connected regions (as shown in

fig.5.12)

166



5.4– Logics and Mesh Organization

Figure 5.12: Subdivision in simply connected regions

- The natural mesh of the body feature is controlled through two main param-

eters. A first deviation from straightness parameter defines when to draw a

transversal line mesh. Starting from the origin, the top line curve segment is

compared with the length of the straight line connecting both ends. When the

difference is greater than the parameter, grid points on the opposite sides of the

surfaces are drawn, in order to define a line mesh. Such control helps to have

a mesh that reproduces the original shape of the body (fig.5.13). The other

(a) 3% deviation from straightness (b) 0.5% deviation from straightness.

Figure 5.13: Different body mesh obtained with two different values of deviation from
straightness parameter.

parameter is the manual frame specification, which allows the user to add one

or more line mesh at the desired location, specified by cartesian coordinate x.

- The fillet and body natural mesh points at the interfaces are compared. If they

are not to close, for each mesh point of the fillet is sketched a line mesh in the

body, as depicted in fig.5.14. Of course, at the interfaces the points should be

adjusted in order to follow the usual requirements of no gaps.

167



5 – Structured Grid Generation Module

Figure 5.14: Mesh lines (in red and blue) induced from the fillet grids in the body

- This process is not optimal since induced grid lines may fall close, and thus

aspect ratio of some panels could have values far from the unity: it is nec-

essary to control this grid quality parameter. This is done by adding further

horizontal or vertical mesh lines until the required maximum aspect ratio is

obtained. An example of grid obtained with different values of this parameter

is shown in fig.5.15. It is worth a note that it is not always possible to fulfil

this requirement, thus the number of iterations (lines added) must be limited

to a value. In fact, adding a line could help in some regions, an worsen in other

areas.

(a) Grid with maximum body panel aspect ratio
of 20

(b) Grid with maximum body panel aspect
ratio of 5.

Figure 5.15: Different body mesh obtained with two different values of the body panel maximum
aspect ratio parameter.

168



5.5– The Structure Grid Generation Interface

5.5 The Structure Grid Generation Interface

The main interface is depicted in fig.5.16

Figure 5.16: ASD main window

5.5.1 Wing and Body Feature Parameters

Mesh parameters are those described in the previous sections, both for wing and

body features. To aid the user to define the chordwise number of panels for each

logical subset, when selected, a view of the subsets is given.

169



5 – Structured Grid Generation Module

5.5.2 Mesh Generation

When the user has defined the wished parameters, mesh is ready to be generated.

The status bar gives information about the generation status. Ones generated, the

grid could be stored in the ASD feature fields, or could be written in an external file

according to LaWGS format ([40]). The mesh is also ready to be plotted or analyzed.

5.5.3 Mesh Analysis and Stats

Mesh analysis is an instrument to check quantitatively grid quality. The results

are given in the mesh stats panel, separately for body and not body features. The

statistics include the maximum, minimum and average value of the mesh geometric

parameters aspect ratio, skew, area. Also the number of panels is supplied within

the statistics. The statistics could or not account for wing plugger and body bases,

panels needed for closing wing and bodies edges respectively, in order to bound the

internal and external region.

5.5.4 Plotting Tools

The plotting panel gives the opportunity of a graphic visualization of the mesh quality

parameters. A filter is also applicable, in order to detect the critical area in terms of

grid quality.

The tools provide also the capacity of plotting the outgoing normal vector for each

panel, following the LaWGS definition ([40]). This is more a tool for developers, and

should be used to check that the grid is properly described.

5.5.5 Grid Storing

If grid are stored in ASD, on each feature the field structured mesh is added. This

field reports the grid coordinate in a three dimensional array and in the Pan Air

input format. Thus, when saving an ASD session, also the grid is saved. In such

situations, loading the structured grid module won’t delete the mesh, until the Clear

mesh from ASD button is triggered.

170



5.6– Examples of Structured Grid Generated

Figure 5.17: Grid Generation GUI: note the Mesh stats panel, reporting grid statistics

5.5.6 Pan Air Preprocessor Launcher

Once the mesh is saved, the Pan Air preprocessor could be launched from the menu.

5.6 Examples of Structured Grid Generated

In this section some examples of structured grid generated on conventional and

unconventional aircraft configurations are reported.

171



5 – Structured Grid Generation Module

0

1

2

3

4

5

6

7

0
1

2
3

4

−1

−0.5

0

0.5

1

 
Panel Aspect−Ratio Plot

 
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Aspect-ratio plot of a grid

(b) Panels with aspect-ratio smaller than 0.2

Figure 5.18: Plot of panels aspect-ratio. Note how this feature could be used to see the overall
mesh parameter, or to look for mesh panels satisfying a user defined filter.

5.7 Limitations and Future Improvements

The structured grid generator is very easy to use, and the mesh are created in a few

seconds. This is very important in an optimization optic. The main shortcomings

172



5.7– Limitations and Future Improvements

051015202530354045

0

10

20

−5

0

5

10

Panel Mesh Normals

Figure 5.19: Plot of the outgoing normal vectors of the panels.

Figure 5.20: Grid of a PrandtlPlane configuration.

are about the integration of the subset meshes. In fact, some regions present a very

enriched grid in order to avoid low mesh quality. An example is the aft region, where

fin and tail meshes induce a grid on the body. In this region may be not of interest

to have a so refined grid. It should be implemented another way to mesh this region

in a more efficient way. Is important to underline that many of this problems arise

173



5 – Structured Grid Generation Module

Figure 5.21: Grid of a PrandtlPlane configuration.

Figure 5.22: Grid of a conventional aircraft configuration.

from the topological limitation of quadrilateral structured grid.

174



5.7– Limitations and Future Improvements

Figure 5.23: Grid of a PrandtlPlane configuration

175



5 – Structured Grid Generation Module

176



6

Panel Method: Pan Air

Panel methods are numerical schemes which can be used for solving linear, inviscid,

irrotational flow at subsonic or supersonic free-stream Mach numbers, represented by

a linear partial differential equation (the Prandtl-Glauert equation). The differential

equation, through a standard mathematical process, could be expressed as an integral

equation over a boundary domain. This domain is then approximated with a set

of panels on which unknown singularity strengths are defined. Imposing boundary

conditions at a discrete set of points, such as panel centers, yields to a system of linear

equations relating the unknown singularity strengths. The equations are then solved

to obtain the singularity strengths, which, one known, provide complete information

about the flow.

177



6 – Panel Method: Pan Air

6.1 Panel Methods

6.1.1 The Prandtl-Glauert equation

Navier-Stokes equations

The basic equations describing the flow of a viscous compressible, heat-conducting

fluid are the Navier-Stokes equations1. These are [41; 42]:

(a) The continuity equation

∂ρ

∂t
+∇ · (ρV) =

∂ρ

∂t
+

3∑
i=1

∂ (ρVi)

∂xi

= 0 (6.1)

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
is the gradient operator with respect to the location

vector x = (x1, x2, x3). Be aware that hereinafter location vector may be also

expressed in the alternative notation x = (x, y, z) for practical purposes. In

addition t is time, ρ (x.t) is the density, and V (x.t) is the total velocity.

(b) The momentum equation

∂

∂t
(ρVj) +

3∑
i=1

∂

∂xi

(ρViVj) = − ∂p

∂xj

+
3∑

i=1

∂ τji

∂xi

+ ρfj j = 1,2,3 (6.2)

where τij is the deviatoric portion of the stress tensor which vanishes for a

frictionless fluid, f(x,t) is an external force per unit mass exerted on the fluid,

and p(x,t) is the pressure.

1To be rigorous, the term Navier Stokes equation refers strictly to the momentum equation,
being then generalized to indicate the whole set of equations

178



6.1– Panel Methods

(c) The energy equation

∂

∂t

(
ρ e +

1

2
ρ |V|2

)
+

3∑
i=1

∂

∂xi

[(
ρ e +

1

2
ρ |V|2

)
Vi

]
=

ρ

3∑
i=1

fiVi −
3∑

i=1

∂

∂xi

(p Vi) +
3∑

i,m=1

∂

∂xi

(
τim Vm + k

∂T

∂xi

)
(6.3)

where e(x,t) is the internal energy of the fluid, k is the heat conductivity

coefficient for the fluid, and T (x,t) is the temperature.

(d) The equation of state

f(ρ,p,T ) = 0 (6.4)

where the function f depends on the type of fluid; for a perfect gas, eq.(6.4)

can be written as

p = ρRT (6.5)

where R is the gas constant.

Euler’s equation

The Navier-Stokes equations can be simplified by neglecting the viscosity effects,

which is equivalent to setting the deviatoric stress tensor τij = 0. Combining the

momentum and continuity equations leads to

ρ
dVj

dt
= − ∂p

∂xj

+ ρfj (6.6)

where the usual convective derivative operator is defined,

d

dt
=

∂

∂t
+

∑
i

Vi
∂

∂xi

(6.7)

Eq.(6.6) is called Euler’s equation. The derivation of a full system of equations is

obtained as follows. By means of the continuity equation, the energy equation can

179



6 – Panel Method: Pan Air

be split in two parts [41], the first expressing the conservation of mechanical energy

ρ
d

dt

(
1

2
|V| 2

)
= −V · ∇p + ρV · f (6.8)

and the other the conservation of thermal energy

q =
1

ρ
∇ · (k∇T ) =

de

dt
+ p

d

dt

(
1

ρ

)
(6.9)

The steady non-linear potential flow

With further assumptions the Euler’s equation can be reduced to a single equa-

tion, decoupled from the momentum equation (which transforms into the Bernoulli

equation). First, assume an isoentropic flow so that no heat is added to the fluid

q = 0 (6.10)

Then, assuming irrotationality, or ∇×V = 0, implies the existence of a potential

function Φ(x,t) such that

∇Φ = V (6.11)

If a freestream potential Φ∞ whose gradient is the uniform velocity V∞ exist, it can

be written

φ = Φ− Φ∞ (6.12)

and

V = ∇Φ = ∇Φ∞ +∇φ = V∞ +∇φ (6.13)

The quantity φ is called the perturbation potential, and v = ∇φ is the perturbation

velocity. Assume now, without loss of generality, that the freestream is aligned in

the x direction. Thus, the velocity can be expressed as

x) U = U∞ + u

y) V = v

z) W = w

180



6.1– Panel Methods

where u, v, w are the perturbation velocity components. Finally, refer to the so

called small perturbation 2 assumption

|v| << a∞ (6.14)

everywhere, where a∞ is the freestream speed of sound.

