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The most beautiful thing we can experience
is the mysterious. It is the source of all true
art and science.

Albert Einstein

Elena: ”Oh, we’re going home. We have just
spent three months calibrating the new anten-
nae at Tchalinko... And what about you?”
Dr. Floyd: ”I’m just on my way up to Clav-
ius”.

Stanley Kubrick - 2001: A Space Odyssey.



Abstract

In this dissertation, the advantageous combination of Dynamical Systems
Theory of three-body models with Electric Propulsion to design novel space-
craft interplanetary missions in multi-body regimes has been investigated.
Particular attention has been focused on interplanetary transfers towards
outer planets that are intrinsically associated with long transfer times and
high ∆V budgets, especially if a final planetary capture is desired.

A reference mission using Electric Propulsion in the three-body model has
been selected in which, after the interplanetary phase, a planetary tour of the
Uranian system orbiting consecutively Oberon, Titania, Umbriel, Ariel and
Miranda has been designed. Application of low-thrust propulsion with its
advantages with respect to propellant requirements has been used to inter-
connect ballistic trajectories on invariant manifolds associated with multiple
three body systems. This has implied the necessity to investigate both in
the field of the Dynamical Systems Theory applied to the Circular Restricted
Three-Body problem and in the field of optimal control theory as optimization
schemes have been necessary to design low-thrust arcs subjected to boundary
constraints. Both the interplanetary trajectory and the planetary tour have
been computed in different three-body environments, where the start of the
interplanetary phase has been assisted by a high energy launch to limit the
transfer time.

Based on the reference mission, a preliminary spacecraft configuration
has been developed in which Radioisotope Thermoelectric Generators have
been considered to provide the necessary power source.



Sommario

Il presente lavoro di tesi è volto all’indagine dei potenziali benefici che possono
derivare dal disegno di traiettorie interplanetarie a bassa spinta nell’ambito di
un modello a tre corpi. Da un lato l’uso della Propulsione Elettrica primaria
permette una maggiore efficienza propulsiva che si traduce in una riduzione
della massa di propellente necessario per compiere la missione, dall’altro la
dinamica caotica del modello a tre corpi garantisce una riduzione del ”costo”
energetico di trasferimento rispetto all’approccio kepleriano. Nel presente
studio, particolare interesse è posto nel disegno di trasferimenti interplane-
tari verso pianeti esterni, sia per le difficoltà che sono intrinsecamente con-
tenute nel raggiungimento di tali obiettivi, sia per i tanti aspetti ancora ignoti
che circondano questi pianeti causa l’assenza in passato di missioni ad essi
dedicate.

In questo contesto è stata individuata una missione di riferimento che
prevede un trasferimento Terra-Urano con conseguente tour delle sue lune
principali. Sia la fase interplanetaria che quella planetaria di Urano sono state
calcolate in differenti ambienti a tre corpi. In particolare, la fase interplane-
taria è stata concepita con un lancio ad alta energia cos̀ı da ridurre il tempo
di trasferimento. Dopo la fase interplanetaria, è stato disegnato un tour che
transita dalle lune più esterne a quelle più interne passando rispettivamente
per Oberon, Titania, Umbriel, Ariel e Miranda fino alla cattura finale intorno
ad Urano. Durante l’intera missione, la propulsione a bassa spinta è stata
impiegata per connettere tratti balistici appartenenti a ’manifolds’ invarianti
associati a sistemi a tre corpi multipli. E’ facile dunque intuire come tali
problematiche hanno reso necessaria una ricerca approfondita sia nel campo
della Teoria dei Sistemi Dinamici applicata al modello a tre corpi, sia nel
campo della teoria del controllo ottimale applicata all’astrodinamica.

Infine, sulla base della missione di riferimento prescelta, è stata svilup-
pata una configurazione preliminare di una sonda spaziale in cui è previsto
l’utilizzo di generatori termoelettrici a radioisotopi per la generazione di
potenza.
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Chapter 1
Introduction

1.1 The Challenge of Space Exploration

Space exploration and human migration into space are still in their infancy
as they started about fifty years ago. Many steps were done but many others
need to be taken in this new ocean.

Nevertheless, sustainable space exploration is a challenge that needs a
global vision and coordination for both robotic and human missions. In fact,
both from an economic and scientific point of view, strategies and efforts
of all space agencies must be shared in order to achieve mission goals more
effectively and safely.

The Moon and Mars represent without any doubt the prime targets for
human space exploration. The former has an enormous scientific significance
and can represent an essential stepping stone to study Earth and the universe
and to prepare humans and machines for exploration of Mars and beyond.
The latter, with an atmosphere and water, may hold key secrets to the evo-
lution of life in our solar system. Besides, because of its similarity to Earth,
Mars is the place in the solar system where human life could most likely be
sustained in the future.
Recent activities involve developing a robust and flexible capability to visit
several potential destinations. A Lunar Gateway Station near Earth-Moon
libration point LL1 has been proposed as a 21st century hub for science and
a jumping off point for deep space missions, eventually to land humans on
Mars.

Looking beyond, exploration of asteroids and comets has high scientific
interest as these celestial bodies contain important information on solar sys-
tem history, new kind of telescopes into deep space are planned to be launched
whose goal would be to find Earth-like planets, new probes to solar system
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planets and their moons are planned as they are extremely important scien-
tifically and, even if these targets are not realistic for human exploration in
the coming decades, they will become more accessible as space exploration
technologies improve.

In this picture, trajectory design is part of this fascinating exploration
program as space missions which reach these destinations are complex and
challenging to design, requiring new and unusual kinds of orbits to meet their
goals, orbits that cannot be found by classical approaches to the problem.

1.2 New Trends in Mission Design: Low-Energy Tra-
jectories

Classical approaches to spacecraft trajectory design based on the integrability
of the Kepler’s problem have been quite successful and accurate preliminary
results have been provided. Moreover, the concept of the sphere of influence
as approximation of the region in which a body experiences the gravity field of
one attractor, allows the patched-conics method to define the whole trajectory
as a link of solutions of the two-body problem.
This first guess solution is often very close to the real trajectory experienced
by the spacecraft during the operative life. For instance, Hohmann transfers
for the Apollo Moon landings and swing-bys of outer planets for Voyager
were designed using this approach and results are well known.

However, in terms of propellant mass consumption, these missions were
costly as large burns were required to perform their trajectory. The mini-
mization of propellant mass consumption (or in other words of the energy
needed to perform the transfer) is a key factor for the feasibility of each
mission.

Furthemore, the two-body problem fails in designing certain missions that
spend long time in regions where two or more gravitational fields are com-
parable (for example when orbiting in the vicinity of the sphere of influence
borderline).

Fortunately, a new class of low energy trajectories have recently been
discovered and employed which make possible missions which classical ap-
proaches could not. Besides, the theoretical growth of the dynamical sys-
tems theory and of its application mainly motivated by the recent progress
in the development of numerical techniques for dynamical problems and by
the availability of more powerful computational facilities, yields the possibil-
ity to generate different types of transfer trajectories.

These trajectories, also called non-Keplerian orbits, are defined in a
n − body model (n ≥ 3). It has been proven that, when non-Keplerian
orbits are considered in the preliminary trajectory design, the ∆V necessary
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to carry out the transfer is reduced.
This is possible because such trajectories are modelled by making use of grav-
ity as much as possible, using the natural dynamics arising from the presence
of a third body (or more bodies). In this way, by simply exploiting the si-
multaneous gravitational fields of two or more attarctors, the ∆V needed to
perform the transfer is reduced.
In order to effectively exploit these passage-ways, the global transport mech-
anism in the restricted three-body problem will be discussed, involving the
stable and unstable invariant manifolds associated to two libration points,
equilibrium locations in a rotating two-body gravity field situated along a
line joining the two attracting bodies.

Apart from a reduction of the transfer cost, preliminary design of low-
energy trajectories provides a more accurate solution. In fact, in a n− body
model (n ≥ 3), a spacecraft experiences the n gravitational forces acting
simultaneously on it and therefore a more accurate modelization of the reality
is obtained.

The case of the Earth-Moon transfers is the one mostly investigated as
the ∆V reduction of a lunar transfer and the consequent possible increase
of payload mass fraction are of great importance from the strategic point of
view in the future space activities.
In particular, the concept of Weak Stability Boundaries introduced by Bel-
bruno needs to be mentioned as it first conceived the possibility of Earth-
Moon transfers with no hyperbolic excess velocity at Moon arrival.

Moreover, low-energy trajectory design allowed and will allow space agen-
cies to envision missions involving long duration observations and/or constel-
lations of spacecraft using little amount of propellant. In the past, many mis-
sions (ISEE-3, WIND, SOHO, ACE, WMAP, GENESIS) were designed un-
der these assumptions and flew on periodic orbits around collinear lagrangian
points.

1.3 Thesis Motivations and Goals

In the past, several studies applied low-energy tranfer solutions to design
complex missions and successfully coupled three-body environments to de-
sign low-energy ballistic trajectories with consequent significant savings in
propellant mass and high scientific outcome.

However, few past studies are known to the author in which low-thrust
trajectories are defined in a n-body model. Belbruno first dealt with this
combination in the frame of the Lunar GAS mission,[5] then other stud-
ies investigated low-thrust trajectories for periodic orbit around libration
points.[6][7][8]
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It is well known from Tsiolkowski equation that propellant mass fraction
can be reduced if a higher thruster specific impulse is available and/or a lower
∆V is necessary to perform the overall orbit transfer.
Electric Propulsion is a low-thrust, high efficiency propulsion technology that
can rely on specific impulses ten times higher than conventional propulsion.
This is the reason why space transportation systems based on it are an im-
portant building block of all recent architectures for space exploration.

Therefore, taking in mind advantages deriving from both low-energy trans-
fers and from this high efficiency propulsion technology, the primary objective
of this research is to investigate and outline the potential benefits deriving
from coupling the trajectory design of non-Keplerian orbits in a Circular Re-
stricted Three-Body model (with the consequent reduction of the ∆V trans-
fer) with the use of the Electric Propulsion.

This implies the necessity to investigate both in the field of the Dynamical
Systems Theory applied to the Circular Restricted Three-Body problem and
in the field of optimal control theory as optimization schemes are necessary
to design low-thrust arcs subjected to boundary constraints.

In this research, particular attention is focused on mission design to outer
solar system planets that are intrinsically associated with long transfer times
and high ∆V budgets, particularly if a final planetary capture is desired. In
detail, a tour of the Uranian system orbiting consecutively its main moons
and the required interplanetary trajectory are studied.

1.4 Contents

The theoretical background related to the Circular Restricted Three-Body
Problem (CR3BP) has been summarized in Chapter 2 where the definition
of the system of reference and of the equations of motion are discussed as far
as considerations on the energy integral and the regions of possible motions
related to it.

Chapter 3 is dedicated to the explanation of the orbit structure and of
the motion near the collinear libration points. In detail, starting from the
linearized dynamics around collinear libration points, construction of peri-
odic orbits and the determination of invariant manifolds associated both to
collinear points and periodic orbits is outlined. In many practical mission
design problems under the assumptions of CR3BP, it represents the starting
point for a preliminary trajectory design.

In Chapter 4, optimization techniques are presented. In particular, this
chapter does not want to be a survey of all numerical methods available in
trajectory design since it would be a huge task, but only a focused overview
of the optimization techniques used in this work for the achieved results.
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In Chapter 5 and Chapter 6, the computations and the results obtained
for interplanetary low-thrust transfers using libration points are presented.
Both chapters pay particular attention to missions to outer planets.
In detail, in Chapter 5 interplanetary transfers to Uranus both in the three-
body and two-body model are shown in order to obtain comparable results.
In the two-body model, two different transfer strategies were investigated.
On the other hand, Chapter 6 is dedicated to the design of a reference mission,
in particular a tour of the Uranian system (Uranus plus its main moons) and
the required interplanetary trajectory in the CR3BP model are presented.
Furthermore, the preliminary spacecraft design is also shown.

Finally, in Chapter 7, conclusions, open problems and suggestions for
further improvements about this thesis are discussed.



Chapter 2
The Circular Restricted Three-body Model

All of the celestial bodies, in accordance with Newton’s law of universal grav-
itation, are attracted to each other. Therefore, the motion of a spacecraft
in the solar system or in the overall universe is governed by an infinite net-
work of attractions to all celestial bodies and a rigorous analysis of all the
instantaneous contributes experienced by the spacecraft would be impossi-
ble. Fortunately, if we consider the motion of a body dominated by only
one central body at a time (the 2-body problem), the error we are making is
small and results are very close to the reality. In fact, the 2-body problem
is an integrable system and therefore has explicit solutions to the equations
of motion which correspond to three types of orbit (ellipse, parabola and
hyperbola) where the central body must be at a focus of the conic.
In particular, under specific assumptions (mass of the second body negligi-
ble with respect to the attracting body→ Restricted 2-body problem, inertial
system of reference, spherical symmetry and uniform density of the two bod-
ies, only gravitational forces acting on the two-bodies), the 2-body problem is
crucial to astrodynamics as it represents the starting point for more complex
study.
However, even if the standard two-body relations underlie much of the gen-
eral work in astrodynamics, sometimes, when higher accuracy is required,
we need to model the real world by including other bodies. When three or
more bodies are gravitationally interacting a wide variety of orbital regimes
becomes available. Open trajectories, close encounters, collisions, resonances
and all intermediate and transition patterns from one case to another. In
other words chaos.

In an inertial reference system (X,Y,Z), celestial bodies obey Newton’s
laws of motion and his law of universal gravitation. If we assume that N
point masses are moving uniquely under their gravitational attraction and
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Figure 2.1: Gravitational forces acting on the i-th body in the classical N-body
problem.

that there are no other celestial bodies (masses) outside the system, these
assumptions define the classical N-body problem (see Fig. 2.1) whose non-
linear differential equations of motion are

mi
~̈Ri = −Gmi

N∑
j=1

j 6=i

mj

R3
ij

(~Ri − ~Rj) i = 1, . . . , N (2.1)

where G is the universal gravitation constant, Rij is the Euclidean distance
between two bodies of mass mi and mj

Rij =
√

(Xi −Xj)2 + (Yi − Yj)2 + (Zi − Zj)2 (2.2)

and ~Ri (~Rj) is the position vector of the i-th (j-th) body defined in the
cartesian inertial reference system as

~Ri = Xiix + Yiiy + Ziiz (2.3)

Eq. (2.1) is simply Newton’s second law of motion where the left-hand side is
the force acting on the i-th point mass and the right-hand side is the sum of
the gravitational forces acting on it. The set of 3N second-order differential
equations describes the dynamics of all N point masses that influence each
other through the gravitational forces so that each single mass moves under
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the vector field generated by the other N − 1 masses. Unfortunately, as H.
Bruns demonstrated in 1887, for N > 2 this set of differential equations
of motion has only 10 first integrals, thus no analytical solution is possible
to solve the 6N variables (3N for the position components and 3N for the
velocity components). However, the non-existence of a general solution to the
N-body problem for N > 2 does not prevent the motion of a system being
accurately described in some specific cases.

2.1 The Circular Restricted 3-Body Problem

The general 3-body problem is one of the oldest problems in dynamical systems
designed to determine the behavior of three interacting masses. As said
before, no one has solved it in closed form, but much work has been done
to simplify the problem.[9] In particular, one special analytical solution has
been known since the time of Euler and Lagrange: the Circular Restricted
3-body Problem (CR3BP). Nevertheless, in spite of simplifying assumptions,
the resulting motion can be chaotic.
In the CR3BP we consider a case where one of the bodies (the third body
with mass m) is so much less massive than the other two bodies (the primary
masses or primaries) so that primaries behavior is unaffected by third body
gravitational potential:

m1 > m2 >> m (2.4)

As we can easily realize, this scenario is good for modeling the trajectories of
a spacecraft in the gravitational potential of two massive bodies (sun-planet
or planet-moon system).
Since third body mass is negligible with respect to the other two bodies, the
total mass of the system is

M = m1 +m2 (2.5)

and the mass ratio is defined as

µ =
m2

M
(2.6)

Thus it is
m2 = µM (2.7)

m1 = (1− µ)M (2.8)
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2.2 CR3BP Equations of Motion

System of Reference Before formulating the equations of motion for the
CR3BP, it is necessary to choose an appropriate Cartesian system of refer-
ence. With reference to Eq. (2.1) where N = 3, the equation of motion of the
third body in an inertial (or sidereal) system of reference would read

~̈R3 = −Gm1
(~R3 − ~R1)

R3
13

−Gm2
(~R3 − ~R2)

R3
23

(2.9)

Moreover, assuming the primaries to move in circular orbits around their
common centre of mass and assuming a new inertial frame with the origin in
the barycenter of the two primaries, Eq. (2.9) reads

~̈R = −Gm1
(~R− ~R1)

R3
1

−Gm2
(~R− ~R2)

R3
2

(2.10)

where ~R = {X,Y, Z}T denotes the spacecraft’s position, ~R1 and ~R2 the
distance of the spacecraft from the primaries.
However, Eq. (2.10) is time-dependent and to get the system autonomous it
must be rewritten in a system of reference where the primaries are at rest.
Thus a synodic or rotating frame (x, y, z) is defined rotating uniformly with
the primaries with angular velocity ~ω = {0, 0, n}T equal to the mean motion
of either mass and with its origin on their barycenter. It coincides with the
inertial frame (X,Y, Z) at t = 0 . The x-axis lies along the primaries line
from m1 to m2, the y-axis is perpendicular and on the plane of motion and
the z-axis completes a right-handed coordinate system (see Fig. 2.2).

Besides, it is convenient to make the system nondimensional by the fol-
lowing choice of units:

1. The unit of mass M = m1 +m2

2. The unit of length L = distance between the centers of the primaries

3. The unit of time T = 2π (orbital period of m1 and m2 about their
centre of mass)

With these assumptions the universal gravitation constant becomes G = 1
and the common mean motion of the primaries, n, is also unity. In addition,
in the synodic system of reference, the larger mass m1 is located at (−µ, 0, 0)
and m2 in (1 − µ, 0, 0). This is also true for the inertial frame only when
t = 0.
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Figure 2.2: CR3BP System of Reference

In normalized units, we shall transform the coordinates of the m-body
from the inertial coordinates {X,Y, Z} to the rotating frame coordinates
{x, y, z} using a transformation matrix At:[1] X

Y
Z

 = At ·

 x
y
z

 (2.11)

where

At =

 cos t −sin t 0
sin t cos t 0

0 0 1

 (2.12)

In order to obtain velocity components, we can differentiate Eq. (2.11): Ẋ

Ẏ

Ż

 = Ȧt ·

 x
y
z

+At ·

 ẋ
ẏ
ż


= At ·

 ẋ− y
ẏ + x
ż

 (2.13)
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Lagrange and Hamiltonian Approach Letting q1, q2, .., qn denote a set of
generalized configuration coordinates for a conservative physical system with
n degrees of freedom, the equations of motion of the system are

d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
j = 1, 2, . . . , n (2.14)

where L is the Lagrangian of the system, i.e., the difference between the
kinetic and the potential energies, expressed in terms of the generalized co-
ordinates and their time derivatives. These equations are known as Euler-
Lagrange equations because, although Lagrange was the first to formulate
them specifically as the equations of motion, they were previously derived by
Euler as the conditions under which a point passes from one specified place
and time to another in such a way that the integral of a given function L
with respect to time is stationary.
In the inertial frame Eq. (2.14) can be written as

L(X,Y, Z, Ẋ, Ẏ , Ż, t) =
1
2

(
Ẋ2 + Ẏ 2 + Ż2

)
−U(X,Y, Z, t) (2.15)

where
U(X,Y, Z, t) = −1− µ

R1
− µ

R2
− 1

2
µ (1− µ) (2.16)

is the gravitational potential experienced by the third body due to m1 and
m2 (the last term on the right-hand side is added by convention to offer a
more symmetric form) and

R2
1 = (X + µcos t)2 + (Y + µsin t)2 + Z2

R2
2 = [X − (1− µ)cos t]2 + [Y − (1− µ)sin t]2 + Z2 (2.17)

Thanks to the power of Euler-Lagrange equations that are invariant under
general coordinate transformations, the Lagrangian can be written down also
in the rotating frame in order to become time-independent(recall transforma-
tions expressed in Eqs. 2.11 and 2.13):

L(x, y, z, ẋ, ẏ, ż) =
1
2

[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
− U (x, y, z) (2.18)

where
U(x, y, z) = −1− µ

r1
− µ

r2
− 1

2
µ (1− µ) (2.19)

with

r21 = (x+ µ)2 + y2 + z2

r22 = [x− (1− µ)]2 + y2 + z2 (2.20)
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Thus, using Eqs. 2.14, the equations of motion in the CR3BP with a la-
grangian approach are:

d

dt
(ẋ− y) = ẏ + x− Ux

d

dt
(ẏ + x) = − (ẋ− y)− Uy

d

dt
ż = −Uz

and after simplification

ẍ− 2ẏ = −Ūx
ÿ + 2ẋ = −Ūy

z̈ = −Ūz (2.21)

where

Ū(x, y, z) = −1
2
(
x2 + y2

)
+ U(x, y, z)

= −1
2
(
x2 + y2

)
− (1− µ)

r1
− µ

r2
− 1

2
µ (1− µ) (2.22)

is the effective potential
The correspondence between the conservation of energy and the Lagrangian

equations of motion suggests that there might be a convenient variational for-
mulation of mechanics in terms of the total energy E = T + U (Kinetic Energy
+ Potential Energy) as opposed to the Lagrangian L = T - U. Notice that
the partial derivative of L with respect to q̇ is the momentum of the particle.
In general, given the Lagrangian, we can define the generalized momenta as
(Legendre transformation):

pi =
∂L

∂q̇i
(2.23)

and the total energy of the system in terms of these conjugate parameters is
the so called Hamiltonian function H

H (qi, pi) =
n∑
i=1

piq̇i − L (qi, pi) (2.24)

that in autonomous, conservative systems of n degrees of freedom is con-
served.
Therefore the equations in Hamiltonian form read:

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
(2.25)
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According to Eqs. 2.23 and 2.24, the Hamiltonian function of the CR3BP
reads

H (x, y, z, px, py, pz) = pxẋ+ pyẏ + pz ż − L

=
1
2

[
(px + y)2 + (py − x)2 + p2

z

]
+ Ū(x, y, z) (2.26)

Therefore, from Eqs. 2.25, Hamilton equations are given by

ẋ =
∂H

∂px
= px + y

ẏ =
∂H

∂py
= py − x

ż =
∂H

∂pz
= pz

ṗx = −∂H
∂x

= py − x− Ūx

ṗy = −∂H
∂y

= −px − y − Ūy

ṗz = −∂H
∂z

= −Ūz (2.27)

It is worth noting that both the Lagrangian and the Hamiltonian formulation
of CR3BP equations of motion in the synodic system of reference gives a
six dimensional autonomous system, respectively in (x, y, z, ẋ, ẏ, ż) and in
(x, y, z, px, py, pz).

