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differenza è che alcuni lottano e non rinunciano
a realizzare il proprio destino, a costo di
affrontare qualunque rischio, mentre altri si
limitano a ignorarli, timorosi di perdere quel
poco che hanno. E cos̀ı non potranno mai
riconoscere il vero scopo della vita...
Arriva un momento nella vita in cui non rimane
altro da fare che percorrere la propria strada...
I sogni sono fatti di tanta fatica. Forse,
se cerchiamo di prendere delle scorciatoie,
perdiamo di vista la ragione per cui abbiamo
cominciato a sognare e alla fine scopriamo che
il sogno non ci appartiene più. Se ascoltiamo
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Introduction

Azobenzene and its derivatives are molecules very often used to construct photomodulable
materials and molecular devices. The main characteristic of this kind of molecules is
the efficient and reversible trans → cis photoisomerization, that occurs in either sense,
without secondary processes. A peculiar advantage is that the trans isomer absorbs more
strongly in the UV, at ∼320 nm, and the cis one in the visible, around 450 nm. Therefore,
using the appropriate wavelength, one can convert either isomer into the other one.

Among the most important applications we can mention optical memories and switches,
nanotechnology and molecular machines, many of which are based on the large variation
of geometry that the photoisomerization can induce [1–15]. A very recent and “funny”
application of azobenzenic compounds and their isomerization processes is the synthesis
and employment of the “nanoworms”, by Sasaki et al [16]. The authors have synthesized
a nanovehicle that takes advantage of the cis− trans photoisomerization of an azobenzene
chromophore to generate an inch-worm-like motion on a surface (see Figure 1). The
photoisomerization of the azobenzene chassis produces the bending of the worm.

Figure 1: Scheme of a nanovehicle (“nanoworm”) synthesized with a new photoactive
moity, employing an azobenzene chassis. Figure taken from ref. [16].

When an azobenzene sample is exposed to the radiation, it reaches a photostationary
state: the composition (trans with respect to cis) depends on the competition between the
photoisomerization and the cis → trans thermal relaxation. In this process, what matters
are the wavelength and the irradiance of exciting light, the Φcis→trans and Φtrans→cis

quantum yields, and the thermal relaxation kinetic constant. The photoisomerization
quantum yields Φ=(number of isomerized molecules)/(number of absorbed photons)
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depend on the wavelength: Φcis→trans ≈ 50% and Φtrans→cis ≈ 25% for the n → π∗

excitation; Φcis→trans ≈ 40% and Φtrans→cis ≈ 15% for the π → π∗ excitation. It is clear
that knowing how the photoisomerization quantum yield is affected when azobenzene
is inserted in chemical environments where some geometrical constraints are imposed,
is important to develop such technologies. For some applications, it is also useful to
estimate the response times, that find a lower limit in the azobenzene photodynamics in
supramolecular environments.

The photoisomerization mechanism of azobenzene has been debated, during the last
decades, because of the peculiar wavelength dependence of the quantum yields and because
at least two standard possibilities exist: N=N double bond torsion and N inversion. This
fundamental interest and the wealth of potential applications have stimulated a long record
of experimental studies [1, 5, 6, 8, 13, 17–20]. Under the theoretical point of view, it is
important to assess the potential energy surfaces and the molecular dynamics that follows
the optical excitation. Our research group has performed simulations of the photodynamics
of azobenzene molecule [21] by mixed quantum-classical methods [22]. Such simulations
have been successful in explaining the dependence of the quantum yield on the excitation
wavelength. However, our simulations have been conducted on the isolated azobenzene
molecule, while almost all the experimental data have been obtained in condensated phase.
In particular, Diau’s group has shown a strong dependence of the excited states dynamics
on the solvent viscosity [6].

The general aim of this work is to study the excited state dynamics of azobenzene in
solution, specifically to simulate its transient spectra, in order to produce data directly
comparable with the experiments. In particular, we shall study the reorientation of the
transition dipole moment during the excited state relaxation, in order to understand the
time resolved fluorescence anisotropy measurements obtained by the group of Diau and
collaborators [6]. This research will also permit to study the reorientation of the whole
molecule, which leads to alignment of an azobenzene sample in a polarized laser field.

This PhD Thesis will be organized in three main parts, each one composed of two
chapters. In the first Chapter we shall describe the photoisomerization process and
the experimental work on the reaction mechanism. The second Chapter describes an
ab initio study of the transition dipole moment for the forbidden n → π∗ transition of
trans-azobenzene, considering the vibrational motions that contribute to the oscillator
strength, and focussing on the most effective ones, i.e. those of lowest frequency. The
second part contains a preliminary study of the photodynamics. Chapter 3 presents the
reparameterization of the semiempirical AM1 hamiltonian, to be used for the semiclassical
dynamics simulations. Chapter 4 describes the simulations of the photoprocesses for
a molecule in vacuo, and in two solvents of different viscosity, implicitly described by
Brownian nuclear trajectories. The last part is dedicated to the study of the explicit
inclusion of the solvent effects on the photodynamics of azobenzene, choosing methanol
and ethylene glycol as representative solvents. In Chapter 5 we discuss the determination
of the solute-solvent interaction parameters, that will be used to carry out the semiclassical
dynamics of azobenzene in solution with a QM/MM method. The simulations and their
results will be described in the last Chapter.
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Chapter 1

Photochemistry of azobenzene

1.1 Isomer structures of azobenzene

The trans-azobenzene (TAB) geometry in its ground electronic state has been debated for
a long time because the phenyl rings can easily rotate out of the plane of the CNNC group,
and because such rotations may be favoured in certain environments (solutions, crystal
structure, mesophases etc). Many experimental and theoretical studies have found either
planar (C2h) or twisted (C2 or Ci) structures [23–39]. The matter has been reviewed by
Briquet et al, who concluded in favour of the C2h planar structure, at least for the isolated
molecule, on the basis of accurate ab initio calculations [39].

For cis-azobenzene (CAB), an X-Ray Diffraction study [40] shows a non planar
structure with C2 symmetry, with a CNNC dihedral angle near to 8◦ and the phenyl rings
rotated by 53.3◦ with respect to the plane defined by the NNC atoms. This conformation
can be explained considering the steric hindrance of phenyl rings that would be very near if
they were in the same plane. Ab initio and DFT calculations confirm the rotated structure
for CAB [30,41] with NNCC angles of ≈ 55◦.

Figure 1.1: Conformation of trans- and cis-azobenzene with the relative numbers of the
principal atoms.
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1.2 Spectroscopic features of azobenzene

The steady-state UV-visible spectra of both azo-isomers in solutions are featured with
two absorption bands that represent, respectively, the S0 → S1 and a superposition of the
S0 → S2, S0 → S3 and S0 → S4 transitions. In the visible region, the S0 → S1 transition
corresponds to a perpendicular electronic excitation from the non bonding n orbital of the
N atom to the antibonding π∗ orbital with the maximum intensity near 440 nm for both
isomers. For the trans-isomer with C2h symmetry, this electronic transition is strictly
forbidden. The two related orbitals, n and π∗, have Au and Bu symmetries, respectively,
therefore the state symmetry is Bg. Since the dipole components have ungerade symmetry,
at the equilibrium geometry the transition dipole vanishes. The π → π∗ transition, at
about 320 nm, is of Bu symmetry, so it is allowed and strong.

For the cis-isomer, that belongs to the C2 point group, both the n → π∗ transition
(λmax ≃ 440 nm) and the π → π∗ one (λmax ≃ 280 nm) have B symmetry. As usual,
the former is weak and the latter is relatively strong. However, compared with those of
TAB, the n→ π∗ band of CAB is stronger by almost a factor of three, and the π → π∗ is
weaker.

1.3 Photoisomerization mechanism

In Table 1.1 we show several values of quantum yields obtained by different groups in a
variety of conditions, along 50 years of research. Although the different origin of these
values does not guarantee a perfect consistence of the data, it is possible to individuate two
trends: the Φcis−trans quantum yield is always greater than the Φtrans−cis one, and both
of them, especially the second one, are larger if the excitation occurs in the n→ π∗ band.
The former observation can be explained by taking into account the relative stability of
the two isomers: CAB is 12 kcal/mol higher in energy than TAB [42] and the potential
energy curve of the excited state is more favorable to the cis→ trans conversion than to
the trans→ cis one. The dependence of the quantum yield with the initial excited state
is a clear violation of Kasha’s rule.

The photodynamics of azobenzene has stimulated a wealth of experimental and
theoretical work, because of its peculiar violation of Kasha’s rule and the related debate on
the photoisomerization mechanism. Originally, two pathways were proposed: N=N double
bond torsion and N inversion, respectively when the excitation wavelength falls into the
n → π∗ band or into the π → π∗ one [1, 47, 49, 52, 53]. This view is supported by the
observation of a wavelength dependent quantum yield of the photoisomerization process.
Recently, the symmetric NNC bending has been suggested to be important in the decay
of excited trans-azobenzene, because the crossing between the S0 and S1 PESs can also
be reached along this internal coordinate [6,54]. In Figure 1.2, the different isomerization
mechanisms discussed in the literature are shown. Some theoretical works [32,34,38,54,55]
show that the inversion way is viable only in the S1 state (n → π∗ transition), and the
torsional one is energetically preferred both in S1 and in S2. A conical intersection between
the PESs corresponding to S0 and S1 is placed in correspondence with the minimum of
S1, at the rotamer geometry (with the CNNC dihedral angle near to 95◦). This shape of
the potential energy surfaces has been confirmed by several theoretical studies [34,38,54].
Semiempirical calculations done by our group have reproduced with sufficient accuracy
the features of the PESs and of the conical intersection, although some recent ab initio
results (those of Diau’s and Orlandi’s groups [6, 38, 54, 55]) were not available when the
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Table 1.1: Experimental quantum yields for the photoisomerization of azobenzene in
different solvents, and computational simulation results for the isolated molecule (TSH =
Trajectories with Surface Hopping, FMS = Full Multiple Spawning wavepacket dynamics).

excitation solvent solvent Φtrans→cis Φcis→trans Ref.

band polarity viscosity

n→ π∗ low low 0.21-0.28 0.40-0.56 [43–48]

medium low 0.24-0.26 0.58-0.69 [46]

high low 0.31 0.46 [46]

protic low 0.20-0.36 0.42-0.63 [45,46,49,50]

low high 0.18 0.60 [44]

protic high 0.23-0.42 0.53 [44]

TSH simulation, without solvent 0.33±0.03 0.61±0.03 [21]

FMS simulation, without solvent 0.46±0.08 0.68±0.11 [51]

π → π∗ low low 0.09-0.13 0.40-0.44 [43–48]

medium low 0.12 0.40 [46,48]

high high 0.16 0.35 [46,48]

protic low 0.10-0.22 0.30-0.50 [45,46,49,50]

low high 0.05 0.40 [44]

protic high 0.03-0.05 0.50 [44]

TSH simulation, without solvent 0.15±0.02 0.48±0.03 [21]

reparameterization was done (see Section 3.3). It was then possible to carry out more
complete studies of the PESs, showing that the conical intersection found for the torsion
of the N=N double bond (rotamer) and the symmetric bending NNC belong to the
same crossing seam, that can be reached from the Franck-Condon region by different
combinations of the two internal motions.

In the simulations performed for the isolated molecule, four cases have been considered:
the cis → trans and trans → cis isomerizations, and the n → π∗ and π → π∗

excitations [21,51,56]. The results obtained from the simulations of the isolated molecule
show that the torsional pathway is dominant in all four cases and the results are in
agreement with the experimental ones: the computed quantum yields are close to the
higher limit in the range of experimental values for non polar and low viscosity solvents.
The quantum yields are determined by the competition between the excited state decay
and the advancement along the reaction coordinate (dihedral angle CNNC). Although
both coordinates are considered important in the decay, only the first one conduces to the
isomerization: the photoisomerization via inversion would need an asymmetric bending
motion. The simulations show that most of the excited molecules decay before the torsion
angle attains the value of 90◦, i.e. before reaching the middle point of the isomerization
pathway. The earlier the molecule decays, the lower is the probability of isomerizing, but
the inertia can drive the molecule to overcome the barrier in the S0 PES. In the case of
π− π∗ excitation, the molecules convert very rapidly to S1. At this point they have more
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Figure 1.2: Photoisomerization mechanisms of azobenzene.

energy than in the case of direct excitation to S1, and decay faster to the ground state.
The excess energy is mainly concentrated in the symmetric bending motion. The large
oscillations along this coordinate in the S1 PES permit to reach the intersection with S0,
so that the S1 → S0 decay can occur when the molecule is still at the beginning of the
isomerization pathway (“early decay”). In the decay of both excited states (S1 and S2)
there is a combination of the torsional and bending motions, but the molecules excited
to S2 exhibit stronger bending oscillations and earlier decay, which explains the smaller
photoisomerization quantum yield obtained in this case.

1.4 Fluorescence anisotropy

Time-resolved spectroscopy is the most powerful experimental tool to study the
photochemical dynamics. It has provided important information about the
photoisomerization mechanism of azobenzene. In the last year, the researchers have
monitored spectroscopically the dynamics of the n → π∗ state of TAB by different time
resolved techniques, i.e. differential absorption [2–4], fluorescence [5,6], IR and Raman [5,7]
and photoionization [8]. In almost all cases, one finds more than one time scale of the
excited state decay, which cannot be represented by a simple exponential function. In
particular, a short component (0.1-0.4 ps) and a slower one (1-3 ps) have been individuated.

Among the experimental techniques applied to study the n→ π∗ excited state of TAB,
we have mentioned the time resolved fluorescence spectroscopy. In these experiments, the
fluorescence light is polarized, if the transition dipole moment maintains the memory of
its original orientation. In other words, the direction of the transition dipole relative to
the emission (~µf ) has a preferential relationship with the one relative to the absorption
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Figure 1.3: Polarized femtosecond fluorescence up-conversion transients of TAB in hexane
with excitation at λex = 440 nm and detection at different λfl with both parallel and
perpendicular polarization as indicated [6].

(~µa). This occurs if the excited molecule has no time to rotate to a random orientation
before emitting. In this case, the n → π∗ absorption and emission of TAB involve the
same pair of states. Before emitting, the molecule cannot undergo an overall rotation
the lifetime of the excited state is of the order of one picosecond. However, in such a
short time the molecule can undergo important geometrical changes. Thus, the direction
of ~µf can change and the fluorescence polarization decays in time. Then, measuring the
polarization changes it is possible to obtain information about the internal motions of the
molecule before emission.

In the experimental work by Diau and coworkers [6], the system response in two solvents
with different viscosity is analyzed. It is observed how both the fluorescence intensity and
anisotropy decay in time, and this decay is fitted with different exponential functions.
In hexane, the fluorescence intensity presents two decay times, the shorter one (0.6-1.7
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ps), associated with the anisotropy decay and the faster one(0.15-0.33 ps), with constant
anisotropy. In a more viscous solvent (ethylene glycol) the fluorescence decay becomes
slower and is represented by three times: 0.35-0.65 ps, 3.1-3.6 ps, and ∼20ps, the last one
with a small weight (3%). The anisotropy decay is negligible, being only associated with
the last component. In both solvents, the anisotropy tends to a non null value for long
times, confirming the fact that the change of the ~µ orientation it is not due to the overall
rotation of the molecule. Based on these results, Diau and coworkers propose that two
mechanisms are active in the decay of the n→ π∗ excited state. In particular, the torsion
around the N=N double bond would be the slow motion, responsible for the fluorescence
decay and strongly inhibited by the viscous solvent. The fast decay would mainly be due
to the symmetric NNC bending motion, that is less likely to alter the direction of ~µf .

However, the experiments do not provide detailed information about the direction of
the transition dipole moment in the absorption. The polarization changes provide a clue
about the internal motion of the molecule before emission, but a theoretical determination
of the dependence of the dipoles on the internal coordinates, and a simulation of the excited
state dynamics, would shed more light on this problem.



Chapter 2

Oscillator strength and
polarization of the forbidden
n → π

∗ band of trans-azobenzene

In this chapter, we present a computational study of the n − π∗ transition, focussing on
its oscillator strength and polarization. We shall take into account the anharmonicity
of the most important vibrational modes, the effect of a finite temperature and that of
a polar solvent. The direction of the transition dipole moment is also determined, as a
first step towards a theoretical interpretation of the time resolved fluorescence anisotropy
measurements by Chang et al [6]. As we have seen in Chapter 1, these experiments
provide precious data about the photodynamics of the n − π∗ excited TAB. The solvent
viscosity is shown to slow down the decay of fluorescence, and even more the decay of
its anisotropy. In order to relate these observations to the geometrical and electronic
relaxation processes, one needs to know the direction of the dipole moment associated
with the absorption/emission of a photon, and how it changes along the most important
internal coordinates.

As we have mentioned in Chapter 1, the equilibrium geometry of the molecule of TAB
probably has a C2h symmetry, and the n − π∗ transition is forbidden, i.e. the transition
dipole moment is null. For this reason, the determination of the direction of the transition
dipole ~µa that is responsible of the n − π∗ absorption band is not a trivial problem. Of
course, to tackle the problem of the fluorescence anisotropy and its decay, one must know
first of all the direction of ~µa. The idea will be to individuate the vibrational modes that
modify the molecular geometry so as to generate a non vanishing transition dipole moment
to permit the transition. The most important coordinates will be those that produce a
greater moment, having larger amplitude and more influence on the electronic structure.

2.1 Oscillator strength

This study is based on the general expression for the total oscillator strength of an
electronic band, in the Born-Oppenheimer approximation:

f =
2

3

∑

v,v′

P0v∆E0v′,1vµ
2
0v′,1v (2.1)
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Here v and v′ are the vibrational quantum numbers of the ground and excited states,
respectively. The associated vibronic states will be indicated as |ψ0χ0v〉 and |ψ1χ1v′〉.
∆E0v,1v′ is the transition energy of the 0v → 1v′ subband, and ~µ0v,1v′=〈ψ0χ0v|~µ|ψ1χ1v′〉
is the corresponding transition dipole moment. P0v is the population of the initial state
|ψ0χ0v〉.

For a polyatomic molecule, Eq. 2.1 contains a double summation over a very large
number of vibrational states. In fact, v′ spans a wide range, especially when the ground
and excited state equilibrium geometries differ noticeably, as in the case of azobenzene.
The number of important terms in the v summation depends on the P0v factors, i.e. on the
temperature and on the ground state vibrational frequencies. To simplify the expression
of the oscillator strength, the first approximation is introduced: ∆E0v,1v′ ≈ ∆E0,1. With
this approximation we neglect the differences between the individual transition energies,
replacing them with the vertical transition energy (closure approximation):

f ∼= 2

3
∆E0,1

∑

v,v′

P0vµ
2
0v′,1v =

2

3
∆E0,1

∑

v

P0v〈ψ0χ0v|~µ2
0,1|ψ1χ1v′〉 (2.2)

where, ~µ0,1 = 〈ψ0|~µ|ψ1〉 is the electronic transition dipole moment.
Moreover, a second approximation has been applied. It consist on assuming an

harmonic potential for the ground state, writing the wavefunctions χ0v in terms of the
normal coordinates:

Qr =
∑

r

Lα,rρα (2.3)

where

ρα = (Xα −X0,α)m1/2
α (2.4)

where Xα are the cartesian coordinates of atoms, X0,α their equilibrium values, and
mα the associated masses. Together with the harmonic approximation, we introduce a
linear approximation for the transition dipole, which is also valid for small displacements
Xα −X0,α:

~µ(Q) =
∑

r

(

∂~µ01

∂Qr

)

Q=0

Qr (2.5)

where Q is the collection of the normal coordinates Qr. Only the non-symmetric
coordinates yield non vanishing terms in the summation, since, for the totally symmetric
coordinates, (∂~µ01/∂Qr)Q=0. In this way, the expression of the oscillator strength breaks
up into a sum of contributions, one for each normal coordinate and for each cartesian
component µ0,1,λ of the ~µ0,1 transition dipole:

f ∼= 2

3
∆E0,1

∑

λ

Sλ (2.6)

with

Sλ =
∑

r

(

∂µ0,1,λ

∂Qr

)2

Q=0

[

∑

vr

Pvr 〈χ(r)
vr

|Q2
r|χ(r)

vr
〉
]

(2.7)
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Here, vr and χ
(r)
vr are the quantum number and the wavefunction for the r-th normal mode,

while λ numbers are the cartesian components of the ~µ0,1 vector. Pvr is the probability
factor for the r-th mode, with P0v =

∏

r Pvr . In the harmonic approximation we have:

Pvr = e−vr h̄ωr/KBT /(1 − e−vr h̄ωr/KBT ) (2.8)

and

〈χ(r)
vr

|Q2
r |χ(r)

vr
〉 = h̄ω−1

r

(

vr +
1

2

)

(2.9)

With a little algebra we obtain:

Sλ =
∑

r

h̄

2ωr

(1 + eh̄ωr/KBT )

(1 − eh̄ωr/KBT )

(

∂µ0,1,λ

∂Qr

)2

Q=0

(2.10)

The partial derivative
∂µ0,1,λ

∂Qr
is the limit for Qr tending to zero of the incremental ratio

µ(Qr)/Qr, where all the displacements Qs along the normal coordinates with s 6= r are
null. In fact we are interested in the changes of the transition dipole moments for finite
displacements Qr, and more precisely, for a displacement of the order of Qtp

r = (h̄/ωr)
1/2.

This value coincides with the turning point of the wavefunction of the vibrational level
with v = 0, i.e., the point where the potential is equal to the zero point vibrational energy:

1

2
ω2

rQ
2
r =

1

2
h̄ωr ⇒ Qtp

r =

(

h̄

ωr

)1/2

(2.11)

The derivatives can be evaluated numerically by computing ~µ0,1 at small values of the

Qr coordinates. We have chosen to compute ~µ0,1 at Qtp
r = (h̄/ωr)

1/2, i.e. the classical
turning point, because here we have the maximum of the integrand in the matrix element

〈χ(r)
0 |Q2

r |χ
(r)
0 〉. Then, in the expression 2.10, we approximate:

h̄

2ωr

(

∂µ0,1,λ

∂Qr

)2

Q=0

∼=
[

µ2
0,1,λ

]

Qr=Qtp
r

(2.12)

In this way we avoid the numerical inaccuracies associated with the finite differences
approximation of the derivative, and we partially take into account the higher order terms
in the expansion of ~µ0,1 as a function of Qr.

2.1.1 TAB geometry and vibrational analysis.

As we already mentioned in the Chapter 1, some experimental and computational results
[33, 35, 39] indicate that the equilibrium geometry of TAB is not planar, because of the
easy rotation of the phenyl rings around the N-C bonds. However, the most accurate
studies [35,38,39] favour a planar C2h structure. In this work, and as a first step, we have
optimized the TAB geometry and obtained the vibrational frequencies with three methods:
DFT with the B3LYP functional and the 6-31G* basis set, MP2 with the same basis set,
and again DFT B3LYP/6-31G* within the PCM representation of a polar solvent (in this
case ethanol, with a dielectric constant of 24.55). The geometry we have obtained is planar
and compares well with experimental data and accurate computational results. Also, the
6-31G* basis yields geometries in good agreement with the 6-311G* ones, so we have used
the smaller basis to determine the PES and to perform the normal coordinate analysis,
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and the larger one to calculate the transition dipole moments and the excitation energies,
by the TD-DFT method. Our results are collected in Table 2.1 for comparison.

Table 2.1: Main geometrical parameters of trans-azobenezene, obtained with different
methods. The DFT calculations make use of the B3LYP functional. Distances in Å,
angles in degrees.

6-31G* basis set 6-311G* basis set

Parameters DFT MP2 PCM DFT MP2 PCM Exp. [35]

rNN 1.260 1.279 1.262 1.253 1.272 1.255 1.260

rNC 1.419 1.422 1.419 1.418 1.421 1.418 1.427

rCC 1.398 1.398 1.399 1.395 1.400 1.396 1.399

6 NNC 114.8 113.5 115.1 115.2 113.8 115.5 113.6

6 NCC 124.8 124.8 124.9 124.7 124.7 124.8 124.7

6 CNNC 180.0 180.0 180.0 180.0 180.0 -179.9 180.0

To summarize, the results labelled as “DFT” are based on the B3LYP/6-31G* ground
state PES and normal coordinates, with TD-DFT/6-311G* transition quantities computed
at B3LYP/6-31G* geometries; the “MP2” label means that the normal coordinate
treatment has been done at MP2/6-31G* level, and the ground state energies have also
been recomputed with the same method, at the B3LYP/6-31G* geometries while the
transition dipole moments at the B3LYP/6-311G*; and the “PCM” label refers to PCM-
B3LYP/6-31G* normal coordinates and energies, with PCM-TD-DFT/6-311G* transition
properties [57,58], still at B3LYP/6-31G* geometries.

2.1.2 Low temperature limit.

If we assume the low temperature (T near to absolute zero) or high frequency limit
(h̄ωr >> KBT ), such that only the vibrational ground state (v=0) is populated, the
expression of Sλ further simplifies to:

Sλ =
∑

r

h̄

2ωr

(

∂µ0,1,λ

∂Qr

)2

Q=0

(2.13)

After the geometry optimization, the frequencies and the normal modes of TAB have
been calculated, considering again the three methods described above. The frequencies
and the contributions to Sx, Sy and Sz in the low temperature limit according to eqs. 2.6
and 2.13 are shown in Table 2.2. The cartesian frame is body fixed and referred to the
equilibrium geometry of TAB (see Fig. 2.1). The x axis coincides with the N-N one, the
y axis lies on the molecular plane, and the z axis is the C2 symmetry axis.

The S0 and S1 states of TAB are of Ag and Bg symmetry, respectively. Modes with Ag

and Bg symmetry yield vanishing transition dipole moments, because of the presence of an
inversion center. Therefore only the ungerade modes are active: the Au modes contribute
to Sx and Sy, and the Bu modes to Sz. In fact, the Bu modes, that retain the planarity
of TAB, contribute very little to the oscillator strength. There are 66 normal modes: 11
Au, 22 Bu, 23 Ag and 10 Bg.
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Figure 2.1: Reference coordinate system for trans-azobenzene (TAB) and n−π∗ transition
dipole vector ~µ01.

Table 2.2: Normal mode analysis and contributions to the oscillator strength in the low
temperature limit. All the Au and Bu modes with frequencies below 700 cm−1, and the
Ag and Bg ones below 500 cm−1 are listed. We give the squared transition dipole x, y
components for the Au modes, and the z component for the Bu ones.

ωr (cm−1) µ2
0,1,x,µ

2
0,1,y (10−5 a.u.) or µ2

0,1,z (10−8 a.u.)

r SYMM DFT MP2 PCM DFT MP2 PCM

1 Au 26.1 11.9 21.4 839,1507 1970,3633 1980,3356

2 Au 64.3 61.4 66.1 241,458 289,578 384,694

3 Bu 86.4 86.7 91.1 324 361 144

4 Bg 106.9 57.8 91.5 - - -

5 Ag 223.6 227.3 221.5 - - -

6 Bg 258.6 234.5 248.6 - - -

7 Ag 307.3 307.4 306.6 - - -

8 Au 309.1 297.9 308.8 582,991 681,1220 1073,1750

9 Au 419.6 396.3 418.3 99,116 107,132 187,224

10 Bg 422.8 397.0 421.0 - - -

11 Bg 492.2 455.9 489.4 - - -

12 Bu 530.6 532.6 529.5 225 256 529

13 Bu 547.0 546.8 545.1 36 49 4

14 Au 560.9 475.2 560.5 645,1177 142,246 1202,2126

15 Ag 627.2 625.5 619.5 - - -

16 Bu 633.0 632.3 626.0 225 256 225

19 Au 705.8 572.3 703.5 57,169 808,1760 98,288
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Table 2.3: Normal mode analysis and contributions to the oscillator strength in the low
temperature limit, in the DFT calculations. For the Au modes, we give the squared
transition dipole x, y components, and for the Bu ones, the z component. The Ag and Bg

modes with frequencies below 500 cm−1 are listed.

r SYMM. ωr (cm−1) µ2
x (10−5 a.u.) µ2

y (10−5 a.u.) µ2
z (10−8 a.u.)

1 Au 26.1 839 1507 -

2 Au 64.3 241 458 -

3 Bu 86.4 - - 324

4 Bg 106.9 - - -

5 Ag 223.6 - - -

6 Bg 258.6 - - -

7 Ag 307.3 - - -

8 Au 309.1 582 991 -

9 Au 419.6 99 116 -

10 Bg 422.8 - - -

11 Bg 492.2 - - -

12 Bu 530.6 - - 225

13 Bu 547.0 - - 36

14 Au 560.9 645 1177 -

16 Bu 633.0 - - 225

19 Au 705.8 57 169 -

21 Au 800.2 13 91 -

22 Bu 839.7 - - 49

23 Au 864.2 190 267 -

27 Au 952.7 6 2 -

28 Au 984.6 22 100 -

31 Au 1006.4 1 29 -

32 Bu 1017.7 - - 64

35 Bu 1048.7 - - 256

37 Bu 1108.5 - - 441

39 Bu 1184.6 - - 1681

40 Bu 1191.2 - - 4

43 Bu 1262.4 - - 529

44 Bu 1343.2 - - 100

46 Bu 1368.4 - - 121

49 Bu 1500.1 - - 64

51 Bu 1534.4 - - 36

53 Bu 1639.4 - - 49

55 Bu 1656.4 - - 400

57 Bu 3185.1 - - 16

60 Bu 3195.8 - - 1

61 Bu 3207.0 - - 36

63 Bu 3218.1 - - 16

66 Bu 3235.0 - - 529
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Table 2.4: Normal mode analysis and contributions to the oscillator strength in the low
temperature limit, in the MP2 calculations. For the Au modes, we give the squared
transition dipole x, y components, and for the Bu ones, the z component. The Ag and Bg

modes with frequencies below 500 cm−1 are listed.

r SYMM. ωr (cm−1) µ2
x (10−5 a.u.) µ2

y (10−5 a.u.) µ2
z (10−8 a.u.)

1 Au 11.9 1970 3633 -

2 Bg 57.8 - - -

3 Au 61.4 289 578 -

4 Bu 86.7 - - 361

5 Ag 227.3 - - -

6 Bg 234.5 - - -

7 Au 297.9 681 1220 -

8 Ag 307.4 - - -

9 Au 396.3 107 132 -

10 Bg 397.0 - - -

11 Bg 455.9 - - -

12 Au 475.2 142 246 -

13 Bg 492.3 - - -

14 Bu 532.6 - - 256

15 Bu 546.8 - - 49

16 Au 572.3 808 1706 -

18 Bu 632.3 - - 256

21 Au 742.9 0 0 -

22 Au 835.0 244 398 -

24 Bu 843.9 - - 49

26 Au 879.1 2 12 -

28 Au 893.5 2 0 -

30 Au 903.3 8 154 -

32 Bu 1023.9 - - 49

35 Bu 1060.4 - - 225

37 Bu 1122.6 - - 484

39 Bu 1203.8 - - 1521

40 Bu 1213.2 - - 9

43 Bu 1280.0 - - 484

44 Bu 1352.2 - - 144

47 Bu 1477.2 - - 49

49 Bu 1508.8 - - 64

52 Bu 1543.3 - - 36

53 Bu 1656.5 - - 16

56 Bu 1668.9 - - 400

57 Bu 3223.0 - - 16

61 Bu 3242.2 - - 64

63 Bu 3250.7 - - 4

66 Bu 3264.0 - - 576
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Table 2.5: Normal mode analysis and contributions to the oscillator strength in the low
temperature limit, in the PCM calculations. For the Au modes, we give the squared
transition dipole x, y components, and for the Bu ones, the z component.The Ag and Bg

modes with frequencies below 500 cm−1 are listed.

r SYMM. ωr (cm−1) µ2
x (10−5 a.u.) µ2

y (10−5 a.u.) µ2
z (10−8 a.u.)

1 Au 21.4 1980 3356 -

2 Au 66.1 384 694 1

3 Bu 91.1 - - 144

4 Bg 91.5 - - -

5 Ag 221.5 - - -

6 Bg 248.6 - - -

7 Ag 306.6 - - -

8 Au 308.8 1073 1750 -

9 Au 418.3 187 224 1

10 Bg 421.0 - - -

11 Bg 489.4 - - -

12 Bu 529.5 - - 529

13 Bu 545.1 - - 4

14 Au 560.5 1202 2126 1

16 Bu 626.0 - - 225

19 Au 703.5 98 288 -

21 Au 800.0 22 150 -

22 Bu 832.2 - - 100

23 Au 863.5 355 500 1

27 Au 954.8 16 5 1

29 Au 988.7 30 153 1

30 Bu 1007.5 - - 144

32 Au 1010.6 3 20 1

35 Bu 1042.6 - - 225

37 Bu 1103.7 - - 361

39 Bu 1176.3 - - 1444

40 Bu 1180.0 - - 49

43 Bu 1256.8 - - 729

44 Bu 1338.6 - - 49

46 Bu 1364.1 - - 196

49 Bu 1493.5 - - 100

51 Bu 1528.5 - - 36

53 Bu 1631.6 - - 25

55 Bu 1647.9 - - 441

57 Bu 3147.3 - - 16

61 Bu 3163.5 - - 49

63 Bu 3171.0 - - 16

66 Bu 3192.1 - - 729
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From the tables here presented, it is apparent that the z component is always negligible
and for this reason we shall pay more attention to the Au coordinates. We are interested
in the lowest frequency normal modes, which have the largest zero point amplitude and
produce the most important contributions to the transition dipole moment. With all
three methods, the lowest frequency is the symmetric torsion of the phenyl groups around
the N-C bonds. Its symmetry is Au and a deformation along this coordinate produces
a C2 structure. According to the DFT calculations, the next frequency is associated
with the torsion of the N=N double bond, again an Au mode, and the third one with
the antisymmetric NNC bending (Bu symmetry). The fourth mode is the antisymmetric
torsion of the phenyl groups (Bg symmetry). A deformation along this coordinate produces
a Ci structure (see Figure 2.2). The frequency ordering of the low frequency modes
obtained by MP2 calculations is different, because the potential for the phenyl torsion is
shallower.

Figure 2.2: Schematization of the different molecular motions related to the lowest
frequency modes.

The n−π∗ vertical excitation energy, computed at the TD-DFT/6-311G∗ level at DFT,
MP2 and DFT-PCM geometries are shown in Table 2.7. Experimental values reported in
the literature are shown in Table 2.6. The vapour phase spectra show the n−π∗ absorption
maximum at 2.82 eV [59]. Non polar solvents bring about a red shift, which is offset in
the polar or protic ones. The oscillator strengths have been measured in vapour phase,
and show a modest increase with temperature: 0.0071 at 472 K and 0.0077 at 599 K. In
solution larger values were found, especially with polar solvents. The accuracy of these
data is rather low, with relative errors of the order of 10%. In particular, the vapour
phase data rely on the determination of the vapour pressures, which is in turn based on
absorption measurements for the π − π∗ band.
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Table 2.6: Vertical transition energies ∆E0,1 (from the absorption maximum) and
oscillator strengths f for the n−π∗ band of trans-azobenzene in vapour phase and various
solvents.

solvent ∆E0,1 (eV) f Ref.

vapour, 472 K 2.82 0.0071a [59]

vapour, 599 K 2.82 0.0077a [59]

n-hexane 2.77 0.0100a [5]

n-hexane 2.77 0.0100b [60]

cyclohexane 2.77 0.0096b [45]

cyclohexane 2.77 0.0100b [61]

iso-octane 2.77 0.0095b [43]

DMSO 2.79 0.0110b [62]

methanol 2.79 0.0103b [63]

ethylene glycol 2.82 0.0129b [60]

a f value given in the literature reference.
b f value inferred by us from the available spectra.

