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ABSTRACT

This thesis considers the valuation of guaranteed annuity options using an equiv-

alent utility principle from the point of view of the policyholder. In this model I

give an explicit form to the value functions involved in the indifference valuation.

Also I offer a numerical implementation. For instance, in a setting where interest

rates are constant, I find an explicit solution for the indifference problem, where the

individual is described by a power (instantaneous) utility function. In this setting, I

compare two strategies at the time of conversion, and two strategies at the moment

when the policy is purchased. In the former, I assume that if the annuitant does

not exercise the option, first she withdraws her policy’s accumulated funds, and then

seeks to solve a standard Merton’s problem, under an infinite time horizon setting.

In the latter strategy, I compare the agent’s expected utility associated to a policy

that embeds a guaranteed annuity option, and a policy that does not embed such an

option. In order to accumulate the retirement funds, I assume in both cases a pure

premium paid at a constant continuous stream. Regarding the optimal strategy,

I am able to derive explicit solutions for a class of problems where finite horizon,

bequest motive and power consumption utility are jointly considered.

The present research has as a primary objective to elaborate an utility indif-

ference valuation model for guaranteed annuity options. The literature available

until now considers both financial and actuarial approaches that have been used to

evaluate and describe the nature of such options. On the contrary, the approach I

present is able to embed the theory of the optimal asset allocation toward the end of

the life cycle in the valuation of guaranteed annuity options. To my knowledge, the

indifference approach I propose, is new and never developed before.
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iv Preface

The main results show that the option’s indifference value, both at the time when

the policy is purchased and at the conversion time, depends on the difference between

the guaranteed conversion rate h and the market interest rate r . In line with the

literature, at the time of conversion the agent will in general find advantageous to

exercise the option. The dependency on h and r of the equivalent valuation also

reveals that in periods characterized by high market interest rates, the value of the

G.A.O. turns out to be very small. This model remains coherent if we compare

the policyholder’s point of view and the insurer’s point of view, under an economic

setting characterized by high interest rates.

The present model can be extended in order to consider a richer setting, concern-

ing both the accumulation and the decumulation period. These ideas are suggested

and described in the course of chapters that follow.

The remainder is organized as follows. After a short introduction on the theory

of controlled diffusion processes, chapter 2 recalls the models for human mortality

and the concept of longevity risk. In the same chapter the nature of the guaranteed

annuity option is described and some preliminary concerns on valuing this kind of

rights are highlighted. Chapter 3 proposes the indifference model used for valuing a

guaranteed annuity option. In this context two arrangements are outlined. Finally

chapter 4 offers the explicit solution for the indifference valuation problem and

numerical implementations.

J.E.L. classification. D91; G11; J26.
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CHAPTER 1

INTRODUCTION

Guaranteed annuity options (G.A.O.) are options available to holders of some

insurance policies. After a given period, in which the policyholder accumulates

funds paying a single or a regular premium, the agent is given the right to con-

vert the accumulated funds at pre-determined rate. In particular, the guaranteed

conversion may concerns an amount of cash, with the option to convert to an

annuity; or an amount of annuity, with the option to convert in to cash. In the

literature generally just the former option is actually intended as a guaranteed

annuity option.

The factors that influence the cost and the risk associated to a guaranteed

annuity option concern the structure of long-term interest rates and the future

mortality rates. In fact, the survival assumption implicit in the guarantee need

to consider the future improvement in mortality. In other words, guaranteed

annuity options may incorporate an import risk that can affect the stability and

insurer’s solvability: they may represent an important and valuable liabilities

associated to these guarantees.

The literature over guaranteed annuity options begins with Bolton et al.

(1997), where the nature of these options is analyzed, and a first approach to

measure their value is proposed. For a stochastic approach on modelling the pi-

oneering approach is offered by Milevsky and Promislow (2001), wherein both

mortality and interest rates are considered.

In the present framework I approach the problem of valuing the guaranteed

annuity options from the point of view of the insured. In doing that I will

1



2 Introduction Sec.

use an utility indifference argument. It will be offered a model where different

strategies are analyzed both at the moment of conversion and at the initial time.

In doing that, the theory of optimal annuitization policies – developed in some

contributions offered by Milevsky and Young – is embedded in the indifference

model that described in this thesis.

In order to present a self-contained work, in the following sections I recall

some well known results on the theory of stochastic optimal control.

1.1 Short notes on the theory of controlled diffusion processes

In chapter 3 it is proposed an indifference valuation for guaranteed annuity op-

tions. In order to do that I offer a short review regarding some main results on

the theory of controlled diffusion processes. For a comprehensive overview of

this theory of stochastic optimal control see Øksendal (2003), Björk (2004) and

also to Krylov (1979), Fleming and Rishel (1975), Fleming and Soner (2006) and

for a more applied introduction to Chang (2004).

Consider the random process {ws}, s R, such that

wt w

∫ t

0

b αs , ws ds

∫ t

0

σ αs , ws dBs (1.1)

where b is a n-valued function, defined on U Rn, where U Rk , and σ is

a n m matrix, defined on U Rn. The initial value of the process is w and

{Bs} denotes a m-dimensional Brovnian motion on the filtered probability space�
Ω,� , {�s}, P

�
and U is the set of admissible controls. Choosing different ran-

dom processes {αs}, with values in U , we obtain various solutions for equation

(1.1). In other words we control the process {wt}. In order to have a well-defined

stochastic integral we require that {αs} is a stochastic process, with value in U

and which is adapted to the filtration {�s}. For usual conditions that we shall

assume for the probability space, I address to Protter (2005). Also we require

suitable conditions in order that process {ws} exists and is unique. I do not

want to enter into details and these property for {ws} are assumed. Finally, it is
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common to write equation (1.1) in the following formal way:�
dws b αs , ws ds σ αs , ws dBs

w0 w
(1.2)

Consider a fixed domain D Rn and let T the first exit time from D for the

process {ws}:
T : inf{s 0 : ws D, given w0 w}

and suppose that for all w and αs U

�
⎡⎣∫ T

0

�� f αs ws

��ds
��g wT

�� χ{T }

�����w0 w

⎤⎦
where by χ is denoted the indicator function and f αs ws : f ws , αs and g

are given functions. Notice that in the definition of function f αs , we should

better write f {αs } ws to the cost, however, of using heavier notation.

Given the dynamics (1.2) and the assumptions above, we are interested in

solving the following optimization problem

Φ w sup
{αs } �
�
⎡⎣∫ T

0

f αs ws ds g wT χ{T }

�����w0 w

⎤⎦ (1.3)

where � is a given family of admissible controls, adapted with respect to the

filtration {�s} and with value in U . If a control {α
s
} that solves previous prob-

lem exists, given w, it will be called optimal control. Function Φ will be called

value function.

Different kinds of admissible controls can be considered. Feedback or closed

loop controls are those ones measurable with respect to the σ -algebra generated

by the process {ws} up to time t , for each time t 0. However, under some

extra conditions, the optimality that can be obtained from a feedback control, it

is also obtained considering controls of the form αs α ws , for some function

α : Rn U . In other words the value we choose at time s for the control, only

depends on the state of the system at that time. These controls are called Markov
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controls. In this sense the optimal control law will be denoted by α . For more

details see Øksendal (2003). For the reasons just mentioned, Markov controls

will be considered, where the process {αs} at time s is intended to depend on

the value assumed by ws .

Remark 1.1. Taking D Rn we obtain T . In this sense previous problem

1.3 considers both the so called infinite horizon problems and the finite horizon

problems.

Remark 1.2. For n 2, a time dependent problem can always be written as

follow

ws t0 s , zt0 s

under the initial condition w0 t0, z , t0 R and z Rn 1, where {zr} is a

given diffusive process. We are lead to write

∫ T

0

f αs ws ds

∫ 
T t0

0

f αs t0 s , zt0 s ds

∫ 
T
t0

f αr t0 r, zr dr

where the second equality is obtained changing variables: s r t0 and 
T is

defined as follows:


T : inf
�

r t0 : r, zr D, given zt0
z
�

In this case function Φ will in general show a dependency on both initial

time t0 and the initial value zt0
z. Also notice that if we have D t0, t1

Rn 1, where t1 is a real number greater that t0, it turn out that 
T t1, and the

optimization problem can be written as

Φ t0, z sup
{
αs } �
�
⎡⎣∫ t1

t0

f 
αr r, zr dr g wt1

����� zt0
z

⎤⎦ (1.4)

where 
αr : αr t0
.
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Remark 1.3. Assuming the following dynamics for process {zs}:
dzs b z αs , zs ds σ z αs , zs dBs

where b z is a n 1 -valued function and σ z is a n 1 m matrix defined on

U Rn 1, the dynamics of process {ws} can be formally written as follows:

dws

�
1

b z αs , zs

�
ds

�
0 0

σ z αs , zs

�
dBs

under the initial condition w0 t0, z .

1.2 The HJB equation

Without entering into details, the present section present an outline concerning

the Hamilton-Jacobi-Bellman equation.

Consider a diffusive process described by the following dynamics:

dws b αs , ws ds σ αs , ws dBs

for v U , the differential operator is defined as follow:

(� v) y
∑n

i 1
bi v, y ∂

∂ yi

∑n

i , j 1
ai , j v, y ∂ 2

∂ yi ∂ y j

where ai , j : 1

2

�
σσT

�
i , j

, the superscript T being the transposing operator.

Consider the optimization problem (1.3):

Φ y sup
{αs } �
�
⎡⎣∫ T

0

f αs ws ds g wT χ{T }

�����w0 y

⎤⎦
and assume that function Φ is� 2 on D and� on the closure of D. Under some

integrability and regularity conditions – see Øksendal (2003, chap. 11) – if an

optimal Marcov control α exists, we have

0 sup
v U

{ f v y (� vΦ) y } , for all y D (1.5)
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and

Φ y g y , for all y ∂ D

where ∂ D , denote the boundary of D. The supremum is obtained if v α y .

Equation (1.5) is called the Hamilton-Jacobi-Bellman (HJB) equation. Notice

that we have:

f α y
�� α y Φ

�
y 0, for all y D

As remarked by Øksendal (2003), the HJB equation states that if an optimal

control α exists, then its value v at the point y is a point v where the function

v f v (� vΦ) y , v U

attains its maximum, which is 0. Moreover, this condition is not just necessary

but also sufficient. In fact, denoting by

J α y : �
⎡⎣∫ T

0

f αs ws ds g wT χ{T }

�����w0 y

⎤⎦
it can be proved that if ϕ is � 2 on D and � on the closure of D such that, for

all v U

f v (� vϕ) y 0, y D

with boundary values

lim
t T

ϕ wt g wT χ{T }, a.s. Qw

where Qw is the probability law of the process {ws} starting at w for s 0, and

ϕ respects some integrability conditions, then

ϕ y J α y

for all Marcov controls α and all y D. Moreover, if for each y D we have a

law α0 such that

f α0 y y
�� α0 y ϕ

�
y 0
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then α0 is a Marcov control such that

ϕ y J α0 y

and, if α0 is also admissible and respects some integrability conditions, we have

ϕ y Φ y .

1.2.1 A particular case

In chapter 3 a special form for the HJB equation will be needed, when a discount

factor is considered. Following the line of Krylov (1979) consider to solve the

following problem:

Φ w sup
{αs } �
�
⎡⎣∫

0

e s f αs ws ds

�����w0 w

⎤⎦
where, for simplicity, an infinite horizon is considered. If function f is bounded,

we wish to reduce this problem to some of known problems above. To this end,

consider l R and consider a new controlled process

lt l t l

∫ t

0

1ds

and consider the new problem

Ψ w, l sup
{αs } �
�
⎡⎣∫

0


f αs ws , ls ds

�����w0 w, l0 l

⎤⎦
where 
f is defined in the obvious way. We have

∫
0


f αs ws , ls ds

∫
0

e ls f αs ws ds∫
0

e l t f αs ws ds e y

∫
0

e t f αs ws ds
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from which we deduce

Ψ w, l e lΦ w

Writing the HJB equation forΨ and rearranging using the previous equality

we obtain that the HJB equation for Φ is

0 sup
v U

{ f v y Φ y (� vΦ) y } , for all y Rn

The same reasoning can show that if we consider a problem of the form

Υ w sup
{αs } �
�
⎡⎣∫

0

exp

� ∫ s

0

δαr wr dr

�
f αs ws ds

�����w0 w

⎤⎦
where δv y is a given function of y and v, the HJB equation for Υ will be

0 sup
v U

{ f v y δv y Υ y (� vΥ) y } , for all y Rn

1.3 Optimal stopping times

Optimal stopping time is a class of problems where one is asked to find, in

addition to an optimal control, also a stopping time in order to maximize a

given objective function:

Φ w sup
τ,{αs } �
�
�∫ τ

0

f αs ws ds g wτ χ{τ }

����w0 w

�
(1.6)

the supremum being taken over all stopping times τ for the process {ws}. These

problems are analyzed by Øksendal (2003, chap. 10), who present the related

theory using the concept of supermeanvlued functions. A classic approach to

that is instead offered by Krylov (1979), where the problem can be reduced to

an infinite horizon problem with a discount term, using the concept of random-

ized stopping times.

It turn out that a sufficiency condition for optimal stopping involve, under

some regularity conditions, a combination of variational inequalities. Herein I

will not enter into the details concerning this result, rather just notice that in
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order to find the value function for the optimal stopping problem the following

three conditions have to be satisfied:

sup
v U

{(� vΦ) y f v y } 0

g y Φ y 0

sup
v U

{(� vΦ) y f v y } 0 when g y Φ y 0

for y D. These conditions can also be written as follows:

g y Φ y sup
v U

�
(� vΦ) y f v y Φ y g y

�
0

where the subscript denote the positive part. This condition is used in the

important contribution given by Milevsky and Young (2003a and 2007a) that

will be reviewed in the course of chapter 3 and that will be a key ingredient for

the indifference model proposed in the course of this thesis.





CHAPTER 2

RECALLS ON MODELS OF HUMAN MORTALITY

AND LONGEVITY RISK IN LIFE INSURANCE

The present chapter provides a short review of actuarial models of human mor-

tality. Moreover, the concept of systematic longevity risk and guaranteed annuity

option are introduced. In particular, after an overview, where the nature of such

options is presented, we emphasize some concerns over their valuation, high-

lighting the impact of the mortality developments on the liabilities associated

to these options.