Energy Integral and Jacobi Constant The energy associated with the par-
ticle’s motion in the rotating frame can be expressed as

E(x, y, z, ẋ, ẏ, ż) =
1
2
(
ẋ2 + ẏ2 + ż2

)
+ Ū(x, y, z) (2.28)

Moreover, if we derive the first term on the right-hand side and, using rela-
tions obtained in Eqs. 2.21, we have

1
2
d

dt

(
ẋ2 + ẏ2 + ż2

)
= ẋẍ+ ẏÿ + żz̈

= ẋ
(
2ẏ − Ūx

)
+ ẏ

(
−2ẋ− Ūy

)
+ ż

(
−Ūz

)
= −

(
ẋŪx + ẏŪy + żŪz

)
=

d

dt

(
−Ū
)

Thus

d

dt

(
ẋ2 + ẏ2 + ż2

)
= 2

d

dt

(
−Ū
)
⇒ d

dt

[
−
(
ẋ2 + ẏ2 + ż2

)
− 2Ū

]
= 0 (2.29)
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It turns out that

C (x, y, z, ẋ, ẏ, ż) = −
(
ẋ2 + ẏ2 + ż2

)
− 2Ū = −2E (2.30)

The constant or conserved quantity C = −2E is the so called energy integral
or Jacobi integral or Jacobi constant

2.3 Realms of Possible Motion in the CR3BP

Lagrangian libration points Given two massive bodies in circular orbits
around their common centre of mass, it can be shown that there are five po-
sitions of equilibrium in space, the Lagrangian libration points, where a third
body of comparatively negligible mass would maintain its position relative to
the two massive bodies. In other words, in the rotating system of reference
introduced before, the gravitational fields of the primaries combined with
their centrifugal force are in balance at the Lagrangian points and the space-
craft would stay there if placed with zero velocity. For a static equilibrium
is necessary to find the position vector x = (x, y, z) so that accelerations
and velocities are zero in the system of equations of motion derived before
(Eqs 2.21).
Lagrangian points are labeled with Li with i = 1, .., 5; three of them L1,
L2 and L3 are collinear with the primaries and are locally unstable (saddle
points) while L4 and L5 are triangular forming equilater triangles with the
primaries. In the next paragraph the computation of the location of these
stationary points will be shown.

Energy surface, Zero Velocity surfaces and Hill’s Region Any set of
(x, y, z, ẋ, ẏ, ż) satisfying the Jacobi constant will represent a possible mo-
tion for a given energy level. With reference to Eq. (2.30), some preliminary
considerations can be done. The term

(
ẋ2 + ẏ2 + ż2

)
is the square of third

body velocity; if we imagine to fix an energy level (in other words the value of
C) and to fix an initial position of the third body (x0, y0, z0), the magnitude
of velocity is thus fixed. Alternatively, if we impose the velocity to be zero
at a given energy level, a set of third body positions will be automatically
determined. In fact, the Jacobi integral represents a five-dimensional mani-
fold for the states of the spacecraft (third body) within the six-dimensional
phase space. Once the energy integral is set equal to a costant k (the value
of µ is fixed once we choose the primaries), the motion is then reduced to the
hypersurface or energy surface M:

M (µ, k) =
{

(x, y, z, ẋ, ẏ, ż) ∈ <6|C (x, y, z, ẋ, ẏ, ż) = k
}

(2.31)

Moreover, the Jacobi integral can be used to establish some allowed and
forbidden regions for the motion of the spacecraft once an initial condition
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x0 = (x0, y0, z0, ẋ0, ẏ0, ż0) is given. These regions are bounded by the zero
velocity surfaces or Hill’s surfaces on which the kinetic energy is zero.

In order to obtain 3-D and 2-D plots (but without loss of generality),
let us consider a spacecraft bounded to move on the plane described by the
motion of the primaries. The prblem to be faced is the so called Planar
Circular Restricted 3-Body Problem (PCR3BP) in which we set z = ż = 0.

Figure 2.3: Zero velocities curves (or Hill’s regions) in the rotating system for
various values of energy and for µ = 0.3

Now equations of motion read

ẍ− 2ẏ = −Ūx
ÿ + 2ẋ = −Ūy

(2.32)

where

Ū(x, y) = −1
2
(
x2 + y2

)
+ U(x, y) (2.33)
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with

U(x, y) = −1− µ
r1
− µ

r2
− 1

2
µ (1− µ) (2.34)

r21 = (x+ µ)2 + y2

r22 = [x− (1− µ)]2 + y2 (2.35)

Besides, the Jacobi constant becomes

C (x, y, ẋ, ẏ) = −
(
ẋ2 + ẏ2

)
− 2Ū = −2E

In this case, the energy hypersurface of Eq. (2.31) becomes a three-dimensional
manifold in the four-dimensional space. The projection of this surface onto
position space represents the regions of possible motions or Hill’s region for
a third body of fixed energy k (Fig. 2.3). Moreover, as in these regions the
spacecraft can move, the term

(
ẋ2 + ẏ2

)
must be positive. It turns out that,

according to Jacobi constant, in these realms must be Ū(x, y) ≤ k. This
concept is mathematically expressed as

S (µ, k) =
{

(x, y) |Ū(x, y) ≤ k
}

The boundary of this surface is called the zero velocity curve and represents
the locus of points in which the kinetic energy is zero, i.e. Ū(x, y) = k.
Therefore, for a given µ, there are five basic configurations for the Hill’s
regions corresponding to five intervals of energy value k. Thus, for increasing
values of the energy, Hill’s regions open first at L1, then at L2 and so on (see
Fig. 2.5). The critical values of energy which separate these five cases are
the values of ki, i = 1, ..5 (where k4 = k5) corresponding to the lagrangian
points Li, i = 1, .., 5 (Fig. 2.4).

Regions of Possible Motion in the CR3BP According to the considerations
done in the previous paragraph and with reference to Fig. 2.5, there are three
main regions of possible motion called realms and five possible cases. In
particular:

- Case 1: E<k1. When the third body (spacecraft) has an energy
below the value k1, it can only move in the small surrounding regions
of the two primaries m1 and m2 called respectively interior realm and
m2 realm without crossing them as a forbidden region is between the
two realms.
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Figure 2.4: Energy values of ki, i = 1, ..5 corresponding to the five lagrangian
points Li vs. the mass ratio µ

- Case 2: k1<E<k2. As the energy level is higher than k1, a neck
around L1 opens up between the two regions around m1 and m2 allow-
ing the spacecraft to move between the two. Since the energy level is
lower than k2, the exterior realm which lies outside both m1 and m2 is
still forbidden.

- Case 3: k2<E<k3. When the energy level becomes higher than k2
value, a second neck around L2 opens up permitting the third body to
move also in the exterior realm.

- Case 4: k3<E<k4=k5. In this case the spacecraft can move from
the vicinity of m1 to the exterior realm passing not necessarely from
L2 but directly from L3.

- Case 5: E>k4=k5. When the energy level is higher than k4 = k5,
no forbidden regions longer exist and the third body is free to move in
the entire plane.

2.4 Location of the Libration Points

As the libration points are equilibrium points, it is possible to compute their
location in the synodic system of reference starting, for simplicity, from the
planar equations of motion (Eqs. 2.32) in which we set the velocities and
accelerations to zero, i.e. ẋ = ẍ = ẏ = ÿ = 0. Thus, it sufficient to solve
Ūx = 0 and Ūy = 0, therefore:
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Figure 2.5: Zero velocities curves for four values of the energy. The curves
bound the zone accessible by the spacecraft, in white, and the
part inaccessible (colored)

Ūx = 0 = x− (x+ µ) (1− µ)(√
(x+ µ)2 + y2

)3 −
µ (x− 1 + µ)(√

(x− 1 + µ)2 + y2

)3 (2.38)

Ūy = 0 = y − 2y · (1− µ)(√
(x+ µ)2 + y2

)3 −
2y · µ(√

(x− 1 + µ)2 + y2

)3 (2.39)
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In particular, in order to find the three collinear Lagrange points on the x-axis
L1, L2 and L3, we write y = 0 in Eq. (2.38) obtaining

x− (x+ µ) (1− µ)
|x+ µ|3

− µ (x− 1 + µ)
|x− 1 + µ|3

= 0 (2.40)

where the left hand side is zero if and only if the numerator is zero. Then a
fifth order polynomial must be solved numerically.

Doing that, we have to consider the three cases x < −µ, −µ < x < (1−µ)
and x > (1 − µ) that correspond respectively to the libration points L3, L1

between the two primaries and L2. The distance from Li, i = 1, 2 to the
smaller primary m2 is given by the unique real positive solution γi of the
following equation

γ5 ∓ (3− µ) γ4 + (3− 2µ) γ3 − µγ2 ± 2µγ − µ = 0 (2.41)

where the upper sign is for L1 and the lower for L2. With reference to
Szebely,[9] the series expansion found for such solutions are

γ1 = rh

(
1− 1

3
rh −

1
9
r2h + . . .

)
(2.42)

γ2 = rh

(
1 +

1
3
rh −

1
9
r2h + . . .

)
(2.43)

where rh =
(µ

3

) 1
3 is the Hill radius, i.e. a 3-D sphere of influence in the

position space in which the primary m2 is dominant on the third body’s
motion. Therefore, we obtain the abscissas of L1 and L2 from

x(L1) = 1− µ− γ1

x(L2) = 1− µ+ γ2

A similar equation can be found for γ3, the distance between L3 to the larger
primary from the fifth order polynomial[9]

γ5 + (2 + µ) γ4 + (1 + 2µ) γ3 − (1− µ) γ2 − 2 (1− µ) γ − (1− µ) = 0 (2.44)

obtaining

γ3 = 1− ν
(

1 +
23
84
ν2 + . . .

)
(2.45)

where ν = 7
12µ and thus the L3 abscissa

x(L3) = −µ− γ3
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Concerning the two equilateral points L4 and L5, they can be easily found
from geometric considerations, obtaining

x(L4) = x(L5) = 0.5− µ

y(L4) = +
√

3
2

y(L5) = −
√

3
2

Moreover, taking into account that

d2Ū(x, 0)
dx2

= −1− 1− µ
|x+ µ|3

− µ

|x− 1 + µ|3
(2.47)

is always negative, it can be easily realized that the three collinear equilibrium
points are unstable.



Chapter 3
Dynamical Systems Theory applied to

CR3BP

The Dynamical Systems Theory is a geometric approach developed by Poincarè
to solve differential equations.[10][11][12] Together with the Weak Stability
Boundary transfers studied by Belbruno,[5][13][14] it represents the second
branch of low-energy orbit transfer design methods.
Application of dynamical systems theory in the CR3BP yields the possibility
to generate different types of transfer trajectories between libration points of
different three-body systems in order to produce a first guess solution for a
”patched” CR3BP design process.
In the previous chapter a framework for understanding the three-body sys-
tem, its equations of motion and its constant of motion (the energy) which
divides the phase space of the particle motion into five cases was developed.
In the following sections, a general discussion on the spacecraft (the third
body) dynamics in the neighbourhood of collinear libration points (in partic-
ular L1 and L2) is held. This will help to understand the local orbit structure
on the phase space.
Then computation of periodic orbits around L1 and L2 and of the invariant
manifolds associated is discussed as it is fundamental for the comprehension
of the global orbit structure and it represents the starting point for the pre-
liminary mission design process under the assumptions of the CR3BP. In the
end, construction of orbits and of prescribed itineraries is treated.

3.1 Motion near the Collinear points

As the spacecraft dynamics around L3 is too slow and associated to higher
energy levels and L4 and L5 libration points are linear stable for the time
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span of the mission design and therefore less interesting for our applications,
the preliminary trajectory design in the CR3BP involving the L1 and L2

lagrangian points is without any doubt the most interesting. In particular,
Case 2 and Case 3 of Fig. 2.5 will be investigated more in depth as they allow
the third body to move between the primaries and in their exterior realm.
Moreover, it is very interesting to study the dynamics in the neighborhood
of L1 and L2. In this context, it will be necessary to consider a suitable fixed
energy E (as in the Case 2 and Case 3) and then, in the neighborhood of
the two collinear lagarangian points whose position space projection is in the
neck region around L1 or L2, to find the linearized equations. In fact, thanks
to the theorem of Moser[15] that generalizes the theorem of Lyapunov, all the
qualitative results obtained from the linearized equations apply to the full
nonlinear system.
Therefore, starting from equations of motion 2.21 written in a Li (i = 1, 2)
centered and rescaled frame and expanding the nonlinear terms, in a la-
grangian approach the resulting linearized equations of motion are[16]

ẍ− 2ẏ − ax = 0

ÿ + 2ẋ+ by = 0

z̈ + cz = 0 (3.1)

or analogously

ẋ = vx

ẏ = vy

ż = vz

v̇x = 2vy + ax

v̇y = −2vx − by
v̇z = −cz (3.2)

where a = 1 + 2c, b = c− 1 and c is a costant depending on µ

c =
µ

(1− µ− xe)3
+

1− µ
(µ+ xe)

3 (3.3)

with xe the x-coordinate of Li, i = 1, 2. The energy function thus becomes

El =
1
2
(
ẋ2 + ẏ2 + ż2 − ax2 + by2 + cz2

)
(3.4)
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The system (3.1) or (3.2)can be solved analytically and the eigenvalues of
this linear system have the form ±λ, ±iω and ±iν where λ, ω and ν are
positive constants with ω 6= ν:

λ =

√
c− 2 +

√
9c2 − 8c

2

ω =

√
2− c+

√
9c2 − 8c

2
(3.5)

ν =
√
c

Phase Space and Flow in the Equilibrium Region To better understand
the orbit structure on the phase space, we can make a linear change of co-
ordinates with the eigenvectors as the axes of the new system. Using the
corresponding new coordinates (q1, p1, q2, p2, q3, p3), the differential equa-
tions of system (3.2) assume the simple form,[1][17]

q̇1 = λq1 ṗ1 = −λp1

q̇2 = ωp2 ṗ2 = −ωq2
q̇3 = νp3 ṗ3 = −νq3 (3.6)

and the energy function (3.4) becomes

El = λq1p1 +
ω

2
(
q22 + p2

2

)
+
ν

2
(
q23 + p2

3

)
(3.7)

Solutions of Eqs. (3.6) can be conveniently written as

q1(t) = q01e
λt p1(t) = p0

1e
−λt

q2(t) + ip2(t) = (q02 + ip0
2)e−iωt

q3(t) + ip3(t) = (q03 + ip0
3)e−iνt (3.8)

where the constants q01, p0
1, q02, p0

2, q03 and p0
3 are the initial conditions.

If we set El = ε and |p1 − q1| ≤ c with ε and c positive, we determine a
region R homeomorphic to the product of 4-sphere and an interval (S4 × I).
For each fixed value of p1 − q1 in the interval [−c, c], the equation El = ε

determines a 4-sphere

λ

4
(p1 + q1)2 +

ω

2
(
q22 + p2

2

)
= ε+

λ

4
(p1 − q1)2 (3.9)
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The bounding 4-sphere of the region for which p1 − q1 = −c will be called
n1, and that where p1 − q1 = c, n2.
We can consider the projections of the flow on the (p1 − q1) plane (that is
tilted by 45◦ with respect to the coordinate axes to correspond to the flow
direction) and on the (p2 − q2)× (p3 − q3) space respectively. The solutions
obtained show that in the neighborhood of L1 and L2 the CR3BP dynamics
behave like the product saddle× center× center (Fig. 3.1).

Figure 3.1: The flow in the equilibrium region has the form saddle× center×
center. On the left is shown the projection onto the (p1 − q1)
plane with axes tilted 45. Shown are the bounded orbits (black
dot at the centre), the asymptotic orbits (labelled W), two red
transit orbits (T) and two blue non-transit orbits (NT).

In the saddle projection, the picture of a standard unstable critical point
is shown where a set bounded on two sides by the hyperbola q1p1 = ε/λ

(corresponding to q22 + p2
2 = q23 + p2

3) and on two other sides by the line
segments p1 − q1 = ±c which correspond to the bounding 4-spheres.
The hyperbola p1q1=constant are the locus of projections of the orbits on the
p1− q1 plane, as q1p1 is an integral of motion, except in the case p1q1 = 0. If
p1q1 > 0, the branches connect the bounding line segments p1 − q1 = ±c, if
p1q1 < 0, the branches have both end points on the same segment and then
on the same side.
We can distinguish nine classes of orbits grouped into four categories:

1. The point at the origin (q = p = 0) correspond to a periodic orbit
called Lyapunov orbit. In particular it corresponds to a 3-sphere S3

h
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of bounded orbits given by Eq. (3.9) with the new values of q1 and p1

ν

2
(
q22 + P 2

2

)
+
ω

2
(
q23 + p2

3

)
= ε (3.10)

2. The four green segments with arrows pointing toward or away from
the origin on the axes q1p1 = 0 correspond to four cylinders of orbits
asymptotic to the invariant S3

h sphere of Eq. (3.10) either for increas-
ing time (p1 = 0) and for decreasing time (q1 = 0). They are called
asymptotic orbits and they form the stable and unstable manifolds.
The stable manifolds W s

±(S3
h) are given by

ν

2
(
q22 + p2

2

)
+
ω

2
(
q23 + p2

3

)
= ε, q1 = 0 (3.11)

For convention, W s
+(S3

h) is the branch going from right to left with
p1 > 0, while W s

−(S3
h) is the branch going from left to right with p1 < 0.

On the contrary, the unstable manifolds W u
±(S3

h) are given by

ν

2
(
q22 + p2

2

)
+
ω

2
(
q23 + p2

3

)
= ε, p1 = 0 (3.12)

where W u
+(S3

h) is the branch going from right to left with q1 > 0, while
W u
−(S3

h) is the branch going from left to right with q1 < 0

3. The hyperbolic projections determined by q1p1 = constant > 0 corre-
spond to two cylinders of orbits that cross the the bounding spheres
in the same emisphere. As these orbits transit from one region to the
other, they are called transit orbits

4. The hyperbolic projections determined by q1p1 = constant < 0 cor-
respond to two cylinders of orbits that does not cross the bounding
spheres and run from one emisphere to the other on the same bounding
sphere thus returning on the same side. For this reason they are called
non-transit orbits. In case of q1 > 0 the 4-sphere is n1(p1− q1 = −c),
in case of q1 < 0 the 4-sphere is n2(p1 − q1 = +c).

Summarizing, what we must observe is that asymptotic orbits are pieces
of stable and unstable manifold tubes of Lyapunov (periodic) orbits. These
invariant manifolds act like separatrices between two distinct types of orbits:
transit orbits, inside the cylindrical manifolds and able to pass from one
manifold to the other (or analogously from one region to the other), and
non-transit orbits that are outside the manifold and bounded to stay on the
same region.
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Trajectories in the Neck Region After a preliminary study of the orbit
structure in the equilibrium region, a necessary investigation of the orbits’
appearance in the position space will be carried out. According to that, let
us take in mind Case 2 and Case 3 of Fig. 2.5 where a neck region is open
around libration points L1 and L2.
The solution of the linear system (3.1) can be written as

x(t) = A1e
λt +A2e

−λt +A3cos ωt+A4sin ωt

y(t) = −k1A1e
λt + k1A2e

−λt − k2A3sin ωt+ k2A4cos ωt

z(t) = A5 cos νt+A6 sin νt (3.13)

where Ai(i = 1, .., 6) are arbitrary constants determined by the initial condi-
tions. The two constants k1 and k2 are

k1 =
2c+ 1− λ2

2λ
, k2 =

2c+ 1 + ω2

2ω
(3.14)

In a first approximation, as also seen in the previous paragraph, the motion
in the vicinity of these equilibrium points is composed of some ”hyperbolic”
behaviour and of two oscillators (saddle × center × center). This means that
the oscillations are not stable and that very small deviations will be amplified
as time increases.
Besides, one of the oscillations takes place in the plane of motion of the pri-
maries and the other orthogonal to this plane. These two periodic motions
are known as the planar and vertical Lyapunov periodic orbits. The frequen-
cies of the oscillations vary with the amplitudes (since the problem is not
linear) and for a suitable amplitude, both frequencies become equal.
Rewriting the oscillatory part of system (3.13) as an amplitude plus a phase,
thus settingA3 = Axcosϕ, A4 = −Axsinϕ, A5 = Azcosψ andA6 = −Azsinψ,
Eqs (3.13) become

x(t) = A1e
λt +A2e

−λt +Axcos (ωt+ ϕ)

y(t) = −k1A1e
λt + k1A2e

−λt − k2Axsin (ωt+ ϕ)

z(t) = Az cos (νt+ ψ) (3.15)

whose solution is dependent on the four values A1, A2, Ax and Az. Besides,
while the former two are associated to the unstable (A1) and stable (A2)
motion, the latter two regulate the periodic in-plane (Ax) and out-of-plane
(Az) orbits. Different combinations of their values will give us again (as
seen in the previous paragraph) the same nine classes of orbits which can be
grouped into the same four categories[18] (see also Fig. 3.2):
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Figure 3.2: Artistic view of projections on the (x − y) plane of trajectories
near the Li, i = 1, 2 neck region. Shown are the periodic orbit
(black), the asymptotic orbits on the stable manifold (light green),
the asymptotic orbits on the unstable manifold (dark green), the
transit orbits (red) and non-transit orbits (blue)

.

