
Università degli studi di Pisa

Corso di Laurea Specialistica in Informatica

On some combinatorial properties of
graph states

Tesi di

Alessandro Cosentino

Febbraio 2009

Relatori :

Anna Bernasconi

Simone Severini

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14696711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sommario

I graph state sono particolari stati quantistici, rappresentabili tramite gra� indiretti semplici,

che giocano un ruolo fondamentale in informatica quantistica, in particolare nell'ambito dei

codici a correzione di errore e nel modello di computazione �one-way�. Lo scopo di questa tesi è

studiare alcune proprietà dei graph state attraverso un approccio combinatorio. Innanzitutto

si sono analizzate le proprietà di un'invariante dei gra�: il numero di sottogra� indotti con

numero dispari di archi. Questo numero è stato valutato per famiglie importanti di gra� ed è

stato trovato un algoritmo e�ciente per calcolarlo. Alcune proprietà delle funzioni booleane

associate ai graph state sono state studiate analizzando la struttura dei gra� di Cayley delle

suddette funzioni. A tale scopo sono stati de�niti, e ne è stata analizzata la struttura, gra�

che permettono di tracciare le trasformazioni di local complementation e switching fra graph

state. Un congettura è stata fatta sulla struttura di questi gra�. A margine del lavoro, sono

state introdotte alcune estensioni alla de�nizione classica di graph state. In particolare sono

stati de�niti gli �edge graph state� e i �3-hypergraph state�.

Abstract

Graph states are particular quantum states that can be represented by mathematical graphs

and that play a fundamental role in quantum information science. In particular, they are

important in �one-way� computation model and as codewords in quantum error correction.

The aim of this thesis is to investigate some properties of graph states by a combinatorial

approach. In order to classify graph states, we study an invariant of graphs: the number of

induced subgraphs with odd number of edges. We describe an e�cient algorithm to calculate

this number and we prove formulas to calculate it for familiar classes of graphs. We also

investigate some properties of the boolean functions corresponding to graph states by analizing

the structure of Cayley graphs that can be associated to these functions. It is important to

understand how the amount of entanglement in graph states changes with regards to graph

transformations. In order to approach this problem, we introduce some graphs whose paths

keep tracks of the transformations of local complementation and switching between graph

states. Finally, two extensions of the classical de�nition of graph states are introduced. In

particular we de�ne �edge graph states� and �3-hypergraph state�.

I would like to address my special acknowledgments to my supervisors Anna Bernasconi and

Simone Severini for their guidance, their ideas and their encouragement. I am grateful to my

cousin Giuseppe Policastro for our Xmas conversations about physics and computer science.

Keith Briggs (BT Research) helped with his ideas about LCS-graphs. From Marc Thurley

(Humboldt-Universität zu Berlin) I have got the right answer at the right time. Special thanks

also to Matthew Parker, Chris Godsil, Gordon Royle, Niel de Beaudrap, Zhengfeng Ji and

everyone who bothered replying to my annoying emails.

Contents

1 Introduction 1

1.1 Overview . 3

1.2 Notation . 4

2 Preliminaries 5

2.1 Quantum information processing . 5

2.1.1 Basic concepts of quantum computing 5

2.1.2 Stabilizer formalism . 9

2.1.3 Fast quantum algorithms . 10

2.1.4 Quantum computational complexity 11

2.1.5 Quantum error-correction codes . 12

2.2 Graph Theory . 13

2.2.1 Notation and terminology . 13

2.2.2 Familiar classes of graphs . 14

2.2.3 Hypergraphs . 14

3 Graph States 15

3.1 De�nitions . 15

3.2 Local unitary and local Cli�ord equivalence 18

3.3 One-way quantum computing . 20

4 The MS-number 23

4.1 De�nitions . 23

ix

4.2 An explicit formula . 24

4.3 Algorithm . 26

4.4 Binary rank . 27

4.5 Properties of the MS-number . 28

4.6 MS-number for familiar classes of graphs . 28

4.7 MS-number and graph isomorphism . 30

4.8 MS-number as a partition function . 32

5 Cubelike graphs 35

5.1 De�nition . 35

5.2 Isomorphism . 36

5.3 Connectedness . 38

5.4 Eingesystem . 39

6 Local-Complementation-and-Switching Graph 41

6.1 Introduction . 41

6.2 Switching . 41

6.3 LCS graphs . 42

6.4 Graph G3 and G4 . 43

6.5 The conjecture . 45

7 Open Problems 47

A Extensions 49

A.1 Edge graph states . 49

A.2 3-hypergraph states . 50

B Code 53

List of Figures

2.1 Example of quantum circuit . 9

3.1 The complete graph K3 . 17

3.2 Quantum circuit for the preparation of |K3〉 17

3.3 Example of local complementation . 19

3.4 LU-LC counterexample. 20

4.1 C4 and S5 . 30

4.2 m(P3) = m(co-P3) = 4, but P3 � co-P3 . 31

4.3 m(G) = m(H) ∧ |E(G)| = |E(H)|, but G � H 31

5.1 The Cayley graph X(Fn2 ,ΩK3). 36

5.2 G � H, but |G〉 ∼Cayley |H〉 . 38

6.1 Gσ is a switch of G . 42

6.2 The LCS-graph G3 . 43

6.3 The LCS-graph G4 . 44

A.1 An example of 3-hypergraph. 50

A.2 Quantum circuit for the preparation of |H〉 51

xi

List of Tables

4.1 Number of equivalence classes of graphs for n = 1 . . . 9 on ms-number. 31

4.2 Number of equivalence classes of graphs for n = 1 . . . 9 on (ms-number, size). . 32

4.3 Equivalence classes of graphs based on (order, size, MS-number). 33

xiii

1
Introduction

The aim of this thesis is to investigate some properties of graph states. These are particular

quantum states that can be represented by simple undirected graphs.

Quantum computation and quantum information theory are �elds involved with the study

of information processing tasks that can be accomplished using quantum mechanical systems.

Quantum computers were �rst proposed in 1981 by the Nobel laureate physicist Richard

Feynman. He showed how a quantum system could be used to do computations with the

initial intent of simulating experiments in quantum physics [Fey81].

The theoretical research developed interesting models of quantum computation and sur-

prising algorithms, such as Peter Shor's factoring algorithm (1994) [Sho97] or Lov Grover's

search algorithm (1996) [Gro97]. They exploit features of quantum systems to speed up tasks,

like factoring an n-digit number and locating an entry in a database of n entries, respectively.

These two tasks can be accomplished by classical computers exponentially and quadratically

slower.

The potential of these algorithms stimulated many research groups around the world to

work in the direction of realizing a physical implementation of the quantum computer. In

1998, IBM scientists led by Isaac Chuang implemented the �rst 2-qubit quantum computer

and in 2001 (see [IR01]) the same team built a seven-qubit quantum computer to run Shor's

Algorithm and they correctly identi�ed 3 and 5 as the factors of 15. Clearly these are still

toy-models, but still useful to uncover properties of quantum evolution. Experiments are now

aimed at developing quantum computers that can easily �scale� to a large number of qubits.

Unfortunately, interactions between a quantum system and its environment, a phenomenon

called decoherence, make useful quantum computation still impossible. A theoretical approach

to protect quantum computation from the e�ects of decoherence is quantum error-correcting

coding, the quantum analog of error correction coding fundamental for the transmission of

1

classical information over noisy channel. In 1995 Shor proved that quantum error-correcting

codes exist and may indeed be the solution to reduce the rate of decoherence in quantum

memory ([Sho95]). The fact that interactions with a quantum system perturbate the system

has been exploited in the design of quantum cryptography protocols, where the two parties are

able to detect the presence of an eavesdropper. Prototypes for doing quantum cryptography

have been already used in some real-world applications.

Among the most interesting applications of quantum information processing, a key role is

played by distinctively quantum mechanical phenomena, such as superposition and entangle-

ment. For example, entanglement is responsible for the security of quantum key distribution

and for the speedup of a quantum computer compared to classical computers. Entangled

states are also used as keywords in quantum secret-sharing protocols [HHHH07].

Graph states form an interesting class of multipartite entangled states, which play im-

portant roles in areas as diverse as quantum error correction, one-way computation model

and cryptographic protocols. The one-way model is a fairly recent computational model in

which computation is driven by measurements instead of unitary evolution as it is done in

the standard set-up of quantum computation.

Graph states can be analyzed from di�erent points of views, because they can be repre-

sented as di�erent objects: unit vectors in Hilbert space, simple undirected graphs, quadratic

Boolean forms, codewords of stabilizer codes. Graph states are important because they are

relatively easy to implement in laboratory. Additionally, it appears that graph states allow

the scaling of many qubit, therefore being particularly promising as tools in quantum infor-

mation processing, the realization of various protocols and, in general, the construction of

nanotechnology devices. The discovery of new quantum algorithms, that can speed-up tasks

over all known classical algorithms, and the discovery of e�cient quantum error-correcting

codes, that can �ght decoherence, are the most promising theoretical approaches that could

lead quantum computers to become usable in everyday life. Many hopes are set on the power

of graph states for the achievement of these objectives. The key feature of graph states is

the presence of multipartite entanglement in them. So far, the typical approach of studying

the entanglement in graph states is investigating their local equivalences, that is determining

equivalence classes of graph states under local operations. Even if the main conjecture on

the problem of classifying graph states under local operations (LU-LC conjecture) has been

proved [JCWY07], many questions are still open.

In this thesis we seek new directions in classifying graph states. We think that the rela-

tion between homogeneous boolean polynomials and graph states has not been investigated

2

thoroughly. For example, the weight of boolean functions representing certain graphs could

bound the geometric measure of entanglement of the associated graph states . We give an

e�cient algorithm to calculate this number for a generic graph. A closed formula is given

only for important classes of connected graphs.

The relation with boolean functions allows us also to associate a Cayley graph to a graph

state. We can then use tools from Cayley graph theory for investigations on graph states.

Contrary to the local complementation, the switching action on a graph has not been

studied properly with regards to its e�ects in a graph state. From the observation that local

complementation and switching can generate any graph, we construct a formalism to track

how these transformations relate graph states.

In our research we have followed an experimental methodology: we have investigated

properties and patterns of some mathematical objects using computation as a help to gain

insight and intuition. Computer programs for generating graphs and on-line databases of

mathematical structures have been used to test our conjectures before proving them formally.

1.1 Overview

� Chapter 2 provides a brief introduction to the theories that lie at the basis of this

thesis. In the �rst section of the chapter we explain, starting from elementary notions,

the principles of quantum computing. The stabilizer formalism, which will be useful in

the following chapters to de�ne graph states, is also presented. The rest of the chapter

presents notation and terminology of all the concepts of graph theory that we will need

in the thesis.

� In Chapter 3, we give three equivalent de�nitions of the concept of graph state and we

explain their role in quantum information processing. Moreover, a section of this chapter

deals with the equivalence classes of graph states under local operations. Chapter 2 and

3 contain only previously known results.

� Chapter 4 focuses on the investigation of an invariant of graphs, the number of induced

subgraphs with a odd number of edges.

� In Chapter 5 we associate a cubelike graph to a graph state. In Section 5.2 we classify

graph states according to isomorphism of the cubelike graphs associated with them,

while in Section 5.3 and 5.4, we investigate respectively the property of connectedness

and the eigensystem of such graphs.

3

� In Chapter 6, and in particular in Section 6.3, we formally de�ne Local-Complementation-

and-Switching graphs, a formalism that allows us to track transformations between graph

states as edge in a graph. Section 6.2 describes a graph transformation called switching.