2.1 The individual’s future lifetime

Let T0 be the future lifetime – measured in number of years – of an individual

just born, i.e currently aged x 0. It is assumed that T0 is a positive real valued

random variable and its distribution F0 t is continuous with density f0 t . Its

support is supposed to span 0, or alternatively the interval 0,ω , where

ω is intended as an “extremal age”. For every t 0 we have:

F0 t P{T0 t}
∫ t

0

f0 s ds

11



12 Human mortality and longevity risk in life insurance Sec.

and it is common to set t q0 : F0 t . Moreover, if ∆t is a positive real number,

and if f0 is continuous, we get

P{t T0 t ∆t} F0 t ∆t F0 t

F
0

t ∆t o ∆t

f0 t ∆t o ∆t

If not specified otherwise, f0 is assumed to be continuous. By F0 the so called

survival function is defined as follow:

lx P{T0 x} 1 F0 x

where it is usual to set s p0 : ls . Since F0 is a distribution function, it follow that

l0 1; lim
s

ls 0

For an individual currently aged x 0 it is significant to consider the future

remaining lifetime Tx T0 x conditional to T0 x. The distribution of Tx is

Fx t : P{Tx t} P{T0 x t T0 x} 1
lx t

lx

Also, in actuarial mathematics it is familiar to set

t px :
lx t

lx

1 Fx t ; t qx : 1 t px Fx t (2.1)

The definitions above have as immediate consequence the following relation

s t px t px s px t (2.2)

that will turn useful for the valuation of a deferred single premium fixed life

annuity.
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2.2 The distribution of future lifetime and the force of mortality

From equation (2.1) it is possible to derive an alternative expression for the prob-

ability of an individual aged x dying in the interval x, x ∆x , where x and

∆x are positive real numbers. Indeed, we have

∆x qx P{T0 x ∆x T0 x}
P{x T0 x ∆x}

P{T0 x}
F0 x ∆x F0 x

1 F0 x

from which we obtain

∆x qx

f0 x

1 F0 x
∆x o (∆x)

Denoting by

µx

f0 x

1 F0 x

the force of mortality. Hence, assuming a “small” value for∆x, we get that ∆x qx

is approximatively equal to µx ∆x, the error being of order∆x:

∆x qx µx ∆x o (∆x)

Notice that the probability of dying in the interval x, x ∆x depends on

x and it is approximatively proportional to∆x. We also have

µx

l
x

lx

d

dt
ln lx (2.3)

The importance of the function µx is not just the possibility – as I wrote

before – of an alternative way of writing the probability of a person to die.

In fact, the assumptions on the process of mortality can be better stated by

a convenient choice of a functional form of µx . In particular, after making

assumptions on the force of mortality µx , in what follow, the survival function
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lx is obtained by integration: If the force of mortality is specified, the survival

function is the solution of the following Cauchy problem:�
l

x
µx lx

l0 1

from which one obtain

lx exp

� ∫ x

0

µs ds

�
As noticed by Milevsky (2006, p. 38), the force of mortality can be thought

as an instantaneous rate of death at a certain age. Actually

t px

lx t

lx

exp

� ∫ x t

0

µs ds

∫ x

0

µs ds

�
from which we obtain, after setting s x η

t px exp

� ∫ x t

x

µs ds

�
exp

� ∫ t

0

µx η dη

�
Several analytical models are proposed in order to model human mortal-

ity. They are based on a realistic approximation of the remaining lifetime, as

described in the next section.

An interesting model in actuarial mathematics is the Gompertz’s represen-

tation. This model is an excellent description of mortality patterns at adult ages.

Herein the main assumption is that increments of the force of mortality can be

written as follow:

∆µx βµx ∆x o ∆x

where o ∆x is an error of order ∆x. In other words there exists constants

α 0 and β 0 such that

µx αeβx

The case of β 0 is called Dormoy’s model and leads to an exponential

law of mortality. The Gompertz’s model is generalized by Makeham’s force or

mortality, where µx depends also on a constant γ :

µx αeβx γ (2.4)
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from what, by integration, we get

lx exp

� ∫ x

0

µs ds

�
exp

�
α

β

�
1 eβx

�
γ x

�
When β 0, it is common to rearrange the Gompertz-Makeham’s specifi-

cation (2.4) in the following way

µx

1

b
e x m b γ (2.5)

where m and b are real numbers: The former represents the modal value of life

and the latter the dispersion coefficient. Also, in human mortality it is usually

observed m b 0. Milevsky (2006) notice that m can be seen as a modal value

because µm γ 1 b , while we have µm γ 1 b if x m, and µm γ 1 b

if x m.

According to (2.5), the force of mortality is a constant plus an age dependent

exponential curve. The former aims to capture the component of the death rate

that is attribuite to accidents, while the exponentially increasing portion reflect

natural death causes. This curve increases with age and approach to infinity as

t . By integrating (2.5), we get that the function lx has the form

lx exp
�

e m b
�
1 e x b

�
γ x
�

Also observe that if γ 0, for every ε 0 we have

lim
b 0

�
lm ε lm ε

�
1

and Carriere (1994a) points out that this limit suggests that all the mass concen-

trates about m when b is small. Thus m can also be interpreted as a location

parameter when m 0.

Notice that by the definition of the survival function, once lx is known it

is possible to give a formulation of the cumulative density function of T0. For

computational simplicity, I assume the parameter γ 0. This is equivalent to

say that the Gompertz-Makeham’s distribution is considered:

G x 1 exp
�

e m b
�
1 e x b

��
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In other words, I focuss on the following specification for the force of mor-

tality:

µx

1

b
e x m b

From the specifications above we have:

t px exp
�

e x m b
�
1 e t b

��
and also

px : 1 px exp
�

e x m b
�
1 e1 b

��
(2.6)

from which

qx : 1 px 1 exp
�

e x m b
�
1 e1 b

��
(2.7)

Equations (2.6) and (2.7) will be useful when life tables estimations are avail-

able, as described in the next section.

2.3 Life tables

In order to define the concept of survival table, in what follows a probabilis-

tic model based on the notion of survival function is considered. I refer to

Milevsky (2006) and Pitacco (2002a) for the explanation of matters concerning

the estimation of such a table.

Consider a cohort of Lα individuals all aged α years. Lα is called root and

it supposed to be a positive integer; also α is supposed to be a positive natural

number. If we think of a cohort of “homogeneous” enough persons, we can also

assume that everyone of those is characterized by the same survival function l .

Hence, for the representative individual in this cohort we have:

t pα
lt α

lα

The number of people Yx that will survive till age x is a random variable

that assumes values on the set {0, 1, 2, . . . , Lα}, whose expectation is

Lx : �Yx Lα t pα Lα

lx

lα
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If now an initial age α is fixed as well as an extremal age ω, the following

sequence �
Lα, Lα 1, . . . , Lx , . . . , Lω 1

�
is called life table. Statistical methods allow actuaries to estimate life tables.

Making the hypothesis that the assumed mortality law will not change over the

time, the following relations holds,

lx

Lx

Lα

lα

for a positive integer t , it is possible to compute the probability

t px

lx t

lx

Lx t

Lx

Notice that, in order to have significance, in the expression above t has to

be a positive integer. Referring to equations (2.1), it is now clear the advantage

of defining px and qx as: px : 1 px and qx : 1qx . For the positive integer t we

get

t px px px 1 px 2 . . . px t 1

Table 2.1 is an example of a life table. It represents the estimation concern-

ing a cohort 100,000 women in 2004, taking α 0, from the province of On-

tario, Canada. We remark that every value in table 2.1 has to be thought as an

expected value. This table shows some estimations other than Lx . dx represents

the number of deaths between exact age x and x 1:

dx Lx Lx 1

and qx is the probability of death between exact ages x and x 1. It follow that:

qx

lx lx 1

lx

Lx Lx 1

Lx

dx

Lx
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TABLE 2.1: Life table fragment estimated from a cohort of 100,000 individuals (female)

from Ontario, Canada. Deaths are given by age and calendar year. Data ob-

tained by Statistics Canada and Canadian Human Mortality Database 2004.

Age mx qx Lx dx ex

0 0.00531 0.00529 100,000 529 82.61

1 0.00033 0.00033 99,471 32 82.05

2 0.00021 0.00021 99,439 21 81.08

3 0.00016 0.00016 99,418 16 80.09

4 0.00021 0.00021 99,402 21 79.11

. . . . . . . . . . . . . . . . . .

57 0.00444 0.00443 95239 422 27.75

58 0.00419 0.00418 94816 397 26.87

59 0.00465 0.00464 94420 438 25.98

60 0.00578 0.00577 93982 542 25.10

. . . . . . . . . . . . . . . . . .

107 0.61356 0.46952 98 46 1.56

108 0.64498 0.48770 52 25 1.50

109 0.67519 0.50478 27 13 1.45

110 0.70401 1.00000 13 13 1.42

The value ex is an approximation of the life expectancy at age x or, in other

words, an approximation of the expected value of Tx . Suppose that the density

fx t exists and it is continuous. Hence we have

fx t
d

dt
Fx t

l
x t

lx

Then, the life expectancy of an individual now aged x is:

e x : �Tx

∫
0

t fx t dt
1

lx

∫
0

t l
x t

dt
1

lx

∫
0

lx t dt
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where the last equality can be proved by integration by parts. For more details

we suggest Gerber (1995), Promislow (2006), Pitacco (1989, 2002a). Finally we

get

e x

∫
0

t px dt

When only a life table is available, it is just possible to compute approx-

imated values of e x . Several formulas are proposed in actuarial mathematics.

Among them, herein we recall the incomplete expectancy life, denoted by ex , ac-

tually used in the table (2.1):

ex :
1

lx

ω x 1∑
i 1

lx i

ω x 1∑
i 1

i px

whereω is the extremal age:

2.4 Demographical trends on lifetime insurance contracts

Throughout this thesis I use population data instead of insured lives data. I be-

lieve that it will be a more appropriate source of analysis for the model proposed

in the next chapter. In the first part of this section I present some preliminary

facts regarding the mortality experience over the last decades. Then I defer the

section 2.5 the importance concerning the so called longevity risk and its influ-

ence on the annuity contracts. In the second part, I recall the difficulties arising

from considering general life-contingent claims in a stochastic – rather than de-

terministic – mortality risk environment.

2.4.1 Preliminary facts concerning survival trends

If we compare survival tables concerning different periods of estimation, we

could notice important trends on mortality. Figure 2.1 and 2.2 show the im-

proving of mortality in terms of the number of survivors as a function of the

attained age x. Clearly, it is not possible to value today the “exact” probability

of death in t years, for a person now aged x.
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FIGURE 2.1: Empiric death density function, assuming a cohort of 100,000 individuals fe-

male and male, for years 1970 and 2004. Range: 0-110 years old.

Random mortality patterns may refer to both young and old age. If the

latter is concerned, usually it is referred to longevity risk. In particular, from

plotted data in figure 2.3, one can observe a decrease in mortality rates at adult

and old ages and increase in life expectancy. From figure 2.2 it is evident a rect-

angularization of the survival function that implies an increasing concentration

around the mode of the curve of deaths; also it can be seen how the expansion of

the survival function, in the sense that the curve of deaths move towards very

old ages.

A review of the literature on the nature and causes of historical changes in

longevity is made by Stallard (2006). In his paper he also focus on the use of

deterministic and stochastic process models for forecasting the distribution of

future survival outcomes for pricing models for longevity bonds for a set of

closed cohorts.

A more complete discussion regarding the longevity risk is presented in sec-

tion 2.5.2, where I focus on life annuity policies and the post-retirement income.

* * *

In order to estimate the Gompertz’s parameters I refer to Carriere (1994b).

Defining qx : 1qx , and assuming Gompertz’s mortality, we have that qx de-
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FIGURE 2.2: Population of Ontario. Number of survivors at exact age x, assuming a cohort

of 100,000 individuals, for years 1921, 1940, 1970, 1990 and 2004. Range 0-110

years old.
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FIGURE 2.3: Mortality rates qx on logarithmic scale, 40 x 110 for females and males

from Ontario, Canada, for years 1970 and 2004. Source: Canadian Human

Mortality Database.

pends on m and b by the relation described as follows:

qx m, b 1 exp
�

e x m b
�
1 e1 b

��
Consider now, the (empiric) estimation of a life table based on a cohort of
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homogeneous individuals and set:


qx


Lx

Lx 1
Lx

where 
Lx and 
Lx 1 refer to the (empiric) estimations of Lx and Lx 1, respectively.

Carriere (1994b) suggests that a good way of estimating m and b is to minimize

the robust loss function:

min
m R, b 0

ω∑
x

�
Lx

Lx 1

�����1 qx m, b
qx

�����
where x is intended as an adult age andω as an “extremal” age. In particular we

set x 40 and from the available database we haveω 110.

From data available at the Canadian Human Mortality Database, table 4.1

offer the estimation1 for the Gompertz’s force of mortality parameters for years

1970 and 2004, for both females and males. Data refer to the Province of On-

tario.

TABLE 2.2: Estimated Gompertz’s force of mortality parameters for the province of On-

tario, for years 1970 and 2004 both for females and males, conditional on sur-

vival to age 40. Source: Canadian Human Mortality Database.

Female Male

Year m b m b

1970 85.3827 10.4673 78.9549 11.7863

2004 89.7651 9.3109 85.8689 10.1301

From table 4.1 it can be observed that the parameter m increase over years,

both for females and males; instead the parameter b , that express the volatility,

decrease. This phenomena are coherent with the so called rectangularization of

the survival function.
1The fitting process has been implemented by using Matlab and employing the function

and the function .
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FIGURE 2.4: Fitted mortality rates qx m, b , solid line, on linear scale, 40 x 110 for

females and males from Ontario, Canada, for year 2004. Source: Canadian

Human Mortality Database.

Figure 2.4 show the fitted mortality rates qx m, b , for every 40 x 110,

for females and males from Ontario, Canada, for year 2004. The superimposed

lines are obtained by using estimations for m and b presented in table 4.1. By

using the same estimation, figure 2.5 show the fitted probability t qx , conditional

to survival at age x 40, for every 40 t 110.

Figure 2.6, finally show the estimated death density at adult aged, for both

a female and a male aged 40. The curves are plotted using the parameters given

in table 4.1. We will use these estimations in the course of the next chapter, in

order to consider a stochastic force of mortality.

2.4.2 Life-contingent claims under stochastic mortality risk

We focus now on life insurance policies. In such a contract the insurer has the

obligation to pay a certain lump-sum or a cash-flow stream contingent on the

survival or the death of the insured person (the policyholder) or, in some cases,

of a group of persons. Then the pay-out of the insurer is a function of the

random variable Tx .

The compensation of the insurer – i.e. the obligation of the insured – con-

sists of the payment of a premium. In certain cases the premium may consist of
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FIGURE 2.5: Fitted probability t qx , conditional to survival age x 40, 40 t 110, for

females and males from Ontario, Canada, for year 2004. Source: Canadian

Human Mortality Database.
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FIGURE 2.6: Estimated death density, conditional to survival age x 40, 40 t 110, for

females and males from Ontario, Canada, for year 2004. Source: Canadian

Human Mortality Database.

a payment stream. In this case payments will also depend on the event that the

insured is still alive at the moment of the payment: more precisely the payment

stream is contingent itself on the random variable Tx .