Table 2.7: Vertical transition energies ∆E0,1, oscillator strengths f and the angle of the
transition dipole α for the n−π∗ band of trans-azobenzene, obtained from the calculation
with the three methods: DFT, MP2 and PCM, at low and room temperature.

(T = 0 K) (T = 298 K)

Method ∆E0,1 (eV) f α f α

DFT 2.56 0.0024 53.4 0.0150 53.3

MP2 2.63 0.0040 54.0 0.0672 53.7

PCM 2.60 0.0047 52.8 0.0385 52.5

In the low temperature limit, the computed oscillator strengths, based on the data of
Table 2.6, are of the right order of magnitude, but underestimated. MP2 yields a value
in better agreement with the experimental data than DFT, and the PCM result, which is
larger, reproduces the trend found in polar solvents (see Table 2.7).

In the other hand, we are interested in the direction of the transition dipole moment.
Since the µ0,1,z component is practically negligible, the transition dipole moment lies in
the molecular plane. Therefore, its direction can be simply expressed as the angle between
the transition dipole vector and the N-N axis. For almost all of the Au coordinates the
µ0,1,x and the µ0,1,y components have opposite signs: the exceptions (one mode in the
DFT treatment and two in the MP2 and PCM ones) correspond to almost negligible
contributions to the oscillator strength. Then, we can define the average angle between
the N-N axis (x direction) and the transition dipole moment on the basis of the squares
of the two components:
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α = arctg

(
√

Sy

Sx

)

(2.14)

2.1.3 Finite temperature.

At room temperature for the low frequency modes, the vibrational levels are very near,
and then, not only the vibrational ground level is populated. Since three of the normal
modes that promote the n − π∗ absorption have frequencies well below KBT (i.e. 210
cm−1, at room temperature), the low temperature approximation is not tenable. We have
therefore applied eq. (2.10), instead of (2.13), with T = 298 K.

The f values obtained in this way, shown in Table 2.7, are overestimated, especially
by the MP2 and PCM methods. The reason is that the harmonic approximation for
the potential and the linear approximation for the transition dipole are not valid for
large amplitude deformations. In particular, for the Q1 mode (phenyl torsion) the µ0,1,λ

functions deviate from linearity towards lower values. Moreover, in certain cases the true
potential rises steeper than the harmonic one.

We have therefore studied the dependence of the U(Q) potential energy function and
of the ~µ0,1 transition dipole on the most important internal coordinates, as we shall detail
in the next section. On the basis of such data, we have computed the average of the
oscillator strength by classical statistics, as described in section 2.3.

2.2 Potential energy and transition dipole functions.

In Table 2.8 we report the four lowest frequency coordinates. The fourth one has not
been considered till now because of its Bg symmetry. However, the rotations of the phenyl
groups are largely independent from each other, so a purely symmetric motion (Q1) is
not to be expected, even under mild external perturbations (collisions or solute-solvent
interactions).

Table 2.8: Internal motions of lowest frequency (largest amplitude).

DFT MP2 PCM

NORMAL MODE ωr ωr ωr MOTION

1 (Au) 26.1 11.9 21.4 Symmetric rotation of phenyls

2 (Au) 64.3 61.4 66.1 Torsion around NN double bond

3 (Bu) 86.4 86.7 91.1 Antisymmetric bending NNC

4 (Bg) 106.9 57.8 91.5 Antisymmetric rotation of phenyls

The most important internal coordinate, for the promotion of the n→ π∗ absorption, is
the symmetric torsion of the phenyl groups, which corresponds to the first normal mode,
Q1. The associated frequency is very low, so the zero point vibrational motion has a
large amplitude, the related transition dipole is also large (see Table 2.2), and its effect is
further amplified at finite temperatures. The antisymmetric torsion is also a low frequency
coordinate (Q4, i.e. the fourth normal mode in the DFT and PCM treatments, and the
second in the MP2 one), but it does not contribute to f for symmetry reasons. However,
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the phenyl groups are able to rotate almost independently, so we have decided to take into
account both of their torsional angles (ϕ1 and ϕ2) in the statistical averaging. Another
important contribution arises from the torsion of the N=N double bond (Q2), i.e. the
dihedral angle θ = 6 CNNC−180◦. It corresponds to the mode with frequency between 61
and 66 cm−1 in the three treatments.

Therefore, we have computed U(Q) and µ0,1,λ(Q) as functions of ϕ1, ϕ2 and θ, by
optimizing all of the other internal coordinates. We have then represented these functions
analytically, taking care of their symmetry properties. For arbitrary geometries, we need
to redefine the body fixed frame and therefore the µ0,1,λ components. The x axis is still

coincident with the N-N one, and the z axis is defined with reference to the ~RNN , ~R′
NC

and ~R′′
NC vectors, i.e. the relative positions of the atoms of the C′N′N′′C′′ group: N′′ vs.

N′, C′ vs. N′, and C′′ vs. N′′, respectively. We first orthogonalize ~R′
NC and ~R′′

NC with

respect to ~RNN , and we normalize them, whence the ~A and ~B unit vectors that lie on the
C′N′N′′ and N′N′′C′′ planes. The vector ~RNN ∧ ( ~A− ~B), after normalization, is the z axis.
For a more detailed information see the Appendix A.

Then, we have run three kinds of calculations, hereafter called “1D”, “2D” and “3D”,
with Nx = 1, 2 and 3, respectively. The 1D calculations only consider the symmetric
rotation of the phenyl groups, with angles ϕ1 = ϕ2, thus dealing with C2 geometries only.
The 2D calculations consider the independent rotations of both phenyl groups. Finally, for
the 3D calculations we also include the torsion of the dihedral angle CNNC (θ), which is a
key coordinate in the photoisomerization mechanism and in the fluorescence depolarization
process. The Q3 coordinate (antisymmetric NNC bending) has not been included in the
classical statistical treatment, because of its negligible effect on the oscillator strength.

2.2.1 Symmetry considerations.

The symmetry considerations are important for two basic reasons: they are useful to obtain
a complete map of the quantities under study without the need to do the calculations of
all points, allowing us to save computer time. Moreover, they are used to understand
the behavior of the function plotted and they are necessary to impose the correct sign
pattern to the dipole functions, that are affected by the sign arbitrariness of the electronic
wavefunctions. In the 3D calculations we consider the variation of the angles ϕ1 and ϕ2

(independent phenyls rotation) and θ (CNNC angle torsion). Our aim is to represent the
potential energy function as

U(ϕ1, ϕ2, θ) = Umin(ϕ1, ϕ2) +
K(ϕ1, ϕ2)

2
[θ − θmin(ϕ1, ϕ2)]

2 (2.15)

where Umin(ϕ1, ϕ2) is the minimum of the potential energy as a function of θ, K(ϕ1, ϕ2)
is the force constant and θmin(ϕ1, ϕ2) is the equilibrium angle. The three parameters are
determined from three potential energy values computed at θ=-15◦,0◦ and 15◦. The dipole
components are represented as

µλ(ϕ1, ϕ2, θ) = µλ(ϕ1, ϕ2, 0) +

(

∂µλ

∂θ

)

ϕ1,ϕ2,0
θ +

(

∂2µλ

∂θ2

)

ϕ1,ϕ2,0

θ2

2
(2.16)

where µλ(φ1, φ2, 0) is the transition dipole moment corresponding to the 2D case, with
θ=0◦, while its derivatives are computed from the dipole values at θ=0 and ±15◦ (we
shall drop the electronic indices 0,1 from the transition dipole, from now on). The U and



2.2 Potential energy and transition dipole functions. 39

µλ functions are determined for a grid of ϕ1, ϕ2 points and for the three different values
of θ (0,and ±15◦), with constrained geometry optimizations at the DFT/6-31G* level.
Energies and dipoles are then computed according to the three procedures (DFT, MP2
and PCM). In this way, we easily obtain the 12 parameters Umin, K, θmin, µλ(ϕ1, ϕ2, 0),
(

∂µλ

∂θ

)

ϕ1,ϕ2,0
and

(

∂2µλ

∂θ2

)

ϕ1,ϕ2,0
(λ = x, y, z) for each pair of ϕ1, ϕ2 values. The above 12

functions of ϕ1, ϕ2 are fitted by two-dimensional cubic splines [64]:

fij(ϕ1, ϕ2) =
3
∑

r,s=0

Ars,ij(ϕ1 − ϕ1,i)
r(ϕ2 − ϕ2,j)

s (2.17)

where φ1,i φ2,j are the nodes of a suitably chosen grid and fij is the interpolating
polynomial for the [φ1,i,φ1,i+1], [φ2,j ,φ2,j+1] cell. The Ars,ij coefficients are chosen by
a least squares fit of the computed values. We were able to choose a number of cells such
that the deviations of the spline functions from the ab initio data was quite negligible
(more details can be found in Appendix B).

For the 2D calculations we only need the values of U and µλ at θ=0, with variable ϕ1

and ϕ2: this is just a subset of the data needed in the 3D case.
The symmetry properties of the 12 functions of ϕ1 and ϕ2 can be expressed in terms

of selection rules for the matrix elements of the electronic hamiltonian and of the dipole
moment, and for their derivatives with respect to ϕ1, ϕ2 (or equivalently, respect to ϕ+

and ϕ−, where ϕ± = (ϕ+±ϕ−)/2 and θ. The selection rules are valid for particular points
or subspaces of the ϕ1, ϕ2 and θ space, where at least one symmetry element is conserved.
Since we only deal with abelian groups, the same rules that apply to the first derivative
also hold for all the odd ones, and similarly the second derivative (or the function itself,
in the case of the transition dipole matrix elements) is representative of the even ones.
Notice that the θ coordinate, at all the geometries we deal with, has the same symmetry as
ϕ+ (symmetric torsion of the phenyl groups), and therefore gives place to the same rules.
From such rules, one can deduce the equivalence of different regions of the ϕ1, ϕ2 plane.
We can limit ourselves to consider the interval −π/2 ≤ ϕ1 ≤ π/2 and the same for ϕ2,
because of the obvious periodicity associated with the torsion of the phenyl groups. This
is shown as a square in Fig. 2.3. The points with ϕ1 = ϕ2 (ϕ+ axis) have C2 symmetry,
those with ϕ1 = −ϕ2 (ϕ− axis) have Ci symmetry, and those with ϕ1 = 0 or ϕ1 = ±π/2
and one of the same values for ϕ2 have Cs symmetry. Combinations of these subgroups
give place to the C2h point group for ϕ1 = ϕ2 = 0 or |ϕ1| = |ϕ2| = π/2. The symmetry
rules that apply at these special geometries are given in the Tables 2.9-2.13. The square
in Fig. 2.3 can be partitioned into eight triangles by the ϕ1, ϕ2 and ϕ± axes. Triangles
having a common side on the ϕ1 axis or on the ϕ− one, are equivalent by symmetry. Line
segments connecting the Cs or C2h special points are also subject to equivalence rules, as
shown in Fig. 2.3. As a results, the energy and the transition dipole are only computed
in the first quadrant of the (ϕ−, ϕ+) plane, i.e. the shaded area in Fig. 2.3.

In Tables 2.9, 2.10 and 2.11, 2.12 2.13, the symmetry consideration are shown for
the energy, force constant, equilibrium angle, transition dipoles and their derivatives.
It is possible to observe, for each symmetry group, the values of the function and its
derivatives with respect to ϕ1, ϕ2, ϕ+ and ϕ− and crossed derivatives. The symmetry
group Cs corresponds to the molecule with a geometry where the phenyl rings are one
perpendicular respect to the other one (0◦/90◦). The group Ci corresponds to the TAB
molecule with a geometry where the phenyl rings are rotated with equal and opposite sign
angle (i.e. 30◦/− 30◦). The group C2 correspond to the TAB with a geometry where the
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Figure 2.3: Symmetry patterns for the Umin, K and
(

∂µx,y

∂θ

)

functions (left upper panel)

for the θ, µx,y and
(

∂2µx,y

∂θ2

)

components of the transition dipole (right upper panel), for

the
(

∂µz

∂θ

)

component of the transition dipole moment (left lower panel) and for the
(

∂2µz

∂θ2

)

component (right lower panel). Capital letters (A, B) indicate values in triangular regions,
and small letters (c, d, e, f) indicate values on segments. The square in the two figures
represents the −π/2 ≤ ϕ1 ≤ π/2 and −π/2 ≤ ϕ2 ≤ π/2 intervals. The corners and the
center of the square are points of C2h symmetry. The mid-points of the sides have Cs

symmetry. The points on the ϕ+ axis have C2 symmetry and those on the ϕ− axis have
Ci symmetry.

both phenyl rings are rotated with the same angle (i.e. 30◦/30◦). Finally, the C2h group
corresponds to the planar TAB molecule.

In Figures 2.4 and 2.5 we show the three functions that define the PES, Umin, K and
θmin, the three components of the transition dipole and their first and second derivatives
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Table 2.9: Symmetry groups for the several function under study in this work, considering
the geometries belonging to the Cs, Ci, C2 or C2h point groups.

GROUP ψ0 ψ1 ϕ1 ϕ2 ϕ+ ϕ− θ µx,y µz

Cs A
′

A
′′

A
′′

A
′′

A
′′

A
′′

A
′′

A
′

A
′′

Ci Ag Ag - - Au Ag Au Au Au

C2 A B - - A B A B A

C2h Ag Bg - - Au Bg Au Bu Au

Table 2.10: Symmetry selection rules for the potential energy Umin, force constant K
and equilibrium angle θmin, valid at geometries belonging to the Cs, Ci, C2 or C2h point
groups. Umin and K follow the same rules as U(ϕ1, ϕ2, 0), given in the upper part of the

Table. θmin depends on
(

∂U
∂θ

)

θ=0
, whose symmetry rules are given in the lower half.

GROUP ∂U
∂ϕ1

∂U
∂ϕ2

∂2U
∂ϕ1∂ϕ2

∂U
∂ϕ+

∂U
∂ϕ−

∂2U
∂ϕ+∂ϕ−

Cs 0 0 6= 0 0 0 6= 0

Ci 6= 0 6= 0 0 0 6= 0 0

C2 6= 0 6= 0 0 6= 0 0 0

C2h 0 0 0 0 0 0

GROUP ∂U
∂θ

∂2U
∂θ∂ϕ1,2

∂3U
∂θ∂ϕ1∂ϕ2

∂2U
∂θ∂ϕ+

∂2U
∂θ∂ϕ−

∂3U
∂θ∂ϕ+∂ϕ−

Cs 0 6= 0 0 6= 0 6= 0 0

Ci 0 6= 0 0 6= 0 0 6= 0

C2 6= 0 6= 0 0 6= 0 0 0

C2h 0 6= 0 0 6= 0 0 0

whit respect to θ, all of them as contour plots in the ϕ1,ϕ2 plane. These results were
obtained by the DFT method, but the MP2 and PCM ones are qualitatively similar. The
Umin plot shows that the torsion of the two phenyl groups is substantially independent
up to about 60◦, which correspond to 4 kcal/mol, resulting in almost circular contours.
Even at 90◦, the energy required for the simultaneous torsion of both phenyl rings is about
twice that of one ring. The deviation θ of the CNNC equilibrium angle from the planarity
nowhere exceeds 2.3◦, and its force constant K remains around 0.017 kcal mol−1 deg−2

= 56 kcal mol−1 rad−2, showing that this coordinate is rather stiff and the N=N double
bond is not much affected by the phenyl torsions.

The plots of the µx and µy components of the transition dipole (right panel in the
Fig. 2.4) present a nodal line along the ϕ− axis, and two more that cross the first
one: all these sign changes are determined by symmetry (the same holds for θmin). The
principal node along ϕ− axis arises in a natural way from the change in the function
sign, as a consequence of the symmetry properties taken into account (showed in Figure
2.3 and explained previously). The secondary nodes arise indirectly, as a consequence
of the symmetry features that provoke their presence: in each case, the function is zero
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Table 2.11: Symmetry selection rules for the x, y and z components of the n−π∗ transition
dipole moment, valid at geometries belonging to the Cs, Ci, C2 or C2h point groups.

GROUP µx,y
∂µx,y

∂ϕ1,2

∂2µx,y

∂ϕ1∂ϕ2

∂µx,y

∂ϕ+

∂µx,y

∂ϕ−

∂2µx,y

∂ϕ+∂ϕ−

Cs 0 6= 0 0 6= 0 6= 0 0

Ci 0 6= 0 0 6= 0 0 6= 0

C2 6= 0 6= 0 6= 0 6= 0 0 0

C2h 0 6= 0 0 6= 0 0 0

GROUP µz
∂µz

∂ϕ1,2

∂2µz

∂ϕ1∂ϕ2

∂µz

∂ϕ+

∂µz

∂ϕ−

∂2µz

∂ϕ+∂ϕ−

Cs 6= 0 0 6= 0 0 0 6= 0

Ci 0 6= 0 0 6= 0 0 6= 0

C2 0 6= 0 0 0 6= 0 6= 0

C2h 0 6= 0 0 0 0 6= 0

Table 2.12: Symmetry selection rules for the first derivative of x, y and z components of
the n − π∗ transition dipole moment, valid at geometries belonging to the Cs, Ci, C2 or
C2h point groups.

GROUP
∂µx,y

∂θ
∂2µx,y

∂θ∂ϕ1,2

∂3µx,y

∂θ∂ϕ1∂ϕ2

∂2µx,y

∂θ∂ϕ+

∂2µx,y

∂θ∂ϕ−

∂3µx,y

∂θ∂ϕ+∂ϕ−

Cs 6= 0 0 6= 0 0 0 6= 0

Ci 6= 0 6= 0 6= 0 0 6= 0 0

C2 6= 0 6= 0 6= 0 6= 0 0 0

C2h 6= 0 0 6= 0 0 0 0

GROUP ∂µz

∂θ
∂2µz

∂θ∂ϕ1,2

∂3µz

∂θ∂ϕ1∂ϕ2

∂2µz

∂θ∂ϕ+

∂2µz

∂θ∂ϕ−

∂3µz

∂θ∂ϕ+∂ϕ−

Cs 0 6= 0 0 6= 0 6= 0 0

Ci 6= 0 6= 0 6= 0 0 6= 0 0

C2 0 6= 0 6= 0 0 6= 0 6= 0

C2h 0 6= 0 6= 0 0 6= 0 6= 0

along the ϕ− axis and also it should be zero at the points [ϕ1 = ±90, ϕ2 = 0] and
[ϕ1 = 0, ϕ2 = ±90]. Consequently, at these points there is a change in the sign of the
considered function. Then, nodal lines that link these pairs of points appear, namely,
between [ϕ1 = 90, ϕ2 = 0] and [ϕ1 = 0, ϕ2 = −90] and between [ϕ1 = −90, ϕ2 = 0] and
[ϕ1 = 0, ϕ2 = 90]. As a consequence, the transition dipole remains small in the region
with ϕ− between 40◦ and 60◦. In general, for a given value of ϕ+, the transition dipole
is maximum at ϕ− = 0. The maximum is more pronounced when ϕ+ > 30◦. As we shall
see, inclusion of the ϕ− coordinate (Q4) in the calculations results in a decrease of the
computed oscillator strength. The µz function has two nodes, along the ϕ+ and ϕ− axis,
so it remains very small in a wide region around the potential energy minimum. The two
important components, µx and µy, have very similar plots, except for their sign and a



2.2 Potential energy and transition dipole functions. 43

Table 2.13: Symmetry selection rules for the second derivative of x, y and z components
of the n − π∗ transition dipole moment, valid at geometries belonging to the Cs, Ci, C2

or C2h point groups.

GROUP
∂2µx,y

∂θ2
∂3µx,y

∂θ2∂ϕ1,2

∂4µx,y

∂θ2∂ϕ1∂ϕ2

∂3µx,y

∂θ2∂ϕ+

∂3µx,y

∂θ2∂ϕ−

∂4µx,y

∂θ2∂ϕ+∂ϕ−

Cs 0 6= 0 0 6= 0 6= 0 0

Ci 0 6= 0 0 6= 0 0 6= 0

C2 6= 0 6= 0 6= 0 6= 0 0 0

C2h 0 6= 0 0 6= 0 0 6= 0

GROUP ∂2µz

∂θ2
∂3µz

∂θ2∂ϕ1,2

∂4µz

∂θ2∂ϕ1∂ϕ2

∂3µz

∂θ2∂ϕ+

∂3µz

∂θ2∂ϕ−

∂4µz

∂θ2∂ϕ+∂ϕ−

Cs 6= 0 0 6= 0 0 0 6= 0

Ci 0 6= 0 0 6= 0 0 6= 0

C2 0 6= 0 0 0 6= 0 6= 0

C2h 0 0 0 0 0 6= 0

scaling factor (µy/µx ≃ −1.35). This is why treatments based on different probability
distributions, e.g. the normal coordinates approximation with T = 0 K or T = 298 K,
yield practically the same angle α ≃ 53◦ between the dipole vector and the N-N axis.

The plots of the second derivatives with respect to θ of the transition dipole components
are similar to those of the corresponding dipole functions. The first derivative of the x and
y components show two similar plots, without nodes and an almost constant ratio (µ′y/µ

′
x

≃ -1.33), close to that between µy and µx. The functions increase with the torsional
angles faster along ϕ+ axis than the ϕ− one. The first derivative of the z component
has a nodal line along ϕ+ axis. In the other hand, the second derivatives show the same
features of the transition dipole moment function (as we have mentioned before for the
symmetry rules of these functions), but their values are very small. In this case we observe
a node along ϕ+ axis for the x and y components, but an opposite sign respect to the
dipole functions. The scaling factor is lightly greater respect to the function and its first
derivative (µ′′y/µ

′′
x ≃ 1.50). The z component presents again two nodes along the ϕ+ and

ϕ− axis.
The DFT, MP2 and PCM results are compared in Figs. 2.6, 2.7, 2.8 and 2.9. In the

first figure we see three cuts of the functions that define the PES, along the ϕ1, ϕ+ and
ϕ− coordinates. In all three cases the MP2 treatment lowers the torsional barrier, and
the solvent effect (PCM calculation) goes in the same direction. The relative magnitude
of the difference between the DFT and MP2 potentials is especially important for small
angles, and this is why the MP2 frequencies for the Q1 and Q4 modes are much lower
than the DFT ones, although overall the potential energy curves are rather similar. This
also explains the failure of the harmonic approximation in the calculation of the oscillator
strength, based on MP2 data. MP2 calculations with larger basis sets have been done by
Briquet et al [39], who have also reviewed the work of other authors. Basis sets with added
diffuse functions (such as 6-31+G∗ and 6-31++G∗∗) favour non planar geometries, with
phenyl torsion angles as large as 20◦ for the equilibrium geometry. However, further
extensions of the basis set, in particular the addition of more polarization functions,
restore the planarity. Upgrading the correlation treatment to MP4 also tends to stabilize
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the planar geometry. Within the MBPT treatments, our choice (MP2/6-31G∗) seems
to be a reasonable compromise between accuracy and computational cost. The force
constant functions show a moderate and similar dependence on ϕ1 and ϕ2, with all three
methods. The deviation of the CNNC dihedral from planarity (θmin) is larger with the
PCM treatment and smaller with the MP2 one, with respect to DFT.

Figure 2.7 shows a consistent enhancement of the transition dipole, due to the solvent
effect, without alteration of the µy/µx ratio. The same features are observed in the
Figures 2.8 and 2.9 for the first and second derivatives with respect to the torsional angle
θ, conserving again the µ′y/µ

′
x and µ′′y/µ

′′
x ratios. The n − π∗ transition dipole can be

interpreted as a result of mixing with the allowed S0 → S2 (π − π∗) transition. The
computed oscillator strength for the S0 → S2 transition, at DFT level, is 0.77 (at the
equilibrium geometry, without vibrational treatment). By comparing with measurements
in n-hexane solution, that yield f =0.51-0.59 [5, 60], we see that the TD-DFT method
slightly overestimates the π − π∗ oscillator strength. The computed transition energy is
3.72 eV, so the energy difference with respect to the n− π∗ transition is ∆E12 = 1.15 eV.
In a perturbation treatment, the n − π transition dipole ~µ01 due to a given distortion of
the molecular geometry is connected to the π − π∗ one, ~µ02, by:

~µ01 = ~µ02V12/∆E12 (2.18)

where V12 is the interaction between the excited states due to the vibronic coupling. The
DFT value of µ02 is 2.91 a.u. and, for small ϕ+ angles where the linear approximation
is valid, we find ∂µ01/∂ϕ+ = 0.025 a.u./deg. The interaction V12 is then about 0.010ϕ+

eV (angles in degrees). A validation of the vibronic model comes from the orientation
of the ~µ02, which lies on the molecular plane and makes an angle of 55.0◦ with the N-
N axis, very close to the average computed for the ~µ01 vector. According to the PCM
calculations, the solvent effect increases µ02 to 3.22 a.u. and decreases ∆E12 to 0.94 eV.
On the basis of eq. (2.18), these changes are perfectly consistent with the increase in
∂µ01/∂ϕ+, which is 0.033 a.u./deg at PCM level. However, we notice that the gas phase
maximum of the π−π∗ band corresponds to ∆E02 = 4.12 eV [59], so ∆E12 is about 1.30 eV,
slightly larger than the computed value. The π − π∗ oscillator strength, as noted above,
is instead smaller than the computed one. Finally, ∆E12 does not decrease noticeably in
polar solvents (from 1.14 eV in n-hexane [5, 60] to 1.10 eV in methanol [63] or 1.05 eV
in ethylene glycol [60]). Therefore, it is reasonable to conclude that the n− π∗ transition
dipole is slightly overestimated by our TD-DFT calculations, and even more by the PCM
treatment.

2.3 Statistical treatment of the torsional coordinates.

The contribution to the oscillator strength of anharmonic internal coordinates is based
on classical statistics, as justified by the low frequency associated with such modes. We
maintain the closure approximation on which Eq. (2.2) is based, and we substitute the
quantum mechanical density

∑

v P0v |χ0v|2 by the classical Boltzmann expression. The
contribution to Sλ of the anharmonic modes Q(anharm) is therefore

S
(anharm)
λ =

∫

µ2
λ(Q(anharm))eU(Q(anharm))/KBTdQ(anharm)

∫

eU(Q(anharm))/KBTdQ(anharm)
(2.19)
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Figure 2.4: PES parameters (left panels) and transition dipole functions (right panels)
according to the DFT treatment. δ is the distance between the contour lines (the labels
are function values). Upper panel: Umin (δ=0.5 kcal/mol, and 2 kcal/mol between thick
lines); µx(ϕ1, ϕ2, 0) (δ=0.05 a.u.). Middle panel: K (δ=0.0002 kcal mol−1 deg−2, and
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θmin (δ=0.25◦, the thicker dashed lines are nodes of the function); µy(ϕ1, ϕ2, 0) (δ=0.05
a.u.).
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transition dipole moment function, according to the DFT treatment. δ is the distance
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Figure 2.6: Torsional potential for the phenyl rings, force constant and equilibrium angle
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Figure 2.7: µx, µy and µz for the torsion of phenyl rings, computed by DFT, MP2 and
PCM methods. The functions are given as a function of ϕ1, with ϕ2 =0, or ϕ1 = ϕ2 for
the whole range −90◦ ≤ ϕ ≤ 90◦.
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Figure 2.8: ∂µx

∂θ , ∂µy

∂θ and ∂µz

∂θ for the torsion of phenyl rings, computed by DFT, MP2 and

PCM methods. ∂µx

∂θ ,
∂µy

∂θ and ∂µz

∂θ are given as a function of ϕ1, with ϕ2 = 0 (and as a

function of ϕ1 = ϕ2 in the case of ∂µz

∂θ ), for the whole range −90◦ ≤ ϕ ≤ 90◦. For a sake

of clarity, ∂µx

∂θ and
∂µy

∂θ as a functions of ϕ+ is only given for ϕ+ ≥ 0 and as a function of
ϕ−, for ϕ− ≤ 0.
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Figure 2.9: ∂2µx

∂θ2 ,
∂2µy

∂θ2 and ∂2µz

∂θ2 for the torsion of phenyl rings, computed by DFT, MP2
and PCM methods. The functions are given as a function of ϕ1, with ϕ2 =0, or ϕ1 = ϕ2

for the whole range −90◦ ≤ ϕ ≤ 90◦.
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Table 2.14: Oscillator strength f for the n−π∗ transition of trans-azobenzene, and average
angle α (degrees) between the N-N axis and the transition dipole vector, computed with
the 1D, 2D and 3D procedures, based on DFT, MP2 and PCM data. T=298 K.

DFT MP2 PCM

contributions f α f α f α

1D anharm.a (Q1) 0.0076 0.0115 0.0165

harmonicb (Q2 −Q66) 0.0033 0.0043 0.0055

total 0.0109 53.4 0.0159 53.6 0.0220 52.8

2D anharm.a (Q1, Q4) 0.0065 0.0085 0.0142

harmonicb (Q2, Q3, Q5 −Q66) 0.0033 0.0043 0.0055

total 0.0098 53.4 0.0129 53.7 0.0197 52.9

3D anharm.a (Q1, Q2, Q4) 0.0089 0.0107 0.0177

harmonicb (Q3, Q5 −Q66) 0.0018 0.0024 0.0033

total 0.0108 53.2 0.0131 53.4 0.0211 52.8

To this we shall add S
(harm)
λ , computed as in eq. (2.10), with the sum running only over

the harmonic modes Q(harm).
We applied the above scheme in three variants. First (“1D” case) we considered as

the anharmonic coordinate Q1, i.e. ϕ+, and we made use of the µλ(ϕ1, ϕ1, 0) functions.
Second (“2D” case), we added the Q4 mode, and the dipole functions where µλ(ϕ1, ϕ2, 0).
Finally, the “3D” case considered the anharmonic coordinates Q1, Q2 (i.e. θ) and Q4,
with the full µλ(ϕ1, ϕ2, θ) functions defined in the previous section.

The results are shown in Table 2.14 for a fixed temperature (T = 298 K). The
anharmonic and harmonic contributions reported in Table 2.14 confirm that the ϕ+

coordinate (symmetric phenyl torsion, Q1) is by far the most effective in promoting the
n − π∗ absorption, its contribution ranging from 70% to 90% of the total. The ϕ−

coordinate (antisymmetric phenyl torsion, Q4), that is ineffective by itself, lowers the
average oscillator strengths if it is included in the anharmonic treatment, because it gives
access to geometries with low values of the transition dipole (see previous section and Fig.
2.4). The difference between the 2D and 3D results shows that the contribution of the
N=N torsional coordinate (θ, or Q2), which ranges between 10% and 22%, is always larger
when treated anharmonically. This is at least partly due to the small displacement θmin in
the equilibrium position of this coordinate, that is associated with a torsion of the phenyl
groups, and is neglected in the harmonic treatment: the deviation of the CNNC group
from planarity causes a further increase of the transition dipole.

Overall, the DFT results compare well with the experimental f values obtained in
non polar solvents (see Table 2.6). The MP2 results tend to overestimate f , although the
inclusion of ϕ− in the anharmonic treatment brings to a better agreement with experiment.
The PCM results correctly show an increase in f , due to the effect of polar solvents, but
definitely overestimate it, for the reasons seen at the end of the previous section.
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Table 2.15: Oscillator strength as a function of the temperature, based on DFT, MP2 and
PCM methods, and considering 1D, 2D and 3D calculations.

DFT MP2 PCM

T (K) 1D 2D 3D 1D 2D 3D 1D 2D 3D

200 0.0082 0.0076 0.0084 0.0129 0.0105 0.0108 0.0175 0.0160 0.0172

220 0.0088 0.0080 0.0089 0.0135 0.0110 0.0113 0.0185 0.0168 0.0181

240 0.0093 0.0085 0.0094 0.0141 0.0115 0.0118 0.0194 0.0176 0.0189

260 0.0099 0.0089 0.0099 0.0148 0.0120 0.0123 0.0203 0.0183 0.0197

275 0.0103 0.0093 0.0102 0.0152 0.0123 0.0126 0.0210 0.0189 0.0202

290 0.0106 0.0096 0.0106 0.0156 0.0127 0.0130 0.0217 0.0194 0.0208

298 0.0109 0.0098 0.0108 0.0159 0.0129 0.0131 0.0220 0.0197 0.0211

310 0.0111 0.0100 0.0110 0.0162 0.0131 0.0134 0.0225 0.0201 0.0215

330 0.0117 0.0104 0.0114 0.0168 0.0136 0.0138 0.0234 0.0208 0.0222

360 0.0124 0.0110 0.0121 0.0176 0.0142 0.0144 0.0246 0.0217 0.0231

380 0.0129 0.0114 0.0125 0.0181 0.0146 0.0148 0.0254 0.0223 0.0237

400 0.0134 0.0118 0.0129 0.0187 0.0150 0.0151 0.0261 0.0230 0.0243

2.3.1 Temperature effects

As we have mentioned in Section 2.1.2, the oscillator strengths of azobenzene have been
measured in vapour phase, and show a modest increase with temperature: 0.0071 at 472
K and 0.0077 at 599 K [59]. However, the accuracy of this results is rather low.

In Table 2.15 and Figure 2.10 the results of oscillator strength as a function of the
temperature are shown. In our case, all methods predict an increase of the oscillator
strength with higher temperatures. In relative terms, this increment is about the same by
the DFT, MP2 and PCM treatments: according to 3D data, it is about 32% of the 298 K
value, in going from 200 to 400 K. This shows that the small differences in the shape of the
potentials have little influence on the dependence of f on the temperature. The average
direction of the n − π∗ transition dipole remains practically the same in all treatments,
with an angle of 53◦ with respect to the N-N axis. In this way the dipole vector is almost
parallel to the N-C bonds, and to the long axis of the inertial ellipsoid.
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Part III

MOLECULAR DYNAMICS





Chapter 3

Semiempirical Model

The simulation of the excited state dynamics in large chemical systems can be done with
mixed quantum-classical methods, such as Surface Hopping, whereby the nuclear motion
is represented by classical trajectories. In fact, these techniques have been already applied
by our group to the photoisomerization of azobenzene and its derivatives [21,51,56,65,66].
The trajectory methods can be combined with a “direct” or ”on the fly” calculation of
all the electronic quantities that are needed, i.e. the electronic energies, their gradients,
the transition dipoles and the nonadiabatic couplings. The direct strategy may be a very
convenient alternative to preparing in advance analytic expressions of the above electronic
quantities as functions of the internal coordinates. In fact, the fitting of ab initio or
experimental data by means of analytic functions can be quite a hard job, especially when
several internal coordinates undergo important changes during the process under study,
i.e. when the reaction pathway is far from being uniquely defined. Further problems arise
when conical intersections between the electronic PES are present.