1. Ax = Az = 0: the saddle part can be isolated. According to the values
of A1 and A2, different manifolds associated to the lagrangian point
can be generated.
For example, if A1 6= 0 and A2 = 0 the unstable manifold is generated
namely W u

Li
, i = 1, 2. Vice versa, if A1 = 0 and A2 6= 0 the stable

manifold is generated namely W s
Li

, i = 1, 2.

2. A1 = A2 = 0: we obtain planar (if Ax 6= 0, Az = 0) and vertical (if
Ax = 0, Az 6= 0) periodic orbits (Lyapunov orbits) with different fre-
quencies, ω and ν respectively. If at the same time Ax 6= 0, Az 6= 0,
and ω 6= ν, quasi-periodic linear Lissajous orbits are generated.
Moreover, in the last case, if Ax and Az are of sufficient magnitude so
that the non-linear contributions to the system produce eigenfrequen-
cies that are equal (ω = ν), Halo-type periodic motion is obtained.[19]

3. A1A2 = 0: we have orbits that are asymptotic to the periodic orbit.
That is why they are called asymptotic orbits. In this situation, the
invariant manifolds associated to the periodic orbits arise. These are
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denoted with W s
Li,p.o.

and W u
Li,p.o.

, i = 1, 2 and if a spacecraft lies on the
stable or unstable manifold, its asymptotic orbit winds onto or off the
periodic orbit respectively. This feature is very important in mission
design using libration points.
In particular, if A1 = 0 their projection in the (x− y) plane is into the
strip S1 centered around the eigenvector and bounded by the lines

y = σx± 2
√
ε (σ2 + τ2) /κ

Similarly, if A2 = 0, their projection in the (x−y) plane is into the strip
S2 centered around the other eigenvector and bounded by the lines

y = −σx± 2
√
ε (σ2 + τ2) /κ

4. A1A2 < 0: we obtain the so called transit orbits that are the only or-
bits able to cross the equilibrium region and also two different regions
around the primaries.
It is interesting to observe that transit orbits cross the equilibrium re-
gion passing from a stable manifold to an unstable manifold. This will
lead to the necessity of further investigations in the following para-
graphs.

5. A1A2 > 0: we obtain the so called non-transit orbits that are bounded
around only one of the two primaries and cannot cross the equilibrium
region.

3.2 Periodic Orbits and Invariant Manifolds around L1

and L2

In the previous section, starting from linearized CR3BP equations of mo-
tion in the neighbourhood of collinear libration points, orbit structure on the
phase space and thus the trajectories in the neck regions around L1 and L2

have been analyzed.
In 1968, Farquhar[20] in his Ph.D. thesis coined the term ”Halo” while he
was studying three-dimensional periodic orbits around Earth-Moon L2 for
the exploration of the far-side of the Moon. In general, the subject of peri-
odic solutions in the CR3BP represents a key-point from the mission analysis
and design point of view. In fact, in the past many space missions (ISEE-3,
WIND, SOHO, ACE, WMAP, GENESIS ) were performed in Halo or Lis-
sajous periodic orbits around collinear lagrangian points; these kind of orbits
were chosen as orbit maintenance with out-of-plane motion is fundamental
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for communication relay in order to assure a permanent direct link to ground
stations or to avoid solar exclusion zone. That is why, in the preliminary mis-
sion design of such a missions, the choice of the out-of-plane ”semi-amplitude”
Az is important as through its value several mission constraints can be for-
mulated.
Moreover, as said before, the invariant manifolds associated to the periodic
orbits arise and allow the spacecraft to move from/to periodic orbits to com-
plete the overall transfer. Therefore, for space applications, it is essential
to be able to determine the invariant manifolds associated to the libration
points or to their periodic orbits.

Computation of Periodic Orbits Recalling Eqs. (3.15) where A1 = A2 = 0,
the three-dimensional motion is quasi-periodic as, in general, the two fre-
quencies ω and ν are different. This is the case of Lissajous orbits where only
a small excursion in the out-of-plane direction is allowed. To obtain bigger
out-of-plane excursions, Halo orbits are needed in which both in-plane and
out-of-plane frequencies are forced to be equal (ω = ν) by non-linear contri-
butions. A constraint between Ax and Az is therefore imposed.
First guess of Halo orbits are computed by means of a third-order analytical
approximation by Richardson[19][21] in which perturbing potentials due to the
primaries of the effective potential (Eq. 2.22) were expanded in power series.

Figure 3.3: Family of Halo orbits obtained for several Az out-of-plane ampli-
tudes around L1 of Sun-Earth system

.
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However, if the Ax and Az values obtained in the Richardson method
are assigned as initial conditions in the linearized equations of motion and
the full dynamic system is propagated, no periodic motion is obtained with
the analytic approximation. Numerical schemes that correct the Richardson
first-guess solution are necessary. In particular, the method of Thurman and
Worfolk[22] has been applied for this scope.
Let x0 be a state vector located on the (x− z) plane and obtained from the
initial guess with only a component of the velocity in the y-direction (v0 6= 0)

x0 = {x0, 0, z0, 0, v0, 0}

Let x0 be the initial condition of the CR3BP equations of motion (Eqs. 2.21).
If we stop the propagation after a semi-orbit t = T1/2 (where T is the period
of the periodic orbit), we obtain:

Φ
(
x0, T1/2

)
= {x̃, 0, z̃, ũ, ṽ, w̃}

Therefore, if ũ = w̃ = 0 then the initial guess is part of the periodic orbit,
if not we need to improve it in order to obtain ũ = w̃ = 0. So the initial
condition is corrected through a first order expansion:

Φ
(
x0 + ∆x, T1/2 + ∆t

)
= Φ

(
x0, T1/2

)
+

[
∂Φ
(
x0, T1/2

)
∂x

]
·∆x+

∂Φ
(
x0, T1/2

)
∂t

·∆t

(3.20)
where

∆x = {∆x, 0,∆z, 0,∆v, 0}

and the periodicity is imposed by setting the flow equal to:

Φ
(
x0 + ∆x, T1/2 + ∆t

)
= {x∗, 0, z∗, 0, v∗, 0}

that is still unknown. The second term on the right-hand side of Eq. (3.20)
represents the transition matrix M = ∂Φ/∂x and it is also called the mon-
odromy matrix for periodic orbits. Eq. (3.20) can be rewritten as

M



∆x
0

∆z
0

∆v
0


+ f (Φ) ∆t =



x∗

0
z∗

0
v∗

0


−



x̃
0
z̃
ũ
ṽ
w̃


(3.23)
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Figure 3.4: Family of Lyapunov orbits obtained for several Ax amplitudes
around L1 and L2 of Sun-Earth system

.

where f (Φ) = ∂Φ/∂t. Considering only the second, fourth and sixth rows,
we have three equations in the four unknowns ∆x,∆z,∆v and ∆t.

Thus, setting ∆z = 0, equations can be solved numerically by means of
an iterative scheme where the initial condition is updated at each iteration

x0
i+1 = x0

i + ∆x (3.24)

till the flow, propagating under CR3BP equations, reaches the condition
ũ = w̃ = 0.
The monodromy matrix is computed by integrating the system:

ẋ = f (x) , x (0) = x0

Ṁ =
[
∂f
∂x

]
M, M (0) = I (3.25)

where I is the 6× 6 unity matrix. Results for a family of Halo orbits around
the L1 point in the Sun-Earth system are shown in Fig. 3.3.

The same considerations apply to the construction of Lyapunov orbits
that are planar periodic orbit with Az = 0. Therefore, third and sixth rows of
Eq. (3.23) do not exist and finally we obtain two equations in three unknowns
∆x, ∆v and ∆t. Fixing ∆x = 0 and solving for the other two unknowns, we
can find a family of periodic solutions parametrized by the intersection with
the x-axis (Fig. 3.4).

Construction of Lissajous quasi-periodic orbits is slightly different as they
are tridimensional orbits. In this case the definition of both Ax (or Ay) and
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Az is necessary. An example of Lissajous orbit in the L1 Sun-Earth system
with specified Ay and Az amplitudes is shown in Fig. 3.5.

Figure 3.5: Lissajous orbit around L1 Sun-Earth system with Ax=1937560.3
[km], Ay=600000 [km] and Az=100000 [km] amplitudes

.

Determination of the Invariant manifolds associated to collinear libration
points A manifold is a mathematical term for surfaces of arbitrary dimen-
sion. In dynamical system theory, an invariant manifold is a special manifold
made out of orbits. Therefore, if we take a point on this surface, it belongs to
a specific orbit and then it will remain on such a structure under the influence
of CR3BP equations of motion. That is why the term ’invariant’.[23][24]

In other words, an invariant manifold is a m-dimensional surface formed by
a collection of orbits that start and remain on it throughout their dynamical
evolution. Besides, as outlined in the paragraph concerning the trajectories
in the neck regions, invariant manifolds can be divided into stable and un-
stable manifolds depending on if they approach to or if they depart from the
libration point/periodic orbit around the libration point.
Explaining this concept mathematically, we have to start from the fact that
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the CR3BP is a vector field bound in <6 where one and one only vector is
bound to every point in the vector field. Therefore, the integration of any
point p in the vector field with respect to time generates only one trajectory
Γ. Moreover, let α- and ω- limits be the set of points in <6 as Γ tends toward
−∞ and +∞ respectively.

Figure 3.6: Stable (blue) and unstable (red) manifolds associated to L1 of
the Earth-Moon system with the forbidden region plotted.

We can say that a stable manifold is the set of all points whose trajectories
have the same ω- limit set, while an unstable manifold is the set of all points
whose trajectories have the same α- limit set.
As discussed in the previous sections, the orbit structure of collinear libration
points behaves like the product saddle × center × center. The saddle part
constitutes the necessary condition for the existence of the invariant manifold
as it has eigenvectors with both positive and negative real part.

Thus, to obtain an invariant manifold of the Lagrange point, one put a
particle at the Lagrange point and perturbes it by a small amount in both
the positive and negative directions defined by the eigenvectors. To construct
the stable/unstable manifold, it is necessary to propagate backward/forward
in time.
Therefore, let d be the value of the perturbation, we have:

• For the stable manifold W s
Li

is necessary a backward integration of the
selected initial condition Xe along the stable eigenvector us:

XW s

0 = Xe ± dus
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Figure 3.7: Stable (blue) and unstable (red) manifolds associated to L2 of
the Earth-Moon system with the forbidden region plotted.

Figure 3.8: Stable (blue) and unstable (red) manifolds associated to L2 of the
Earth-Moon system with the forbidden region plotted (zoom).
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• For the unstable manifold W u
Li

is necessary a forward integration of the
selected initial condition Xe along the unstable eigenvector uu:

XWu

0 = Xe ± duu

The sign ”± ” indicates two branches departing from/approaching to the
initial point (see Fig. 3.6 and Fig. 3.8).

Determination of the Invariant manifolds associated to periodic orbits
around collinear libration points To construct the invariant manifolds of a
periodic orbit, first of all it is necessary to produce the monodromy matrix
(recall Eq. (3.25)) whose eigenvalues provide information about the stabil-
ity of the orbit. Once the monodromy matrix M has been obtained, the
manifolds are computed by propagating the flow along the directions corre-
sponding to eigenvalues of the monodromy matrix (the Floquet multipliers
of that orbit).
In particular, if X0 is a point belonging to the periodic orbit, the monodromy
matrix represents the first order appproximation for the mapping of a point
X, taken in a small neighbourhood through

Figure 3.9: Stable manifolds associated to Halo orbit on L2 of the Earth-
Moon system with the forbidden region plotted.
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Figure 3.10: Unstable manifolds associated to Halo orbit on L2 of the Earth-
Moon system with the forbidden region plotted.

X→ X0 +M (X−X0) (3.28)

Thus, assuming the periodic orbit unstable, there will be one stable eigenvalue
λs and an unstable eigenvalue λu that correspond to the stable and unstable
eigenvector vs and vu, respectively. Selected all the initial states X0 on the
periodic orbit and assumed a perturbation value d, we have:

• For the stable manifold W s
Li,p.o.

associated to the periodic orbit is nec-
essary a backward integration along the stable eigenvector vs:

XW
s

Li,p.o. = X0 ± dvs

• For the unstable manifold W u
Li,p.o.

associated to the periodic orbitis
necessary a forward integration along the unstable eigenvector vu:

XW
u

Li,p.o. = X0 ± dvu
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It is worth noting that the magnitude of perturbation d should be small
enough to avoid violating the linear estimate but not so small that the time
of flight becomes too large due to the asymptotic nature of the manifold.

3.3 Connections of the local orbit structures

In the previous paragraphs, a detailed analysis about the linearized dynamics
around collinear libration points has been carried out together with the com-
prehension of the orbit structure in both phase and position space. Then,
computation of periodic orbits and of manifolds (associated to both libration
points and to periodic orbits) has been analyzed as in many practical mission
design problems under the assumptions of CR3BP, it represents the starting
point for a preliminary analysis.
Therefore, if we consider different three-body systems, for each of them it is
possible to design a set of manifolds (starting from periodic orbits or equilib-
rium points) that could intersect each other and allow the third body to move
inside this ”dynamical channel” transferring from one system to the other.
In this picture, the understanding of the global orbit structure and of the
necessary conditions to satisfy these transitions is fundamental.

Figure 3.11: Example of homoclinic orbits in interior and exterior realms in
the Sun-Jupiter system (from Ross[1]).

Homoclinic Connections Homoclinic orbits are orbits which are double
asymptotic (i.e. both forward and backward asymptotic) to the unstable
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periodic orbit (for example Lyapunov orbits). Therefore, the homoclinic or-
bit is both on the stable and unstable manifold of the same periodic orbit
and, as consequence, a body moving on it will depart from the periodic orbit
and will return to it (Fig. 3.11).
In 1969, McGehee[25] and Conley[18] demonstrated the existence of homoclinic
orbits in both the interior and the exterior realm. McGehee also demon-
strated that a body departing from a periodic orbit around L1 and moving
on a homoclinic orbit is bounded to move in the interior realm in the counter-
clockwise sense. On the other hand, a body departing from a periodic orbit
around L2 and moving on a homoclinic orbit is bounded to move in the ex-
terior realm in the clockwise sense.
Later, Llibre, Martinez and Simò[26] spent their major efforts to demonstrate
the transversality of homoclinic orbits under appropriate conditions.
As the homoclinic orbit can be seen as the intersection of the stable and of
the unstable manifolds of the periodic orbit, the transversality of homoclinic
orbits demonstrated by Llibre et al.[26] implies the transversality of the man-
ifold intersection. This is of fundamental importance from the orbit structure
point of view.
Before constructing a homoclinic orbit, it is necessary to find the intersection
between the stable (W s

Li,p.o.
) and the unstable (W u

Li,p.o.
) manifolds by means

of the so called ”Poincarè section” (or cut) in the phase space.[26][2] When
an orbit of the manifold reaches the desired location of the cut, the state
variables are registered. For homoclinic orbits of L1 (or L2), the Poincarè
cut is obtained by intersecating them with a plane located at y = 0 and x < 0
in the interior (or exterior) realm (see Fig. 3.12 and Fig. 3.13).

In Fig. 3.12 and Fig. 3.13, the first intersection Γu,S1 and Γu,χ1 was used,
where the superscripts S and χ indicate the realm. It is possible that orbits
on the manifold, if integrated further, can intersect Poincare section several
times without leaving the realm < considered. In that case, the q-th inter-
section is then denoted with Γu,<q (or Γs,<p for stable manifold).

In general, a point in y = 0 belonging to Γu,<q ∩ Γs,<p (if not empty) will
be called a (q, p)−homoclinic point and their existence for certain values of
q and p is shown in McGehee.[25]

Consider again Fig. 3.12. By the symmetry of the CR3BP equations of mo-
tion:

s : (x, y, ẋ, ẏ, t)→ (x,−y,−ẋ, ẏ,−t) (3.31)

Hence, once Γu,S1 intersection is known, it turns out that Γs,S1 will intersect
the x−axis at the same point. These P points (see Fig. 3.12(b)) correspond
to symmetric homoclinic orbits to the periodic orbit[2] and at each point P
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Figure 3.12: (a) Projection in the position space of the interior branch of the
unstable manifold Wu

L1,p.o.
(b) First intersection (Poincarè cut)

Γu,S1 of the interior branch of Wu
L1,p.o.

with the plane y = 0, x <
0 in the interior realm S (from Koon et al.[2]).

Figure 3.13: (a) Projection in the position space of the exterior branch of
the unstable manifold Wu

L2,p.o.
(b) First intersection (Poincarè

cut) Γu,χ1 of the exterior branch of Wu
L1,p.o.

with the plane y =
0, x < 0 in the exterior realm χ (from Koon et al.[2]).

corresponds an orbit that tend to the same fixed orbit in positive and negative
time. These orbits are called (symmetric) (q, p)−homoclinic orbits. Llibre et
al.[26] demonstrated that the set of values of µ for which there is a symmetric
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Figure 3.14: (a) Symmetric (1,1)-homoclinic orbit in the exterior region.
(b) Non-symmetric (1,3)-homoclinic orbit in the interior region
(from Ross[1]).

(1,1)-homoclinic orbit associated to L1 is discrete.
In Fig. 3.14 examples of symmetric (1,1)-homoclinic (in the exterior realm)
and non-symmetric (1,3)-homoclinic (in the interior realm) orbits are shown.

Heteroclinic Connections Another important family of orbits are the hete-
roclinic orbits that allow a connection between periodic orbits of L1 and L2.
In fact, they are on the unstable manifold of one periodic orbit and on the
stable manifold of the other one. Of course, essential assumption for such
a connection is a suitable value of the energy associated to the third body
motion (for example Case 3 or Case 4 of Fig. 2.5). Therefore, heteroclinic
connections allow third body to cross the realm of the primary m2.
To construct a heteroclinic connection, as did for homoclinic orbits, it is nec-

essary to find intersection of the two manifolds on a suitable Poincarè section
that cuts the flow with the plane x = 1 − µ (It was demonstrated that this
plane maximizes the number of intersections under specific assumptions[2]).
For example, as shown in Fig. 3.15, a heteroclinic orbit which goes from an
L1 Lyapunov orbit (for negative times) to an L2 Lyapunov orbit (for positive
times) is generated starting from the intersection of the two manifolds in the
Poicarè cut at x = 1−µ. Once the values of y∗ and ẏ∗ are identified, we can
propagate backward and forward the initial point (1 − µ, y∗) with the ini-
tial velocity (ẋ∗, ẏ∗) (we will see next paragraph how to compute ẋ∗) under
CR3BP equations of motion. Then, the heteroclinic orbit is computed (see
Fig. 3.16).
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Figure 3.15: (a) Projection of the unstable manifold Wu,J
L1,p.o.

and of the stable

manifold W s,J
L2,p.o.

in the position space of Jupiter realm. (b) The
first two Poincarè cuts of the invariant manifolds with the plane
x = 1− µ (from Ross[1]).

Figure 3.16: Transversal (2,2)-heteroclinic orbit generated starting from inter-

section point in Poincarè cut of Γu,JL1,2
and Γs,JL2,2

(from Ross[1]).
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As already said for homoclinic orbits, intersections of manifold with the
Poincarè section are labeled with Γu,JL1,q

and with Γs,JL2,p
where the superscripts

indicate respectively if the manifold is stable or unstable and which realm
is considered while the subscripts identify respectively the libration point of
the periodic orbit of origin and the q-th (or p-th) intersection of W u,J

L1,p.o.
(or

W s,J
L2,p.o.

) with the Poincarè plane. It turns out out that the orbit obtained
is a (q,p)-transversal heteroclinic orbit (the term transversal is because we
only consider the cases in which manifolds intersect transversely). In the case
of Fig. 3.15(b), the intersection considered to generate the heteroclinic orbit
was the second for both the unstable and stable manifold. That is why the
curves on the Poincarè section are labeled with Γu,JL1,2

and Γs,JL2,2
and the orbit

obtained is a (2,2)-heteroclinic orbit.
According to Koon et al.,[2] the sum q + p must be an even positive integer
and the number or revolutions around the m2 primary will be given by (q +
p− 1)/2.

Figure 3.17: Location of the different Poincarè sections U1, U2, U3, and U4

with the magnification of Jupiter realm. (from Ross[1])

At this point, it is easy to figure out that suitable combinations of ho-
moclinic and heteroclinic orbits of the same energy value can allow to design
orbit transfers from interior to exterior realm (and vice versa) of a three-
body system. That is what is called homoclinic-heteroclinic chain of
orbits which connects asymptotically periodic orbits around L1 and L2.

In addition, it is worth noting that the essential contribution of the
Poincarè sections in the dynamical systems theory applied to the CR3BP is to
provide initial phase space conditions for orbits having prescribed itineraries.
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We will see how in the next section. Besides, even if in principle the place in
which the cut is made is arbitrary for the method and it does not affect the
results,[27] according to Koon et al.[2] the preferred four Poincarè sections are
shown in Fig. 3.17 with their corresponding stable and unstable manifolds.
In detail, the U1 and U4 Poincarè sections are defined by the following two
dimensional surfaces:

U1 = {(x, ẋ) | y = 0, x < 0, ẏ (x, ẋ; e) < 0}, in the S realm

U4 = {(x, ẋ) | y = 0, x < −1, ẏ (x, ẋ; e) > 0}, in the X realm

where ẏ (x, ẋ; e) denotes that ẏ is obtained from the energy equation. The
U2 and U3 Poincarè sections are defined by the following:

U2 = {(y, ẏ) | x = 1− µ, y < 0, ẋ (y, ẏ; e) > 0}, in the lower half of J realm

U3 = {(y, ẏ) | x = 1− µ, y > 0, ẋ (y, ẏ; e) < 0}, in the upper half of J realm

where ẋ is obtained from the energy equation.