In the case when the policy is contingent on the survival of the insured,

as noticed by Milevsky and Promislow (2001), it is easy to see that insurance
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companies can be exposed to unanticipated longevity risk. While the chance

that any particular insured is healthier than average can be eliminated taking

advantage of the law of large numbers, the risk that the insurance company

overestimated the population’s force of mortality is more subtle: the longevity

risk cannot be hedged by appealing to the law of large numbers. As an example,

we consider two works proposed by Milevsky, Promislow and Young (2006

and 2005) . This example shows how the law of large numbers breaks down

when pricing life-contingent claims under stochastic as opposed to deterministic

mortality rates.

Along the lines of Milevsky, Promislow and Young, consider a simple one-

period model and think at an insurance contract (endowment policy) which

pays $2 if the annuitant survives to the end of the period, and $0 if the person

dies. The payoff Y of this liability will be

y

�
2 with probability p

0 with probability 1 p

where p is the probability that the person will survive till the end of the period.

The expected value and the variance of y are

�y 2p; var y 4 p 1 p

Consider now N of these policies, with payoffs yi , i 1, 2, . . . , N , respec-

tively. If we simplify the problem and we do not consider that the companies

might issue these claims on an ongoing basis and have other liabilities, the in-

surance company’s aggregate liability at the end of the period is

Y
n∑

i 1

yi

whose expected value and variance are:

�Y 2p N ; var Y 4 p 1 p N

The standard deviation per policy is

1

N
2
�

p 1 p N
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that approach to 0 when N .

Now, if the probability parameter p is unknown – if it is a random variable

itself – it is not anymore possible to add-up the individual variance terms, but an

implicit dependence is created by the common parameter. Consider a common

factor 
p with a symmetric distribution:


p �
p π with probability 0.5

p π with probability 0.5

where we are actually assuming that 
p is a random variable with expected value

�
p p. Take N liabilities yi , defined as before, with a common parameter 
p
instead of p, and consider the aggregate insurance company’s exposure Y . The

expected value and the variance of Y , when the parameter 
p is a symmetric

random variable, are:

�Y 2p N

var Y 4N p 1 p 4N N 1 π2

The standard deviation per policy is

lim
N

�
4N p 1 p 4N N 1 π2

N
2π

Moreover if N 1, the variance of the payout is the same it would be in the

deterministic case: 4 p 1 p N . In other words, as noticed by Milevsky et al.,

the portfolio aggregation creates the extra risk; in fact an individual policy is not

any riskier under a stochastic common factor versus a deterministic parameter.

This example, proposed along the lines of Milevsky, Promislow and Young

(2006), emphasize the issue of stochastic mortality (probability, hazard) rates.

As we shall see in the next chapter, stochastic mortality rates also matter in

relation to the pricing of embedded options in insurance and annuity contracts.

Indeed, also for that reason, their fair valuation is still very complex and expose

insurance company to a considerable risk that is difficult to hedge.
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2.5 Life annuity policies. Longevity risk

From the previous section it is highlighted that life insurance is concerned by

the issue of mortality trend. In what follow I present the life annuity policies.

In fact, they constitue one of the most important insurance product concerned

by longevity risk. See for example the article by Pitacco (2002b). Also, the

notion of life annuity policies will be necessary for next chapter, where the

assessment of embedded options in life insurance contracts is presented. For the

interested reader on insurance contract structures, the references cited above are

still suggested. Also see Booth et al. (2005).

2.5.1 Life annuity policies

In a life insurance contract the insurer has the obligation to pay a certain lump-

sum or a cash-flow stream contingent on the survival or the death of the insured

person (the policyholder) or, in some cases, of a group of persons. The pay-out

of the insurer is, then, a function of the random variable Tx .

The compensation of the insurer – i.e. the obligation of the insured – con-

sists in the payment of a sum called premium. In certain cases the premium

can be divided into a payment stream. In this case, payments will also depend

on the event that the insured is still alive at the moment of the payment: more

precisely the payment stream is contingent itself on the random variable Tx .

A contract that, in return of an initial premium, pays regular payments as

long as the policyholder is alive, is named annuity. For a person aged x, if the

annuity consists in a payout of one dollar at the end of every year as long as the

insured is alive, the insurance company face on the following random variable

Y v v2 v3 vT

where v 1 1 r and r is the discount rate and very often it can be thought

equal to the the market interest rate. We define the random variable T as follow:

T k k 1 Tx k , k 1, 2, . . .



28 Human mortality and longevity risk in life insurance Sec.

We define the net premium of an annuity contract to be the expected value

of Y . To this end we recall that

P{z Tx z t} z px t qx z

hence,

�Y v1
1 px 1qx 1 v1 v2

2 px 1qx 2 v1 v2 v3
3 px 1qx 3 . . .

and rearranging,

�Y
∑
i 1

vi
i px

∑
i 1

i px

1 r i
(2.8)

Notice that the previous series is convergent since vi
i px v i and v 1,

i 1, 2, . . . Also �Y is a function of the age x of the annuitant.

In the present work I will consider a continuous-time environment. To this

end, it is necessary to generalize the definition of a life annuity policy consider-

ing a contract that pay out at a continuous compounded unitary rate per year.

In particular, considering continuous compounding, we have

�Y

∫
0

∫ t

0

e r s ds d
�

t qx

� ∫
0

e r s
s px ds

�Y takes into account just the annuity payout. For that reason it is called

net single premium. In order to arrive at a market price for the annuity policy,

it is common to consider – see Milevsky (2001) – a proportional insurance load

�. It will contemplate all expenses, taxes, commissions, and distribution fees.

Therefore, in a discrete time setting, for a person aged x, the market price ax ,

of an annuity that insure an unitary amount for the end of each period, is the

value

ax 1 �
∑
i 1

i px

1 r i
(2.9)

and in a continuous-time setting, the value of an annuity with a constant unitary

rate of payment is

ax 1 �
∫

0

e r s
s px ds (2.10)
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Since I will focus just on continuous time, I will not distinguish between the

two cases using different symbols. Otherwise, in the specialized literature, it is

common to denote by ax the value of an annuity with instantaneous compound-

ing. Also notice that generally, the load � is supposed to depend on the age x

of the annuitant. Herein a constant discount rate is assumed over the time. In

what follow, the actuarial present value of an annuity is obtained setting � 0.

For continuous life insurance annuities an explicit expression for ax is given

by Carriere (1994a). He finds that for Gompertz’s mortality

ax 1 � b exp{bµx r x m } Γ�bµx , r b
�

where Γ is the left-truncated Gamma function defined as follows:

Γ(t , α)
∫

t

uα 1e u du, t 0, α R

Consider an individual with a wealth W 0. She can buy a quantity W ax

of annuity policies. For example, it means that in a continuous-time setting,

an agent endowed with an initial wealth W , can assure herself a continuous

cash-flow stream at a rate of H W ax , for the rest of her life. The so called

conversion rate is defined as

h :
1

ax

(2.11)

and it represents the extent of the payout stream once an unitary wealth is con-

verted into an immediate life annuity for a person now aged x. It is clear that a

given conversion rate h also imply a given technical rate rh by the relation:

1

h
ax 1 �

∫
0

e rh s
s px ds (2.12)

Notice that, as we shall see in the next section, insurance companies often

guarantees their policyholders to convert at maturity an accumulated wealth

into a life annuity at a fixed rate. For example, typical rate in the UK was to con-

vert a cash value of £1,000 into a £111 annuity per annum, i.e. h 1 9. Hence,

looking at the equation above, the insurer actually guarantee the policyholder
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an option on both the future interest rates and mortality rates: Improvements

in mortality rates and in the longevity risk make insurance companies exposed

to a non-pooling risk, hard to hedge.

Remark 2.1. Equations (2.10 and 2.12), for a load � 0, can be rewritten as

follows:

ax

∫
0

e 
r s
s px ds

where we set 
r : r log 1 � . In this way it is always possible to write the

market price of a fixed unitary immediate life annuity, as its actuarial present

value, under an convenient discount rate 
r . For this reason next chapter does

not consider proportional insurance loads.

2.5.2 Longevity risk

Demographical trends imply a longevity risk for annuity products. Olivieri

and Pitacco (2005 and 2001) emphasize how past mortality experience clearly

reveals trends in the age pattern of mortality. In many countries, a decrease in

mortality rates (in particular at adult and old ages), an overall increase in the

most probable age of death (i.e. the Lexis Point), and an increase in the expected

lifetime (both at birth and at adult and old ages) are important aspects of such

trends. Improvements in medical knowledge and surgery, smoking habits and

prevalence of some illnesses affect those tendencies. However, actuarial calcula-

tions concerning pensions, life annuities and other living benefits are based on

the estimations of survival probabilities extended over a long horizon.

It is comprehensible that accurate methodology for the projections of mor-

tality tables are required: any mortality table cannot lead to a suitable evaluation

of futures mortality rates even when they are constantly updated: Even when

a projection method is considered, deviations and over -estimations could arise.

Those errors can be either non systematic deviations – that imply a pooling risk

for the insurer, that vanish if a large cohort of individuals are considered – or

a more subtle systematic variation – that cannot be eliminated considering a

larger collectivity. The latter phenomenon leads to a non-pooling risk, whose
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monetary impact on the insurer cash flows increases if a larger number of poli-

cyholders is kept in view.

Mortality trends worldwide and the related longevity risk are analyzed by

Rütterman (1999), Macdonald et al. (1998) and Stallard (2006); also Willets

(1999) and Willets et al (2004) survey the mortality improvement in the United

Kingdom. The main issue coming from those contributions – mostly concern-

ing people from developed countries – is that the mortality trends are improving

where both a “rectangularization” and an “expansion” are observed. Moreover

the improvements are substantial over the age of 40 (lesser improvements rela-

tively to females). Mortality is also improved for people in their 60s, that usu-

ally purchase insurance products with guaranteed options. Causes of death are

changed, in fact violent and accidental causes are more typical for younger lives,

whilst heart diseases and cancer are dominant for individuals aged 40.

2.5.3 Payout life annuities. Post-retirement incomes

In next chapter we will consider an equivalent valuation of guaranteed annuity

options – whose the contract description is introduced in the next section –

from the part of the insured. The important model of optimal annuitization

(purchasing) policy introduced and developed by Milevsky and Young will be

recalled. Even if next chapter focus on annuities that assure a fixed payout, it

is worth, in the present section, to make clear some concerns over life payout

annuities, referring to the part of the annuitant.

In Chen and Milevsky (2003), the problem of determining an optimal as-

set allocation mix with payout annuities is considered, emphasizing that the

investor needs to make their own decisions on what products should be used

to generate income in retirements. We do not intend to go deep on this prob-

lem but we just want to end the present section offering a review of costs and

benefits concerning payout annuities. In particular, two important risk factors

have to be considered: the financial market risk and the longevity risk. Pay-

out annuities reduce the probability of outliving wealth and hedge against the

longevity risk. However, the inflation rate erode the payments assured by a

fixed payout annuity and investors cannot trade out the fixed payout amount
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once it is purchased. Instead variable payout annuities offer payments that fluc-

tuate in value depending on some underlying variables, but they may present a

financial risk. The contribution offered by Chen and Milevsky, to which the

reader is addressed for more details, develop a model for optimally allocation

investment assets within and between these two different categories, maximiz-

ing a suitably defined objective function. In another framework, Charupat and

Milevsky (2002) show, that under some conditions, the optimal asset allocation

during the annuity decumulation phase is identical to the accumulation phase,

which is the classical Merton solution. In this model authors do not take into

account the issues when and how much to annuitize, focusing on the asset allo-

cation within the annuity contract.

2.6 Guaranteed annuity options (G.A.O.s)

We introduce here the concept of guaranteed annuity options and we offer a

short overview to the so called implicit options in life insurance. Instead, in

section 2.6.2, we offer a more deep overview about the literature concerning

the valuation of these product that influence the life insurance company risk.

For the moment we refer to Boot et al. (2005, sec 3.6 and 6.7), O’Brien (2002),

Hardy (2003), Gatzert and Schmeiser (2006).

Policyholders may be granted the right to additional benefit, by some con-

tracts, to be taken at their choice. These options generally are of significant

value. As mentioned by Gatzert and Schmeiser (2006), participating life in-

surance contracts are contracts featuring death and survival benefits as well as

participation in the return generated by the insurer’s investment portofolio.

Numerous guaranteed and rights may be contained in these type of contracts.

Also these option can be verty valuable and can represent a significant risk to

the insurance company. Most common implicit (also called “embedded”) option

can be divided into rights and guarantees. I will focus on a life insurance policy

embedding a guaranteed annuity option, that is classified as a right. For more

details concerning other kind of guarantees and rights we address the reader to

Hardy (2003, chpters 1, 6, 12 and 13) and Milevsky (2006, chapter 11)
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2.6.1 Introductory overview

In the present section and in the course of the next chapter, I focus on guaranteed

annuity options (G.A.O.). Insurance companies often include very long-term

guarantees in their products, which can turn out to be very valuable. Guar-

anteed annuity options are options available to holders of certain policies that

are common practice in U.S. tax-sheltered insurance product and in U.K. retire-

ment savings. In particular, see O’Brien (2002), the policyholder pays either a

single or a regular premium, securing a guaranteed benefit at a specific age, that

may coincide with the retirement age. Then, the guaranteed benefit can consist

of either an amount of cash, with an option to convert to an annuity at a guaran-

teed rate; or an amount of annuity, with an option to take cash as an alternative

at a guaranteed rate.

In what follows just G.A.O. that guarantee to convert a certain accumulated

amount of cash into an annuity at a guaranteed rate will be considered. These

option guarantees that a given (minimum) conversion rate will be applied at the

time of conversion if the company’s normal conversion rates are found less fa-

vorable at that time. In other words, under a guaranteed annuity option, the

insurance company guarantees to convert a policyholder’s accumulated funds

to a life annuity at a fixed rated h, when the policy matures, see Boyle and

Hardy (2002 and 2003). Significant change in economic and investment condi-

tion, between the time at which the option is purchased and the time at which

it is exercised, can lead to a very significant cost to the company: The value

of these options is influenced by the interest rates and by the longevity risk

which has not been accounted for a long time and only recently and increasing

number of contribution is concerned with this issue, as Gatzert and Schmeiser

(2006) precise. As remarked by Milevsky and Promislow (2001), the company

has essentially granted the policyholder an option on two underlying stochastic

variables; future interest rates and future mortality rates.

The rate implicit in the G.A.O.is a function of the interest rate and the haz-

ard (mortality) rate. To understand the effect of the improvements in longevity,

consider the following example, where the discount rate is taken as fix to a cer-

tain level r . Notice that in the example that follows I just consider the life table
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estimations for years 1970 and 2004; the purpose of the easy computations that

follow is to highlight the strong impact of longevity risk for insurance com-

panies, without using any projection methods. Two different superscript for

the probability will highlight the moment which the different estimations are

taken into account. For the sake of simplicity I consider just here a discrete time

setting.