However, the direct methods can be quite expensive, since an electronic calculation is
needed at every time step. The total computational cost scales linearly with the number
of trajectories and with the time length of the simulated process. In order to reduce the
burden of the electronic calculations, we have resorted to semiempirical methods. In this
chapter we describe some modifications of the standard semiempirical procedures we have
introduced, to describe the photochemical processes.

In the past decades the semiempirical molecular orbital (MO) methods have been
used widely in different computational studies. Semiempirical approaches are normally
formulated within the same conceptual framework as ab initio methods, but they neglect
many smaller integrals to speed up the calculations. In order to compensate the
errors caused by the approximations considered, empirical parameters are introduced
into the remaining integrals and calibrated against reliable experimental or theoretical
reference data. This strategy can only be successful if the semiempirical model retains
the essential physics to describe the properties of interest. Provided that this is
the case, the parameterization can account for all other effects in an average sense,
and it is then a matter of validation to establish the numerical accuracy of a given
approach. Semiempirical methods serve as efficient computational tools which can yield
fast quantitative estimates for a number of properties [67].

Compared with ab initio or density functional methods, semiempirical calculations
are faster, typically by several orders of magnitude, but they are also less accurate, with
errors that are less systematic and thus harder to correct. Hence, there remains the need to
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improve semiempirical methods with regards to their accuracy and range of applicability,
without compromising their computational efficiency. In addition, there is the need to
develop new algorithms in order to exploit modern computer architectures and to extend
semiempirical calculations to ever larger molecules.

Semiempirical MO methods are parametrized to reproduce experimental reference data
(or if it is possible, accurate high-level theoretical predictions as substitutes of experimental
data). The reference properties are the best selected such that they are representative for
the intended applications. The quality of semiempirical results is strongly influenced by
the effort put into the parameterization.

3.1 Semiempirical methods

Semiempirical treatments in quantum chemistry are defined with the following
specifications:

a) Theoretical approach.
A big number of actual semiempirical methods are based on Molecular Orbital theory
(MO) and they need a minimum basis set. Only the valence electrons are treated
explicitly.

b) Integrals approximation.
There exists three levels of approximations: CNDO (complete neglect of the
differential overlap), INDO (partial neglect of the differential overlap) and NDDO
(neglect of the diatomic differential overlap). In the CNDO approximation only
the two-electron integrals are considered and all the bicentric coulombic interactions
〈µµ | νν〉 are treated as if they involved only the s orbitals. The INDO approximation
is similar to the previous one, but in this case the exchange integrals 〈µν | µν〉 are
considered, for which the atomic orbitals are centered on the same atom. In the more
elaborated NDDO approximation all the monocentric integrals and the bicentric ones
〈µAνA | λBσB〉 are included (where νA is an atomic orbital belonging to the atom
A).

c) Integral evaluation.
For each kind of approximation, the integrals are determined from experimental
data, calculated from analytic formulas or obtained from parametric expressions.

d) The parameterization.
The parameterizations employed in semiempirical methods have as the principal
aim to reproduce reference data. The quality of the semiempirical results is strongly
influenced by the care taken in carrying out the parameterization.

A well known class of semiempirical methods, employed in the study of the ground
state potential surfaces, are the different parameterizations of the MNDO model [68]. The
MNDO model is based on the NDDO integral approximation and it employs a real atomic
orbital minimum basis (AO) for the valence electrons. The molecular orbitals (MO) are
obtained by solving the SCF equations, where the superposition of atomic orbitals is
neglected. For a closed shell system, using a matrix expression, we have:
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FC = Cε (3.1)

|ϕ〉 = |χ〉C (3.2)

where F is the Fock matrix, ε is the diagonal matrix of the MO energies, and |χ〉 and |ϕ〉
are the row vectors that represent the atomic and molecular orbitals, respectively. The C

matrix is orthogonal. For A or B atoms, the Fock matrix elements can be written as:

FµAνA
= hµAνA

+
∑

λA,σA

PλAσA

[

〈µAνA | λAσA〉 −
1

2
〈µAλA | νAσA〉

]

+
∑

B

∑

λB ,σB

PλBσB
〈µAνA | λBσB〉 (3.3)

FµAνB
= hµAνB

− 1

2

∑

λA,σB

PλAσB
〈µAλA | νBσB〉 (3.4)

where hµν and Pµν are the one-electron hamiltonian matrix and the density matrix
elements, respectively. Then, the total energy Etot can be obtained as the sum of electronic
energy EHF and nucleus-nucleus repulsion energy Ecore

AB :

EHF =
1

2

∑

µν

Pµν(hµν + Fµν) (3.5)

Etot = EHF +
∑

A<B

Ecore
AB (3.6)

The following interactions and parameters are included in the MNDO model:

1) One-electron monocentric integrals, hµAνA
, approximated in this way:

hµAνA
= UµδµAνA

−
∑

B 6=A

ZB〈µAνA | sBsB〉

where Uµ is a parameter that represents the AO energy χµ of atom A. Uµ is obtained
from spectroscopic data. The second term of the expression written above represents
the electrostatic nucleus-electron attraction (where ZB is the core charge of B and
sB is an s type AO centered at B).

2) One-electron bicentric orbitals hµAνB
, (not considering the index A and B), can be

expressed as:

hµν =
1

2
Sµν(βµ + βν)

where βµ is an empirical parameter, that depends on the atom and the orbital and
Sµν is the superposition between orbitals χµ and χν .

3) Two-electron monocentric repulsive integrals 〈µAνA | λAσA〉. These integrals are all
represented by empirical parameters. In the case that s and p orbitals are used, only
5 atomic parameters will be necessary.
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4) Repulsive two-electron bicentric integrals 〈µAνA | λBσB〉. Their evaluation is done
by electrostatic considerations and it involves the exponent ζ, that depends on
the atom and the orbital. When the distance between A and B tends to zero,
〈µAνA | λBσB〉 converges to the corresponding monocentric integral.

5) Bicentric core-core repulsions Ecore
AB are constituted of an electrostatic term Ecoul

AB =

ZAZB〈sAsA | sBsB〉 and an additional term Eeff
AB . The last one possesses an

exponential repulsive form an it represents the Pauli exchange repulsion. It contains
up to four empirical parameters.

The MNDO model, in its standard applications (MNDO, AM1,PM3,PM5 [68–73]), has
been parameterized by the use of the Hartree-Fock wavefunction (HF), with respect to
the ground state properties, with particular emphasis on the organic molecules. This fact
presents two principal consequences:

1) Configuration Interaction calculations (CI) do not represent an improvement with
respect to the HF method (although they are essential for a correct representation
of the ground and excited states, especially when the bond breaking occurs).

2) The excited states are often obtained with the CIS method (single excitations), where
the ground state is represented by the HF wavefunction.

A method for the calculation of electronic states employed in a direct dynamics scheme
should satisfy the following requirements: (a) all the electronic states considered in the
dynamics should be treated on the same footing; (b) the method should behave correctly
for all nuclear configurations that are explored in the dynamics, namely in the case of
bond breaking, state degeneracies and multiconfigurational states. This is not the case of
the CIS wavefunctions.

3.2 Floating occupation molecular orbitals and CI choice

Good representation of homolytic bond breaking and a balanced description of the ground
and excited states comes from a CI procedure based on orbitals obtained from SCF
calculation with fractional and floating occupation numbers [21, 22, 65, 66, 74]. The CI
space is often chosen with the CAS criterium (Complete Active Space). In the ab initio
framework, the same problems are usually tacled by the State Average - CASSCF method,
i.e. by minimizing variationally the mean energy of several states. However, this method
requires high computational costs, because of the calculations of more CI roots and the
simultaneous optimization of the orbitals. Our group has implemented the method of
fractional and floating occupation numbers in the MOPAC program [22], and we will
proceed to describe it.

In order to introduce a variable orbital occupation, the method considers the
population of each orbital distributed along the energy axis according to a gaussian
function centered at the corresponding Fock eigenvalue, without separating a priori the
space of molecular orbitals into occupied and virtuals ones. Then, for the n-th orbital
with energy ε, the electronic distribution function is:

gi(ε) =

√
2√
πω

e−(ε−εi)2/2ω2
(3.7)
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such that:

∫ ∞

−∞
gi(ε)dε = 1 (3.8)

Instead of the form 3.7 one can use different kinds of functions (e.g. a lorentzian or
a cubic spline bell-shaped function).The amplitude of the orbital energy range ω is an
arbitrary parameter while the occupation numbers are given for each SCF step following
the expression:

Oi =

∫ εF

−∞
gi(ε)dε (3.9)

where εF indicates the Fermi level energy obtained by imposing that the sum of occupation
numbers be equal to the total electron number (N):

N =
∑

i

∫ εF

−∞
gi(ε)dε (3.10)

For all orbitals with energy much lower than the Fermi level (εF − ε >> ω) the
occupation number is Oi ≃ 2. The virtual orbitals with high energy will have Oi null.
With this occupation numbers we construct the new density matrix used for the SCF
interactions. Thus, it is possible to obtain a better representation of virtual orbitals nearest
to the Fermi level, that are involved in the description of the lowest energy excited states.
Moreover, we can describe the elongation of bonds, considering that the involved orbitals
in the two fragments adopt occupation numbers near to 1, thus representing in a correct
way the homolytic dissociation. Another advantage is that, in presence of degeneracy, the
degenerated orbitals are treated in the same way, having the same occupation number.
This is an important condition needed to reproduce the degeneracy of states in a truncated
CI. On the other hand, this method has the disadvantage that it produces an SCF
energy without physical meaning, depending on the electron fraction distributed on the
virtual orbitals and thus on the amplitude ω. A CI calculation is necessary to obtain
the electronic energies and wavefunctions. When carrying out dynamics calculation that
consider large geometrical changes, the fractional occupation would result essential for a
correct description of certain reaction paths. The introduction of the floating occupation
requires important modifications to the method for the calculation of the gradient of the
CI energy. This is important for the geometry optimization and for the classical trajectory
calculations [22].

In a CI calculation, the orbitals can be partitioned into active, inactive and virtual
ones. The blocks involving doubly occupied inactive orbitals in the one- and two-
particle density matrices of the CI wavefunctions are the same as in the closed shell
HF calculation. As a consequence, only the two-electron integrals involving four active
orbitals are needed. In our case, the active space must formally coincide with that of the
orbitals with floating occupation. Within this space, we perform a full transformation
of the two-electron integrals from the atomic to the molecular basis. However, it is
not necessary to run a CAS-CI, and some of the formally active orbitals may not be
involved in the excitations. Normally, one chooses the active space as small as possible,
to reduce the computational effort. In fact, a large CI calculation is not necessary,
because in the semiempirical framework the dynamic correlation effects are taken into
account primarily by the parameterization. The minimal active space includes all the
orbitals whose occupation depends on the electronic state and on the geometry (here
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considering states and geometries that are accessible in the process under study). For
organic molecules, usually one considers the n and π MOs of higher energy and the lowest
π∗ ones.

In State Average CASSCF calculations, different stationary points for the averaged
energy may exist, and one may switch from a solution to another one during a PES scan
or a geometry optimization. This may be a problem in trajectory calculations and in
geometry optimizations, because it generates discontinuities in the PESs. In particular,
such irregularities in the PES make very hard to conserve the total energy during the
integration of a trajectory. Besides the non-linear nature of SCF problems, there are two
specific reasons for this behaviour: one is the possible occurrence of a state switching (the
states that are optimized are not the same at different geometries), and the second one is
an exchange between active and non-active MOs. The former source of PES discontinuities
is eliminated in our floating occupation SCF, because there is no explicit reference to a
given set of electronic states to be optimized. The second one remains: in some cases,
the orbital energies can change with the molecular geometry, so that an active MO, with
floating occupation, swaps its position with a virtual or a doubly occupied one. This
exchange may take place across a very small variation of the internal coordinates, and an
abrupt change in the CI energies and wavefunctions then occurs. The tendency of the SCF
procedure to optimize with greater care the orbitals with a larger occupation number may
contribute to the suddenness of the switch. To eliminate this problem, one may be forced
to enlarge the active space, beyond the minimum required to describe the electronic states
of interest.

3.3 Reparameterization of the semiempirical hamiltonian
for azobenzene

In a previous work our group determined a set of parameters for the AM1 semiempirical
hamiltonian, that described rather well the first four singlet PES of azobenzene. As
described in Chapter 1, these parameters were employed in the first simulation of the
photoisomerization of an isolated azobenzene molecule, that was able to reproduce the
experimental quantum yields for the cis→ trans and trans→ cis conversion, and offered
an explanation of the violation of Kasha’s rule [21]. The simulations yielded S1 lifetimes
for the trans isomer, that agree with the shorter components found in measurements, but
underevaluate the longer components [21,66]. The disagreement can be due to the solvent
effects (that were neglected in those simulations), to drawbacks of the surface hopping
method, or to inaccuracies in the potential energy surfaces.

We have therefore decided to proceed to a new optimization of the semiempirical
parameters. A better accuracy is expected, since we can exploit new high quality ab initio
data that have been published in the meantime [38,54,55]. Moreover, we have realized the
importance of the torsional modes of the phenyl groups around the C-N single bonds (see
chapter 2), that was overlooked in our previous work. The reparameterization has been
based on experimental data and on the results of ab initio calculations.

The optimization of the semiempirical parameters consists on the following steps:
(A) Determination of a set of “target” values Vt,i (energy differences, internal molecular

coordinates and others) taken from experimental results or ab initio calculations, that
should be reproduced by the semiempirical calculations;

(B) Choice of the semiempirical method, namely choice of the type of Hamiltonian
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(MNDO, AM1, PM3, etc), active space of the molecular orbitals, MO energy width
parameter w, CI subspace;

(C) Choice of the starting semiempirical parameters (generally they are the standard ones)
and partition of the parameters in two subsets: those that will not be modified and
those that will be optimized;

(D) Semiempirical calculation of all quantities Vs,i corresponding to the “target” values
Vt,i, yielding results that depend on a given set of parameters P;

(E) Determination of the function to minimize, that is:

F (P) =





∑

i

(

Vs,i(P) − Vt,i

Vt,i

)2

Wi





[

∑

i

Wi

]−1

(3.11)

where the weights Wi are chosen according to the importance and accuracy of the
associated target values.

(F) Application of an optimization algorithm to determine new tentative values of the
parameters P.

Points (D), (E) and (F) are repeated until convergence of the optimization.
We can now examine our choices. Among the “target” values, we have considered

the excitation energies of TAB and CAB, some energy differences between remarkable
points of the potential energy surfaces, and a set of geometrical parameters. The tables
3.1 3.2, 3.3 and 3.4 report the “target” values and those obtained semiempirically with
the best set of parameters, and the weights Wi. When possible, we have used values that
were measured in vapour phase: in fact, we shall eventually take into account the solvent
effects in an explicit way, using a QM/MM strategy (see Chapter 5). For the excited PES,
the most accurate calculations are the CASPT2 ones by the group of Bologna (Gagliardi
et al [55] and Cembran et al [38]). Very good values for the excitation energy were also
determined by the Coupled Cluster method [37].

In the following tables we use some acronyms to indicate particular geometries. Besides
TAB and CAB (trans- and cis-azobenzene), we have:

- ROT = rotamer: dihedral angle CNNC near to 90◦;
- INV = invertomer: one of the two angles NNC near to 180◦;
- PlanINV = planar invertomer: both phenyl groups are on the plane formed by the

atoms CNNC;
- PerpINV = perpendicular invertomer: the phenyl group attached to the nitrogen

atom that undergoes the inversion, is perpendicular to the CNNC plane, while the
other one is on the plane.

Some items in the Tables 3.1 and 3.2 need to be explained.

• Vertical excitation energies, ∆E(S0 − Sn) are deduced, when possible, from the
absorption spectra in vapour phase [59,75], namely, from the wavelength λmax where
the maximum molar extinction coefficient is found. The bands are well defined for
TAB S1 (1Bg), TAB S2 (1Bu), CAB S1 (1B) and CAB S4 (1B). The states TAB
S3 (1Ag) and TAB S4 (1Bu) are very near in energy to S2 but they have very small
oscillator strengths, thus their bands are not evident in the spectrum. The best ab
initio calculations put them a fraction of eV above S2 [8, 32,37,76]. The states CAB
S2 (1B) and S3 (1A) probably correspond to the shoulder extended from 4.4 to 4.8
eV, next to the more intense band that we attribute to S4: two computational works
confirm this interpretation [37,76].
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Table 3.1: Target values and semiempirical results obtained with the optimized parameters
and the CI space of 82 determinants. Energies in eV, given as differences from TAB S0

(except for the excitation energies of CAB).

value value error relative weigth

target semiemp. error

Vt,i Vs,i Vs,i − Vt,i (%) Wi

TAB, ∆E(S0 − S1) 2.8200 2.7993 -0.0207 0.733 8/11

TAB, ∆E(S0 − S2) 4.1200 4.4583 0.3383 8.211 8/11

TAB, ∆E(S0 − S3) 4.2000 4.8339 0.6339 15.092 2/11

TAB, ∆E(S0 − S4) 4.2000 4.8774 0.6774 16.129 2/11

TAB, ∆E(S0 − T1) 1.7000 1.5812 -0.1188 6.988 1/11

TAB, ∆E(S0 − T2) 2.2000 2.7958 0.5958 27.082 1/11

CAB, ∆E(S0 − S1) 2.9200 2.8737 -0.0463 1.584 8/10.5

CAB, ∆E(S0 − S2) 4.6000 5.4091 0.8091 17.589 2/10.5

CAB, ∆E(S0 − S3) 4.6000 4.9040 0.3040 6.609 2/10.5

CAB, ∆E(S0 − S4) 5.1700 5.5161 0.3461 6.695 8/10.5

CAB, ∆E(S0 − T1) 2.1000 1.5590 -0.5410 25.762 1/10.5

∆E(CAB-TAB), S0 0.5500 0.5871 0.0371 6.742 2/3

∆E 90◦ phenyl rotat. TAB S0 0.5000 0.3777 -0.1223 24.468 1/3

PerpINV S0 1.5500 1.9132 0.3632 23.435 4/15

PerpINV S1 (geom. S0) 2.7500 3.0655 0.3155 11.472 4/15

PerpINV S2 (geom. S0) 4.5500 5.2794 0.7294 16.030 4/15

PerpINV S3 (geom. S0) 6.8000 5.4679 -1.3321 19.590 2/15

PlanINV S0 2.1000 2.1439 0.0438 2.088 1/15

TS ROT S0 1.7000 2.0842 0.3842 22.597 4/13

TS ROT S1 (geom. S0) 2.5300 2.4827 -0.0473 1.871 4/13

TS ROT S2 (geom. S0) 2.9100 3.2208 0.3108 10.679 2/13

TS ROT S3 (geom. S0) 4.4800 5.8981 1.4181 31.654 1/13

TS ROT S4 (geom. S0) 4.4800 6.6287 2.1487 47.962 2/13

Min. S1 planar (TAB) 2.2700 2.3369 0.0669 2.948 4/5

S0 (geom min. S1 planar) 1.0200 0.6445 -0.3755 36.815 2/5

PlanINV S1 3.3000 2.8994 -0.4006 12.139 4/5

Conic Intersec. S0 − S1 ROT 2.2700 2.2132 -0.0568 2.502 8/9

Conic Intersec. S0 − S1 TAB 3.3000 2.9592 -0.3408 10.328 8/9

Min. S2 ROT 2.3000 3.1495 0.8495 36.936 2/9

Min. T1 ROT 1.2500 1.0866 -0.1634 13.074 1/2

S0 (geom. min. T1 ROT) 1.5000 1.3842 -0.1158 7.722 1/2
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Table 3.2: Target values and semiempirical results obtained with the optimized parameters
and the CI space of 94 determinants. Energies in eV, given as differences from TAB S0

(except for the excitation energies of CAB).

value value error relative weigth

target semiemp. error

Vt,i Vs,i Vs,i − Vt,i (%) Wi

TAB, ∆E(S0 − S1) 2.8200 2.8291 0.0091 0.323 8/11

TAB, ∆E(S0 − S2) 4.1200 4.3696 0.2496 6.057 8/11

TAB, ∆E(S0 − S3) 4.2000 4.7143 0.5143 12.245 2/11

TAB, ∆E(S0 − S4) 4.2000 4.7340 0.5340 12.714 2/11

TAB, ∆E(S0 − T1) 1.7000 1.6144 -0.0856 5.035 1/11

TAB, ∆E(S0 − T2) 2.2000 2.6645 0.4645 21.114 1/11

CAB, ∆E(S0 − S1) 2.9200 2.8932 -0.0268 0.918 8/10.5

CAB, ∆E(S0 − S2) 4.6000 5.4397 0.8397 18.254 2/10.5

CAB, ∆E(S0 − S3) 4.6000 4.8634 0.2634 5.727 2/10.5

CAB, ∆E(S0 − S4) 5.1700 5.5335 0.3635 7.030 8/10.5

CAB, ∆E(S0 − T1) 2.1000 1.5709 -0.5291 25.195 1/10.5

∆E(CAB-TAB), S0 0.5500 0.6080 0.0580 10.548 2/3

∆E 90◦ phenyl rotat. TAB S0 0.5000 0.3964 -0.1036 20.715 1/3

PerpINV S0 1.5500 1.9330 0.3830 24.710 4/15

PerpINV S1 (geom. S0) 2.7500 3.0869 0.3369 12.249 4/15

PerpINV S2 (geom. S0) 4.5500 5.3021 0.7521 16.531 4/15

PerpINV S3 (geom. S0) 6.8000 5.4821 -1.3179 19.381 2/15

PlanINV S0 2.1000 2.1626 0.0626 2.981 1/15

TS ROT S0 1.7000 2.1069 0.4069 23.935 4/13

TS ROT S1 (geom. S0) 2.5300 2.5042 -0.0258 1.021 4/13

TS ROT S2 (geom. S0) 2.9100 3.2409 0.3309 11.372 2/13

TS ROT S3 (geom. S0) 4.4800 5.9038 1.4238 31.782 1/13

TS ROT S4 (geom. S0) 4.4800 6.6507 2.1707 48.453 2/13

Min. S1 planar (TAB) 2.2700 2.3613 0.0913 4.024 4/5

S0 (geom min. S1 planar) 1.0200 0.6545 -0.3655 35.838 2/5

PlanINV S1 3.3000 2.9238 -0.3762 11.400 4/5

Conic Intersec. S0 − S1 ROT 2.2700 2.2355 -0.0345 1.521 8/9

Conic Intersec. S0 − S1 TAB 3.3000 2.9559 -0.3441 10.428 8/9

Min. S2 ROT 2.3000 3.1750 0.8750 38.045 2/9

Min. T1 ROT 1.2500 1.1105 -0.1395 11.163 1/2

S0 (geom. min. T1 ROT) 1.5000 1.3985 -0.1015 6.766 1/2
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• For the triplets, we have adopted as target values the averages of several experimental
and computational data, that cover the following ranges: 1.57-2.09 eV for TAB
T1 [32, 38, 76, 77] and 2.10-2.83 eV for TAB T2 [32, 76, 78]. In the case of CAB,
we only have two calculated values for T1: 1.83 eV [32] and 2.20 eV [38].

• The energy difference between CAB and TAB has been measured in n-heptane
(0.51±0.06) [42], while most of the calculated values for the isolated molecule are
slightly higher (0.55-0.69 eV) [32, 36, 55, 79–81]. We have chosen the value 0.55 eV,
which is compatible with the PES computed by Gagliardi et al [55] and very near to
the experimental value.

• Concerning the rotation of the phenyl groups around the N-C bonds, there is some
uncertainty. Our previous work (see ref. [82] and chapter 2), based on DFT and MP2
calculations, shows a barrier for the simultaneous torsion of both groups, equal to 0.5
eV (C2h geometry with torsion angles of 90◦). Our study was directed to calculate the
oscillator strength for the forbidden n→ π∗ transition and we found good agreement
with the experiment. On the other hand, preliminary calculations show that a good
reproduction of torsional potential using semiempirical methods is quite difficult. For
this reason, we gave a little weight to this target value and we introduced an ad hoc
correction after the optimization of the parameters (see below).

• Configuration interaction calculations, with geometries optimized at CASSCF level
[32, 79], show that the transition state (TS) between CAB and TAB has a
perpendicular invertomer geometry (PerpINV). The experimental values of activation
energy for the conversion CAB→TAB should be referred to this geometry. In nonpolar
solvents, the activation ∆H is 1 eV [83–87], i.e., 1.55 eV with respect to the TAB. Two
more saddle points have been individuated, by geometry optimizations: the rotamer
(ROT) [32, 38, 79] and the planar invertomer (PlanINV) [32, 79]. Target values were
assigned to these geometries according to computational results of previous studies:
for the ground state of TS-ROT we used data from the ref. [32] and for its excited
states from the ref. [55]. For the ground and excited states of PerpINV, ref. [32].
At a semiempirical level, for TS-ROT we performed a saddle point search, while for
PerpINV and PlanINV we individuated two constrained minima, fixing one of the
two NNC angles at 180◦.

• The optimization of the internal coordinates in the S1 PES, keeping a planar geometry
TAB type, decreases the energy by 0.55 eV [6, 38]. Combining these data with the
experimental vertical excitation energy, the target value of 2.27 eV is obtained. From
ref. [38] we infer the energy difference S0 −S1 at the same geometry (1.25 eV), which
puts the energy of S0 equal to 1.02 eV.

• For the invertomer (PlanINV) in the S1 state (one of the NNC angles fixed at 180◦), we
have chosen a value of 0.48 eV above the vertical excitation energy, as a compromise
between two rather different theoretical values: 0.20 e 0.86 eV respectively, from
refs. [6] and [32].

• The S0 and S1 surfaces present one crossing seam [21, 66]. The lowest energy point
(conical intersection S0 − S1 ROT) coincides with the minimum of the S1 PES. Its
energy has been determined by Cembran et al [38] in 2.03 eV with respect to TAB.
Considering that in their calculations the vertical transition energy for TAB and CAB
is underestimated by 0.2-0.3 eV, we took a target value of 2.27 eV for the conical
intersection. The crossing seam can also be reached by keeping a planar geometry of
TAB type, deformed for the symmetric opening of the two angles NNC, as shown by
Diau [6]: in this case, the energy is little higher than the vertical excitation one (near
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to 3.3 eV).
• The energy value of the minimum of S2 has been taken with some approximation

from the potential energy curves of Gagliardi et al [55] (in the corresponding figure
of this reference, the identification of the states is not clear).

• The minimum of the T1 state (rotamer), as well as the energy of S0 at the same
geometry, have been determined by Cembran et al [38].

Concerning the target values of internal coordinates relative to critical points of the
PESs, we note that the internal consistence of such data is important. In fact, the
dynamical behavior depends on the small differences of the optimal geometries, between
ground and excites states, or between isomers and transition states. For this reason, we
have employed, whenever possible, the work of Cembran et al [38], that provides data
about several different geometries. The calculation level, CASSCF with a large active
space, guarantees a good agreement with the experimental data for the ground state of
TAB [27,28,31,35] and CAB [40].

• As indicated above, we have used the data of ref. [38] for the geometries TAB S0,
CAB S0, TS ROT S0, planar minimum S1 (TAB) and conical intersection S0 − S1

ROT.
• The geometries PlanINV and PerpINV S0 were taken from our previous CASSCF

calculations [32]. We have corrected the distances and the bond angles, considering
the differences found with respect to the results of Cembran et al [38] for the TAB
and CAB geometries. For the PlanINV and PerpINV geometries, the two RNC bond
distances are different: the longer one, indicated by (1), is relative to the sp2 nitrogen,
while the shorter one, indicated as (2), concerns the nitrogen undergoing inversion.

• The geometry of the S0 − S1 conical intersection of TAB, obtained by symmetric
opening of the NNC angles, has been calculated by Diau [6]. The values of RNN

and RNC have been corrected by comparison between the data of Diau and those of
Cembran et al [38], for the geometry of the minimum of planar S1.

• For the geometry PlanINV S1 there exists only one previous calculation [32]. This
result has not been corrected, because of the lack of more accurate data for similar
geometries in the same state to compare with.

The choice of the semiempirical method to be used and the starting parameters for
the optimization (points B and C in the reparameterization procedure, see above) has
been done by trial-and-error, taking also into account the “robustness” of the calculation
procedure. Moreover, we have taken advantage of previous reparameterizations, having as
target the electronic states of benzene, using the AM1 [88] and PM3 [89] Hamiltonians.

Concerning to the “robustness” of the method, we observe that the CI calculation is
based on an active space of molecular orbitals, that have variable occupation numbers
at the SCF level. It is very important that the active space does not undergo sudden
variations with the gradual changes of the geometry; in other words, we want to avoid
the switching of two orbitals, as described at the end of section 3.2. It is possible to
influence the composition of the active space and then to improve the “robustness” of the
calculation, acting on three kinds of parameters:

• The extension of the active space, namely, how many orbitals (Nact) and how many
electrons belong to it.

• The parameter w (orbitalic energy amplitude): if w is much less than the difference
between the Fermi level and the energy of the lowest active orbital, the last one has an
occupation number of almost 2, as the underlying inactive orbitals; possible exchanges
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Table 3.3: Target values of internal coordinates and semiempirical results obtained with
the optimized parameters of azobenzene and the CI space of 82 determinants. Distances
in Å and angles in degrees.

Target Semiemp. error relative weight

value value value

Vt,i Vs,i Vs,i − Vt,i (%) Wi

TAB, RNN 1.243 1.2771 0.0341 2.746 1/5

TAB, RNC 1.422 1.4368 0.0148 1.041 1/5

TAB, 6 NNC 115.1 117.9 2.7780 2.414 3/5

CAB, RNN 1.242 1.2541 0.0121 0.972 1/6.1

CAB, RNC 1.435 1.4506 0.0156 1.088 1/6.1

CAB, 6 NNC 122.4 125.8 3.3596 2.745 3/6.1

CAB, 6 NNCC 62.0 60.4 -1.5842 2.555 1/6.1

CAB, 6 CNNC 4.2 0.7 -3.4857 82.992 0.1/6.1

TS ROT S0, RNN 1.304 1.2941 -0.0099 0.758 1/8

TS ROT S0, RNC 1.370 1.3952 0.0252 1.841 1/8

TS ROT S0, 6 NNC 122.2 128.4 6.2387 5.105 3/8

TS ROT S0, 6 CNNC 85.3 91.0 5.7294 6.717 3/8

PerpINV S0, RNN 1.233 1.2391 0.0061 0.492 1/6

PerpINV S0, RNC(1) 1.425 1.4380 0.0130 0.915 1/6

PerpINV S0, RNC(2) 1.318 1.3911 0.0731 5.546 1/6

PerpINV S0, 6 NNC(1) 116.0 125.9 9.9442 8.573 3/6

PlanINV S0, RNN 1.247 1.2447 -0.0023 0.184 1/6

PlanINV S0, RNC(1) 1.424 1.4418 0.0178 1.247 1/6

PlanINV S0, RNC(2) 1.354 1.3937 0.0397 2.929 1/6

PlanINV S0, 6 NNC(1) 118.0 126.3 8.2761 7.014 3/6

Min. S1 planar (TAB), RNN 1.253 1.2598 0.0068 0.544 1/5

Min. S1 planar (TAB), RNC 1.366 1.4072 0.0412 3.017 1/5

Min. S1 planar (TAB), 6 NNC 128.8 132.3 3.5329 2.743 3/5

PlanINV S1, RNN 1.309 1.2348 -0.0742 5.669 1/6

PlanINV S1, RNC(1) 1.403 1.4036 0.0006 0.045 1/6

PlanINV S1, RNC(2) 1.360 1.3824 0.0224 1.644 1/6

PlanINV S1, 6 NNC(1) 118.7 141.1 22.3826 18.856 3/6

Con. Int. S0 − S1 ROT, RNN 1.261 1.2669 0.0059 0.466 1/14

Con. Int. S0 − S1 ROT, RNC 1.397 1.4131 0.0161 1.149 1/14

1.371 1.3977 0.0267 1.949 1/14

Con. Int. S0 − S1 ROT, 6 NNC 117.3 128.0 10.6858 9.110 3/14

136.0 139.5 3.5382 2.602 3/14

Con. Int. S0 − S1 ROT, 6 CNNC 94.0 96.2 2.1544 2.292 3/14

Con. Int. S0 − S1 ROT, 6 NNCC 25.9 9.2 -16.7420 64.641 1/14

18.8 9.1 -9.7048 51.621 1/14

Con. Int. S0 − S1 TAB, RNN 1.1950 1.2345 0.0395 3.309 1/5

Con. Int. S0 − S1 TAB, RNC 1.3260 1.3895 0.0635 4.789 1/5

Con. Int. S0 − S1 TAB, 6 NNC 156.6 158.0 1.4000 0.894 3/5
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Table 3.4: Target values of internal coordinates and semiempirical results obtained with
the optimized parameters of azobenzene and the CI space of 94 determinants. Distances
in Å and angles in degrees.

Target Semiemp. error relative weigth

value value value

Vt,i Vs,i Vs,i − Vt,i (%) Wi

TAB, RNN 1.243 1.2799 0.0369 2.965 1/5

TAB, RNC 1.422 1.4342 0.0122 0.857 1/5

TAB, 6 NNC 115.1 117.8 2.6850 2.333 3/5

CAB, RNN 1.242 1.2537 0.0117 0.942 1/6.1

CAB, RNC 1.435 1.4515 0.0165 1.153 1/6.1

CAB, 6 NNC 122.4 125.5 3.1206 2.550 3/6.1

CAB, 6 NNCC 62.0 63.2 1.2104 1.952 1/6.1

CAB, 6 CNNC 4.2 0.3 -3.9414 93.843 0.1/6.1

TS ROT S0, RNN 1.304 1.2944 -0.0096 0.733 1/8

TS ROT S0, RNC 1.370 1.3950 0.0250 1.828 1/8

TS ROT S0, 6 NNC 122.2 128.4 6.1972 5.071 3/8

TS ROT S0, 6 CNNC 85.3 91.4 6.1189 7.173 3/8

PerpINV S0, RNN 1.233 1.2391 0.0061 0.493 1/6

PerpINV S0, RNC(1) 1.425 1.4377 0.0127 0.890 1/6

PerpINV S0, RNC(2) 1.318 1.3912 0.0732 5.553 1/6

PerpINV S0, 6 NNC(1) 116.0 125.9 9.9521 8.579 3/6

PlanINV S0, RNN 1.247 1.2454 -0.0016 0.132 1/6

PlanINV S0, RNC(1) 1.424 1.4408 0.0168 1.178 1/6

PlanINV S0, RNC(2) 1.354 1.3935 0.0395 2.917 1/6

PlanINV S0, 6 NNC(1) 118.0 126.2 8.2112 6.959 3/6

Min. S1 planar (TAB), RNN 1.253 1.2598 0.0068 0.545 1/5

Min. S1 planar (TAB), RNC 1.366 1.4072 0.0412 3.017 1/5

Min. S1 planar (TAB), 6 NNC 128.8 132.3 3.5320 2.742 3/5

PlanINV S1, RNN 1.309 1.2348 -0.0742 5.670 1/6

PlanINV S1, RNC(1) 1.403 1.4037 0.0007 0.050 1/6

PlanINV S1, RNC(2) 1.360 1.3824 0.0224 1.645 1/6

PlanINV S1, 6 NNC(1) 118.7 141.1 22.3831 18.857 3/6

Con. Int. S0 − S1 ROT, RNN 1.261 1.2668 0.0058 0.459 1/14

Con. Int. S0 − S1 ROT, RNC 1.397 1.4131 0.0161 1.150 1/14

1.371 1.3975 0.0265 1.935 1/14

Con. Int. S0 − S1 ROT, 6 NNC 117.3 128.0 10.7301 9.148 3/14

136.0 139.5 3.5095 2.581 3/14

Con. Int. S0 − S1 ROT, 6 CNNC 94.0 96.1 2.1173 2.252 3/14

Con. Int. S0 − S1 ROT, 6 NNCC 25.9 9.4 -16.5335 63.836 1/14

18.8 9.2 -9.5815 50.965 1/14

Con. Int. S0 − S1 TAB, RNN 1.1950 1.2302 0.0352 2.942 1/5

Con. Int. S0 − S1 TAB, RNC 1.3260 1.3777 0.0517 3.895 1/5

Con. Int. S0 − S1 TAB, 6 NNC 156.6 156.9 0.3267 0.209 3/5
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Table 3.5: Semiempirical parameters characterizing the AM1 and PM3 methods.