Based on all the previous assumptions it can be obtained the unsteady potential

equation (refer to [41; 42] for details). With the further assumption of steady flow

all the time derivatives can be eliminated, obtaining [43] (denoting differentiation by

subscript)

(
1−M2

∞
)
φxx + φyy + φzz = M2

∞ [1
2
(γ − 1)

(
2u + |v|2) ∇2φ

+
(
2u + u2

)
φxx + v2 φyy + 2vw φyz + w2 φzz + 2(1 + u) (v φxy + w φxz)] (6.15)

where γ = Cp

Cv
is the ratio of the specific heats.

The Prandtl-Glauert equation

The linearization of equation (6.15) leads to the Prandtl-Glauert equation (see ap-

pendix A of [42]):

(1−M2
∞) φxx + φyy + φzz = 0 (6.16)

The linearization is well advised if:

M2
∞|v|2 << |1−M2

∞| (6.17)

and

M2
∞|v|2 << 1 (6.18)

2other small perturbation assumptions exist in the literature

181



6 – Panel Method: Pan Air

Like as eq.(6.14) also eq.(6.17) and eq.(6.18) are called small perturbation assump-

tions. The consequences of the above simplifications are discussed in section 6.1.3.

6.1.2 Panel Method Theory

This section will outline the process by which the Prandtl-Glauert equation is con-

verted to an integral equation, and the way in which a general panel method solves

that integral equation.

Coordinate scaling

Eq. (6.16) can be further simplified by performing a scaling of the coordinate system.

Defining the compressibility scale factor β by

a =
(1−M2

∞)

|1−M2∞|
β =

√
|(1−M2∞| (6.19)

the required scaled coordinate are given by





x̃ = x

ỹ = βy

z̃ = βz

(6.20)

Thus, the transformed Prandtl-Glauert equation is

a φx̃x̃ + φỹỹ + φz̃z = 0 (6.21)

where a = 1 for subsonic flows (Laplace’s elliptic equation) and a = −1 for supersonic

flows (hyperbolic equation). Both equations occurs also in other branches of physics.

Boundary conditions

The physical description of a real flow at a surface is given by the no-slip condition

V = 0 (6.22)

182



6.1– Panel Methods

However, for inviscid flow, the tangential component of the velocity cannot be pre-

scribed (unless the pressure is known) thus the above is replaced with the imperme-

ability boundary condition, representing the inability of fluid to pass through solid

surfaces

V · n = 0 (6.23)

or

∇φ · n = −V∞ · n (6.24)

There is also an alternative formulation of the above boundary condition; it can be

shown ([44]) that neglecting terms of the same order as those neglected in reducing

equation (6.15) to the Prandtl-Glauert equation, it holds:

ρV = ρ∞W ' ρ∞(∇̃φ + V∞) (6.25)

where W =
ρ

ρ∞
V is called the mass flux, ∇̃φ + V∞ is called the total linearized

mass flux, and ∇̃φ (also denoted as w) is called the linearized perturbation mass

flux. Thus the boundary condition becomes:

∇̃φ · n = −V∞ · n (6.26)

SW

n

V.n = 0

V

φu

φL

φ

n

SB

Figure 6.1: Body SB and wake SW surfaces.

Panel method may impose different boundary conditions with the aim of modeling

the particular physical problem. Wakes, separation area, like body bases, or flow

through surfaces, like fan faces, are also modeled. Note that, in the latter situation,

the surface where to impose the boundary conditions doesn’t represent a physical

surface.

183



6 – Panel Method: Pan Air

Integral formulation for non lifting body

Assume a fluid region denoted by V , internally bounded from the body surface SB,
and externally bounded from the surface SR, and remember that the fluid is not

viscous and initially irrotational. With the aid of the Green’s third identity and

the Gauss theorem, and moving the external contour surface SR to the infinity, the

Laplace equation admits the following integral representation [45; 46; 47]:

E(P)φ(P) = − 1

4π

∫

SB

(
n · ∇φ(Q)

R
− φ(Q) n · ∇ 1

R

)
dS (6.27)

where P and Q are points such that P ∈ V and Q ∈ SB, R = ‖P − Q‖ , n is the

unit normal to the surface, assumed positive if pointing toward the region V , and

E(P) =





1 if P ∈ V
1

2
if P ∈ SB

(6.28)

Once determined the values of ∇φ and φ on the boundary SB, the perturbation

potential can be evaluated for all the points inside V . Eq.(6.27) is the fundamental

integral representation formula which a panel method uses to obtain a solution to

the potential flow problem. When combined with appropriate boundary conditions

it can be manipulated to yield an integral equation on the singularity surface SB.
A panel method then obtains an approximate solution of this integral equation by

means of the numerical method of collocation.

Two function defined on SB are generally introduced because of their importance

in the manipulation of eq.(6.27). The first is the source strength defined by

σ(Q) = n · ∇φ(Q) (6.29)

and the second is the doublet strength, defined by

µ(Q) = φ(Q) (6.30)

184



6.1– Panel Methods

These quantities are called singularity strengths since they measure the singular

behavior of φ on SB; using these quantities eq.(6.27) for points in the inner region

(E = 1), becomes:

φ(P) = − 1

4π

∫

SB

[
σ

R
− µn · ∇ 1

R

]
dS (6.31)

The generalization to arbitrary Mach number is easily achieved, as follows. For

subsonic flows is enough to use the scaled coordinates to obtain a formally identical

solution, being immediately achieved the expression of the above equations in terms

of original coordinates. In fact, defined the compressible gradient operator as ∇̃ =

(a β2 ∂
∂x

, ∂
∂y

, ∂
∂z

), eq.(6.31) turns into

φ(P) = − 1

4π

∫

SB

[
σ

R
− µn · ∇̃ 1

R

]
dS (6.32)

where now every term is expressed in the original coordinate system, and where

R =
√

(xP − xQ)2 + aβ2(yP − yQ)2 + aβ2(zP − zQ)2

σ(Q) = n · ∇̃φ(Q)

For supersonic flows (M∞ > 1) the above equations should be adapted substitut-

ing 4π with 2π, and extending the integral to just the portion of SB that lies in the

upstream Mach cone emanating from the influenced point P (DP) [46; 47]

φ(P) = − 1

2π

∫

SB
⋂DP

[
σ

R
− µn · ∇̃ 1

R

]
dS (6.33)

Once φ is determined on SB, is possible to evaluate the pressure everywhere in

the field by means of Bernoulli equation.

Integral formulation for lifting body

Wake should be taken into account. There are a few aspects related with wakes.

First, if no wake would exist, the singularity surface (SB) is closed and bounded,

thus, for D’Alembert’s paradox [48; 49] the overall load on SB is null (this is true

185



6 – Panel Method: Pan Air

only for steady problems).

Another notice is about the pertinence of considering the flow irrotational in all

the volume V . In fact, the irrotationality condition holds true only in the inner

region of V , while for the material points which have been get in contact with the

body surface Kelvin’s theorem is not valid [48; 49]; the region made up by these fluid

particles is called potential wake, SW , and the potential is not defined on it. The

vorticity generated through the dynamic interaction between fluid and body surface

is thus convected through the trailing edge in the field, and forms the wake surface.

This vorticity, besides providing a more close modeling of the physics, the more

closer as well as Reynolds number increases [50], doesn’t contradict the hypothesis of

potential fluid: the vorticity can be confined to a layer with zero thickness considered

as part of the boundary.

The process of obtaining the integral formulation still holds if the inner boundary

is a surface surrounding the body and the wake, and approaching the union of them,

or briefly, SBW = SB + SW [48]. The boundary conditions to be applied on the wake

are

∆ (∇φ · n) = 0 (6.34)

and
d∆φ

dt
= 0 (6.35)

where ∆ stays for the difference between the absolute value of a generic quantity on

the two faces of SW , and d
dt

is the material derivative. Equation (6.35) states that

the jump of the potential function is constant following the wake material point.

The potential equation reduces to:

E(P)φ(P) = − 1

4π

∫

SB

(
n · ∇φ(Q)

R
− φ(Q)n · ∇ 1

R

)
dS−

1

4π

∫

SW

∆φ n · ∇ 1

R
dS (6.36)

and the normal surface vector on the wake is defined from side L to side U in

agreement with ∆φ = φU − φL.

The condition to impose at the trailing edge, where body (wing) and wake connect

186



6.1– Panel Methods

each other, is

(φU − φL)

∣∣∣∣
T.E.

= ∆φ

∣∣∣∣
W

(6.37)

where (φU − φL) in the first member is referred to the trailing edge of the body

surface. The physical motivation beyond the last mathematical condition relies on

the Joukowsky condition, which stated that no concentrated vortex exists at the

trailing edge. More details are reported in [48; 50; 49]

Discretization

The first part of discretization process consists of the development of a finite dimen-

sional representation of σ and µ. The singularity surface SB and SW are approximated

by a collection of N and M panels respectively. Next a collection of N points on

the body panels are chosen, such as panel centers, edges or corners3. The values of

σ and µ at these points are identified as unknowns and are called the singularity

parameters, and are χi, φi for the body panels, ∆φk for the wake panels. In Pan Air,

approximate distributions σ(Q) and µ(Q) are then developed applying a combina-

tion of linear least squares fitting techniques and polynomial interpolation processes

to extend the discrete values of the singularity parameters to all the points on the

surface. The following representation for σ and µ is then obtained:

σ(Q) =
N∑

i=1

χisi(Q) µ(Q) =
N∑

i=1

φimi(Q) (6.38)

for the body, and

µ(Q) =
M∑

k=1

∆φkmk(Q) (6.39)

for the wake, where the functions si and mi are called the source and doublet basis

functions. Next, using eq.(6.31) with the specified functional form of σ and µ, it is

3it should be pointed that the control points are close but not exactly lying on the panel edges
and corners, in order to avoid singular behaviors.