Example 2.1. Suppose in 1970 a female aged 31, from the province of Ontario,

decided to purchase, for a certain premium, a pension plan that will accumulate

untill her time of retirement, say 2004, a wealth W $100,000 (if she will be

alive). Also immagine that the insurer, looking at the available life tables at that

time, decided to write a G.A.O. that will assure a payout of $11,000 per annum.

Considering a load � 7%, the insurer actually guaranteed an technical rate of

r 5.74% that is implicitly given by the following equation

100000 11000 1.07
∑
i 1

34 i p ’70

31

1 r i
(2.13)

where i n px is computed using equations (2.2 and 2.3) and the estimated survival

function from the available table of 1970. Also the “extremal” age is set at level

ω 110 1 (i.e. it is assumed that all the lives aged 110, will die during the next

year). In 2004, at the moment of the conversion, if the individual (if alive) will

decide to exercise the option, she will have the right to convert the wealth of

$100,000 for a fixed immediate life annuity of $11,000 per annum. Now, from

the following relation, using the survival table available in 2004, one can com-

pute the technical rate that the insurer is going to guarantee to the individual for

the rest of her life, solving for r the following equation:

100000 11000 1.07
∑
i 1

i p ’04

65

1 r i
(2.14)

that imply r 7.94%. In other words the improvement in longevity implicity

affect the interest rate guaranteed in options to annuitise. In the case that the

interest rate in the market is less that 7.94% and the insurer has to make up the

difference.
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2.6.2 Preliminary concerns on valuing guaranteed annuity options

Ending this review on guaranteed annuity options, we present here some pre-

liminary concerns over these options. In particular an outline of some ap-

proaches to value guaranteed annuity options is offered.

The contribution given by Bolton et al (1997) focus on reserving for annuity

guarantees. However it is important to recall the situation at that moment. In

particular they write: historically many pension contracts issued by life compa-

nies contained options to convert the cash proceeds of the policy on retirement

into annuities on terms guaranteed in advance. With relative low interest rates

and improving mortality, the guarantees may be very valuable. Moreover they

notice that up to 1997 no industry wide attempt to analyse the nature of the

guarantees and the approaches adopted by companies to reserving for them. In

that contest, the Report of the Annuity Guarantees Working Party an analysis

was made of the implications of guarantees, and two alternative approaches to

measuring the value of the guarantees were considered, concerning the required

reserves – under various stochastic investment models – and a marked based

approach to hedge guarantees.

In the contribution given by O’Brien (2002) five issues of resolution are pro-

posed where, in particular, the possible investment strategies, the solvency of

the insurance companies and the G.A.O. liabilities are taken into account. They

conclude remarking that guaranteed annuity options are a significant issue both

for policyholder – for whom they provide guarantees, whenever or not this re-

turns out to be valuable at retirement, and it is implied that such policyholder

should pay for this benefit – and for some life offices.

Usually risk-neutral valuation models are used for valuing embedded op-

tions in life insurance contracts. As recalled by Gatzert and King (2007), there

are financial and actuarial approaches to handling embedded options: while the

former is concerned with risk-neutral valuation and fair pricing, the former fo-

cuses on shortfall risk under an objective real-world measure, which plays an

important role in insurance risk management and practice. In particular in their

contribution authors analyze the interaction between these two approaches.

The pioneering approach of Milevsky and Promislow (2001) both interest
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rate risk and mortality risk are taken into account. In particular authors assume

that at a given time, the force of mortality, for an individual with a certain age,

is viewed as a random variable forward rate, whose expectation is the force of

mortality in the classical sense. As recalled by Bacinello (2006), the choice of

suitable stochastic models for longevity risk and for the term structure of inter-

est rates is absolutely necessary. In the same line, the framework proposed by

Dahl (2004) – reviewed in section 3.5 and concerning the stochastic mortality

– views the motality intensity as a stochastic process, which is adapted to some

filtration. In particular he focus on a model for mortality intensity such that it

is described by a diffusion process characterized by what he call an affine mor-

tality structure. Following this line Ballotta and Haberman (2006), extending

the contribution given by Ballotta and Haberman (2003), analyze the behavior

of pension contracts with guaranteed annuity options to the case in which mor-

tality risk is incorporated via a stochastic model for the evolution over time of

the underlying hazard rate. In particular the find that – considering a stochastic

component governed by an Ornstein-Uhlenbeck process – leads to a reduction

in the expected value of the guaranteed annuity option, when the valuation

formula relates to an expected present value obtained by the methodology of

risk-neutral valuation.

A different approach, concerning the pricing and the hedging for policies

with guaranteed annuity options, is offered by Wilkie, Waters and Yang (2003)

and Pelsser (2003a, 2003b). These approaches focus on modelling the annuity

price. In particular Wilkie et al. investigate the feasibility of using option pric-

ing methodology to dynamically hedge a guaranteed annuity option. In Pelsser

a market value for with-profit G.A.O., using martingale modelling techniques, is

derived and, he shows how to construct a static prelicating portfolio of vanilla

swaptions that replicate the with-profit G.A.O.

Finally a recent framework from Biffis and Millossovich (2006), emphasizes

that the exercise decision made by the policyholder may not be rational from

the insure’s point of view.
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2.7 Conclusions

Recently, the literature on insurance premiums and mortality risk considers

models with a financial market structure and where dynamic trading is allowed.

In the next chapter we will recall and focus on some contributions on insurance

risk pricing and on optimal annuitization policies. Therein, stochastic finan-

cial market models and indifference arguments are considered. To this end, the

present chapter review some fundamentals on actuarial theory, that will be used

in the field of the models presented in the next chapter. Also, stochastic mor-

tality models together with stochastic financial models have been introduced in

Milevsky and Promislow (2001): Liabilities concerning the embedded options

in life insurance contracts have to be seen from a more comprehensive point of

view that considers, in the same environment, the financial risk, the systematic

mortality risk and the unsystematic mortality risk.





CHAPTER 3

THE POLICYHOLDER’S VALUATION MODEL FOR

THE GUARANTEED ANNUITY OPTIONS

This chapter proposes an indifference valuation model in order to value guar-

anteed annuity options, from the policyholder’s point of view. Before doing

that, in section 3.2, it is offered a review of the literature regarding models on

optimal annuitization policy and optimal annuity purchasing, where I recall

some important contributions of Milevsky and Young. Some of the conclusions

and facts arising from those contributions will be used in the model I propose

herein. For instance, two possible arrangement will be considered in order to

value guaranteed annuity options. Moreover, the reservation value for these op-

tions is analyzed at the time when the insurance policy is purchased and, then,

both at the time of conversion and during the accumulation period. In order

to do that, a stochastic financial and actuarial market structure is considered.

Assuming constant interest and hazard rates, explicit solutions regarding the

stochastic problems that follow, are computed and implemented in the field of

next chapter. The present chapter ends considering the analytical complications

arising in a model where stochastic mortality and interests rates are taken into

account.

3.1 Why an indifference model?

The end of the previous chapter review the main approaches followed in pricing

the options “embedded” in life insurance contracts. All of them are based on the

39
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existence of a risk neutral measure of probability.

The value of the conversion rate of a G.A.O.depends on the assumed in-

terest rate and the assumed mortality rate: At the moment of writing the con-

tract, the insurance company faces to the central problem of defining an accurate

mortality base. Once it is done, the company can propose a conversion factor

h (see section 2.5.1). Moreover, the decline in long-term interest rates and im-

provements in mortality rates are factors that cause the liabilities associated with

these guarantees. In particular, the mortality risk makes the insurance markets

incomplete.

The model proposed below is an indifference argument for pricing implicit

options in life insurance contracts. Indifference models are built around the

investor’s attitude toward the risk. They are now very common in the finan-

cial literature that concerns incomplete markets with non-traded assets. In a

dynamic setting, based on utility maximization criteria and on the concept of

certain equivalent, the indifference pricing methodology was initially proposed

by Hodges and Neuberger (1989), that suggested the concept of the so called

reservation price. For an overview, I address the reader also to the following

contributions and to the related bibliography: Henderson and Hobson (2004),

Musiela and Zariphopoulou (2004), Zariphopoulou (2002).

Recently Young and Zariphopoulou (2002) and Young (2003), extended the

priciple of equivalent utility, formulating, in a dynamic setting, the pricing prob-

lem for the insurance risk as a stochastic control problem. This framework

connect financial mathematics and actuarial mathematics. The innovative idea

is the consideration that both a rational insurer and a rational insured can go

in the financial market and trade dynamically. In other words, a stochastic fi-

nancial market in the standard actuarial models is introduced. Contributions

that followed this approach for dynamic insurance risk are proposed by Moore

and Young (2003), Jaimungal and Young (2005), Ludkovsk and Young (2006 and

2008), Ma and Yu (2006).

In what follows a indifference based model for valuing guaranteed annuity

options in life insurance contracts is offered. This argument will be applied

to G.A.O.s and we are willing to consider analogous models for other kinds
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of “embedded”options, for future research. To my knowledge an indifference

method for valuing guaranteed annuity options is new and never developed be-

fore. Moreover, I believe that such a new approach gives new prospectives that

should taken into account in order to describe such an option. In fact, the ad-

vantage of implementing an indifference is to consider the theory of optimal

asset allocation toward the end of the life cycle, beside the mathematical models

regarding guaranteed annuity options. This ways offer a larger sight over the

nature of such options. For this reason, in the course of next section I review

the theory of optimal annuitization policies.

3.2 A review of optimal annuitization policies

For the purpose to introduce an indifference model for the evaluation of im-

plicit options in life insurance contracts, it is necessary to spend some words

and to review some important contributions offered by: Milevsky (1998, 2001),

Milevsky and Young (2002, 2003a, 2007a, 2007b), Milevsky, Moore and Young

(2006). and also, Blake, Cairns and Dowd (2002). Considering an individual

during the retirement years, these papers focus on the question when and if

the agent will proceed to purchase a life annuity, by paying a non refundable

lump sum to an insurance company in exchange for a lifelong consumption

stream that cannot be outlived. In particular, referring to the definition given

by Milevsky and Young (2007a), in what follow it is reviewed both the institu-

tional all-or-nothing arrangement – where the annuitization can take place just

at one distinct point of time – and also an open-market structure – where individ-

uals can annuitise a fraction of their wealth at distinct points in time, locating a

general optimal annuity purchasing policy. However I will mostly focus on the

first setting.

Consider an agent at time T when her retirement begins. At this instant

in time she face her wealth WT 0. Also assume that the individual has the

opportunity to invest in a riskless asset whose price at time s T , for some
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r 0, is described by the following dynamics:�
dξs rξs ds

ξT ξ 0
(3.1)

She can also trade dynamically in a risky asset whose price at time s T

obey to the following dynamics�
dSs µSs ds σSs dBs

ST S 0
(3.2)

where 0 r µ, σ 0 and where {Bs} is a standard Bownian motion in

the filtered probability space
�
Ω,� , {�s} , P

�
, satisfying the usual hypotheses as

defined by Protter (2005).

Let Ws be the wealth at time s of the inverstor and let πs the amount of

the investment in the risky asset. It is assumed that the agent can consume at a

instantaneous rate cs , self-financing herself; henceforth the amount allocated in

the riskless asset will be Ws πs . The investor’s wealth dynamics, if he or she

does not purchase any annuity at time T , will be

dWs r
�
Ws πs

�
ds πs

�
µds σ dBs

�
cs ds�

rWs µ r πs cs

�
ds σπs dBs

(3.3)

under the initial condition WT wT 0. Strictly speaking, notice that we

should denote de dependence of both {Ws} and its associated differential opera-

tor, on the control laws {cs} and {πs}.
Assume that the processes {cs} and {πs} are admissible in the sense that they

are adapted to {�s}, square integrable, the equation above has an unique solu-

tion and also that cs 0, s T , see, for example, Björk (2004) and Øksendal

(2003). Also notice, as remarked in the papers cited above, that herein only a

simple geometric Brownian motion is considered and a constant risk-free rate.

The latter assumption will be removed in section 3.5, however, for a bibliogra-

phy concerning richer models, see for example Milevsky and Young (2003a).
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3.2.1 The institutional all-or-nothing arrangement

Consider an individual aged x at time 0. In a market where just the all-or-

nothing arrangement is allowed, at some point in time τ, the individual is asked

to annuitise all his or her wealth Wτ in a lump sum. Then, following the line of

Milevsky and Young (2007a), the associated value function of this problem is

U wT , T : sup
{cs ,πs ,τ}

cs 0, s T

�
�∫ τ

T

e r s T
s T pS

x T
u cs ds

∫
τ

e r s T
s T pS

x T
u c ds

�����WT wT

⎤⎦ (3.4)

where the superscript to the survival probability denote that we consider the

annuitant’s subjective evaluation of mortality.

Once the individual decide to purchase the life annuity at time τ, having the

current wealth Wτ, c denote the instantaneous consumption stream rate paid by

the insurer. In particular we have

c :
Wτ

aO

x τ

where aO

x τ
denote the actuarial present value (net of any insurance loading:

� 0) of a life annuity that pays continuously a constant unitary rate, to an

individual who is aged x τ at the time of purchase (see equation 2.10). I recall

– see remark 2.1 – that there is no loose of generality assuming � 0. Finally,

the superscript O denote that this value is computed employing an objective

hazard rate to calculate the survival probabilities. We shall use the superscript S

if the individual’s subjective hazard rate is applied.

Notice that in this model it is assumed that the individual discounts con-

sumption at the riskless rate r . However, denoting by λ the instantaneous force

of mortality implied by p,

e r s T
s T pS

x T
exp

� ∫ s T

0

r λS

x T ϑ
dϑ

�
(3.5)
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if in (3.4) we want to use a subjective discount rate, say υ, this is equivalent to

considering a different subjective force of mortality defined as


λS : λS υ r

The second integral in the expectation above can be rearranged as follow:

u c

∫
τ

e r s T
s T pS

x T
ds u c eτ T

∫
0

e r z
z τ T pS

x T
dz

the second term being obtained changing variable s z τ. Now, considering

relation (2.2) we get

z τ T pS

x T τ T pS

x T z pS

x T τ T

that led us to write, remembering equation (2.10) with � 0:

U wT , T : sup
{cs ,πs ,τ}

cs 0, s T

�
�∫ τ

T

e r s T
s T pS

x T
u cs ds

e r τ T u c τ T pS

x T
aS

x τ

����WT wT

�
(3.6)

where c is computed, as shown before, using the objective probability seen by

the insurer, while the last factor pS is computed on the basis of the annuitant’s

subjective assessment for her mortality.