Section 6.4 shows two examples of LCS graphs associated to graphs of order 3 and 4.

Results contained in Chapter 4 constitute the main body of the following research article:

A. Bernasconi, A. Cosentino, S. Severini, On the number of induced subgraphs with odd number

of edges, 2009. (In preparation.)

1.2 Notation

This section collects all the conventions we adopted in the thesis about nomenclature and

notation.

Given a set X we denote with |X| its cardinality.
F2 is the �nite �eld of two elements (0 and 1), where arithmetic is performed modulo 2.

We will use the symbol ⊕ to denote modulo two addition.

AT denotes the transpose of the matrix A.

U † and x† denote the Hermitian conjugate of the matrix U and of the vector x.⊎
denotes the disjoint union of sets.

4

2
Preliminaries

In this chapter we introduce the reader to the background necessary to understand the work

in this thesis. First we give some background in quantum information science, an emergent

�eld that extends information theory to the quantum mechanics world.

This thesis deals with the concept of graph state, a special case of quantum state. A

quantum state is a mathematical description of a quantum system. In the mathematical

formulation of quantum mechanics, quantum states are vectors in a Hilbert space. Since we

are interested only in �nite dimensions, we will use indi�erently the terms Hilbert space and

inner product space. In the next section we will de�ne the notions of inner product space

and qubit, the simplest quantum system. Then we describe the entanglement of quantum

states, a phenomenon without counterpart in classical computation. For a more comprehensive

treatment on quantum information processing, see [EHI07, NC00].

The quantum states subject of this thesis can be represented by simple undirected graphs.

Graphs are objects studied by a branch of mathematics called graph theory. At the end

of this chapter we give some basic notation and terminology used in this branch and we

present a description of the most familiar classes of graphs. For a survey of graph theory, see

[Die05, GR01]. Many de�nitions and examples can be found in [Wei].

2.1 Quantum information processing

2.1.1 Basic concepts of quantum computing

Inner product space

De�nition 1. An inner product over a vector space V is a function (·, ·) which takes two

vectors x, y ∈ V as input, produces a complex number as output and satis�es:

5

� (x, x) ≥ 0;

� (x, x) = 0 ⇐⇒ x = 0;

� (x, y) = (y, x)†;

� (x, y + z) = (x, y) + (x, z);

� (x, αy) = α(x, y).

De�nition 2. A vector space equipped with an inner product is called inner product space.

In quantum mechanics, Dirac notation (invented by Paul Dirac) is the standard notation

to describe quantum states. We write |x〉 and we read �ket x� to emphasize that x is an

element of a Hilbert space. An element of the dual Hilbert space is denoted by 〈x| (�bra
x�). This is why Dirac notation is also called �bra-ket� notation. In this notation, the inner

product of x and y is written as 〈x|y〉.

Quantum bits

The simplest of all quantum physical system is the qubit, short form for quantum bit. Quantum

bits are the bricks which the quantum computation is built upon. Exactly as a classical bit,

a qubit has a state. The di�erence is that a qubit can be in a state other than |0〉 or |1〉.
Indeed, it is possible to form linear combinations of states, called superpositions:

|ψ〉 = α|0〉+ β|1〉 ,

where α and β are complex numbers.

A qubit's state is not observable: we cannot determine the values of α and β. When we

measure a qubit we get either 0, with probability |α|2, or 1 with probability |β|2. Evidently,
|α|2 + |β|2 = 1. The quantities α and β are called amplitudes.

In general a qubit's state is a unit vector in a Hilbert space.

Let us now de�ne the term phase that we will use through the thesis. With the term phase

we will always mean the relative phase: two amplitudes di�er by a relative phase in some basis

if each of the amplitudes in the basis is related by such a phase factor. For example, the states

|0〉+ |1〉√
2

and
|0〉 − |1〉√

2

di�er only by a relative phase shift.

6

A qubit can be physically implemented with any two-level quantum system, for example

the polarisation of a photon or the spin of an electron.

We can have multiple qubits. Suppose, for instance, we have a system of two qubits. Then

its state is

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 ,

where α00 is the probability of measuring both qubits as zero, and so on. We can also measure

just a subset of the qubits. In our two-qubits example, if we measure only the �rst qubit, the

probability of getting |0〉 is |α00|2 + |α01|2 and the state remaining after the measurement is

|ψ′〉 =
α00|00〉+ α01|01〉√
|α00|2 + |α01|2

.

This is a simple example of two-particle system.

In general, the notion of tensor product is fundamental to describe the state of multiparticle

systems. The tensor product, denoted by ⊗, is a multiplication between vectors from two

spaces, that satis�es the following properties:

� a(|x〉 ⊗ |y〉) = (a|x〉)⊗ |y〉 = |x〉 ⊗ (a|y〉);

� (|x〉+ |y〉)⊗ |z〉 = |x〉 ⊗ |z〉+ |y〉 ⊗ |z〉;

We will often use the abbreviated notations |x〉|y〉 and |xy〉 for the tensor product |x〉 ⊗ |y〉.
The joint state of a quantum system with n components, each of them prepared in the state

|ψi〉, is |ψ1〉⊗ |ψ2〉⊗ · · · ⊗ |ψn〉. A collection of n qubits is called a quantum register of size n.

Quantum entanglement

Quantum entanglement is de�ned by what it is not: a quantum state |ψ〉 is called entangled

if it cannot be described by the product of its component systems. Let us consider the state

|ψ〉 =
|00〉+ |11〉√

2
.

This is an entangled state since there are no single qubit states |a〉 and |b〉 such that |ψ〉 =
|a〉|b〉. In this example, a measurement of the �rst qubit a�ects the second qubit. This does not

mean that quantum entanglement provides communication faster than light-speed, because

the result would be random (no-communication theorem). If we want to do teleportation of

qubits, we need classical communication, whose speed is limited by the speed of the light.

Given a n-qubit state, if we divide the qubits into two sets and we study the entanglement

between them, we are studying bipartite entanglement. If the sets are more than two, we are

7

talking about multipartite entanglement.

Many interesting quantum algorithms and protocols are based on phenomenon of entan-

glement.

Quantum operations

Another important concept in the modelling of a computational framework is what kind of

transformations we can operate on the states. The simplest operations act on a single qubit.

Since quantum operations are linear, they can be described by matrices. Every operation on

a qubit must preserve the normalization condition, so the matrix U that describes it has to

be unitary, i.e. U †U = I.

Some of the most important one-qubit operations are the Pauli matrices σx = X, σy = Y ,

σz = Z, I (the identity matrix) and the Hadamard matrix H:

X ≡

(
0 1
1 0

)
; Y ≡

(
0 −i
i 0

)
; Z ≡

(
1 0
0 −1

)
; H ≡ 1√

2

(
1 1
1 −1

)
.

Notice that H = (X + Z)/
√

2 and that H2 = I. Applying the Hadamard matrix we can

transform the state |0〉 into |+〉 = (|0〉+ |1〉)/
√

2, a �halfway� position between |0〉 and |1〉.
Starting from elementary operations we can implement complex controlled operations, as

the �if-statement�, very important both in classical and quantum algorithms. Given a single

qubit unitary operation U , controlled-U is an operation on two qubits (known as control qubit

and target qubit), that applies U to the target qubit only if the control qubit is set, that is

|c, t〉 → |c〉U c|t〉. The notation U c is a convention for U1 = U and U0 = I. The most known

two-qubit gate is the controlled-NOT, whose action can be summarized as |A,B〉 → |A,A⊕B〉.
In this case A is the control qubit and B the target one.

In the following chapters we will use the two-qubit controlled-Z gate (or CZ), whose

de�nition by a matrix is
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

The e�ect of the unitary transformation CZ is to �ip the phase of the target qubit if and only

if the control qubit is set to |1〉. Because of its e�ect, this transformation is also denoted as

controlled-phase (CP). Since controlled-Z is symmetric with respect to exchanging qubits, we

do not need to distinguish control from target.

A signi�cant di�erence between quantum and classical information is that qubits cannot

8

be copied. It has indeed been proved that a general quantum cloning device cannot exist (see

[NC00]).

Quantum Circuits

In many texts of quantum information theory, the most used model of computation is the

quantum circuit model. It resembles the classical circuit model, with wires and gates. Wires

carry information from one part of the circuit to another. In a quantum circuit, usually, wires

are not physical components, but they represent passage of time. Gates operate on the qubits

in the circuit and represent the quantum operators described in Section 2.1.1.

Generally all input states of a circuit are assumed to be |0〉 and, as claimed by the principle

of deferred measurement, shown in [NC00], measurements can be always moved at the end of

the circuit.

Figure 2.1 depicts a circuit with two Hadamard gates and a CZ gate that transforms the

standard basis to

|00〉 → 1
2

(|00〉+ |01〉+ |10〉 − |11〉)

|01〉 → 1
2

(|00〉 − |01〉+ |10〉+ |11〉)

|10〉 → 1
2

(|00〉+ |01〉 − |10〉+ |11〉)

|11〉 → 1
2

(|00〉 − |01〉 − |10〉 − |11〉)

H •

H Z

Figure 2.1: Example of quantum circuit

2.1.2 Stabilizer formalism

The stabilizer formalism was introduced in 1997 by Gottesman in [Got07]. We will use this

formalism to give an alternative de�nition of graph states. The following example explains

the stabilizer formalism. Consider the state of two qubits

|ψ〉 =
|00〉+ |11〉√

2
.

9

It holds that |ψ〉 is the unique quantum state such that |ψ〉 = X1X2|ψ〉 and |ψ〉 = Z1Z2|ψ〉,
that is |ψ〉 is the only quantum state stabilized by the operators X1X2 and Z1Z2. The

surprising idea is that quantum states, but also operations and measurements on them, can

be more easily described using the operators that stabilize them. A state that can be described

by operators that stabilize it is called stabilizer state.

We are mostly interested in commutative subgroups of the Pauli group, where the Pauli

group for a single qubit consists of all the Pauli matrices, together with multiplicative factors

±1, ±i. More formally,

De�nition 3. A stabilizer state is a state of an n-qubit system that is a simultaneous eigen-

vector of a commutative subgroup of the Pauli group.

The advantage of using stabilizers to de�ne states and operations on them comes from

group theory: generators provide a compact means of describing a group (the saving is ex-

ponentially on the cardinality of the group). In the stabilizer formalism, it is possible to

e�ciently describe di�erent operations, such as controlled-NOT, Pauli operators, Hadamard

gate and also measurements. Unfortunately for a wide class of quantum circuits, which in-

clude, for example, π/8 and To�oli gates, this is not possible.

Keeping track of the generators of the stabilizer corresponding to operations and measure-

ments can be done using O(n2) steps on a classical computer. This leads to the Gottesman-

Knill theorem:

Theorem 4. Every Cli�ord circuit (a circuit composed only of Hadamard, Phase and controlled-

NOT gates), when applied to a state prepared in the computational basis and followed by mea-

surements in the computational basis, can be e�ciently simulated on a classical computer.

2.1.3 Fast quantum algorithms

David Deutsch described the �rst algorithm that exploits properties of quantum mechanics.

Deutsch showed that with a quantum computer it is possible to calculate f(0) ⊕ f(1) using

only one evaluation of f(x). For the same problem, any classical computer would need at least

two evaluations of f(x). An important extension of Deutsch's algorithm is Deutsch-Josza's

algorithm [DJ92], which exponentially speeds up any classical algorithm for the problem of

deciding if a function is constant (the same value of f(x) for all values of x) or balanced (f(x)
is equal to 1 for exactly half of all the possible x and 0 for the other half).