3.4 Design of Prescribed itineraries

In this section, the construction of orbits with prescribed itineraries is de-
scribed. For simplicity, the planar case is considered but the same consider-
ations apply to the three-dimensional case. Once the three-body system has

Figure 3.18: Schematic (X,J,S) trajectory and magnification of Jupiter realm.
(from Ross[1])
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been chosen (for example the Sun-Jupiter system), the appropriate level of
energy must be selected. In fact, if we want to construct an orbit that allows
the spacecraft to move between all the three realms of the system (Sun realm
S, Jupiter realm J and exterior realm X), it is necessary to be in the case in
which both the L1 neck and the L2 neck are open (Case 3 of Fig. 2.5).
Imagine to construct a trajectory with itinerary (X, J, S) that means a tra-
jectory that starts from the exterior realm, crosses the Jupiter realm and
then moves to the interior realm of the Sun (Fig. 3.18.
After the selection of the energy level, we must compute the periodic orbits
for either L1 and L2 and the invariant manifolds associated to them as ex-
plained in Sec. 3.2.
At this point we have all the global structures to design our trajectory. In
fact, connectivity between stable and unstable manifolds associated to peri-
odic orbits of the libration points is the key-point to our design process.
The first thing to do is to find a suitable initial condition from which the orbit
can propagate backward and forward under CR3BP equations of motion. As
we are interested to a solution that comes from L2 and moves toward L1,
the initial condition must be searched in the Poincarè cut of the invariant
manifolds with the plane x = 1 − µ (U3), in particular where the unstable
Poincarè section Γu,JL2,q

intersects the stable Poincarè section Γs,JL1,p
. In this

Figure 3.19: (a) Invariant manifolds to be considered in the Jupiter realm
to design the trajectory (X,J,S) (b) U3 Poincarè section of the
invariant manifold of L1 (stable) and of L2 (unstable) with the
intersection zone in yellow (from Gomez et al.[3]).
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way, the initial condition selected will propagate forward to L1 periodic orbit
and backward to L2 periodic orbit creating a heteroclinic connection. It is
worth noting that, without any additional mission constraint (minimum dis-
tance from the body m2, number of revolutions around m2, etc..), the set of
initial conditions is composed by all geometrical points (y∗, ẏ∗) included in
the intersection region of the stable and unstable Poincarè sections (yellow
region of Fig. 3.19(b)). Therefore, the initial condition we are searching is

s0 = (x0, y0, ẋ0, ẏ0)T (3.32)

where x0 = 1 − µ, y0 = y∗ and ẏ0 = ẏ∗. The value of ẋ0 comes from the
energy equation (Eq. (2.28)) and therefore:

ẋ0 = −
√
−ẏ2

0 − 2Ū (x0, y0) + 2E (x0, y0, ẋ0, ẏ0) (3.33)

as the value of E is known from the first step of the procedure and the effec-
tive potential is given from Eq. (2.22). The negative sign of the square root
is because we are considering the section U3 in which the flow passes from
right to left and thus for negative x-component of the velocity.



Chapter 4
Optimization Techniques

One of the most important tasks during the preliminary design of space mis-
sions is the analysis and optimization of suitable mission trajectories. In
this chapter, the low-thrust trajectory optimization problem is formulated
and characterized and then, by means of optimal control theory, solution is
shown.
Concerning Electric Propulsion spacecrafts, once the preliminary set of mis-
sion constraints are defined (initial orbit/launcher, final orbit, mass, max
thrust level, etc..), the optimization problem is finding the values of the vari-
ables (firing time, thrust angles, thrust level, etc..) that minimize (or max-
imize) the objective function (propellant mass consumption/payload mass,
transfer time).

Optimal control problems for high-thrust systems are relatively straight-
forward as the duration of thrust arcs is usually short in comparison to the
mission time. On the other hand, low-thrust propulsion systems operate for a
significant part of the overall transfer and the low-thrust optimization prob-
lem is equivalent to the search for optimal control functions in an infinite
dimensional function space.

Moreover, analytical solutions of the optimal control problem are avail-
able only for some special cases and specific numerical methods are necessary
to obtain solutions. Basically, in literature, methods available for solving con-
tinuous trajectory optimization are classified into two categories:[28][29][30][31]

the indirect methods, which are also referred to as calculus of variation or the
Maximum Principle of Pontryagin, and the direct methods which transform
the original optimal control problem into a nonlinear parameter optimiza-
tion problem. The former are faster compared to direct methods but their
convergence domain is very sensitive with respect to the initial conditions,
the latter are numerically more robust and the quality of the initial guess is
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therefore not as crucial as for indirect methods.

4.1 The Optimal Control Problem Formulation and Low-
Thrust Trajectory Optimization

A spacecraft trajectory is obtained integrating its equations of motion which
are typically given by a set of first-order differential equations of the form

ẋ = f (x,u, t) (4.1)

where x ∈ <n is the state space (position and velocity), u = u (t) ∈ <m is
the control function (for example magnitude and direction of thrust vector)
and t ∈ [t0, tf ] ⊂ < is the time interval.
In trajectory optimization problems, the focus is to find the time history of
the control vector u = u (t) such that it minimizes (or maximizes) a scalar
performance index. Moreover, in general both the state of the system and the
control vector are subjected to a set of path constraints g and boundary con-
straints Ψ0 and Ψf that must be satisfied at the solution. These constraints
can be both equality or inequality constraints.

In the following, a general mathematical formulation of the optimal con-
trol problem is presented:

Find the control vector
u∗ = u∗ (t) (4.2)

that minimizes the performance index

J = φ (x (tf ) , tf ) +
∫ tf

t0

L (x,u, t) dt (4.3)

subject to equations of motion

ẋ = f (x,u, t) (4.4)

to path constraints for t ∈ [t0, tf ]

g (x,u, t) ≥ 0 (4.5)

and to boundary constraints

Ψ0 (x0, t0) ≥ 0 Ψf (xf , tf ) ≥ 0 (4.6)

where φ is the Mayer term that is in general a nonlinear function of the state
of the system at tf (i.e something that must be verified only at the final
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state of the system) and L is the Lagrange term that, along the trajectory,
is a function of both the state of the system and of the control vector (i.e.
something that must be satisfied all along the trajectory).
In the optimal control problem, the equations of motion represent a set of
dynamic constraints.

In trajectory design, minimization of the transfer time for a given pay-
load/propellant mass, minimization of the propellant mass for a given transfer
time and launch mass/payload mass can be typical mission objectives and the
optimality of spacecraft trajectories can be measured with the performance
index (or cost function or objective function) that can be mathematically
expressed as for example:

JmP =
∫ tf

t0

ṁPdt = mP (tf )−mP (t0)

for minimum-propellant transfer problem or

JT =
∫ tf

t0

dt = tf − t0 = T

for minimum-time transfer problem.
Practically, sometimes spacecraft trajectory has to be optimized with

respect to conflicting mission objectives, e.g. minimize transfer time and
propellant mass and this problem can be faced essentially in two different
ways; the first way is to define only a single mission objective and treat the
others as constraints, the second way is to define a new objective function
as a combination of all mission objectives by means of weighting factors that
can reflect coherently the scientific relationships of the mission objectives.

In a typical high-thrust optimal control problem, once the initial and
final spacecraft position and velocities are assigned, once the transfer time is
assigned, the optimization problem is reduced to find the minimum ∆V to
perform the transfer (in other words minimization of the propellant mass).

On the other hand, as propulsion system operates for a significant portion
of the overall transfer, a low thrust optimization problem must be modelled
as a continuous system and therefore it is in general more challenging and
numerically difficult as it is equivalent to the problem of finding the optimal
control function u∗ = u∗(t) in an infinite-dimensional function space.
Besides, one of the major issues in such a problem is to find a first guess
solution to start the optimization process.



4.2 Direct Methods 57

4.2 Direct Methods

Direct trajectory optimization methods were developed in 1970s as conse-
quence of the development of digital computers. In direct algorithms, the op-
timal control problem is transformed into a NonLinear Programming (NLP)
problem which is solved either via a penalty function method or methods of
augmented Lagrangian functions.
These methods have the power to be able to solve very complex problems
without a strong effort in mathematical analysis as only the physical equa-
tions must be implemented by the user, but they require an efficient algo-
rithm to solve constrained nonlinear programming problems with thousands
of variables and nonlinear constraints.

Direct methods are essentially divided into two subclasses:

- Direct Shooting Methods

- Direct Collocation Methods

In both methods, time interval [t0, tf ] is discretized and both the control
parameters (the unknowns of the optimization problem) and the path con-
straints of the nonlinear programming problem are evaluated at the grid
points of the discretized problem.

The states are chosen to be continuously differentiable and the optimal
control time history can be approximated by means of piecewise constant,
linear or spline functions between the grid points. Obviously, higher-order
polynomial approximations can be used to improve accuracy of the solution
with a consequent significant increase of computation cost.
However, both the control approximation and the discretization of path con-
straints, are usually not critical in the framework of engineering problems and
the error made by obtaining a sub-optimal solution due to the discretization
is well below the modelling error. Nevertheless, if in direct methods solu-
tion is approximated and its accuracy increases as the number of control
parameters increase (then a considerable increase in computational complex-
ity and cost must be considered), on the other hand the major advantage of
these methods is their numerical robustness that has no equivalent in indirect
methods.

Besides, as result of the discretization process, another drawback of direct
methods is the existence of multiple minima (or pseudo-minima) that satisfy
all necessary conditions for the optimal solution but they are not so close to
the actual minimum.

The Nonlinear Programming Problem An optimal control problem can be
transformed into a Nonlinear Programming Problem, NLP for brevity, which
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represents a decisional problem concerning a scalar algebraic function and an
algebraic vector of constraints. As opposite to the optimal control problem,
no dynamics is involved into a NLP problem.

Suppose that the n variables x must be chosen to solve

min
x
F (x) (4.9)

subject to the m equality constraints

c(x) = 0 (4.10)

where m ≤ n. The Lagrangian of this problem can be written as

L(x, ~λ) = F (x)− ~λc(x) (4.11)

which is a scalar function of the n variables x and the m Lagrange multipliers
~λ. The necessary conditions for a point (x∗, ~λ∗) to be a constrained optimum
require solving the following system:

∇xL(x, ~λ) = g(x)−GT (x)~λ = 0 (4.12)

∇λL(x, ~λ) = −c(x) = 0 (4.13)

where g = ∇xF and G are the gradient of the objective function F (x) and
the Jacobian of the equality constraint vector c(x) = 0, respectively. The
system 4.13 can be solved via a Newton’s method to find the (n+m) variables
(x∗, ~λ∗).
Given a generic initial guess (x, ~λ), its corrections (∆x,∆~λ) to construct the
new solutions (x + ∆x, ~λ+ ∆~λ) are given by solving the linear system[

HL −GT

G 0

]{
∆x
∆~λ

}
=
{
−g
−c

}
(4.14)

also referred as Karush-Kuhn-Tucker system; the term HL is the Hessian of
Eq. 4.11 in x namely

HL = ∇2
xF −

m∑
i=1

λi∇2
xci (4.15)



4.2 Direct Methods 59

It is important to observe that an equivalent way to define the search direction
∆x is to minimize the quadratic form

1
2

∆xTHL∆x + gT∆x (4.16)

subject to the linear constraints

G∆x = −c (4.17)

This is the reason why this problem is also referred as a quadratic program-
ming (QP) problem.

The NLP problem formulated above cn be also generalized when inequal-
ity constraints are imposed. The m constraints are of the form

c(x) ≥ 0 (4.18)

Constraints that are strictly satisfied, i.e. ci(x) > 0, are called inactive, the
remaining active set of constraints are on their bounds, i.e. ci(x) = 0. if
the active set of constraints is known, th einactive constraints are ignored
and the problem is simply solved using the method previously discussed for
equality constraints.

Summarizing, the general NLP problem requires finding the n vectors to
solve

min
x
F (x)

subject to the m constraints

cL ≤ c(x) ≤ cU (4.20)

and bounds
xL ≤ x ≤ xU (4.21)

In this formulation equality constraints can be imposed by setting cj,L = cj,U .
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Figure 4.1: Discretization of a shooting phase.

Direct Shooting Methods Direct shooting methods are based on the inte-
gration of the trajectory during the optimization process. Such an integration
is usually performed numerically with standard solvers for initial value prob-
lems.[32][33]

As said previously, the control time histories are discretized using a pa-
rameter dependent control approximation. In addition to the controls, path
constraints are discretized as well. In Fig. 4.1, a discretized shooting phase
is shown including one state, one control and one path constraint. The ini-
tial state remains a scalar optimization parameter while the control becomes
a vector of discrete optimization parameters. The path constraint is trans-
formed into a vector of interior point constraints.

These methods are very popular for solving boundary value problems
even if they are very sensitive to the terminal constraints with respect to
changes in the initial conditions. In general, there are three possibilities to
handle this difficulty. First, a better initial guess can be constructed. How-
ever, this is often very tedious or even impossible to do within a reasonable
timeframe. The second method can be to let two trajectories start from both
sides of the interval and let them to match at an intermediate point. The
third possibility is to improve the stability of the optimization algorithm by
introducing intermediate guesses for the states and restart the integrator at
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Figure 4.2: Application of multiple shooting to a phase with one state.

these multiple-shooting points (Fig. 4.2). Of course, such intermediate states
must be optimizable parameters, and additional constraints must be intro-
duced to the problem to ensure a continuous trajectory once the optimizer is
converged.[34][35]

Direct Collocation Methods Direct collocation methods use Hermite-Simpson
polynomials to approximate the state time histories. These methods were first
proposed by Dickmanns and Well in 1974[36] and then extended by Hargraves
and Paris in 1987.[37]

Since the state time histories are approximated by using polynomials within
one interval, it is necessary to split the whole phase into several smaller col-
location intervals.
In order to allow for discontinuities in the control between the collocation
intervals, each of the boundary points includes two optimization parameters
for each control: a left-hand and a right-hand control value (see Fig. 4.3).
If a control function has to be continuous, an additional control continuity
constraint is introduced to the problem. This approach increases the number
of parameters and constraints, but it is found that this also improves the con-
vergence behavior of the optimization method significantly.[38] In fact, major
advantages of using these methods with respect to direct shooting ones are a
larger convergence radius and a much better run-time performance.

It can be seen as an implicit integration of the dynamic system, while
multiple shooting methods are using explicit integration formulas for such as
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Figure 4.3: Discretization of a collocation phase

.

Runge-Kutta method. Besides, in direct collocation methods it is possible to
place a path constraint evaluation point at the exact same locations where
the dynamics are evaluated creating in this way a consistent node placement.

4.3 Indirect Methods

Indirect methods are based on the calculus of variation and Pontryagin’s
minimum principle.[28][39] Calculus of variation techniques were successfully
applied for the first time by Sir Isaac Newton in 1686 and since then the
theory was continuously developed. Euler and Lagrange formulated the first
order necessary conditions in 1744 (the Euler-Lagrange equations) and then,
almost a century later, Hamilton posed these conditions in a more clear form
by means of a function (the Hamilton function).

The optimization problem is obtained via variation of an augmented per-
formance index J that includes the equations of motion (the constraints of
the dynamic optimal problem) and, when necessary, state and control vari-
able constraints. The major drawback of indirect optimization methods is
the requirement for a detailed mathematical analysis of each single problem.
A slight change in the dynamics or in the boundary constraints can lead to
a completely different solution structure. On the other hand, an in-depth
inside into the problem is possible with such a method.
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Imagine to compute the maximum of a function f(z) subject to the equal-
ity constraint function g(z) = 0:{

max f(z)
g(z) = 0

(4.22)

It is possible to define an augmented function F (z) that includes both the
function f and its constraint function g

F (z) = f(z) + ~νT g(z) (4.23)

where ~ν is a coefficients vector called Lagrange multiplier.
It is demonstrated that f(z) has a maximum subject to the contraint function
g where ∂F/∂z = 0. Therefore, from the stationary solution of F the value
of z is obtained and then, first the constraint function is evaluated and then
the maximum value of f can be found.

Continuous Systems Optimal programming problems for continuous sys-
tems are problems in the calculus of variations. As said in par. 4.1, the
optimal control problem is to find an optimal control input u∗ ⊂ <m for a
set of generally nonlinear coupled first-order differential equations[40][41]

ẋ = f (x,u, t) , t ∈ [t0, tf ] (4.24)

subject to boundary conditions

Ψ (x(t0),x(tf ), t0, tf ) = (ψ0 (x(t0), t0) , ψf (x(tf ), tf ))T = 0 (4.25)

and such that the associated cost function expressed in the Bolza-form (a
Mayer term φ and a Lagrange term with the integrand L)

J = φ (x (tf ) , tf ) +
∫ tf

t0

L (x,u, t) dt (4.26)

is minimized.
In addition, state and control variables constraints must be also taken into
account and they can be expressed in the optimal control problem in the form
of inequality and equality constraints (e.g. the max thrust level, the specific
impulse range in a low-thrust trajectory optimization problem). In the fol-
lowing, we will assume the absence of path and control variable constraints.

Let us define the augmented performace index

J = φ (x(tf ), tf )+~νT ·ψ (x(tf ), tf )+
∫ tf

t0

{
L (x,u, t) + ~λT · [f (x,u, t)− ẋ]

}
dt

(4.27)
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in which ~ν is the Lagrange multiplier vector for discrete constraints and ~λ is
the Lagrange multiplier vector for continuous constraints also called adjoint
or costate variables.

Let us also introduce the Hamiltonian function:

H = L (x,u, t) + ~λT · f (x,u, t) (4.28)

Integrating by parts the augmented performance index and defining a
new function Φ = φ+ ~νT ·Ψ we obtain:

J = Φ + ~λT (tf ) · xf + ~λT (t0) · x0 +
∫ tf

t0

[
Hx + ~̇λT · x (t)

]
dt (4.29)

An infinitesimal control variation δu will produce a state variation δx and
then and index variation δJ , so:

δJ =
[(

Φx − ~λT
)
· δx

]
t=tf

+
[
~λT · δx

]
t=t0

+Φ̇·dtf+
∫ tf

t0

[(
Hx + ~̇λT

)
· δx +Hu · δu

]
dt

(4.30)
where

Φ̇ =
(
∂Φ
∂t

)
t=tf

+ Φx · ẋ (4.31)

For simpilicity, we can choose the multiplier functions ~λ(t) to cause the co-
efficients of δx to vanish. Thus we have:{

~̇λT = −Hx = −Lx − ~λT · fx
~λT (tf ) = Φx(tf ) = φx(tf ) + ~νT ·Ψx(tf )

(4.32)

which are the so-called Euler-Lagrange equations and they define the set of
differential equations for the adjoint vector ~λ.
At this point, in order to obtain the minimum (maximum) value of J (δJ =
0), the following first-order necessary conditions are obtained:[28]

Hu = 0 = Lu + ~λT fu (4.33)

Φ̇ = 0 (4.34)

where Eq. (4.33) and the second derivative of the Hamiltonian with respect
to the control variables (Huu) rule the optimal control law. Equation (4.34)
exists only for open time problems and represents the boundary conditions
for the final adjoint variables and final Hamiltonian. It is also called the
transversality condition.
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Continuous Systems: terminal constraints at a fixed terminal time In
this case, Eq (4.30) becomes

δJ =
[
~λT · δx

]
t=t0

+
∫ tf

t0

[Hu · δu] dt (4.35)

where the functions Hu are called the impulse response functions as each
component of ∂H/∂u represents the variation in J due to a unit impulse
when x(t0) is kept constant.
Moreover, at the initial istant t0, the integral term is zero and we have

δJ =
[
~λT · δx

]
t=t0
⇒ ~λT (t0) =

(
∂J

∂x

)
t=t0

(4.36)

therefore ~λT (t0) is the gradient of J with respect to variations in the initial
conditions while holding u(t) costant and satisfying the system dynamics.

In summary, in a continuous system with q terminal constraints

ψ[x(tf ), tf ] = 0 (4.37)

at a fixed final time, where x(t) is a n-vector function, to find a control m-
vector function u∗(t) that produces a stationary value of the performance
index J , we must solve the following coupled 2n differential equations{

ẋ = f (x,u, t)
λ̇ = −Hx

(4.38)

and the 2n boundary conditions for these differential equations are split, some
at t = t0 and some at t = tf :

x(t0) = x0 (4.39)

~λ(tf ) = Φx(tf ) =
(
∂φ

∂x
+ ~νT · ∂ψ

∂x

)
t=tf

(4.40)

This is a Two-Points Boundary Value Problem (TPBVP) with q parameters ν
to be found in Eq (4.40) so that the q boundary conditions (4.37) are satisfied.
The optimal control law u∗(t) is determined by minimizing the Hamiltonian
function with respect to the control variables, that is the followingm algebraic
equations

Hu = 0
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Continuous Systems: open final time An important application in tra-
jectory design, is the minimum time problem which must have at least one
terminal condition, since otherwise there is no indication of when to stop. In
this kind of problems, the final time tf is not specified, so it can be regarded
as an additional control parameter. With respect to the previous case, this
implies an additional condition to be imposed to the Hamiltonian function
(see Eq. (4.34) of the general problem).
Practically, it is like solving several fixed time problems and then choosing the
one that also satisfies the additional constraint on the Hamiltonian function.