Problems (3.4 and 3.6) belong to an important class of stochastic optimal

control problems. The value fucntion U require to choose both an optimal con-

sumption and investment policy {cs , πs}, but also the optimal random stopping

time τ. For a general presentation of such a maximum problem and the related

solution techniques using Hamilton Jacobi Bellman equation, see Krylov (1979)

and Øksendal (2003, Chap. 10.4 and Chap. 11). Setting

g (Wτ, τ; T ) e r τ T u c τ T pS

x T
aS

x τ
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and recalling that the discount factor can be written as in (3.5), the value func-

tion can be finally written as

U y, s sup
{cη ,πη,τ}
cη 0, η s

�
�∫ τ

s

u cη exp

� ∫ η s

0

r λS

x s ϑ
dϑ

�
dη

g (Wτ, τ; s)
����Ws y

�
(3.7)

Let s T be a fixed point in time and y a fixed point in the state space and,

for the dynamics (3.3), consider the initial condition Ws y. the differential

operator is defined as�� c ,π
1

�
y, s : [r y µ r π c] ∂

∂ y

1

2
σ 2π2 ∂ 2

∂ y2

where c : cs , π : πs . Indicating with Us , Uy and Uyy the partial derivatives

of U with respect to the first and the second variable, provided that they exists

continuous, the following three conditions have to be satisfied:

sup
c 0,π

�
Us y, s

�� c ,π
1

U
�

y, s u c
�

r λS

x s

�
U y, s

�
0 (3.8)

g y, s ; s U y, s 0 (3.9)

inequality (3.8) being satisfied with equality whenever (3.9) is strict (3.10)

From relations above we get

Us y, s sup
c 0,π

�
[r y µ r π c]Uy y, s 1

2
σ 2π2Uyy y, s

u c
�

r λS

x T

�
U y, s

�
0 (3.11)

and, recalling that in the Bellman equation (3.11) we value U at the starting time

s , i.e. the initial time T is assumed to be s , the condition g y, s ; s U y, s 0

is

U y, s u c aS

x s
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where a strict inequality has to imply the equality in (3.11). This problem has

been solved by Milevsky and Young (2003a and 2007a). In particular, using con-

ditions above, the authors show that, in the case in which the utility function

exhibits constant relative risk aversion

u c

u c
c γ : constant

solving problem (3.6) is equivalent to assuming that the optimal stopping annu-

itization time is some fixed time in the future τ. Based on that value of τ, one

finds the optimal consumption and investment policies. Finally, one finds the

optimal value τ T . Moreover, the authors show that the feature of constant

relative risk aversion utility that drive this result is that wealth factors out of the

value function; therefore, the stopping time is deterministic. In particular, in

follows we consider an utility function u given by

u c
1

1 γ
c 1 γ , γ 0, γ 1 (3.12)

and, for γ 1, u is the logarithmic function. Looking for a solution of the

form U y, s 1 1 γ y1 γαγ t authors obtain the optimal consumption

and investment policies, given in a feedback form by

C
s

c
�

W
1, s

, s
� W

1, s

α s
; Π

s
π
�

W
1, s

, s
� µ r

σ 2γ
W

1, s
(3.13)

where, setting δ1 : r 1

2
µ r 2 γσ 2 , for s τ, function α is given by

α s

�
aS

x τ

��
aO

x τ

�1 γ
�1 γ

e d1 τ s
�
τ s p S

x s

�1 γ

∫ τ

s

e d1 η s
�
η s p S

x s

�1 γ
dη (3.14)

and for s τ, we have

α s

�
aS

x τ

��
aO

x τ

�1 γ
�1 γ

(3.15)
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where d1 : r γ δ1 1 γ γ .

Now, the authors also show that differentiating 
U τ U w, T ; τ with

respect to τ, lead us to find the optimal time τ of annuitization. In particular

we have

d

dτ

U ∝

⎡⎢⎣ γ

1 γ

!
aS

x τ

aO

x τ

" 1 γ γ
1

1 γ

aS

x τ

aO

x τ

⎤⎥⎦ aS

x τ

$
δ1

�
r λO

x τ

�%
therefore, if the right sight is negative for all τ T , then it is optimal to an-

nuitize immediately, getting U w, T 
U 0 . On the contrary, if thre exists

a value τ T such that the right sight of the previous expression is positive

for all T τ τ and is negative for all τ τ , the it is optimal to annuitize

at time τ , having U w, T 
U τ . Herein the artifact of CRRA utility is

that the decision to annuitize is indipendent of one’s wealth. Also observe that

in the particular case that the subjective and the objective force of mortality are

equal, λ : λO λS , expression above reduce to

d

dτ

U ∝ δ1

�
r λx τ

�
then – if the force of mortality is increasing with respect to τ – then either

δ1

�
r λx τ

�
, i.e. it is optimal to annuitize at time T , or δ1

�
r λx τ

�
,

from which it follows that there exists a time τ T , where it is optimal

to annuitize. In other words, the optimal time to purchase a fixed immediate

life annuity is when

λx τ

1

2γ

&
µ r

σ

'2

3.2.2 The life cycle puzzle

The process of annuitization, which require to pay to an insurance company

a nonrefundable lump sum provide a longevity insurance. In particular a con-

sumer that will purchase a life annuity, instead of creating his or her own con-

sumption stream, will never run out of money. Empirically, however, it has
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been observed that most agents are reluctant to purchase actively life annuities.

In Milvesky (2001 and 1998) the references and a more detailed explanation con-

cerning this debate can be found. In fact, using his words, this phenomena

is especially puzzling within the paradigm of the Ando and Modigliani (1963)

life cycle hypothesis, or Yaari (1965), under which individuals would seek to

smooth their lifetime consumption by annuitizing wealth. Life annuities can

“smooth” and “guarantee” consumption for the rest of one’s natural life.

3.2.3 The open-market structure

In an unconstrained market structure the assumption is that the annuitant con-

sider a more general annuity purchasing process {Ψs}, instead of assuming that

the individual will annuitize all his or her wealth in a lump sum at some point

in time τ . For instance, the individual is allowed: i. to possess pre-existing an-

nuities; ii. to annuitise only a portion of her wealth at a given time; iii. to buy

annuities more than once in lump sums or even continuously; iv. to consume

something other than the annuity income after annuitization.

Such a model has been proposed by Milevsky and Young (2003a, 2003b,

2007a), where they define Ψs as the non-negative annuity income rate at time s

after any annuity purchases at that time. They also assume that {Ψs} is right-

continuous with left limits. In particular it is noticed that the source of this

income could be previous annuity purchases or a pre-existing annuity, such a

social security or a pension income. If we assume that at any point in time

s T the individual can purchase an annuity at the price aO

x s
per dollar of

annuity income, the dynamics of the wealth process is given by:

dZs

�
r Zs µ r πs Ψs cs

�
ds aO

x s
dΨs σπs dBs (3.16)

under the initial condition ZT z 0. The negative sign used for Zs and

Ψs , denote the left-hand limit of those quantities before any annuity purchase.

In this open-market structure the annuitant is supposed to maximize the

expected utility of discounted lifetime consumption as well as bequest, over ad-

missible {cs , πs , Ψs}. In particular, admissible control {Ψs} are those that are
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non-negative and non-decreasing. The latter property can be interpreted as re-

quiring the irreversibility of the annuity purchases. The optimization problem

is then expressed by the following value function

U z z, ψ, T : sup
{cs ,πs }

cs 0, s T

�
�∫

T

e r s T
s T pS

x T
u
�

cs

�
ds

e r Θ T v (ZΘ)
����ZT z; ΨT ψ

�
(3.17)

where Θ is the random time of the individual’s death and v is a strictly increas-

ing, concave function of bequest. The same remark which has been made above,

concerning a subjective discount rate, is still good. Notice that U can be written

in a more useful form where the bequest function is considered in the integral.

The way of doing that is similar to what is done in section 3.3.2.

It is proved by Milevsky and Young that the value function U z is jointly

concave in z and ψ, it is strictly increasing with respect to both z and ψ, and it

is continuous on D : { y, a, s : y 0, a 0, s 0}. Moreover they show that

U is a constrained viscosity solution on Dof the following HJB equation

0 min
(�

r λS
�

U Us (s y a)Uy max
π

$
1

2
σ sπ2Uyy µ r Uy

%
max

c 0

$
cUy u c

%
λx s v y ; aO

x s
Uy Ua

)
(3.18)

For specialized results – concerning the solutions of previous equation and

the equivalence of the optimal annuity purchasing problem and the optimal

consumption and investment problem, in the presence of proportional trans-

action costs – I remaind to the frameworks cited before. Just recall that the

main results pointed out by the authors is that an utility-maximizing investor

will initially acquire a base amount of annuity income and then will annuitise

additional amounts if and when their wealth-to-income ratio exceeds a certain

level. Also, individuals will annuitise a part of their wealth as soon as they have

the opportunity to do so, having as an effect that, as they become older, more

annuities are purchased.
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3.3 Indifference valuation for the guaranteed annuity option I

The present section propose the indifference valuation model for the guaran-

teed annuity options. Herein I assume an institutional all-or-nothing arrange-

ment and deterministic hazard (mortality plus interest) rates. In the course of

next chapter I present the analytical results and the closed formulas related to

the indifference model presented herein. Also, sections 3.4 relaxes some of the

hypotheses that are assumed in the course of the present arrangement, that we

are willing to consider for future research.

Recall that the assumed financial market follows the lines of Merton (1969,

1971, 1992) and it can be generalized – at cost of less analytical tractability

– by the contributions provided, for example, by Trigeorgis (1993), Kim and

Omberg (1996), Koo (1998), Sørensen (1999) and Wachter (2002).

Next, we shall consider an agent that holds a life insurance product written

at time t0 0. It is assumed that that this policy may embed a guarantee annuity

option that gives the right to convert, at time of maturity T t , some policy-

holder’s accumulated funds to an immediate life annuity for a fixed conversion

rate h. I also refer to the period T t0 as the accumulation period.

The pricing model for guaranteed annuity options is developed in two steps.

First, I introduce the main considerations and the analysis of the annuitant’s

options at time T . The second step moves the valuation model at time t

t0, T . A paradigm in order to provide the time T and t0 valuation for the

guarantee annuity option is provided in section 3.3.4.

3.3.1 Main considerations

Motivation: Why the need of an equivalent utility argument?

An indifference argument for the valuation of implicit options at time t0 t

T , offers a specific advantage in approximating the extent of liabilities concern-

ing a insurance policy. A guaranteed annuity option can be thought as an option

defined on the future interest rates and the future mortality rates. However, I

believe that the choice to exercise such an option should also depend on the optimal

asset allocation choice toward the end of the life cycle, based on the policyholder sub-



3.3. Valuing guaranteed annuity options using the principle of equivalent utility 51

jective assessment of her future survival probability. In fact, as suggested by Boyle

and Hardy (2003). The choice between to exercise the option or not – that actu-

ally imply a longevity plus interest risk for the insurer – can also depend on the

individual preferences on whether to annuitise all the accumulated funds immedi-

ately at time T and on her subjective expectancy for her future life time. Clearly

the insurer exposition shall also depends on this attitude. The facts mentioned

above may not be seen if we consider an analysis of a guarantee annuity option

at time of conversion, on arguments concerning just the interest rate and the

force of mortality.

Relevant matters at time T and t0.

The indifference approach for guaranteed annuity options proposed in the present

section is based on two steps. Essentially they are motivated by the following

remarks:

I. In order to simplify the analysis, I make the assumption that the right

represented by the option can be exercised just at time T and not over a

given period of time. Thus, the first consideration concerns the nature of

the G.A.O. at time T : An individual can exercise such an option just at that

time otherwise this right will be destroyed.

II. A second remark is necessary to give us a way to formalize our model at

time t . We can ask: How much would the annuitant wish to pay, at time t0,

or in general at time t t0, T , in order to get such an option in her plan?

III. Once, at time t0, the individual take the decision to purchase a policy, we

can ask: How much wealth the annuitant wish to accumulate during period

t0, T ?

Remark 3.1. Point III. highlights that at time t0, when an agent choose to pur-

chase a policy, she has to take a decision not only over the typology of the

contract that she wants to buy, but also with respect to the extent of the ac-

cumulated funds that she will accumulate up to time T . The second choice

indirectly act on the importance of the premium that she will pay from t0 to T .
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Remark 3.2. In the sense of point II. the evaluation of the embedded G.A.O. is

made considering also a more difficult matter: the event that the option will be

not exercised at time T .

3.3.2 Valuation at time of conversion

At time T consider an annuitant, currently aged x T , that hold an insurance

policy embedding a G.A.O. to convert some accumulated funds A. Hence, the

agent must decide whether or not to exercise it. If we suppose that the annui-

tant is also currently endowed by a wealth w 0, other than the accumulated

funds A, if she decide to do not exercise the option, we assume that at time T

she withdraws the accumulated funds A and seeks to solve a standard Merton’s

problem given by:

U wT A, T : sup
{cs ,πs }
�
�∫

T

e r s T

s T
pS

x T

u cs ds

�����WT wT A

⎤⎦ (3.19)

under the dynamics (3.3) for the wealth:�
dWs

�
rWs µ r πs cs

�
ds σπs dBs

WT w A
(3.3’)

Assumption 3.1. The previous analysis, regarding the function U , considers an

agent that holds a policy embedding a guaranteed annuity option. We need to

extend our analysis also to a situation in which the annuitant holds a policy

with no guaranteed annuity option embedded in it. It is natural to assume that

the same value function U will represent the expected reward arising from the

only strategy the agent can pursuit, if at time t0 she purchased a plan with no

guaranteed annuity option. In this case, in fact, at time T the agent has not a

right to convert her accumulated funds.
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In the case the individual do decide to exercise the G.A.O., she will receive a

continuous cash-flow stream at a constant rate

H : A h (3.20)

where h is the guaranteed rate (see equation 2.12), where the survival proba-

bility is determined considering the objective mortality assessment from the

insurer point of view (we shall denote this measure by pO ). At time T , once

funds A are converted for purchasing an immediate life annuity, the annuitant

will remain with the wealth w and will receive a continuous cash-flow at a rate

Hs H 0 per annum. This income will affect her consumption stream as

follows

dWs r
�
Ws πs

�
ds πs

�
µds σ dBs

� �
H cs

�
ds�

rWs µ r πs H cs

�
ds σπs dBs

(3.21)

under the initial condition WT w 0, HT H 0. Notice that the same

notation is used to intend a different wealth dynamics. Finally, also notice that

the G.A.O. is written just on funds A, therefore, leaving the agent, at time T ,

with the positive wealth w.

Assumption 3.2. we assume that the agent will not purchase any annuity other

than the one that she has already got at time T exercising the G.A.O..

Under the previous assumption and remarks, the problem that the agent

will seek to solve is described by the following value function

V wT , T : sup
{cs ,πs }
�
�∫

T

e r s T

s T
pS

x T
u cs ds

�����WT wT

⎤⎦ (3.22)

under the dynamics (3.21).