Parameters Description

Us, Up monocenter and one-electron

integrals of p and s orbitals

βs, βp bicenter and one-electron resonance

integrals of p and s orbitals

ξs, ξp s and p Slater atomic orbital exponent

αA core-core repulsion of atom A

αA,B core-core repulsion between atoms A and B

Gss,Gsp two-electron monocenter repulsion integral

Gpp,Gpp′ between s− s, s− p p− p and p− p′ orbitals

Hsp two-electron monocenter exchange integral

between s− p orbitals

KnA gaussian multiplier of core-core repulsion

LnA gaussian exponent of core-core repulsion

MnA gaussian center of core-core repulsion

between active and inactive orbitals will be rather gradual, except in extreme cases.
The same thing is valid for the highest active orbital, if its occupation number is
near to zero. However, a small parameter w involves fast variation of the occupation
number and then changes in the orbital shape, when their energies are near to the
Fermi level.

• In order to control the composition of the active space, we have implemented a
procedure that allows the use of different semiempirical parameters in the SCF and CI
calculations. We observe that the energies and the wavefunctions of the states depend
directly on the set of parameters used in the CI calculation. However, considering
that a truncated configuration basis is used, the shape of the orbitals also influences
the results. For this reason, also the parameters used in the SCF calculation have an
effect, although indirect. In our case, we have fixed the parameters βS and βP for the
carbon atoms to high values, for the SCF calculation only, with the idea of increasing
the separation between the occupied and virtual orbitals of the phenyl groups. In
this way, we try to control the number of aromatic π and π∗ orbitals belonging to the
active space.

Several optimization trials have brought to the following choices. Among the two
standard parameterizations (AM1 [90] and PM3 [69–72]), for which the optimized
parameters of benzene were available, AM1 has given better results. Then we have used:
for H, the standard parameters of AM1; for C, those optimized for benzene [88], and for
N, we have optimized all parameters, except those of the core potential (α,KI , LI ,MI ,
see Table 3.5 for their meaning). All the final parameters are reported in Table 3.6. The
parameters βS and βP used for the C atoms in the SCF calculation are -38 and -35 eV,
respectively. The magnitude associated with the orbitalic energy is w = 0.10 hartree. The
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Table 3.6: Semiempirical parameters used in the calculation for azobenzene, considering
a CI with 82 determinants. The parameters of carbon had been already optimized for the
benzene molecule [88]. The parameters for hydrogen are the standard ones in the AM1
method [90], as well as those of the nitrogen core potential (α,KI , LI ,MI). The other
parameters of nitrogen have been optimized. The units are indicated in the table (the KI

parameters are dimensionless).

parameter unit Nstd Nopt Cstd Copt H

USS eV -71.860000 -68.388062 -52.028658 -49.536242 -11.396427

UPP eV -57.167581 -56.045018 -39.614239 -33.722927

βS eV -20.299110 -11.018709 -15.715783 -13.797578 -6.173787

βP eV -18.238666 -19.591942 -7.719283 -10.113264

GSS eV 13.590000 16.667653 12.230000 12.492690 12.848000

GSP eV 12.660000 11.470530 11.470000 11.571701

GPP eV 12.980000 13.339308 11.080000 12.017613

GP2 eV 11.590000 10.242204 9.840000 7.923532

HSP eV 3.140000 1.794342 2.430000 2.739211

ζS bohr−1 2.315410 2.169870 1.808665 1.412377 1.188078

ζP bohr−1 2.157940 1.917021 1.685116 1.749266

α Å−1 2.947286 2.947286 2.648274 2.626199 2.882324

K1 0.025251 0.025251 0.011355 0.011355 0.122796

K2 0.028953 0.028953 0.045924 0.045924 0.005090

K3 -0.005806 -0.005806 -0.020061 -0.020061 -0.018336

K4 -0.001260 -0.001260

L1 Å−2 5.000000 5.000000 5.000000 5.000000 5.000000

L2 Å−2 5.000000 5.000000 5.000000 5.000000 5.000000

L3 Å−2 2.000000 2.000000 5.000000 5.000000 2.000000

L4 Å−2 5.000000 5.000000

M1 Å 1.500000 1.500000 1.600000 1.600000 1.200000

M2 Å 2.100000 2.100000 1.850000 1.850000 1.800000

M3 Å 2.400000 2.400000 2.050000 2.050000 2.000000

M4 Å 2.650000 2.650000

active space includes 12 orbitals, 6 formally occupied and 6 virtuals (i.e., 12 electrons).
For a more restricted orbital set the CI space is complete (CAS-CI), i.e., it includes all the
determinants obtained distributing the electrons in the orbitals, with a total spin Sz = 0.
The CAS-CI orbital set includes three occupied and one virtual orbitals (two lone pairs,
one π and one π∗). Moreover, in the CI space we included all the single excitations from
the 6 occupied orbitals to the 6 virtual ones of the active space. In total, there are 82
determinants.
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As we shall see in the next chapters, the explicit inclusion of the solvent molecules
and their interaction with the solute (in our case the azobenzene molecule) in some cases
perturbs the molecular orbitals, and brings about a considerable alteration of the active
space. For this reason we have decided to increase the CI space (only for the dynamics
calculations of azobenzene in solution), considering an active space with 13 orbitals (from
the 28-th to the 40-th), 7 formally occupied and 6 virtual (namely, 14 electrons). In
this case all the single excitations from the 7 occupied orbitals to the 6 virtual ones are
included. In total, there will be 94 determinants. As seen in the tables 3.1 3.2, 3.3 and
3.4, the results obtained with 82 or 94 determinants are almost exacly the same.

All semiempirical calculations were executed with the MOPAC program [91], in the
development version modified by our group. In order to optimize the parameters we have
applied the simplex method, combined with the simulated annealing, as described in the
Appendix A.

3.3.1 Inclusion of the torsional potentials

As already found in the previous reparemeterization [21], the optimization of the
parameters could not eliminate a wrong feature of the calculated potentials, namely that
the equilibrium NNC angles are too large and the inversion barrier of the nitrogen is too
small. For this reason we have added the same potential energy term to all the electronic
PESs, with the following expression:

Uang(θ, α1, α2) = P1

[

cos

(

π
α1 − P2

π − P2

)

+ 1

] [

cos

(

π
α2 − P2

π − P2

)

+ 1

]

P3 + cos(2θ)

P3 + 1
(3.12)

Here and in the following, θ is the CNNC dihedral angle, α1 and α2 are the NNC
angles. The parameter P1 is an energy, in eV, P2 is an angle and corresponds to the
minimum of Uang, and P3 is a dimensionless constant. The dependence of Uang on the
dihedral angle CNNC vanishes if one of the NNC angles is near to 180◦, as it must. The
three parameters PI have been optimized together with the semiempirical ones. In Table
3.7 we present the optimized set.

Table 3.7: Parameters that define the added potentials Uang and Uph.

parameter unit value

P1 eV -0.382809

P2 degrees 82.172261

P3 13.416564

P4 eV 0.0949700

P5 -0.660000

At the same time, a less important correction has been introduced to obtain a good
torsional potential of phenyl groups. This added term has the form:

Uph(θ, α1, α2, φ1, φ2) = P4
P5 − cosθ

P5 + 1
(1 + cosα1) (1 + cosα2) (sin2φ1 + sin2φ2) (3.13)
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Here we define φ1 and φ2 as torsion angles of the two phenyl groups; for each ring,
the associated φi angle is given by (6 NNC1C2 + 6 NNC1C6 − π)/2. The parameters P4

and P5 have been determined after the optimization of the semiempirical parameters. P4

is an energetic factor and P5 modulates the dependence of the angle θ ≡ CNNC. Before
the addition of the Uph potential, in the CAB isomer the C-N bond torsional potential is
too strong, so at equilibrium we have φ = 46◦, while experimentally one finds 62◦ [40].
Viceversa, for TAB the torsional potential of the phenyl groups is too weak. In order to
give a positive contribution to the torsional potential for TAB and a negative one for CAB,
we take P4 > 0 and P5 < 1. We have determined P4 and P5 considering the torsional
barriers for TAB, the equilibrium geometry of CAB, and the energetic difference CAB-
TAB. The chosen values are in the Table 3.7. The semimepirical results of Tables 3.1 3.2,
3.3 and 3.4 were obtained with the addition of the potentials Uang and Uph.

In Figure 3.3.1 we show the different geometry configurations of azobenzene taken into
account for the reparameterization procedure. The semiempirical results, obtained with
the optimized parameters, are shown in the Tables 3.1, 3.2, 3.3 and 3.4. The vertical
excitation energies can be compared with the experimental and ab initio ones. For the
S1 state (n → π∗ transition) we obtained a nearly exact transition energy. The ab initio
calculations used as reference for the optimization of the parameters [38, 55] are not as
accurate: the errors are -0.32 eV for TAB and -0.21 eV for CAB. For the π → π∗ singlet
with the most intense absorption band (S2 for TAB and S4 for CAB), we have errors
of about 0.34-0.35 eV. The semiempirical calculations seem to give results with the same
accuracy for the most part of the ground state PES and the lowest excited singlets. Also the
geometries are well reproduced. The most important errors are associated with the NNC
angle of rotamers and invertomers, namely the transition states in S0 and S1; probably
the added potential Uang does not correct completely the drawbacks of the semiempirical
calculation at these geometries. It is also possible that the ab initio data used as reference
were not so accurate. It is important to consider the good reproduction of the conical
intersection geometries S0 − S1.

The figures 3.2 and 3.3 shows the potential energy curves for the inversion and torsion
mechanisms, with geometries optimized in S0 or in S1. It is important to notice that S0

and S1 potential curves are in good agreement with the most accurate ones, while the S2

state is a bit too high.

3.3.2 Transition dipoles and absorption spectra.

The target values that are used in the reparameterization procedure are more or less
directly connected with the PESs rather than with the electronic wavefunctions. Some
features of the wavefunctions, of basic importance for the dynamics, are strictly dependent
on the eigenvalues: for instance, the phase and mixing properties of the two states that
share a conical intersection. However, the risk of computing the “right energy for the
wrong wavefunction” is real. In the reparameterization procedure, the only safeguard
against this risk is to require the right symmetry of the electronic wavefunctions, when
applicable.

In this section, we show that the computed transition dipoles, a property directly
related with the semiempirical wavefunctions, are in rather good agreement with the ab
initio ones (see chapter 2) and reproduce the experimental absorption spectra. In Figure
3.4 we present the absorption spectrum of TAB and CAB, and in the Figures 3.5 and 3.6
the contributions due to the transitions to S1 (n − π∗) and to S2, S3, and S4 (π − π∗).
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Figure 3.1: Optimized geometries in the ground, excited and transition states, indicated
with SN , considered in the reparameterization procedure, obtained with the CI of 82
determinants.
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Figure 3.2: Potential curves for the inversion (upper panels) and rotation (lower panels)
mechanisms, obtained with the CI with 82 determinants. Geometries optimized in S0 and
S1 PES.

The spectra have been obtained by computing the transition energies ∆E and dipoles µ
for the four excited states and for all the molecular geometries obtained in the Montecarlo
run described in section 4.4 (red dots of Figure 4.2). The contribution of each Montecarlo
geometry and electronic transition to the molar extinction coefficient ε (M−1 cm−1) is
represented by a gaussian, centered at the computed ∆E:

G(hν) = 10795 · w ∆E e−(hν−∆E)2/w2
(3.14)

The gaussian is normalized so that its integrated area yields the oscillator strength, with
the energies hν and ∆E given in eV. The sum of all gaussians, divided by the number of
Montecarlo points (about 6.8 · 105 for the TAB and about 3.8 · 105 for the CAB), yields
the total spectrum. The gaussian width we used is w = 0.05 eV, much less than the total
bandwidth, so that the latter is essentially due to the statistical distribution of geometries.
In fact, the peaks are narrower than the experimental ones, probably because the classical
Montecarlo sampling neglects the quantum uncertainty associated with the zero point
vibrations, which is larger than the statistical one for the high frequency coordinates. For
some of these modes, e.g. the N=N stretching, the excited state PESs differ noticeably
from the ground state one, and this is a source of band broadening. Both the n → π∗

and π → π∗ oscillator strengths, collected in the Tables 3.8 and 3.9, are larger than the
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Figure 3.3: Potential curves for the inversion (upper panels) and rotation (lower panels)
mechanisms, obtained with the CI with 94 determinants. Geometries optimized in S0 and
S1 PES.

experimental ones, by a factor 1.3÷1.5 for the TAB and 0.9÷1.7. The combination of
overestimated oscillator strengths and narrower bands results in much higher maxima of
the molar extinction coefficient.

Table 3.8: Total oscillator strength and the corresponding values for each component for
the n→ π∗ and π → π∗ transitions of the TAB.

Transition ftot fx fy fz

S0 − S1 0.0129717971 0.0061244066 0.0068247863 0.0000226043

S0 − S2 1.0843463168 0.5652746949 0.5164666343 0.0026049876

S0 − S3 0.1152710088 0.0859683799 0.0246608865 0.0046417423

S0 − S4 0.0856060090 0.0633465963 0.0184441447 0.0038152680

In Figure 3.5 we also show the contributions of the three cartesian components of the
transition dipole for the TAB. The body-fixed frame is defined as in chapter 2, i.e. the
x axis corresponds to the N-N axis, the y axis also lies in the molecular plane and z is
perpendicular to it. In the particular case of the n−π∗ transition, we can observe that the
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Figure 3.4: Absorption spectrum for the TAB (upper panel) and CAB (lower panel).
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Table 3.9: Total oscillator strength and the corresponding values for each component for
the n→ π∗ and π → π∗ transitions of the CAB.

Transition ftot fx fy fz

S0 − S1 0.0194954631 0.0067440838 0.0123964214 0.0003549578

S0 − S2 0.0506645082 0.0321772985 0.0013647818 0.0171224279

S0 − S3 0.2884246416 0.2597786993 0.0145097154 0.0141362269

S0 − S4 0.1573833946 0.1306822630 0.0157568507 0.0109442809

x and y contributions to the oscillator strength are almost equal at all frequencies. Thus,
the transition dipole moment forms an angle of about 45◦ with respect to the N=N axis, in
sufficiently good agreement with the ab initio results. Moreover, the z component is very
small and practically does not contribute to the total oscillator strength. The same holds
for the strong S0 −S2 π−π∗ transition, while the less important S0 −S3 and S0 −S4 ones
have dipoles approximately directed along the N-N axis (see Table 3.8). The S0 − S1 and
S0−S2 transition dipoles are perfectly parallel, and are overestimated by the same factor.
This fact is consistent with the admixing of the n − π∗ and π − π∗ states at distorted
geometries, already discussed in chapter 2. This borrowing mechanism seems to be well
reproduced by the semiempirical calculations.

In Figure 3.6 we show the contributions of the three cartesian components of the
transition dipole for the CAB. In this case the contributions of the x and y contributions
are different, for both n− π∗ and π − π∗ bands. Again, the z component is very small in
this case and its contribution to the total oscillator strength is very small. For the π− π∗

band the most important contribution comes from the S0-S3.
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Figure 3.5: Oscillator strength of TAB for the n − π∗ and π − π∗ transition (namely, S0

→ S1, S0 → S2, S0 → S3 and S0 → S4, respectively).



80 3. Semiempirical Model

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2.2  2.4  2.6  2.8  3  3.2  3.4

O
sc

ill
at

or
 s

tr
en

gt
h

∆E, eV

S0-S1 transition

Total
Component X
Component Y
Component Z

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4  4.2  4.4  4.6  4.8  5  5.2  5.4  5.6

O
sc

ill
at

or
 s

tr
en

gt
h

∆E, eV

S0-S2 transition

Total
Component X
Component Y
Component Z

 0

 5000

 10000

 15000

 20000

 25000

 4.8  5  5.2  5.4  5.6  5.8  6

O
sc

ill
at

or
 s

tr
en

gt
h

∆E, eV

S0-S3 transition

Total
Component X
Component Y
Component Z

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 5  5.2  5.4  5.6  5.8  6  6.2

O
sc

ill
at

or
 s

tr
en

gt
h

∆E, eV

S0-S4 transition

Total
Component X
Component Y
Component Z

Figure 3.6: Oscillator strength of CAB for the n − π∗ and π − π∗ transition (namely, S0

→ S1, S0 → S2, S0 → S3 and S0 → S4, respectively).



Chapter 4

Semiclassical dynamics of
azobenzene

The simulation of photochemical reactions is an important tool to associate the theory
to the experiments. They permit us to interpret reaction mechanisms and to individuate
aspects that could not be observed in the experiments. In this way, it can be used to predict
some behaviors in order to stimulate new research work in the laboratory. Most of the
studies based on time dependent wavefunction calculations concern fast processes, where
the electronic and nuclear dynamics are strongly coupled. In such physical situations,
the Born-Oppenheimer approximation is not valid, especially when two potential energy
surfaces are nearly degenerate or intersect each other. Therefore, in addition to the
potential energy surfaces (PES), one needs to compute the nonadiabatic couplings that
cause the radiationless transitions between different electronic states. PES and couplings
can be computed and expressed as analytic functions of the internal coordinates, before
performing the calculation of the dynamics. However, this preliminary step is particularly
difficult when the PES depend in non-trivial ways on several coordinates, and when PES
crossings must be represented. This time-consuming task can be avoided by using a direct
strategy, i.e. by computing PES and couplings only when they are needed, namely at
each time step during the integration of the dynamical equations. The direct option is
especially convenient for fast dynamical processes, because the computational effort is
directly proportional to the number of time steps, and, in trajectory methods, to the
number of trajectories. This is the reason why we resort to semiempirical calculations
of the electronic energies and wavefunctions. In fact, the computational cost of ab initio
calculations of comparable accuracy for the excited states would be extremely high.

The simulation method we have applied is a semiclassical one, where the nuclear motion
is treated classically and the electronic one is described by a time-dependent wavefunction.
The surface hopping, in Tully’s version [92,93], represents the link between both physical
descriptions. Many trajectories are usually run with the same or different initial conditions.
Each trajectory, representing the time evolution of the classical degrees of freedom, evolves
independently on a single electronic potential energy surfaces PES, with the possibility of
occasional sudden hops to other surfaces. In the next section we will describe in detail the
DTSH procedure (direct trajectories with surface hopping), by which we can study the
time evolution of a physical system with a large number of nuclear degrees of freedom at
a reasonably low computational cost.
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4.1 Semiclassical dynamics

Molecular dynamics is considered as a set of simulation techniques used to study the
dynamics of a physical system at molecular level. The motions of fast and slow degrees
of freedom are partially separable (Born-Oppenheimer approximation), although the
nonadiabatic couplings can be taken into account. In particular, the mixed quantum-
classical or semiclassical dynamics is a class of methods where the slow (nuclear) motion is
approximated with Newton’s equations, while the fast one (electrons) is treated quantum
mechanically. We shall indicate with Q the set of nuclear coordinates and with q the
electronic ones. Once defined a newtonian trajectory Q(t) in the nuclear configuration

space, the electronic Hamiltonian Ĥel(Q) is implicitly time dependent. We shall call its
eigenstates ψk(q;Q) and its eigenvalues Uk(Q):

Ĥel(Q(t)) |ψk(Q(t))〉 = Uk(Q(t)) |ψk(Q(t))〉 (4.1)

The time dependent Schrödinger equation (TDSE) can be written in the form:

i
d

dt
|ψel(t)〉 = Ĥel |ψel(t)〉 (4.2)

We can expand the electronic wavefunction ψel(t), in the basis of NS adiabatic states |ψl〉:

|ψel(t)〉 =
∑

l

Al(t) e
−iγl(t) |ψl(Q(t))〉 (4.3)

with

γl(t) =

∫ t

0
Ul(Q(t′))dt′ (4.4)

The probability to be in the state l at the time t is: Pl(t) = |Al(t)|2. The first derivative
of |ψel(t)〉 with respect to time is

d

dt
|ψel(t)〉 =

∑

l

[

(Ȧl − iUlAl) |ψl〉 +Al

∣

∣

∣

∣

dψl

dt

〉]

e−iγl(t) =

∑

l

[

(Ȧl − iUlAl) |ψl〉 +Al

∑

r

∣

∣

∣

∣

∂ψl

∂Qr

〉

Q̇r

]

e−iγl(t) (4.5)

Substituting in the Eq. (4.2) and multiplying by 〈ψK |, we obtain:

Ȧk = −
∑

l(6=k)

Al(t)e
i(γk−γl)

∑

r

Q̇rg
(r)
kl (4.6)

where the g
(r)
kl are the matrix elements of the dynamic coupling:

g
(r)
kl =

〈

ψk

∣

∣

∣

∣

∂

∂Qr

∣

∣

∣

∣

ψl

〉

(4.7)

Then, the transition probability depends on the scalar product of the nuclear velocity
vector, Q̇, with the dynamic coupling vector, gkl. The couplings and the transition
probabilities become large around the surface crossings (real or avoided). When the



4.2 Nuclear trajectories 83

surfaces are well separated (large Uk − Ul) the phase factors exp[i(γk − γl)] are functions
that oscillate very fast in the time, reducing in this way the transition probability.

The analytic solution of the set of coupled equations (4.6) is possible only in very
simple cases. Generally, the coupled equations are solved numerically, by propagating the
solution across small time steps. With the direct strategy, the electronic quantities Uk and

g
(r)
kl are obtained at each time step for the coordinates Q(t).

The methods based on classical trajectories are appealing first of all because of their
computational feasibility even for large molecular systems and because the results of such
simulations are easily analyzed to yield information about the reaction mechanism and
the nonadiabatic dynamics [94–96]. The mixing of classical mechanics for the nuclei and
quantum mechanics for the electrons can be done in many different ways, due to the
intrinsic arbitrariness of the semiclassical ansatz. In order to take into account both the
QM uncertainty principle and the thermal distributions, one has to run many trajectories
for each simulated experiment, with a suitable sampling of initial conditions (as we shall
describe in the next sections).

4.2 Nuclear trajectories

The integration of classical trajectories is one of the oldest problems of numerical
calculation applied to physics. As before, consider a system with the nuclear degrees
of freedom Q. The potential energy surfaces UK(Q) and their gradients are obtained
directly at each integration step of the nuclear trajectory by solving the time independent
Schrödinger equation for the electrons with fixed nuclei, at a given level of approximation.

One of the simplest and most used methods to integrate the trajectories is the Verlet
one. This algorithm updates the positions Q and the velocities Q̇, from t to t + ∆t,
by finite difference formulas. Given the potential energy function V (Q), it is possible to
define the force Fr = −∂V/∂Qr, and the acceleration Q̈r = Fr/mr, where mr is the atomic
mass associated to the coordinate Qr. Employing the Newton equations, we can write the
Taylor expansions:

Q(t+ ∆t) = Q(t) + Q̇(t)∆t+
∆t2

2
Q̈(t) +

∆t3

6

...
Q (t) +O(∆t4) (4.8)

Q(t) = Q(t+ ∆t) − Q̇(t+ ∆t)∆t+
∆t2

2
Q̈(t+ ∆t) − ∆t3

6

...
Q (t+ ∆t) +O(∆t4) (4.9)

Summing both equations:

Q̇(t+ ∆t) = Q̇(t) +
∆t

2
[Q̈(t) + Q̈(t+ ∆t)] +

∆t2

6
[
...
Q (t)−

...
Q (t+ ∆t)] +O(∆t3) (4.10)

Introducing the first order approximation for the third derivatives:

...
Q (t) =

Q̈(t) − Q̈(t− ∆t)

∆t
+O(∆t2) (4.11)

and similarly for
...
Q (t+ ∆t), the equations 4.8 and 4.10 become:
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Q(t+ ∆t) = Q(t) + Q̇(t)∆t+ ∆t2
[

2

3
Q̈(t) − 1

6
Q̈(t− ∆t)

]

+O(∆t4) (4.12)

Q̇(t+ ∆t) = Q̇(t) + ∆t

[

5

6
Q̈(t) +

1

3
Q̈(t+ ∆t) − 1

6
Q̈(t− ∆t)

]

+O(∆t3) (4.13)

These equations define a version of Verlet’s algorithm with an order of accuracy on
Q(t) of ∆t4 for each step, that is ∆t3 for a given time interval t, divided into N = t/∆t
time steps. The accuracy on the velocities Q̇(t) is of the order of ∆t2, for the same time
interval.

4.3 Surface Hopping

Surface Hopping [66, 92–94, 96–102] is one of the basic approaches to the problem of
combining classical and quantum mechanics for the study of nuclei and electrons. In this
approach the molecule is considered in a given electronic state k at each time t. While
we are in the adiabatic state |ψk〉 (the “current state”), the nuclear trajectory is governed
by the associated potential energy surface (PES), Uk(Q). In the other hand, each state
l has a probability Pl(t) to be occupied, generally different from zero. An increment in
the probability Pl(t) of any state different from the current one, can produce a transition
(“Surface Hop”) from |ψk〉 to |ψl〉. At a given time the system can be in any state, possibly
different from the one with the highest probability Pl. The occurrence of surface hops is
regulated by a stochastic algorithm proposed by Tully [92], with modifications that take
into account the decoherence effects, put forward by our group [66]. Given the stochastic
nature of the surface hopping method, in principle converged results can be obtained only
if many trajectories are launched from a given starting point in the phase space.

Figure 4.1: General surface hopping scheme.

We indicate with Πk(t) = Nk(t)/NT the fraction of the total number of trajectories

NT that are on the surface Uk at time t. The probability function P
(j)
k (t) is specific of

the j-th trajectory, as any other dynamic quantity. The average over all the trajectories
is indicated as P k:
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P k(t) =
1

NT

NT
∑

j=1

P
(j)
k (t) (4.14)

(for a sake of simplicity, in the following we shall drop the suffix (j) for trajectory-specific
quantities).

Surface hopping is internally consistent if Πk(t) coincides with P k(t) at each time
t. This requirement can be easily satisfied, hopping at regular time intervals to a
randomly chosen state, according to the probabilities Pk(t). However, this procedure
can be contradictory with the physics of the problem, because the hops could occur in
regions of the phase space where the transition probability is almost vanishing.

The most popular method for mixed quantum-classical dynamics is Tully’s “fewest
switches” approach [92, 93], characterized by a good compromise between computational
efficiency, conceptual simplicity and accuracy of results for medium or large sized molecular
systems. In this algorithm the electronic density matrix is propagated coherently along
the trajectory and the transition probability is evaluated taking into account the variation
in time of the state probabilities Pk(t). In this way the transitions only occur when they
are needed, i.e., when the coupling among the electronic states is not negligible. Moreover,
the number of state switches is minimized by imposing that, at each integration time step,
the total flux of probability between any two states is obtained by one-way transitions [66].

From Eq. 4.7 it is possible to obtain an expression of the first derivative of Pk(t) with
respect to the time:

Ṗk = ȦkA
∗
k +AkȦ

∗
k = −

∑

l(6=k)

Bkl (4.15)

where

Bkl = 2ℜ
[

AlA
∗
ke

i(γk−γl)
]

∑

r

Q̇rg
(r)
kl (4.16)

(note that Blk = −Bkl). If |ψk〉 is the current electronic state, its probability in a given
time step will change as the sum of positive and negative contributions Bkl∆t. It is
possible to ignore the negative contributions, and hop to other states with the hopping
probability:

T (k → l) = max

{

0,
Bkl∆t

Pk

}

(4.17)

To do this, a random number x is generated, with 0 ≤ x ≤ 1: if

l−1
∑

l′(6=k)

T (k → l′) < x ≤
l
∑

l′(6=k)

T (k → l′) (4.18)

a hop to state |ψl〉 will occur. If x >
∑NS

l(6=k) T (k → l), no hop occurs: for small ∆t, this

will be the most frequent case. If it is assumed that the functions Pk(t) be the same for
all the trajectories, this algorithm ensures that the equality Πk(t) = Pk(t) is conserved
across a time step, as long as it be applied to a large number of trajectories. In fact, the
variation of Πk in the time ∆t will be:

∆Πk =
∑

l(6=k)

Πk[T (l → k) − T (k → l)] = −
∑

l(6=k)

Bkl∆t = ∆Pk (4.19)
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Unfortunately, even with the same initial conditions, two trajectories will not coincide,
because they can hop at different times and therefore they travel, at least for a while,
on different PES. Consequently, also their functions Pk(t) will differ from each other,
starting from the time of the first hop. The equality 4.19 is therefore not guaranteed. An
important difference between the values Πk and P k can be considered as an indication of
bad operation of the surface hopping algorithm.

After a jump from surface Uk to Ul the nuclear kinetic energy has to be changed from
T to T ′ = T + Uk − Ul. This is usually accomplished by adjusting the nuclear momenta
along the nonadiabatic coupling vector gkl. If Ul − Uk > 0 it may happen that there is
not enough nuclear kinetic energy to compensate for the sudden variation of the potential
electronic energy. In this case, the usual option is to give up the hop (“frustrated hops”),
and this another reason why Πk may differ from P k.

The internal incongruity of the surface hopping method, related to the inequality
Πk 6= P k, cannot be eliminated as long as it is assumed that the probabilities Pk(t) are
only determined by the TDSE. In formulating the TDSE, the molecule is represented by
one point in the phase space, i.e. the same perfectly localized wavepacket on all states,
only with different probability amplitudes. With non vanishing couplings and amplitudes,
interference effects will be present for all the duration of the trajectory. This fact is
at variance with the real behavior of the quantum wavepackets, that follow different
trajectories according to the PES where they are. The interference is obtained only
when the position of two packets in the phase space coincides, at least in an approximate
way. Typically, this happens just after a nonadiabatic event has transferred part of the
population from an electronic state to another one. After a short time (depending on the
PES shape and the available kinetic energy), the wavepackets move far apart and do not
interfere any more (“quantum decoherence”). In Appendix C we show an example.

The surface hopping method describes very well the fast transitions that occur when
two PES are very near or crossing. The problems (“coherence” effect, difference between
Πk and P k, frustrated hops) usually occur when the energy difference between the PES is
rather large. In order to deal with these problems, several corrections are proposed. Our
group has adapted and tested a procedure, originally proposed by Truhlar et al [101,102] in
a different context. The gist of this correction is to modify the coefficients Ak, calculated
by the TDSE, and therefore the probabilities Pk, at each time step ∆t. The probability
of the current state k is incremented on the PES where the trajectory is evolving, at the
expenses of the other ones:

A′
l = Ale

− ∆t
τkl ∀l 6= k

A′
k = Ak

[

1−
∑

l6=k|A′
l|2

|Ak|
2

]1/2

τkl = h̄
|Ek−El|

(

1 + C
Ekin

)

(4.20)

where Ekin is the nuclear kinetic energy and C is an energetic constant with a reasonable
value of 0.1 hartree [101]. This correction tends to equalize the average probabilities P k

and the distributions Πk, and removes the interference effects for times larger than τkm

(few fs when the PESs are well separated in energy). When the PESs tend to cross,
i.e. when the surface hopping works correctly, τkm is very large and the corrections are
negligible.
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4.4 Initial conditions sampling

The surface hopping method, being based on a stochastic algorithm, can only work if a
large number of trajectories is launched. The observables under study in photochemistry,
for instance the population of the electronic states, will be calculated as averages over all
the trajectories. In order to obtain a statistically reliable evaluation of a given quantity,
one needs a number of trajectories that depends on the particular process under study. If
NT is the total number of trajectories and P is the probability of the event under study,
the average number of “interesting” events will be x = NTP and the standard deviation is
σ =

√

NTP (1 − P ). For a “reactive” event, P = x/NT is the quantum yield (Φ). In this
case, the error on Φ is

√

P (1 − P )/NT . With a quantum yield of about 50%, one needs
about 600 trajectories to have an error of 2%.

By running many trajectories, we also want to take into account the real distribution
of initial conditions. In order to reproduce the thermal distribution of nuclear coordinates
and momenta in the ground state PES, computed by the MOPAC program [91], we have
applied the Montecarlo method. We have modified the code, in order to run the Montecarlo
calculation using as variables the internal coordinates, rather than the cartesian ones. This
choice turned out to be important for an effective sampling of the low frequency, large
amplitude, motions, such as the torsion of the phenyl rings around the C-N bonds. The
sampling of the initial conditions goes through the following steps:
• For each starting isomer, TAB and CAB, we have run 106 Montecarlo steps, considering

a temperature of 300 K.
• From the accepted Montecarlo points, we select the initial geometries Qi by a random

algorithm based on successive bisections of the Montecarlo trajectory, in order to sample
it in the most uniform way.

• To each of the selected geometries we associate a set of nuclear momenta Pi, randomly
chosen according to the Boltzmann distribution of kinetic energies.

• Each phase space point (Qi, Pi), defined in the last two steps, can give place to a
number of trajectories (zero, one or more). A trajectory starts with a vertical transition
(no change in Qi and Pi) from the ground to an excited state k. The number of
trajectories to be launched from the (Qi, Pi) starting point depends on the computed
transition probabilities, for the excited states that fall within a pre-defined transition
energy window ∆E ±∆∆E. The choice of the starting excited state is again based on a
stochastic algorithm, as described in the next three points.

• Transition energies ∆E0k and dipoles µ0k are computed at the geometry Qi, and only
the states with ∆E − ∆∆E ≤ ∆E0k ≤ ∆E + ∆∆E are considered to be eligible, in order
to simulate excitation with an approximately monochromatic light.

• We compute the quantity µ2
tot, proportional to the total transition probability, as

µ2
tot =

∑

k µ
2
0k, where the sum runs only on the eligible states. Using a predefined

reference parameter µ2
ref we compute the maximum number of trajectories to be

launched from the point (Qi, Pi), by rounding µ2
tot/µ

2
ref to the next integer Nmax.