Now we wish to find a control vector function u(t) for t ∈ [t0, tf ] and the
final time tf to minimize the performance index

J = φ[x(tf ), tf ] (4.42)

subject to equations of motion

ẋ = f (x,u, t) (4.43)

and to boundary constraints

ψ[x(tf ), tf ] = 0 (4.44)

For minimum time problems, φ = tf .
In order to obtain a stationary solution of J for arbitrary δu(t) and dtf ,

necessary conditions are expressed from Eqs. (4.33) and (4.34). The addi-
tional equation Φ̇ = 0 is called the transversality condition and it can be
written in terms of the Hamiltonian H = ~λT · f at the final time, since
~λT (tf ) = Φx and ẋ = f :

Φ̇ =
(
∂Φ
∂t

+
∂Φ
∂x

ẋ
)
t=tf

= Φtf + ~λT (tf ) · f = Φtf +H = 0 (4.45)

or else [
∂φ

∂t
+ ~νT ·

∂ψf
∂t

+H

]
t=tf

= 0 (4.46)

According to this last equation, for minimum time problems where φ = tf , if
ψtf = 0, then the transversality equation becomes simply

1 +H(tf ) = 0 (4.47)

Again, the minimum-time problem is obtained solving the TPBVP problem
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expressed by the following equtaions:
the 2n differential equations {

ẋ = f (x,u, t)
λ̇ = −Hx

the 2n boundary conditions (split, some at t = t0 and some at t = tf ):

x(t0) = x0

~λ(tf ) = Φx(tf ) =
(
∂φ

∂x
+ ~νT · ∂ψ

∂x

)
t=tf

the necessary m optimality conditions for the control m-vector function u(t)

Hu = 0

and one transversality condition

1 +H(tf ) = 0

The TPBVP As said previously, the system of adjoint variables is very sen-
sitive to variations in the initial conditions, that is why the success of indirect
methods heavily depends on the quality of the initial guess of the optimiza-
tion parameters. Therefore, the first phase of every optimization algorithm is
the generation of an initial acceptable set of optimization parameters and it
is the most work-intensive and mathematically complex stage of the overall
procedure.

There exists a wide variety of techniques to solve the general TPBVP, the
most frequently used approach for trajectory optimization problems is based
on shooting methods (see Sec. 4.2). A detailed analysis on the implementa-
tion of state and control variable constraints is outlined in Bryson and Ho,[28]

Hartl et al.[42]



Chapter 5
Electric Propulsion Interplanetary Transfers

using Libration Points

In this chapter, results obtained by the advantageous combination of Dynam-
ical Systems Theory (DST) of the CR3BP with Electric Propulsion to design
novel interplanetary missions are discussed.

In the past, several studies have applied these low energy solutions to
design complex missions and have successfully coupled three-body environ-
ments to design low energy ballistic trajectories with consequent significant
savings in propellant mass and high scientific outcome.

However, few past studies are known to the author in which low-thrust
trajectories are defined in a n-body model. Belbruno first dealt with this com-
bination in the frame of the Lunar GAS mission,[5] then other studies investi-
gated low-thrust trajectories for periodic orbit around libration points.[6][7][8]

In this chapter, both the interplanetary transfer preceding insertion into a
planetary realm and the final planet’s capture in the CR3BP with the use of
Electric Propulsion are investigated.

Therefore, it is easy to figure out that this kind of problems require the
necessity to investigate both in the DST-CR3BP field and in the optimal
control theory field as optimization schemes are necessary in the design of
low-thrust arcs subjected to both boundary and path constraints that allow
transitions between manifolds.

In the current study, particular attention is focused on missions to outer
planets that are intrinsically associated with long transfer times and high ∆V
budgets, particularly if a final planetary capture is desired.

Firstly, mathematical procedures applied are described, in particular sys-
tem dynamics under CR3BP assumption and the optimal trajectory design
problem are presented.
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Then, results of an Earth-Uranus transfer are shown in which a high
energy launch is provided. The transfer is divided in to two phases: an
interplanetary phase from Earth departure to the Sun-Uranus L1 libration
point in which the departure angle and and ∆V are computed as the ones that
minimize transfer time and maximize spacecraft mass fraction (no coasting
phase is foreseen).
Following, the second phase in the planetary realm is designed in which a
ballistic and non impact orbit around Uranus is obtained. A planet’s capture
trajectory is also designed.

In the end, some results obtained in the 2-body model with alternative
strategies are also shown in order to have compare results.

5.1 Mathematical Models

Mission design of spacecraft intended for outer planet exploration involves
consideration of advanced technology options which can critically affect the
mission feasibility, depending on their hypothesized characteristics. Espe-
cially when mission requirements impose a planetary captured operational
orbit of a relatively heavy spacecraft, this asks for novel solutions to limit
the total transfer time and required ∆V to acceptable values.

Previous studies, first by Noble[43]–[45] and later by Oleson[46], [47] com-
bined the continuous availability of electric power deriving from RTGs with
the application of Electric Propulsion (EP). Their studies showed the ad-
vantages of this combination with the capability of a direct transfer orbit
insertion by a powerful launcher. The main constraint on this approach was
the maximum admissible initial spacecraft mass, imposed by the launcher
performance. An obvious penalty of the maximum initial mass constraint is
the reduced payload fraction allocated for the scientific instrumentation.

In particular, the strategy suggested by Oleson assumes a powerful launcher
able to place the spacecraft into a highly elliptical or hyperbolic transfer orbit
and the EP system activated upon approaching the arrival planet to perform
a deceleration and orbit circularization manoeuvre to accomplish planet’s
capture.

The description of the mathematical procedures applied is subdivided into
two paragraphs, the first one describing the dynamics of the CR3BP and the
second one describing the optimization theory used to compute the transfers.

System Dynamics According to theory introduced in chap. 2 and chap 3,
the complete transfer was computed considering the dynamics of the CR3BP
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whose governing equations are (recall Eqs. (2.21)) :
ẍ− 2ẏ = −Ūx
ÿ + 2ẋ = −Ūy

z̈ = −Ūz

where the subscripts denote the partial derivates and Ū is the effective po-
tential (see Eq. (2.22)).

The x and y coordinates and their derivates are computed with respect
to a non dimensional, synodic reference frame centered in the center of mass
of the two main attractors and rotating with their relative angular velocity.
The mass parameter (µ) of the system is the only parameter necessary for
the characterization of the specific three body system. For the Sun - Uranus
system here considered, µ = 4.3528 · 10−5.

The distances between the two primaries and the third body are given
by: {

r21 = (x+ µ)2 + y2 + z2

r22 = (x− 1 + µ)2 + y2 + z2 (5.2)

where r1 and r2 are the Sun and Uranus-spacecraft distances, respectively.
An in-plane thrust has been included by means of an acceleration term a

given by the thruster to the equations of motion, considering the max thrust
modulus T and the instantaneous spacecraft mass m. In order to provide
the ability to modulate the thrust value, a scaling parameter, τ ∈ [0, 1], was
included as shown below:

ẍ− 2ẏ = −Ūx + a · cos(θ)
ÿ + 2ẋ = −Ūy + a · sin(θ)

z̈ = −Ūz
ṁ = −(T · τ)/(Isp · g0)

(5.3)

where

a =
T · τ
m

T =
2ηP
Isp · g0

(5.4)

Here, θ is the angle measured counterclockwise between the x-axis and the
thrust direction, η is the thrust efficiency, P is the electrical power available
for the electric thruster, Isp is the thruster specific impulse and g0 is the
Earth gravitational acceleration.
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The Optimal Trajectory Design Problem Equations of motion (5.3) obey a
three-dimensional approach. However, for simplicity, the following discussion
of the transfer optimization only deals with the planar case (PCR3BP). This
simplification was made due to the small difference in inclination of the two
primaries considered.
Nevertheless, in the next paragraphs, also the three-dimensional approach
will be discussed.

The transfer from Earth to the Uranus libration point L1 (in the fol-
lowing indicated as UL1) was computed using two different, supplementary,
optimization techniques. Initially a gradient method was applied to provide
a relatively accurate initial guess for a subsequently used forward shooting
method. The latter method requires a precise initial guess of the initial state,
which is obtained by the former, more robust, optimization scheme.

The Gradient Method In the gradient method, the transfer problem
that had to be solved was described as a problem in the calculus of variations.
This enabled the employment of a numerical scheme providing a suitable
solution that satisfies the boundary conditions, while minimizing the total
transfer time (see the open final time problem in Sec. 4.3).

The transfer starts from a given initial state, defined by the position and
velocity components corresponding with a location on the Earth’s orbit. In
addition, a departure ∆V was added to the Earth’s circular velocity in order
to simulate a high energy chemical launch.
Based on an initial guess, the numerical scheme varies the control parameters
to move towards a stationary solution. The control parameters in this case
are the thrust angle and thrust modulus, θ and τ , respectively, thus u = [θ, τ ].

Therefore, the objective function to be minimized is:

J = φ[x(tf ), tf ]⇒ φ = tf (5.5)

subject to the constraints:
ẋ = f(x,u, t) System Dynamics

x(t0) = x0 Initial Conditions
0 = ψ[x(tf ), tf ] Terminal Constraints

(5.6)

The constraints were adjoined to the performance index by the Lagrange
multiplier vectors ~ν and ~λ(t), equating the modified performance index:

J̄ = φ+ ~ν · ψ +
∫ tf

t0

~λ(t) · [f(x(t), u(t), t)− ẋ]dt (5.7)
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The Hamiltonian of the system is defined as:

H(t) , ~λ(t) · [f(x(t),u(t), t)] (5.8)

and the adjoints equations for the Lagrange multipliers are computed by the
Euler-Lagrange equations (see Eqs. (4.32)) where now Φ is:

Φ , φ+ ~ν ·ψ = tf + ν1(x− xf ) + ν2(y− yf ) + ν3(u− uf ) + ν4(v− vf ) (5.9)

Here, the boundary conditions x(tf ) = (xf , yf , uf , vf ) correspond to the four
position and velocity values that identify the first libration point, UL1, re-
quired in our study.

Recalling now Eq. (4.30) for differential changes in the modified perfor-
mance index and Eq. (4.31), the first-order necessary conditions for a station-
ary solution (dJ = 0), for an arbitrary δu(t) and dtf are:{

Hu(t) = 0 t0 ≤ t ≤ tf
Φ̇ = 0 Transversality Condition

(5.10)

The transversality condition can be also written in terms of the Hamiltonian
at the final time:

Φ̇ = Φtf +H(tf ) = 0 (5.11)

which can be reduced even further for minimum time problems as Φtf equates
to unity. So the transversality conditions becomes:

1 +H(tf ) = 0 (5.12)

The boundary value problem as described in the current form was solved by
the numerical scheme that integrated the equations of motion and the adjoint
equations in forward and backward direction, respectively.[40]

The Direct Shooting Algorithm The optimization technique based on
gradient information, as previously discussed, was required to successfully im-
plement a second, more accurate, optimization technique. This optimization
technique based on a forward shooting process integrates the Euler-Lagrange
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equations (Eq. 4.32) forward to determine the boundary values and the fi-
nal boundary condition errors. During the forward integration, the optimal
control is determined considering Hu = 0 at each step.

The nature of the solution technique requires a very accurate initial es-
timate of the initial adjoint vector ~λ(t0), the terminal Lagrange multipliers
~ν and the final time tf . These accurate initial guesses were obtained from a
quasi-converged solution by the gradient method. Advantage of the employ-
ment of this second method was the very precise solution obtained, which is
required as the final state is located in a region susceptible to chaotic motion.

In order to simplify the definition of the problem in this second case
the ability to modulate the thrust was omitted. This reduces the problem
to a true minimum time optimization where the thruster is continuously
active and the control parameter is the thrust angle θ. This decision was
motivated considering that a principal parameter assessing outer planetary
mission feasibility is the total transfer time.

5.2 Earth-Uranus Transfer in the CR3BP: Results

The overall transfer design was subdivided into two parts: the interplanetary
phase from Earth orbit to Sun-Uranus UL1 and then from UL1 ballistically
into the planetary realm where a sensitivity analysis was performed.

In order to set up the transfer computation, some mission design pa-
rameters were assigned and, therefore, were not involved in the optimization
process.
The value chosen are shown in Table 5.1. In detail, the initial spacecraft
mass selected allow a powerful launcher to provide a high energy launch with
consequent Earth escape on a higly elliptical or hyperbolic trajectory.
Thruster power level and specific impulse are obtained from previous stud-
ies[48] and are typical for RTG-EP missions while thrust efficiency of 0.5 is a
typical value for many EP thrusters.

Departure Mass [kg] 1000
Specific Impulse [sec] 3200
Thruster Power [W] 1000
Thrust Efficiency [-] 0.5

Table 5.1: Fixed Parameters

Earth to UL1 As first step, initial position and velocity for the interplan-
etary transfer were identified. This was done considering a circular orbit
around the first primary (Sun) with an orbital radius of 1AU and where
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the position on this circle was described by the angle α, in counterclockwise
direction from the x-axis.

Figure 5.1: Earth - UL1 transfers in the Sun-Uranus rotating frame for
α = [0 − 90 − 180 − 270] degrees obtained with the Gradient
Method (magenta and cyan lines represent the invariant mani-
folds associated to UL1).

A first evaluation was based on the four angles α ∈ (0, 90, 180, 270) de-
grees for which the required ∆V and total transfer time were computed.
The resulting transfers are seen in Fig. 5.1 and Fig. 5.2 for the two numerical
methods applied. According to the resulting trajectory shapes, it is easy to
realize that for α = 0o and α = 90o the transfer time is much longer than the
other two solutions.

Based on these results a parametric refinement was performed concen-
trated on the angular region between 180 and 270 degrees with an initial
∆V ∈ [11.6, 13] km/s that is compatible with high energy launcher perfor-
mance. These two parameter ranges defined a grid for which the solutions
were computed, which resulted in the transfer time and final mass values for
each grid point in the specified performance envelope. These two parameters
are shown in Fig. 5.3 and Fig. 5.4 forming two surfaces above the defined grid.

It is immediately seen that the surfaces show a minimum and maximum
for an angle of 230o, which remains relatively equal for the different ∆V s
considered. It is worth noting that both surfaces behave in opposite ways:
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Figure 5.2: Earth - UL1 transfers in the Sun-Uranus rotating frame for α =
[0− 90− 180− 270] degrees obtained with the Forward Shooting
Method (magenta and cyan lines represent the invariant manifolds
associated to UL1).

continuous thrust gives a maximum propellant mass fraction for minimum
time. According to the shooting method formulation and since no coasting
phase is present, this result was expected.

Figure 5.5 shows a cross section of the two surfaces for the minimum ∆V ,
from which this minimum can be clearly observed. Identifying the angle min-
imizing the total transfer time is a process equivalent to the launch window
determination required considering a conventional mission design approach.

Based on the above analysis, the parameters equating the global mini-
mum for this transfer are α = 230o and ∆V = 11.6 km/s. Based on these
two values the globally optimal transfer within the defined search space was
computed and is shown in Fig. 5.6 and Fig. 5.7, both in a rotating and inertial
frame of reference respectively.
The corresponding total transfer time is Ttrans = 10.13 years and the propel-
lant mass consumption is mprop = 337 kg. Here the green line represents the
initial guess used for the gradient method, the blue line the solution obtained
by the gradient method and the red line the optimal solution by the forward
shooting method.
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Figure 5.3: Earth orbit-UL1 mass fraction surface with respect to the defined
control grid in the Sun-Uranus rotating frame.

Figure 5.4: Earth orbit-UL1 transfer time surface with respect to the defined
control grid in the Sun-Uranus rotating frame.
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Figure 5.5: Trends of the transfer time and mass fraction with respect to the
departure angle

The Planetary Realm Following the interplanetary transfer analysis trans-
porting the spacecraft from Earth orbit to the first Uranus libration point,
UL1 under the CR3BP assumption, the planetary phase was investigated un-
der the same assumptions and the evaluation of the characteristics of stable,
ballistic and non impact orbits around Uranus was continued.

In the vicinity of the UL1 libration point, the ballistic trajectories are sub-
ject to very slow dynamics where the velocities approach zero, with transfer
times going to infinity. Therefore, several solutions were examined, consider-
ing both a periodic orbit around the libration point exploiting its associated
unstable manifolds and arrival at the libration point with a velocity excess in
the x-direction. Three periodic orbits were defined, governed by their out
of plane amplitude (Az) and computed using an analytical approximation
based on Richardson’s model[19][21] and a differential correction scheme[49]

(see Sec. 3.2) to obtain a precise numerical solution. These orbits are charac-
terized by their out of plane amplitude, thus a non-planar model, whereas the
transfer was computed using a planar model. However, the point of entrance
on the periodic orbit was always considered on the x-axis where the periodic
orbit respects Az = 0 and the only non-zero component of the velocity is in
the y direction, which justified this transition to a non-planar model. The
amplitudes considered were: [5 · 105, 1 · 106, 2 · 106] km. An example of the
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Figure 5.6: Optimum Earth - UL1 transfer in the Sun-Uranus rotating frame
(blue line = gradient method, red line = forward shooting
method).

Figure 5.7: Optimum Earth - UL1 transfer in the Sun-centered inertial frame
(blue line = gradient method, red line = forward shooting
method).
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periodic orbit insertion with ballistic continuation, together with the three
periodic orbits, is shown in Fig. 5.8.

(a) (b)

Figure 5.8: (a) UL1 Halo orbits for various values of Az. (b) Ballistic transfer
in the Uranus realm for Az = 5 · 105 km

The ballistic transfer shown in Fig. 5.8(b), identified by the black line,
corresponds to a propagation of the transfer for almost 100 years, where the
closest approach with the planet is obtained after approximately 60 years.
These exorbitant transfer times decreased with increasing Az. It turns out
that these orbits remain infeasible for practical mission design.
These long transfer times are intrinsically associated with the method used
to compute them, i.e. the ballistic continuation on the unstable manifold.

As this approach proved impractical, a different methodology was im-
plemented where the optimization process was constrained to reach the li-
bration point position, but this time with an excess in velocity along the
positive x-direction. This resulted in a faster ballistic continuation of the
trajectory diminishing the transfer times towards the planet. Theoretically
this also introduced a propellant mass saving as less ∆V was needed to dis-
sipate the excess energy. However, this proved very little with respect to the
total propellant mass budget, so that this did not have a significant effect
on the interplanetary phase design. Again, a parametric study was per-
formed defining an excess velocity envelope along the positive x-axis, ∆u,
where the distance of closest approach and its associated transfer time were
investigated. This showed the chaotic behaviour close to the planet in the
CR3BP, particularly present for small values of ∆u, for larger values the ve-
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Figure 5.9: Minimum distance with respect to excess velocity.

Figure 5.10: Ballistic time with respect to excess velocity.
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locity dominated resulting in direct escape trajectories towards the second
libration point UL2.

Figure 5.9 and Fig. 5.10 present both the minimum planetary distance
and the associated transfer time to reach the minimum distance with respect
to the velocity excess. Both the first minimum and the absolute minimum
were studied, because for low values of ∆u the ballistic trajectory performed
multiple closed orbits around Uranus. With respect to the first minima,
a continuous curve is observed where its maximum lies around 0.2 km/s.
Considering the chaotic behaviour, between 0 and 0.3 km/s, large advantages
can be obtained for certain ∆u values bringing the spacecraft very close to
the planet, involving an extreme case showing an impact trajectory. The
trend of minimum distance for the absolute minima shows discontinuities that
correspond to the number of closed orbits performed. This number tends to
decrease with ∆u and from a value of approximately 0.3 km/s onwards the
trajectory does not perform any closed orbit anymore and the two minima
coincide.

Associated with the minimum distances are the transfer times, as seen in
Fig. 5.10, where a monotonously decreasing trend is observed. This is due to
the decreasing transfer times with increasing ∆u. Again chaotic behaviour
is present for low values of ∆u. The same considerations with respect to the
discontinuities apply as discussed for the minimum distance.

It was furthermore observed that the impact case marked the boundary
between trajectories that perform at least a single, complete orbit and tra-
jectories that are deflected but are not able to perform a closed orbit around
Uranus.

In order to demonstrate the feasibility of a mission with planetary capture,

Departure Angle [deg] 230
Departure ∆V [km/s] 11.6
Initial Mass [kg] 1000
Final Mass [kg] 650
Transfer Time: Earth-UL1 [yrs] 10.13
Transfer Time: UL1-min radius [yrs] 5.28
EP deceleration Time for final capture [yrs] 0.4

Table 5.2: Optimum transfer characteristics

ballistic continuation of an escape trajectory was performed, where upon ap-
proaching the minimum distance, a low thrust capture was performed. The
capture is shown in Fig. 5.11 and Fig. 5.12, where ∆u = 0.3194 km/s, which
is just outside of the chaotic regime.
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Figure 5.11: Transfer from UL1 to the capture orbits (ballistic continuation
without EP deceleration also shown with the blue broken line).

Figure 5.12: Transfer from UL1 to the capture orbit - zoom on the capture
orbits (green line = deceleration phase, magenta line = ballistic
capture orbits).
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Thrust was applied for 4 months in a direction opposing the velocity
vector, establishing a highly elliptic orbit, with a semi-major axis of approx-
imately 6.8 · 106 km. Refinement of the final orbit was beyond the scope
of this study, therefore the mission feasibility was considered demonstrated.
Optimizing the thrust vector and thrust duration may enable improvement
of the final orbit with a relatively small amount of propellant mass.

Table 5.2 gives an overview of the main parameters describing this optimal
transfer to Uranus.

5.3 Earth-Uranus Transfers: Alternative Strategies in
the 2-Body Model

Additional studies[48][50][51] were performed in order to investigate the pos-
sibility to accomplish outer planetary missions based on small, power con-
strained spacecrafts that combine Electric Propulsion with Radioisotope Ther-
moelectic Generators (RTGs).

In particular, two strategies were investigated: a direct transfer to outer
planets by means of a high energy launch and a multiply gravity-assist tra-
jectory with a lower energy launch. In fact, objectives of these studies are
to assess the feasibility of power constrained direct outer planetary transfer
trajectories covering a large range of specific impulse and to explore the pos-
sibility to accomplish gravity-assist missions with a medium class launcher
in order to reduce missions costs.
In both cases, total transfer time and spacecraft final mass at destination
were considered the mission constraints.

For all destinations considered in both strategies, a constant RTG elec-
trical power of 1 kW is hypothesized, where recent studies[52] give the RTG
state-of-the-art specific mass as approximately 200 kg/kW. This would re-
quire the allocation of approximately 200 kg of the final mass to the power
subsystem.