Remark 3.3. A more general model – that I am willing to consider for future

research – is proposed in section 3.4. The hypothesis I make in the present

section are inspired to a “specific” all-or-nothing idea: In order to come to an
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indifference valuation for the guaranteed annuity option, the annuitization is

considered just if the individual decide to exercise such option. Even restrictive,

the strategy described by U , represent, however, an easy way to consider the

scenario described by the assumption 3.1.

Remark 3.4. Value function (3.19) differ from (3.4) recalled in previous section.

In fact, in order to consider an indifference valuation for the guaranteed annuity

option, two comparable value functions are needed. For instance, in the course

of the present arrangement, in order to come to explicit formulas and to take

into account assumptions 3.1 and 3.2, value function U need to be reduced to a

standard Merton’s problem.

We assume the control processes {cs} and {πs} are admissible, in the sense

that they are both progressively measurable with respect to {�s}s T , where�s

is the augmentation of σ
�
Bt : T t s

�
. Also, the following conditions hold

a.s. for every s T :

cs 0 and

∫ s

T

ct dt∫ s

T

π2

t
dt

Considering value function U and V , at time T , a rational individual will

exercise the G.A.O. to convert the accumulated funds w, whenever the follow-

ing inequality holds:

U w A, T V w, T (3.23)

in which the dependency of V on A is indirectly given by the rate H in the

equation (3.21). The previous inequality will be a fundamental part for the

statement of the model at time t , for the evaluation of the G.A.O. during the

accumulation period as follow in the next section.

3.3.3 Valuation at the beginning of the accumulation period

The goal of the present approach is to propose an indifference approach for

valuing guarantee annuity options at every point in time t0 t T . In fact,
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considering time t , it is important to provide an evaluation method for valu-

ing the the implicit option still embedded in life insurance products during the

accumulation period.

Consider an individual that face the opportunity to purchase an insurance

product at time t0 T . To this end, assume that the agent is required to pay an

instantaneous premium at a constant rate P 0, for the accumulation period

t0, T . Also assume that the individual, aged x t0, at time t0, is endowed by

an initial wealth w0 0. Moved by consideration II. we can ask: If the insurance

product does not provide any guarantee to convert the accumulated funds at time

T , how much would the annuitant wish to pay, at time t0, in order to embed a

G.A.O. in her life insurance contract?

Remark 3.5. In some insurance contracts, it can make sense to consider also a

non-constant positive process {Ps}. In this case a tax-shelter plan generally em-

beds some other right other than just the G.A.O. In fact options like Paid-up or

Resumption or again the Dynamic premium adjustment, that are very common

in participating life insurance contracts, may allow the annuitant to customize

a more performant plan, acting on the control {Ps}.
At time t0 the annuitant is asked to make different choices: the typology of

the contract that she wants to purchase (whether or not including the G.A.O.),

and, second, the extent of the accumulated funds that the agent wants to realize

at time T . The second choice actually define the plan the annuitant will finally

purchase and the extent of the premium P . Now, since the actuarial value (with

no loads) of the accumulated funds at time T is

AT :

∫ T

t0

e r T s P ds

choosing an insurance contract that will assure a sum AT is equivalent to choose

a value for P . Actually this is the case when insurers offer to policyholders

different policies at different prices.

Remark 3.6. For the sake of simplicity, I do not consider investment guarantees

for the accumulation period and, in particular equity-indexed annuities or vari-
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able annuities (V.A.s) with guaranteed minimum maturity benefits. For more

details concerning investment guarantees, see Hardy (2003, chapters 1, 6 and

13) and also Milevsky and Posner (2006, chapter 11).

In order to answer the above question, we can make the following

Assumption 3.3. The individual is required to pay a lump sum L at time t0, if

she wants to embed a G.A.O. in her plan.

Remark 3.7. The previous assumption is just formal and it does not affect the

generality and applicability of this indifference. In fact, we could assume that

the agent face the decision to purchase a plan that embed a G.A.O. or not,

under the condition that if she will choose to hold a guarantee option she has

to pay a constant premium at a instantaneous rate, say P2, while if she will opt

for not include any implicit option in her contract, she will required to pay a

rate, say P1. As assumed before, both P1 and P2 are positive and constant in

time, even if the rate P2 at any point t to, T will consist in a part expressing

the accumulation process, say 
P2 t , and a part that express the additional cost

for the G.A.O., say l t . If, now, the annuitant wants to be assured for a final

amount AT , we need ∫ T

t0

e r T s P1 ds

∫ T

t0

e r T s 
P2 t ds

where the premium to be paid P2

P2 t l t is constant, but just the part
P2 t is worth to accumulate the funds AT . Therefore l t actually express

the extravalue that the agent is willing to pay, if she decide to purchase a plan

embedding a G.A.O. In other words we can assume that the present actuarial

value of the option implicit in her plan is∫ T

t0

e r s t0 l t ds

and, setting L to be equal to the integral above, it makes clear that, in the course

of the present context, assumption 3.3 is just a formal hypothesis.
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Previous hypothesis lead us to present a model where, for period t0, T , the

same wealth controlled dynamics can be considered independently of having

embed the G.A.O. in the insurance product. In fact – keeping in mind that the

annuitant, at any point in t0, T can dynamically trade in the financial market

– her controlled wealth dynamics will be

dWs r
�
Ws πs

�
ds πs

�
µds σ dBs

� �
cs P

�
ds�

rWs µ r πs P cs

�
ds σπs dBs

(3.24)

where no labor income is considered. In particular, for a richer model where

a stochastic labor income is specified, one can follow the lines of Koo (1998).

Making the hypothesis that the agen receive a stochastic labor income at a rate

ζs , at time s , previous equation can be rewritten as follow

dWs d
�
Ws πs

�
dπs ζs ds

�
cs P

�
ds�

rWs µ r πs ζs P cs

�
ds σπs dBs

(3.25)

{ζs} being a diffusive process defined by the dynamics

dζs νζs ds ςζs dB s ; ζt0
ζ0 0 (3.26)

where ν 0 and ς 0 and {B s} is a standard Brownian motion defined on the

probability space
�
Ω,� , {�s} , P

�
. Also, it is supposed to be instantaneously

correlated with {Bs}, by a constant coefficient δ. As remarked by Koo, the

geometric Brownian motion assumption for the income process means that the

shocks to the income growth rates are all permanents.

Coming back to the initial condition for process {Ws}, it will depend on

the choice to incorporate the option in the insurance contract. Precisely, if

the annuitant will not opt for having a G.A.O. in her plan, she will seek to

maximize the expected utility till time T . Then – since our agent does not hold

a policy that include any guarantee option – after that point she will have just

the opportunity to optimize the time of annuitization. In other words a rational
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agent will face to the following maximization problem:

� �w0, ζt0
, t0

�
: sup

{cs ,πs }
cs 0, s t0

�
�∫ T

t0

e r s t0
s t0

pS

x t0
u cs ds

e r T t0

T t0
pS

x t0
U (AT WT , T )

����Wt0
w0; ζt0

ζ0

�
(3.27)

where {Ws} follows dynamics (3.25).

Remark 3.8. Function U is valued at AT WT . In fact at time T , the annuitant

will see the current wealth WT , but also the accumulated amount AT . From

that time, the decision when and if to annuitise has to concern this total initial

wealth.

Remark 3.9. After time T the wealth controlled dynamics, that the agent must

consider, is given by equation (3.3). However, that constraint is already con-

sidered in value function U . Hence in solving the previous problem it will be

necessary to consider just dynamics (3.24).

Remark 3.10. Function � could also work to afford a different problems that

are not take into account in the present framework: The choice of the contract.

In fact, if we consider the optimization also with respect to process {P}, it would

be equivalent to say that the agent is also asked at time t0 to take a decision on the

extent of the accumulated funds at time T . Now, since every different premium

to pay characterize a different policy, in the present framework we work with a

specific insurance product, take as given, and that the agent is just asked to take

a decision on whether or not embedding a guaranteed annuity option.

If the individual will opt, at time t0, to incorporate a guaranteed annuity

option, for a given conversion rate h, she has immediately to pay the lump sum

L, leaving him or her wih an initial wealth w0 L. Moreover, at time T , she will

have the possibility to chose between exercising the guarantee option or not to
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exercise it. Therefore she face now the following problem

� �w0 L, ζ0, t0

�
: sup

{cs ,πs }
cs 0, s t0

�
�∫ T

t0

e r s t0
s t0

pS

x t0
u cs ds

e r T t0

T t0
pS

x t0

max
�

U AT WT , T , V WT , T
� ����Wt0

w0 L; ζt0
ζ0

�
(3.28)

where {Ws} follows the dynamics (3.25). Regarding the period beginning at

time t0 and ending at time time T , we assume that the control processes {cs}
and {πs} are still admissible. For instance we still require that they are both

progressively measurable with respect to {�s}t0 s T , where �s is the augmen-

tation of σ
�
Bt : t0 t s

�
. Yet, the following conditions hold a.s.: we have

cs 0, for every t0 s T , and∫ T

t0

cs ds ,

∫ T

t0

π2

s
ds

Remark 3.11. Value function V is valued on WT while U is evaluated on the

sum AT WT . In fact, if the annuitant will opt to exercise the G.A.O., all the

accumulated funds AT will be immediately converted in a life long insurance

annuity, whose the actuarial value is aO

x
, given the implicit rate rh implied by h.

Therefore, the effective initial wealth that the agent will face at time T , will be

the current value of WT .

At time t0 the decision maker will opt to embed the G.A.O., paying a lump

sum Lt0
, as long as the following relation will hold

� �w0, ζ0, t0

� � �w0 Lt0
, ζ0, t0

�
3.3.4 The indifference valuation for the G.A.O.

Consider an agent who, at time t0, compares the two expected rewards arising

from the value functions � and � . To this end, for a given initial wealth w0,



60 Indifference valuation for guaranteed annuity options Sec.

consider

L
0

: sup
�

L0 :� w0, ζt0
, t0 � w0 L0, ζt0

, t0 , w0 L0 0
�

We say that L
0

is the indifference price for the guaranteed annuity option, if the

following equality holds

� w0, ζt0
, t0 � w0 L

0
, ζt0

, t0

Otherwise we say that L
0

is the maximum sum that the agent is willing to pay

in order to embed the guaranteed annuity option in her policy.

It also makes sense to define an indifference price for the guaranteed annuity

option, considering the time of conversion T . We define

L
T

: sup
�

LT : U wT A, T V wT LT , T , wT LT 0
�

Similarly, we say that L
T

is the indifference price for the guaranteed annuity

option, if the following equality holds

U wT A, T V wT L
T
, T

3.3.5 Valuation during the accumulation period

In order to value a guaranteed annuity option at a fixed point t0 t T , we

need to make clear some preliminary facts. Since the option has to be referred

to the same extent for the accumulation funds, set Pt as the real number such

that for a given AT the following relation holds:

AT

∫ T

t

e r T s Pt ds

In other words we may think at Pt as the constant instantaneous premium

rate that has to be paid in order to accumulate the wealth AT at time T , if no

load is considered. Now, set P0 : P and, at each point in time t , consider the

controlled dynamics

d*Ws

+
r*Ws µ r πs ζs Pt cs

,
ds σπs dBs ; Wt wt 0 (3.29)
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the process {ζs} being specified by the equation (3.26), under the initial condi-

tion that the process {ζs} is valued ζt 0 at time t .

The problem now is to value a guaranteed annuity option for a person aged

x t , characterized by the same utility function and the same subjective as-

sessment for her mortality intensity. In this sense we want to answer to the

question: Is it possible to determine a “fair” (in some sense) value for a guaranteed

option that assure the same conversion rate at time T ?

Remark 3.12. The valuation at time t consider a differ controlled dynamics for

the individual’s wealth. Strictly speaking, even if the G.A.O. written at time t

assure the same conversion rate, the insurance product written at time t as to be

considered different from another one written at a different time in t0, T .

Assumptions above are consistent, however, with the following “forced” in-

terpretation: Suppose to have an insurance product that embed an option, and

assume to be possible to exchange this contract with someone else (characterized

by the same utility function and the same subjective judgement for her subjec-

tive probability), having in return, in any case, the accumulated funds up to

time t plus the “current value” of the G.A.O. In such a (abstract but useful) cir-

cumstance, the embedded option should be anyways valued considering (3.29)

and the same indifference method shown before. In this sense we are lead to

define the reservation value for the G.A.O. at time t0 t T in the same fashion

of section 3.3.4: the maximum amount, if there exists, L
t

such that

� �wt , ζt , t
� � �wt L

t
, ζt , t (3.30)

where� and � are computed under the wealth controlled dynamics constraint

{*Ws} and the controlled dynamics (3.29).

3.4 Indifference valuation for the guaranteed annuity option II

The indifference model to value guaranteed annuity options, can be generalized

in a different market arrangement. Inspired by the open-market structure pro-

posed by Milevesky and Young (2003b, 2007a), I propose in the present section



62 Indifference valuation for guaranteed annuity options Sec.

a more rich setting that I am willing to consider for future research. For in-

stance I assume that, after the retirement, the agent is allowed to purchase more

annuities than once, even continuosly. In order to focus just on a plan where a

G.A.O. is embed, it is necessary to consider the following

Assumption 3.4. The premium to be paid at an instantaneous rate P is referred

only to the accumulation plan that embed the option we want to value and,

in particular, I do not consider any annuity income during the period t0, T

where the agent accumulate funds A available at T .

Notice that the difference in such a new context is given by the analysis of

the options at time T of conversion. In fact the valuing process at time t0 T

and at any point in the interval t0, T , is similar to those ones proposed in

previous section 3.3.

As we did for the first arrangement type, I begin to analyze the options for

the decision maker at the time T of conversion. Recall that if we consider an

open-market structure the wealth dynamics is given by equation (3.16):

dZs

�
r Zs µ r πs Ψs cs

�
ds aO

x s
dΨs σπs dBs (3.16’)

where the negative sign used for Zs andΨs , denote the left-hand limit of those

quantities before any annuity purchase. The initial condition, however, depends

on the decision of the annuitant. As we did in section 3.3.2, we can suppose

that the agent is currently (time T ) endowed by a wealth w, other than the

accumulated funds A.