• We extract Nmax random numbers xj in the [0, 1] interval, and for each xj we start a

trajectory on state k if
∑k−1

l µ2
0l < xjNmaxµ

2
ref ≤ ∑k

l µ
2
0l. If xjNmaxµ

2
ref > µ2

tot the
trajectory is not launched.
We have run separate simulations of the photodynamics that follows the excitation to

S1 (n→ π∗ transition) or to the higher excited states S2, S3 and S4 (π → π∗ transition).
In the former case, the transition energy interval was chosen to be 2.5-3.1 eV for TAB
and 2.6-3.2 eV for CAB. In fact, the average excitation energies were 2.8 eV for TAB and
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Figure 4.2: Red dots: Boltzmann distribution (Montecarlo) of the phenyl torsion angles
of TAB (upper panel) and CAB (lower panel). Green dots: selected initial geometries for
starting the trajectories in the S1 state.

CAB. For the π → π∗ band we imposed the ranges 4.0-5.0 eV for TAB and 4.7-5.7 eV for
CAB, and we obtained the averages 4.4 eV and 5.4 eV, respectively. When exciting to the
π → π∗ band, the starting state can be S2, S3 or S4: for TAB, S2 has by far the largest
fraction of trajectories, because it contributes most to the oscillator strength. For CAB,
the most important contribution comes from the S3 state, having the largest fraction of
trajectories in this case.
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Table 4.1: Sampling of the initial conditions for the simulations of the photodynamics
in vacuo or with a Brownian representation of the solvent. The sampling is based on
a Montecarlo run (CI space of 82 determinants). Ngeo(n) is the number of Montecarlo
geometries from which n trajectories were launched (n=0,1,2 or more).

Excitation band n→ π∗ n→ π∗ π → π∗ π → π∗

Starting isomer TAB CAB TAB CAB

∆E, eV 2.8 2.9 4.5 5.2

∆∆E, eV 0.6 0.6 1.0 1.0

µ2
ref , a.u. 0.30 0.45 16 5

Number of sampled geometries =
∑

nNgeo(n) 954 986 980 999

Number of trajectories, NT =
∑

n nNgeo(n) 600 560 670 688

Ngeo(0) 553 455 310 407

Ngeo(1) 270 502 670 496

Ngeo(2) 86 29 0 96

Ngeo(3) +Ngeo(4) +Ngeo(5) + . . . 46 0 0 0

Fraction of trajectories starting in S1 1.00 1.00 0.00 0.00

Fraction of trajectories starting in S2 0.00 0.00 0.90 0.09

Fraction of trajectories starting in S3 0.00 0.00 0.07 0.65

Fraction of trajectories starting in S4 0.00 0.00 0.03 0.26

As we show in Table 4.1, the reference squared transition dipole µ2
ref has been chosen

so that most of the phase space points that have been sampled are altogether discarded, or
do originate one trajectory: only a minority of them originates two or more trajectories. In
this way, we ensure a good spread of the initial geometries over the whole of the Montecarlo
sample.

In Figure 4.2 we show the distribution of the phenyl torsion angles for the TAB and
CAB isomers, obtained by the Montecarlo simulation (red dots) and the points selected
to start a trajectory in the S1 state (green dots). For TAB, since the n→ π∗ transition is
forbidden at the equilibrium geometry (φ1 = φ2 = 0), the distribution of green points is
distinctly less dense around the center of the plot.

4.5 Brownian dynamics simulations

4.5.1 Method and computational details

We have run a set of simulations with a simple representation of the frictional effect of
the solvent, based on Brownian dynamics. While our ultimate goal is to introduce an
explicit representation of the solvent molecules by the QM/MM strategy, we have deemed
useful to evaluate how the solvent affects the photodynamics in this preliminary way. The
simulations based on the Brownian dynamics also allow us to bring out the effects due
to the transfer of energy from the solute (chromophore) to the solvent. Such “dynamic”
effects in real systems are always mixed with the “static” ones, i.e. the state-specific
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alterations of the PESs due to solute-solvent interactions.
The Brownian dynamics is realized by integrating the Langevin equation [103]:

Ṗα = −γαPα − ∂EK(~R)

∂Rα
+Xα(t) (4.21)

where Pα = mαṘα is the conjugated momentum of the Rα nuclear coordinate, mα the
associated mass and γα the friction coefficient. Xα(t) is a gaussian random white noise,
with the properties: 〈Xα〉 = 0, 〈Xα(0)Xβ(t)〉 = 2mαγαkTδαβδ(t).

The friction coefficients γα can be related to the molecular diffusion coefficients and
therefore to the viscosity of the solvent. In fact, if the γα are chosen to match the diffusion
coefficients, one obtains approximately the right effect on the slow modes, but overall the
transfer of vibrational energy from solute to solvent is too fast. The high frequency
modes are damped much more rapidly than found experimentally: while the vibrational
relaxation times are of the order of some ps, the frictional times γ−1

α are less than 1 ps
even for solvents with low viscosity. In view of these considerations, in our simulations we
have applied the friction and the white noise only to the carbon atoms of azobenzene. In
this way, all fast modes involving the H and N atoms are not affected, while the motion
of the phenyl rings is hampered by the viscosity. In order to choose the γC values for
the carbon atoms, we have considered the diffusion coefficient of benzene in solvents with
viscosity of about 1 mPa·s, such as ethanol or cyclehexane. With a diffusion coefficient
D = 2.0 · 10−5 cm2/s we get γC = 8.7 · 1012 s−1. Friction coefficients 10 times larger have
been used to simulate a solvent of medium viscosity (η ≈ 10).

In addition to the Brownian simulations, with two different values for the solvent
viscosity, we have run simulations for the isolated azobenzene molecule (no solvent, regular
Newtonian trajectories). The aim is to compare the results obtained in vacuo with those
of our previous simulations using different semiempirical parameters, and with the results
of the Brownian trajectories.

i We have executed four simulations, for the trans → cis and cis → trans
photoisomerizations, with excitation energies in the n → π∗ or in the π → π∗ band.
Each simulation involves about 600 trajectories, with the initial conditions sampled as
described in the previous section. Five states have been taken into account, from S0 to
S4. The maximum duration time of a trajectory is 5 ps, with ∆t=0.1 fs. A trajectory is
stopped when it has reverted to the ground state and it is near to the geometry of one of
the two isomers. The criterium we adopted is the CNNC angle to be within ±2◦ of the
values 0◦ for CAB and 180◦ for TAB. These specifications define a conventional “reaction
time”, tR, that goes from the vertical excitation to the end of the trajectory. Moreover, we
shall define the “reactive trajectories” as those that start near to the equilibrium geometry
of one isomer and stop to the other one, and the “unreactive trajectories” as those that
go back to the initial isomer. The fraction of the reactive trajectories is the calculated
quantum yield Φ.

4.5.2 Quantum yields and mechanism

The results of the simulations for the three cases (in vacuo, with the low viscosity and
with the medium one) are presented in Table 4.2 and in Figures from 4.3 to 4.8. In Table
4.2 we present the quantum yields for the trans → cis and cis → trans isomerizations.
In Figures 4.3 and 4.4, we show the time evolution of the populations of the excited states
(fraction of trajectories running on each PES). In Figures 4.5-4.8 we show the change
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in time of the angles CNNC (dihedral angle), NNC1 and NNC2 for the different excited
states, considering the “reactive trajectories” (when the isomerization occurs) and the
“unreactive” ones (when the molecule returns to the initial isomer configuration).

Table 4.2: Quantum yields obtained in the simulations for the trans → cis and
cis → trans processes, in vacuo and with solvent effects represented by the Brownian
dynamics. Old results from ref. [21]. The experimental quantum yields only concern non
polar solvents (see Table 1.1 and references therein)
.

n→ π∗ transition π → π∗ transition

Φtrans→cis (old calculation - in vacuo) 0.33±0.03 0.15±0.02

Φtrans→cis (new calculation - in vacuo) 0.34±0.02 0.27±0.02

Φtrans→cis (new calculation - η ≈ 1) 0.34±0.02 0.26±0.02

Φtrans→cis (new calculation - η ≈ 10) 0.17±0.02 0.19±0.02

Φtrans→cis (experimental, η < 3) 0.21-0.28 0.09-0.13

Φtrans→cis (experimental, very high viscosity) 0.18 0.05

Φcis→trans (old calculation - in vacuo) 0.61±0.03 0.48±0.03

Φcis→trans (new calculation - in vacuo) 0.60±0.02 0.63±0.02

Φcis→trans (new calculation - η ≈ 1) 0.60±0.02 0.61±0.02

Φcis→trans (new calculation - η ≈ 10) 0.54±0.02 0.44±0.02

Φcis→trans (experimental, η < 3) 0.40-0.56 0.40-0.44

Φcis→trans (experimental, very high viscosity) 0.60 0.40

In the first place, the simulations show that the preferred reaction path is the torsion
of the N=N double bond in all four cases (cis → trans or trans→ cis, n→ π∗ or π → π∗

excitation), in vacuo as in the two solvents (see figures 4.5-4.8). This is in agreement with
our previous simulations [21]. Secondly, we note that the quantum yields here computed for
the n→ π∗ excitation are in agreement with the experimental ones, and close to the results
previously obtained for the isolated molecule [21]. However, for the π → π∗ transition, the
computed quantum yields are not substantially lower than the n→ π∗ ones, as one would
expect. In the previous work, instead, the right ratio of π → π∗ to n→ π∗ quantum yields
had been obtained. The interpretation of this violation of Kasha’s rule, offered in ref. [21],
was based on the mechanism observed in the simulations. The first step is a fast S2 → S1

conversion. The ensuing dynamics on the S1 PES is characterized by a larger vibrational
energy, and especially by a higher excitation of the NNC symmetric bending motion, with
respect to the n → π∗ case. As a result, the S1 − S0 conical intersection is reached
more easily, and at CNNC angles closer to the starting point. Therefore, the radiationless
decay of S1 competes very effectively with the isomerization, resulting in lower quantum
yields. The higher quantum yields obtained in the present simulations for the π → π∗

excitation can be attributed to a poorer representation of the S2 PES, obtained with the
new parameterization. Although overall we have a better agreement with the target values,
especially for the S1 PES, the S1 − S2 energy gap is too large, at all geometries. As a
consequence the decay of S2 is too slow, and the CNNC twisting motion takes place in the
S2 PES, at least in part. This interpretation is confirmed by the comparison of the decay



92 4. Semiclassical dynamics of azobenzene

times of S2 − S4 states, that are considered together because the interconversion among
them is very fast (see Table 4.3). The lifetimes have been obtained by a fit of the curves
shown in Figure 4.4, using the biexponential form: w1exp(−t/τ1) + (1 − w1)exp(−t/τ2).
We have devised a way to correct the PESs in a state specific way, while preserving the
consistence between PESs and wavefunctions. This correction will be applied to perform
new simulations of the photodynamics following the π → π∗ excitation. In this chapter,
we shall focus on the n→ π∗ case.

Table 4.3: Decay times of the excited states, obtained by a fit of the populations Πk(t) with
the biexponential form w1exp(−t/τ1) + (1 − w1)exp(−t/τ2). For the π → π∗ excitation,
we consider the sum of the populations of S2, S3 and S4.

n→ π∗ transition π → π∗ transition

S1 lifetimes S2 + S3 + S4 lifetimes

w1 τ1 (fs) τ2 (fs) w1 τ1 (fs) τ2 (fs)

TAB isomer (old calculation - in vacuo) 0.78 172.5 379.8 0.81 73.7 331.5

TAB isomer (new calculation - in vacuo) 1.00 196.9 - 0.47 82.0 455.0

TAB isomer (new calculation - η ≈ 1) 1.00 488.1 - 0.29 60.8 364.2

TAB isomer (new calculation - η ≈ 10) 1.00 2078.3 - 0.35 116.2 417.8

CAB isomer (old calculation - in vacuo) 0.96 34.5 264.1 0.25 21.7 107.1

CAB isomer (new calculation - in vacuo) 0.66 20.0 51.2 0.87 128.1 820.2

CAB isomer (new calculation - η ≈ 1) 0.60 54.5 21.0 0.78 136.1 1021.3

CAB isomer (new calculation - η ≈ 10) 0.35 29.8 99.2 0.77 391.8 1094.9

With the inclusion of the solvent effects, it is possible to observe the strong influence
of the most viscous solvent on the population decay and on the quantum yield, shown
in Tables 4.2 and 4.3 and in Figures 4.3 and 4.4. The decay of the excited states is
slowed down in the presence of a solvent: the effect is moderate at low viscosity, and
much larger at higher viscosity. To reach the S1 → S0 crossing seam, the molecule must
rotate around the N=N double bond (CNNC dihedral), or open symmetrically the NNC
angles, or perform a combination of these two motions [21, 66]. Figures 4.5-4.8 show the
CNNC and NNC angles, as functions of time, averaged over the reactive or the unreactive
trajectories. In vacuo, the results are very similar to the previous ones [21], and the
dominant reaction mechanism is the torsion of the N=N double bond. In solution, the
torsional motion is slowed down by the solvent friction, and the NNC bending vibration is
also damped, resulting in longer lifetimes. These effects are much more pronounced with
the higher viscosity, and only in this case we also find significantly lower quantum yields.
When exciting the TAB isomer, the dynamics is much more sensitive to the presence of a
solvent and to its viscosity, then in the case of CAB: this is due to the shape of the excited
state PESs, that are much steeper on the CAB than on the TAB side.
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Figure 4.3: Time evolution of the population of the first excited state S1, in the case of
n → π∗ excitation, starting from the TAB isomer (upper panel) and CAB isomer (lower
panel), and considering three cases: in vacuo and in the two solvents, with low and medium
viscosity.
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Figure 4.4: Time evolution of the excited state populations in the case of π → π∗ excitation
(sum of the populations of S2, S3 and S4), starting from the TAB isomer (upper panel) and
CAB isomer (lower panel), and considering three cases: in vacuo and in the two solvents,
with low and medium viscosity.
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Figure 4.5: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of n → π∗ excitation of TAB and
considering three cases: in vacuo and in the two solvents with low and medium viscosity
(upper, medium and lower panel, respectively).
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Figure 4.6: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of n → π∗ excitation of CAB and
considering three cases: in vacuo and in the two solvents with low and medium viscosity
(upper, medium and lower panel, respectively).
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Figure 4.7: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of π → π∗ excitation of TAB and
considering three cases: in vacuo and in the two solvents with low and medium viscosity
(upper, medium and lower panel, respectively).
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Figure 4.8: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of π → π∗ excitation of CAB and
considering three cases: in vacuo and in the two solvents with low and medium viscosity
(upper, medium and lower panel, respectively).
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4.6 Photo-orientation of azobenzene.

An interesting aspect to be considered in this work is the phenomenon of molecular
orientation induced by polarized light, because of the large amplitude motions that take
place after the excitation. Induction of photochemical anisotropy in certain materials upon
irradiation with polarized light (Weigert effect [104]) has been known since the beginning
of this century. In the 1960s, this effect was widely studied in viscous solutions containing
azo-dye molecules, which are known to undergo cis ↔ trans photoisomerization upon
light irradiation [105]. Recently, interest has arisen in the photoinduced anisotropy in
azo-polymer films, and on applications in data storage and photo-modulable liquid crystal
alignment, as well as in fundamental aspects of photo-orientation (Chapter 3 of ref. [106]
and references therein).

Photo-orientation of azo-dye molecules occurs when these photochromic molecules
are photo-selected by linearly polarized light of appropriate wavelength. The azo-dye
molecules undergo successive cycles of excitation, internal dynamics in the excited states
and then in the ground one, with or without trans ↔ cis isomerization. Eventually,
they align preferably with the transition dipole perpendicular to the polarization of the
irradiating light. In solutions, photo-orientation can be neglected when rotational diffusion
is fast enough to randomize induced molecular orientation. Small molecules diffuse
rotationally in a few picoseconds in low-viscosity solutions. In solid polymer films, however,
spontaneous molecular mobility can be strongly hindered, depending on temperature and
pressure, and photo-orientation effects can be appreciable [106].

We are now able to relate the phenomenon of photo-orientation of azobenzene to the
molecular photodynamics. The results obtained from the dynamics simulations provide
information on the reorientation of a molecule, from the time of its excitation, to the time
when it reaches again a stable configuration in the ground state (end of the trajectory). To
extract this information, we must first define a body-fixed frame. This definition is given
in detail in Appendix A, and it is valid for both isomers, even at distorted geometries. In
all cases, the X axis corresponds to the N=N bond axis. For symmetric geometries, the
Z axis coincides with the C2 rotation axis, so it is perpendicular to the molecular plane
of TAB. The CAB equilibrium geometry has no symmetry planes, but the CNNC atom
are almost coplanar and the Z axis lies close to the C1N1N2 and N1N2C2 planes. Figure
4.9 shows the body-fixed frames for TAB and CAB. We shall call Xi, Yi, Zi the body-fixed
frame of the initial geometry for a given trajectory, and Xf , Yf , Zf the final one. Each of
the final axes can be expressed as a linear combination of the initial ones. For instance:

Xf = CxxXi + CxyYi + CxzZi (4.22)

and in general:
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(4.23)

For each trajectory we obtain a different rotation matrix C, which is related to the Euler
angles of the rotation from the initial to the final molecular frame. A simulation provides a
distribution of rotation matrices. It is convenient to represent such distributions by three
dot density plots for each simulation, as in Figures 4.10 and 4.11. The coordinates of
each dot in the plots are the final components of a given axis, that were initially null: for
instance, for the Xf axis, we give the Cxy and Cxz components. In this way, we represent
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pictorially the deviation of each axis from its original orientation. Dots of different colors
are used for the reactive and the unreactive trajectories, i.e. to indicate the final orientation
of CAB and TAB, respectively, when starting from TAB (and viceversa). In Figure 4.9 we
also show three different views of the two isomers, corresponding to the initial orientation
in each of the three dot density plots: the axis that is monitored in each plot points out
of the paper in the corresponding view of the molecule.

Figure 4.9: Body-fixed reference frames for the calculation of the orientation coefficients
(top) and three views of TAB (center) and CAB (bottom), corresponding to the initial
orientations in the dot density plots of Figures 4.10 and 4.11. The three orientations have
one the three X, Y and Z axes pointing out of the paper, respectively.

Figure 4.10 shows the distribution of rotation coefficients obtained by excitation of
TAB, for each of the three cases: in vacuo and in the two solvents of low and higher
viscosity. Figure 4.11 shows the same for the excitation of CAB. It appears that the axes
rotate into rather well defined preferential directions. To explain the observed behaviour,
we recall that the pathway followed after excitation, by the reactive and the unreactive
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trajectories alike, consists essentially in the torsion of the N=N double bond. Moreover,
we apply the general principle that all atoms will be displaced as little as possible by the
torsional motion. This is especially true for the atoms constituting the phenyl rings, that
are relatively rigid and bulky groups. In vacuo, this is due to a mere inertial effect, but in
a viscous solvent the friction hampers the large amplitude motions more effectively, and
the spread of the distribution decreases. To minimize the displacements of the atoms,
the torsion of the N=N bond is essentially performed by a rotation of the two halves
of the molecule (the N-C6H5 groups) in opposite directions, around an axis that goes
approximately through their centers of mass. With respect to this basic description, some
refinements are necessary due to the bond length constraints, and because in S1 the NNC
angles tend to open more than in S0. Of course, there is a certain degree of randomness
in the overall rotation of the molecule, which is more likely to occur around the long axis,
because it involves the smallest displacements of the atoms. For TAB, the long axis lies
in the molecular plane, and is approximately the bisector of the fourth (X,−Y ) quadrant.
For CAB, it is approximately parallel to the N=N bond (X axis).

In the case of the trans → cis isomerization, the above description of the molecular
motion implies that the X axis is displaced in the negative Y direction, and the Y one
in the positive X direction. However, the definition of the body-fixed frame is such that
the sign of the Y and Z axes can change during the isomerization (see Appendix A),
which corresponds to the formation of either one or the other enantiomeric conformation
of CAB. Therefore, the positive and negative displacements are equally probable for the Y
and Z axes. The rotation around the long axis adds a displacement of the Z axis along the
bisector of the first and third quadrant of the XY plane, while X and Y acquire positive
or negative Z components. The unreactive trajectories perform about half of the motion
that leads to isomerization in the excited state, and then go back to the initial isomer in
the ground state. Of course the two halves of this pathway do not coincide exactly, because
of both random and systematic differences, the latter related to the shapes of the S1 and
S0 PES. As a result, the rotation around the long molecular axis is more pronounced for
the unreactive trajectories.

The cis → trans isomerization displaces the X and Y axes in the opposite direction,
with respect to the trans→ cis one. In this case, there is no ambiguity on the signs of the
axes, because we always start with the same enantiomeric form of CAB. Moreover, all the
random rotation effects are less pronounced than in the case of TAB excitation, because the
photodynamics is faster and the molecular motion is better defined, thanks to the larger
slope of the excited state PES. As a consequence, the final orientational distributions are
less spread than in the TAB case, especially for the unreactive trajectories.

Finally, we have run a set of 300 brownian trajectories, each 3 ps long (∆t=0.1 ps)
in the ground state of each isomer, with the two solvents of different viscosity. By
taking two points along a trajectory, separated by a given time interval, we obtain the
orientation coefficients for the rotational diffusion without excitation. The results with a
time interval of 1 ps are shown in Figures 4.12 and 4.13. The faster rotational diffusion
in the solvent of lower viscosity is apparent. With the more viscous solvent, the preferred
axis of spontaneous rotation is also clear: for TAB, it lies in the X − Y direction, and for
CAB in the X direction, as previously noted.

Our results have been used in a successive work, which is not part of this thesis, where
a stochastic model has been set up to simulate the development of anisotropy in a sample
of azobenzene molecules. The main results of that work [107] are:
• In agreement with the experimental observations, the development of a strong anisotropy
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Figure 4.10: Orientation coefficients for the X axis (Cxy and Cxz), the Y axis (Cyx and
Cyz) and the Z axis (Czx and Czy) of the TAB and CAB isomers, obtained by excitation
of TAB, considering three cases: vacuum (upper panel), low viscosity solvent (middle
panel) and medium viscosity solvent (lower panel). Green points: reactive trajectories;
red points: unreactive trajectories.

can be induced, even with low irradiances, if the host matrix damps very effectively the
rotational diffusion (polymers with low free volume). A solvent of medium viscosity
would require very strong laser fields, in the Gw range.

• The photoisomerization process is not essential for the development of the anisotropy. In
fact, our orientational distributions show that the unreactive trajectories are as effective
in causing the reorientation of the chromophore as the reactive ones. Therefore, one
may expect that, even in conditions where the quantum yields are considerably reduced,
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Figure 4.11: Orientation coefficients for the X axis (Cxy and Cxz), the Y axis (Cyx and
Cyz) and the Z axis (Czx and Czy) of the TAB and CAB isomers, obtained by excitation
of CAB, considering three cases: vacuum (upper panel), low viscosity solvent (middle
panel) and medium viscosity solvent (lower panel). Purple points: reactive trajectories;
blue points: unreactive trajectories.

the phenomenon of photoorientation can manifest itself. Moreover, even chromophores
that do not isomerize may undergo the same phenomenon.

• The anisotropy of the sample has an important influence on the excitation rate. Since
the orientation parameters of the two isomers are different (TAB being more easily
oriented than CAB), the isomeric ratio in the photostationary state is widely different
from the value one would obtain with an isotropic sample. This fact complicates the
extraction of the quantum yields from the experimental data.
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Figure 4.12: Orientation coefficients for the X axis (Cxy and Cxz), the Y axis (Cyx and
Cyz) and the Z axis (Czx and Czy) of the TAB isomer, obtained by Brownian motion in
the ground state for a time interval of 1 ps. Upper panel: low viscosity solvent; lower
panel: medium viscosity solvent.



4.6 Photo-orientation of azobenzene. 105

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
z

Cy

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
z

Cx

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
y

Cx

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
z

Cy

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
z

Cx

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

C
y

Cx

Figure 4.13: Orientation coefficients for the X axis (Cxy and Cxz), the Y axis (Cyx and
Cyz) and the Z axis (Czx and Czy) of the CAB isomer, obtained by Brownian motion in
the ground state for a time interval of 1 ps. Upper panel: low viscosity solvent; lower
panel: medium viscosity solvent.





Part IV

INCLUSION OF THE SOLVENT
EFFECTS





Chapter 5

Solute-solvent interaction
potential

We want to remind that the main interest in our research work regards the simulations of
the photoisomerization dynamics of azobenzene in solution in order to study the solvent
effects on the excited states decay and on the quantum yields, as it has already been
done for the isolated molecule [21, 38, 55]. As we have mentioned in Chapter 1, the most
remarkable work related to the solvent effects on the photoisomerization of azobenzene
is Diau’s [6], who studied the variations of the fluorescence decay time and anisotropy
due to solvent effects, for the n → π∗ transition of azobenzene. As a non polar and low
viscosity solvent they used n-hexane and as a polar and viscous one they used ethylene
glycol. In their work, the authors show how the decay is slowed down and the fluorescence
depolarization almost disappears, in the presence of a polar and viscous solvent. Thus,
Diau hypothesizes two possible decay pathways: the symmetric NNC bending and the
double bond N=N torsion. The first one would correspond to the fast decay and would
not change the orientation of the transition dipole moment, while the second one would
be slower and would cause the fluorescence depolarization.

The main aspects presented in this Chapter and in the next one are related to the
interaction of azobenzene with solvents and to their influence on the photodynamics. Due
to the size of the system (azobenzene embedded in a large cluster of solvent molecules),
the simulations will be run by means of the QM/MM method [108,109] briefly described in
Section 5.2. We are interested in three solvents: n-hexane, methanol and ethylene glycol,
in order to span both the scale of polarities and that of viscosities. In a first stage, we
have determined the solute-solvent interaction potential by ab initio calculations on the
complexes of azobenzene with methane and methanol, i.e. the simplest representatives of
hydrocarbons and alcohols. On the basis of such results, we have optimized the QM/MM
parameters to be used for the dynamics.

5.1 Ab initio determination of the azobenzene-solvent

interaction potential

The interaction forces between two molecular systems can be decomposed in a set of terms
of different origin: repulsion forces (related to the superposition of electronic densities),
dispersion forces (due to the correlation between electrons belonging to either system),
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inductive forces (due to the polarization of the charge density of a molecule, induced by
an electric field generated by the other one) and electrostatic forces (between charges
or permanent multipoles). More specific and highly directional interactions, such as the
hydrogen bonds, are partially accounted for by several terms of the kinds seen above. In
our particular case, for the azobenzene-methane system, only the repulsion and dispersion
terms are important. However, for the azobenzene-methanol system, also the electrostatic
and inductive terms are important, and with the appropriate reciprocal orientations, a
hydrogen bond is formed.

The interaction energies and optimal geometries of the azobenzene-solvent complexes
will be obtained by MP2 calculations. The MP2 method is usually considered the simplest
and fastest computational approach that provides a correct treatment of the dispersion
interaction. As such, it is often used for systems of medium size, whenever dispersion plays
an important role. Since we could not afford geometry optimizations with large basis sets,
we have to deal with the Basis Set Superposition Error (BSSE). A brief account of the
MP2 and BSSE theories is presented in the next section.

5.1.1 Møller-Plesset method and basis-set superposition error (BSSE)

In 1934, Møller and Plesset (MP) proposed a perturbation treatment of atoms and
molecules in which the unperturbed wavefunction is the Hartree-Fock function [110].
The MP unperturbed Hamiltonian is taken as the sum of the one-electron Hartree-Fock
operators f̂m [111]:

Ĥ(0) ≡
n
∑

m=1

f̂m (5.1)

where the Fock operator is written as:

f̂m ≡ −1

2
∇2

m −
∑

α

Zα

rmα
+

n
∑

j=1

[Ĵj(m) − K̂j(m)] (5.2)

Considering the ground state, the relative wave function for the unperturbated state,
Φ0, is represented by the Slater determinant of the n occupied spin-orbitals. This Slater
determinant is an antisymmetrized product of the spin-orbitals, i.e. a sum of n! terms,
each term involving a different permutation of the electrons among the spin-orbitals. Thus,
each term of the sum, and Φ0 itself, are eigenfunctions of Ĥ(0):

[

f̂(1) + ...+ f̂(n)

]

[u1(1)..un(n)] = [ε1(1) + ...+ εn(n)] [u1(1)..un(n)] (5.3)

Ĥ(0)Φ0 =

(

n
∑

m=1

ǫm

)

Φ0 (5.4)

In these conditions, the perturbation operator can be written as the difference between
the real electronic repulsion energy and the average potential used in the Hartree-Fock
Hamiltonian:

Ĥ′

= Ĥ − Ĥ(0) =
n
∑

l

n
∑

m>l

1

rlm
−

n
∑

m=1

n
∑

j=1

[Ĵj(m) − K̂j(m)] (5.5)
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The MP first order correction to the ground state energy is:

E
(1)
0 =

〈

Φ0

∣

∣

∣Ĥ′
∣

∣

∣Φ0

〉

(5.6)

Thus,
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= EHF (5.7)

where EHF is the Hartree-Fock energy. The first corrective term does not improve the
accuracy of the result. Then, it is necessary to perform a second order development. The
second order correction is calculated as:

E
(2)
0 =

∑

s 6=0

〈

Φs

∣
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∣Ĥ′
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∣Φ0

〉2

E
(0)
0 − E

(0)
s

(5.8)

This term takes into account the interaction of the Hartree-Fock determinant Φ0 with
each excited determinant Φs. However, the Φs determinants that differ from Φ0

by the excitation of one or more than two electrons, do not contribute to the sum

(
〈

Φs

∣

∣

∣Ĥ′
∣

∣

∣Φ0

〉

= 0). Consequently, the second order correction is obtained considering

only the contributions of the doubly excited Φs determinants. The wave function that
results from the i −→ a and j −→ b excitations can be indicated as Φs = Φab

ij . Considering

that E
(0)
0 − E

(0)
s = εi + εj − εa − εb, the following expression is obtained:
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(5.9)

where N is the total number of spin-orbitals, and the first n are occupied. Consequently,
in the second order correction, the expression for the total energy is:

E = EHF + E
(2)
0 = EHF +

n
∑
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n
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εi + εj − εa − εb
(5.10)

We examine now the problem of the Basis Set Superposition Error (BSSE), that affects
practically all the ab initio methods in a similar way. In order to calculate the energy of
a molecule with a method based on molecular orbitals it is necessary to choose a set of
basis functions, most often centered on each atom of the system. Generally, a bigger
basis produces better energy results. If we want to calculate the stabilization energy of a
complex formed by two interacting units A and B, with respect to infinite separation, the
standard procedure is to calculate the difference between the energy of the AB complex
and that of the two separated partners A and B. In both calculations, one uses the same set
of basis functions for each atom. The calculation for the two separated molecules can be
substituted by a single one for the whole AB system, with a sufficiently large A-B distance
(within the HF and MP2 methods the result does not change). Thus, the stabilization
energy can be written as:
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∆E = EAB(χA + χB) − EA(χA) − EB(χB) (5.11)

The computed energies depend on the basis set, therefore in eq. (5.11) we have indicated
with χA the basis used to describe the fragment A and with χB that of the fragment
B. With this method the interaction energy ∆E has a systematic negative error. As a
matter of fact, at a short A-B distance each molecule (A or B) is described by a larger
basis with respect to the one used at infinite distance, because the basis functions of the
other molecule are available to improve variationally the wavefunction. Consequently,
the complex is erroneously stabilized with respect to the two molecules at large distance.
This error is called Basis Set Superposition Error (BSSE). The effect depends on the
incompleteness of the basis set χA and on the ability of the basis functions χB to make up
for it (and viceversa). Then, the BSSE decreases as a function of the A-B distance, and
tends to zero for large basis sets, approaching completeness. The BSSE can be important
for small interaction energies, as we shall see in the case of azobenzene-methane complex.

The counterpoise correction (CP) [112] permits, in a good approximation, to correct
the BSSE. The energy at infinite distance is calculated as the sum of the energies computed
separately for the A and B molecules, but the basis set used for each molecule also includes
the basis functions of the other one, centered in the same positions as in the complex. The
corrected interaction energy is then

∆E = EAB(χA + χB) − EA(χA + χB) − EB(χA + χB) (5.12)

The estimated BSSE is then

δE = EA(χA + χB) − EA(χA) + EB(χA + χB) − EB(χB) ≤ 0 (5.13)

5.1.2 Ab initio calculations

As we have mentioned at the beginning of this chapter, the first step is to obtain the
interaction parameters between solute and solvent molecules by ab initio calculations. We
shall focus on the interactions of the solvent molecule with the azo group, because we
shall trust the standard force-fields to represent sufficiently well the interactions with the
phenyl groups.

A direct minimization of the CP corrected energy for the azobenzene-solvent
molecule complex has been discarded, because of convergence problems in the geometry
optimization. For this reason, we have adopted the following procedure:

• Perform geometry optimizations for azobenzene and the solvent molecule at infinite
distance and for their complex without counterpoise correction (CP).

• Carry out several “single point” calculations at different azobenzene-solvent distances,
with the internal geometries and reciprocal orientations of the two molecules as
optimized for the complex. The distance to be varied is that between a nitrogen
atom of the azo group and the closest hydrogen of the solvent molecule (in methanol,
the H atom of the OH group). In this step we take into account the CP correction,
that depends mainly on the R(N-H) distance.

• Find the minimum of the CP corrected potential as a function of R(N-H), which is
an approximation of the global minimum.

For the ab initio calculations, we have employed the cc-pVDZ basis set [113]. Moreover,
we have carried out calculations with the cc-pVTZ basis set at the same geometries. In
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Table 5.1: Scheme of the basis sets used for the calculation of the interaction potentials.

cc-pVDZ cc-pVTZ

atoms complete basis contracted basis complete basis contracted basis

H 4s,1p 2s,1p 5s,2p,1d 3s,2p,1d

C,N 9s,4p,1d 3s,2p,1d 10s,5p,2d,1f 4s,3p,2d,1f

Table 5.1 we compare the composition of the two basis sets. Although the BSSE is much
smaller with the larger basis, this procedure has not given satisfactory results, as we shall
see in the next sections. Therefore, we have based the parameterization of the QM/MM
potentials on the cc-pVDZ results.

In the next sections, we shall examine the results of the calculations of the interaction
potentials of azobenzene with methanol and with methane. For clarity, Figure 5.1 shows
the azobenzene-solvent complexes, with numbers indicating the most important atoms: to
such numbers we shall refer in the following to designate the internal coordinates.

Figure 5.1: Azobenzene-methanol (left) and azobenzene-methane (right) complexes, with
the numbering of the atoms related to the most important internal coordinates.

5.1.3 Ab initio results for the azobenzene-methanol interaction.

In the case of the azobenzene-methanol system, the interaction is dominated by the
hydrogen bonding between the H atom of the alcohol and the N atoms of azobenzene.
The ubiquitous repulsion and dispersion forces between other atoms or groups are also
important.