System Dynamics in both strategies In both strategies, the 2-Body model
was applied to study the interplanetary transfer trajectories applying third
body (Sun) effects only like a perturbative term in the planetary sphere of
influence.

The characteristics of the transfer problem together with the limitations of
the optimization techniques required for a definition of the system dynamics
in a polar reference frame as shown in Fig. 5.13.

Description of the equations of motion based on the radial distance, r, the
angle, θ, the radial and azimuthal velocities, u and v respectively, solved this
problem. Equations (6.3) describe the spacecraft dynamics in the aforemen-
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Figure 5.13: Definition of the System

tioned format, where the radial and azimuthal components have an additional
accelerative term, representing the acceleration due to the thrust force.

ṙ = u

θ̇ = v
u̇ = v2/r − µ/r2 + a sin(β)
v̇ = −uv/r + a cos(β)

(5.13)

Here a represents the istantaneous acceleration which is given by the values
for power, specific impulse and the istantaneous spacecraft mass, as given in
Eq. (5.14).

T = 2ηP
g0Isp

⇒ a = T
mi−ṁt (5.14)

At Earth departure, the escape energy provided by the launcher (∆Vlaunch =√
C3) is added to the Earth’s orbital velocity given by Eq. (5.15).

VSC = VEarth + ∆Vlaunch (5.15)

Definition of the final states in the two cases is different. It will be done later
in each specific paragraph.
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5.3.1 Direct Transfers

Based on Oleson approach,[46][47][52][53] the spacecraft is directly placed on a
highly elliptical or hyperbolic heliocentric transfer orbit towards its destina-
tion by means of a powerful launcher. The Electric Propulsion is exclusively
used to decelerate and circularize the trajectory upon reaching the destina-
tion planet. This has been done for the three outermost planets: Neptune,
Uranus and Saturn.[50]

Hereafter, in order to have comparable results with respect to other transfer
strategies, only results obtained for Uranus capture will be discussed. Nep-
tune and Saturn results are shown in Appendix A

In the transfer analysis, the effective mass at the destination is a func-
tion of the initial mass, which is in turn determined by the launcher C3,
the specific impulse and the coasting duration. Consequently, the final mass
obtained by the optimization should cover all spacecraft subsystems and sci-
entific payload.

As almost constant electrical power is available throughout the orbit
transfer, the required propellant mass is only a function of specific impulse
(Isp) and thrusting duration. To cover an ample spectrum of EP thruster
technologies, specific impulse values in the range from 1500s to 4500s, with
a discretized step of 500s, are investigated.
Besides, during the propulsion phases, EP thrusters are constantly switched
on in order to maximize the rate of change of spacecraft energy and then
minimize the time to accomplish the desired final state.

Figure 5.14: Typical geometry of direct transfers with initial coasting (green),
propulsion (red) and ballistic continuation (blue)

The last parameter that influences the propellant mass requirement is the
ballistic coasting phase duration that is indirectly related to the thrusting
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duration. It has been parameterized from zero up to more than 10 years and
serves as a control parameter, because for identical C3 and Isp, different final
masses and transfer times are obtained under variation of Tbal.

Therefore, based on the above discussed parameters, a trajectory opti-
mization was performed, computing the optimal thrust angle to guide the
spacecraft to a predefined final state, minimizing the required transfer time.

Initial and Final states The numerical routine computes time optimized
transfers between a given initial state (a circular orbit with 1AU radius) and
a heliocentric orbit with orbital radius equal to the planet under investiga-
tion.
The transfer from the end of the ballistic phase to the desired final orbit is
computed using again two different, supplementary, optimization techniques.
As said in Sec. 5.1, initially a gradient method is applied to provide a rela-
tively accurate initial guess for a subsequently used forward shooting method.
This combination of optimization techniques was able to provide a solution
to all feasible scenarios investigated.

Mathematically, the final state can be expressed as a function of the three
state parameters at the final time:

r(tf ) = rplanet
u(tf ) = 0
v(tf ) =

√
µ/rplanet

(5.16)

These final conditions will also serve to define the boundary conditions re-
quired by the optimization code.

Launcher C3 [km2/s2] Initial Mass [kg]
130 860
140 740
150 660
160 580
170 480

Table 5.3: Launcher Performance[4]

The spacecraft initial state, is a location on the Earth’s orbit around the
Sun. Due to the definition of the problem the exact location is not relevant
as the model is symmetric.
Moreover, taking into account realistic high energy launcher performance
(see for example the US Atlas 551 with Star 48V upper stage[4]), C3 range
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considered goes from 130 to 170km2/s2 having an associated initial mass from
860 kg to 480 kg, respectively (see Table 5.3).

Results The range of possible spacecraft configurations, initial mass - spe-
cific impulse combinations, for a single planet is given by the product of C3

values (5) and specific impulses (7), therefore a total of 35. For each of these
configurations a different number of solutions exist governed by the number
of parameterized ballistic coasting durations. This is not equal for all con-
figurations as some initial mass-Isp combinations did not converge to a final
state adhering the imposed boundary conditions for all ballistic durations. In
fact, the coasting phase could result either too short or too long, consuming
all available mass or not decelerating in time, respectively.

Figure 5.15 and Fig. 5.16 show the results for the two extremes of launch
energy, where the total transfer time and mass fraction are given as a function
of different coasting durations and specific impulses. These are presented in
three-dimensional figures for the two extremes of launch C3. It is observed
that for higher launch C3, shorter coasting durations must be considered,
especially for the higher specific impulses. The much larger excess energy
transports the spacecraft towards its destination much faster, consequently
for too long coasting durations the spacecraft is too close to its destination
in order to decelerate and circularize the orbit.

Figure 5.15: Transfer Time and Mass Fraction at the C3 = 130[km2/s2]
Launch Energy.
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Figure 5.16: Transfer Time and Mass Fraction at the C3 = 170[km2/s2]
Launch Energy.

Figure 5.17 and Fig. 5.18 show two projections of the three-dimensional
surface from Fig. 5.15, presenting the total transfer time and mass fraction
as a function of coasting duration only. It is observed that for the lowest Isp
value a coasting duration of 1 year is taken as minimum. The low Isp value
and short coasting duration result in a very large propellant mass fraction.
To minimize the transfer time the optimal trajectory has a long initial phase
in which the thrust is mainly accelerating the spacecraft. Consequently the
propellant mass fraction becomes very large, where in the extreme case this
becomes unity. Higher Isp values do not demonstrate this problem therefore
coasting durations starting from zero years are also included.

An upper bound on the coasting duration is observed for the higher Isp
values. For longer durations the thrust force is no longer able to decelerate in
time guiding the spacecraft towards the imposed boundary conditions. The
higher Isp values, for constant power, result in a lower thrust force, therefore
more time is necessary to dissipate the excess energy.

A third order polynomial fit is applied to the computed data to obtain the
trend lines. It is directly observed that a lower coasting duration results in a
lower total transfer time, with the obvious mass fraction payoff. The transfer
time decreases as the transfer includes an initial acceleration phase. As a
result, increasing the coasting duration significantly increases the payload
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Figure 5.17: Transfer Time versus Coasting duration for various Specific Im-
pulses at the fixed launch energy C3 = 130[km2/s2].

Figure 5.18: Mass Fraction versus Coasting duration for various Specific Im-
pulses at the fixed launch energy C3 = 130[km2/s2].



5.3 Earth-Uranus Transfers: Alternative Strategies in the 2-Body Model 90

Figure 5.19: Transfer Time versus Mass Fraction for Coasting Duration
Tbal = 0 years.

Figure 5.20: Transfer Time versus Mass Fraction for Coasting Duration
Tbal = 3 years.



5.3 Earth-Uranus Transfers: Alternative Strategies in the 2-Body Model 91

mass fraction, especially for the lower specific impulses. Moreover, in Fig.
5.18, it can be seen that the variation in mass fraction for subsequent specific
impulses decreases with increasing Isp for a constant coasting duration. To
maximize the mass fraction for a given value of specific impulse, a coasting
duration that does not cause the spacecraft to go beyond the final radius,
should be considered.

Figure 5.19 and Fig. 5.20 show the results obtained for all initial masses
considered and all specific impulses that lead to a successful transfer, for equal
coasting duration. Coasting durations of zero and three years are shown,
where the colours represent the initial masses and the dots the specific im-
pulses.

The figure showing no ballistic phase demonstrates a regular behaviour
for the different initial masses and impulses. Whereas the three year coasting
duration shows the vertical shift in transfer time, as mentioned previously.
For the highest C3 value the two highest specific impulses show a deviation
from this behaviour, which results in the fit to bend upwards. This is ex-
plained by the spacecraft going beyond the final heliocentric radius before
coming back. This effect is even more prominent for the Mi = 560 kg case,
where the Isp = 4000s data point has been omitted for the data fit.

The zero coasting duration case is associated with the minimum total
transfer time. When considering this for all evaluated initial masses, as given
in Fig. 5.19 the performance envelope under certain mission constraints can
be defined.

5.3.2 Multiply Gravity-Assist Transfers

The basic idea of this strategy is to obtain preliminary results about the pos-
sibility to use medium class, and thus cheaper, launch vehicles for transfer
towards Uranus. However, as the high ∆V budget required is no more totally
supplied by the launch vehicle as did in the previous section, additional mul-
tiple planets swing-bys are necessary if we want to accomplish such a transfer
with comparable transfer times with respect to direct transfer strategy.

Therefore, if on one hand the mission scenario becomes more complex
cause the necessity of gravity-assist maneuvers, on the other hand the use of
less expensive launchers would result in mission costs reduction.

Mission Constraints According to previous works[48] a RTG-EP small space-
craft designed with all state-of-the-art technologies has been considered as
baseline mass budget. Its preliminary dry mass budget is about 500 kg and
this value will represent the minimum acceptable mass value at target planet
capture throughout the investigation.

On the other hand, the spacecraft mass at departure will be given by the
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performance of the selected launch vehicle. In particular, a Delta II 7925H
or Falcon 9 launch vehicle can be considered as viable options which are
able to provide, for an initial mass of 750 kg, a launch C3 of about 30 ÷ 35
km2/s2.[54], [55] While this second constraint on the maximum initial mass
was chosen to maximize launch escape velocity and thus to reduce transfer
time, the first constraint on the minimum arrival mass affects above all the
choice of the minimum specific impulse to be considered during the overall
transfer and then, indirectly, the transfer time. Concerning the electrical
power, a RTG able to provide 1 kW until end of life is hypothesized with a
specific mass as approximately 200 kg/kW.[52] It turns out that the transfer
problem is also power constrained. The principal mission constraints are
summarized in Table 5.4.

Regarding gravity-assist maneuvers, under specific conditions Jupiter fly-
by provides the necessary ∆V to reach Uranus orbit distance. However, in
order to fulfil mass constraints and reduce transfer times, at least an addi-
tional gravity-assist maneuver is needed between the medium energy launch
and Jupiter encounter. Thus, following the launch, a ballistic phase was
performed till the first gravity-assist maneuver with Mars resulting in an ad-
ditional ∆V able to increase transfer orbit energy. Then, an optimized phase
started to accelerate the spacecraft and perform Jupiter gravity-assist ma-
neuver. As spacecraft velocity vector is required to increase during gravity-
assist maneuvers, both encounters were performed in the way that the planet-
centered hyperbola passes behind the planet. In the end, a final EP optimized
deceleration phase was performed for Uranus capture.

Besides, it should be noted that, as the transfer strategy includes mul-
tiple planets fly-bys, launch windows considerations shall impose additional
mission constraints. However, this was beyond the scope of this study.

Launch C3 Energy [km2/s2] 35
Initial S/C Mass [kg] 750
Power [W] 1000
S/C mass @ Uranus capture [kg] > 500

Table 5.4: Mission Constraints

As said previously, at Earth departure, the escape energy provided by the
launcher (∆Vlaunch =

√
C3) is added to the Earth’s orbital velocity given by

Eq. (5.15).
Both Mars and Jupiter encounters were determined fixing the fly-by al-

titude, respectively 250 km and 2 · 106 km, and a hyperbolic excess velocity
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(VHE). Both these two data determined the geometry of the planetocentric
escape hyperbolic orbit and thus the initial and final states in the heliocentric
system of reference for the optimization scheme hereafter discussed.

After the ballistic Mars fly-by at 250 km of altitude with a hyperbolic
excess velocity VHE = 11.23 km/s (see planetocentric encounter in Fig. 5.21),
a first optimized low thrust transfer was performed in which final state was
fixed by Jupiter fly-by inlet conditions resulting from 2·106 km fly-by altitude
with a parametrized hyperbolic excess velocity (Fig. 5.22). In particular, a
higher Jupiter excess velocity allows spacecraft to minimize transfer times
but, on the other hand, it must be in a suitable range of values that guarantee
both the matching conditions with the final state of the optimized phase and
the capability for the EP thruster to decelerate with an acceptable amount
of propellant before Uranus capture. In this study, discrete values of Jupiter
excess velocities in the range VHE = 5 ÷ 7 km/s were considered as they
satisfied both the above mentioned conditions.

Figure 5.21: Mars fly-by in the planet-centered coordinates.

The transfer from the end of the ballistic phase after Mars fly-by to the
desired final state before Jupiter gravity-assist is computed using again the
two different, sequential, optimization techniques. Initially a gradient method
was applied to provide a relatively accurate initial guess for a subsequently
used forward shooting method. The same scheme was applied for the final
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Figure 5.22: Effect of the hyperbolic excess velocity in Jupiter-centered co-
ordinates with a fixed fly-by altitude.

EP deceleration phase.
To maintain feasible mission durations, transfer time and thus the propul-

sion phase was subjected to minimization.
This combination of optimization techniques was able to provide a solu-

tion to all feasible scenarios investigated.

Results According to mission constraints and transfer strategy outlined in
previous paragraph, complete Earth-Uranus transfers were computed. Nev-
ertheless, before doing that, another important assumption was made about
the thruster specific impulse. In fact, for a power constrained transfer, a
high specific impulse with consequent propellant mass saving results in lower
thrust level and thus longer transfer times.

Jupiter VHE [km/s] 5 6 7
Tot Transfer Time [dys/yrs] 5767/15.8 5365.5/14.7 5110/14
Tot Propellant Mass [kg] 208 223 235.5
S/C Mass @ Uranus capture 542 527 514.5
S/C Mass Fraction @ Uranus capture 0.723 0.703 0.686

Table 5.5: Overall transfer main results with respect to Jupiter excess velocity

Vice versa, a lower specific impulse reduces transfer times but increases
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Figure 5.23: Complete Earth-Uranus transfer in Heliocentric coordinates
(Jupiter VHE = 7 km/s - magenta line=optimized phase, black
line= ballistic phase).

Figure 5.24: Zoom of the complete transfer between Earth and Jupiter
(Jupiter VHE = 7 km/s - magenta line=optimized phase, black
line= ballistic phase).
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propellant mass needed to perform the transfer. Therefore, in order to min-
imize transfer times, the idea was to find the minimum value of specific
impulse able to fulfil mass constraints. Thus a Isp = 3200s was selected.

Regarding Jupiter gravity-assist maneuver, complete transfers were com-
puted for all the excess velocities selected. Results are summarized in Ta-
ble 5.5. Nevertheless, Jupiter excess velocity of 7 km/s was chosen for the
reference transfer trajectory as it minimizes transfer time. The complete
transfer is shown in Fig. 5.23 and Fig. 5.24 Instantaneous values of space-

Figure 5.25: Instantaneous spacecraft heliocentric position vs Transfer Time
(blue lines=ballistic phase, magenta lines=optimized phase).

craft mass, heliocentric position, heliocentric velocity and thrust angle β (see
Fig. 5.13 for its definition) during the optimized phases are shown respec-
tively in Fig. 5.25, Fig. 5.26, Fig. 5.27 and Fig. 5.28. Blue lines represent the
ballistic phases while magenta lines the optimized ones.

Moreover, the main results for the reference trajectory launched with a
medium class launcher combined with Mars and Jupiter fly-bys are summa-
rized in Table 5.6. It can be noted that the overall transfer time results to be
longer than the ones obtained in the direct transfer by means of a high energy
and expensive launch. Nevertheless, if a longer transfer time is accepted, this
approach allows to reduce launch costs that represent one of the major cost
drivers in mission budgets.

Therefore,results showed the possibility to accomplish RTG-EP small
spacecraft missions towards Uranus combining multiple gravity-assist transfer
strategies with a medium energy launch performed by less expensive launch
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Figure 5.26: Instantaneous spacecraft heliocentric position vs Transfer Time
(blue lines=ballistic phase, magenta lines=optimized phase).

Figure 5.27: Instantaneous spacecraft heliocentric velocity vs Transfer Time
(blue lines=ballistic phase, magenta lines=optimized phase).
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Figure 5.28: Thrust angle in the optimized phases vs Transfer Time.

Launch C3 [km2/s2] 35
S/C Departure Mass [kg] 750
Power for EP subsystem [W] 1000
Specific Impulse [s] 3200
Earth-Mars ballistic transfer [dys/yrs] 883.2/2.42
Mars-Jupiter optimized transfer [dys/yrs] 758.22/2.08
Mars-Jupiter propellant mass consumption [kg] 83.48
Jupiter-Uranus coasting phase [dys/yrs] 2084.4/5.72
Optimized deceleration Phase and capture [dys/yrs] 1383.14/3.79
Deceleration propellant mass consumption [kg] 152.02
Total Transfer Time [dys/yrs] 5110/14
Total Propellant Mass [kg] 235.5
S/C Mass @ Uranus 514.5
S/C Mass Fraction @ Uranus 0.686

Table 5.6: Overall transfer main results

vehicles in order to reduce mission costs. Besides, results showed that mis-
sions compatible with the assumed mass budgets and launcher constraints
are feasible within acceptable transfer times.

Nevertheless, the results obtained also pointed out the disadvantages as-
sociated with longer transfer times with respect to studies based on the as-
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sumption of a high energy launch followed by direct transfer to outer plan-
ets. Therefore, it should be noted that, even if the possibility to use medium
class and thus cheaper launchers would result in mission costs reduction, the
cost effectiveness of such alternative transfer strategies towards outer planets
should be assessed for each particular case.



Chapter 6
Application of EP Low-Energy Transfers to a

Reference Mission: Trajectory and
Spacecraft Preliminary Design

During the last years, several studies[56][57][3] have investigated the possibility
to develop tours in planetary systems, often performed in the Jovian system,
based on the exploitation of three-body dynamics where the necessary veloc-
ity changes are provided by conventional propulsion systems.
From the mission design point of view, these mission scenarios are very inter-
esting as they give the possibility to orbit several moons of an entire planetary
system requiring only a minimum of onboard resources and increasing signif-
icantly the scientific outcome of a mission.

A similar approach is implemented in this study but Electric Propulsion
(i.e. low-thrust) is considered for the execution of the required manifold
transition. A similar strategy was also investigated by Topputo.[58]

In detail, a tour of the Uranian system and the required interplanetary
trajectory in the CR3BP model are studied.
In fact, the Uranus vicinity provides an interesting dynamical environment
because its main moons are sufficiently massive and near enough to form
several three body models with the planet acting as the principal body. In
this framework, a low energy passage from one moon to another is possible,
where propellant requirements can be further reduced under consideration of
an electric thruster.

The main purpose of this proposed reference mission is to develop a tour
within the Uranus system that visits each one of the selected moons, including
a temporary capture obtained by a ballistic arrival and departure arc.

Not only a planetary tour of the Uranian system orbiting consecutively
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Oberon, Titania, Umbriel, Ariel and Miranda is designed, but also the re-
quired interplanetary trajectory transporting the spacecraft from the Earth
to Uranus. Both the interplanetary trajectory as the planetary tour are
computed in different three-body environments, where the start of the in-
terplanetary phase is assisted by a high energy launch to limit the transfer
time.

Moreover, because of the basic hypothesis of Electric Propulsion, another
important aspect discussed in this chapter is the availability of an adequate
power source for the spacecraft not reliant on the Sun. In fact, the increas-
ing distance from the Sun results in the fading of solar power and therefore
alternative power sources are needed, as solar arrays become ineffective.
A state-of-the-art viable option for power generation purposes, if power re-
quirements remain within few kWs, are the Radioisotope Thermoelectric
Generators (RTGs).

In the end, taking into account this aspect and all considerations made
in the previous chapter on launchers performance, a preliminary spacecraft
configuration is also developed and shown.

6.1 The Planetary Realm

During the complete planetary system tour, the spacecraft is unstable cap-
tured by the five moons for different periods of time. Several closed orbits
around Oberon, Titania, Umbriel, Ariel and Miranda are executed and, in
the end, a stable Uranian orbit as a final state is obtained. This would enable
scientific studies of the main moons for a considerably longer duration when
compared with fly-by’s.
The developed tour is schematically represented in Fig. 6.1.

The orbital characteristics of the five main moons present in the Uranus
system are shown in Table 6.1. It is worth noting that the inclinations pre-
sented in the Table 6.1 are referred to the Uranus equatorial plane. Due to
the unique inclination of the axis of rotation of the planet, which has an axial
tilt of 98 degrees and thus lies approximately in the ecliptic plane, the moons
are orbiting almost perpendicular to this plane.

All trajectories calculated in this study are with reference to the Uranus
equatorial plane, where the moons are considered to move in circular, equa-
torial orbits. Therefore application of different, coupled Planar Restricted
Three Body Problems (PCR3BP) is considered a valid approximation.
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Figure 6.1: Schematic representation of the Uranus Moons Tour

Uranus Moon Mass Semi-major Eccentricity Inclination
[kg] Axis [km] [deg]

Oberon 3.014 · 1021 583519 0.0016 0.700
Titania 3.526 · 1021 435910 0.0011 0.340
Umbriel 1.200 · 1021 266300 0.0039 0.205

Ariel 1.350 · 1021 190020 0.0012 0.260
Miranda 6.590 · 1019 129390 0.0013 4.232

Table 6.1: Uranus Moons characteristics

6.2 Reference System Transformation

Consideration of both the interplanetary and planetary phase of the mission
requires for an appropriate reference system transformation. The planetary
tour is computed subsequently considering, as said before, planar models
formed by Uranus and one of its moons, where the initial state must be
computed with respect to the outermost moon Oberon.