The most important quantum algorithm known is the factoring algorithm [Sho97] intro-

duced by mathematician Peter Shor in 1994. It belongs to the same class of Deutsch-Josza

algorithm, since they both exploit interference between qubits using a quantum analog of the

10

Fourier transform. Shor's algorithm �nds the prime factors of a integer N in polynomial time

in O(logN). If quantum computer were realized, this algorithm would break RSA, a widely-

used public-key cryptographic scheme based on the di�culty of factoring large numbers using

classical computers. This amazing result motivated researchers to work in the direction of

realizing the quantum computer. An NMR (Nuclear Magnetic Resonance) implementation of

a quantum computer, able to factorize the number 15 using 7 qubits, was actually realized by

a group at IBM.

Another important step in the history of quantum computing was a quantum search al-

gorithm [Gro97] developed by Grover in 1997. Grover's algorithm sped up substantially the

problem of �searching for a needle in a haystack� requiring only O(
√
N) operations for a space

of N elements.

For a detailed survey of quantum computer algorithms, see [Mos08].

2.1.4 Quantum computational complexity

Improving the computational power of classical computers has always been the main purpose

of research in quantum computing. The class of problems solvable on a quantum computer

with unlimited time and space resources is no larger than the class of problems solvable

on a classical computer, but quantum computer may be more e�cient than their classical

counterparts.

A problem is in the class Bounded-Error Quantum Polynomial Time (BQP) if it can be

solved with bounded probability of error using a polynomial size quantum circuit. Another

requirement is that there has to be a classical polynomial-time algorithm to produce the

quantum circuit.

Relating classical and quantum computational complexity theories is of considerable in-

terest. The following signi�cant results have been achieved in this �eld:

� P ⊆ BPP ⊆ BQP

� BQP ⊆ PSPACE

where

PSPACE is the class of decision problems solvable by a classical Turing machine in polyno-

mial space;

P is the class of decision problems solvable by a classical Turing machine in polynomial time;

BPP is the class of decision problem solvable by a probabilistic Turing machine such that:

11

� if the answer is yes, then the input is accepted with probability at least 2/3.

� if the answer is no, then the input is rejected with probability at most 1/3.

It has not been proved yet if BQP 6= BPP, that is if quantum computers are more

powerful than classical computers.

2.1.5 Quantum error-correction codes

One reason why quantum computers are di�cult to build is decoherence. In the process of

quantum decoherence, some qubits become entangled with the environment. It is impossible

to exclude noise completely when we build quantum systems, so we need to �nd a way to

protect information during the computation. The solution is a quantum analog of error-

correcting codes in the transmission of information over a noisy channel between classical

computers.

The developing of quantum error-correcting codes (QECCs) is not just a trivial translation

of already existing classical codes. In the process of creating redundancy with quantum

computers, we have to deal with the following di�culties:

� because of the no-cloning theorem, it is impossible to duplicate the quantum state of a

qubit;

� errors are in a continuous space;

� observing the state of a qubit, we destroy information.

Shor [Sho95] introduced in 1995 a code that bypasses these di�culties and is able to

correct arbitrary errors on a single qubit. One qubit is encoded as nine qubits and codewords

are given by:

|0〉 → |0L〉 ≡
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

|1〉 → |1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
. (2.1)

Shor code is based on the fact that an error on a qubit may be expanded as a linear combination

of the following operators: identity, bit �ip, phase �ip and the product of bit �ip and phase

�ip.

The study of QECCs led to the development of an important class of quantum codes

described using the stabilizer formalism, known as stabilizer codes [Got07].

12

2.2 Graph Theory

2.2.1 Notation and terminology

A graph is a pair G = (V,E) of sets such that E ⊆ [V]2; thus, the elements of E are distinct

pairs of elements from V . The elements of V are the vertices of the graph G. An element of

E, a pair (vi, vj), is called an edge of the graph G. If E is a set of ordered pairs of vertices,

then the graph G is a directed graph, otherwise it is called undirected. A loop is an edge

which starts and ends on the same vertex. A simple graph is an undirected graph that has

no loops and no more than one edge between any two di�erent vertices. Otherwise it is called

multigraph. Unless di�erently speci�ed, in this thesis the term �graph� will denote a �simple

graph�.

The order and the size of a graph are respectively the number of its vertices, i.e. |V (G)|,
and the number of its edges, i.e. |E(G)|.

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. The two vertices

incident with an edge are its endpoints and an edge joins its ends. Two vertices x, y of G are

adjacent if (x, y) is and edge of G and x is called neighbour of y. This is denoted by writing

x ∼ y. The neighbourhood of a vertex v, denoted Nv, is the set of vertices that are adjacent

to v.

The degree of a vertex v, denoted d(v), is the number of edges incident on v. Themaximum
degree ∆(G) is the largest degree over all vertices; the minimum degree δ(G), the smallest. A

graph is regular of degree k or k-regular if all the vertices have the same degree k.

The complement G of G is the graph on V with edge set [V]2 \E. The line graph L(G) of
G is the graph on E in which x, y ∈ E are adjacent as vertices if and only if they are adjacent

as edges in G.

A path in a graph is a sequence of consecutive edges. The length of a path is the number

of edges that the path has. A cycle is a path such that start vertex and end vertex are the

same. A graph is connected if there is a path between all pairs of vertices.

We denote by S(V (G)) the powerset of V (G), that is, the set of all subsets of V (G) For
any subset S of V (G), we can de�ne the corresponding induced subgraph G[S] as a graph with

vertex set S and that contains all edges in G which join nodes in S.

An edge-induced subgraph is a subset of the edges of a graph G together with their end-

points. A maximal connected (induced) subgraph of a graph is a connected component, or

simply a component.

Graphs in which labels are assigned to nodes are called labeled. Otherwise they are called

unlabeled.

13

The adjacency matrix of a graph G is the matrix A(G) such that

A(G)i,j =

1, if {i, j} ∈ E(G);

0, if {i, j} /∈ E(G).

2.2.2 Familiar classes of graphs

A complete graph is a graph in which each pair of graph vertices is connected by an edge. The

complete graph with n vertices is denoted Kn. The complete graph on one node K1, that

is a single isolated node with no edges, is commonly called singleton. An induced subgraph

that is a complete graph is called a clique. Any induced subgraph of a complete graph forms

a clique. A cycle graph is a graph that consists of a single cycle through all nodes and it is

denoted Cn. Notice that K3 = C3.

A tree is a connected graph with no cycles. A binary tree is a tree such that the degree

of each vertex is at most 3. A path graph Pn on n vertices is a tree with two nodes of degree

1, and the other n− 2 nodes of degree 2. A star graph Sn is a tree on n nodes with one node

having degree n− 1 and the other n− 1 having degree 1.

2.2.3 Hypergraphs

A hypergraph is a generalization of a graph, where edges can connect any number of vertices.

Formally, a hypergraph H is a pair H = (X,E) where X is a set of elements, called vertices,

and E is a set of non-empty subsets of X called hyperedges. If all edges have the same

cardinality k, the hypergraph is said to be uniform or k-uniform, or is called a k-hypergraph.

For any subset Xi of X(H), we can de�ne a subhypergraph of H induced by Xi, as the

hypergraph with vertex set Xi and that contains only the superedges of H which connect

vertices in Xi.

14

3
Graph States

Graph states are capturing an important role in quantum information processing. First of

all, graph states are fundamental resources for quantum models of computation based on

measurements. These models, when it comes to questions about complexity and simulability,

are easy to study because they resemble the gate-model in classical computation. In addition,

in quantum computation gate-model, graph states are used as codewords in quantum error

correction. More precisely, they are the single quantum states encoded by graph codes, a

particular kind of stabilizer codes. A detailed review on graph states is [HDE+07].

3.1 De�nitions

In this section we de�ne a graph state. First we give an intuitive de�nition based on the

procedure to construct a graph state. Then we use the stabilizer formalism, described in

Section 2.1.2, to give a more compact de�nition. The �rst one could be more useful to

understand properties of the graph states connected with the classical graph theory and also

to understand how they can be prepared in laboratory. The second one is more suitable to

reason about the use of graph states in quantum error correction or in quantum computation

models.

A graph state is a quantum state made up of several constituents, with the underlying

structure of a graph that describes the interactions between these constituents.

De�nition 5 (Constructive de�nition). Given a graph G, the corresponding graph state |G〉
is de�ned associating a qubit in the state |+〉 with each vertex and applying, for each edge

15

between two qubits a and b, the unitary transformation CZ on the qubits a and b, i.e.,

|G〉 =
∏

{a,b}∈E

CZab |+〉
V .

The choice of the initial state |+〉 and of the interaction CZ creates maximal entanglement

between the qubits. Let us consider the maximally entangled state of only two qubits A and

B:

|φ〉AB =
1
2

(|00〉AB + |01〉AB + |10〉AB − |11〉AB). (3.1)

To understand what �maximally entangled� means, we have to introduce the density operator.

The density operator provides an alternative approach for describing quantum systems whose

state is not completely known. The physical system with qubits A and B and state |φ〉AB
can be described by the density operator

ρAB = |φ〉AB〈φ|.

The density operator description becomes very useful for the description of subsystem of a

composite quantum system.

If we have a system composed by two qubits A and B, described by the operator ρAB, we

can trace out the operator ρAB over qubit B to �nd the density operator for the qubit A. A

state is �maximally entangled� if its reduced state at one qubit is a multiple of the identity

operator (maximally mixed). Then the state in 3.1 is maximally entangled, since

ρA = trB(|φ〉AB〈φ|) =
1
2
1A =

1
2
|0〉A〈0|+

1
2
|1〉A〈1|

CZ has also the property that C2
Z = I and CZ = C†Z , that is, applying once the transfor-

mation on two qubits we �create� the edge and applying it again we �destroy� the edge.

Example 6. For instance, the graph state of the complete graph K3, sketched in Figure 3.1,

is

|K3〉 =
1

2
√

2
(|000〉+ |001〉+ |010〉 − |011〉+ |100〉 − |101〉 − |110〉 − |111〉).

Figure 3.2 shows the quantum circuit for the preparation of the graph state |K3〉.

With the aim of giving a more formal de�nition of graph state, we de�ne a Boolean

function fG associated with the graph. Let us denote by Sx the subset of V (G) de�ned by

the string x, and by G[Sx] the subgraph induced by Sx. The function fG(x) is then de�ned

16

v0 v1

v2

Figure 3.1: The complete graph K3

|+〉 • •
|+〉 Z •

|+〉 Z Z

Figure 3.2: Quantum circuit for the preparation of |K3〉

as

fG(x) =

0, if |E(G[Sx])| is even;

1, otherwise.

De�nition 7 (Formal de�nition). Given a graph G, a graph state is a state that is a super-

position over all basis states,

|G〉 =
1√
2n

∑
x∈{0,1}n

(−1)fG(x)|x〉 .

The two de�nitions are equivalent: �rst observe that

|+〉⊗n = 2−
n
2

∑
x∈Zn2

|x〉 .

Recall that the transformation CZ �ips the sign of the state that is applied to if both the qubits

are set to |1〉. Hence the sign of the coe�cient of each computational basis state depends on

how many times the transformation CZ is applied. From the constructive de�nition, if we see

each computational basis state as a subset of the set of vertices, we conclude that the number

of applications of CZ is equal to |E(G[S])|.
Alternatively, we can de�ne a graph state using the stabilizer formalism, described in

2.1.2.

De�nition 8. Let G = (V,E) be a graph. The associated graph state |G〉 is the unique state

17

stabilized by the set

{Kv|v ∈ V },

where Kv = σvxσ
Nv
z , i.e., each generator of the stabilizer corresponds to a vertex v ∈ V of the

graph and represents the tensor product of the Pauli matrix σx on the vertex v with a Pauli

matrix σz for each vertex in the neighborhood of v.