187



6 – Panel Method: Pan Air

possible to express the perturbation potential in terms of singularity parameters

E(P) φ(P) = − 1

4π

(
N∑

i=1

(
χi

∫

SB

(si

R

)
dS − φi

∫

SB
mi n · ∇ 1

R
dS

))
+

1

4π

(
M∑

k=1

(
∆φk

∫

SW
mk n · ∇ 1

R
dS

))
(6.40)

Finally,

• applying eqs.(6.35) and (6.37) in order to express the ∆φk in terms of the φi,

• recalling the source expression (eq.(6.29)),

• imposing the N linear boundary conditions, ∇φ · n = −V∞ · n on the points

of the body panels

yields a linear system of N unknowns in N equations. In matrix form:

[AIC]{φ} = {b} (6.41)

where [AIC] is called the matrix of aerodynamic influence coefficients, {φ} is the

vector of the unknown perturbation potential at the control points, and the elements

of {b} are known from boundary conditions. Solving the linear system makes it

possible to compute from the eq.(6.31) the potential and subsequently the velocity

field for each point of the region V .

6.1.3 Limits of Application of Panel Method

All the simplifications done to obtain the Prandtl-Glauert equation, restrict the field

of application, since the underlying equation is not longer able to model the main

aspects of the physical problem. Thus Prandtl-Glauert (eq.(6.16)) is not able to

model flows where viscous, heat and rotational behavior are not negligible. Finally,

all the small perturbation assumptions have restricted further the modeling capabil-

ity. Equations (6.17) and (6.18) should be carefully considered. Clearly transonic

188



6.2– Pan Air

flow (M∞ ' 1) and hypersonic flow (M∞ >> 1) are not consistent with the afore-

mentioned assumptions, thus Prandtl-Glauert equation can not described such flows.

But, another restriction is set from the magnitude of the perturbation quantity v:

for high angles of attack, or thick configuration, the perturbation velocity tend to be

large, and thus eq.(6.17),(6.18) hold for a narrow range of Mach number.

As known, flows around aerodynamic (at low angles of attack) bodies present

only a limited region where viscosity and rotational effects are not negligible. Thus,

for a correct modeling is necessary to assume that those regions have negligible

effects on the overall potential flow. Of course in region of separated flow, as the

aft fuselage region, results given from a panel method are not reliable; however,

this wouldn’t mean that the overall prediction, like configuration lift and induced

drag are not realistic. Another problem is related with wake positioning. In fact,

wakes are generally inserted in a roughly streamwise direction emanating from the

trailing edge of all lifting surfaces such as wings, fins, . . . . However, several major

exceptions exist. One is the case in which wake passes near other lifting surfaces (like

tail of the airplane): the wake influence on this surfaces is significant. Another is the

case of the leading edge vortex, a phenomenon that occurs at the leading edge of a

highly swept wing at large angles of attack. The wake tends to roll up, and its exact

location is important in determining the aerodynamic behavior of the configuration.

However, some panel codes are able to iteratively determine wake position and shape,

improving thus results of simulations at expense of computational time ([49]).

Other panel method codes are capable of resolving unsteady potential flows. The

flexibility of these codes can be successfully used to solve complex problems like

helicopter rotor flux ([49], [51]).

Finally, codes like Tran Air are capable of simulating transonic flows through

numerical resolution of the non-linear potential flow equation ([52]).

6.2 Pan Air

Pan Air (acronym of Panel Aerodynamics) is generally considered to be the first

actual surface panel code with reliable numerics, even for supersonic flows. Relative

189



6 – Panel Method: Pan Air

insensitivity and stability of computed results to paneling was a key for its success. In

addition, the boundary condition flexibility allowed users to experiment with various

types of modeling, leading to a wide variety of applications never entirely envisioned

by the developers. Thus, within the limitations of linear potential flow theory, it

could be used as an analytical wind tunnel for the analysis of completely arbitrary

configurations. The code was first developed in the early 1970s at NASA and Boeing

(were it was known as A502 code). Later, many featured were added. The code was

successfully used in the project of big transport airplanes (Boeing 737, 707, 747) and

military fighters. Sometimes it was used in conjunction with A598 (a Boeing code

for boundary layer analysis), even in fields like yacht design.

Today, A502 is still used to provide quick estimates for preliminary design studies.

A relative new feature takes advantage of available linear sensitivities to predict a

large number of perturbation to stability and control characteristics and stability

derivatives, including control surface sensitivities. A typical application may involve

many subcases submitted in a single run, with solutions available in an hour or so.

Within the limitations of the code, all major stability and control derivatives can

be generated in a single run (at a single Mach). The method is typically used to

calculate increments between similar configurations. As an example, the code was

recently used to calculate stability and control increments between a known baseline

and a new configuration. A total of 2400 of characteristics were computed for eight

configurations by one engineer in a two-day period.

6.2.1 Pan Air Capabilities

Pan Air can handle the simple configurations considered in preliminary design, and

at the same time serve as an analytical wind tunnel for the analysis of flow about

detailed, complex configurations. Capabilities of Pan Air version 3.0 (which is the

version integrated with the code subject of the thesis) include:

• the ability to handle, within limitations of linear potential flow theory, com-

pletely arbitrary configurations, using either exact or linearized boundary con-

ditions;

190



6.2– Pan Air

• the ability to handle asymmetric configurations as well as those with one or

two planes of symmetry;

• the ability to handle symmetric configurations in either symmetric or asym-

metric flow;

• the ability to superimpose an incremental velocity on the freestream, either

locally or globally, in order to simulate effects such as a rotational motion,

differing angles of attack for different portions of a configuration, or a propeller

slipstream;

• the ability to calculate pressures, forces and moments using a variety of pressure

formulas (such as isoentropic, linear . . . ), including the forces and moments due

to momentum flux through the surface;

• the ability to calculate leading edge and side edge thrust forces and moments

for thin configurations;

• the ability to perform non-iterative design of a configuration, a process in which

a desired pressure or tangential velocity distribution is specified. The program

then determines the residual normal flow through the surface required to obtain

the desired pressure distribution;

• the ability to calculate streamlines and to evaluate flow properties at user

specified off body points.

6.2.2 Pan Air Technology

Reliable supersonic analysis needs careful modeling, since numerical stability prob-

lems arises if doublet distribution is not continuous at panel interfaces. In fact, a

spurious line vortex of strength ∆µ is produced from doublet value jump at edges.

Thus a velocity field is introduced from discretization. In subsonic flow these spu-

rious velocities decay rapidly with distance from the edge and usually do not cause

serious problems. In supersonic flows these velocities persist, their effect propagating

down to Mach cones. Consequently, erroneous incremental flows continue to exist at

191



6 – Panel Method: Pan Air

control points, thereby introducing errors in the aerodynamic influence coefficients

matrix. These errors are frequently serious enough to produce a totally incorrect

solution for the flow. As a first requirement, panels should then meet exactly each

other at edges. Then, the doublet basis functions couldn’t obviously be piecewise

constant on each panel. Pan Air employs a linear source variation and quadratic dou-

blet variation. Detailed explanation of why piecewise linear for source and piecewise

quadratic for doublets is presented in [42].

For more details about Pan Air refer to [53],[42],[54],[55].

6.2.3 Pan Air Geometry Input

Network description should be in LaWGS format. For details refer to [40]. Briefly,

assume that a network is composed of N×M grid points, where N and M represent

respectively columns and rows. If an order is established for the columns (or rows)

description (from first to last or vice versa), then the order of description of the rows

(columns) should follow a right hand convention coherent with the outward pointing

normal to the surface, that is the order of representation defines which side of the

surface has to be considered external (and thus facing the flow). This is a key point

in order to set boundary condition consistently with the real flow. Worth a note

that, since the code accepts only structured grid, for each network the number of

elements for each rows and columns is constant; if more flexibility is needed for a

satisfying geometric reproduction, then the surface must be split in more networks.

Particular attention may be devoted to network edges connected along a common

interface. Such connection are called abutment. As stated, edges abutments ensures

continuity of the doublet strengths across network edges. The program requires that

abutting network edges must have exact panel edge points which match along the

network edge, or panel edge points which are on the straight line between the exact

points. Thus, the interfaces of two or more doublet network surfaces must match,

i.e. have no gaps between adjacent networks. To meet this requirements one or a

combination of the following may be ensured:

• Input geometry has exact matching of every panel edge point along abutting

network edges.

192



6.2– Pan Air

Figure 6.2: Abutment between network 1 and 2. Note the panels with matching and not match-
ing points at abutment. Note also the order of description of rows and columns,
consistent with a correct outward surface normal

• Input geometry nearly matches for every panel edge point along abutting net-

work edges, and the liberalized abutment capability (an internal function of

Pan Air) makes the abutment identical for points within a single tolerance.

Small adjustments are made to the network edge points to make them abut

without any gaps and to help them eliminate the small round-off error in the

input network geometry.

• Input geometry contains some mismatched points along abutting network edges.

These edges must be identified by the user for special treatment. The partial

(full) network edge abutment (another internal function of Pan Air) has the

capability to form a new common edge from matching points along a network.

All non matching points are projected onto the new network edge.

Note that the latter two situations modify the original input geometry along abutting

193



6 – Panel Method: Pan Air

network edges. Attention should be paid to set the tolerance values, since extraneous

abutment could be created by the internal Pan Air functions assisting abutments.

6.2.4 An overview of configurations analyzed with Pan Air

In the following section some application of Pan Air are reported. Fig. from 6.3 to

6.5 shows Pan Air application for big transport aircrafts. One of the first important

employ of Pan Air goes back at the precertification flight testing of the then new

737-300 [56]. The aircraft was not demonstrating the preflight wind tunnel based

prediction of take-off lift/drag ratio. A fix was needed quickly to meet certification

and delivery schedules. Specialized flight testing was undertaken to find the cause

and to fix the performance shortfall. A Pan Air study was immediately undertak-

en to enhance understanding and provide guidance to the flight program. Eighteen

complete configuration analysis were carried out over a period of three months (see

fig.6.4). These included different flap settings, wind tunnel and flight wing twist, flow

through and powered nacelle simulations, free air and wind tunnel walls, ground ef-

fect, seal and slotted flaps, and other geometric variations. These solutions explained

and clarified the limitations of previous low speed wind tunnel test techniques and

provided guidance in recovering the performance shortfall through tuning of the flap

settings during the flight testing. The aircraft was certified and delivered on schedule.

A comparison of the computation L/D predictions with flight is shown in fig.6.4(d).