First of all we have optimized the geometries of each molecule and isomer (TAB, CAB
and methanol), with the MP2 method and the cc-pVDZ basis set. The energies of the
“supermolecules” TAB + MeOH and CAB + MeOH at a very large R(N-H) distance
have also been computed with the same internal coordinates, just to check that they
coincide with the sum of the energies of the separated partners. Finally, we have carried
out the optimization of the complexes trans-azobenzene-methanol (TAB-MeOH) and cis-
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azobenzene-methanol (CAB-MeOH), without counterpoise correction, starting from the
same geometry except that the R(N-H) is reduced to a reasonable H-bond value.

From the “free” optimization (without constraints) of the TAB-MeOH complex, we
obtain a configuration with the H-O bond almost on the plane of the TAB, pointing
towards one of the two N atoms of azobenzene (TAB-MeOH-Plan), where probably the
interaction of H with the free electron pair of N is larger than in other orientations. For
the CAB-MeOH complex we have also obtained a geometry with the H-O bond almost
in the plane formed by N1C3C4. Finally, we have performed another optimization for the
TAB-MeOH complex, with the H-O bond perpendicular to the TAB plane (TAB-MeOH-
Perp), in order to explore another approach of MeOH to the azo group. In this case
we have applied the following constraints: N1X1X2=90◦, N2X1X2=90◦, N2X1X2N2=180◦,
H25N2N1X2=0◦ C3N1N2X2=90◦ and C14N2N1X2=90◦ (where X is a phantom atom, used
to maintain the H-O bond of the methanol perpendicular to the TAB). Consequently, we
have three configurations for the azobenzene-methanol complexes, shown in Figure 5.2. In
the Tables 5.2 and 5.3 we show some important geometrical (distances N-H, angles and
dihedrals) and energetic values, respectively, obtained from the above calculations. As a
by-product, from the energies at large separation we also obtain the CAB-TAB energy
difference, that amounts to 11.9 kcal/mol.

Figure 5.2: Optimized geometries for the complexes under study: TAB-MeOH-Plan,
TAB-MeOH-Perp and CAB-MeOH. MP2 calculations, cc-pVDZ basis, no counterpoise
correction.

The potential energy curves with the CP correction of the BSSE have been constructed
by several single point calculations, varying the R(N-H) distance while keeping the other
internal coordinates at their optimized values (the internal coordinates of the azobenzene
and methanol and in particular the angles H25N1N2, H25N1N2C3 with the values obtained
by the ab initio calculations). These calculations have been repeated with the cc-pVDZ
and the cc-pVTZ basis sets, both at the cc-pVDZ geometries: in fact, to optimize the
geometries at the cc-pVTZ level was found computationally too demanding. The obtained
energies are shown in Table 5.4. More detailed data about these results can be found in
the Appendix D.

Figure 5.3 shows a portion of the potential energy curves for the different complexes
and for both basis, with and without counterpoise correction. The lowest points of the
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Table 5.2: Optimized geometrical parameters of the azobenzene-methanol complexes.
MP2 calculations, cc-pVDZ basis, no counterpoise correction.

Coordinate TAB-MeOH-Plan TAB-MeOH-Perp CAB-MeOH

RN1H25 (Å) 1.927 2.096 2.817

RN2H25 (Å) 2.982 2.900 1.998

6 N2N1C3 (Degrees) 113.6 113.4 120.8

6 N1N2C14 (Degrees) 115.1 113.4 121.9

6 C3N1N2C14 (Degrees) 179.9 179.9 6.9

6 N1N2C14C15 (Degrees) -177.2 169.2 -135.8

6 N1N2C14C16 (Degrees) 3.1 -12.8 51.7

6 N2N1C3C4 (Degrees) 179.5 -161.0 -135.2

6 N2N1C3C5 (Degrees) -0.7 21.5 52.9

6 O26N1C3C4 (Degrees) -6.4 82.7 168.8

6 O26N1C3C5 (Degrees) 173.4 -94.8 -3.0

6 O26N2C14C15 (Degrees) -173.1 120.7 2.3

6 O26N2C14C16 (Degrees) 7.1 -61.2 -170.2

Table 5.3: Energies of the azobenzene-methanol complexes. MP2 calculations, cc-pVDZ
basis, no counterpoise correction.

TAB-MeOH-Plan TAB-MeOH-Perp CAB-MeOH

E∞ (a.u.)a -686.409592 -686.409592 -686.390564

Emin(a.u.)b -686.427528 -686.417065 -686.407351

Rmin (Å)c 1.93 2.10 2.00

∆E(a.u.)d -0.017936 -0.007473 -0.016787

∆E(kcal/mol) -11.25 -4.69 -10.53

aEnergy at large distance, when the two molecules do not interact: R(N-H)=12Å
bEnergy of the optimized complex
cOptimal R(N-H) distance
dEnergy difference Emin − E∞

curves were fitted with a second order polynomial, to obtain the distance and energy of the
potential curve minimum. For each complex and basis set, the corrected curve is above the
non corrected one. Moreover, the optimal R(N-H) distance with CP correction is shifted
to larger values with respect to the non corrected one. These features can be supported
with the data presented in the Tables 5.3 and 5.4.

From the CP corrected cc-pVDZ results we observe that the TAB-MeOH-Plan complex
is more stable than TAB-MeOH-Perp, i.e. the H-bond interaction with the lone pair of N
is stronger than that with the π electrons of the azo group. Moreover, methanol binds to
CAB slightly better than to TAB, because the lone pairs of the former do cooperate in
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Figure 5.3: Comparison between the potential energy curves relative to the cc-pVDZ and
cc-pVTZ basis, for the three complexes: TAB-MeOH-Plan (upper panel), TAB-MeOH-
Perp (middle panel) and CAB-MeOH (lower panel), with and without the counterpoise
correction.
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Table 5.4: Energies of the azobenzene-methanol complexes. MP2 calculations, cc-pVDZ
and cc-pVTZ basis sets, with counterpoise correction.

TAB-MeOH-Plan TAB-MeOH-Perp CAB-MeOH

cc-pVDZ basis

E∞(a.u.)a -686.409592 -686.409592 -686.390564

Emin(a.u.)b -686.416352 -686.412700 -686.398496

Rmin (Å)c 2.11 2.38 2.18

∆E(a.u.)d -0.006760 -0.003108 -0.007932

∆E(kcal/mol) -4.24 -1.95 -4.98

cc-pVTZ basis

E∞(a.u.)a -687.073547 -687.073547 -687.055412

Emin(a.u.)b -687.079562 -687.074784 -687.061636

Rmin (Å)c 1.99 2.24 2.09

∆E(a.u.)d -0.006015 -0.001237 -0.006224

∆E(kcal/mol) -3.78 -0.78 -3.91

aEnergy at large distance, when the two molecules do not interact: R(N-H)=12Å
bEnergy of the complex, computed at Rmin
cR(N-H) distance corresponding to the minimum of the CP corrected potential curve.
dEnergy difference Emin − E∞

causing electrostatic and inductive effects, while those of TAB do not.
Considering the CP corrected cc-pVTZ results, we see that the depth of the minimum

is slightly reduced for TAB-MeOH-Plan and CAB-MeOH, and much more so for TAB-
MeOH-Perp. In fact, the stabilization energy of the latter complex at R(N-H) = 2.6 Å is
almost vanishing. This is due, most probably, to the use of the cc-pVDZ geometry for the
cc-pVDZ energy calculations. The geometries one would obtain with the two basis sets do
not coincide, so the cc-pVTZ energies computed at cc-pVDZ geometries are higher than
in the cc-pVTZ minimum. In the case of the TAB-MeOH-Perp complex this error is larger
than at infinite R(N-H) distance, so the computed stabilization energy is too small. This
artefact is even more apparent in the case of the azobenzene-methane complexes, and has
prompted us to give up the use of the cc-pVTZ basis set.

5.1.4 Ab initio results for the azobenzene-methane interaction.

The azobenzene-methane interaction potential has been computed as part of a BS Thesis
work, carried out in our research group [114]. Here we give a short account of the results.
The procedure is similar to that followed in the case of methanol. Three complexes
have been optimized: cis-azobenzene-methane (CAB-Met), trans-azobenzene-methane
with one of the H-C bonds of the methane in the plane of the TAB (TAB-Met-Plan)
and trans-azobenzene-methane with one of the H-C bonds perpendicular to the TAB
plane (TAB-Met-Perp). The CAB-Met complex has been optimized without constraints,
choosing a starting geometry with one of the H-C bonds of methane pointing towards one
of the N atom of azobenzene and approximately in the C26-N1-N2 plane. For the TAB-Met,



118 5. Solute-solvent interaction potential

Figure 5.4: Optimized geometries for the complexes of azobenzene-methane: TAB-Met-
Plan, TAB-Met-Perp and CAB-Met, by ab initio calculations.

the “free” optimization (without constraints) yields a perpendicular configuration of the
complex, at variance with the methanol complex. The optimization of the configuration
with the methane molecule in the plane of TAB needed the application of the following
constraints on two dihedral angles: H25N1N2C14=0◦ and C26H25N1C3=0◦. In Figure 5.4
we present the geometries obtained after the optimization.

The attractive forces involved in this system are very weak (induction and dispersion)
and the gradients of the potential energy surfaces, along the coordinates that determine
the relative position of the two molecules are very small, the minima are very shallow and
the optimization converge with difficulty. The inductive effects due to the nitrogen lone
pairs have some importance only when the CAB isomer is involved, because of the stronger
electrostatic field generated by CAB with respect to TAB. As in the case of methanol, the
optimizations of TAB+methane and CAB+methane at large distance have been carried
out. Also in this case, we find a CAB/TAB energy difference of 11.9 kcal/mol. The results
of the optimizations are shown in the Tables 5.5 and 5.6. More detailed data can be found
in the Appendix E.

In this case, the TAB-Met-Perp complex is more stable than TAB-Met-Plan and very
close to CAB-Met. In the TAB-Met-Perp and CAB-Met complexes the interaction between
the two molecules involves the azo-group and one of two phenyl groups, unlike the case
of TAB-Met-Plan, where the methane molecule is constrained to stay in the azobenzene
plane. Apparently, the dispersive interaction with the phenyl ring makes the difference
and explains why the CAB-Met and TAB-Met-Perp complexes are more stable than the
TAB-Met-Plan one. In TAB-Met-Perp the methane molecule assumes a bridge position
between both nitrogens of the double bond and interacts with the phenyl ring bonded
to the N2. The distorted conformation of CAB (with the phenyl groups out of the CNN
plane) prevents the methane molecule to occupy an intermediate position between the two
nitrogens. There is however a common characteristic between CAB-Met and TAB-Met-
Perp: the methane molecule is on a plane that contains the axis of the nearest N-C bond
and is perpendicular to the corresponding phenyl ring, in order to better interact with the
π electrons.

Again, the energy values are affected by the BSSE. As we shall see, in the case of the
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Table 5.5: Geometrical optimized parameters of the azobenzene-methane complexes. MP2
calculations, cc-pVDZ basis, no counterpoise correction.

Coordinate TAB-Met-Plan TAB-Met-Perp CAB-Met

RN1H25 (Å) 2.833 2.767 2.798

RN2H25 (Å) 3.874 3.047 3.875

6 N2N1C3 (Degrees) 113.0 113.3 121.1

6 N1N2C14 (Degrees) 113.5 113.1 120.7

6 C3N1N2C14 (Degrees) -179.3 -179.2 7.3

6 N1N2C14C15 (Degrees) -167.8 -165.6 -134.5

6 N1N2C14C16 (Degrees) 13.3 14.5 53.2

6 N2N1C3C4 (Degrees) -178.0 -175.5 -134.5

6 N2N1C3C5 (Degrees) 2.2 4.8 54.7

6 C26N1C3C4 (Degrees) 2.5 -77.9 79.3

6 C26N1C3C5 (Degrees) -177.3 102.4 -91.5

6 C26N2C14C15 (Degrees) -167.8 -102.1 -105.8

6 C26N2C14C16 (Degrees) 13.3 78.0 81.9

Table 5.6: Energies of the azobenzene-methane complexes. MP2 calculations, cc-pVDZ
and cc-pVTZ basis sets, with counterpoise correction.

TAB-Met-Plan TAB-Met-Perp CAB-Met

E∞ (a.u.)a -611.381798 -611.381798 -611.362675

Emin(a.u.)b -611.384152 -611.385575 -611.366359

rmin (Å)c 2.83 2.77 2.80

∆E(a.u.)d -0.002354 -0.003777 -0.003685

∆E(kcal/mol) -1.48 -2.37 -2.31

aEnergy at large distance, when the two molecules do not interact: R(N-H)=12Å
bEnergy of the optimized complex
cOptimal R(N-H) distance
dEnergy difference Er − E∞

methane complexes, the BSSE is of the same order of magnitude of the stabilization energy
found in the geometry optimization without CP correction. Figure 5.5 shows the potential
energy curves with and without CP correction, as functions of the R(N-H) distance. All
the other internal coordinates maintain the values found with the optimization without
counterpoise. Table 5.7 contains the CP corrected stabilization energies and optimal R(N-
H) distances. Even with the CP correction, the TAB-Met-Perp and CAB-Met complexes
have approximately the same stabilization energy, while TAB-Met-Plan is less stable.

We have also computed the energies corresponding to the minimum of the CP corrected
cc-pVDZ curves, using the larger cc-pVTZ basis. For the two complexes with TAB,
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TAB-Met-Perp and TAB-Met-Plan, the CP corrected cc-pVTZ energy is higher than the
dissociation limit. This is due to the same artefact already discussed for the complexes
with MeOH (inadequacy of the cc-pVDZ geometries for the cc-pVTZ calculations), so we
have discarded the results obtained with this basis set.

Table 5.7: Energies of the azobenzene-methane complexes. MP2 calculations, cc-pVDZ
basis set, with counterpoise correction.

TAB-Met-Plan TAB-Met-Perp CAB-Met

E∞(a.u.)a -611.381798 -611.381798 -611.362675

Emin(a.u.)b -611.382700 -611.383266 -611.364231

Rmin (Å)c 3.18 3.08 3.03

∆E(a.u.)d -0.000902 -0.001468 -0.001556

∆E(kcal/mol) -0.57 -0.92 -0.98

aEnergy at large distance, when the two molecules do not interact: R(N-H)=12Å
bEnergy of the complex, computed at Rmin
cR(N-H) distance corresponding to the minimum of the CP corrected curve
dEnergy difference Emin − E∞

5.2 QM/MM Method

In order to carry out the simulations including an explicit representation of the solvent it
is necessary to apply a method suitable for large systems, such as Molecular Mechanics.
However, we need to describe quantum mechanically the chromophore, which is also,
in our case, the reactive portion of the system. The QM/MM approach satisfies such
requirements. This method was born from an idea of Warshel and Levitt [115], although
some pioneering work was done in Pisa as early as in 1971 [116,117].

In the QM/MM approaches, the electrons belonging to given portion of the system
are described with a quantum mechanical (QM) method, and in our specific case, in a
semiempirical way. It is the part of the system that one wants to study in detail, generally
a reactive system or a system where the electronic structure is very important. It can
be a molecule (like a solute in a solution), a group of molecules or a fragment of a big
molecule. The other part of the system is the “environment”. It does not participate
directly in the chemical reaction, but it does interact with the reactive subsystem. This
part is treated with a force field as in Molecular Mechanics (MM). This approach is very
convenient when the chromophore or the reactive center constitutes a small part of the
entire system. The MM subsystem can contain a certain number of solvent molecules, a
solid surface, a natural or synthetic polymeric matrix or others molecules in condensate
phase, and it can also contain chromophores with the condition that their excited states
are not important for the process under study.

The electronic Hamiltonian of the global system can be partitioned into three terms:
one related to the QM subsystem, ĤQM ; one represented by the force field for the MM

atoms, ĤMM ; and the interaction between the two subsystems, ĤQM/MM :

Ĥel = ĤQM + ĤMM + ĤQM/MM (5.14)
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Figure 5.5: Potential energy curves relative to the cc-pVDZ basis, for the three complexes:
TAB-Met-Plan (upper panel), TAB-Met-Perp (middle panel) and CAB-Met (lower panel),
with and without CP correction.
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The total energy of the system can also be divided into three terms:

U = UQM + UMM + UQM/MM (5.15)

Here UMM can be identified with ĤMM , while UQM and UQM/MM are the expectation

values of ĤQM e ĤQM/MM , respectively. Thus, the total energy can be written as:

Uk =
〈

ψk

∣

∣

∣ĤQM + ĤQM/MM

∣

∣

∣ψk

〉

+ UMM (5.16)

In our formulation [108,109], ĤQM takes the expressions adopted in the semiempirical
methods. UMM is an energy obtained by a classical force field and it contains interaction
terms between linked atoms, as well as purely electrostatic and repulsion/dispersion
interactions between pairs of non bonded MM atoms. Some examples of this kind of
force fields including OPLS [118–120], AMBER [121, 122] and CHARMM [123]. A wide
choice of functions of the internal coordinates can be used to describe the potential energy
of a molecular system. Many force-fields are based on the general form

EMM (~R1, ~R2, ..., ~RN ) =
Nbonds
∑

ibonds=1

Ubond(ibonds, |~Ra − ~Rb|)

+

Nang
∑

iang=1

Uangles(iang, ~Ra, ~Rb, ~Rc)

+
Ndihed
∑

idihed=1

Udihed(idihed, ~Ra, ~Rb, ~Rc, ~Rd)

+
N−1
∑

i=1

N
∑

j>i

Upairs(i, j, |~Ra − ~Rb|) (5.17)

where Ubonds, Uang, Udihed and Upairs are the interaction terms depending on the length of
the bonds, on the angles, on the dihedral angles and on the distance between non bonded
atoms, respectively. The first three terms are treated as intramolecular interactions, while
Upairs depends on the distance between not bonded atoms of the same or of different
molecules. Nbonds, Nang and Ndihed are the numbers of the three kinds of intramolecular
interactions and the collective indexes ibonds, iang and idihed specify which a, b, c and
d atoms are involved. The indexes i and j represents two non bonded atoms. The
Upairs interactions are repulsion/dispersion and Coulombic terms, the latter related to
atomic charges. The interactions between bound atoms are considered in some MM force
fields as Morse or harmonic terms depending on the bond length or bond angles, and
truncated Fourier expansions for the dihedral angles (internal rotation). Frequently, the
repulsion/dispersion terms are represented by Lennard-Jones potentials. In this work, the
MM energy is computed through the TINKER program [124], that has been interfaced
to MOPAC. The form of the force field and its parameters are those of the all-atom
OPLS [118,125–127], i.e. OPLSAA.

The characteristic term for the QM/MM approach is ĤQM/MM . It represents the
interaction between MM atoms or groups of atoms and the electrons and nuclei of the
QM subsystem. A simple expression for this term includes electrostatic interactions and
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Lennard-Jones terms, related to repulsion-dispersion interactions [128]:

ĤQM/MM = −
∑

i,m

qm
Rim

+
∑

α,m

Zαqm
Rαm

+
∑

α,m

ǫαm

[

(

σαm

Rαm

)12

−
(

σαm

Rαm

)6
]

(5.18)

where qm is the atomic charge on the n-th MM atom, Zα is the core charge of the QM atom
α, Rim and Rαm are the distances between a QM electron or nucleus and an MM atom,
and ǫαm, σαm are the Lennard-Jones (LJ) parameters for the QM atom α interacting with
the MM atom m. These pair LJ parameters reduce to atomic LJ parameters:

ǫαm =
√
ǫαǫm (5.19)

σαm =
√
σασm (5.20)

The first electrostatic term is added to the QM Hamiltonian and it is treated in the same
way as the electron-nucleus electrostatic interactions inside the QM region. We emphasize
the importance of adding this term before diagonalizing the electronic Hamiltonian,
because in this way the effect of the environment on electronic energies and wavefunctions
is state-specific. This means that the environmental spectral shifts are treated correctly,
and the conical intersections or the avoided crossings can be displaced both along the
coordinate and along the energy axis. The last two terms in Eq. (5.18) are added to the
computed electronic energies and cannot influence the electronic distributions, but may
affect the PES and the dynamics of the system. The determination of the qm, ǫαm and
σαm parameters is described in the next section.

5.3 QM/MM representation of the azobenzene-solvent
interaction potential

As we have already stated, we shall apply the standard OPLS LJ parameters to the
interactions between the MM atoms and the C and H atoms of the phenyl rings of
azobenzene. We shall instead optimize the atomic Lennard-Jones parameters of the N
azo atoms. Moreover, special terms have been added for the H atoms of the OH group.
In fact, in OPLS these H atoms are not centers of LJ interactions. We have added LJ
terms between such H atoms and the QM atoms, in order to add some flexibility to the
intermolecular QM/MM potential. Finally, for the case of methanol only, we have divided
all the MM atomic charges by the factor Qfac, to be optimized. This amounts to dividing
the two electrostatic terms in eq. (5.18) by Qfac. The Qfac factor is not applied to the
MM force field, but only to the QM/MM hamiltonian.

The optimizations have been carried out by means of the SUPOPT program, that has
been interfaced with MOPAC and TINKER. The target values are the Rmin and ∆E, that
characterize each of the three complexes of methanol or methane with azobenzene (CAB
and TAB, the latter with a planar or perpendicular approach). These values were obtained
by the CP corrected cc-pVTZ MP2 calculations, and are found in Tables 5.4 and 5.7. The
reproduction of the target values requires a geometry optimization of the three complexes
by the semiempirical QM/MM method. If the calculations are carried out with an active
space of 12 electrons and 12 orbitals (82 determinants), two orbitals belonging respectively
to the active and doubly occupied subspaces can switch, causing a discontinuity in the CI
energies and wavefunctions. This problem manifests itself with convergence difficulties in
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the optimization procedure. The problem was solved by increasing the active space to 14
electrons and 13 orbitals (94 determinants). Therefore, this is the CI space that will be
used in the simulations of the photodynamics.

In the following two sections we shall present the results corresponding to two cases (as
in the ab initio calculations): azobenzene-methanol and azobenzene-methane complexes.

5.3.1 Optimization of the QM/MM parameters. Azobenzene-methanol
complex.

In this case, we optimize five parameters: ǫN and σN of the azo N atoms, ǫH and σH of the
OH group, and the charge factor Qfac. In the geometry optimizations, the starting point
was taken from the ab initio results of Section 5.1.3.

Figure 5.6: Optimized geometries for the azobenzene-methanol complexes, obtained by
the semiempirical QM/MM method.

The azobenzene-methanol complex is very flexible: the minima are shallow, and
different computational methods can be easily at variance as to the predicted energy
orderings and the relative orientations of the two partners. Therefore, in optimizing
the TAB-MeOH-Plan and TAB-MeOH-Perp complexes with the semiempirical QM/MM
method, we have imposed some constraints, to compute R(N-H) distances and stabilization
energies for geometrical configurations that are similar to the ab initio ones. In the case of
TAB-MeOH-Plan, we have fixed the H25N1N2C14 dihedral angle at the value obtained from
ab initio calculations, i.e. 3.11◦. For the TAB-MeOH-Perp configuration we have fixed
the angles H25N1N2=90.0◦, H25N1N2C14=90.0◦, O26H25N1N2=0.0◦, C27O26H25N1=180.0◦

and O26H25N1=165.25◦ (the latter value taken from the ab initio results). Only for CAB-
MeOH no constraints were applied.

In Figure 5.6 we show the configurations of the azobenzene-methanol complex obtained
by the semiempirical QM/MM method, with the optimized parameters. For the TAB-
MeOH-Plan and TAB-MeOH-Perp configurations we have shown the H25N1N2C14 dihedral
angle, that distinguishes between the planar and perpendicular orientations.

Table 5.8 shows the target values and those obtained by the semiempirical QM/MM
method with the best set of parameters, and the weights Wi. We can observe that we
obtain better results for the CAB-MeOH complex than for the TAB-MeOH ones. Table
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5.9 shows the optimized parameters. The charge factor Qfac is rather large, i.e. the
electrostatic interactions are considerably reduced with respect to using the original OPLS
charges. As a consequence, the importance of the hydrogen bond is also reduced, by
comparison with the dispersion interactions between the non-polar moieties (CH3 and the
phenyl rings). This shift of the balance is witnessed by a gradual change of the optimal
geometries that are obtained with increasingly large Qfac factors.

Table 5.8: Optimization of the QM/MM parameters for the azobenzene-methanol complex.

Target Semiempirical Error Relative Weight

value QM/MM value error

Vt,i Vs,i Vs,i-V t, i (%) Wi

TAB-MeOH-Plan

∆E (kcal/mol) 4.2400 3.5392 -0.7008 16.529 1/2

R(N-H) (Å) 2.1100 2.2933 0.1833 8.687 1/2

TAB-MeOH-Perp

∆E (kcal/mol) 1.9500 2.2616 0.3116 15.980 1/2

R(N-H) (Å) 2.3800 2.4923 0.1123 4.718 1/2

CAB-MeOH

∆E (kcal/mol) 4.9800 5.0854 0.1054 2.117 1/2

R(N-H) (Å) 2.1800 2.1659 -0.0141 0.645 1/2

Table 5.9: Optimal QM/MM hamiltonian parameters for the azobenzene-methanol
complex.

Parameter Optimized value

ǫN (kcal/mol) 0.14898

σN (Å) 2.08149

ǫH (kcal/mol) 0.02889

σH (Å) 2.83696

Charge factor Qfac 2.44069

5.3.2 Optimization of the QM/MM parameters. Azobenzene-methane
complex

For the azobenzene-methane complexes the procedure is similar to the one followed in the
previous section. In this case, we only optimize the ǫN and σN parameters of the azo N
atoms. Since the electrostatic interactions are almost negligible, we have not optimized
the charge factor, that keeps the standard value Qfac = 1.

Again, the geometries used as starting point for these calculations are those obtained
from the ab initio ones (described in the section 5.1.4). We found necessary to apply
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some constraints in the geometry optimization of TAB-Met-Plan, in order to force the
methane molecule to remain close to the TAB plane: we set H25N1N2C14=179.3◦ and
C26H25N1N2=0.10◦ (ab initio results). In Figure 5.7 we show the configurations of the
azobenzene-methane obtained after the optimization procedure, indicating the constrained
H25N1N2C14 dihedral angle of TAB-Met-Plan.

Figure 5.7: Optimized geometries for the azobenzene-methane complexes, obtained by the
semiempirical QM/MM method.

Table 5.10 presents the target values and those obtained semiempirically with the best
set of QM/MM parameters, and the weights Wi. Table 5.11 contains the optimized LJ
parameters. From the results shown in both tables, it is apparent that the interaction
of the azo group with non-polar molecules is weak. A non-polar solvent will affect the
photodynamics because of the need to displace the solvent molecules when the solute
performs large amplitude motions. Such inertial and viscosity effects will be essentially
mediated by repulsive forces.
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Table 5.10: Optimization of the QM/MM parameters for the azobenzene-methane
complex.

Target Semiempirical Error Relative Weight

value QM/MM value error

Vt,i Vs,i Vs,i-V t, i (%) Wi

TAB-Met-Plan

∆E (kcal/mol) 0.5700 0.7046 0.1346 23.616 1/2

R(N-H) (Å) 3.1800 3.1076 -0.0724 2.278 1/2

TAB-Met-Perp

∆E (kcal/mol) 0.9200 0.9577 0.0377 4.098 1/2

R(N-H) (Å) 3.2814 3.0800 0.2014 6.539 1/2

CAB-Met

∆E (kcal/mol) 0.9800 1.1215 0.1415 14.436 1/2

R(N-H) (Å) 3.0300 3.2792 0.2492 8.225 1/2

Table 5.11: Optimal QM/MM Lennard-Jones parameters for the azobenzene-methane
complex.

Parameter Optimized value

ǫN (kcal/mol) 0.00017892

σN (Å) 5.78167892





Chapter 6

Solvent effects on the semiclassical
dynamics of azobenzene

As we have mentioned in the previous chapter, one of the most important aspects
of this research work concerns the study of the solvent effects on the photodynamics
of azobenzene, with focus on the quantum yields, the transient fluorescence, and its
anisotropy. Previously (Chapter 5), we have obtained the interaction parameters for the
azobenzene-solvent complexes, to be used on the dynamics calculations. by the QM/MM
method. The first simulations we have run with this method concern the n−π∗ excitation,
for which the most interesting experimental work has been carried out. The azobenzene
molecule will be inserted in a large cluster of methanol or ethylene glycol. These two
compounds have been chosen as examples of protic solvents, with low and high viscosity.
Work in progress to perform simulations also in n-hexane, so as to reproduce Diau’s
experiments, that were done in this solvent and in EG. Moreover, we have repeated
the simulations in vacuo with the CI space of 94 determinants, used in the QM/MM
calculations.

For each simulation, the first steps are the preparation of the solvent sphere by
molecular dynamics calculations, the inclusion of the solute molecule into the sphere,
and the sampling of the initial conditions for the surface hopping trajectories. In running
the surface hopping trajectory simulations, we have made use of new “stop conditions”,
different from those employed in the brownian simulations of the Chapter 4. These
conditions require a trajectory to be integrated for a longer time after the decay to the
ground state, in order to allow for the conversion of the hot ground state cis isomer into
the trans one. The final results will be compared with those of the Brownian dynamics,
and with the experimental data.

6.1 Molecular features of the solvents

The study of small functionalized organic molecules is a typical first step in the modeling
of larger molecular systems. Among the variety of possible representatives of hydrogen
bonded liquids composed of “small organic molecules”, methanol and methylamine are
the most widely studied ( [129] and references therein).

Methanol is the simplest alcohol among a series of aliphatic alcohols, and is a close
analog to water. Methanol molecules have both hydrophobic and hydrophilic groups.
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They are able to form hydrogen bonds among themselves, which are responsible for many
of the abnormal properties of bulk solvent. The presence of the methyl group induces
significant differences between water and methanol. Since the first computer simulation
of liquid methanol to determine the liquid structure were carried out by Jorgensen using
the Monte Carlo method [130], much of the research effort has been devoted to examining
the structural and dynamic properties of pure methanol and its aqueous solution [131].
Liquid methanol has been also the subject of many experimental studies. Extensive
information on the structural dynamics, and spectroscopic properties of liquid methanol
has been made available from various experimental techniques, including NMR, neutron
scattering and X-ray diffraction ( [132] and references therein). On the theoretical side,
computer simulations have been performed to rationalize and elucidate the experimental
data [133]. Liquid methanol has been also the subject of several detailed theoretical
treatments [130, 134–136] in which the major emphasis was devoted to the analysis of
the energetics of the system. In this direction, Jorgensen [130] has probably done the
most complete attempt to obtain, by statistical mechanics simulation, structural and
thermodynamics information on liquid methanol. One of the main conclusions he reached
was that about 1.9 oxygen, on the average, are hydrogen bonded to another oxygen
atom [137], as later confirmed by other studies [133,138].

In the last 20 years the liquid structure of several monovalent alcohols such as methanol
has been extensively studied by different methods, e.g. by neutron and x-ray diffraction,
the Monte Carlo method, and molecular dynamics simulations [139–141]. However, liquid
ethylene glycol (EG) is not well studied by these techniques. In general, 1,2-disubstituted
ethanes (XCH2CH2Y) possess internal rotation, which results in the three rotameric
dihedral angles: one about the C-C bond and one about each of the C-X and C-Y
bonds [129]. The 1,2-disubstituted ethane most investigated by theoretical methods is
the ethylene glycol (EG). Ethylene glycol (like the methanol) is one of the simplest polar
molecules with internal degrees of freedom which may be regarded as a water analogue.
This alcohol can form three-dimensional networks of hydrogen bonded molecules since
each molecule has two proton donor hydroxyl groups and two oxygen atoms that can act
as proton acceptors. Furthermore, one can imagine the EG molecule as two methanol
molecules linked by the methyl groups and because each methanol molecule participates
in two hydrogen bonds on average in the liquid phase [133, 138]. Then, provided the two
subunits behave independently, one will expect a mean number of four hydrogen bonds
per EG molecule. EG has one of the lowest ratios of weakly polar groups (methylene
or methyl groups) vs polar groups (hydroxyl groups) in alcohols. Hence, the properties
of this system will be dominated by hydrogen bonding interactions, and there may be
competition between intermolecular and intramolecular H-bonds. This competition is not
present either in water or in alkanols because only intermolecular hydrogen bonds can be
formed in those cases.

6.2 Preparation of the solvent

The dynamics simulations in condensed phase require the preparation of a cluster of
solvent molecules, which is done in several steps. For methanol, the OPLS-AA potential
[118,125–127] is adopted as the intermolecular interaction force field. The functional form
for the OPLS-AA force fields are with harmonic terms for bond stretching and angle
bending, Fourier series for torsional energetics, and Coulomb plus 12-6 Lennard-Jones
potentials for the nonbonded interactions. Also, geometric combining rules for σ and ǫ
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are used in the OPLS-AA force field. For the case of ethylene glycol we have applied
a modified OPLS-AA force field, OPLS-AA-SEI-M (OPLS-AA Scaling Electrostatic
Interaction Modified). This was an improvement proposed by Kony et al. [142] (OPLS-
AA-SEI) and modified by de Oliveira et al. [143] for the study of thermodynamic properties
of pure liquid EG. The modification includes new scaling factors for Lennard-Jones and
Coulomb potentials, optimized to reproduce the heat of vaporization and density of the
pure liquid as well as the average value of the O-C-C-O dihedral angle.

In both cases (methanol and ethylene glycol) we proceed as follows.

• A cubic box is filled with 1000 molecules, with the centers of mass arranged in a cubic
crystal structure, and with a density considerably lower than the experimental one,
in order to avoid strongly repulsive interactions. All the EG molecules are in their
trans configuration. The initial configurations are shown in Figure 6.1.

• Molecular dynamics simulations are performed with constant NPT (P=1 atm and
T=298K) and periodic boundary conditions, by means of the MOSCITO package
[144]. The methanol simulation lasted about 2 ns, with a time step of 0.5 fs. For EG
we did a first 5 ns run with fixed bond lengths and a time step of 1 fs, and then we
continued for 1 ns without constraints and with a time step of 0.2 fs. Both simulations
yield a disordered cube as shown in Figure 6.1.

Table 6.1: Physical and geometrical parameters of the solvent cubic cells and spherical
clusters.

methanol ethylene

glycol

Final cubic cell side length (Å) 41.17 45.41

Final ρ (g/cm3) 0.761 1.099

Experimental ρ (g/cm3)a 0.787 1.110

Radius of sphere (Å) 20.0 22.0

Molecules in the sphere 482 481

Molecules in the sphere with TAB 474 475

Molecules in the sphere with CAB 476 473

aP=1 atm and T=298K. References [145,146] for methanol and [147,148] for EG.