Proposition 9. The class of stabilizer states is strictly larger than the class of graph states.

3.2 Local unitary and local Cli�ord equivalence

The study of the properties of the entanglement in stabilizers states leads naturally to an

investigation of the action of local unitary operations on stabilizers states.

De�nition 10. An operator U that can be written as a tensor product of 2×2 unitary matrices

is a local unitary operator (LU).

An important subclass of LU operations is known as local Cli�ord operations, local unitary

operations that map the Pauli group to itself under conjugation.

The Cli�ord group on one qubit is the group of all 2× 2 unitary operators which map σu
to αuσπ(u) under conjugation, where u = x, y, z, for some αu = ±1 and some permutation

π of {z, y, z}. They play an important role in a classi�cation of stabilizer states, since the

stabilizer formalism itself is de�ned in terms of tensor of local Pauli matrices.

De�nition 11. A local Cli�ord operator (LC) on n qubits is a tensor product of n Cli�ord

operators on one qubit.

Up to a global phase factor any Cli�ord operation U can be decomposed into a sequence

of O(N2) one- and two-qubit gates in the set {H,S,CNOT}, where H is de�ned as in 2.1.1,

S ≡

(
1 0
0 i

)
and CNOT ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

If there exists a local unitary operator U , such that U |G〉 = |G′〉, the states |G〉 and |G′〉
are called LU-equivalent and they will have the same entanglement properties. In the same

way, two states |G〉 and |G′〉 are called LC-equivalent if there exists a local Cli�ord operator

U such that U |G〉 = |G′〉.

18

A polynomial time algorithm has been found to recognize whether two given states are

LC-equivalent. This algorithm is based on a graph transformation rule known in graph theory

as local complementation.

De�nition 12. The local complement Gi of a graph G = (V,E) at one of its vertices i ∈ V (G)
is the graph obtained by complementing the subgraph of G induced by the neighborhood Ni of

i and leaving the rest of G unchanged.

In algebraic terminology, the adjacency matrix AGi of G
i is de�ned as follows:

AGi = AG ⊕ (AG)i(AG)Ti ⊕D

where AG is the adjacency matrix of G, (AG)i is its i-th column and D is a diagonal matrix

such as to yield zeros on the diagonal of AGi .

Example 13. The graph in Figure 3.3(b) is obtained from the graph shown in Figure 3.3(a)

by local complementation on the black vertex.

(a) (b)

Figure 3.3: Example of local complementation

In Appendix B you can �nd an implementation written by Hyeyoun Chung (see [Chu08])

of the function that carries out local complementation on a graph, given its adjacency matrix

and one of its vertices.

It was shown by Van den Nest et al. ([dNDM04]) that two graph states are equivalent

under the local Cli�ord group if and only if there exists a sequence of local complementations

which relates their associated graphs. Since a polynomial time algorithm is known which

detects whether two given graphs are related by a sequence of local complementations, there

exists a e�cient algorithm which recognizes LC-equivalence of graph states.

Moreover, it was proved ([GKR07, Sch07]) that every stabilizer state is LC-equivalent to

some graph state and if a particular stabilizer state is given then an LC-equivalent graph

state can be found in polynomial time. Then the algorithm can recognize LC-equivalence of

all stabilizer states (and not just the subclass of graph states).

19

It has been conjectured for several years that any two LU equivalent stabilizer states are

also LC equivalent (LU-LC conjecture). Recently Ji et al. ([JCWY07]) found a counterex-

ample (see Figure 3.4) and proved that the conjecture is false. However it is still not well

understood when LU equivalence di�ers from LC equivalence and no e�cient algorithms de-

ciding LU equivalence for stabilizers are known. Another interesting challenge is �nding a

graph theoretical interpretation of LU equivalent graph states.

Figure 3.4: LU-LC counterexample.

3.3 One-way quantum computing

One-way quantum computing is a model of quantum computation alternative to the standard

quantum circuit model. A one-way computation consists of the preparation of a graph state,

followed by single-qubit measurements that destroy the entanglement of the state. Precisely,

when the model was introduced by Raussendorf and Briegel [RB01] in 2001, cluster states were

the class of entangled states considered to serve as a universal �substrate� for the computation.

Cluster states are a special case of graph states where the graph G is a two-dimensional square

lattice. This is why one-way computing is also known as cluster-state quantum computing

(see [Nie05]). Lately, this term is disappearing since models using di�erent graphs have

been proposed. The name �one-way� comes from the fact that quantum measurement is

fundamentally irreversible, so the entangled state can be used only once, because it is destroyed

by the measurements. There are good indications that this model is particularly robust to

errors and decoherence.

20

Let us enter into details on how a one-way quantum computation works. The �rst step

consists in preparing the graph state. In Section 3.1 we explained the construction of a graph

state in terms of applying quantum gates. Actually, this preparation process can be done using

measurements alone. Then the one-way model may be considered a pure measurement-only

model of quantum computation.

The second step is to perform a sequence of processing single-qubit measurements, where

the choice of measurement basis may depend on the outcomes of earlier measurements. Be-

cause of this condition, the time order of the measurements is important. The output of the

computation is the quantum state that remains after all the measurements.

21

22

4
The MS-number

In this chapter we investigate an invariant of graph states. More speci�cally, we study the

number of negative amplitude associated with the basis vectors in the description of a graph

state.

4.1 De�nitions

From the de�nition of graph state, the number of �minus signs� in a graph state |G〉 cor-
responds to the number of induced subgraphs with odd number of edges in the graph G

associated to |G〉. We call it MS-number of G and we denote it with m(G). Another way to

see this number is as the cardinality of the function fG that describes the graph state. The

function fG in De�nition 7 is, in other terms, the quadratic Boolean function

fG(x) =
⊕

1≤i,j≤n
i<j

Aijxixj = xTUAx, (4.1)

where A is the adjacency matrix of the graph G and UA is its upper triangular part. We use

the notation |f | to indicate the number of strings accepted by a boolean function f , i.e.,

|f | = |{x ∈ {0, 1}n | f(x) = 1}|. (4.2)

Then m(G) = |fG|.
Moreover we will use the denotation m(G) to indicate the number of subgraphs with even

size of a graph G, i.e., m(G) = 2|G| −m(G).

Example 14. For the complete graph K3 (see Figure 3.1), m(K3) = m(K3) = 4.

23

In the following sections we investigate some properties of m(G) and how to calculate

it from the graph in an e�cient way. New sequences of MS-numbers for familiar classes of

graphs have been found and added to The On-Line Encyclopedia of Integer Sequences [Slo09].

4.2 An explicit formula

The function in 4.1 is a quadratic form over F2, that is a homogeneous polynomial in

F2[x1, . . . , xn] of degree 2, or the zero polynomial.

An explicit formula for the number of solutions of the equation f(x1, . . . , xn) = 0 in F2

can be given. Many of the results in this section are from [LN97].

De�nition 15. Two quadratic forms f and g over F2 are called equivalent if f can be trans-

formed into g by means of a nonsingular linear substitution of variables.

If f and g are equivalent, then |f | = |g|.

De�nition 16. A quadratic form f in n variables is called nondegenerate if f is not equivalent

to a quadratic form in fewer than n variables.

De�nition 17. We will call a quadratic form f ∈ F2[x1, . . . , xn] read-once if every variable

xi appears in f exactly once. If n is odd, f = x1 + x2x3 + . . . + xn−1xn + z, otherwise

f = x1x2 + x3x4 + . . .+ xn−1xn + z, where z ∈ F2 is a constant.

Lemma 18. Let f ∈ F2[x1, . . . , xn] be a nondegenerate quadratic form. Then f is equivalent

to a read-once quadratic form.

Let us consider, as example, the function f = x1x2 + x1x3 + x2x3. It is easy to verify

that f is equivalent to the read-once quadratic form g = y1 + y2y3 and the substitution of the

variables can be expressed by the identity x = Ty, where

T ≡

1 0 0
1 1 0
1 0 1

 .

Lemma 19. Let f ∈ F2[x1, . . . , xn] be a read-once quadratic form. If n is odd, |f | = 2n−1. If

n is even, |f | is equal to 2n−1 + (−1)z⊕12
n−2

2 .

Note also that:

24

http://www.research.att.com/~njas/sequences/

Lemma 20. We can easily calculate the cardinality of the function f ∈ F2[x1, . . . , xn] from
the cardinality of its complement, that is:

|f | = 2n−1 − 2
n−2

2 ⇐⇒ |f ⊕ 1| = 2n−1 + 2
n−2

2

Proof.

|f | = |{x ∈ {0, 1}n | f(x) = 1}| = 2n − |{x ∈ {0, 1}n | f(x) = 0}|

= 2n − |f ⊕ 1| = 2n − (2n−1 + 2
n−2

2) = 2n−1 − 2
n−2

2 .

It is also easy to check that |f | = 2n−1 i� |f ⊕ 1| = 2n−1.

Graph Union

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets and edge sets,

their union G = (V,E) = G1 ∪G2 is the graph with V = V1 ∪ V2 and E = E1 ∪ E2.

Isolated vertices can be seen as a particular case of graph union where G1 or G2 is an

empty graph. If G = Kn ∪ G2 is the union of an empty graph on n nodes and a graph G2,

then m(G) = 2nm(G2).

Lemma 21. The tensor product of two states associated to the graphs G1 = (V1, E1) and

G2 = (V2, E2) is equal to the graph state associated to their union G = (V,E) = G1∪G2, that

is:

|G1〉 ⊗ |G2〉 = |G〉.

Proof. From the de�nition of graph state, we can write the above tensor product as:

(
1√
2|V1|

∑
x

(−1)fG1
(x)|x〉)⊗ (

1√
2|V2|

∑
y

(−1)fG1
(y)|y〉) =

1√
2(|V1|+|V2|)

∑
x,y

(−1)fG1
(x)⊕fG2

(y)|xy〉 =

1√
2(|V |)

∑
x.y

(−1)fG(xy)|xy〉

In the last step of the proof we use the equation

fG(xy) = fG1(x)⊕ fG2(y). (4.3)

The vector xy is the characteristic representation of a subgraph of G that is union of the

25

subgraphs of G1 and G2 represented by x and y. It follows, considering also the de�nition of

fG, that fG(xy) = 1 if and only if subgraphs x and y have sizes of di�erent parity.

Theorem 22. For G = G1 ∪G2, it holds:

m(G) = m(G1)m(G2) +m(G1)m(G2).

Proof. It is straightforward, from Eq. 4.3, that:

fG(xy) = 1⇔ (fG1(x) = 1 ∧ fG2(y)) ∨ (fG1(x) = 0 ∧ fG2(y) = 1)

This result can be recursively extended to the union of n graphs G =
⋃n
i=1Gi:

m(G) = m(
n⋃
i=1

Gi) = m(G1)m(
n⋃
i=2

Gi) +m(G1)m(
n⋃
i=2

Gi). (4.4)

4.3 Algorithm

As we have seen in 4.1, we can associate a quadratic form in F2 to a graph G. The problem

of calculating the MS-number of G can be seen as the problem of counting the number of

solution of the associated quadratic form.

Boolean polynomials f ∈ F2[x1, . . . , xn] of degree at most k are also called k-XOR formulas.

Ehrenfeucht and Karpinski described an e�cient algorithm to count the number of solutions

of an arbitrary 2-XOR-formula (Lemma 4 in [EK90]).