A502 studies have been used to support other flight programs on a time critical

basis. In particular, the code was used to support engine-airframe installation studies

in the early 1980s, to evaluate wind tunnel tare and interference effects, and to

provide Mach blockage corrections for testing large models. In addition, the code

was used for the design of the wingtip pod for the Navy E6-A, a version of the Boeing

707. No wind tunnel testing was done before flight. The FAA has accepted A502

analysis for certification of certain aircraft features that were shown to have minimal

change from previous accepted standards. Finally, A502 was used to develop a skin

waviness criteria and measurement technique that led to the virtual elimination of

failed altimeter split testing during the first flight of every B747-400 aircraft coming

194



6.2– Pan Air

(a) Paneling of B747 like aircraft (b) Paneling of a subsonic aircraft

Figure 6.3: Paneling of two big transport aircrafts. Note the particular wakes arrangements for
both the configurations.

off the production line. Initially, one of every three aircraft was failing this test,

requiring several days down time to fix the problem. The A502-based procedure

could identify excessive skin waviness before first flight and led to manufacturing

improvements to eliminate the root cause of the problem.

One of the most impressive early uses of the precursor code of Pan Air occurs

in the initial design phase of the B747 Space Shuttle Carrier Aircraft. The purpose

of the initial design phase was to define the modifications needed to accomplish the

following missions: to ferry the Space Shuttle Orbiter; to air-launch the Orbiter; and

to ferry the external fuel tank. To keep the cost of the program to a minimum, CFD

was extensively used to investigate the Orbiter attitude during the ferry mission, the

Orbiter trajectory and attitude during the launch test, and the external tank location

and attitude during the ferry mission. At the conclusion of the design phase, the

final configurations selected were tested in the wind tunnel to verify predictions. A

typical example of a paneling scheme of the B747 with the Space Shuttle Orbiter

is depicted in fig. 6.5(a). In this example, the Orbiter incidence angle was 8◦ with

respect to the B747 reference plane. The predicted lift coefficient, CL , as a function

of wing angle of attack for this configuration is shown in fig. 6.5(c). The agreement

between the analyses and wind tunnel data shown is excellent.

195



6 – Panel Method: Pan Air

(a) Paneling of B737-300 flaps-15 configuration (b) Flaps:actual and computational
geometry, and wakes

(c) Drag breakdown at two flap settings (d) Aircraft lift-to-drag ratio

Figure 6.4: Pan Air study of the high-lift system of the Boeing 737-300.

However, one of the most important features at time of Pan Air, was the reliable

supersonic analysis (at least from a numerical point of view). Thus, many military

aircraft configurations were designed with Pan Air aid. In fig. 6.6 is depicted the

paneling scheme of a F15, a supersonic fighter.

As another example, in [57] development of an SR-71 aerospike rocket flight test

configuration were sustained with both Pan Air and Tran Air analyses, supported

with wind tunnel. In fig. 6.7 a pressure maps from Pan Air simulation is shown.

Pan Air use was not limited to aeronautic field. In fact, sailing both and yachts

196



6.2– Pan Air

(a) Paneling of B747 and Space Shuttle Orbiter (b) Paneling of Orbiter

(c) B747-Orbiter lift coefficient

Figure 6.5: Boeing 747 with Space Shuttle Orbiter.

were also planned with the aid of the code. A paneling of a sailing both is shown in

fig.6.8.

197



6 – Panel Method: Pan Air

Figure 6.6: Paneling of a F15 fighter.

Figure 6.7: Pan Air surface pressure maps at Mach 0.6 and 4◦ angle of attack for a SR-71
aircraft.

198



6.2– Pan Air

Figure 6.8: Sailing both paneling

199



6 – Panel Method: Pan Air

200



7
Pan Air Pre/Post Processor Module

In this chapter the PanAir preprocessor and postprocessor GUI module is briefly

presented. The preprocessor allows to easily set the flows properties and whatever

necessary to begin an aerodynamic simulation, and eventually to start it. After

Pan Air has completed the task, the results output file can be reviewed with a user

friendly postprocessor.

7.1 Pan Air Preprocessor

After a structured mesh has been associated with a configuration, it is possible, from

the structured grid generation module, to launch the PanAir input generator. The

preprocessor enables to set most of the parameters defining a flow simulation on the

input network. The main window is shown in fig. 7.1.

In the Title an modality run panel, the name to assess to the file is chosen, as

well as the run modality. PanAir is capable of three main modalities of execution:

datacheck, which validates inputs for a solution run, solution, which solves all the

step defining and inverting the AIC1 in order to calculate the solution, and restart,

to use when additional solution run or flow property evaluation are needed on the

same basic data, thus reusing the previous calculated and inverted AIC or the SIN

1Aerodynamic influence coefficients matrix

201



7 – Pan Air Pre/Post Processor Module

Figure 7.1: The Pan Air input generator GUI

(singularity strengths) matrix. All these options have more peculiarities, explained

in depth in [53; 54].

Flow symmetry conditions are assessed on the next panel. It is possible to submit

simulation considering symmetric and/or antisymmetric configurations respect both

planes XY and ZX. In such a situation, the input network could be only a part

of the whole. This approach represents a considerable savings over an analysis of

the complete configuration. Remember that flow should be symmetric, thus the yaw

202



7.1– Pan Air Preprocessor

Figure 7.2: Angle of attack α and yaw angle β.

angle and/or angle of attack are forced to consistent value when needed.

The next panel enables to define onset flow parameters. Just one Mach number

can be specified for each simulation, as well as one direction of compressibility, defined

by the angles α and β depicted in fig.7.2. This direction should be coincident with

the onset flow one, but if different solutions are required within the same run, a

mean value could be selected. However, usually 5◦ degree of deviation for subsonic,

2◦ for supersonic don’t produce significant errors. Up to four simultaneous number

of solutions are possible for every run, for each of the solution being definable the

free stream direction from the angle of attack and sideslip.

In the reference data box, the user can set:

- the full airplane reference area, used to normalize the forces and moments,

- the point with respect to which the moments are calculated,

- the reference length for the three components, used to normalize the moments.

The Forces/Moments summary panel allows one to compute the overall forces

and moments acting on a configuration, defined by the user, consisting of just some

between all the networks of the configuration. More details on this capability are

explained in [53].

In the Printout control panel (fig.7.3) it is possible to define some parameters

that determine program (PanAir) outputs concerned with the formulation of the

boundary value problem, the resulting surface flow properties, and the resulting

203



7 – Pan Air Pre/Post Processor Module

Figure 7.3: Advanced printout control.

surface forces and moments. The default printout is usually enough, since many of

the advanced option are for diagnostic and development purposes, and not much of

interest for the usual analysis. Again, refer to [53; 54] for a detailed explanation.

The boundary layer and velocity correction options are handled in the following

panel. Both of them improve the flow property for flow slower than the onset flow

(where, with reference to the small perturbation approximation of 6.1.1, the u mag-

nitude is not longer less than the U∞, and the perturbations are not longer small).

The biggest corrections are made near the stagnation point. The correction changes

the surface velocity, and thus pressures and Mach number. These modified values

replace the uncorrected ones in the printout, however, the program uses uncorrected

velocity to calculate all forces and moments. The boundary layer correction formula

is used with boundary layer analysis; the results from the correction are stored on an

output file, available for a boundary layer analysis with the A598 code. The velocity

correction are instead used for inlet flows.

The Abutment Control panels allows to set the basic or advanced parameter

which control the behavior of the Pan Air internal functions employed to maintain

204



7.1– Pan Air Preprocessor

the continuity of doublet across network edges (more is written in section 6.2.3).

Briefly, in the basic control modality the tolerances for the PEA (forced partial or

full edge abutment) and EAT (liberalized abutments) functions are set, thus two

points closer than the specified given tolerances are considered to be coincident for

the given function. For a deeper control, the advanced modality is available.

Figure 7.4: Advanced abutment control.

The PEA panel enables to control how to move points which doesn’t satisfy the

requirements, and how to write the modifications in the printout. The EAT panel

features similar capabilities, both in moving the points that in the printout control.

More about abutment handling can be found in [53; 54]. It should be stressed that

abutment control process is of primarily importance, leading a not correct definition

to unreliable results. Even if the structured grid generation module is built in such a

way to automatically move the abutting edge points to fulfill PanAir requirements,

the user is warmly suggested to checkout the abutment printout in the output file in

order to avoid unreliable results.

205



7 – Pan Air Pre/Post Processor Module

Figure 7.5: PEA processing for simple abutment of two network edges (from [53]).

Figure 7.6: The wake generator GUI.

206



7.1– Pan Air Preprocessor

The wake generator GUI (fig.7.6) provide a mean to define and place the wakes.

The interface enables to select each network (the selected is represented in red), to

choose an edge of the network (represented in blue), and to place a wake starting from

this edge downstream, as depicted in fig.7.7. At now, the placed wakes are parallel

Figure 7.7: Placing a wake behind a wing in the wing generator GUI

to the XY plane. If the wake satisfies user requirements it can be stored. Note that,

the wake generator distinguishes automatically between the different kind of wakes.

For example, on a wake shedding from a bodybase, different boundary conditions

are imposed than on a wake shedding from a sharp trailing edge (a wing). However,

for further flexibility, the user should manually edit the .inp file. The connection

wakes are needed to avoid zero doublet strength, and thus lift dropping to a null

value, at the unabutted edges. This is the situation of root section of the wing. If

the doublet strength is zero there, then, due to Kutta condition, it is zero at the

trailing edge and the wing strip has null lift. Of course this is not acceptable, since

the lift distribution doesn’t fall to zero in the fuselage section. Thus, a wake with

constant doublet strength is placed between this inner region of the wake and the

207



7 – Pan Air Pre/Post Processor Module

Figure 7.8: The connection wake between wing wake and fuselage.

fuselage. This procedure requires great knowledge of the physical problem, and is

discussed in [42; 54]. If more flexibility is needed, it is possible to input the wake

networks by a .dat file. This capability are still under development.

As last option, with the aid of the flow field properties panel, the user can define

points and grid of points where flow properties are evaluated, and trace streamlines.

The flow properties can be computed from all the surfaces or from a selected group

of surface networks. The point locations can be entered directly, or as a network,

defining the origin, three points defining thus the three directions, the distances and

the number of points for each direction. Figure 7.10 clarifies the process. For the

determination of streamlines, the starting points should be first defined, followed by

the step size for spatial integration. The maximum allowed travel (stopping criteria)

stops the integration when one of the three component reaches the specified value.

Many other parameters can be set; for more details refer to [53]. However, in the

Array streams panel, it is possible to set an array of starting points by setting the

208



7.1– Pan Air Preprocessor

Figure 7.9: The flow field properties GUI.