The Uranian tour initiates on the exterior invariant manifold leading to-
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ward the second libration point in the Uranus - Oberon system. This initial
state in the Uranus - Oberon system is transformed to the Sun - Uranus
system and forms the boundary condition for the interplanetary trajectory
optimization. The transformation provides for a decoupling of the two sys-
tems with the advantage that both mission phases can be computed and
optimized independently.

The high inclination of Uranus’ spin axis and its moons having approxi-
mately equatorial orbits, results in an offset of the orbital plane of the moons
with respect to the fundamental Sun - Uranus plane.[59] This is schemat-
ically shown in Fig. 6.2. A generalization is applied where Uranus’ axis of
rotation is assumed to coincide with the orbital plane of Uranus. Moreover,
the moons are all considered to have circular, equatorial orbits, thus being
exactly perpendicular to the Sun - Uranus plane. The system of reference
transformation takes into account both this rotation of the principal axes, in
addition to the velocity conversion. Due to this rotation the initial conditions
of the planetary tour have components of the position and velocity only in
the x-z plane.

Figure 6.2: Schematic overview of the two principal reference systems

6.3 Interplanetary and Conjunction Phases

The initial conditions for the interplanetary phase are derived from the po-
sition and velocity that correspond with a 1AU circular orbit around the
Sun (i.e. the Earth orbit). The position of departure on the circular orbit,
together with the excess energy, has a strong effect on the shape of the tra-
jectory. Erroneous selection of initial position or excess energy might render
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the transfer impossible or excessively long in duration. As shown in Sec. 5.2,
the angular region giving the minimum transfer times was identified, in which
a low sensitivity to excess energy magnitude for the range investigated was
shown. This angle has been adopted in the current study and equals 230
degrees from the x-axis in anti-clockwise direction.

Equations of motion are:
ẍ− 2ẏ = −Ūx + ax
ÿ + 2ẋ = −Ūy + ay

z̈ = −Ūz + az
ṁ = −(T )/(Isp · g0)

(6.1)

where the acceleration vector is given by a = T/m and thrust modulus T is
given by:

T =
2ηP
Isp · g0

(6.2)

Following launch the EP must modify the velocity in all three dimensions in
order to adhere the imposed final conditions: the initial state is in the x-y
plane, whereas the final state which corresponds with the start of the Uranian
tour is in the x-z plane. The optimization algorithm therefore computed both
in- and out of plane thrust components, while minimizing the required time
to arrive at the final state.

The interplanetary transfer is computed in two step, in a first phase a
gradient method implements the transfer acting on the in plane and the out
of plane thrust angles. This approach is less reliant on a precise initial guess
and was applied to generate an accurate initial guess. Based on the results
of the gradient method a forward shooting algorithm is implemented. It
considers the Lagrange multipliers obtained by the former optimization to
design the thrust law (see Sec. 5.1 for details).

To maintain feasible mission durations the transfer time (i.e. the func-
tional) is subjected to minimization, where a limit on the final mass after the
interplanetary transfer is imposed indirectly by ensuring departure with an
initial mass that results in a final mass mf ≥ 500kg, this to ensure sufficient
spacecraft and propellant mass for the planetary tour. This mass constraint
is respected by applying a numerical scheme that ensured an initial mass
sufficient to arrive at the final state with the required mass.

The interplanetary trajectory is connected with the Uranian tour by the
previously discussed transformation of reference system. However, in addi-
tion a conjunction phase is required to dissipate the spacecraft’s energy in
order to adhere the tours initial conditions. The conjunction phase resem-
bles a classical low-thrust planar orbit transfer, where a spiraling motion is
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performed gradually closing in on Uranus. The duration of the conjunction
phase was arbitrarily chosen as the time required to reach a distance from
Uranus equal to the sphere of influence (SOI).

The thrust vector orientation during this phase is opposing the velocity
vector, thus decreasing the velocity magnitude and consequently approaching
Uranus. The conjunction phase is computed by a backward integration in the
Sun - Uranus system. The integration starts from the first Poincarè section of
the L2 stable manifold of Oberon that represents the tour’s initial conditions
and ends at the Uranus SOI radius. This state is taken as the boundary
condition for the interplanetary optimization code.

Results First of all, some initial spacecraft characteristics are given as input.
In Table 6.2, an overview is given:

Power [W] 1000
Specific Impulse [s] 3200
Thrust Efficiency [-] 0.5
C3 Energy [km2/s2] 130

Table 6.2: Transfer Inputs

As already mentioned, the excess velocity corresponding with the excess
energy has been summed to the Earth’s velocity on a 1AU circular orbit in
the Sun-Uranus system.
Figure 6.3 presents the interplanetary transfer shown in the Sun-Uranus syn-
odic system. The visualization in the x-z plane shows a large excursion below
the x-y plane. Nevertheless, it must be noted that the scaling along the z-axis
is two orders of magnitude smaller than along the x-axis.

Figure 6.4 shows the instantaneous values for the radius as measured from
the Sun, the velocity with respect to the synodic reference system and the
mass decrease during the transfer. Results are shown both for the solution
obtained by the gradient method as well as for the forward shooting method,
represented by the blue and red lines, respectively. The continuation repre-
sented by the black line is the conjunction phase, which is shown only for
the more precise forward shooting solution. The spiraling motion can be ob-
served from the subfigure showing the spacecraft velocity, where the black
line oscillates. This oscillation is also present in the Sun radius, however, due
to scaling this less pronounced in the figure. The propellant mass consump-
tion equates to a linear decrease in spacecraft mass as no coasting phases are
foreseen by the optimization scheme.

The conjunction phase is shown in more detail in Fig. 6.5 where the final
state of the forward shooting optimization is continued by the conjunction



6.3 Interplanetary and Conjunction Phases 106

Figure 6.3: Overview of the Interplanetary Trajectory in the Sun-Uranus syn-
odic frame (blue line=gradient method, red line=forward shooting
method)



6.3 Interplanetary and Conjunction Phases 107

Figure 6.4: Instantaneous Radius, Velocity and Mass

phase shown in black. During the conjunction phase the spacecraft energy
gradually decreases leading to a closure of Hill’s region. In addition, the
spacecraft is closing in on Uranus aligning the position and velocity to the
requirements imposed by the planetary tour, discussed in the next section.
The duration equals approximately 2.56 years with a mass consumption of
83kg. This in addition to the 9.14 years required to reach the SOI of Uranus
with a mass consumption of 292.7kg.

Figure 6.6 shows the in- and out-of plane thrust angles computed by the
forward shooting optimization scheme. It can be seen that after approxi-
mately 2.35 years thrust angles demonstrate a rapid variation of the thrust
direction. The α-angle represents the in-plane thrust angle measured positive
in anti-clockwise direction from the x-axis, whereas the β-angle represents the
out-of-plane thrust angle measured positive along the positive z-axis. Before
the variation in direction the α-angle contains an accelerative component in
the positive x-direction, where this changes into a decelerative behavior after-
ward. The β-angle demonstrates only a slight out-of-plane excursion, which
is explained by the fact that the velocity component along z at the final state
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Figure 6.5: Detail of the Conjunction Phase

is relatively small and the a total distance of 19.2 AU is available to achieve
this.

Figure 6.6: Time Variation of the Thrust Angles by the Forward Shooting
Method (α=in-plane, β=out-of-plane)
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The general outputs of the interplanetary phase are summerized in Ta-
ble 6.3:

Outputs:
Interplanetary Transfer Time [yrs] 11.7
Initial Mass [kg] 875
Propellant Mass [kg] 375
Fuel Mass Fraction [-] 0.417
Transfer ∆V [km2/s2] 17.57

Table 6.3: Transfer Outputs

After some numerical iteration the initial spacecraft mass at launch equals
875 kg, this, coupled with the assigned excess energy of C3 = 130km2/s2, is
compatible with the Atlas launcher performance equipped with the Star 48V
upper stage.

6.4 Uranian Tour

The second part of the study investigated the possibilities to continue the
interplanetary transfer with a tour of the Uranian system, advantageously
exploiting the three-body low energy ballistic trajectories. This results in a
tour with a scientifically interesting character as many different environments
are experienced and a technically interesting as the propellant requirements
are be limited.

System Dynamics The tour is computed within the PCR3BP, based on
which the stable and unstable manifolds associated with the libration points
of that system are computed. The connection of two states on an unstable
and stable manifold, respectively, enables the passage from one system to the
other.[60] The connection of two states requires an energy change provided
by the Electric Propulsion, where the thrust direction and modulus are two
parameters of optimization, explained in more detail further on.

If the manifolds intersect in the position space a single ∆V can suffice
to establish transition, however, for the system studied in this work this is
not possible. Due to the low mass parameters of the different systems (Table
6.4), no intersections in the position space are present (Fig. 6.8). Thus, the
only approaches feasible to perform the tour are either using a multi-burn
strategy or a continuous thrust, which modifies the spacecraft energy during
propelled arcs.

The moons, together with the planet Uranus itself, form different three
body environments in which the motion of the spacecraft is studied. Here,
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the planet and its specific moons are the primaries of the relative dynamic
system. The dynamics of the PCR3BP and its governing equations are briefly
recalled: {

ẍ− 2 ẏ = −Ūx
ÿ + 2 ẋ = −Ūy

(6.3)

where, as said in chap. 2, the subscripts denote the partial derivates and Ū

is the effective potential (see Eq. (2.22)), the x and y coordinates and their
derivates are computed with respect to a non dimensional, synodic reference
frame centered in the center of mass of the two main attractors and rotating
with their relative angular velocity. The distances between the two primaries
and the third body are given by:

{
r21 = (x+ µ)2 + y2 Uranus− Spacecraft distance
r22 = (x− 1 + µ)2 + y2 moon− Spacecraft distance

(6.4)

As already mentioned in chap. 2, the CR3BP (or PCR3BP) has one first
integral of motion, the Jacobi integral (C), which represents the energy (E)
in the rotating non-dimensional frame. This is given by:

C = −(ẋ2 + ẏ2)− 2Ū(x, y)
E = −C/2 (6.5)

The mass parameter (µ) of the system is the only parameter necessary for the
characterization of the specific three body system, which in this case depends
on the second primary (moon) selected.
This parameter and the non-dimensionalizing quantities are different for each
three body systems and are dependent on the specific moon involved in the
trajectory arch (Table 6.4).

As discussed in Sec. 2.3, any set of (x, y, ẋ, ẏ) satisfying the Jacobi con-
stant will represent a possible motion for a given energy level and, once initial
condition is given, the Jacobi integral can be used to establish some allowed
and forbidden regions for the motion of the spacecraft bounded by the zero
velocity surfaces or Hill’s surfaces on which the kinetic energy is zero.

However, during the transfer, the electric thruster modifies the energy of
the spacecraft and during the passage from one manifold to the other the
zero velocity curves can be crossed.

For increasing spacecraft energy the forbidden region opens a neck around
each equilibrium point. In Fig. 6.7, the Hill regions for each Uranus-moon
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Primaries µ Distance Time Mass
Unit [km] Unit [sec] Unit [kg]

Uranus-Oberon 3.4792 · 10−5 583519 1.8539 · 105 8.6628 · 1025

Uranus-Titania 4.0703 · 10−5 435910 1.1970 · 105 8.6629 · 1025

Uranus-Umbriel 1.3853 · 10−5 266300 5.7157 · 104 8.6626 · 1025

Uranus-Ariel 1.5584 · 10−5 190020 3.4452 · 104 8.6626 · 1025

Uranus-Miranda 7.6075 · 10−7 129390 1.9358 · 104 8.6625 · 1025

Table 6.4: Uranus-moon identification parameters

system investigated are shown. These are produced for an energy value that
assures an opening being present even for the smallest µ, Miranda, considered.

Figure 6.7: Hill regions of the chosen moons
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Using the passages provided by the opened Hill region, transits can be
established going from one realm to the other. The lowest energy value that
permits a transit from the outer realm, traversing the moon and going to the
inner realm is the energy value associated with the second libration point L2,
therefore the manifolds computed in this study are based on this libration
point, thus its energy level.

As discussed in chap. 3, these manifolds are given by the stable and unsta-
ble eigenvalues of the coefficient matrix of the linearized dynamics, and com-
pute two one dimensional manifolds associated with the libration points.[49]

The manifold associated with the stable eigenvalues computes to a ballistic
trajectory leading towards the libration point, whereas the unstable eigen-
values compute to ballistic trajectories going away from the libration points.

Recalling the linearized equtions of motion near collinear libration points,
and the computation of invariant manifolds associated to collinear libration
points discussed in Sec. 3.2, the manifolds associated with L1 and L2 can be
obtained by propagating a small perturbation d in the direction of us and uu
the eigenvectors associated to the stable and the unstable eigenvalues (λs < 0
and λu = −λs) starting from the state x0 of the libration point of interest:

xs0 = x0 ± dus
xu0 = x0 ± duu (6.6)

The first of Eqs. 6.6 must be propagated backward and the second forward,
where there are two legs for each manifold. The manifolds associated with
L1 and L2 for each of the five moons are shown in Fig. 6.8. It is worth
noting that in the figure only the planetary distance is scaled, moreover the
manifolds are shown as seen each in their rotating reference frame.

In order to perform the passage among the different three body systems,
an in-plane thrust has been included adding an acceleration term to the
equations of motion (Eq. 6.3). Again, to modulate the thrust value ~T a
scaling parameter, τ ∈ [0, 1], and a thrust angle (α) have been included as
shown below.
Furthermore an equation for the mass variation has been added.

~a = a cos(α) T̂ + a sin(α) N̂ (6.7)


ẍ− 2 ẏ = −Ūx + ~a · î
ÿ + 2 ẋ = −Ūy + ~a · ĵ

ṁ = −(|~T | · τ)/(Isp · g0)
(6.8)
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Figure 6.8: Manifolds of the libration points of the chosen moons

where

a =
|~T | · τ
m

|~T | = 2 η P
Isp · g0

(6.9)

The thrust angle α is measured counterclockwise from the velocity direction,
î and ĵ are the unit vectors of the synodic frame and T̂ and N̂ are the unit
vectors tangent and normal to the trajectory, respectively.

Design Approach The state obtained by the spacecraft after the execution
of the interplanetary transfer and the subsequent conjunction phase is the
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intersection between the exterior, stable manifold of Oberon and the first
Poincare section. This stable manifold will transport the spacecraft ballis-
tically to the second libration point, L2, in the Uranus - Oberon system.
Moreover, more generally, the manifolds associated with the libration points
of each moon are computed in the relative synodic frame and subsequently
translated and scaled to the Uranus - Oberon system, which is chosen as
the main system of reference for the tour construction as it is the outermost
moon considered.

The transformation between the two systems takes into account the ini-
tial phase of the moons and the associated non-autonomous phase difference
during the entire transfer. A manifold of a generic moon, in this system, ap-
pears as a trajectory that flows from a radius greater than the radius of the
circular orbit of the moon, wraps around the moon’s orbit and finally arrives
inside the moon’s circular orbit. In the main reference frame the manifolds
of Oberon are time independent, whereas the manifolds associated with the
other moons are time dependent (periodic).

It is worth noting that the manifold used for the construction of the
capture arc of each moon is the stable manifold associated with L2, because
this is the ballistic trajectory that leads the spacecraft towards the moon
from the outer realm. Its computation requires a propagation of the initial
conditions (Eq. (6.6)) for a time span that must begin at the same final time
as the powered phase of the previous step. The propagation is performed
backward for a time span that identifies the time duration for which the
spacecraft lies on the stable manifold. The duration of this time span (tman)
and the initial position of the relative moon (θ) are terms of the control
vector. Furthermore, the exit time from the previously considered unstable
manifold of L1, (t0), is also considered a term of the control vector.

As opposed to the interplanetary trajectory, optimization with respect to
the required transfer time is not applied anymore. Time optimization results
in a continuous, maximized thrust modulus, whereas this is not necessarily
the case when minimizing the required propellant mass as applied for the tour
optimization scheme. An appropriate thrust law, based on (α,τ) which are
the thrust angle and modulus, respectively, is required in order to establish
the connection between the final conditions of the propulsion phase and the
insertion conditions on the manifold of the target moon. The thrust must
be considered for a time span to be determined, being (tEP ), where these
parameters are determined by the optimization scheme. The definition of
the control vector elements for the first passage are shown in Fig. 6.9.
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Figure 6.9: Representation of optimization parameters for the Oberon-Titania
transfer

The complete control vector (u) used for each passage of the tour is:

u = {t0, tEP , tman, α, τ, θ} (6.10)

The control vector elements are determined by an optimization process that
must compute the passage using minimum propellant mass, subjected to
the constraint that the final state of the propulsion phase must match with
the initial state of the L2 stable manifold of the target moon. It must be
noted that the stable manifold associated with the second libration point of
the specific moon, when propagated for a ballistic time greater than tman,
performs various closed orbits around that moon after which it passes onto
the unstable manifold of L1 of the same moon. This transition is the so called
heteroclinic connection already discussed in Sec. 3.3 and is used to obtain the
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starting conditions for the subsequent passage. In fact, t0 is the exit time
from the unstable manifold associated with the first libration point of the
previous moon considered.

Tour Optimization The problem is stated as a constrained minimization
approach with equality constraints on the final state function of the control
vector and with inequality constrains on the elements of the control vector,
which has an upper and a lower bound (uub, ulb), these identify the feasibility
envelope (U) for u.

min
U
f(u) subjected to :

ceq(u) = 0
ulb ≤ u ≤ uub

(6.11)

This is a nonlinear programming problem with only active constraints[29] .
The functional to be minimized, f(u), is the propellant mass required during
the propulsion phase, which is a nonlinear objective function with multiple
nonlinear constraints.

A sequential quadratic programming technique has been implemented to
find the optimal solution. This technique converts the objective function in
a quadratic form and linearizes the constraints. Moreover, at each iteration
an approximation of the Hessian of the Lagrangian is made using a Quasi-
Newton updating method. This type of optimization process is strongly
dependent on the quality of the initial guess and possible results in a high
computational load due to a poor initial guess or when it lies on the boundary
of the feasible region.

Using this method the thrust law (α,τ) is included in the control vector
by a time discretization of the propulsion phase. It has been divided into
N -mesh points and at each point the thrust modulus and angle have been
considered as elements of the control vector. So the total dimension of u
equals: 2 ·N + 4. The thrust law between two consecutive mesh points has
been linearly interpolated.

Due to the extreme sensibility of the three body system to the initial
conditions this kind of approach is not sufficient to assure the passage between
two manifolds. In fact, the chaotic dynamics of the model lead to completely
different solutions even for very similar initial conditions.
Therefore, in order to improve the precision of the conjunction points, a
further optimization process has been implemented starting from the solution
of the nonlinear programming problem. In this second step the function to
be minimized is only the distance in the phase space between the end point
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(a) Uranus - Oberon Synodic System

(b) Uranus Inertial System

Figure 6.10: The Planetary Tour
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of the propelled phase and the initial condition required for the insertion
onto the stable L2 manifold. A simplex algorithm has been used taking the
output of the previous step as initial guess. This approach assures a local
solution that requires approximately the same propellant mass as given by
the minimization process.

The value of the small perturbation introduced in Eq. 6.6 has been sub-
jected to a numeric iteration in order to obtain a value that corresponded
with a minimum altitude not less than 50km above the surface.

Results The computation of the different legs of the planetary tour initiated
by the determination of the optimized thrusting law as described in the in-
terplanetary phase. For all manifold transitions, the initial guess constituted
an angle of approximately 180 degrees with respect to the velocity vector.
This corresponds with an anti-tangential thrust dissipating the spacecraft’s
energy, justified by the fact that all transitions performed corresponded with
a decrease in orbital altitude with respect to Uranus.

Figure 6.11: Instantaneous Position, Velocity and Mass during the Tour

The starting point of the tour, the position on the exterior L2 Uranus
- Oberon manifold, has been arbitrarily fixed on the intersection with the
x-axis, where it is considered that t0 = 0. A fixed number of mesh point,



6.4 Uranian Tour 119

Tour Transfer Time [dys] 957.6
Tour Mass Fraction [-] 0.070
Propellant Mass [kg] 35
Tour ∆V [km2/s2] 2.26

Table 6.5: Tour Outputs

N = 10, has been arbitrarily chosen for normal transfers and this is doubled
for long propulsion phases to limit the computational time.

A sequential quadratic programming scheme has been applied to com-
pute the solution, corresponding with convergence of the relative error of
the equality constraints. In order to constrain the computational time, a
tolerance of 5% has been imposed on the phase-distance of the conjunction
states. The main system of reference to which all other, coupled systems are

(a) Manifold Transitions in Uranus-Titania (left) and Uranus-Umbriel (right)
synodic frame.

(b) Ballistic captures and escapes in Titania and Umbriel realms.

Figure 6.12: Detail of the Heteroclinic Connections for Titania and Umbriel

scaled is the Uranus - Oberon system. Figure 6.10 shows the entire tour with
respect to this reference frame, together with a transformation to the inertial
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reference frame.
In the figure the propulsion phases are represented by green lines and

the ballistic arcs by blue lines. Maintaining this convention the position,
velocity and mass are shown in Fig. 6.11. It is noted that the velocities are
with respect to the principal reference frame where the velocity of Oberon
equals zero. The passages near one of the moons are indicated by the rapid
oscillations in the velocity and position plots.

(a) Manifold Transitions in Uranus-Ariel (left) and Uranus-Miranda (right)
synodic frame.

(b) Ballistic captures and escapes in Ariel and Miranda realms.

Figure 6.13: Detail of the Heteroclinic Connections for Ariel and Miranda

The transition from the Oberon to the Titania system requires only a
relatively short propulsion phase of approximately 56 days due to the close
proximity of the two moons and their similar physical conditions. This with
respect to the transition to Umbriel and Miranda, requiring approximately
150 and 128 days respectively. This is explained by the large physical and
radial difference with respect to the preceding system.