A quadratic form in F2 is a homogeneous 2-XOR-formula, i.e., there are no linear terms.

Theorem 23. Given a graph G with n vertices, represented by an adjacency matrix AG ∈
(F2)n×n, there exists an algorithm working in O(n3) time for computing the MS-number of

|G〉.

We make some improvements to Ehrenfeucht-Karpinski algorithm, exploiting the pecu-

liarities of the functions we deal with. Since there are no linear terms, we can cut the branch

�Case 1� in the algorithm. Moreover, if the graph is not connected, we can run an instance

of the algorithm for each connected component and calculate the MS-number for the entire

graph using Equation 4.4.

An implementation of the algorithm in GNU Octave is shown in Appendix B.

26

4.4 Binary rank

Godsil and Royle in [GR01] de�ne the binary rank of a graph. In this section we report some

results and de�nitions from [GR01] and then we seek a relation between the binary rank of a

graph and its MS-number.

De�nition 24. A read-once matrix of order n, n even, is a block diagonal matrix with n/2
blocks of the form (

0 1
1 0

)
.

We denote it with Rn. If n ≥ 3 is odd, we will call read-once matrix of order n a matrix of

the form
1 0 . . . 0

0
... Rn−1

0

De�nition 25. Let G be a graph with adjacency matrix AG. The binary rank (or 2-rank) of
G is the rank of AG calculated over F2 and it is denoted by rk2(G).

Theorem 26. Let A be a symmetric n×n matrix over F2 with zero diagonal and binary rank

m. Then m is even and there is a n×m matrix C of rank m such that

A = CRmC
T

where Rm is a read-once matrix of order m.

Proposition 27. For even n, the read-once matrix Rn is the adjacency matrix associated

with a 1-regular graph of order n. For odd n, the read-once matrix Rn is the adjacency matrix

associated with the union of a 1-regular graph of order n− 1 and a self-looped singleton.

The following theorem relates the operation of local complementation on a graph G,

de�ned in Section 3.2, with the binary rank of its adjacency matrix. Gi denotes the local

complement of the graph G at the vertex i ∈ V (G).

Theorem 28. Let G be a graph and suppose that u and v are adjacent vertices in G. Then

((Gu)v)u = ((Gv)u)v. If G′ is the graph obtained by deleting u and v from ((Gu)v)u, then
rk2(G) = rk2(G′) + 2.

27

4.5 Properties of the MS-number

Let us consider the empty graph, that consists of n isolated vertices with no edges. Every

subgraph of an empty graph is in turn an empty graph, then all of them have an even number

of edges, that is zero. It follows that:

m(Kn) = 0 for all n ≥ 1.

Proposition 29. If we exclude the graph P2, it holds that m(G) is even for all G.

Proof. This is a consequence of Warning's Theorem (see [LN97]) for polynomial equations

over �nite �elds.

Two lower bounds and an upper bound can be easily given.

Proposition 30. It holds that m(G) ≥ |E|.

Proof. For each edge we can consider the subgraph induced only by the endpoints of the edge.

This subgraph has obviously odd size.

Proposition 31. For each order n, the graph with maximum MS-number is K4 ∪Kn−4, that

is:

m(G) ≤ m(K4 ∪Kn−4), for n ≥ 4.

Proof. m(K4 ∪Kn−4) = 2n−4 · 10 = 2n−1 + 2n−3. and m(G) ≤ 2n−1 + 2(n−2)/2 and 2n−1 +
2(n−2)/2 < 2n−1 + 2n−3 ⇐⇒ n ≥ 4

4.6 MS-number for familiar classes of graphs

We use the algorithm presented in 4.3 to calculate the MS-number for the classes of graphs

de�ned in Section 2.2.2. From the numerical results we then extrapolate and prove a general

closed-form for each class. Only new results are presented in this section.

Complete graphs

Proposition 32. For a complete graph Kn of order n ≥ 1 it holds that

m(Kn) =
b(n−1)/4c∑

i=0

(
n+ 1
4i+ 3

)
.

28

Proof. We know from graph theory that any subgraph induced by a clique is a complete

subgraph and that the number of edges in a complete graph Kn of order n is equal to the

n-th triangular number tn = 1 + 2 + 3 + . . . + n. It is also easy to show that the sequence

of triangular numbers goes on according to the pattern odd, odd, even, even, odd, odd,

Then we can easily count the number of the subgraphs of Kn with odd order and claim that

m(Kn) =
b(n−2)/4c∑

i=0

[
(

n

4i+ 2

)
+
(

n

4i+ 3

)
] =

=
b(n−1)/4c∑

i=0

(
n+ 1
4i+ 3

)
. (4.5)

The sequence of numbers that comes out from this formula is: 0, 1, 4, 10, 20, 36, . . ., starting
from n = 1 (in Sloane's Encyclopedia [Slo09] as A000749).

Path graphs

Proposition 33. For n ≥ 1,

m(Pn) =

2n−1 − 2
n−1

2 , if n is odd;

2n−1 − 2
n−2

2 , if n is even.

Proof. A path graph on n vertices corresponds to the function fPn = x1x2+x3x4+. . .+xn−1xn.

If n is odd, fPn is equivalent to the readonce function with n − 1 variables and z = 0.
Since n − 1 is even, it holds: m(Pn) = 2(2(n−1)−1 − 2

(n−1)−2
2) = 2n−1 − 2

n−1
2 . If n is even,

the function fPn corresponds to the readonce function with n variables and z = 0. Then,

m(Pn) = 2n−1 − 2
n−2

2 .

The resulting sequence of numbers is: 0, 1, 2, 6, 12, 28, 56, 120, 240, . . ., starting from n = 1
(Sloane's A141447).

Cycle graphs

Proposition 34. For n ≥ 2,

m(Cn) =

2n−1, if n is odd;

2n−1 − 2
n
2 , if n is even.

29

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000749
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A141447

Proof. A cycle graph on n vertices corresponds to the function fCn = x1x2 + x3x4 + . . . +
xn−1xn + xnx1. If n is odd, fPn is equivalent to the readonce function with n variables and

z = 0. Then m(Cn) = 2(n−1). If n is even, the function fPn corresponds to the readonce

function with n−2 variables and z = 0. Then, m(Cn) = 22(2n−2−1−2
n−2−2

2) = 2n−1−2
n
2 .

Sequence of numbers: a(2) = 0, 4, 4, 16, 24, 64, 112, 256, 480, . . . (Sloane's A156232).

Star graphs

Proposition 35. If Sn is a star graph of order n ≥ 2, than

m(Sn) =
bn/2c−1∑
i=0

(
n− 1
2i+ 1

)
= 2n−2 (4.6)

Proof. The thesis follows from the fact that subgraphs with odd size must include the root

and an odd number of leaves.

Figure 4.1: C4 and S5

Star graphs belong to the more general class of complete bipartite graphs. A complete

bipartite graph is a special kind of bipartite graph such that every vertex of the �rst set is

connected to every vertex of the second set. If the sets have cardinality p and q, than the

graph is denoted with Kp,q. It is easy to check that:

m(Kp,q) = 2p+q−2

4.7 MS-number and graph isomorphism

Two graphs G and G′ are said to be isomorphic if there is a permutation p of V (G) such that

(u, v) ∈ E(G) if and only if (p(u), p(v)) ∈ E(G′). It is obvious that for two isomorphic graphs

G and G′, it holds m(G) = m(G′). The opposite implication is not true, as proven by the

following example.

30

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A156232

x1 x2 x3

(a) Graph P3

x1 x3 x2

(b) Graph co-P3

Figure 4.2: m(P3) = m(co-P3) = 4, but P3 � co-P3

Example 36. Graphs P3 and co-P3 in Figure 36 have the same MS-number, but they are not

isomorphic.

We could doubt that the graphs in the previous example have di�erent MS-number because

their sizes are di�erent. This is not true, as you can see in the next example.

Example 37. Graphs G and H in Figure 37 have the same size and the same MS-number,

but they are not isomorphic.

x1 x2 x3 x4 x5

(a) Graph G = P4 ∪K1

x1 x2 x3 x4 x5

(b) Graph H = P2 ∪ P3

Figure 4.3: m(G) = m(H) ∧ |E(G)| = |E(H)|, but G � H

We generated all the unlabeled graphs with small number of vertices (|V | < 9) using

the utility geng included in nauty [McK03]. Then we used the algorithm to calculate the

MS-number for these graphs. Besides that, we repeated this analysis only for connected and

bipartite graphs. Tables 4.1, 4.2 and 4.3 summarize the results. An entry of Table 4.1, for

example, tell us how many classes of graphs, with the same ms-number, there are.

`````````````̀Kind of graphs
Order

1 2 3 4 5 6 7 8 9

all graphs 1 2 3 5 5 7 7 9 9
connected 1 1 2 4 4 6 6 8 8
bipartite 1 2 2 3 3 4 4 5 5

Table 4.1: Number of equivalence classes of graphs for n = 1 . . . 9 on ms-number.

31



`````````````̀Kind of graphs
Order

1 2 3 4 5 6 7 8 9

all graphs 1 2 4 11 34 156 1044 12346 274668
all graphs (ms,size) 1 2 4 11 21 51 79 151 204
connected 1 1 2 6 21 112 853 11117 261080
connected (ms,size) 1 1 2 6 12 34 52 111 151
bipartite 1 2 3 7 13 35 88 303 1119
bipartite (ms,size) 1 2 3 7 10 21 29 50 65

Table 4.2: Number of equivalence classes of graphs for n = 1 . . . 9 on (ms-number, size).

4.8 MS-number as a partition function

Goldberg et al. [GGJT08] studied the complexity of a family of graph invariants known as

partition functions.

Let A ∈ Rm×m be a symmetric matrix with entries Ai,j . We denote with [m] = {1, . . . ,m}
the set of row and column indices of the matrix. In context of partition functions, elements of

this set are called spins. A mapping ξ : V → [m] assigns a spin to each vertex of the graph.

The partition function ZA associates with every graph G = (V,E) the real number

ZA(G) =
∑

ξ:V→[m]

∏
{u,v}∈E

Aξ(u),ξ(v).

Now let us consider

H2 =

(
1 1
1 −1

)
,

that is the simplest nontrivial Hadamard matrix. Then, up to a simple transformation, ZH2

counts induced subgraphs of G with an even number of edges. More precisely, our MS-number

m(G) is equals to 2N−1 − 1
2ZH2(G).

32

order
(number of classes) n size m(G)

1 (1) 1 0 0

2 1 0 0
(2) 1 1 1

3 1 0 0
(4) 3 1 2

3 2 2
1 3 4

4 1 0 0
(11) 6 1 4

12 2 4
3 2 6
4 3 4
12 3 6
4 3 8
3 4 4
12 4 6
6 5 8
1 6 10

5 1 0 0
(21) 10 1 8

15 2 12
30 2 8
90 3 12
10 3 16
20 3 8
180 4 12
10 4 16
20 4 8
150 5 12
102 5 16
135 6 12
60 6 16
5 6 20
10 6 8
30 7 12
90 7 16
45 8 16
10 9 20
1 10 20

Table 4.3: Equivalence classes of graphs based on (order, size, MS-number).

33

34

5
Cubelike graphs

We associate a cubelike graph to a graph state. A cubelike graph is de�ned to be any Cayley

graph over the Abelian group (Fn2 ,⊕). In literature, the two elements �eld, which cubelike

graphs are de�ned over, is denoted with Z2. In this section we prefer the notation F2 for

uniformity with the previous chapters.