Figure 7.10: Definition of a grid of points where to evaluate flow properties.

two edge lengths and the number of points for each edge. This will speed up the

process of defining streamlines.

At the moment, the preprocessor is not able to control all the PanAir capabilities.

Important features like the sectional properties, where sectional forces, moments

209



7 – Pan Air Pre/Post Processor Module

and pressures are calculated along a specific plane, are not yet implemented in the

preprocessor.

7.2 Pan Air Postprocessor

There are two ways to launch the postprocessor. The first is to click the pushbutton

in the PanAir input generator window, the other is to use the menu in the ASD main

window. In the first modality, the postprocessor will display results of the simulation

run on the configuration displayed in the preprocessor, whereas in the latter modality

the user should specify which PanAir output file is the one to analyze. Remember

that results of PanAir runs are stored in these .out files. The file selection takes place

through the Load .out file pushbutton, in the postprocessor main window. When the

Figure 7.11: Main PostProcessor GUI with shown statistics and results.

file is selected, a window with the configuration networks is automatically plotted

210



7.2– Pan Air Postprocessor

(fig.7.12). In this same window it is possible to plot, for the solution submitted and

one at the time, the flow or singularity characteristics for points on the surface. The

values of the solution are shown by means of coloration of the surface, and a color

bar gives the relation between colors and solution values. Both the selected flow

characteristic and the onset flow angles (angle of attack and yaw angle) are recalled

directly in the window. To change between solutions and flow characteristics it

0
1

2
3

4
5

6
7

0

1

2

3

4

−0.5

0

0.5

1

1.5

 
  α = 0°     β = 0°

Mesh

 

Figure 7.12: Configuration mesh.

suffices to push the proper buttons on the main postprocessor GUI. An example of

results for pressure coefficient and local mach number is depicted in fig.7.13.

Summary of the most important onset flow conditions are reported, for each so-

lution run. For the selected solution, down in the reference data panel, the reference

point location, lengths and surface are shown, whereas in the result summary pan-

el the most significant simulation results on the whole configuration and the total

paneled area value are reported .

It may be useful to have a visualization of the forces compared to the angle of

attack; pushing the proper button displays such a graph for the lift (CL), induced

drag (CDi), and moment (CMy, moment in respect of axis y) coefficients, as depicted

in fig.7.14.

211



7 – Pan Air Pre/Post Processor Module

(a) Cp α = 0◦ (b) Mach α = 0◦

(c) Cp α = 10◦ (d) Mach α = 10◦

Figure 7.13: Coefficient pressure (Cp) and local mach number for two different solutions, one at
angle of attack of 0◦, the other at 10◦.

The postprocessor enables also the visualization of the streamlines. In the proper

listbox, all the streamlines defined at the preprocessing stage are listed. It is possible

then to select more of the elements of the list and plot them. Of course the displayed

streamlines refer to the selected solution. An example of streamline visualization is

depicted in fig.7.15

212



7.2– Pan Air Postprocessor

−5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α Angle of attack

 

 

C
L

C
Di

C
M

Figure 7.14: Plot of CL, CDi, CMy versus α.

Figure 7.15: Streamlines.

Another useful tool implemented in the postprocessor is the ability to plot the

two dimensional lift coefficient along the y direction for every selected network. In

213



7 – Pan Air Pre/Post Processor Module

the sectional forces panel just select the networks of interest, and add them to the

listbox. Then, selecting the plot option, the lift coefficient versus the y-direction

coordinate is plotted. An example is shown in fig.7.16 for the ULM PrandtlPlane

configuration Tandem of fig.7.12. The wings and the bulk have been selected, and

the plot shows the different behavior of upper and lower wings.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 y 

 C
l (

y)
 

Figure 7.16: Cl − y for the wings and bulk of the Tandem configuration at α = 10◦.

At the moment some other features are implemented but not yet completely

working. For example, the visualization of the pressure coefficient along the airfoil

is an important tool to work with. An example of results obtained with this tool are

presented in the next section.

To close the section also some graphics obtained from a traditional configuration

analysis are shown.

214



7.2– Pan Air Postprocessor

0

10

20

30

40
0

5
10

15
20

25

−2
0
2
4
6
8

 
  α = 0°     β = 0°

Cp

 −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 7.17: Pressure coefficient over a traditional configuration aircraft (A310 like) for zero
angle of attack.

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

 y 

 C
l (

y)
 

Figure 7.18: Cl − y for the main wing and winglet (blue), tail (red) at α = 10◦.

215



7 – Pan Air Pre/Post Processor Module

0
20

40

−20−1001020

−2
0
2
4
6
8

  α = 5°     β = 0°

Figure 7.19: Streamlines at α = 5◦.

216



7.3– A simple testcase

7.3 A simple testcase

As a simple testcase, comparison between experimental results reported in [58] and

results obtained with PanAir is carried out. In the aforementioned report, experi-

mental results for a wing are given. The wing geometry is depicted in fig.7.20. The

airfoil are the NACA 65-210 with 10% thickness. The wing presents a 2◦ washout

at the tip, with a linear spanwise distribution. The Mach number is 0.17. The first

Figure 7.20: Wing tested in the report [58].

modeling step is fast achieved with ASD. The wing is depicted in fig.7.21. Very

Figure 7.21: Geometrical definition of the wing with ASD.

217



7 – Pan Air Pre/Post Processor Module

fast and efficient is also the process of grid generation. A quite fine grid has been

generated, as shown in fig.7.22. And finally, with aid of the preprocessor, input con-

Figure 7.22: The meshed wing obtained with the structured grid generation module.

figuration file has been created for PanAir, and simulation has run. Once Pan Air

has completed his task, through the postprocessor, the results have been immediate-

ly compared with the paper’s data. The lift coefficient versus wingspan shows a very

good agreement with the experimental results, even at configuration of max CL for

the wing. The value of CL is also predicted in a very accurate way.

As an additional mean to check Pan Air simulation results, a plotting of the

pressure coefficient along the chord at different spanwise sections is displayed, as

shown in fig.7.24.

As a final validation problem, grid sensitivity and converge of the solution are

investigated. For α = 2◦ the sensitivity of the solution from the grid is depicted

in fig.7.25. It easy to ascertain that the solution reliance on both chordwise and

spanwise grid refinement is limited to satisfactory results; in detail, the solution vary

of a 0.2% value when the grid is three times finer on both directions.

218



7.3– A simple testcase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2y/b 

 C
l (

y)
 

(a) Results obtained with PanAir

(b) Experimental results [58]

Figure 7.23: Comparison between numerical and experimental results, for M = 0.17 and α =
12.5. In spite of the CL max configuration, the agreement is very good.

219



7 – Pan Air Pre/Post Processor Module

0 0.5 1

−1

0

1

y = 1.1787

C
p

0 0.5 1

−1

0

1

y = 8.2841

C
p

0 0.5 1

−1

0

1

y = 15.3895

C
p

0 0.5 1

−1

0

1

y = 22.4949

C
p

0 0.5 1

−1

0

1

y = 29.6003

C
p

0 0.5 1

−1

0

1

y = 36.7057

C
p

0 0.5 1

−1

0

1

y = 43.8112

C
p

0 0.5 1

−1

0

1

y = 50.9166

C
p

0 0.5 1

−1

0

1

y = 58.0221

C
p

0 0.5 1

−1

0

1

y = 65.1275

C
p

0 0.5 1

−1

0

1

y = 72.233

C
p

0 0.5 1

−1

0

1

y = 79.3385

C
p

0 0.5 1

−1

0

1

y = 84.0755

C
p

0 0.5 1

−1

0

1

y = 86.444

C
p

0 0.5 1

−1

0

1

y = 88.8125

C
p

Figure 7.24: Pressure coefficient (in red) versus chord at different spanwise sections, for α = 7◦.
The airfoil sections are drawn in black.

220



7.3– A simple testcase

5
10

15
20

25
30

0

10

20

30

40
0.3058

0.306

0.3062

0.3064

0.3066

0.3068

0.307

#pan.TRS(lin)#pan.LON(cos)

C
L   

α 
=

  2

Figure 7.25: Grid sensitivity. The grid is refined in both chordwise and spanwise directions.
Chordwise the grid has a cosinusoidal distribution, spanwise the distribution is
linear.

221



7 – Pan Air Pre/Post Processor Module

222



8
Conclusions

This code was developed with the main objective to help in the preliminary design

of PrandtlPlane configurations. The preliminary aerodynamic properties estimation

represent the basis from where to start further investigations and modifications. The

main problems to deal with are the aerodynamic optimization, in order to increase

as much as possible the efficiency, stability and trim, where the aerodynamic deriva-

tives should be estimated to check if the examined configuration is stable and to set

the trim conditions, and dynamics, which studies the aircraft behavior in response of

flight commands. The PrandtlPlane innovative configuration carries some peculiar-

ities which lead to unpredictable behavior if relying only to classical results. As an

example, small modifications to the wings can change the stability to a great extent.

During the research activity on PrandtlPlane the persistent lack of:

- a tool where geometric definition and modifications can be easily submitted;

- a tool which enables a fast grid generation, avoiding the bothersome and time

consuming process of exporting the geometry, importing it in the meshing pro-

gram, generating the grid and make it be compatible with the format required

from the solver program;

- a tool where the aerodynamic flow characteristics are simply set, and run

solutions are immediately displayed, avoiding thus long network import and

223



8 – Conclusions

standardization processes, and cumbersome flow characteristics definitions and

results visualization (for solver without pre and postprocessing).

- a tool which enables the exportation of configuration geometry and grid to the

international most recognized standards.

made feel the strong need of a code which settles the above flaws. The geomet-

ric flexibility needed for the geometric design of the unconventional configurations

guarantees that also conventional configuration can be sketched and analyzed.

Results at each stage are depicted in the corresponding chapters. However, it

should be stressed that the overall process, consisting in a new geometric shape

definition, grid generation and PanAir analysis, is usually completed in not more

than tens of minutes.

The flexibility of the geometric engine, the NURBS lean to grid generation, the

fast, easy and user friendly GUI, have appealed the interest of some universities and

consulting societies.

The future improvements run in different ways.