The relevant matter now is that if the annuitant decides to do not exercise

the G.A.O., she is not anymore required to annuitise all her wealth at a optimal

point in time τ T . In fact, in this new setting, she can determine an optimal

annuity purchasing strategy. In this sense now a bequest function at the death

time is required either if she does not exercise the G.A.O. or if she decides to

exercise it. In particular, if the agent decides to do not exercise the option he
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will seeks to solve the following optimization:

U z w A, 0, T : sup
{cs ,πs }

cs 0, s T

�
�∫

T

e r s T
s T pS

x T
u
�

cs

�
ds

e r Θ T v (ZΘ)
����ZT w A; ΨT 0

�
(3.31)

where accordingly with previous assumption, we shall suppose no annuity in-

come till time T . On the contrary, if the annuitant decides to exercise the

G.A.O., funds A will be converted into an annuity that pays an immediate in-

stantaneous rate H A h, but also she can purchase other annuities using the

current wealth at each time s T . In other words, the annuitant will face the

value function associated to the following problem:

V z w, H , T : sup
{cs ,πs }

cs 0, s T

�
�∫

T

e r s T
s T pS

x T
u
�

cs

�
ds

e r Θ T v (ZΘ)
����ZT w; ΨT H

�
(3.32)

Comparing utility in the present market structure, a rational decision maker

will exercise the guaranteed annuity option as long as the following relation

holds

U z w A, 0, T V z w, H , T

3.5 Stochastic mortality and stochastic interest rates

Stochastic models for longevity risk and interest rates is necessary for a com-

prehensive analysis of the concerns around guaranteed annuity options. For

instance, the matter of mortality risk is analyzed in a flourishing branch of Ac-

tuarial Mathematics. Herein an overview of the literature concerning stochastic

mortality and dynamical survival models is presented. While the latter refer

to actuarial projecting techniques for survival tables, the former concentrate on

the stochastic modelling for the intensity of mortality.
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3.5.1 Stochastic frameworks for mortality modelling

Dynamic survival models and projecting methods for longevity risk

In chapter 2 we concerned with demographical trends in lifetime insurance con-

tracts and with longevity risk. It is also clear that in valuing guaranteed annuity

options, a suitable stochastic mortality model is required. Projecting mortality

tables including a forecast for future mortality rates is what we call dynamic

survival models. These models represent a big issue in actuarial mathemat-

ics, when life annuities and other living benefits are considered. For a survey

concerning survival models in a dynamic context see Pitacco (2004), for a sur-

vey in this subject and the methods used in order to projects mortality tables.

Also the following contributions are suggested: Brouhns, Denuit and Vermunt

(2002), Di Lorenzo and Sibillo, Haberman and Russolillo (2005), Lee (2000),

Marocco and Pitacco (1997), Olivieri (2001), Olivieri and Pitacco (2003, 2005,

2001), Olivieri and Pitacco a, Olivieri and Pitacco b, Pitacco (2002b and 2004),

Marceau and Gaillardetz (1999).

Stochastic models for mortality intensity

The tool of stochastic processes can be applied to model the evolution of the

mortality intensity. The approach introduced by Dahl (2004) allow to capture

both time dependency and uncertainty of the future development or mortality

intensity. In particular the mortality intensity is modelled by a fairly general

diffusion model, including the mean reverting brownian Gompertz model pro-

posed by Milevsky and Promislow (2001) (also see Milevsky Promislow and

Young 2005). In particular in the latter approach, it is important to high-

light that stochastic (interest plus mortality) hazard rates are considered. The

reader is finally addressed the following contributions given by Cairns, Blake

and Dowd (2005 and 2006), Schrager (2006).

3.5.2 Valuation for G.A.O.s with stochastic mortality

Stochastic mortality rates represent an important concern over the so called

longevity risk. Moreover, liabilities afferent to guaranteed annuity options de-
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pends on the variations of interests rates and mortality rates over the time. In

this sense a richer model has to take into account. Herein a sketch for stochastic

models for mortality intensity is recalled.

The debate over the stochastic mortality is very prolific and the literature

concerning this problem is huge. The contribution by Dahl (2004), propose

to model the mortality intensity by a fairly general diffusion process, which

include the mean reverting model proposed by Milevsky and Promislow (2001).

Precisely the author consider a P dynamics for the mortality intensity given by

dλx s αλ
�

s , µx s

�
ds σλ

�
s , λx s

�
d*Ws (3.33)

where αλ and σλ are non-negative and {*Ws} is a standar Wiener process with re-

spect to the same filtration {�s}, defined above, for s t0. {*Ws} is assumed un-

correlated with {Ws}. In order to embed stochastic mortality in our reservation

model, we can assume an initial condition for the dynamics (3.33) : λx t0
λx t0

,

where the number λx t0
can be thought as the mortality intensity for a person

aged x t0, estimated at time t0. Then in order to value a G.A.O. at time t0,

the same reasoning proposed above, remembering that expectations relatives

to functions � , � , U and V , have also to be conditionate with respect to the

initial condition λx t0
λx t0

.

Previous approach present relevant analytical difficulties, since the value

function will depend also on the initial condition assumed for the process {λx s}.
Then, another way to include in our model a stochastic mortality is to compare

different scenarios for different survival probabilities.

3.6 Conclusions

An indifference valuation model for guaranteed annuity option is proposed in

the course of the present chapter. This model refers to the point of view of an

agent who is willing to purchase an insurance policy embedding a guaranteed

annuity option. In order to come to a reservation value, we have considered the

indifference valuation at the time of conversion and, then, we have also given

a valuation for the G.A.O. at any time during the accumulation period. For
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the case named as “first arrangement” we can obtain explicit solutions that are

presented and implemented in the course of next chapter.



CHAPTER 4

MAIN RESULTS AND IMPLEMENTATION

Referring to the first arrangement presented in the course of previous chapter,

herein analytical results and explicit solutions are found and numerical imple-

mentations are presented. For instance, the HJB approach is considered and

the related partial differential equations (PDEs) are specified and explicit solved.

In order to find value function � and � , the explicit solution for a class of

stochastic problems is found, where finite horizon, bequest motive and power

consumption utility are jointly considered.

In the present context, if applied to the symbol of a function, the subscript

s , y and yy will denote its partial derivative with respect to the related variable.

Also all regularity conditions are assumed: See Øksendal (2003, Chap. 10 and

Chap. 11). Finally, in order to get a closed form for all value functions defined

above, labor income is not considered in the present chapter.

4.1 Main results

4.1.1 The inequality U wT A, T V wT , T

Consider a wealth wT at time T . In 4.2.1 and 4.2.2 it is shown that, if the

policyholder is characterized by a constant relative risk averse utility from con-

sumption (4.3) and the technical assumption 4.1 hold, the value function U and

67
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the value function V are given in a closed form by:

U wT A, T
1

1 γ
(wT A)1 γ ϕγ T (4.1)

V wT , T
1

1 γ

-
wT

H

r

.1 γ

ϕγ T (4.2)

where ϕ is an opportune function of time, given by (4.7), that turns to be the

same for both value functions U and V . Notice that for every γ 0, γ 1, we

have

U wT A, T V wT , T r h

From an economic point of view, previous inequality tells us that, at time

of conversion T (that may coincide with her retirement), the policyholder will

find convenient to exercise the guaranteed annuity option se e soltanto se the

guaranteed rate h is greater than the current interest rate r . Moreover, recalling

that

1 h

∫
T

e rh s T

s T
pO

x T
ds : a h

x T

where pO denote the objetive mortality assessment from the insurer’s point of

view, the previous inequality can be also written in the following way:

U wT A, T V wT , T a h

x T
1 r

Previous relation is very interesting. It says that, in order to come to a de-

cision, the policyholder actually compares the minimum between the actuarial

cost of buying a per dollar-guaranteed life long annuity (assured by the insur-

ance company), whose the present value is given by a guaranteed implicit rate

rh , and the cost of a per dollar-life long annuity, whose the present value is given

employing the market interest rate r .

4.1.2 A closed form for value functions� and �
By section 3.3.3, we know that the value function � at time T needs to be equal

to

G wT , T : max
�

U wT A, T ; V wT , T
�
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where wT is the agent’s wealth at time T . However, notice that, by the previous

section, an explicit expression for the value function � can be obtained. In fact

G can be written as follows:

G wT , T

/
U wT A, T , if r h

V wT , T , if r h

Using this fact, in section 4.3 it is shown that a closed form, for the value func-

tion � , can be found giving an explicit solution for a class of stochastic prob-

lems. Using the result presented in the course of section 4.3 and the previous

characterization of G, we arrive at the following expression for the value func-

tion � :

� w0, t0

⎧⎨⎩� w0, t0 if r h

1

1 γ

3
w0


ξ� t0

41 γ

ψγ t0 if r h

where 
ξ� is given by (4.18) and ψ is defined by (4.16). Yet, section 4.3, also gives

a way to find a closed form for the value function� :

� w0, t0

1

1 γ

3
w0


ξ� t0

41 γ

ψγ t0

where 
ξ� is given by (4.17).

4.1.3 The indifference value for the G.A.O.

If the indifference price exists, recall section 3.3.4, it is straightforward to deduce

that it is given by

L
0

-
H

r
A

.
e r T t0

Moreover, notice that, if at time T , an indifference price exists, it can be

computed as follows:

L
T

H

r
A
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From an economic point of view, it represents the difference between the present

value at time T of a perpetuity that pays a continuous stream at a rate H per

year, and the value (at time T ) of the accumulated funds A. Recall that a life

long annuity that will pay a stream at a continuous rate H per year, is what the

guaranteed annuity option assures at time T . It is interesting to see that, if both

indifference prices L
0

and L
T

exist, they are tied by the following relation:

L
0

e r T t0 L
T

4.2 Computing value functions U and V

Explicit forms for the value functions U , V , � and � are found, assuming a

constant relative risk aversion (CRRA) utility from the consumption, i.e.

u c
c 1 γ

1 γ
, γ 0, γ 1 (4.3)

Assumption 4.1. The following optimization problems turn to be well-posed if

r 0 and

r (1 γ )δ (4.4)

where δ : r 1 2γ µ r 2 σ 2, coherently to the hypothesis assumed also

in Karatzas, Lehoczky, Sethi, and Shreve (1986).

4.2.1 The value function U

Next, we construct a value function that measure the utility since time t T ,

for a generic initial wealth y 0:


U y, t : sup
{cs ,πs }
�y, t

�∫
t

e r s t

s t
pS

x t
u cs ds

�
where �y, t denotes the expectation conditioned on Wt y, given the dynamics

(3.3’). The associated differential operator is given by

� c ,π y, t : [r y µ r π c] ∂
∂ y

1

2
σ 2π2 ∂ 2

∂ y2
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see, for example, Øksendal(2003), Krylov(1979) and Björk(2004). Notice that

the discounting factor and the subjective probability can be rewritten as follows:

e r s t

s t
p S

x t
exp

� ∫ s

t

r λS

x η
dη
�

where λS denotes the subjective force of mortality. Therefore , the HJB equation

associated to value function 
U is

0 sup
c 0,π

� 
Ut y, t r λS

x t

U y, t u c

�� c ,π 
U� y, t
�

Assuming a CRRA consumption utility, as given by (4.3), the previous equa-

tion leads to the following partial differential equation


Us r λS

x t

U γ

1 γ

U γ 1 γ

y
r y 
Uy

1

2

&
µ r

σ

'2 
U 2

y
Uyy

0

under the boundary condition

lim
t


U y, t 0

a.s. with respect to the law of process {Ws} defined by the stochastic differential

equation (3.3’). In equation (4.2.1) variables y, s are suppressed.

In order to solve the previous partial differential equation, we try a solution

of the form 
U y, t
1

1 γ
y1 γ βγ t (4.5)

Taking derivatives and plugging into equation (4.2.1), considering 
U of the form

(4.5), we obtain that β solves the following ordinary differential equation

β t

⎡⎣ 1 γ δ r λS

x t

γ

⎤⎦β t 1 (4.6)
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where δ : r 1 2γ µ r 2 σ 2. Taking limits up to infinity and consid-

ering the boundary condition, we find that the previous ordinary differential

equation is solved by the following function:

ϕ t

∫
t

e b s t
�

s t
pS

x t

�1 γ
ds (4.7)

where b : [ 1 γ δ r ] γ .

Remark 4.1. It is easy to see that, under the assumption 4.1 the integral above is

convergent. In fact:

|ϕ t |
�����
∫

t

e b s t
�

s t
pS

x t

�1 γ
ds

�����∫
t

���e b s t
��� ���

s t
p S

x t

���1 γ ds∫
t

e b s t ds

Therefore, by the verification theorem, we have found the value function U .

Given the optimal controlled wealth {W
t
}, the optimal consumption and

investment policies are given in feedback form by

C
t

W
t
ϕ t , Π

t

µ r

γσ 2
W

t

4.2.2 The value function V

In order to find the value function V , consider the following value function 
V ,

starting at time t T , for an initial wealth y 0:


V y, t : sup
{cs ,πs }
�y, t

�∫
t

e r s t

s t
p S

x t
u cs ds

�
subject to the dynamics (3.21). In this case the differential operator is given by

� c ,π y, t : [r y µ r π H c] ∂
∂ y

1

2
σ 2π2 ∂ 2

∂ y2
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Henceforth, the HJB equation associated to 
V is

0 sup
c ,π

� 
Vs y, t r λS

x t

V y, t u c

�� c ,π 
V � y, t
�

The equation above leads to the following partial differential equation for the

value function 
V :


Vs r λS

x t

V r y H 
Vy

γ

1 γ

V γ 1 γ

y

1

2

&
µ r

σ

'2 
V 2
Vyy

0 (4.8)

under the boundary condition

lim
t


V y, t 0

Given the assumption regarding the interest rates, in section ??, in order to

solve (4.8) I consider a technique similar the one proposed in Koo(1998). For

instance, consider the following form for 
V :


V y, t
1

1 γ
(y H r )1 γ βγ

1
t

where β1 is a function of time. Taking derivatives and after rearranging expres-

sions, it is straightforward to show that, once again,β1 t satisfies the ordinary

differential equation (4.6). Therefore, value function V is characterized by ϕ.

Remark 4.2. Since, in the present model we require r 0 and H is a positive

constant, the well-posedness of the solution is assured by Koo (1998, Condition

B.).

Given the optimal controlled wealth {W
t
}, the optimal consumption and

investment policies are given in feedback form by

C
t

W
t

H r

ϕ t
, Π

t

µ r

γσ 2

�
W

t
H r

�
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4.3 Computing value functions � and �
In order to give a closed form for value functions � and � , consider the class

of stochastic problems given by

� w0, t0 : sup
{cs ,πs }
�
�∫ T

t0

e
∫ s

t0
r λS

x η dη u cs ds

e r T t0

T t0
pS

x t0

(WT ∆)1 γ

1 γ

�����Wt0
w0

⎤⎦ (4.9)

subject to the following dynamics for process {Ws}:�
dWs

�
rWs µ r πs cs ∆1

�
ds σπs dBs

Wt0
w0

(4.10)

where ∆ 0 and ∆1 0. The previous problem is difficult because of two

reasons: first, the horizon time T is finite and the function


g WT , t0; T e r T t0

T t0
pS

x t0

(WT ∆)1 γ

1 γ

that acts as a bequest function, is not null, being associated to a finite-time hori-

zon, and also different from the CRRA utility of the consumption u c . Sec-

ond, another complication arises from the drift term associated to the dynamics

of the process {Wt} since this contains the constant∆1.