5.1 De�nition

De�nition 38. Let Γ be a group with identity element e. Suppose C is a Cayley subset of Γ,
that is e /∈ C and whenever g ∈ C, then g−1 ∈ C. The Cayley graph X(Γ, C) of Γ with respect

to C is the graph whose vertex set is Γ, with two vertices g and h adjacent if gh−1 ∈ C.

In De�nition 7 we associated a Boolean function fG to a graph state. Given a graph state

|G〉, the set ΩG := {x ∈ Fn2 : fG(x) = 1} de�nes a Cayley graph XG = X(Fn2 ,ΩG). In analogy

with ΩG, we de�ne ΩG = {x ∈ Fn2 : x 6= 0 ∧ fG(x) = 1}. We impose the condition that x is

di�erent from the zero vector to avoid the presence of self-loops in the graph. The edge set

EXG of the Cayley graph XG is de�ned as follows:

EXG = {(u, v) ∈ Fn2 × Fn2 | fG(u⊕ v) = 1}.

In Chapter 4 we de�ned the cardinality of the function fG as the MS-number of G, that is

|fG| = m(G). Cubelike graphs associated to a graph state are regular. In particular, it holds:

Proposition 39. The graph XG is regular of degree m(G).

Proof. Let us consider any vertex v of the graph XG. The adjacency set of v is the set

Av = {u | fG(u ⊕ v) = 1} = {x + v | x ∈ ΩG}. The cardinality of the set Av is then the

35

000

001

010

011

100

101

110

111

Figure 5.1: The Cayley graph X(Fn2 ,ΩK3).

same of the set ΩG. This implies that XG is a regular graph of degree |ΩG|. The proposition
follows from the fact that |ΩG| = |fG| = m(G).

For instance, the Cayley graphs X(Fn2 ,ΩK3) and X(Fn2 ,ΩK3) associated to |K3〉 are, re-
spectively, the quartic graph in Figure 5.1 and the well-known 3-cube.

5.2 Isomorphism

It is interesting to de�ne the following relation on the set of graph states: |G〉 ∼Cayley |H〉
if and only if the Cayley graphs associated to them are isomorphic, that is X(Fn2 ,ΩG) ∼=
X(Fn2 ,ΩH). The above Cayley graphs are isomorphic if there is a permutation p of Fn2 such

that (u+ v) ∈ ΩG i� (p(u) + p(v)) ∈ ΩH .

First of all we notice that the isomorphism between two Cayley graphs can be determined

even if we examine the graphs constructed from the complementary sets.

Lemma 40. The graphs X(Fn2 ,ΩG) and X(Fn2 ,ΩH) are isomorphic i� the complementary

graphs X(Fn2 ,ΩG) and X(Fn2 ,ΩH) are isomorphic.

36

Proof. Let h be the isomorphism between X(Fn2 ,ΩG) and X(Fn2 ,ΩH). Then

(u, v) ∈ E(X(Fn2 ,ΩG))⇔

(u, v) /∈ E(X(Fn2 ,ΩG))⇔

(h(u), h(v)) /∈ E(X(Fn2 ,ΩH))⇔

(h(u), h(v)) ∈ E(X(Fn2 ,ΩH)).

It is obvious that Cayley graphs associated to states contructed from isomorphic graphs

are isomorphic.

Lemma 41. G ∼= H ⇒ |G〉 ∼Cayley |H〉.

Proof. Let h be the isomorphism between G and H. We can de�ne another bijection (more

exactly a permutation) π : Fn2 −→ Fn2 such that

π(x1x2 · · ·xn) = xh(1)xh(2) · · ·xh(n).

Let (u1u2 · · ·un, v1v2 · · · vn) be a generic edge of the Cayley graph associated to G and z =
z1z2 · · · zn the bitwise sum modulo 2 of the two vertices. This means that fG(z1z2 · · · zn) = 1.
Besides, if we consider the corresponding vertices π(u1u2 · · ·un), π(v1v2 · · · vn) ∈ V (X(Fn2 ,ΩH)),
their bitwise sum modulo 2 is π(z) = zh(1)zh(2) · · · zh(n). Since ∀(i, j) ∈ V (G).(i, j) ∈ E(G)⇒
(h(i), h(j)) ∈ E(H), we can easily see that the subgraph of H de�ned by π(z) has the same

number of edges of the subgraph of G de�ned by z, then fH(π(z)) = 1 or equivalently

(π(u), π(v)) ∈ E(X(Fn2 ,ΩH)).

For the isomorphism of the Cayley graphs associated, the condition of isomorphism of

the original graphs is su�cient, but it is not necessary. As counterexamples, let us consider

the graphs in Figure 5.2. It is evident that G and H are not isomorphic, while their Cayley

graphs are isomorphic.

Let us analyze the polynomials corresponding to these graphs: fG = x1x2+x2x3+x3x4 and

fH = x1x2 + x3x4. We can rewrite fG as fG = (x1 + x3)x2 + x3x4, that is fG(x) = fH(h(x)),
where h : F4

2 −→ F4
2 is such that h(x1x2x3x4) = (x1 + x3)x2x3x4. Then we can weaken the

condition of Lemma 41:

Lemma 42. ∃h linear such that ∀x, fG(x) = fH(h(x))⇒ |G〉 ∼Cayley |H〉

37

x1 x2 x3 x4

(a) Graph G

x1 x2 x3 x4

(b) Graph H

Figure 5.2: G � H, but |G〉 ∼Cayley |H〉

Proof. ∃h such that ∀x, fG(x) = fH(h(x)) ⇒ ∃h such that ∀x, y, fG(x + y) = fH(h(x + y)).
We assumed that h is linear, so fG(x + y) = fH(h(x + y)) = fH(h(x) + h(y)), that is the
condition of isomorphism for the Cayley graphs associated to the function.

Lemma 43. |G〉 ∼Cayley |H〉 ⇒ ∃p such that ∀x, fG(x) = fH(p(x))

Proof. If X(Fn2 ,ΩG) and X(Fn2 ,ΩH) are isomorphic, from the de�nition of isomorphism we

know that exists a bijection h such that ∀x, y.fG(x+ y) = fH(h(x) + h(y)). From here (if we

impose y = 00 . . . 0), we can also state that h is such that ∀x.fG(x) = fH(h(x) +h(0)). Then
p can be easily de�ned as p(x) = h(x) + h(0).

5.3 Connectedness

A set of elements g1, . . . , gl in a group G is said to generate the group G if every element of G

can be written as a product of elements from the list g1, . . . , gl and we write G = 〈g1, . . . , gl〉.
A Cayley graph X(Fn2 , T) is connected if and only if Fn2 = 〈T 〉.

Lemma 44. The graph X(Fn2 ,ΩG) is connected.

Proof. Let hn(x) := |{xi ∈ x : xi = 1}| be the Hamming weight of x ∈ {0, 1}n. Let

Hk(n) := {x : hn(x) = k}. By the de�nition of ΩG, we have H1(n) ⊆ ΩG. The statement of

the lemma is true, since H1(n) is the standard generating set of Fn2 .

For ΩG, we have an analogue of Lemma 44, but less straightforward. De�ning ΩG,i :=
{x : fG(x) = 1 ∧ h(x) = i}, we have ΩG =

⊎n
i=2 ΩG,i. For the set ΩG, we have ΩG,i := {x :

fG(x) = 1 ∧ h(x) = i} and ΩG =
⊎n
i=1 ΩG,i.

Lemma 45. If G is a connected graph then X(Fn2 ,ΩG,2) =
⊎2
i=1Xi(Fn−1

2 ,ΩG,2).

Proof. Let (ΩG,2,∆) be the closure of ΩG,2 with respect to the symmetric di�erence of sets ∆.

This is de�ned as A∆B = (A−B)∪(B −A), for sets A and B. Let δG : S(V (G)) −→ {0, 1}n

38

be the characteristic function of each S ∈ S(V (G)). Explicitely, δG(S) = x1x2 · · ·xn, with
xi = 1 if and only if i ∈ S. Because of δG, the symmetric di�erence corresponds to bitwise

addition modulo 2 of elements in Fn2 . Now, given that G connected, |E(G)| = |ΩG,2| ≥ n− 1.
By the pigeonhole principle, since |V (G)| = n, it follows that there are three vertices i, j, k

such that {i, j}, {j, k} ∈ E(G). Therefore {i, k} ∈ (ΩG,2,∆), because {i, k} = {i, j}∆{j, k}.
By repeated applications of ∆, it results that (ΩG,2,∆) =

⊎
p even

Hp(n). Thus the connected
components of X(Fn2 ,ΩG,2) are two isomorphic copies of X(Fn−1

2 ,ΩG,2). The vertices of these
two graphs are labeled by the elements of Fn−1

2 C Fn2 and of its coset, respectively.

Lemma 46. Let G be a connected graph on n vertices. Then X(Fn2 ,ΩG) is connected, if there
is a set S ⊆ V (G) such that |S| and |E(G[S])| are odd.

Proof. By Lemma 45, X(Fn2 ,ΩG) has two isomorphic subgraphs with 2n−1 vertices each,

labeled by the elements of
⊎
p even

Hp(n) and
⊎
q odd

Hq(n), respectively. Suppose that there
is a set S ⊆ V (G) such that |S| and |E(G[S])| are odd. Then δG(S) ∈ ΩG,q, where q is

odd. The lemma follows, given that Fn2 = 〈H2(n) ∪ {δG(S)}〉. In fact, δG(S) gives a perfect

matching between the two copies of X(Fn−1
2 ,ΩG,2).

The star graph on n vertices is denoted by K1,n−1. The following observation is a conse-

quence of Lemma 46.

Lemma 47. Let G ∼= K1,n−1. Then X(Fn2 ,ΩG) =
⊎2
i=1Xi(Fn−1

2 ,ΩG,2).

5.4 Eingesystem

The adjacency matrix of X = X(Fn2 ,ΩG) is the 2n×2n matrix A(X) =
∑

x∈ΩG
ρreg(x), where

ρreg(x) is the regular (permutation) representation of x ∈ ΩG. Speci�cally

ρreg(x1x2 · · ·xn) =
n⊗
i=1

σxix

,

It is clear that A(X) commutes with any other adjacency matrix of a Cayley graph of Fn2 ,
given that this group is abelian. By this fact, the eigensystem of A(X) is readily available,

being this matrix diagonalizable by an Hadamard matrix (of Sylvester type) H⊗n:

H⊗nA(X)H⊗n =
n⊕
i=1

(λi) =
n⊕
i=1

∑
x∈ΩG

χi(x)

 ,

39

where χi is the i-th irreducible character of x ∈ ΩG.

40

6
Local-Complementation-and-Switching Graph

6.1 Introduction

The operation of local complementation, described in 3.2, is deeply studied in the context of

graph states. It is a very simple operation and it is e�cient to check whether two graphs are

related by a sequence of local complementations. Local complementation is also guaranteed

to preserve the amount of entanglement into the associated graph states. In this section we

introduce another graph transformation called switching. Deciding switching equivalence of

graphs is polynomial time reducible to graph isomorphism [CC80]. Graph states associated to

graphs that belong to di�erent switching classes may have di�erent amount of entanglement.

Since every graph state on n qubits can be constructed from the empty graph by a composition

of switching and local complementation operations on the empty graph state [Sev06], studying

the properties of the switching operator could be useful for the classi�cation of graph states.

6.2 Switching

The graph operation of switching was introduced by van Lint and Seidel (1966). For a survey,

see [Hag01].

De�nition 48. The graph GiS = (V,E′) is the switching of G = (V,E) at i if (k, l) ∈ E′ if
and only if one of the following two conditions is satis�ed:

1. (k, l) ∈ E and (k 6= i and l 6= i);

2. (k, l) /∈ E and (k = i or l = i).