The transitions from the outer to the inner Lagrange point, L2 to L1

respectively, for a certain system, correspond to the so called heteroclinic
connections between the two manifold associated with the Lagrange points.
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Figure 6.14: Value of the Jacobi Constant (left) and of the Energy (right)

These connections are shown in Fig. 6.12(a) and Fig. 6.13(a). The figures
display the ballistic trajectories within the appropriate synodic system, the
Hill region associated with the L2 energy and are propagated for the effective
time that the spacecraft follows the heteroclinic connection. The minimal
orbit altitude for each moon is set to be equal or greater than 50km. This is
achieved by numerical iteration of the small perturbation factor, d, discussed
in the previous section.

Moreover, the number of closed orbits around each moon and the asso-
ciated duration of the unstable ballistic capture are also strongly dependent
on the value of the perturbation used to compute the manifold. Neither the
number of closed orbit nor the capture duration have been parameters of
optimization in this study, merely the constraint of minimum altitude has
been imposed. This resulted in a capture duration ranging from several days
to almost a month.

Figure 6.12(b) and Fig. 6.13(b) show a zoom of the closed orbits per-
formed around the different moons, together with the incoming and outgoing
ballistic arcs. The trajectories flow from right to left where in neck regions
the spacecraft closely passes the libration points.
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6.5 Spacecraft Preliminary Design

In the previous section, a reference low-thrust interplanetary transfer in the
CR3BP from Earth to Uranus planetary system for an Electric Propulsion
powered spacecraft has been designed.
Based on results obtained from the trajectory design and taking into account
design constraints imposed by the transfer, the system analysis now is con-
ducted enabling the sizing of the spacecraft subsystems, which will be briefly
outlined in this section.

Advantages of RTG-EP combination Because of the basic hypothesis of
Electric Propulsion, another important aspect to be discussed in this section
is the power generation.
In fact, feasibility of outer planetary missions with Electric Propulsion is
strongly dependent on the availability of an adequate power source not reliant
on the Sun.

Figure 6.15: Solar array and RTG specific mass vs. Sun distance

Besides, without adequate sunlight for solar electric power in the outer
Solar System, the only near-term power sources available to generate elec-
tricity are of nuclear nature.
If spacecraft power requirements remain within few kWs, a viable option
to solve this problem is the use of Radioisotope Thermoelectric Generators
(RTGs). As shown in Fig. 6.15, the rapid decrease of solar power density at
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increasing distance from the Sun, makes the RTGs more efficient than solar
arrays from the ponderal point of view at distance beyond Mars.

Furthermore, in recent years the possibility of coupling advanced low
power EP technology with RTGs has been considered by NASA and other
space agencies, as a way to enable small spacecraft exploration of multiple
targets in deep space. In fact, in several past works, Noble[43][44][45] and
Oleson[46][47][52] noted the potential advantages of using radioisotope-powered
EP for outer planet exploration; in particular, main beneficial factor of a
RTG-EP system is the diminished propellant requirement compared with
chemical propulsion, which in turn poses less stringent requirements on the
launch vehicle performance.

RTGs Technology Description An RTG is a simple electrical generator
which obtains its power from radioactive decay. In such a device, the heat
released by the decay of a suitable radioactive material (typically Plutonium-
238) is converted into electricity either using an array of thermocouples (See-
beck effect) or by means of a thermodynamic cycle (e.g. Stirling cycle).
In the first case, the thermocouple is a semi-conductor device with ”N” and
”P” type material in legs. The heat is applied to a hot junction while the
cooling side produces electrical potential difference between materials. Con-
necting cold side terminals through a resistive load causes current to flow in
the electrical circuit (see Fig. 6.16).

Thermocouples, though very reliable and long lasting, are very inefficient;
efficiencies above 10% have never been achieved and most RTGs have con-
version efficiencies between 3÷ 7%. On the other hand, conversion efficiency
is improved if a thermodynamic cycle is used (about 28÷ 32%).
It is worth noting that higher efficiency means less radioactive fuel needed and
therefore also a lighter overall weight for the generator, a critically important
factor in spaceflight launch cost considerations.

State-of-the-art technology is the General Purpose Heat Source (GPHS)
module (Fig. 6.17 on the left) containing 4 fuel pellet. It is the building block
for constituing the heat source of the GPHS-RTG with a total of 18 modules
(Fig. 6.17 on the right).
The GPHS-RTG mass is about 55 kg, with a total nominal thermal power
of 4400 W and an electric power of about 300 W (specific power of about 5
W/kg). This technology flew on many past missions such as the Pioneer 10
and 11 (1972/73) to Jupiter and Saturn , the Viking 1 and 2 (1975) to Mars
, the Voyager 1 and 2 (1977) to the outer solar system , Galileo (1989) and
Ulysses (1990) missions to Jupiter and Cassini (1997) to Saturn. Nowadays,
one GPHS-RTG is flying on the New Horizons mission (2006) to Pluto and
beyond.
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Figure 6.16: Sketch of the Seebeck effect

Figure 6.17: General Purpose Heat Source (GPHS)-RTG
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However, recently many efforts have been done by NASA Glenn Research
Center in developing next generation Radioisotope power systems for poten-
tial use on future NASA space science and exploration missions.
In particular, they are developing a high-efficiency Advanced Stirling Ra-
dioisotope Generator (ASRG) (Fig. 6.18) with a conversion efficiency of about
28÷32% that reduces the required amount of radioisotope by a factor of four
with consequent reduction of costs.
An ASRG engineering unit mass is about 20 kg with a total nominal thermal
power of 500 W and an electric power of about 140 W/160 W according to
the hot-end temperature (650◦C/850◦) (specific power of about 7÷8 W/kg).

Figure 6.18: Advanced Stirling Radioisotope Generator (ASRG)

Spacecraft Design According to mission constraints outlined in the trajec-
tory design section, the power subsystem is required to continuously provide a
minimum of 1000 W of electrical power until end of life and the RTG systems
assure an almost constant power level for decades and only a slight degra-
dation of performance occurs (thermal to electric conversion degradation is
about 0.8% per year).

Considering the transfer time plus an operative lifetime the number of
RTG modules required was computed. In particular, the GPHS-RTG has
been considered as candidate since it is a space proven technology. However,
we shall take in mind that, at system level, the alternative choiche of near-
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term next generation RTGs such as the ASRG allows to reduce the spacecraft
mass budget.

In order to obtain 1 kW of available on-board power and because of
the low conversion efficiency of these devices, the modules generate a large
amount of thermal power, which must be taken into account in the spacecraft
design. Furthermore, the part of the spacecraft body housing the instrumen-
tation and electronic apparatus must also be protected from the emission of
radioactive particles and EMI.

The Power Subsystem is completed with the mass of the power condi-
tioning and distribution unit (PCDU) that accomplishes the conversion and
distribution towards the various subsystems of the power generated by the
RTG modules. The PCDU is sized based on mass budgets found in the
literature for similar power levels. A complete mass budget for the power
subsystem is shown in Table 6.6.

Required Power @ EOL [W] 1000
Power produced by 1 GPHS-RTG @ EOL [W] 242
Number of GPHS-RTG needed [-] 4
Mass of 1 GPHS-RTG [kg] 55
Total GPHS-RTGs mass [kg] 220
PCDU mass [kg] 10
Total power subsystem mass [kg] 230

Table 6.6: Power subsystem mass budget

The Electric Propulsion subsystem requires a thruster that provides a
specific impulse of approximately 3200s at an input power of 1 kW. The
well-proven Xenon fed gridded ion engine RIT-10 shown in Fig. 6.19 was
selected for reference,[61] as this thruster is designed for an operating power
of 500 W providing the required specific impulse. Hence, a combination
of two thrusters satisfies the propulsion requirements. Four thrusters (2 +
2 for cold redundancy) have been considered in the preliminary design of
the spacecraft in order to obtain a sufficient level of reliability. Apart the
thrusters, the subsystem also includes the propellant tank, the feeding system
and the Power Processing Unit (PPU). Tank mass was estimated as 10% of
the propellant mass. It must be noted that this is a precautionary sizing
estimate compared to data found in literature.[62]

Sizing of piping, harness, tank isolation system and the Xenon feeding system
has been done based on statistical data available in literature[43] and taken
from preliminary designs of similar missions.
In the preliminary mass budget of the Electric Propulsion subsystem, the
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Figure 6.19: The RIT 10 (EVO) gridded ion engine

PPU is a heavy component since the ion engine requires a high voltage that
must be processed by this device. Typically, the PPU is required to be able
to operate in a wide dynamical power range for solar electric applications.
However, in the RTG application, the only power level variation is due to the
plutonium decay and to the converter efficiency decrease; thus the operative
range is almost constant and the PPU design may be optimized for this
particular application. Data available on state-of-the-art devices as found in
literature has been used to size the PPU.[63]

The Attitude Control Subsystem (ACS) is subject to stringent tolerances
as at the large distances accurate positioning of the antennas is required.
These requirements are satisfied only with an active attitude control scheme;
highest reliability and precision is given by a three axis stabilized config-
uration with reaction wheels where position maintenance is achieved by a
combination of four reaction wheels and eight resisto-jet thrusters for desat-
uration purposes.
Taking into account the mission profile, worst case scenario for the ACS
subsystem is during the planetary tour when the spacecraft is subjected to
the perturbations of the target planet. During the interplanetary flight, per-
turbations are, indeed, very small and negligible, while in the Uranus realm
capture phase the spacecraft can experience high perturbations due to Yranus
magnetic field that is about 48 times more intense than the one of the Earth.
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Therefore, a strong disturbance torque is foreseen.
Evaluation of disturbance torque acting on the spacecraft and computation
of desaturation propellant needed during the planetary tour are carried out
according to procedure outlined in Wertz[64]

The thermal control system experiences two extremes during the entire
mission as in the initial phase it must dissipate the heat generated by the
RTG and the surplus of generated electric power not required. In addition the
close Sun distance does not require heating of internal components that could
dissipate RTG heat. On the other hand, during Uranus tour the thermal
control system must maintain acceptable internal temperatures. This can be
achieved by using the RTG generated heat in addition to internal heaters.
Therefore, radiators’surface area has been computed in the worst case of
external heating (closest distance from the Sun). Besides, sizing of the RTG’s
cooling system has not been considered since it is already included in the
module itself.

The command and data handling subsystem must be able to communi-
cate with the Earth both upon departure as during the operational life. This
requires two antenna types, a high-gain antenna for long distance communi-
cation and a low-gain antenna for communication close to Earth. The former
antenna has a diameter of 2.1 m and emits with an angle of only 0.3 degrees.
Both antennas considered operate on the X-band, this being a typical solution
for interplanetary missions. A store and forward approach is used to com-
municate and transmit data with the ground stations as long eclipse times
can occur during operational life. This communication system’s architecture
allows a data-rate of 38 kbits per second at Jupiter distance and more than
1 kbits at Uranus distance.
The system is completed with transponders, amplifiers and cabling.

The spacecraft structure offers a mechanical support for the entire equip-
ment, provides the thermal conductivity, provides shielding by micro-meteorites
and protects against electromagnetic interferences coming from the RTGs and
deep space. In addition, it must also provide the required interface to fit the
fairing of the selected launcher.
The structure is based on a trussed frame with the subsystem components
integrated. The structural mass is estimated as 8% of the total mass.[64] The
propellant tanks are located close to the centre of mass to minimize shifting of
the centre of gravity. The thrusters and the high gain antenna are mounted
at opposite sides to enable communication with the Earth also during the
deceleration phase. Moreover, thrusters must be aligned with the centre of
mass of the spacecraft.
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Subsystem Component Qty Mass [kg] Total [kg]
Each Cont. (%) Total

Power RTG 4 55 - 220
PCDU 1 10 10 11

231
Propulsion Thrusters 4 1.8 - 7.5

Tank 1 30 - 30
Feed System 1 6 20 7.5
PPU 2 9 - 18

63
ACS Reaction wheel 4 2 - 8

Star tracker 3 0.3 - 1
Sun sensors 4 0.1 - 0.5
Resistojet 8 0.5 20 5
Electronics 2 3 10 7

21.5
Thermal Radiators 1 3.5 30 4.5

PPU waste heat 1 0.6 30 1
MLI 1 14 20 16.8
heaters, sensors 1 1 20 1.2

23.5
CCDH Transponder 2 3 10 6.5

Computer 2 5 20 12
Antenna HG 1 9 10 10
Antenna LG 3 0.15 10 0.5
TWTA 1 2.1 20 2.5
Amplifier 2 1.1 10 2.5
Memory 60GB 2 1 - 2
Cabling 1 10 10 11

47
Structure 8% Mtot

60
Payload Imaging system 1 6.8 25 8.5

Spectrometer 2 5.5 30 7
Optics 1 2 30 2.5
Processing Unit 2 3.3 5 7

25
Spacecraft
Dry Mass 471

Table 6.7: RTG-EP Spacecraft Mass Budget
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Figure 6.20: Preliminary Spacecraft Configuration
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The scientific instrumentation mass allocated for the payload is 25 kg,
which is considered sufficient taking into consideration scientific equipment
similar to the New Horizons mission,[65] which is, moreover, comparable with
the payload mass considered by Oleson.[46]

The specific mass for each subsystem and the total mass computed in-
cluding contingency are summarized in the Table 6.7.

A preliminary configuration, based on the previously discussed consider-
ations is shown in Fig. 6.20.



Chapter 7
Conclusions and Way Forward

Primary objective of this thesis was to investigate and outline the potential
benefits deriving from the combination of low-energy trajectory transfers un-
der the assumptions of the CR3BP with the Electric Propulsion. In fact,
apart from making feasible missions which classical approaches could not, a
non-Keplerian approach allows to perform orbit transfers by simply exploiting
the simultaneous gravitational fields of two or more attarctors with conse-
quent reduction of the ∆V necessary for the transition. Electric Propulsion
is a high efficiency propulsion technology that can rely on specific impulses
ten times higher than chemical propulsion.
Both optimal control theory and the field of Dynamical Systems Theory ap-
plied to the non-Keplerian model were investigated as optimization schemes
were necessary to design low-thrust arcs subjected to boundary constraints
and chaotic motion is the basis of the CR3BP.

Intention of the author was to develop an analytic approach in such amaz-
ing context in order to have the suitable tools to be applied in a more en-
gineering way to the preliminary mission design of interplanetary transfers
with EP powered spacecraft.
In detail, particular interest was focused on interplanetary transfers to outer
solar system as they represent challenging targets and many efforts in terms
of technologies improvement are still needed to let these sites become more
accessible.

In the first part of the thesis, the theoretical background related to the
CR3BP, the equations of motion, the orbit structures and the construction
of periodic orbits and manifolds have been presented. The necessary ingre-
dients to start the trajectory design connecting different realms of the main
attractors were shown as basis for the design of prescribed itineraries.

Then, the optimal control problem and the optimization techniques used
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during this thesis have been introduced. A combination of the gradient
method and the forward shooting method was used as the former is less
sensitive to the initial conditions and provides a more accurate first guess
solution to the latter that is much faster but requires more accurate initial
guesses.

Analytical approaches were developed and low-thrust interplanetary trans-
fers to Uranus in the CR3BP were obtained. In particular, in Chapter 5, the
feasibility of outer planetary missions combining the advantages of a high en-
ergy launch plus the Electric Propulsion were presented. Although previous
studies already demonstrated this, to the authors’ knowledge this was never
performed under the CR3BP assumption.
It was observed that advantages in mission design are obtained by the elimina-
tion of the planetary capture design considered in the conventional two-body
approach. The capture obtained by the libration point entry in the plane-
tary realm of the CR3BP provided a stationary point that must be targeted,
which enabled the employment of dynamical optimization techniques.

The minimum transfer time to the Sun - Uranus libration point is in
the order of 10 years, which is comparable with impulsive patched-conics
solutions. The discussed approach, however, achieved a planetary capture
with an increased mass fraction due to the higher efficiency of the Electric
Propulsion.

In the end, a reference mission and the preliminary spacecraft configu-
ration were designed. A tour of the Uranian system and the required inter-
planetary trajectory under the CR3BP model were studied.
Results demonstrated that by a combination of coupled three-body models
and Electric Propulsion very interesting scientific missions to Uranus can be
designed. Moreover, it is shown that inclusion of the interplanetary trajectory
does not render the mission infeasible neither in terms of mission duration
nor with respect to the mass budgets.

The interplanetary trajectory presented a time minimized solution ad-
hering the appropriate conditions for the planetary tour to start. The opti-
mization scheme computed a solution modifying the spacecraft’s state in all
6 dimensions, with in addition a conjunction phase that dissipates the excess
in energy in order to start the planetary tour.

The planetary tour designed combined the advantages of dynamical sys-
tems theory within the three-body model and the use of Electric Propulsion
which opens a wide range of possible mission scenarios. The tour takes about
956 days to perform transitions between five different planetary three-body
systems, realizing unstable captured orbits at each moon (Oberon, Tita-
nia, Umbriel, Ariel and Miranda respectively) where the spacecraft is finally
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guided into a stable, circular orbit around Uranus after departure from the
ultimate moon considered. The propellant mass fraction required for the
entire tour is about 7% that corresponds to a ∆V of 2.26 km/s.

Finally, taking into account constraints deriving from the trajectory de-
sign, the preliminary spacecraft configuration was developed in which, be-
cause of the basic hypothesis of Electric Propulsion, the availability of an
adequate power source not reliant on the Sun was needed.
Within few kilowatts, a state-of-the-art viable option for power generation
purposes are the Radioisotope Thermoelectric Generators (RTGs).

Future developments could invoke the evaluation of manifolds associated
with periodic orbits instead of the libration point, giving more freedom in the
manifold intersections and therefore the number and duration of closed orbits
around the moons. Moreover, increasing the envelope of available ballistic
trajectories could decrease the propellant mass requirements even further.
Furthermore, considering a 3-dimensional environment for the Uranian tour
would present a more realistic analysis.
It must be noted that the dynamics considered are very unstable and suscep-
tible to gravitational perturbations. Therefore a detailed analysis evaluating
the effects of the other gravitational bodies in the solar system during the
interplanetary phase should be performed for a more refined mission design.

Furthermore, many aspects do impose very high technological demands
such as the Electric thrusters total impulse and duration. For simplicity
reasons, in this thesis EP technological issues have been omitted.
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Appendix A
Outer Planetary Missions: Results in the

2-Body model

A.1 Neptune

A transfer analysis as described in the previous section is also performed
for Neptune, considering identical launcher and thruster performance ranges,
however, in this case the maximum coasting duration is augmented due to
the much larger distance. For brevity reasons the two-dimensional figures
showing the total transfer time and mass fraction as a function of the coasting
duration are omitted. This is directly presented by the two three-dimensional
figures for the extremes in launch energy, as seen in figure A.1.

Trends similar to the Uranus case can be observed. The total transfer
time increases with coasting duration, where this is accompanied with an
increase in final mass fraction. This latter effect is more pronounced for
the higher launch energies and lower specific impulses. Furthermore it is
again observed that the lowest Isp value has a minimum coasting duration
significantly larger than the higher impulses and again the highest impulses
are not capable to adhere the boundary conditions when considering long
coasting durations. The overall shift in total transfer time and maximum
coasting duration origin from the significantly larger Sun distance that must
be reached.

Figure A.2 shows the total transfer times versus the final mass fractions
for zero and seven ballistic years, for all considered launch energies. It is seen
that for none of the launch energies at zero ballistic time, a specific impulse
of 1500s achieved the imposed final state. For the coasting duration of seven
years, only the Isp = 4500 case for the lowest launch energy did not manage
to obtain a successful transfer.
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(a) Launch C3 = 130km2/s2

(b) Launch C3 = 170km2/s2

Figure A.1: Transfer Time and Mass Fraction for Different Launch Energy
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It is clearly seen that the total transfer time always increases with spe-
cific impulse, for both coasting durations. However, for the shorter coasting
durations, this increase in total transfer time, at constant specific impulse
and different initial masses, goes together with an increase in mass fraction.
The opposite behaviour is observed for longer coasting durations where the
mass fraction actually decreases.

A.2 Saturn

A transfer analysis as described in the previous sections is also performed for
Saturn, considering identical launcher and thruster performances, however,
the maximum coasting duration is strongly decreased to 1.5 years due to the
shorter planetary distance. Figure A.3 shows two three-dimensional surfaces
giving the results for the two C3 extremes.

For Saturn a much more pronounced increase in total transfer time with
increasing specific impulse can be observed. Especially for the higher launch
energy, only the two lowest specific impulses are able to generate a decel-
eration high enough to satisfy the final conditions for coasting durations
exceeding zero years. For the C3 = 170 case the vertical shift in transfer time
with almost constant mass fraction for two higher specific impulses is again
explained by the fact that the trajectory goes beyond the final radius, after
which it returns inwards.

Figure A.4 shows the total transfer times versus the final mass fractions
for zero and 0.25 ballistic years, for all considered launch energies.

The results indicate that the investigated strategy is less advantageous
for a small spacecraft destined for Saturn. The planetary distance and high
excess energy result in an unfavourable combination of spacecraft mass and
required specific impulse, computing to low final mass fractions. A possible
alternative could be a less powerful launcher, providing the spacecraft with
less excess energy, or considering the lower C3 values investigated as these
are not as susceptible to this behaviour. This tendency is also reported
in previous studies[48],[53] suggesting a slightly different strategy for closer
planets, associated with a less powerful launch.
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(a) Zero Ballistic Years

(b) Three Ballistic Years

Figure A.2: Transfer Time versus Mass Fraction for Different Coasting Dura-
tions



A.2 Saturn 140

(a) Launch C3 = 130km2/s2

(b) Launch C3 = 170km2/s2

Figure A.3: Transfer Time and Mass Fraction for Different Launch Energy
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(a) Zero Ballistic Years

(b) Three Ballistic Years

Figure A.4: Transfer Time versus Mass Fraction for Different Coasting Dura-
tions
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