• The solvent properties are computed by averaging over the last 1000 ps of simulation.
The final densities are in good agreement with experiment (see Table 6.1). The
hydroxyl hydrogen-oxygen and oxygen-oxygen intermolecular radial distribution
functions (RDF) are shown in Figure 6.2 (see Appendix F for general information
about RDF). They are the usual way to describe the average structure of liquids, and
in particular to evaluate the importance of hydrogen bonding [143]. For methanol,
the RDF is in good agreement with that obtained experimentally [149]. The average
number of H-bonds per molecule is 1.97: in half of them the molecule acts as an H
donor, and in half it is an acceptor. In the case of EG, due to the complex spatial
distribution of the molecules in the liquid phase, it is difficult to extract the RDF from
neutron scattering and X-ray diffraction data. Therefore, in this case we just check
that our results reproduce the theoretical ones of de Oliveira et al [143], considering the
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Figure 6.1: Initial and final configurations of the methanol (upper panels) and ethylene
glycol (lower panels) cubic cells.

fact that we have employed their modified OPLSS-AA force field. The EG molecules
form mainly intermolecular H-bonds, as shown by the RDF. In this case, the average
number of H-bonds per molecule is 3.94: in average, each hydroxyl group would form
2.25 H-bonds. The two hydroxyl hydrogen atoms also have a tendency to approach
the other oxygen atom of the same molecule. By monitoring the non-bonded H·O
distances, we find 21.2% of the molecules with one H·O pair closer than 3.0 Å and



6.2 Preparation of the solvent 133

2.4% with both; if the threshold is raised to 3.5 Å, these percentages increase to 45.6%
and 24.6%, respectively.
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Figure 6.2: Radial Distribution Functions (RDF) for the oxygen-hydroxyl (H atom)
and oxygen-oxygen site-site interactions. For methanol (upper graph) the experimental
results [149] are also shown. For EG (lower graph), our results are compared with those
of similar simulations by de Oliveira et al [143].

• From the cube obtained in the previous step, we cut a sphere of radius 20.0 Å for
methanol and 22.0 Å for EG, including 482 and 481 molecules, respectively. In order
to avoid that the molecules leaves the cluster, we have added an harmonic potential
around the sphere, at a radius of 21.0 Å for methanol and 23.0 Å for EG.



134 6. Solvent effects on the semiclassical dynamics of azobenzene

Figure 6.3: Configuration of the azobenzene+solvent systems, considering the insertion of
an azobenzene molecule (both isomers) inside a solvent sphere of methanol (upper panels)
and EG (lower panels).

• From the center of each sphere we take out a few solvent molecules, and we insert
in the cavity an azobenzene molecule (CAB or TAB). This step is carried out by an
algorithm implemented in the TINKER package [124] (see Figure 6.3).

• The azobenzene+solvent spherical clusters are equilibrated by QM/MM dynamics
simulations using the MOPAC program. In a first stage, 25 ps of equilibration were
performed by Brownian dynamics in the ground state. The RDFs for the distance
between the azo N atoms and the hydroxyl H atoms show that there is very little
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Figure 6.4: Radial Distribution Functions (RDF) for nitrogen-hydrogen site-site
interactions for the azobenzene-methanol system (upper panels) and the azobenzene-EG
one (lower panels). In each panel, three cases are shown: the first run, with the “original”
value of the ǫNH parameter; the second run, with the “increased” value (ǫNH=1); the last
run, again with the “original” or “restored” value of ǫNH .

H-bonding between azobenzene and the solvent molecules, at this stage (see Figure
6.4, where these results are labelled “original”). Only in the CAB-EG case did we
find a significant peak in the RDF, at hydrogen bonding distance. We suspected that
the absence of hydrogen bonding with azobenzene was due to the slowness of the
rearrangement of the solvent structure. For this reason, in all cases except the CAB-
EG one, we have increased the value of the ǫNH parameter from 0.0656086 (original
value, obtained from the parameterization described in the Chapter 5) to 1.0000,
i.e. we incremented by ∼15 times the original value. This change provokes a larger
interaction between solvent and azobenzene and induces the formation of hydrogen
bonds. With this change, 20 ps runs was performed, and the azo solvation peaks
appeared in the RDFs (we shall label these results as “increased”). Subsequently, we
reset the original ǫNH value and we executed 50 ps runs (results called “restored”
in Figure 6.4). In these runs, all the solvation peaks of the RDFs vanished: both
the CAB-EG one, that was present in the first 25 ps, and those artificially induced
by increasing the strength of the interaction. Comparing the N· · ·H-O and O· · ·H-O



136 6. Solvent effects on the semiclassical dynamics of azobenzene

interactions we observe that the first one is lower than the last one: the largest
N· · ·H-O interaction energy obtained by us is that for the CAB-MeOH: 5.1 kcal
(semiempirical calculation) and 4.98 kcal (ab initio calculation) vs 6.4 kcal of the
O· · ·H-O interaction in methanol. This fact could explain the preference of the solvent
molecules to form hydrogen bond among them instead of with azobenzene.

• From the last run carried out in the previous step we have obtained the absorption
spectra of the n→ π∗ transition of azobenzene in solution, considering both solvents
(methanol and EG - Figure 6.5). We find that in solution the π → π∗ band is less
intense and red shifted with respect to the gas phase, especially for CAB. On the
contrary, the n → π∗ absorption is enhanced by the solvent effect, as found with
other methods in Chapter 1.
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Figure 6.5: Absorption spectra of the azobenzene in vacuo and in solution
(solvent=methanol and EG). TAB in the upper panel and CAB in the lower one. With
thick lines we represent the total absorption, and with thin lines the contributions of each
S0 → Sn transition.
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6.3 Initial and stop conditions

We have executed two simulations, for the trans → cis and cis → trans
photoisomerizations, in each environment: in vacuo, in methanol and in EG. Each
simulation involves about 600 trajectories). The sampling of the initial conditions is done
essentially as described in section 4.4. There is a difference: the initial coordinates are
sampled from the last 50 ps of Brownian dynamics in the ground state of each azobenzene-
solvent cluster, instead of using the Montecarlo method. Also the nuclear momenta
are taken from the Brownian trajectory, instead of being chosen independently from a
Boltzmann distribution.

The transition energy interval to be used in the sampling procedure was 2.5-3.1 eV
for TAB, both in vacuo and in methanol and 2.45-3.05 eV in EG, while for CAB it was
2.6-3.2 eV in vacuo and 2.5-3.1 eV in methanol and EG (see Table 6.2). In fact, the
average excitation energies we obtain are 2.76 eV and 2.80 eV for TAB and for CAB,
respectively, in vacuo; 2.79 eV for both isomers, in methanol; 2.74 eV and 2.80 eV, in EG.
The reference squared transition dipole µ2

ref has been chosen so that most trajectories
start from different phase space points, as in section 4.4.

Table 6.2: Sampling of the initial conditions for the simulation of the photodynamics
in vacuo, in methanol or in ethylene glycol. n → π∗ excitation band, CI space of 94
determinants. Ngeo(n) is the number of Brownian geometries from which n trajectories
were launched (n=0,1,2 or more).

Solvent Vacuo Methanol EG

Starting isomer TAB CAB TAB CAB TAB CAB

∆E, eV 2.8 2.85 2.8 2.8 2.75 2.8

∆∆E, eV 0.6 0.6 0.6 0.6 0.6 0.6

µ2
ref , a.u. 0.35 0.45 0.35 0.45 0.70 0.45

Number of sampled geometries =
∑

nNgeo(n) 1000 995 948 965 993 990

Number of trajectories, NT =
∑

n nNgeo(n) 583 576 600 608 625 640

Ngeo(0) 558 379 497 348 438 336

Ngeo(1) 279 554 280 552 430 554

Ngeo(2) 101 11 90 28 85 40

Ngeo(3) +Ngeo(4) +Ngeo(5) + . . . 31 0 42 0 8 2

As we have mentioned at the beginning of this Chapter, new stop conditions were
applied with respect to the previous simulations. There are three necessary conditions
to stop a trajectory, concerning respectively the electronic states, the molecular geometry
and the time elapsed from the excitation. The molecule must be in the ground electronic
state and its geometry must be sufficiently similar to that of a stable isomer: namely, the
CNNC angle must be within ±5◦ of the values 0◦ for CAB and 180◦ for TAB, and both
NNC angles must not exceed 150◦.

Moreover, a trajectory is not stopped before a minimum time, that depends both
on the starting isomer and on the final one. We have imposed this additional condition
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because a previous investigation on the photodynamics of an azobenzene derivative [74]
showed that a significant number of trajectories, after approaching the CAB equilibrium
geometry in the ground state, can isomerize again to TAB. This hot ground state reaction
is more likely in the cis → trans direction than in the trans → cis one, because CAB is
less stable than TAB, and it is favoured by applying a pulling force tending to elongate the
azobenzene moiety, which is a way to further destabilize the CAB isomer [74]. The process
is made possible because of the large amount of vibrational energy that is available after
the conversion to the ground state, in the modes that can lead to isomerization (mainly
torsion of the N=N double bond and N-inversion). This condition only lasts for few
picoseconds, because of the redistribution of the vibrational energy to other internal modes
and, in condensed phase, to its transfer to the solvent. In fact, our previous simulations
showed that the hot ground state reaction almost exclusively occurs during the first 1-2
picoseconds. Therefore, when the reactant is TAB, the minimum time is 1.0 ps if the final
geometry is TAB (non reactive trajectory) and 2.5 ps for CAB (reactive trajectories).
Starting from CAB, since the excited state decay and the photoisomerization dynamics
are much faster, the minimum time is 1.0 ps for trajectories ending at TAB and 1.5 ps for
those ending at CAB.

Moreover, in the particular case of the dynamics simulations of azobenzene in EG we
have carried out calculations with a half of the trajectories with a maximum duration of
the dynamics of 5 ps (∆t=0.1 fs), as in the other cases. However, we have observed that
much of these trajectories stoped in the excited state and did not finished the dynamics.
Then, we increased the maximum time to 15 ps (with the same ∆t) for the other half of
trajectories, in order to permit them to have time to continue their dynamics.

6.4 Quantum yields and mechanism

The results of the simulations for the three cases, in vacuo, in methanol and in EG, are
presented in Tables 6.3 and 6.4 and in Figures from 6.6 to 6.11. We first observe that the
small differences in the PES obtained with 82 or 94 determinants in the CI space have little
effect on the dynamics: quantum yields and decay times for the isolated molecule remain
practically the same. Therefore, it makes sense to compare the results obtained with the
Brownian dynamics (82 determinant CI and no minimum time in the stop conditions)
with those of the QM/MM simulations (94 determinant CI and more demanding stop
conditions).

As we have seen, the new stop conditions impose a minimum time, besides more
stringent requirements on the final geometry. Of course, they have no effect on the
computed properties, with the exception of the quantum yields. Actually, very few
trajectories go back to the starting isomer, and only in the isolated molecule simulations
(see Figure 6.6). When TAB is excited, the trajectories that reach a cisoid geometry and
then go back to TAB are only 3, that corresponds to a decrease of Φtrans→cis of 0.005.
The trajectories that go from CAB to TAB and viceversa are 27, so Φcis→trans is lowered
by 0.047. The effect of such back-isomerizations is already included in the results of Table
6.3. The backward reaction cannot always be simply classified as a hot ground state
process, because in some cases a short passage in the S1 excited state occurs (see Figure
6.6). In our previous work on a derivative of azobenzene with two ethyl substituents in the
4, 4′ positions [74], we found a more frequent occurrence of the back-isomerization, which
decreases Φtrans→cis of 0.054, possibly due to kinematic effects (different distribution of
masses). When a solvent is present, no back-isomerization is observed: apparently the
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transfer of vibrational energy to the solvent is efficient enough to suppress this process.

Table 6.3: Quantum yields obtained in the simulations for the trans → cis and
cis → trans processes, with n → π∗ excitation. Previous simulations (see chapter
4): solvent effects represented by Brownian dynamics and CI space of 82 determinants.
New simulations: explicit representation of the solvent and CI space of 94 determinants.
Viscosity η in mPa·s.

Φtrans→cis Φcis→trans

previous simulation, in vacuo 0.34±0.02 0.60±0.02

previous simulation, η ≈ 1 0.34±0.02 0.60±0.02

previous simulation, η ≈ 10 0.17±0.02 0.54±0.02

new simulation, in vacuo 0.33±0.02 0.57±0.02

new simulation, methanol, η = 0.54 0.27±0.02 0.58±0.02

new simulation, EG, η = 16.1 0.40±0.03 0.49±0.02

experimental, methanol, η = 0.54 [45,50] 0.20-0.28 0.57-0.63

experimental, glycerol, η = 934 [44] 0.42 0.53

The computed quantum yields for the trans→ cis and cis→ trans reactions decrease
slightly from the gas phase to the methanol solution, and in the latter case they compare
very well with the experimental data obtained with exciting wavelengths between 405
and 436 nm [45, 50]. In EG, the computed Φtrans→cis is higher than in methanol, while
Φcis→trans undergoes a further decrease. These trends are again in agreement with the
quantum yields measured in glycerol, which is much more viscous than EG [44]. The most
striking difference with respect to the Brownian dynamics results concerns the trans→ cis
photoisomerization in a viscous solvent (η ≈ 10 mPa·s), that should be comparable
with EG (η = 16.1 mPa·s). The Brownian solvent hinders the photoisomerization
quite effectively, while EG, when explicitly introduced in the QM/MM simulation, is less
effective than methanol.

Our explanation of such results points mainly to the competition between the decay
of the S1 excited state and the isomerization reaction. The decay of S1 occurs when
the molecule can approach the S0 − S1 crossing, along the torsional coordinate (CNNC),
possibly with the help of a symmetric opening of the NNC angles. Figure 6.9, that refers
to TAB excitation, shows that the first S1 → S0 surface hopping mainly occurs when the
CNNC angle has covered most of the way from 180◦ to 90◦ (half-way to CAB). Hopping
at CNNC angles in the 140◦ to 160◦ range is favoured by a the opening of the NNC angles,
but very few hops can take place close to the starting CNNC angle of 180◦ (the viscous
Brownian solvent is an exception to be discussed later on). As shown in figures 6.7 and
6.8, the isomerization follows essentially the torsional pathway, with the assistance of a
simultaneous twist around the N-C bonds (see section 4.6). The NNC angles undergo a
symmetric vibration, that goes on roughly until the CNNC angle has rotated by 90◦. Since
CAB rotates much faster than TAB, only the latter does show a well defined sequence of
NNC bending oscillations. In fact, by means of resonant Raman spectroscopy Stuart et
al [150] observed the NNC bending in TAB, whereas in CAB the most evident motion is
the CNNC torsion.
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Figure 6.6: Some examples of trajectories that return to the initial isomeric conformation,
starting from the TAB (left panels) and from the CAB (right panels), in the case of n→ π∗

excitation in vacuo.

The presence of a solvent slows down the torsion, and this effect is correlated with the
solvent viscosity and is more pronounced for TAB than for CAB, as found both with the
Brownian dynamics and with the explicit solvents. If the TAB molecule is trapped at a
nearly planar geometry for a time of the order of one ps or more, as it may happen in
the cage formed by ethylene glycol, the loss of vibrational energy to the solvent makes
it difficult to reach the crossing seam. Moreover, smaller nuclear velocities also imply
smaller nonadiabatic couplings, therefore both the nuclear kinetic energy and the energy
gap ∆E(S1−S0) at the time of the first surface hopping are smaller in EG than in vacuo or
in methanol (see Figure 6.10). Therefore, when the torsion in EG eventually takes place,
the transition to S0 can only occur near the equilibrium geometry of S1, that coincides
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with the minimum of the crossing seam, at CNNC≃ 95◦. The suppression of the “early
decay” at CNNC angles closer to 180◦ shifts the balance towards the isomerization and
increases the quantum yield. This does not occur when starting from CAB, because of
the larger slope of the S1 PES and of the much faster dynamics.

As already noted, the Brownian dynamics fails to reproduce the behaviour found in
EG. Although a true caging is not to be expected in this case, the torsional motion is
substantially slowed down, as already noted in section 4.5.2. In figures 6.9 and 6.10
we see that many “early hops” occur in this case, without the assistance of the NNC
symmetric bending and far from the crossing seam, i.e. with a large ∆E(S1 − S0). In
order to hop at a geometry where the energy gap is large, a strong coupling is needed.
The nonadiabatic couplings are the scalar products of the derivative matrix elements times
the nuclear velocity vector. In the case of Brownian dynamics, the nuclear velocities are
suddenly modified by the the random force Xα(t) of eq. (4.21), that keeps the kinetic
energy at its Boltzmann average value against the effect of friction. With high viscosities,
the application of the random force can produce large velocities that are rapidly damped
because of the friction. With a friction coefficient γ and the time interval ∆t between
two successive applications of the random force, the damping factor of the velocity is
F = exp(−γ∆t) (in our case, ∆t = 1 fs). As we see in figure 6.10, the surface hops
with large ∆E(S1 − S0) are possible when also the nuclear kinetic energy is large. The
occurrence of such “early hops” lowers the computed quantum yield and is an artifact of
the Brownian dynamics with large friction coefficients, such that F ≪ 1.

Table 6.4: Decay times of the S1 excited state, obtained by a fit of the populations Πk(t)
with the biexponential form w1exp(−t/τ1) + (1 − w1)exp(−t/τ2). n → π∗ excitation.
Previous simulations (see chapter 4): solvent effects represented by Brownian dynamics
and CI space of 82 determinants. New simulations: explicit representation of the solvent
and CI space of 94 determinants. Viscosity η in mPa·s.

n→ π∗ transition

S1 lifetimes

w1 τ1 (fs) τ2 (fs)

TAB isomer, previous simulation, in vacuo 1.00 197 -

TAB isomer, previous simulation, η ≈ 1 1.00 488 -

TAB isomer, previous simulation, η ≈ 10 1.00 2078 -

TAB isomer, new simulation, in vacuo 1.00 120 317

TAB isomer, new simulation, methanol, η = 0.54 0.49 188 790

TAB isomer, new simulation, EG, η = 16.1 0.25 450 3021

CAB isomer, previous simulation, in vacuo 0.66 20 51

CAB isomer, previous simulation, η ≈ 1 0.60 54 21

CAB isomer, previous simulation, η ≈ 10 0.35 30 99

CAB isomer, new simulation, in vacuo 1.00 40 -

CAB isomer, new simulation, methanol, η = 0.54 1.00 28 -

CAB isomer, new simulation, EG, η = 16.1 1.00 94 -
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Figure 6.7: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of n → π∗ excitation of TAB and
considering three cases: in vacuo and in the two solvents: methanol and ethylene glycol
(upper, medium and lower panel, respectively).
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Figure 6.8: Time evolution of the angles CNNC, NNC1 and NNC2, averaged over the
reactive and unreactive trajectories, in the case of n → π∗ excitation of CAB and
considering three cases: in vacuo and in the two solvents: methanol and ethylene glycol
(upper, medium and lower panel, respectively).
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Figure 6.9: CNNC vs averaged NNC angles at the hopping step, for the reactive and
unreactive trajectories, in the case of n → π∗ excitation of TAB and considering four
cases: in vacuo, in a viscous solvent, in methanol and in ethylene glycol.

The decay of the S1 population for the isolated molecule is well fitted by a single
exponential, as in our previous simulations [21, 56]. It is worth mentioning that the
only time-resolved spectroscopy experiment performed up to now in gas phase on trans-
azobenzene [8] also yields a single exponential decay (however, the excitation band was
here the π → π∗ one). The excited state decay is slowed down in methanol and much
more in EG, in the same way as the CNNC torsional motion (see Figure 6.11 and
Table 6.4). The decay becomes biexponential, in agreement with several experimental
observations [3,4,19,62]. The fast component is 0.19 ps in methanol and 0.45 in EG, while
the slow one is 0.8 ps and 3 ps in the two solvents, respectively. The results obtained in
EG match the fluorescence decay times obtained by Diau and coworkers [6], for the two
components that do not exhibit depolarization. The Brownian dynamics simulations fail
to produce a biexponential decay, but do yield longer lifetimes than in vacuo.
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Figure 6.10: Kinetic energy vs S1 − S0 transition energy difference at the hopping step,
for the reactive and unreactive trajectories, in the case of n → π∗ excitation of TAB and
considering four cases: in vacuo, in a viscous solvent, in methanol and in ethylene glycol.

6.5 The decay of the fluorescence and of its anisotropy.

The simulations also provide the ∆Ukl = Ul−Uk energy gaps and the associated transition
dipole vectors µkl as functions of time, during the evolution of each trajectory in the
excited PES. From these data we can compute the time-resolved fluorescence spectra, or
the time-dependent fluorescence intensities observed at different wavelengths (two ways
to represent essentially the same information). With the same data, we can also compute
the time-dependent fluorescence anisotropy, thus having a complete reproduction of the
experimental results by Diau’s group and other authors [5, 6, 19,61,62,150].

The rate of photon emission, averaged over all trajectories, is

Itot(t) =
4

3NT h̄
4c3

∑

j

[

k−1
∑

l=0

∆U3
klµ

2
kl

](j)

(6.1)

Here NT is the total number of trajectories and k is the current state for the trajectory j,
chosen according to the surface hopping algorithm. When exciting to S1, the trajectories
very seldom hop to higher states, so the fluorescence is almost exclusively due to the
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Figure 6.11: Time evolution of the population of the first excited state S1, in the case of
n → π∗ excitation, starting from the TAB isomer (upper panel) and CAB isomer (lower
panel), and considering three cases: in vacuo and in the two solvents: methanol and
ethylene glycol.
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S1 → S0 transition. If we limit the sum (6.1) to energy differences contained in a
small interval (hν − δν < ∆Ukl < hν + δν), and we divide by 2δν, we obtain the time
dependent emission spectrum Ifr(ν, t). The spectrum can be expressed also as a function
of wavelength. If ν is given in cm−1 and λ in nm, we have:

Iwl(λ, t) =
107

λ2
Ifr(ν, t) (6.2)

The corresponding steady state spectra are obtained by integrating over time. For
instance:

Iwl(λ) =

∫ ∞

0
Iwl(λ, t)dt (6.3)

The analogous integral of Itot(t) is the fluorescence quantum yield:

ΦF =

∫ ∞

0
Itot(t)dt (6.4)

Notice that ΦF is very small (see Table 6.5), which means the related transitions do not
influence the overall dynamics appreciably. This is why we can compute the fluorescence
transients “a posteriori”, having neglected the fluorescence itself in the formulation of the
nonadiabatic dynamics.

The computed steady state fluorescence is in semi-quantitative agreement with the
experimental findings by Satzger et al [62], that operated in DMSO with the excitation
wavelength λexc = 488, and by Stuart et al [150] in ethanol, with λexc = 458 nm (see Table
6.5 and Figure 6.12). We note that recording the very weak fluorescence of azobenzene
is not easy and entails some operations that may give place to rather large errors, such
as the substraction of the solvent background and, in the case of CAB, of the residual
TAB contribution. This may explain part of the differences between the results of the two
sets of experiments. The TAB and CAB spectra exhibit different features, that are well
reproduced by our simulations and can be attributed to the shorter lifetime of CAB (Table
6.4). First of all the CAB quantum yield ΦF is smaller, which makes its measurement even
more uncertain. The factor of the ΦF ’s is largest in EG, where also the computed lifetime
of TAB is greatly increased. Secondly, the emission band of TAB features a substantial
queue in the near IR, that is almost absent in CAB, because during the lifetime of TAB a
larger degree of vibrational relaxation can take place. Also the Stokes shift, taken as the
difference between the λ of maximum absorption and maximum emission, is larger for TAB
than for CAB. The maximum emission wavelength λmax also depends on the excitation
wavelength λexc, as can be seen by comparing the two sets of experimental results, although
other factors have probably contributed to the large discrepancy in the λmax values. The
λmax used by both groups is on the long wavelength side of the absorption band, while the
initial conditions do average over the whole band. Partly because of this, we get in all cases
a shorter λmax. Figure 6.12 shows the effect of the initial excitation energy. Taking as
reference the average excitation energy ∆E, we computed the fluorescence spectra for the
trajectories starting with ∆E in the upper or in the lower range. For TAB, this amounts
to exciting with wavelengths centered at 433 nm (upper range) or 466 nm (lower range),
and the corresponding emission maxima are at λmax = 669 nm and 691 nm, respectively.
For CAB, the same procedure yields the central λexc values of 427 nm and 462 nm, from
which λmax = 440 nm and 465 nm. The effect of the excitation wavelength is larger for
CAB, again because of its shorter lifetime.
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Table 6.5: Fluorescence quantum yields ΦF and wavelengths of maximum intensity, λmax.

TAB CAB

ΦF · 106 λmax, nm ΦF · 106 λmax, nm

computed in vacuo 1.04 647 0.19 458

computed in methanol 1.74 669 0.18 458

computed in EG 9.56 742 0.26 458

exp. in DMSO, λexc = 488 nm [62] 3.2 640 0.5 600

exp. in ethanol, λexc = 458 nm [150] 11 530 1 520
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Figure 6.12: Steady state fluorescence spectra for TAB (upper panels) and CAB (lower
panels) in methanol (left) and EG (right).

Figure 6.13 shows the computed time dependent fluorescence Itot(t) of TAB in
methanol and in EG. The fast oscillation in the fluorescence intensity have a period of
about 45 fs, i.e. a frequency of ∼750 cm−1, the same as the symmetric NNC bending
vibration (see Figure 6.7). Such oscillations cannot be observed in the experiments by
Diau’s group, because their excitation and detection pulses have a duration of about 100
fs. In the fitting of their data they use a gaussian convolution with a FWHM of 200 fs
(slightly dependent on the emission wavelength [6, 19]). To compare with their transient
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Figure 6.13: Fluorescence transient spectra of TAB in methanol and EG.

signals, we define a convoluted fluorescence intensity:

Itot,conv(t) =

∫ +∞

−∞
Itot(t− t′)e−(t′/τ)2dt′ (6.5)

where Itot(t− t′) vanishes for t− t′ < 0. The gaussian width is related to the FWHM by
FWHM= 2

√
ln2τ . The convoluted signal with FWHM=200 fs, also shown in Figure 6.13,

is very similar to those obtained by Diau’s group (see Figure 1.3): no oscillations, a fast
rise and a smooth decay of the fluorescence. We have also tried smaller gaussian widths, to
show what could be observed with a better time resolution. In Figure 6.13 we also report
the convoluted fluorescence with FWHM=50 fs. In this case the fast oscillations are still
absent, but a slower and less pronounced oscillatory background is evidenced. This may
be due to some other skeletal deformation, for instance concerning the NCC angles that
define the relative orientation of the phenyl and azo groups.
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Diau and coworkers not only measured the fluorescence intensity, but also the
components I‖ and I⊥ with parallel and perpendicular polarization with respect to the
exciting light. While the total intensity is I‖ + 2I⊥, the ratio

R =
I‖ − I⊥

I‖ + 2I⊥
(6.6)

is the fluorescence anisotropy. To compute the time-dependent fluorescence anisotropy
and compare it with the experimental data, we consider for each trajectory the angle β(t)
between the S0 − S1 transition dipole at time t = 0 and the same vector at time t (more
generally, the dipole vector for the absorption transition and the dipole vector for any
transition contributing to the emission). The total parallel intensity is then

I‖,tot(t) =
4

15NT h̄
4c3

∑

j

[

k−1
∑

l=0

∆U3
klµ

2
kl(1 + 2cos2β)

](j)

(6.7)

and the perpendicular one is

I⊥,tot(t) =
4

15NT h̄
4c3

∑

j

[

k−1
∑

l=0

∆U3
klµ

2
kl(2 − cos2β)

](j)

(6.8)

Analogous equations hold for the frequency or wavelength dependent components,
I‖,fr(ν, t), I⊥,fr(ν, t), I‖,wl(λ, t), and I⊥,wl(λ, t). From these quantities one obtains the
related anisotropies Rtot, Rν and Rλ.

In Figure 6.14 we show the total fluorescence of TAB and its I‖,tot(t) and I⊥,tot(t)
components, after gaussian convolution with FWHM=200 fs. It will be noticed that,
except for very short times, the decay of the total fluorescence is quite parallel to that of
the S1 population. The fluorescence anisotropy is plotted in the same figures without
convolution, to show that it is not affected by the fast vibrations. At t = 0 the
anisotropy has the maximum theoretical value of 2/5, and it decays much more slowly
than the fluorescence intensity, especially in ethylene glycol, in good agreement with the
measurements by Diau’s group. They found that their data could be fitted by a two- or
three-exponential decay, with gaussian convolution. One or two fast components of the
decay of intensity are not associated with the depolarization, while the slow component
entails a decay of both intensity and anisotropy with the same time constant τ3 and weight
W3. The variable component of the anisotropy however does not vanish at the t → ∞
limit, but converges to an asymptotic value R∞. This is the expected behaviour if the
depolarization is due to an internal motion rather than to the overall molecular rotation.
In order to compare quantitatively our results to the experimental ones, we have fitted
our intensity and anisotropy data essentially with the same formulas as in ref. [6]:

Itot(t) = Itot(0)
∑

i

= 1, 3Wie
−t/τi (6.9)

Rtot(t) =
2

5
+W3

(

2

5
−R∞

)

e−t/τ3 (6.10)

and similarly for the λ dependent quantities. Here τ1 and τ2 are the short lifetimes (not
related to the depolarization), with their weights W1 and W2. In ref. [6] the experimental
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data are fitted by varying the lifetimes and weights (with the constraintW1+W2+W3 = 1),
as well as three anisotropy parameters and the convolution FWHM. In fact, they find that
the optimal FWHM is close to 200 fs in all cases, so we have assumed this value everywhere.
Two of the anisotropy parameters (the third one beingR∞) can be assimilated to the initial
anisotropy, and turn out to be about 2/5, so we have directly replaced them with this value
in eq. (6.10).

Of course, the unconvoluted fluorescence intensities obtained by our simulations (see
Figure 6.13) cannot be likened to a simple sum of three exponentials, but the gaussian
convolutions of the two functions (Figures 1.3 and 6.14) are much more similar. Therefore,
we compute the mean squared differences (MSD) between the gaussian convolutions (with
FWHM=200 fs) of the simulations results for Itot(t) or Iwl(λ, t), and of their counterparts
given by eq. (6.9). The same is done for Rtot or Rwl(λ, t), but here the FWHM is 40
fs: in fact, it is not strictly necessary to submit the anisotropy to a convolution, but this
operation smooths away the noise in the simulation data and simplifies their numerical
treatment. The MSD is minimized by varying the parameters. Since our aim is not to
obtain the best fit, but rather to show that our data are compatible with the experimental
findings, we shall adopt constant values for some parameters, choosing values close to
those found in ref. [6]. The constant values are indicated with stars in Table 6.6.

We carried out several fits, both for the total fluorescence quantities Itot(t) and Rtot,
for the emission wavelength dependent quantities Iwl(λ, t) and Rwl(λ, t), and, in the case
of ethylene glycol, for selected intervals of the excitation wavelength (see Table 6.6). In
vacuo, the fluorescence anisotropy decays in a non-exponential way, its deviation from the
initial value of 2/5 increasing more than linearly with time. This may be expected from a
free, rather than diffusional, motion (we remind that the anisotropy depends on the cosine
of the angle by which the transition dipole vector has rotated). Both the overall rotation
of the molecule, with an approximately constant angular velocity, or the internal torsional
motions, are compatible with such feature. In this case, we have not fitted the anisotropy,
but only the fluorescence intensity. The fitting can be done with a single exponential
function, the lifetime being 0.27 ps.

With methanol as a solvent, we have obtained a satisfactory fitting by using the two
exponentials with τ1 and τ3, as did Diau and coworkers for their low viscosity solvent, i.e.
n-hexane. With ethylene glycol, we have included an additional time τ2, but in this case
τ3 and w3 have been fixed at the values obtained in ref. [6]. Since w3 = 0.03, this term
has little influence on the fitting of the fluorescence intensity, and our anisotropy is almost
independent on time, except for a small decrease at the beginning. Actually, one can see
a similar short time decrease, and even more pronounced, in the experimental data.

While our results for the TAB fluorescence agree very well with those of refs. [6,19], the
interpretations partly differ. We recall that the decay of S1, according to our simulations,
cannot occur without a certain degree of torsion of the N=N double bond, but can be
facilitated by the simultaneous symmetric NNC bending vibration. Diau and coworkers
attributed the decay of fluorescence with depolarization to the torsion mechanism, and
the decay without depolarization to another mechanism, possibly identifiable with the
NNC symmetric bending. This was meant to explain the two- or three- exponential decay
of fluorescence, and why the depolarization is much slower (actually, almost negligible)
in a viscous solvent, where the torsional motion is hindered. Moreover, we observe that
different lifetimes of the fluorescence decay and of its depolarization may be associated
with any single mechanism. In fact, the depolarization can precede (never follow) the decay
of the emitting state, so the lifetime of the former can be shorter. On the other hand, the
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Table 6.6: Lifetimes and other parameters obtained by fitting fluorescence intensity and
anisotropy data. Stars (*) indicate parameters that have not been varied in the fitting
procedure. Times in ns and wavelengths in nm.

λexc λflu τ1 (W1) τ2 (W2) τ3 (W3) R∞

computed in vacuo no limit no limit 0.25 (1.00∗)

computed in methanol no limit no limit 0.29 (0.62) 0.80 (0.38) 0.25∗

no limit 520±40 0.12 (0.76) 0.24∗ (0.24) 0.32∗

no limit 600±40 0.24 (0.95) 1.06 (0.05) 0.26∗

no limit 680±40 0.35 (0.89) 1.07 (0.11) 0.21∗

computed in EG no limit no limit 0.28 (0.44) 2.40 (0.63) 22.0∗ (0.03∗) 0.22∗

440±20 680±40 0.82 (0.77) 3.08 (0.20) 20.0∗ (0.03∗) 0.21∗

480±20 680±40 0.42 (0.43) 2.13 (0.54) 24.0∗ (0.03∗) 0.22∗

exp. in n-hexane 440 520 0.15 (0.76) 0.6 (0.24) 0.32

440 600 0.29 (0.69) 1.4 (0.31) 0.26

440 680 0.33 (0.59) 1.7 (0.41) 0.21

exp. in EG 440 680 0.65 (0.75) 3.6 (0.22) 20. (0.03) 0.21

480 680 0.35 (0.62) 3.1 (0.35) 24. (0.03) 0.22

depolarization (anisotropy loss) due to the dynamics associated with certain degrees of
freedom can be very small. With our simulations, we have shown that torsion, although
slower, is still the dominant mechanism in ethylene glycol, whereas other vibrational
modes, including NNC bending, are damped down. The torsional motion does cause
a change in the direction of the transition dipole vector, but most of the fluorescence
emission takes place before this vector has deviated from its initial orientation, so very little
depolarization is observed. Other contributions to the depolarization are due to different
internal modes, and probably also to the transfer of energy to the closest solvent molecules,
that excites their librational and vibrational motions. The solvent caging limits all the
variations in the molecular orientation, much more if the solvent is associated, made of
large molecules, and/or endowed with a small free volume, all these features being usually
correlated with high viscosity. The multi-exponential behaviour of the fluorescence decay,
which is a feature associated with the condensed phase, must be due to inhomogeneous
effects, i.e. to the variety of situations (solvent cages, specific solute-solvent interactions)
that are experienced by the azobenzene molecules at the time of excitation.