Future geometric improvements

First, a more robust and faster geometric shape generation algorithm should be

implemented, especially for high quality surfaces. This task must deal with the

numerical implementation in order to avoid close to singular matrices that could be

generated when interpolating a big amount of points. A pre conditioner or the use

of variational multiresolution curves and surfaces wavelets may be an optimal choice

[32].

Always on the geometrical side, both direction derivative constraints should be

implemented for the C2 interpolating algorithm.

Further, it feels the needs for a smoothing routine or an approximation algorithm,

in order to avoid unwanted bulging of the surfaces due to numerical errors introduced

mainly from the intersection algorithms.

224



Future grid generation improvements

Surely one of the first needs is the generalization of the structured grid generator to

flapped configurations.

The structured grid generation undergoes smoothness and efficiency limitations,

in particular in the body regions intersected from wings. Here, to fulfill both PanAir

network requirements and mesh quality restrictions, a finer grid is usually built

leading to inefficient increased total number of panels. The logics should be revised,

and a more advanced grid technique should be adopted. At the same time, an

elliptical grid generation or smoothing technique may be a solution if the grid is

built for more severe solvers.

Future pre-postprocessor improvements

The preprocessor needs basically a more advanced wake interface. In fact, when the

shape is known from experience or other means, it would be useful to draw the wake

in an interactive environment providing thus more flexibility. The postprocessor

needs also a sectional force and moments GUI.

Future aerodynamic solver improvements

Current trends seem to prefer low order panel method than higher order like Pan

Air. Beyond this trend, a non stationary panel method would surely extend the

field of application of the aerodynamic analysis. Integration of codes like TranAir,

capable of Transonic analysis, and the Boeing code A598, which features a viscous

panel analysis, would be easy since they requires input similar to PanAir, thus little

work has to be done to integrate them in the platform. It should however kept in

mind that more accurate analysis cost more, thus at a preliminary design stage they

may be not convenient.

Addition of other modules

To improve platform capabilities, a flight mechanics module could be added. In

this section, the results from the aerodynamic analysis would be used to evaluate

225



8 – Conclusions

stability, and trim.

Surely, interfacing the code with a simple or an advanced external optimizer, like

modeFrontier, would really improve the value of the present code. Future efforts

should be addressed in this way.

226



List of figures

1.1 The ASD main window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The body feature window. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Parameters involved in the definition of the body feature . . . . . . . . . . . . 9

1.4 Preview of the skeleton and resulting interpolated surface for a body feature. . . 9

1.5 The wing feature window. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Wing components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 The Airfoil Viewer window . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 The Preview wing feature . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 The Add/Modify Mobile Surface window . . . . . . . . . . . . . . . . . . . 14

1.10 Mobile surface deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.11 The bulk feature window . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.12 A bulk example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.13 The bulk control parameters . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.14 The Preview Bulk figure . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.15 The wingbody feature window . . . . . . . . . . . . . . . . . . . . . . . . 17

1.16 WingBody creation, type 1 (a) and (b), type 2 (c) and (d). . . . . . . . . . . . 19

1.17 WingBody creation, type 3 (a) and (b), type 2 on leading edge and type 3 on

trailing edge (c) and (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.18 The inlet/outlet feature window . . . . . . . . . . . . . . . . . . . . . . . . 21

1.19 The inlet/outlet skeleton and center line . . . . . . . . . . . . . . . . . . . . 21

1.20 Effect of the interpolated sections in the geometry of the Inlet/Outlet. . . . . . 22

227



LIST OF FIGURES

1.21 Inlet/Outlet Section Scale Factors. . . . . . . . . . . . . . . . . . . . . . . 23

1.22 The inlet/outlet preview . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.23 The fillet feature window . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.24 Smooth fillet derivatives on wing and body . . . . . . . . . . . . . . . . . . 25

1.25 Creation of fillet with Basic controls . . . . . . . . . . . . . . . . . . . . . . 26

1.26 Creation of fillet with Advanced controls . . . . . . . . . . . . . . . . . . . 26

1.27 Example of smooth and linear fillet on the same configuration. . . . . . . . . . 27

1.28 The Tfillet feature window . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.29 Smooth fillet derivatives on wing TFillet . . . . . . . . . . . . . . . . . . . 28

1.30 Auxiliary airfoil definition and surface intersection . . . . . . . . . . . . . . . 29

1.31 Smooth TFillet on T-tail configuration . . . . . . . . . . . . . . . . . . . . 29

1.32 The Wround feature window . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.33 The wround feature window . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.34 The Surface Viewer window . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.35 Surface Viewing: Render . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.36 Surface Viewing: Render Shaded . . . . . . . . . . . . . . . . . . . . . . . 32

1.37 Surface Viewing: Three-Plane View . . . . . . . . . . . . . . . . . . . . . . 33

1.38 ASD Surface MESHER, the interface window . . . . . . . . . . . . . . . . . 34

1.39 Mesh parameters: max chord distance . . . . . . . . . . . . . . . . . . . . . 34

1.40 Mesh parameters: collapse ratio . . . . . . . . . . . . . . . . . . . . . . . . 35

1.41 Non conform mesh and conform mesh . . . . . . . . . . . . . . . . . . . . . 36

1.42 Tri-mesh operation: closure of a mesh. . . . . . . . . . . . . . . . . . . . . 37

1.43 Feature operations: full Delaunay flip. . . . . . . . . . . . . . . . . . . . . . 38

1.44 Airfoil Manager GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.45 NACA Airfoil Generator GUI . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.46 Section Sketcher GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.47 Flap Sketcher GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.48 Flap Sketcher: C type line . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.49 Flap Sketcher: S type line . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.50 Flap Sketcher: O type line . . . . . . . . . . . . . . . . . . . . . . . . . . 44

228



LIST OF FIGURES

1.51 A surface generated with ASD and imported with CATIA. Note the patch subdi-

vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.52 A surface generated with ASD and imported with CATIA. Note the patch subdi-

vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.53 Main decomposition of ASD code . . . . . . . . . . . . . . . . . . . . . . . 48

1.54 Decomposition of the ASD geometrical engine . . . . . . . . . . . . . . . . . 49

1.55 Decomposition of ASD mesher . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Two examples of cubic Bézier curves. . . . . . . . . . . . . . . . . . . . . . 58

2.2 The Bernstein polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 The recursive definition of the Bernstein polynomial, B1,3 . . . . . . . . . . . 60

2.4 Evaluation of a point at u = 1
3 with repeated linear interpolation, i.e. deCasteljau

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Derivatives: (a) the derivatives of the cubic Bernstein polynomials; (b) the deriva-

tive B′
2,3 in terms of B1,2 and B2,2 . . . . . . . . . . . . . . . . . . . . . . 61

2.6 A tensor product surface showing isoparametric curves (from [8]) . . . . . . . . 63

2.7 The Bézier tensor product basis function B0, 2(u)B1, 3(v) (from [8]) . . . . . . . 64

2.8 Bézier surface: note that the Qj (eq.(2.13)) don’t lie on the surface. . . . . . . 65

2.9 A piecewise cubic polynomial curve with three segments represented in Bézier form 67

2.10 Non zero basis functions for different degrees and knot vectors . . . . . . . . . 69

2.11 The recursive definition of B-spline basis: Ni,3 obtained as linear interpolation of

Ni,2 and Ni+1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.12 Dependencies between the basis functions . . . . . . . . . . . . . . . . . . . 70

2.13 Cubic basis functions and corresponding derivatives . . . . . . . . . . . . . . 72

2.14 The recursive definition of B-spline derivatives: N ′
i,3 as combination of Ni,2 and

Ni+1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.15 B-spline basis functions on a knot vector with a knot of multiplicity 2 . . . . . . 74

2.16 Cubic basis function over the knot vector U = {0,0,0,0, 14 , 12 , 34 ,1,1,1,1}, and associ-

ated cubic curve with control points Pi. . . . . . . . . . . . . . . . . . . . . 75

2.17 Fifth degree basis function over the knot vector U = {0,0,0,0,0,0, 17 , 27 , 37 , 47 , 57
6
7 ,1,1,1,1,1,1},

and associated fifth degree B-spline curve with control points Pi. . . . . . . . . 76

229



LIST OF FIGURES

2.18 Cubic curve on U = {0,0,0,0, 14 , 12 , 34 ,1,1,1,1}. Moving Pi changes the curve in the

interval [ui,ui+p+1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.19 Quadratic curve on U = {0,0,0, 16 , 13 , 7
12 , 7

12 , 56 ,1,1,1}. Notice the cusp at u = u5 = u6 78

2.20 Cubic curve on U = {0,0,0, 16 , 13 , 7
12 , 7

12 , 56 ,1,1,1}. Even if the knot u5 has multiplicity

two, there aren’t any cusps at u = u5 = u6 . . . . . . . . . . . . . . . . . . . 78

2.21 Cubic curve on U = {0,0,0,0, 1
4 , 3

4 , 3
4 ,1,1,1,1}. First derivative is a quadratic B-

spline on knot vector U = {0,0,0, 1
4 , 3

4 , 34 ,1,1,1} with control points Qi defined as

in eq.(2.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.22 A cubic curve on U = {0,0,0,01
4 , 34 , 34 ,1,1,1,1} and his first and second derivatives

at endpoints, and at u = 0.4 (the first derivatives are scaled of a ten factor, the

second of a twenty factor). . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.23 Cubic x quadratic basis functions. U = {0,0,0,0, 1
4 , 1

2 , 3
4 ,1,1,1,1}, V = {0,0,0, 1

4 , 1
2 , 3

4 ,1,1,1} 83

2.24 A B-spline surface and its control net (in red). Note the isoparametric curves on

the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.25 Effect of weight modification (w4) on a NURBS curve. . . . . . . . . . . . . . 89

2.26 A geometric construction of a rational B-spline curve. . . . . . . . . . . . . . 90

2.27 Knot insertion into a cubic curve defined over the knot vector U = {0,0,0,0,1,2,3,4,5,5,5,5}
(drawn from [8]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.28 Knot removal from a cubic curve with triple knot (from [8]). . . . . . . . . . . 95

2.29 Degree elevation on a third degree B-spline curve, U = {0,0,0,0,1,2,3,4,4,4,4}. The

new control polygon is the one in red. . . . . . . . . . . . . . . . . . . . . . 96