Instead of a single vertex we can apply the switching operation to a subset σ of V , which

is then called selector. In other words, given a graph G = (V,E) and a selector σ ⊆ V ,

41

the switching of G by σ is de�ned as the graph GσS = (V,E′), which is obtained from G by

removing all edges between σ and its complement V − σ and adding as edges all nonedges

between σ and V −σ. Figure 6.1(b) shows an example of switching for the graph G in 6.1(a),

where σ is the set of black vertices.

(a) G (b) Gσ

Figure 6.1: Gσ is a switch of G

In Appendix B you can �nd an implementation in GNU Octave of the function that carries

out switching on a graph, given its adjacency matrix and a selector σ.

6.3 LCS graphs

A group G acting on a set Ω is called transitive if for every α, β ∈ Ω there is g ∈ G such that

gα = β. Let Ωn be the set of labeled graphs on n vertices. Ehrenfeucht et al. [AER04] proved

that the composition of local complementation and switching forms a transitive group acting

on the set Ωn. In other words, every labeled graph in Ωn can be constructed from the empty

graph by using switchings and local complementation.

De�nition 49. The Local-Complementation-and-Switching Graph (for short, LCS graph)

Gn is the graph de�ned as follows:

� the set of vertices of Gn is Ωn;

� two vertices X and Y are adjacent in Gn if X can be obtained from Y by a single

application of local complementation or switching.

Paths on such graphs tell us which unitary transformations we should apply to a graph

state |X〉 if we want obtain another graph state |Y 〉 with the same dimension. Once that

a physical meaning will be associated to the switching operator, they will also tell us the

di�erence of entanglement between two graph states.

42

Basic properties

The order of Gn is |Ωn| = 22n(n−1)/2, that is the number of labeled graphs on n vertices. The

set

[X] = {Xσ | σ ∈ V (X)}

is called the switching class of X. The graph X is called a generator of the switching class. It

is well known that a switching class of a graph X = (E, V) has 2|V |−1 graphs [Hag01]. There

are 2
1
2
n2− 3

2
n+1 switching classes that completely partition Ωn.

6.4 Graph G3 and G4

We show two examples of LCS graphs: G3 and G4.

Figure 6.2: The LCS-graph G3

43

Figure 6.3: The LCS-graph G4

44

6.5 The conjecture

We observe that, for n = 3, 4, 5, the subgraphs induced by the switching classes are, respec-

tively, K4, K4,4 and the Clebsch graph (see [Wei] for a description of the Clebsch graph).

Let us de�ne a particular cubelike graph associated with a connected graph. Let X be a

connected graph and consider a cubelike graph whose connection set consists of the weight-2

characteristic vectors of the edges ofX. This graph has two isomorphic connected components;

let Z2(X) denote one of these two components [Roy05].

We conjecture the following:

Conjecture 50. Each of the graphs induced by the switching classes is Z2(Cn), where Cn is

the cycle graph with n vertices.

45

46

7
Open Problems

There are many interesting open problems connected with the results of this thesis:

1. Characterizing the MS-number with regards to graph transformations (complementa-

tion, local complementation, switching).

2. Find the relation between the minimum/maximum MS-number of the graph over its LC

orbit and the geometric measure of entanglement of the graph state.

3. How is the structure of the entire LCS graphs Gn?

4. Prove Conjecture 6.5 on LCS graphs.

5. Find the physical operation corresponding to the switching transformation on a graph

state.

6. Study the properties of codes corresponding to a 3-hypergraph state (see Appendix A).

47

48

A
Extensions

In this chapter we study what happens if we modify the idea of graph state as de�ned in

Section 3.1.

A.1 Edge graph states

Let us try to consider, as inputs of the boolean function fG, the subsets of E(G), instead
of the subsets of V (G). We are then interested no longer to the vertex-induced, but the

edge-induced subgraphs. An edge-induced subgraph is a subset of the edges of the graph G

together with their endpoints. Given a subset SE of E(G) we can denote the corresponding

edge-induced subgraph by G[SE].
Let S(E(G)) be the powerset of E(G) and δG : S(E(G)) −→ {0, 1}n the characteristic

function of each SE ∈ S(E(G)). Then we can de�ne

De�nition 51. The edge graph state of G as the vector

|G〉 :=
1√
2n

∑
SE⊆E(G)

(−1)|V (G[SE])||δG(SE)〉.

In this section we will name vertex graph states the graphs states de�ned as in Chapter

3. For instance, the edge graph state of the graph G in Figure 5.2(a) is |G〉 = 1
2
√

2
(|000〉 +

|001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉).
Before stating some results about edge graph states we recall further terminology about

graph theory.

A line graph L(G) of a graph G is obtained by associating a vertex with each edge of the

graph and connecting two vertices with an edge if and only if the corresponding edges of G

meet at one or both endpoints.

49

A graph is claw-free if and only if it does not contain the complete bipartite graph K1,3

(known as claw) as a vertex induced subgraph.

The following theorem holds:

Theorem 52. Given a graph G with maximum degree 2, let |φ〉 be its edge-graph state and

let |ψ〉 be the vertex-graph state of its line graph L(G). Then |φ〉 = |ψ〉.

Proof. If ∆(G) ≤ 2 each connected component of the graph G can be either an isolated

vertex, a path graph or a cycle graph. Let us notice that the isolated vertices do not a�ect

the structure of the graph states and that subgraphs of a cycle graph are again path graphs.

The line graph of a path graph Pn is the path graph Pn−1. Since |V (Pn)| = n and |E(Pn−1)| =
n − 2, the parity is the same, so the corresponding vectors in the graph states will have the

same coe�cient. Moreover the line graph of the cycle graph Cn is the graph Cn itself, and

also in this case the sign will be the same, since |V (Cn)| = |E(Cn)| = n. We just proved that

|φ〉 = |ψ〉, since they are sums of vectors with the same coe�cients.

If ∆(G) ≥ 3 than the graph claw is an edge-induced subgraph of the graph G. It is easy

to see that the line graph of K1,3 is the complete graph K3. Now, since |V (K1,3)| = 4 and

|E(K3)| = 3, the vector corresponding to this subgraph has a positive coe�cient in |φ〉 and a

negative one in |ψ〉, so the two graph states are di�erent.

A.2 3-hypergraph states

We seek for mathematical objects �similar to graph states� that correspond to homogeneous

polynomials in F2[x1, . . . , xn] of degree n higher than 2. This generalization may be repre-

sented in graph theory by n-uniform hypergraphs. In this section we analyze the instance

n = 3. The graph H in Figure A.1 is a 3-hypergraph with four vertices and two edges.

Formally, H = ({v1, v2, v3, v4}, {e1 = {v1, v2, v3}, e2 = {v1, v3, v4}}).

v1

v2

v3

v4

e1

e2

Figure A.1: An example of 3-hypergraph.

50

The construction of the quantum state associated to the hypergraph is very similar to

the case n = 2. We associate a qubit in the state |+〉 with each vertex and we apply, for

each edge e1 = {a, b, c}, the unitary tansformation controlled-controlled-Z (or controlled-

controlled-phase, C2P) on the qubits a, b, c. The e�ect of this transformation on three qubits,

each of them in the state |+〉, is:

|φ〉 = C2P(|+〉⊗3) = |φ〉ABC =
1

2
√

2

∑
x1x2x3

(−1)x1x2x3 |x1x2x3〉ABC . (A.1)

We call 3-hypergraph state a quantum state constructed as above.

Under this construction, the quantum state corresponding to the hypergraph H of Figure

A.1 is the following:

|H〉 =
1
4

(|0000〉+ |0001〉+ |0010〉+ |0011〉+ |0100〉+ |0101〉+ |0110〉+ |0111〉+

+ |1000〉+ |1001〉+ |1010〉 − |1011〉+ |1100〉+ |1101〉 − |1110〉+ |1111〉). (A.2)

The circuit in Figure A.2 prepare the system in the state |H〉.

|+〉 •
|+〉 • •
|+〉 Z •

|+〉 Z

Figure A.2: Quantum circuit for the preparation of |H〉

It is important to observe that 3-hypergraph states form a class of multipartite entangled

states, but the transformation C2P does not create �maximal entanglement� between qubits.

Indeed, the reduced state at one qubit of the state |φ〉 in Equation A.1 is not maximally

mixed:

ρA = trBC(|φ〉ABC〈φ|) =
3
4
|+〉〈+|+ 1

4
|−〉〈−|. (A.3)

Hypergraph states, in particular 3-hypergraph state, may �nd application in a new model

of one-way quantum computation based on natural three-qubit interactions (see [TPKV06]).

The de�nition of MS-number can be easily extended for 3-hypergraph states. The MS-

number of a 3-hypergraph state |H〉 is the number of subhypergraphs of H with odd number

of superedges. The complexity class #P contains function problems of the form "compute

f(x)", where f is the number of accepting paths of an NP machine. It is interesting to

51

notice that the problem of calculating the MS-number of an arbitrary 3-hypergraph state is

#P-complete (the proof of this statement comes straightforward from Theorem 1 in [EK90]).

52

B
Code

GNU Octave

In the implementation of the following programs, we used the extra package Communications

to deal with vectors and matrices from the Galois �eld GF (2).

Calculating the MS-number of a graph state

% Copyright Alessandro Cosentino (6th February 2009)

% Given the adjacency matrix A of a graph G

% the function MS calculate in polynomial time

% the number of induced subgraphs of G with odd number of edges

function ms = MS(A)

[T, C, z] = karpinski(A);

n = size(A, 1);

m = size(T, 1);

if (mod(m, 2) == 1)

ms = 2^(n−1);
else

ms = 2^(n−1) + (−1)^(¬z)*2^(n−(m+2)/2);
end

endfunction

% The function KARPINSKI takes as input the adjacency matrix of a graph,

% A, and returns the matrix T that transform A to a readonce matrix

53

% using the algorithm Ehrenfeucht−Karpinski

function[T, C, z] = karpinski(A)

[nr, nc] = size(A);

if (nr == nc) % check if A is a square matrix

n = nr;

else

error("not a square matrix");

end

if ¬(any(any(A))) % check if G(A) is an empty graph

error("empty graph");

end

if ¬(connected(A)) % check if the graph G(A) is connected

error("not connected graph");

end

[T, C, z] = karpinskiRec(A, n, 1);

endfunction

function [T, C, z] = karpinskiRec(A, n, i)

if (i == n)

T = [];

C = [];

z = 0;

return;

end

alpha = A(i, i+1:n);

[T_beta, C_beta, z_old] = karpinskiRec(A, n, i+1);

k = size(T_beta, 1);

if (k == 0 && any(alpha))

y_k = [1 zeros(1, n−i)];
T = [y_k; 0 alpha];

C = [0 0];

z = z_old;

return;

elseif (k == 0 && ¬any(alpha))

54

T = T_beta;

C = C_beta;

z = z_old;

return;

elseif ¬any(alpha)
T = [zeros(k, 1) T_beta];

C = [0 C_beta];

z = z_old;

return;

end

%% check if alpha can be expressed as a linear combination

%% of the rows of matrix T_beta

M = [alpha; T_beta];

if (brank(M) 6= k) % Case 2

y_k = [1 zeros(1,n−i)];
T_beta_large = [zeros(k,1) T_beta];

T = [T_beta_large; y_k; 0 alpha];