Kingston and Thorp (2005) provide a technique of solution for a different

class of problems considering a finite time horizon, bequest function, and the

presence of a consumption floor. A similar technique may be applied to prob-

lem (4.9, 4.10). To this end, construct a value function that measure the remain-

ing utility since time t t0, given a positive wealth y:


� y, t : sup
{cs ,πs }
�y, t

�∫ T

t

e
∫ s

t
r λS

x η dη u cs ds

e r T t

T t
pS

x t

(WT ∆)1 γ

1 γ

⎤⎦ (4.11)



4.3. Valuing guaranteed annuity options using the principle of equivalent utility 75

The differential operator associated to dynamics (4.10) is given by:

(� c ,π) (y, t ) : [r y µ r π c ∆1]
∂
∂ y

1

2
σ 2π2 ∂ 2

∂ y2

Henceforth, value function 
� y, t needs to satisfy the following HJB equation:

0 sup
c 0,π

� 
�t y, t r λx t

� y, t u c

�� c , p 
� � y, t
�

that leads to the following partial differential equation


�t r λx t

� r y ∆1


�y

γ

1 γ

� γ 1 γ

y

1

2

&
µ r

σ

'2 
� 2

y
�yy

0 (4.12)

under the terminal condition


� y, T 
g y, T ; T (4.13)

Motivated by the contributions of Kingston and Thorp (2005) and Koo(1998),

and by the result recalled in previous section 4.2.2, consider the change of vari-

ables:


ξ t :
∆1

r

�
1 e r t T

�
∆ e r t T (4.14)

ξ t : y 
ξ t (4.15)

that leads to

y ξ 
ξ ξ
∆1

r

�
1 e r t T

�
∆ e r t T

Thus 
g y, T ; T
1

1 γ
ξ 1 γ T
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Under this change of variable guess a solution, for the equation (4.12), of the

following form: 
� y, t
1

1 γ
ξ 1 γαγ t

for which, taking derivatives:


�t ξ γ
�
∆1e r t T r∆e r t T

�
αγ

γ

1 γ
ξ 1 γαγ 1α


�y ξ γαγ


�yy γξ γ 1αγ

and plugging into equation (4.12) we arrive to

0 ξ γ
�
∆1e r t T r∆e r t T

�
αγ

γ

1 γ
ξ 1 γαγ 1α

r λx t

1

1 γ
ξ 1 γαγ

1

2γ

&
µ r

σ

'2

ξ 1 γαγ

γ

1 γ
ξ 1 γαγ r y ∆1 ξ

γαγ

Notice that previous equality can be simplified having care that

ξ γ
�
∆1e r t T r∆e r t T

�
αγ r y ∆1 ξ

γαγ

r ξ γ

�
y

-∆1

r

�
1 e r t T

�
∆e r t T

.�
αγ

r ξ γ
3

y 
ξ 4αγ
r ξ 1 γαγ

that finally leads to write the following ordinary differential equation:

α t

⎡⎣ 1 γ δ r λS

x t

γ

⎤⎦α t 1
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Under the condition (4.13) the solution of the previous ordinary differential

equation is

ψ t e b T t
�

T t
pS

x t

�1 γ
∫ T

t

e b s t
�

s t
p S

x t

�1 γ
ds (4.16)

Therefore, the value function � is given by the following expression:

� w0, t0

1

1 γ

+
y 
ξ t0

,1 γ

ψγ t0

Remark 4.3. In order to have a well-posed solution we need y 
ξ t 0, that is
ξ t 0, for every t0 t T . It is straightforward to see that this condition is

assured by the assumptions on∆ and∆1, i.e.: ∆ 0 and∆1 0.

Remark 4.4. The well-posedness of the solution is also assured by

|ψ t |
���e b T t

�
T t

pS

x t

�1 γ
��� �����

∫ T

t

e b s t
�

s t
p S

x t

�1 γ
ds

�����
that, by assumption 4.1 and remark 4.1, assure |ψ t | .

Given the optimal controlled wealth {W
t
}, the optimal consumption and

investment policies are given in feedback form by

C
t

ξ t

ψ t

1

ψ t

�
W

t
∆1 r

�
1 e r t T

�
∆ e r t T

�
Π

t

µ r

γσ 2
ξ t

µ r

γσ 2

�
W

t
∆1 r

�
1 e r t T

�
∆ e r t T

�
Under this result, a closed form for value functions� and � can be found.

In fact, notice that with respect to the value function � we need to have ∆
A 0 and ∆1 P 0. Instead, for r h, in order to find the value function

� we need ∆ H r 0 and again ∆1 P 0. In both cases, the two
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problems can be solved considering two different change of variables:


ξ� t :
P

r

�
1 e r t T

�
Ae r t T (4.17)


ξ� t :
P

r

�
1 e r t T

� H

r
e r t T (4.18)

4.4 Numerical examples and insights

Consider t0 0 and at this time, a female aged x 35 who is willing to purchase

a policy. Also, suppose that this plan will accumulate, until time T : 30 (i.e.

when the annuitant will be aged x T 65) to an amount A : $350,000. In

order to be concrete, we can think that T may coincide with her retirement

time and that the purchase takes place in 1970. In this context, the G.A.O.(if the

agent decides to embed such an option in her policy) could be exercised in 2005.

I would like to stress that these calendar dates are not necessary to implement a

numerical experiment. However they give a stronger economic meaning for a

contract designed as follows: assume that the agent is asked to decide whether to

include a guaranteed annuity option assuring a conversion rate h : 1 9 (very

common in 1980’s and 1970’s), implying an assured cash flow stream at the

nominal rate H 38.89 per year. Notice that, in this situation, if we refer

to survival tables available in 1970 (see table 4.1), the implicit discount rate is

rh 0.0754 and, from the point of view of an insurance company in the 1970’s,

such an option was considered to be far in the money at the conversion time.

Under previous hypothesis, the value functions � and � are plotted in

figure 4.1, where it is assumed a Gompertz’s mortality specification. I estimate

parameters ς and m, minimizing a loss function using the method proposed by

Carriere (1994b). I refer to the Human Mortality Database for the province of

Ontario, Canada, for a female and a male both aged 35 in year 1970 or in 2004.

The results of our estimations are summarized in table 4.1,

For some values of the market interest rate r , table 4.2 shows the premium

P and the equivalent valuation L
0
, for the policy considered in the present ex-

ample. Figure 4.2 depicts the dependency of L
0

on both the guaranteed conver-

sion rate h and the interest rate r . As expected, the greater the interest rate, the
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TABLE 4.1: Estimated female and male Gompertz’s parameters for the province of Ontario,

Canada, conditional on survival to age 35. Source: Canadian Human Mortality

Database available for year 1970 and 2004.

Female Male

Year m ς m ς

1970 85.3758 10.5098 79.1089 11.5890

2004 89.7615 9.3216 85.8651 10.1379

lower the agent indifference price for the option. In fact, the market interest

rate is seen to be more beneficial than the guaranteed rate. Also, the analysis

remains consistent with respect to h: the lower the guaranteed rate, the lower

the agent’s indifference price.

Depending on r , 0 r µ, table 4.2, shows the nominal instantaneous rate

for the premium P (that the policyholder needs to pay to in order to accumulate

A $350,000) and the indifference valuation L
0

for the G.A.O.. Notice that it is

not immediately possible to compare L
0

and P since the former denotes a lump

sum, while the latter refers to a nominal instantaneous rate to be converted

infinitely many times per year.

In order to better understand the meaning of P and L
0
, it can be useful to

think of an auxiliary problem. This problem is independent of the previous

TABLE 4.2: Premium and indifference valuation associated to the policy, depending on the

current interest rate.

r P L
0

p12 l12 Total

0.035 $6,594 $266,342 $550 $419 $969

0.050 $5,026 $ 95,450 $420 $115 $535

0.085 $2,519 $ 8,395 $211 $ 5 $216
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FIGURE 4.1: Value function � (solid) and value function � (dashed), for an individual

characterized by γ 1.4, that observes a financial market described by r

0.07, µ 0.08, σ 0.12. The value of r and µ are taken large enough to

simulate the 1970’s financial market. In this setting L
0

25,171. The price

is given for a G.A.O.exercisable in 2005, for a female in year 1970, from the

province of Ontario, assuming a (subjective) mortality specification given by

the survival table available in 1970, see table 4.1.

indifference model, but will offer a way to validate the previous results. To

do this, consider a premium to be payed, in a real-world, for a pension or an

insurance plan. Generally they are payed monthly. We can ask two questions.

First, which is the extent p12 of a monthly annuity whose the future value, after

30 years, is exactly A. Second, which is the monthly annuity l12 necessary to

amortize, after 30 years, the lump-sum L
0

payed at t0 0.

Remark 4.5. Previous considerations turn out to be useful from an intuitive

point of view. However, I need to stress, and to make clear, that the agent’s

indifference valuation model is based on the lump sum L
0

(if it exists) to pay

at time t0, and on a premium payed at the instantaneous force P . For these

reasons, I am aware that l12 and p12 cannot be thought of as a part of the indiffer-
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ence model presented above: l12 and p12 must be considered independent from

the strategies analyzed in our model. Therefore, I suggest the reader takes this

monthly arrangement at face value. It just represents a practical way to compare

L
0

and P , inspired by a concrete pension market system.

In order to compute l12, consider a horizon of T 12 months. Thus l12 is

given by the following relation:

L
0

l12 a T 12 i12

where i12 : e r 12 1 is the effective interest rate compounded monthly with

respect to e r , and where in general we define

a n i :
1 1 i n

i

as the present value of an annuity that pays one dollar for n periods, discounted

by the effective interest rate i compounded each period. Similarly, define p12

such that

A p12 s T 12 i12

where

s n i :
1 i n 1

i
1 i n a n i

represents the future value after n periods, of an annuity that pays one dollar

per period, under an effective interest rate i compounded each period.

Coming back to table 4.2 it is interesting to see that for r 0.035, a monthly

cash flow of $550 and a monthly stream of $419 equivalently amortize L
0
. Set-

ting r 0.085, a similar situation it is observed for a monthly premium of $

211 and a monthly stream of only $5. These intuitive results - keeping in mind

the remark 4.5 - are consistent with the literature concerning the guaranteed an-

nuity option: As mentioned by Boyle and Hardy(2003), these guarantees were

popular in U.K. retirement savings contracts issued in the 1970’s and 1980’s,

when long-term interest rates were high. The same authors also write that at

that time, the options were very far out of the money and insurance companies
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FIGURE 4.2: Indifference price L
0

depending on the guaranteed conversion rate h and the

market interest rate r . The valuation is given for a G.A.O.exercisable in 2005,

for a female in year 1970, from the province of Ontario, assuming a (subjec-

tive) mortality specification given by the survival table available in 1970, see

table 4.1.

apparently assumed that interest rates would remain high and thus the guar-

antees would never become active. As a result, from the indifference model

discussed in the present paper, when the interest rate is very high - as was the

case in the 1970’s and 1980’s - the guaranteed annuity option’s value, given by

the policyholder, is very small. Interestingly, in the same period, empirically it

was observed that a very small valuation was also given by insurers.

These facts are proved by the extremely low value of L
0

$8,395 (over

T t0 30 years), against the yearly nominal premium P $2,519. This is bet-

ter seen in terms of the auxiliary “monthly valuation problem”: The evaluation

L
0

can be amortized by a monthly cash flow of $5, against a monthly equiva-

lent premium of $211. Moreover, p12 and l12 by construction are homogeneous
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quantities. Their sum gives an idea of the equivalent monthly value associated

to the policy the agent is willing to buy at time t0. This sum is showed in the

last column of table 4.2. It is interesting to note the huge difference between the

total value corresponding to r 0.035 compared to r 0.085.

4.5 Conclusions

In the course of this chapter, in a setting where interest and hazard rates are con-

stant, an explicit solution for the indifference problem is found, where power

consumption utility is assumed. The indifference price for the guaranteed annu-

ity option, both at the time when the policy is purchased and at the conversion

time, depends on the difference between the guaranteed conversion rate h and

the market interest rate r . This fact lead us to find an explicit solution for a class

of problems where bequest motives and finite time-horizon are jointly consid-

ered, together with the assumption of a power utility from consumption. The

dependency on h and r of the equivalent valuation also reveals that in periods

characterized by high market interest rates, the value of the G.A.O.turns out to

be very small. Our model remains coherent if we compare the policyholder’s

point of view and the insurer’s point of view, under an economic setting char-

acterized by high interest rates. Finally, with regards to numerical experiments,

an auxiliary problem is considered, in which it is possible to compare the pure

premium asked by the insurance company and the indifference price for the

embedded option.





CONCLUSIONS

AND FUTURE RESEARCH

The model I propose and implement in the course of this thesis uses the prin-

ciple of equivalent utility in order to value guaranteed annuity options embed-

ded in life insurance policy, from a policyholder’s point of view. For constant

relative risk aversion utility functions, an explicit solution for the reservation

problem is found under a specific institutional arrangement. For instance, two

strategies at the time of conversion, and two strategies at the moment when the

policy is purchased are analyzed. For the former it is assumed that, if the an-

nuitant does not exercise the option, she first withdraws her accumulated funds

and then she seeks to solve a standard Merton’s problem under an infinite time

horizon case. At the purchasing time, the agent’s expected utility, associated to

a policy embedding a guaranteed annuity option, and the expected reward given

by a policy that does not embed such an option are considered. It is shown that

the option’s indifference value, both at the time when the policy is purchased

and at the conversion time, depends on the difference between the guaranteed

conversion rate h and the market interest rate r . This fact also lead us to find

an explicit solution for a class of problems where bequest motives and finite

time-horizon are jointly considered, together with the assumption of a power

utility from consumption. In the course of some numerical experiments, the

pure premium, asked by the insurance company, and the indifference price for

the embedded option are compared under specific assumptions regarding the

level of the interest rates and survival scenarios.

Future researches, that I am willing to consider, can be developed from the

85
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model presented in this thesis. In fact a more general institutional arrangements

can be considered, where the agent is allowed to purchase more than one an-

nuity. Also labor income can be considered during the accumulation period.

Finally, stochastic interest rates and mortality rates, as well as stock dynamics,

can be can be developed in a richer setting. For instance, an unrestricted market

– as defined by Milevsky and Young (2007a) – and stochastic interest rates and

stochastic labor income, are worth to be considered in order to develop a more

comprehensive and rich model. To this end, I recall the work proposed Koo

(1998). Finally, in the present framework, the longevity risk is considered by

comparing different scenarios, given by the survival tables available in 1970 and

in 2004. A more general stochastic approach – as proposed by Dahl (2004) – can

be taken into account.

The future research in this field has to consider the analytical complications

arising from including other stochastic components to the present model. How-

ever, it would be interesting and stimulating to consider, even at a first glance, a

comparison between the standard risk neutral methods used until now for valu-

ing guaranteed annuity options, and the indifference method that I propose in

this thesis.
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