3.1 Difference between interpolation and approximation (from [8]). . . . . . . . . . 98

3.2 Global interpolation with three collinear points . . . . . . . . . . . . . . . . 100

3.3 Curve interpolation, and curve interpolation with derivative specified. . . . . . . 101

3.4 Surface interpolations through subsequent curve interpolations. . . . . . . . . . 103

3.5 Local interpolation: curve segments endpoints are coincident with the data points

Q (in red). The internal control points of every curve segment should somehow

be computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6 The process of surface skinning [8]. . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Various parameterizations with uniform knot vector. x indicates the parameter

values, + the knot values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

230



LIST OF FIGURES

3.8 The effect of choosing knot values similar to parameter values. . . . . . . . . . 110

3.9 Two curve segments joining with derivative of same direction but different magnitude.111

3.10 Relation between derivative vectors for geometric continuity. . . . . . . . . . . 112

3.11 Frenet frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.12 Two surfaces joining at the common edge, and their first partial derivatives. . . . 115

3.13 Differences in light reflection between G1 and G2 surfaces. . . . . . . . . . . . 117

4.1 Piecewise Bézier curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Setting local tangent with Akima’s method . . . . . . . . . . . . . . . . . . 129

4.3 Straight line segment with three collinear points . . . . . . . . . . . . . . . . 129

4.4 Close curve with G1 continuity . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Supercritical airfoil NASASC2 interpolated with ASD algorithm. . . . . . . . . 131

4.6 New algorithm behavior with three collinear points, for both fifth degree B-spline

with fairing over second or third order derivative. . . . . . . . . . . . . . . . 138

4.7 New algorithm behavior with three collinear points, for both fifth degree B-spline

with fairing over second or third order derivative, and the same tangent vectors

of the old local algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 New algorithm behavior with 5 points with smooth flag. The third order derivative

fairing based curve matches nearly exactly the circumference. . . . . . . . . . . 139

4.9 Airfoil interpolation with the new and old algorithms. Note that, if the points

to interpolate are many and properly distributed, the two interpolant curves are

nearly matching each other. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Behavior of the algorithm with and without the alignment flag option activated.

Note how the interpolating algorithm is capable of detecting and drawing flat patches142

4.11 Behavior of the algorithm with and without the corner flag option activated. Note

how the interpolating algorithm is capable of closing with smoothness a closed

surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.12 Wing with quite dissimilar airfoil shapes at tip and root. Each airfoil is interpo-

lated with just twenty points. . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.13 The Advanced NURBS GUI . . . . . . . . . . . . . . . . . . . . . . . . . 145

231



LIST OF FIGURES

4.14 A complex configuration built to verify the new algorithm capabilities. The CA-

TIA visualization option is the Shading with edges one. As shown, no curvature

discontinuities is detected in the inner region of the surfaces. . . . . . . . . . . 148

4.15 A PrandtlPlane Canadair configuration. . . . . . . . . . . . . . . . . . . . . 148

4.16 A PrandtlPlane Canadair configuration. . . . . . . . . . . . . . . . . . . . . 149

4.17 The PrandtlPlane ULV Tandem. . . . . . . . . . . . . . . . . . . . . . . . 149

4.18 The body of an Helicopter similar to the Agusta A109 . . . . . . . . . . . . . 150

5.1 An example of two different class of surface grids. . . . . . . . . . . . . . . . 155

5.2 Correspondence between parametric and physical space mesh. . . . . . . . . . 156

5.3 ASD main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Structured mesh for a not simply connected surface: the network is split in two

sub networks representing simply connected regions. The common edge points are

marked in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Correct distribution of points at the common edge of two networks. . . . . . . . 159

5.6 Wing pierced from tfillet of the same logical subset. . . . . . . . . . . . . . . 161

5.7 Subdivision of a complex configuration in logical subsets. The color of the name

of the features identifies the different subsets elements. . . . . . . . . . . . . 161

5.8 Uniform and cosinusoidal chordwise distributions for a logical subset composed of

two wings and one wround feature. . . . . . . . . . . . . . . . . . . . . . . 163

5.9 Process of meshing the logical subset of the complete aircraft surface. . . . . . . 164

5.10 Structured mesh for a not simply connected surface: the network is split in two

sub networks representing simply connected regions. The common edge points are

marked in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.11 Process of connecting two logical subset (characterized by blue and black grid

color) trough a tfillet-wing connection. The red dashed lines represent the mesh

lines induced from the tfillet. . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.12 Subdivision in simply connected regions . . . . . . . . . . . . . . . . . . . . 167

5.13 Different body mesh obtained with two different values of deviation from straight-

ness parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.14 Mesh lines (in red and blue) induced from the fillet grids in the body . . . . . . 168

232



LIST OF FIGURES

5.15 Different body mesh obtained with two different values of the body panel maximum

aspect ratio parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.16 ASD main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.17 Grid Generation GUI: note the Mesh stats panel, reporting grid statistics . . . . 171

5.18 Plot of panels aspect-ratio. Note how this feature could be used to see the overall

mesh parameter, or to look for mesh panels satisfying a user defined filter. . . . . 172

5.19 Plot of the outgoing normal vectors of the panels. . . . . . . . . . . . . . . . 173

5.20 Grid of a PrandtlPlane configuration. . . . . . . . . . . . . . . . . . . . . . 173

5.21 Grid of a PrandtlPlane configuration. . . . . . . . . . . . . . . . . . . . . . 174

5.22 Grid of a conventional aircraft configuration. . . . . . . . . . . . . . . . . . 174

5.23 Grid of a PrandtlPlane configuration . . . . . . . . . . . . . . . . . . . . . 175

6.1 Body SB and wake SW surfaces. . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Abutment between network 1 and 2. Note the panels with matching and not

matching points at abutment. Note also the order of description of rows and

columns, consistent with a correct outward surface normal . . . . . . . . . . . 193

6.3 Paneling of two big transport aircrafts. Note the particular wakes arrangements

for both the configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.4 Pan Air study of the high-lift system of the Boeing 737-300. . . . . . . . . . . 196

6.5 Boeing 747 with Space Shuttle Orbiter. . . . . . . . . . . . . . . . . . . . . 197

6.6 Paneling of a F15 fighter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.7 Pan Air surface pressure maps at Mach 0.6 and 4◦ angle of attack for a SR-71

aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.8 Sailing both paneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.1 The Pan Air input generator GUI . . . . . . . . . . . . . . . . . . . . . . . 202

7.2 Angle of attack α and yaw angle β. . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Advanced printout control. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4 Advanced abutment control. . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.5 PEA processing for simple abutment of two network edges (from [53]). . . . . . 206

7.6 The wake generator GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.7 Placing a wake behind a wing in the wing generator GUI . . . . . . . . . . . . 207

233



LIST OF FIGURES

7.8 The connection wake between wing wake and fuselage. . . . . . . . . . . . . . 208

7.9 The flow field properties GUI. . . . . . . . . . . . . . . . . . . . . . . . . 209

7.10 Definition of a grid of points where to evaluate flow properties. . . . . . . . . . 209

7.11 Main PostProcessor GUI with shown statistics and results. . . . . . . . . . . . 210

7.12 Configuration mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.13 Coefficient pressure (Cp) and local mach number for two different solutions, one

at angle of attack of 0◦, the other at 10◦. . . . . . . . . . . . . . . . . . . . 212

7.14 Plot of CL, CDi, CMy
versus α. . . . . . . . . . . . . . . . . . . . . . . . . 213

7.15 Streamlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.16 Cl − y for the wings and bulk of the Tandem configuration at α = 10◦. . . . . . 214

7.17 Pressure coefficient over a traditional configuration aircraft (A310 like) for zero

angle of attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.18 Cl − y for the main wing and winglet (blue), tail (red) at α = 10◦. . . . . . . . 215

7.19 Streamlines at α = 5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.20 Wing tested in the report [58]. . . . . . . . . . . . . . . . . . . . . . . . . 217

7.21 Geometrical definition of the wing with ASD. . . . . . . . . . . . . . . . . . 217

7.22 The meshed wing obtained with the structured grid generation module. . . . . . 218

7.23 Comparison between numerical and experimental results, for M = 0.17 and α =

12.5. In spite of the CL max configuration, the agreement is very good. . . . . . . 219

7.24 Pressure coefficient (in red) versus chord at different spanwise sections, for α = 7◦.

The airfoil sections are drawn in black. . . . . . . . . . . . . . . . . . . . . 220

7.25 Grid sensitivity. The grid is refined in both chordwise and spanwise directions.

Chordwise the grid has a cosinusoidal distribution, spanwise the distribution is

linear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

234



A
Evaluation of the stiffness matrix

The stiffness matrix (eq.(3.31)) must be evaluated in order to solve the linear system

shown in equation (3.41). This matrix is defined as:

Ki j =

∫ 1

u=0

N
(d)
i,p (u) N

(d)
j,p (u) du (A.1)

Due to local support of the B-spline basis functions, at a given u, belonging the knot

span [uj,uj+1], at most p + 1 of the generic basis functions Ni,p are nonzero, namely

Nj−p,p, . . . , Nj,p , hence:

Ki j =

∫ ui+p+1

uj

N
(d)
i,p (u) N

(d)
j,p (u) du (A.2)

where j > i. If j ≥ i + p + 1 then Kij = 0.

Further, eq.(A.2) can be simplified by:

Ki j =

i+p∑

k=j

∫ uk+1

uk

N
(d)
i,p (u) N

(d)
j,p (u) du (A.3)

B-spline basis derivatives N
(d)
i, p are piecewise polynomial of order p− d, thus the

terms inside the integral are polynomials of order 2(p−d). The Gaussian quadrature

235



A – Evaluation of the stiffness matrix

can be used to evaluate exactly eq.(A.3). In fact, it states that:

∫ 1

−1

f(t) dt ≈
n∑

i=1

wif(ti) (A.4)

where ti are designated evaluation points (called Gaussian points), and wi are the

prescribed weight of that point in the sum. The order of precision of the formula is

of 2n− 1, thus, if f(t) is a polynomial of order p, at least p+1
2

points are needed for

an exact evaluation of the integral (clearly n must be an integer number, so it must

be rounded if p is even).

Then, the integral of eq.(A.3) can be expressed from:

∫ uk+1

uk

N
(d)
i,p (u) N

(d)
j,p (u) du =

1

2
(uk+1 − uk)

n∑

l=1

wl

(
N

(d)
i,p (ūl) N

(d)
j,p (ūl)

)
(A.5)

where wl are the weights, and ūl are the points, corresponding to the Gaussian

points, where to evaluate the basis function derivatives, and are obtained through

the transformation needed for changing the integration limits from to [uk u+1] to

[−1 1]:

ūl =
1

2
((1− tl)uk + (1 + tl)uk+1) (A.6)

In this way, the problem of evaluating the stiffness matrix brings back to summation

and multiplication of basis function derivatives evaluated at points set from the Gauss

quadrature.