C = [C_beta 0 0];

z = z_old;

return;

else % Case 3

y = gf(T_beta', 1) \ gf(alpha', 1);

freex = 0;

betaType = mod(k, 2); % betaType=0 if Type II, =1 if Type I

if (betaType)

j = 2;

else

j = 1;

end

islarge = 0;

while (j < length(y))

s = y(j);

t = y(j+1);

if (s == 1 && t == 1)

if ¬islarge
yp = zeros(k,1);

yp(j) = 1;

yp(j+1) = 1;

T_beta = [yp T_beta];

islarge = 1;

55

else

T_beta(j,1) = 1;

T_beta(j+1,1) = 1;

end

freex = freex + 1;

elseif xor(s,t)

if ¬islarge
yp = zeros(k,1);

yp(j) = ¬s;
yp(j+1) = ¬t;
T_beta = [yp T_beta];

islarge = 1;

else

T_beta(j,1) = ¬s;
T_beta(j+1,1) = ¬t;

end

end

j = j + 2;

end

%% Case 3.c: beta is of type I

if betaType

dep = y(1); %% dep = alpha is dipendent of y_0 ? (1 yes, 0 no)

if (¬dep && mod(freex,2) == 1)

if islarge

T_beta(1,1) = 1;

T = T_beta;

end

elseif (dep && mod(freex,2) == 1)

z = xor(z_old, 1);

T(1:k−1,:) = T_beta(2:k,:);

T(k,:) = T_beta(1,:);

T(k+1,:) = [1 zeros(1,n−i)];
C(1:k−1) = C_beta(2:k);

C(k) = xor(C_beta(1), 1);

C(k+1) = 1;

elseif (dep && mod(freex,2) == 0)

z = z_old;

T(1:k−1,:) = T_beta(2:k,:);

T(k,:) = T_beta(1,:);

T(k+1,:) = [1 zeros(1,n−i)];
C(1:k−1) = C_beta(2:k);

C(k) = C_beta(1);

56

C(k+1) = 1;

else

T = T_beta;

C = C_beta;

z = z_old;

end

else

%% Case 3.d: beta is of type II and the number of 'free' x is odd

if (¬betaType)
z = z_old;

if (mod(freex,2))

T = [1 zeros(1, n−i); T_beta];

C = [0 C_beta];

else

T = T_beta;

C = C_beta;

end

end

end

end

endfunction

Switching

%Copyright Alessandro Cosentino (6th February 2009)

%The function SWITCHING takes as input the adjacency matrix of a graph,

%G, and a set of vertices s, and carries out switching on s.

function G_S = Switching(G, s)

[rows, cols] = size(G);

%First check to make sure that the inputs are valid:

%i.e. that each element in s is not pit of range,

%and that G is a square matrix.

if(rows != cols)

G_S = ['Invalid adjacency matrix.'];

return

end

if((min(s) < 1) || (max(s) > rows))

G_S = ['Invalid vertex index.'];

57

return

end

%Calculate the new adjacency matrix.

G_S = G;

G_S(s, :) = not(G_S(s, :));

G_S(:, s) = not(G_S(:, s));

Finding switching orbit

With the aim of constructing switching orbits of graphs, we generalize the program findLCOrbit

from [Chu08] in order to accept any graph transformation. The signature of the function is

now:

function L = findTrOrbit(G, Transformation, disp),

where Transformation is any function handle.

58

QCL

QCL is a programming language developed by Bernhard Ömer ([Ö03]) for simulation of quan-

tum algorithms on classical computers. The syntax is derived from procedural languages,

such as C or Pascal.

Generating a graph state in QCL

int n;

input "order",n;

qureg G[n];

Mix(G);

int i;

int j;

int q;

for i = 0 to n-1 {

for j = i+1 to n-1 {

print "edge (",i,",",j,")";

input "1(yes)/0(no)", q;

if q==1 {

CPhase(pi, G[i]&G[j]);

}

else {

if q!=0 {

exit "input error";

}

}

}

}

dump;

59

60

Bibliography

[AER04] Tero Harju Andrzej Ehrenfeucht and Grzegorz Rozenberg. Transitivity of local

complementation and switching on graphs. Discrete Mathematics, 278 Issues 1-

3:45�60, 2004.

[CC80] Charles J. Colbourn and Derek G. Corneil. On deciding switching equivalence of

graphs. Discrete Applied Mathematics, 2:181�184, September 1980.

[Chu08] Hyeyoun Chung. The study of entangled states in quantum computation and

quantum information science. Master's thesis, MIT, August 2008. arXiv:0808.

1546.

[Dan05] Lars Eirik Danielsen. On self-dual quantum codes, graphs, and boolean func-

tions. Master's thesis, Dept. Informat., Univ. Bergen, Norway, Mar. 2005.

arXiv:quant-ph/0503236v1.

[Dan08] Lars Eirik Danielsen. On Connections Between Graphs, Codes, Quantum States,

and Boolean Functions. PhD thesis, Dept. Informat., Univ. Bergen, Norway, May

2008.

[Die05] Reinhard Diestel. Graph Theory. Springer-Verlag, third edition, 2005. Avail-

able from: http://www.math.uni-hamburg.de/home/diestel/books/graph.

theory/GraphTheoryIII.counted.pdf.

[DJ92] D Deutsch and R Jozsa. Rapid solution of problems by quantum computation.

Proc Roy Soc Lond A, 439:553�558, October 1992.

61

http://arxiv.org/abs/0808.1546
http://arxiv.org/abs/0808.1546
http://arxiv.org/abs/quant-ph/0503236v1
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.counted.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.counted.pdf

[dNDM04] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. An e�cient algorithm

to recognize local cli�ord equivalence of graph states. Phys. Rev. A, 70,:034302,

2004. arXiv:quant-ph/0405023.

[EHI07] Artur Ekert, Patrick Hayden, and Hitoshi Inamori. Basic concepts in quantum

computation. 2007. arXiv:quant-ph/0011013.

[EK90] Andrzej Ehrenfeucht and Marek Karpinski. The computational complexity of

(xor, and)-counting problems. Technical Report 8543-CS, ICSI - Berkeley, 1990.

Available from: citeseer.ist.psu.edu/ehrenfeucht90computational.html.

[Fey81] Richard Feynman. Simulating physics with computers. International Journal of

Theoretical Physics, 1981.

[GGJT08] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A com-

plexity dichotomy for partition functions with mixed signs. April 2008. arXiv:

0804.1932.

[GKR07] Markus Grassl, Andreas Klappenecker, and Martin Roetteler. Graphs, quadratic

forms, and quantum codes. 2007. arXiv:quant-ph/0703112.

[Got07] Daniel Gottesman. Stabilizer codes and quantum error correction. 2007. arXiv:

quant-ph/9705052.

[GR01] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts in

Mathematics. Springer, 2001.

[Gro97] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack.

Physical Review Letters, 79, 1997.

[Hag01] Jurriaan Hage. Structural Aspects of Switching Classes. PhD thesis, Leiden Uni-

versity, May 2001.

[HDE+07] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J.

Briegel. Entanglement in graph states and its applications. 2007. arXiv:

quant-ph/0602096.

[HHHH07] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki.

Quantum entanglement. 2007. arXiv:quant-ph/0702225.

62

http://arxiv.org/abs/quant-ph/0405023
http://arxiv.org/abs/quant-ph/0011013
citeseer.ist.psu.edu/ehrenfeucht90computational.html
http://arxiv.org/abs/0804.1932
http://arxiv.org/abs/0804.1932
http://arxiv.org/abs/quant-ph/0703112
http://arxiv.org/abs/quant-ph/9705052
http://arxiv.org/abs/quant-ph/9705052
http://arxiv.org/abs/quant-ph/0602096
http://arxiv.org/abs/quant-ph/0602096
http://arxiv.org/abs/quant-ph/0702225

[IR01] IBM-Research. Ibm's test-tube quantum computer makes history, December

2001. Available from: http://domino.watson.ibm.com/comm/pr.nsf/pages/

news.20011219_quantum.html.

[JCWY07] Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The lu-lc conjec-

ture is false. September 2007. arXiv:0709.1266.

[LN97] Rudolf Lidl and Harald Niederreiet. Finite �elds, volume 20 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, 1997.

[McK03] Brendan D. McKay. nauty user's guide., 2003. Available from: http://cs.anu.

edu.au/~bdm/nauty/nug.pdf.

[Mos08] Michele Mosca. Quantum algorithms. August 2008. arXiv:0808.0369.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 2000.

[Nie05] Michael A. Nielsen. Cluster-state quantum computation. Rev. Math. Phys, XX,

2005.

[Ö03] Bernhard Ömer. Structured Quantum Programming. PhD thesis, Institute for

Theoretical Physics - Vienna University of Technology, 2003. Available from:

http://tph.tuwien.ac.at/~oemer/qcl.html.

[RB01] R. Raussendorf and H. Briegel. A one-way quantum computer. Phys. Rev. Lett.,

86(22):5188�5191, 2001.

[Roy05] Gordon Royle. Colouring cubelike graphs, September 2005. Available from: http:

//people.csse.uwa.edu.au/gordon/talks/cubelikevac.pdf.

[Sch07] D. Schlingemann. Stabilizer codes can be realized as graph codes. 2007. arXiv:

quant-ph/0111080.

[Sev06] Simone Severini. Two-colorable graph states with maximal schmidt measure.

Physics Letters A, 356:99�103, July 2006. arXiv:quant-ph/0511147.

[Sho95] Peter W. Shor. Scheme for reducing decoherence in quantum computer memory.

Phys. Rev. A, 52(4):R2493�R2496, Oct 1995.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J.Sci.Statist.Comput., 26:1484, 1997.

arXiv:quant-ph/9508027.

63

http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20011219_quantum.html
http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20011219_quantum.html
http://arxiv.org/abs/0709.1266
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://arxiv.org/abs/0808.0369
http://tph.tuwien.ac.at/~oemer/qcl.html
http://people.csse.uwa.edu.au/gordon/talks/cubelikevac.pdf
http://people.csse.uwa.edu.au/gordon/talks/cubelikevac.pdf
http://arxiv.org/abs/quant-ph/0111080
http://arxiv.org/abs/quant-ph/0111080
http://arxiv.org/abs/quant-ph/0511147
http://arxiv.org/abs/quant-ph/9508027

[Slo09] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2009. published

electronically at http://www.research.att.com/~njas/sequences/.

[TPKV06] M. S. Tame, M. Paternostro, M. S. Kim, and V. Vedral. Natural three-qubit

interactions in one-way quantum computing. Phys. Rev. A, 73,:022309, 2006.

arXiv:quant-ph/0507173.

[Wei] Eric Weisstein. Wolfram MathWorld. Available from: http://mathworld.

wolfram.com/.

64

http://www.research.att.com/~njas/sequences/
http://arxiv.org/abs/quant-ph/0507173
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/

	Introduction
	Overview
	Notation

	Preliminaries
	Quantum information processing
	Basic concepts of quantum computing
	Stabilizer formalism
	Fast quantum algorithms
	Quantum computational complexity
	Quantum error-correction codes

	Graph Theory
	Notation and terminology
	Familiar classes of graphs
	Hypergraphs

	Graph States
	Definitions
	Local unitary and local Clifford equivalence
	One-way quantum computing

	The MS-number
	Definitions
	An explicit formula
	Algorithm
	Binary rank
	Properties of the MS-number
	MS-number for familiar classes of graphs
	MS-number and graph isomorphism
	MS-number as a partition function

	Cubelike graphs
	Definition
	Isomorphism
	Connectedness
	Eingesystem

	Local-Complementation-and-Switching Graph
	Introduction
	Switching
	LCS graphs
	Graph G3 and G4
	The conjecture

	Open Problems
	Extensions
	Edge graph states
	3-hypergraph states

	Code