In this sense we have calculated the fluorescence intensity and anisotropy not only
for the whole range of CNNC and NNC angles, but we have divided in two almost equal
ranges in each case: a lower range and an upper range (considering approximately the same
contribution to the total fluorescence intensity in both ranges). For the CNNC dihedral
angle we have calculated the anisotropy below and above 150◦. For the NNC angle we
have done the calculations below and above 130◦. Regarding the fluorescence intensity we
observed almost the same contribution to the total intensity in each case. With respect
to the anisotropy, we did not observe changes in the decay magnitude and in its general
behavior, for any of the four limited ranges of the CNNC and NNC angles we have tried.
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A calculation of the anisotropy, conserving the initial body-fixed frame of the molecule
along the trajectory (as we have defined in the appendix A), produces an anisotropy with
a small initial decrease, followed by a very stable value. These results permit us to support
the explanation mentioned before where the decay in the fluorescence anisotropy can be
then associated to the librational motion of the molecule inside a solvent cage.

Figure 6.15 shows the fluorescence transients obtained by excitation of CAB, including
the anisotropy as a function of time. The decay is much faster than that of TAB, and only
one or two oscillations can be observed. In solution the decay is slowed down, but not as
much as in the case of TAB: the time scale in ethylene glycol expands by a factor of about
4 with respect to the isolated molecule, whereas in CAB there is not a significative change
with the inclusion of solvent. The anisotropy decay, during the CAB fluorescence emission,
is much more pronounced than that of TAB. Since the decay is not exponential, and no
experimental determinations are available as yet, we have not attempted to evaluate the
lifetimes through a convolution and fitting procedure.
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Figure 6.14: Total fluorescence intensity and perpendicular and parallel components of
the signal after gaussian convolution, for TAB in vacuo (upper panel), methanol (middle
panel) and EG (lower panel). The related anisotropy without convolution is also included.
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Figure 6.15: Total fluorescence intensity and perpendicular and parallel components of
the signal after gaussian convolution, for CAB in vacuo (upper panel), methanol (middle
panel) and EG (lower panel). The related anisotropy without convolution is also included.





Final Remarks

The main goal of this Thesis work is the theoretical study of the azobenzene
photoisomerization in solution. This has been done by mixed quantum-classical
simulations, using the surface hopping method. The electronic energies and wavefunctions
are computed on the fly, by a semiempirical method modified by our group. The solvent
effects have been introduced in a preliminary way by brownian dynamics, and then
explicitly, with a QM/MM approach.

One of the guidelines of our work is a constant comparison with experimental results,
first of all the photoisomerization quantum yields and the transient spectroscopy data.
In the latter field, probably the best work has been done by Diau’s group [6]. In their
experiments they measure the fluorescence anisotropy of the n → π∗ transition of trans-
azobenzene in hexane and ethylene glycol solutions. They argue that the depolarization
observed in hexane is probably due to the structural relaxation along the CNNC torsional
pathway. However, in ethylene glycol this motion is hampered and the excited state decay,
according to the authors, could be due to the in-plane symmetric NNC bending, that is
another way to approach the S1 − S0 crossing seam.

As a first step in the study of the photophysics of trans-azobenzene, we have carried
out an ab initio investigation of its n→ π∗ forbidden band. We have shown that the most
effective coordinate in promoting this transition is the symmetric torsion of the phenyl
groups. Other important coordinates are the antisymmetric phenyl torsion and the torsion
of the N=N double bond. In order to determine the oscillator strength f we have taken into
account the anharmonicity of the ground state PES and the non trivial dependence of the
electronic transition dipole on the internal coordinates. The agreement of the computed
f with the spectroscopic measurements confirms that trans-azobenzene is planar, even
in solution, but the torsional potential of the phenyl rings is rather shallow. We have
also tackled the problem of the direction of the transition dipole vector for the n → π∗

transition, which is a basic preliminary question in the interpretation of experiments of
fluorescence anisotropy and of the orientation of azobenzene samples in polarized light.
The transition dipole vector turns out to lie essentially in the molecular plane, almost
parallel to the N-C bonds and to the longest axis of the molecule. The dipole vector and
the N-N axis form an angle of about 53◦. This orientation is little affected by details of
the calculation, changes in temperature, and solvation. Semiempirical calculations place
the dipole moment vector at an angle of about 45◦ respect to the N=N axis, sufficiently
close to the ab initio results.

Since we make direct use of semiempirical CI energies and wavefunctions in the
trajectory surface hopping calculations, we have proceeded to a reparameterization of the
semiempirical hamiltonian. In fact, the standard parameters (AM1, PM3 or others) are
not suitable for CI calculations of the ground state, and much less for the excited states.
Actually, a previous parameterization had already yielded good results in simulations of



158 Final remarks

the gas phase photodynamics. However, new ab initio results, that can be used as reference
values, permit now to improve the accuracy of the parameterization. In addition, we have
carried out an ab initio study of the interaction potentials between azobenzene and two
simple molecules, methane and methanol, chosen as representatives of non-polar and of
protic compounds, respectively. From these data, we have extracted the parameters for
QM/MM calculations of azobenzene (the quantum mechanical system) interacting with
solvent molecules that contain alkyl and hydroxyl groups. The solvent itself is represented
by a Molecular Mechanics force-field (OPLS) and the QM/MM interactions are made of
electrostatic and Lennard-Jones terms.

The solvent effects have been simulated in two ways. A preliminary set of simulations
was based on Brownian dynamics, by integration of Langevin’s equation. Two sets of
friction coefficients were used, corresponding to solvents with viscosities of about 1 and
10 mPa·s, respectively. The main effort was put in a more realistic model of the solvent,
obtained by the QM/MM method. In the QM/MM simulations, a large cluster of solvent
molecules surrounds the azobenzene molecule. The first two solvents we have tried are
methanol and ethylene glycol, chosen for their widely different viscosities (0.54 and 16.1
mPa·s, respectively). In particular, ethylene glycol is the viscous solvent used in Diau’s
time-resolved fluorescence experiments. Simulations were run for the n → π∗ excitation
of both trans- and cis-azobenzene, i.e. for the trans → cis and the cis → trans
photoprocesses.

The results show that the preferred reaction path is the torsion of the N=N double
bond for both photoisomerizations, both in vacuo and in all the solvents, including the
implicit (Brownian) ones. With methanol, the Φtrans→cis and Φcis→trans quantum yields
for the n→ π∗ excitation are in good agreement with the experimental ones, and slightly
lower than in vacuo. In ethylene glycol, Φtrans→cis increases, while Φcis→trans further
decreases, as found experimentally in the analogous solvent glycerol. The interpretation
of such results draws on the competition between the S1 → S0 internal conversion and the
isomerization process. Both need a torsion of the N=N double bond (CNNC coordinate),
but the decay of S1 can take place with a moderate torsion, provided other internal
vibrations (namely the symmetric NNC bending) allow to reach the crossing seam. When
such an “early decay” occurs, the quantum yield is decreased. If the azobenzene molecule
is kept close to the Franck-Condon region by the solvent cage for too long, the loss of
vibrational energy to the solvent slows down the internal conversion, both by decreasing
the nonadiabatic couplings and by making the crossing seam less accessible. This happens
when exciting the trans isomer in ethylene glycol, with the consequent increase of the
Φtrans→cis quantum yield. However, on the cis side, the slope of the excited PES is much
larger, so all processes are accelerated, the Φcis→trans quantum yield is larger, and does
not increase in ethylene glycol. The enhancing of the Φtrans→cis quantum yield is not
reproduced by the Brownian simulation, because of a well understood artifact associated
with large friction coefficients.

With respect to the isolated molecule photodynamics, all solvents (Brownian or
explicit) slow down the torsional motion and the excited state decay. In this respect, the
viscous solvents are much more effective than the others, as found by Diau and coworkers.
The explicit representation of the solvent also introduces a biexponential behaviour, which
is apparent in all experiments performed in solution. The simulation of the fluorescence
transients (intensity and anisotropy) shows a good agreement with the experimental data.
However, the analysis of the mechanism partly differs from the interpretation previously
put forward by Diau and coworkers. In fact, we find the decay of the S1 state and of its
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fluorescence is not due to two different mechanism, but to the N=N bond torsion alone,
while the other internal modes only have an auxiliary role. In a viscous solvent, such
as ethylene glycol, the torsional motion is slowed down, but is even more exclusively the
decay and isomerization mechanism, because the vibrational energy contained in the other
modes is transferred to the solvent.
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Appendix A

Body axis frame

In this Appendix we specify the body fixed frame for the azobenzene molecule. We only
consider four atoms, namely the C′-N′=N′′-C′′ group. The definition of the body fixed
frame applies to any geometrical arrangement, except when all four atoms are collinear.
However, we are particularly interested in geometries close to the cis and trans minima
(CAB and TAB). The definitions of the axes are as follows (see also fig. A.1):
(1) The x̂ axis coincides with the N′-N′′ one, i.e. it is obtained by normalizing the
~RN′N′′ = RN′′ −RN′ vector.
(2) We determine the ~A vector by orthogonalizing ~RN′C′ with respect to x̂ and by

subsequent normalization. (3) Similarly, we determine ~B by orthogonalizing ~RN′′C′′ with

respect to x̂ and by normalizing it. (4) We calculate ~C = ~A+ ~B.

(5) We calculate ~C ′ = x̂ ∧ ( ~B − ~A).

(6) The direction of the ẑ axis is taken along ~C or ~C ′, choosing the one with the larger
norm. We have C > C ′ at cisoid geometries (−π/2 < 6 CNNC< π/2), and C < C ′ at the
transoid ones.
(7) Obviously ŷ = ẑ ∧ x̂.
The reason for defining both ~C and ~C ′ and choosing the longer one is that ~C vanishes
at the trans geometry ( ~A = − ~B for θ = 6 CNNC = 180◦), while ~C ′ vanishes at the cis

geometry with θ=0 ( ~A = ~B for 6 CNNC = 0).
Starting from TAB, θ may decrease from 180◦ to 0◦, so that the molecule goes through

the intermediate transoid and cisoid geometries of fig. A.1. In this case, one switches
smoothly from the definition based on the ~C ′ vector to that based on the ~C one, when
θ drops below 90◦. If, on the opposite, θ increases towards 360◦, we obtain a capsized
CAB, in its enantiomeric form, with the ẑ and ŷ axes pointing in opposite directions with
respect to the former case. Note that, along this pathway, the definition of the frame
changes suddenly at θ = 270◦.

Of course the two pathways have the same probability to occur. This is why the plots
of the final ŷ and ẑ axes show an approximate inversion symmetry: the same density of
points is found for a given pair of cartesian components and for the same with opposite
signs. Of course the symmetry would be exact only in the large number limit (infinite
trajectories).
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Figure A.1: Definition of the body-fixed frame. θ id the CNNC dihedral angle.

θ

ŷ
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Appendix B

Optimization methods

B.1 Simplex

Our group has developed a program adapted to the optimization calculations. This
program is a strategy method to search the extreme value of a function independently
of the gradient calculation. SUPOPT program can optimize the “aim” function following
several minimization strategies like the Simplex method [151,152], a genetic technique or
“quasi-Newton” method with gradients calculated numerically. For the reparameterization
of the semiempirical hamiltonian we have employed the Simplex Optimization Algorithm
(SOA), because it does not require the calculation of the function gradient. We combined
it with a Simulated Annealing (SA) technique (see the next section). The SA strategy
is particularly indicated for nonlinear problems, where the “target” function has several
relative minima. In the case of the optimization of the semiempirical parameters, in
principle our interest is to reproduce as closely as possible the target values, i.e. to find
the absolute minimum. However, it may be advisable to limit the changes with respect
to the standard parameterization, i.e. to be content with a relative minimum closer to
the starting point. In order to influence the final results and the rate of convergence,
the functioning of the Simplex and Simulated Annealing algorithms can be controlled by
choosing several options.

The SOA has a geometrical nature: a Simplex of order n corresponds to a shape of n
dimensions constituted of n + 1 vertices linked by segments or polygonal faces. Consider
the optimization problem of a function of n variables f(x); be x1 an initial estimated value
of our minimum point x∗. We construct an initial Simplex of order n with the points x1,
x2,...,xn+1, obtained from:

xj+1 = x1 + hjej; j = 1, ..., n (B.1)

where the ej are the linearly independent versors and the hj the path lengths of single
directions. In the general SOA, we indicate:

xh the vertex where the function has the higher value
xs the vertex with the second higher value
xl the vertex with the minimum value
xc the centroid of all vertices excluding xh, namely
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xc =
1

n

n+1
∑

j 6=h

xj (B.2)

This algorithm proceeds as follow:

(1) Calculate the function f(x) in the simplex vertices.
(2) After ordering the vertices as specified above, reflect xh, using a parameter α

(Reflection)
x0 + xc = α(xc + xh) ⇒ x0 = (1 + α)xc − αxh (B.3)

(3) If f(xl) ≤ f(x0) ≤ f(xs), substitute xh with x0 and return to step 2.
(4) If f(x0) < f(xl), expand the Simplex using the expansion factor γ > 1 (Expansion),

we find x00 such that:
x00 = γx0 + (1 − γ)xc (B.4)

and then evaluate f(x00): if f(x00) < f(xl) substitute xh with x00 and return to step
2; if f(x00) ≥ f(xl) substitute ~xh with x0 and return to step 2.

(5) If f(x0) > f(xs), contract the Simplex with a factor β with values between 0 and 1
(Contraction). There are two cases to be considered:

• if f(x0) < f(xh), find x00 such that:

x00 = βx0 + (1 − β)xc (B.5)

• if f(x0) ≥ f(xh) find x00 such that:

x00 = βxh + (1 − β)xc (B.6)

In both cases there exists two further possibilities to be considered:
• if f(x00) < f(xh) and f(x00) < f(x0), substitute xh with x00 and return to

step 2;
• if f(x0) < f(xh) or f(x0) < f(xh), reduce the amplitude of Simplex halving

the distances from xl and return to step 2.

B.2 Simulated annealing

The Simulated Annealing (SA) is a strategy that allows to explore a large portion of the
parameter space, before converging to a local minimum. When the function has several
minima, it is not always desirable to remain in the local minimum nearest to the starting
point, and deeper minima (possibly the absolute minimum) are looked for. To this aim, we
have executed SOA optimizations with different starting points, and we have conjugated
the SA strategy with the SOA. The latter option consists in adding a random quantity
to each calculated value of the function. In this way, the SOA can accept an x point
that would be discarded because the corresponding f(x) is larger than the other f values
previously found. In this way, the algorithm can escape a local minimum and possibly find
another one. The random added values ∆f follow a probability distribution exp(−∆f/T ),
where T is a parameter choosen ad hoc. The “temperature” T is diminished by a factor
RT every NT optimization steps, in order to decrease the effect of such random additions
and to permit the accurate determination of the final minimum. When the search ends,
the temperature is very small, and the optimizer reduces to the standard SOA. The initial



B.2 Simulated annealing 167

temperature T0 and the RT and NT parameters are user-defined, and influence the range
of variables to be explored and the rate of convergence of the algorithm.

The Simulated Annealing technique bears analogies with a heating/cooling cycle.
Consider that the molecules of a liquid at a high temperature have a large probability
of moving freely. Cooling slows down the atoms, so that they can aggregate in the most
convenient ways, to produce low energy structures. If the cooling is fast, the liquid will
freeze before finding the lowest energy structure, possibly giving place to an amorphous
rather than to a crystalline solid. The essential features of this physical process are
reproduced in the Simulated Annealing procedure.





Appendix C

Quantum decoherence

In the case of a full quantum calculation, the nuclear components of the wavefunction
associated to different electronic states “wavepackets” evolve following different potential
surfaces. Different wavepackets located in different regions of the nuclear phase space
will have negligible overlap and therefore negligible interaction. Hence they will evolve
independently.

A quantum wavepacket, by going through a strong coupling region, is split on two
components, traveling on other electronic state. The two wave packets are initially coupled
by the nonadiabatic terms of the Hamiltonian and keep exchianging population, but they
end up evolving independently, as they travel into distant regions of the space of the nuclear
coordinates and momenta [66]. The truly quantum mechanical time evolution therefore
entails a progressive decoherence, which is practically irreversible in many-dimensional
systems.

On the contrary, the semiclassical TDSE implies a fully coherent propagation of the
electronic wave function due to the underlying assumption that the molecular geometry is
described by a single point in the nuclear phase space (the same for all electronic states).
Of the various procedures that can be used to introduce the decoherence in semiclassical
schemes, we have adopted a simplified version of one put forward by Truhlar and co-
workers [101, 102], in the framework of mean field methods, and briefly explained in the
Section 4.3.

The lack of quantum decoherence in surface hopping can be easily understood
considering a two state, one dimensional system. When a trajectory crosses a strong
coupling region, a portion of the population go to the other state. This is similar to what
happens in the full quantum case. However, when the trajectory leaves the coupling region,
the electronic state populations keep the same values they had at the end of the coupling
region. This behavior is different to the quantum one for the other state, where the
wavepacket would has been evolved independently. Only part of the independence of the
wavepackets is recovered averaging over all the trajectories. Moreover, if the trajectory
pass again through the coupling region, the population of the other state (where the
trajectory does not run) is still able to be transferred, modifying the hopping probabilities,
and giving rise to the non physical effects.

Figure C.1 shows the populations averaged over 600 trajectories, including and not the
quantum decoherence effects. We can note that when decoherence effects are included, Π2

and P2 are coincident.
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Figure C.1: Comparison of the time evolution of the excited state populations in the
case of n → π∗ excitation, starting from the TAB isomer, including or not the quantum
decoherence effects.
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Azobenzene-methanol: Tables of
Results

Table D.1: TAB-MeOH-Plan: points of the potential energy curve relative to the cc-pVDZ
basis (upper Table) and to the cc-pVTZ (lower Table), MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.7 -686.42532065649 -686.411639323369 0.013681333120

1.8 -686.42693188288 -686.414098930064 0.012832952815

1.9 -686.42750431312 -686.415486719261 0.012017593856

2.0 -686.42737749569 -686.416156362398 0.011221133292

2.1 -686.42678711694 -686.416348917379 0.010438199563

2.2 -686.42589826561 -686.416227777513 0.009670488095

2.3 -686.42482819852 -686.415905010732 0.008923187793

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.8 -687.08365349374 -687.078538001964 0.005115491778

1.9 -687.08412804704 -687.079375324486 0.004752722558

2.0 -687.08398020743 -687.079558726470 0.004421480960

2.1 -687.08344423747 -687.079325830783 0.004118406682

2.2 -687.08268086674 -687.078839632639 0.003841234100

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.
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Table D.2: TAB-MeOH-Perp: points of the potential energy curve relative to the cc-pVDZ
basis (upper Table) and to the cc-pVTZ (lower Table), MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.8 -686.41440539198 -686.406578579312 0.007826812672

1.9 -686.41603018979 -686.409155327482 0.006874862312

2.0 -686.41682669625 -686.410813148014 0.006013548237

2.1 -686.41706618905 -686.411827824183 0.005238364863

2.2 -686.41694144453 -686.412394144794 0.004547299740

2.3 -686.41658920408 -686.412650633186 0.003938570891

2.4 -686.41610515677 -686.412696933356 0.003408223413

2.5 -686.41555451385 -686.412605310169 0.002949203683

2.6 -686.41498035238 -686.412428057775 0.002552294607

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.8 -687.07459455108 -687.070826321621 0.003768229464

1.9 -687.07620887176 -687.072830015891 0.003378855864

2.0 -687.07702110650 -687.073989855011 0.003031251488

2.1 -687.07729416750 -687.074575585463 0.002718582034

2.2 -687.07721483157 -687.074778661563 0.002436170003

2.3 -687.07691398777 -687.074733574299 0.002180413472

2.4 -687.07648192626 -687.074533819397 0.001948106865

2.5 -687.07598013334 -687.074243629597 0.001736503746

2.6 -687.07545000269 -687.073906477940 0.001543524747

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.
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Table D.3: CAB-MeOH: points of the potential energy curve relative to the cc-pVDZ
basis, MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.8 -686.40596636125 -686.39502260352 0.010943757737

1.9 -686.40705334843 -686.39690062367 0.010152724755

2.0 -686.40735073218 -686.39794543172 0.009405300459

2.1 -686.40710913994 -686.39841398007 0.008695159869

2.2 -686.40651132022 -686.39848859740 0.008022722822

2.3 -686.40568928579 -686.39829942909 0.007389856697

2.4 -686.40473621496 -686.39794045301 0.006795761954

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

1.8 -687.06407345714 -687.059505318823 0.004568138321

1.9 -687.06511071403 -687.060887964734 0.004222749295

2.0 -687.06542870688 -687.061513017617 0.003915689261

2.1 -687.06526977310 -687.061627214265 0.003642558834

2.2 -687.06480635568 -687.061407211228 0.003399144455

2.3 -687.06415818830 -687.060977801149 0.003180387156

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.





Appendix E

Azobenzene-methane: Tables of
Results

Table E.1: TAB-Met-Plan: points of the potential energy curve relative to the cc-pVDZ
basis, MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

2.6 -611.38383009004 -611.381595089569 0.002235000467

2.7 -611.38406067462 -611.382045226638 0.002015447983

2.83291 -611.38415252133 -611.382416160570 0.001736360760

3.0 -611.38404854923 -611.382639394874 0.001409154353

3.1 -611.38391934090 -611.382689627992 0.001229712905

3.2 -611.38376434144 -611.382699208478 0.001065132960

3.3 -611.38359750243 -611.382680570354 0.000916932078

3.4 -611.38342869981 -611.382642847449 0.000785852364

3.64 -611.38305045872 -611.382511440881 0.000539017839

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.
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Table E.2: TAB-Met-Perp: points of the potential energy curve relative to the cc-pVDZ
basis, MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

2.55 -611.38524703472 -611.382079539518 0.003167495206

2.65 -611.38548749560 -611.382583008430 0.002904487165

2.75965 -611.38557407979 -611.382939789159 0.002634290631

2.8 -611.38556989953 -611.383030785627 0.002539113907

2.9 -611.38549559874 -611.383183149640 0.002312449102

3.0 -611.38535200548 -611.383253514014 0.002098491464

3.1 -611.38516144244 -611.383264525426 0.001896917014

3.2 -611.38494107566 -611.383233675475 0.001707400188

3.3 -611.38470404996 -611.383174448110 0.001529601850

3.54 -611.38412187068 -611.382972211868 0.001149658817

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.

Table E.3: CAB-Met: points of the potential energy curve relative to the cc-pVDZ basis,
MP2 method.

RN −H(Å) E(ua)a Ecp(ua)b Contrib. CP(ua)c

2.59 -611.36592373206 -611.362874968326 0.003048763739

2.69 -611.36626440554 -611.363556788804 0.002707616737

2.79015 -611.36635898896 -611.363952609550 0.002406379414

2.9 -611.36627804595 -611.364165311896 0.002112734050

3.0 -611.36610009664 -611.364227671071 0.001872425570

3.1 -611.36586528391 -611.364211495911 0.001653787997

3.2 -611.36560195039 -611.364147663102 0.001454287291

3.37 -611.36513979064 -611.363985286450 0.001154504187

3.54 -611.36470281256 -611.363803023824 0.000899788732

3.74 -611.36425265144 -611.363599756256 0.000652895188

aE is the non corrected MP2 energy
bEcp is the energy corrected by the BSSE.
cContrib. Cp is the counterpoise correction.



Appendix F

Radial Distribution Function

The radial distribution function (RDF), g(r), describes the way by the density of
surrounding matter varies as a function of the distance from a particular point. The
RDF takes into account the correlations in the distribution of molecules arising from the
forces they exert on each other. Given a potential energy function, the RDF can be found
via computer simulation methods like the Monte Carlo method.

It is defined in the following way [153,154]. The RDF is defined by:

g(r) =
ρ(2)(0, r)

ρ2
(F.1)

where ρ = N/V is the density of a fluid of N particles in a container of volume V and
ρ(2)(0, r) is the probability that a particle is at r when there is another particle at the
origin of coordinates. The probability P (2)(R1, R2) that particle 1 is found at R1 when
particle 2 is at R2, in a N particle system, is

P (2)(R1, R2) =

∫

drN−2e−βU(R1,R2,r3,...,rN

∫

drNeU(rN )
(F.2)

and the probability ρ(2)(0, r) that a particle (i.e., any particle) is found at R1 when another
one (i.e., any other one) is at R2 is

ρ(2)(R1, R2) =
N !

(N − 2)!
P (2)(R1, R2) = N(N − 1)P (2)(R1, R2) (F.3)

In particular if a fluid where the interaction between particles can be neglected,

P (2)(R1, R2) =
1

V 2
(F.4)

or

ρ(2)(R1, R2) =
N(N − 1)

V 2
≈ ρ2 (F.5)

and g(r)=1. In an atomic fluid (e.g., liquid argon), g(r1, r2) = g(r), where r = |r1 − r2|,
since the fluid is uniform and isotropic. The presence of an atom at the origin of coordinates
excludes other particles from all distances smaller than the radius of the first coordination
shell where g(r) has a maximum. The presence of the fisrt coordination shell tends to
exclude particles that are closer than the radius of the second coordination shell, where
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g(r) has another maximum. This oscillatory form for g(r) persist until r is larger that
the range of correlations between the particles. At distances larger than the correlation
length g(r) = 1, since ρ(2)(0, r) ≈ ρ2 for uncorrelated particles. Therefore, h(r) = g(r)− 1
describes the deviation from the asymptotic limit of uncorrelated particles and the product
ρg(r) describes the average density of particles at a density r from any particle in the fluid.

Note that ρg(r)4πr2dr is the number of particles at a distance between r and r + dr
from any particle in the fluid. Therefore, the calculation of g(r) involves averaging the
number of particles at a distance r from any particle in the system and dividing that
number by the element of volume 4πr2dr.

By the way described before can be possible to determine the inter- and intra-molecular
H-Bonds in alcohols like those used by us in this work. In the case of methanol and ethylene
glycol, from the gOH(r) function it was possible to determine the intermolecular H-bonds
by the folowing expression:

n̄OH = αOHρ

∫ Rmin

0
4πr2gOH(r)dr (F.6)

where αOH = 2∗number of OH groups of a molecule, ρ numberical density of OH groups
and Rmin is the distance of the first minimum in gOH(r).

In the other hand, for the intramolecular H-bonds in ethylene glycol molecule, we
have calculate the distance between the OH groups in the same molecule, establishing the
percent of one or two H-bonds possibly formed for the molecule, in base of the distance.

It is possible to measure g(r) experimentally with neutron scattering or x-ray scattering
diffraction data. In such an experiment, a sample is bombarded with neutrons or x-ray
which then diffract in all directions. The average molecular density at each distance can
be extracted according to Snells law: r=wavelength/sin(scattered angle), where r is the
distance the neutron travelled during diffraction.
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[138] J.A. Padró, L. Saiz and E. Guàrdia, J. Mol. Struct. 416, 243 (1997).

[139] D.G. Montague, I.P. Gibson and J.C. Dore, Mol. Phys. 44, 1435 (1981).

[140] D.G. Montague, I.P. Gibson and J.C. Dore, Mol. Phys. 47, 1405 (1982).

[141] D.T. Bowron, J.L. Finney and A.K. Soper, Mol. Phys. 93, 531 (1998).

[142] D. Kony, W. Damm, S. Stoll and W.F. Van Gunsteren, J. Comp. Chem. 23, 1416

(2002).

[143] O.V. de Oliveira and L.C. Gomide Freitas, J. Mol. Struct.: THEOCHEM 728, 179

(2005).

[144] MOSCITO 3.9, D. Paschek and A. Geiger, Departament of Physical Chemistry,

University of Dortmund, (2000).

[145] R.C. Weast, Handbook of Chemistry and Physics; CRC: Boca Raton, FL. 1983

[146] R.C. Wilhoit and B.J. Zwolinski, J. Phys. Chem. Ref. Data, Suppl. 2, (1973).

[147] Y. Marcus, Ion solvation, Ed. Wiley, New York, 1985

[148] J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Physical properties

and Methods of Purification, John Wiley & Sons, New York, 1986

[149] T. Yamaguchi, K. Hidaka and A.K. Soper, Mol. Phys. 97, 603 (1999).

[150] C.M. Stuart, R.S. Frontiera and R.A. Mathies, J. Phys. Chem. A 111, 12072

(2007).



186 REFERENCES

[151] J. Nelder and R. Mead, The Computer Journal 7, 308 (1965).

[152] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical

Recipes in Fortran 77”, Cambridge U. P. (2001)

[153] D.A. McQuarrie, , Statistical Mechanics, Harper Collins Publishers, 1976

[154] S.A. Rice and P. Gray, , Monographs in statistical physics. The statistical mechanics

of simple liquids., Volume 8, John Wiley & Sons, USA, 1965



Alphabetic index

π − π∗ transition spectra, 73

n− π∗ transition spectra, 73

1D calculation, 38, 51

2D calculation, 38, 51

3D calculation, 38, 51

Ab initio interaction potential, 112

Absorption spectra in solution, 136

Active space, 60, 67

Angles variation, 92

Anharmonic coordinates, 44

Azobenzene alignment, 99

Azobenzene configurations, 73

Azobenzene-methane potential, 117

Azobenzene-methanol potential, 113

Back-isomerization, 138

Basis Set Superposition Error, 111

Brownian dynamics, 139

Brownian trajectories, 89

CAB geometry, 21

CNDO, 58

Configuration interaction, 61

Conical intersection, 63, 67

Convolution of fluorescence, 147

Counterpoise correction, 112

Crossing seam, 139

Decay times, 92

Decoherence correction, 86

Depolarization, 151

Diffusion coefficient, 89

Dipole angle, 36, 37

Dipole direction, 36

Dipole moments, 38, 40, 43, 44

Dipole,first derivative, 43

Dipole,second derivative, 43

Direct dynamics, 81

Dynamic coupling matrix, 82

Dynamics initial conditions, 137

Dynamics simulations, 90

Dynamics stop conditions, 137

Early hops, 141

EG RDF, 131

Electronic distribution function, 60

Emission spectra, 145

Equilibrium angle, 38

Ethylene glycol, 130

Excitation energy, 35

Excited state decay, 24

Explicit solvent, 129

Exponential decay, 151

Finite temperature limit, 37

Floating occupation orbitals, 60

Fluorescence, 145

Fluorescence anisotropy, 25, 149

Fluorescence experiment, 25

Fluorescence polarization, 24

Fluorescence quantum yield, 147

Fluorescence spectra, 147

Fock matrix, 59

Forbidden transition, 27

Force constant, 38

Friction coefficient, 89, 141

Frustrated hops, 86

Hot ground state reaction, 137

INDO, 58

Initial conditions, 87

Interaction forces, 109

Interaction potential, 109

Intermolecular H-bonds, 130



188 ALPHABETIC INDEX

Internal consistency, 86

Intramolecular H-bonds, 130

Inversion mechanism potential, 73

Inversion potential energy, 72

Isomerization mechanisms, 22

Langevin equation, 89

Lifetimes, 92

LJ parameters optimization, 124, 125

Low temperature limit, 30

Lowest frequency modes, 37

Mean Squared Differences, 151

Methanol, 129

Methanol hydrogen bonds, 129

Methanol RDF, 131

MM term, 122

MNDO interactions, 59

MNDO parameters, 59

Molecular dynamics, 82

MP first order correction, 111

MP second order correction, 111

MP2 method, 110

NDDO, 58

Nonadiabatic couplings, 141

Normal coordinates, 30

Nuclear trajectories, 83

Occupation number, 60

OPLS force field, 122

OPLS-AA force field, 130

OPLS-AA-SEI-M force field, 130

Optimization procedure, 62

Orbital energy amplitude, 60, 67

Oscillator strength, 27, 35, 37, 51, 73

Parallel polarization, 149

Parameterization method, 62

Perpendicular polarization, 149

Photo-orientation, 99

Photoinduced anisotropy, 99

Photoisomerization pathway, 22

Population decay, 92

Potential energy, 38, 40, 43

QM/MM interaction potential, 123

QM/MM interaction term, 122

QM/MM method, 120

QM/MM parameters optimization, 124, 125

Quantum decoherence, 86

Quantum yields, 91, 139

Quantum yields in solution, 138

Radial Distribution Function, 131

RDF, 131

Reaction time, 90

Reactive trajectories, 90

SA, 166

Sampling, 87

Semiclassical dynamics, 82

Semiclassical simulations, 81

Semiempirical energy values, 63

Semiempirical geometrical values, 67

Semiempirical methods, 58

Semiempirical model, 57

Semiempirical parameters, 70

Simplex Optimization Algorithm, 165

Simulated annealing, 166

SOA, 165

Solute-Solvent clusters, 133, 134

Solute-solvent interaction, 109

Solute-Solvent RDF, 134

Solvent cubic box, 131

Solvent effects, 25, 89, 120, 139

Solvent molecular dynamics, 131

Solvent Radial Distribution Function, 131

Solvent spheres, 133

Spline fitting, 39

Statistical treatment, 44

Steady state emission spectra, 145

Stop conditions, 137

SUPOPT program, 165

Surface Hopping, 81, 84, 139

Symmetric torsion, 37

Symmetry features, 39

Symmetry rules, 38

TAB geometry, 21, 27, 29

Target energy values, 63



ALPHABETIC INDEX 189

Target geometrical values, 67

Temperature effects, 52

Torsional mechanism potential, 73

Torsional potential energy, 72

Trajectories integration, 83

Transition dipole, 27

Tully’s method, 84

Turning point, 29

Unreactive trajectories, 90

Verlet method, 83

Vibrational frequencies, 30

Viscosity, 89

Wavepacket interference, 86

XRD data TAB, 21





Acknowledgments

During this Thesis work there have been some people that have had an important role,

people that have helped me not only at professional level but also at personal level and they

have been close along this period. To these people I want to express sincere and special

thanks:

* In a first place I want to thank very much Maurizio Persico, my tutor, to have given

me the opportunity to work with him in his group and in this way permits me to learn

so much. I want to thank him for all the discussions that helped me to understand

a lot of things, for all his help, for his immense patience and for all that has taught

me not only at academic level but also at human and personal level. Professors like

him are very few and I have had the fortune and the pleasure to work with him. I

take advantage the opportunity to also thank his family to always have been nice and

kind with me.

* To Giovanni Granucci, for all the inmense help that has given me in this period,

overall with the computational and calculations aspects, for his patience, because

without his help this thesis would not have been the same, for all the discussions that

have allowed me to understand and to learn so much...Giovanni, thanks a lot!

* To the Galileo Galilei School, to have supported me by a grant that allowed me to

complete one of most important aim, the Chemistry PhD at Pisa. life.

* To the professors Saulo A. Vázquez R. and Emilio Mart́ınez Nuñez of the Chemical
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sua famiglia, per essere stati sempre carini e gentili nei mie confronti.

* A Giovanni Granucci, per tutto l’immenso aiuto che mi ha i dato in questo periodo,

sopratutto con gli aspetti computazionali e di calcolo, per la sua pazienza, perché
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situazione, dandomi sempre una mano con un sorriso e una battuta...Mille grazie!



196 Ringraziamenti

* Ai miei genitori, Orlando Cusati e Teresa Di Turi, perché mi hanno sempre
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Italia, por haber créıdo en mi y por su calidad humana y profesional...Los recuerdo

siempre con afecto.

* A todas aquellas personas que se me olvida mencionar y que de alguna u otra manera

me ayudaron a hacer posible la realización de este Doctorado y de esta tesis.