Ki j =

i+p∑

k=j

n∑

l=1

1

2
(uk+1 − uk)wl

(
N

(d)
i,p (ūl) N

(d)
j,p (ūl)

)
(A.7)

236



Bibliography

[1] IDS Ingegneria dei sistemi. ASD Aerodynamic Surface Design, User Manual.

[2] F. Petri. Sviluppo del codice a.s.d. per la generazione parametrica di superfici

aerodinamiche mediante nurbs. Master’s thesis, Università degli Studi di Pisa,

Pisa, Italy, 2005.

[3] A. Rimondi. Generazione di configurazioni aerodinamiche mediante NURBS.

Master’s thesis, Università degli Studi di Pisa, Pisa, Italy, 2003.

[4] IDS Ingegneria dei sistemi. Documento di Architettura: ASD Aerodynamic

Surface Design.

[5] Ira H. ABBOTT and Albert E. von DOENHOFF. Theory of wing sections.

Including a summary of airfoil data. Dover, New-York, 1959.

[6] G. Farin, J. Hoschek, and M. Kim. Handbook of Computer Aided Geometric

Design. Elsevier, 2002.

[7] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.

Academic Press Professional, Inc., San Diego, CA, USA, 1997.

[8] Les Piegl and Wayne Tiller. The NURBS book (2nd ed.). Springer-Verlag New

York, Inc., New York, NY, USA, 1997.

[9] E. Dimas and D. Briassoulis. 3D geometric modelling based on nurbs: a review.

Adv. Eng. Softw., 30(9-11):741–751, 1999.

[10] M. Pourazady and X. Xu. Direct manipulation of B-Spline and NURBS curves.

Advances in engineering software, (31):107–118, 2000.

237



Bibliography

[11] Hiroshi Akima. A new method of interpolation and smooth curve fitting based

on local procedures. J. ACM, 17(4):589–602, 1970.

[12] G. Albrecht, J. P. Bécar, G. Farin, and D. Hansford. On the approximation

order of tangent estimators. Comput. Aided Geom. Des., 25(2):80–95, 2008.

[13] C. Lim. A universal parameterization in B-spline curve and surface

interpolation. Computer Aided Geometric Design, (16):407–422, 1999.

[14] R. C. Veltkamp. Survey of continuities of curves and surfaces. Computer

Graphics forum, 11:93–112, 1992.

[15] Brian A. Barsky and Anthony D. DeRose. Geometric continuity of parametric

curves. Technical report, Berkeley, CA, USA, 1984.

[16] Brian A. Barsky and Anthony D. DeRose. Three characterizations of geometric

continuity for parametric curves. Technical Report UCB/CSD-88-417, EECS

Department, University of California, Berkeley, May 1988.

[17] Anthony D. DeRose. Geometric Continuity: A Parametrization Independent

Measure of Continuity for Computer Aided Geometric Design. PhD thesis,

EECS Department, University of California, Berkeley, Aug 1985.

[18] M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,

1976.

[19] Barry Fowler and Richard Bartels. Constraint-based curve manipulation. IEEE

Comput. Graph. Appl., 13(5):43–49, 1993.

[20] Barry Fowler. Geometric manipulation of tensor product surfaces. In SI3D ’92:

Proceedings of the 1992 symposium on Interactive 3D graphics, pages 101–108,

New York, NY, USA, 1992. ACM.

[21] George Celniker and Will Welch. Linear constraints for deformable non-uniform

b-spline surfaces. In SI3D ’92: Proceedings of the 1992 symposium on Interactive

3D graphics, pages 165–170, New York, NY, USA, 1992. ACM.

[22] Wieger Wesselink and Remco C. Veltkamp. Interactive design of constrained

variational curves. Comput. Aided Geom. Des., 12(5):533–546, 1995.

[23] G.D. Birkhoff. Aesthetic Measure. Harvard Univ. Press, 1933.

[24] Henry Packard Moreton. Minimum curvature variation curves, networks, and

surfaces for fair free-form shape design. PhD thesis, Berkeley, CA, USA, 1992.

238



Bibliography

[25] Henry P. Moreton and Carlo H. Séquin. Functional optimization for fair sur-

face design. In SIGGRAPH ’92: Proceedings of the 19th annual conference on

Computer graphics and interactive techniques, pages 167–176, New York, NY,

USA, 1992. ACM.

[26] George Celniker and Dave Gossard. Deformable curve and surface finite-

elements for free-form shape design. In SIGGRAPH ’91: Proceedings of the

18th annual conference on Computer graphics and interactive techniques, pages

257–266, New York, NY, USA, 1991. ACM.

[27] William Welch and Andrew Witkin. Variational surface modeling. In SIG-

GRAPH ’92: Proceedings of the 19th annual conference on Computer graphics

and interactive techniques, pages 157–166, New York, NY, USA, 1992. ACM.

[28] P. A. Sherar and P. A. Sherar. Academic Year 2003-2004. PhD thesis, 2004.

[29] K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press,

Oxford (etc. ), 1975.

[30] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: The Basis,

Volume 1. Butterworth-Heinemann Ltd, 2000.

[31] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for

Continua and Structures. John Wiley & Sons.

[32] Stefanie Hahmann and Gershon Elber. Constrained multiresolution geometric

modeling. In Advances in Multiresolution for Geometric Modeling, 2004.

[33] Joe F. Thompson. A reflection on grid generation in the 90s: Trends, needs and

influences. In 5th International Conference on Numerical Grid Generation in

Computational Field Simulations, pages 1029–1110. Mississippi State University,

1996.

[34] T. Williams, N. Nadenthiran, H. Thornburg, and B.K. Soni. Genie: A multi-

block structured grid system. Technical Report 19960029271, Marshall Space

Flight Center, Nasa, March 1996.

[35] A. Khamayseh and B. Hamann. Elliptic grid generation using nurbs surfaces.

Comput. Aided Geom. Des., 13(4):369–386, 1996.

[36] J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerical Grid Generation:

Foundations and Applications. Elsevier North-Holland, Inc., New York, NY,

239



Bibliography

USA, 1985.

[37] J.S. Mathur. Grid generation for aerospace applications. Aeronautical Society

of India, 1999.

[38] J.C. Yang, B.K.Soni, R.P. Roger, and S.C. Chan. Structured adaptive grid

generation using algebraic methods. Technical Report 19950016997, Marshall

Space Flight Center, Nasa, 1993.

[39] J.C. Yang and B.K. Soni. Algebraic grid adaptation method using non-uniform

rational B-spline surface modeling. Technical Report 19920015179, Marshall

Space Flight Center, NASA, 1992.

[40] C.B. Craidon. A description of the Langley wireframe geometry standard

(LaWGS) format. Technical Report TM 85767, NASA, February 1985.

[41] H.W. Liepmann and A. Roshko. Elements of Gasdynamics. John Wiley & Sons,

1962.

[42] A. Epton and A. Magnus. A computer program for predicting subsonic and

supersonic linear potential flows about arbitrary configurations using a higher

order panel method. Volume I - Theory Document. Technical Report CR 3251,

NASA, 1992.

[43] M.T. Landahl. Unsteady Transonic Flow. Cambridge University Press, 1989.

[44] L. Ward. Linearized Theory of Steady High-Speed Flow. McGraw-Hill, 1955.

[45] L. Morino. Boundary integral equation in aerodynamics. Appl. Mech. Rev.,

(46), 1993.

[46] R. Kress. Linear Integral Equations. Springer-Verlag, 1989.

[47] O.D. Kellogg. Foundations of Potential Theory. Dover Publications, Inc., 1929.

[48] G. Bernardini. Problematiche Aerodinamiche Relative alla Progettazione di

Configurazioni Innovative. PhD thesis, Politecnico di Milano, Nov 1999.

[49] J. Katz and A. Plotkin. Low Speed Aerodynamics. Cambridge University Press,

1991.

[50] G. Buresti. Fluidodynamics course material. Università di Pisa.

[51] A.R. Dusto and M.A. Epton. An advanced panel method for analysis of arbi-

trary configurations in unsteady subsonic flow. Technical Report CR 152323,

NASA, July 1980.

240



Bibliography

[52] F.T. Johnson, S.S.Samant, M.B. Bieterman, R.G. Melvin, D.P. Young, J.E.

Bussoletti, and C.L. Hilmes. TranAir: A full-potential,solution-adaptive, rect-

angular grid code for predicting subsonic, transonic, and supersonic flows about

arbitrary configurations. Technical Report CR 4349, NASA, 1992.

[53] G. Saaris. A502i user’s manual - Pan Air technology program for solving

problems of potential flow about arbitrary configurations. Technical Report

D6-54703-TN, The Boeing Company, February 1992.

[54] K.W. Sidwell, P.K. Baruah, J.E. Bussoletti, R.T. Medan, R.S. Conner, and

D.J. Purdon. A computer program for predicting subsonic and supersonic linear

potential flows about arbitrary configurations using a higher order panel method.

Volume II - User Manual. Technical Report CR 3252, NASA, 1992.

[55] R.T. Medan, A.E. Magnus, K.W. Sidwell, and M.A. Epton. A computer pro-

gram for predicting subsonic and supersonic linear potential flows about ar-

bitrary configurations using a higher order panel method. volume III - Case

Manual. Technical Report CR 3253, NASA, 1992.

[56] F.T. Johnson, E.N. Tinoco, and N.J. Yu. Thirty years of development and

application of CFD at Boeing Commercial Airplanes, Seattle. In 16th AIAA

Computational Fluid Dynamics Conference. AIAA, June 2003.

[57] T.R. Moes, B.R. Cobleigh, T.R. Conners, T.H. Cox, S.C. Smith, and N. Shi-

rakata. Wind-tunnel development of an SR-71 aerospike rocket flighttest

configuration. Technical Report TM 4749, NASA, June 1996.

[58] J.C. Sivells. Experimental and calculated characteristics of three wings of naca

64-210 and 65-210 airfoil sections with and without 2◦ washout. Technical

Report TN 1422, NASA, 1947.

241


