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Abstract

A ranked query is a query which returns the top-ranking elements of a set, sorted by

rank, where the rank corresponds to some sort of preference function defined on the

items of the set. This thesis investigates the problem of adding rank query capabil-

ities to several index data structures on top of their existing functionality. Among

the data structures investigated are suffix trees, range trees, and hierarchical data

structures. We explore the problem of additionally specifying rank when querying

these data structures. So, for example in the case of suffix trees, we would like to

obtain not all of the occurrences of a substring in a text or in a set of documents, but

to obtain only the most preferable results. What is most important, the efficiency

of such a query must be proportional to the number of preferable results and not all

of the occurrences, which can be too many to process efficiently.

First, we introduce the concept of rank-sensitive data structures. Rank-sensitive

data structures are defined through an analogy to output-sensitive data structures.

Output-sensitive data structures are capable of reporting the items satisfying an on-

line query in time linear to the number of items returned plus a sublinear function of

the number of items stored. Rank-sensitive data structures are additionally given a

ranking of the items and just the top k best-ranking items are reported at query time,

sorted in rank order. The query must remain linear only with respect to the number

of items returned, which this time is not a function of the elements satisfying the

query, but the parameter k given at query time. We explore several ways of adding

rank-sensitivity to different data structures and the different trade-offs which this

incurs.

Adding rank to an index query can be viewed as adding an additional dimen-

sion to the indexed data set. Therefore, ranked queries can be viewed as multi-

dimensional range queries, with the notable difference that we additionally want to

maintain an ordering along one of the dimensions. Most range data structures do

not maintain such an order, with the exception of the Cartesian tree. The Cartesian

tree has multiple applications in range searching an other fields, but is rarely used



for indexing due to its rigid structure which makes it difficult to use with dynamic

content. The second part of this work deals with overcoming this rigidness and

describes the first efficient dynamic version of the Cartesian tree.
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Introduction

In recent years we have been literally overwhelmed by the electronic data available in

fields ranging from information retrieval, through text processing and computational

geometry to computational biology. Making sense of an ever-increasing torrent of

data is becoming more and more of a problem.

An obvious example of this phenomenon is the web search engine. Web search

engines are designed to answer queries which return all documents containing a

given phrase, or phrases, from the set of all documents available on the World Wide

Web. Unless the query phrase is extremely specific, which is usually not the case,

it potentially returns a very large number of results. This number is typically so

large, that neither the search engine itself, nor the initiator of the query can have

any chance of processing these results in a reasonable amount of time.

In the early days of the Internet, web search engines did indeed attempt to return

all of the results of a web search query, but as the Web exploded in size, it became

quickly apparent that the paradigm of the web query needs to be refined. This is

when the next generation of search engines came into being: search engines, which do

not only return the documents containing a query word, but returned these results

sorted according to rank. We will not delve into the subtleties of defining such a rank

here. It is only important to note that this rank tries to reflect a user preference on

the results, so that higher-ranked results are more likely to be the results that the

user would like to consider first.

The key point to ranked queries is the fact that these queries do not really return

all of the results of the query, but only a small subset of the highest-ranked ones.

This way not only the user is not overwhelmed by a large amount of data, but also

the engine has a chance of answering the query efficiently.

Ranked queries have proved so far the most successful remedy for the enormity

of online data, but document retrieval is not the only field in which the amount of

data is growing rapidly and its processing is a growing concern. Let us take, for

example, computational biology. Biological databases containing various sequences
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(for example genetic information expressed as sequences of nucleotides, or protein

structures expressed as sequences of amino acids) are growing exponentially as the

mechanisms used to obtain this data are enhanced from year to year.

Biological databases are but one example of an increasingly unmanageable in-

formation source. Numerous other examples exist, from geographical databases to

the results of demographical marketing studies. The simple keyword search used

for web queries does not always suffice when extracting information from these data

stores. Sometimes there is need to employ other types of queries, such as full-text

search or some kind of range-query (possibly multi-dimensional). The problem with

such queries is that they only work efficiently if the number of results returned is

small, which is not always the case.

This brings us to the motivation for this work. Full-text search and range

queries [15] are among the most common methods for retrieving various types of

data. Suffix trees [87] and range trees [14] are very popular and thoroughly studied

index data structures used for efficiently answering such queries. These structures

are also output-sensitive, which means that the main component in the complexity

of the query time is linear with respect to the number of items returned. This linear

component is indeed the best one can do if we actually want to return all of the

results of the query. But, as with the web search example, this can be of little use

if the number of items returned is huge, because then not only does the query take

long to process, but the result is unmanageable to the user.

However, as with web queries, very often we do have some sort of additional

preference regarding the items returned by the query. It may even be much more

naturally definable than the rank of a web page. In the case of a full-text search

we may want to simply consider the results in the order of their appearance. Or,

if the full-text search spans a number of documents, we may have a preference

regarding the containing documents. If the data represents graphical objects in two

dimensions, we may want to consider them according to a third dimension (the z-

order). When querying various databases, we may want to access records in the

order of their physical location (to minimize disk seek time) or according to a time

order (for example in the case of news items).

This thesis investigates the problem of adding rank query functionality to a class

of output-sensitive index data structures, among which the foremost are suffix tree

and range trees. The first part of the work surveys related work. It also provides

an overview of the two structures which we work on making rank-sensitive — suffix

trees and range trees.
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The second part introduces the concept of a rank-sensitive data structure and

describes several different implementations of such structures. In particular, it ex-

plores how rank-sensitivity can be added to suffix trees and range trees. The first

approach to adding rank sensitivity to suffix trees is explored both in a theoretical

and experimental setting. The second approach is more general framework which

can be applied to any structure in the family considered.

The last part of the thesis deals with a related problem, which is the dynamiza-

tion of Cartesian trees [85], a data structure which intrinsically organizes elements

according to rank in addition to another criterion. We show how Cartesian trees,

previously only studied in the static context, can be made dynamic. This is an

important first step in potentially improving rank-sensitive structure performance

and could also lead to the solution of other problems.
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Chapter 1

State of the Art

The problem we are investigating is that of turning an output-sensitive data struc-

ture, such as a suffix tree or a range tree, into something even more powerful —

a rank-sensitive data structure, which additionally has a rank associated with each

element it stores. While the output-sensitive data structure returns a set Q of re-

sults in response to a query, the rank-sensitive counterpart takes an additional query

parameter k and returns a subset of Q of size k containing the k highest ranked el-

ements of Q, sorted by rank. Moreover, the linear component of the query time is

not proportional to |Q| as in the case of output-sensitive data structures, but to k.

While ranking itself has been the subject of intense theoretical investigation in

the context of search engines [55, 57, 70, 20], we could not find any explicit study

pertaining to ranking in the context of data structures.

The only known data structure which can actually be considered rank-sensitive

according to our definition is the inverted index [93, 90]. An inverted index is a

structure used in most search engines for indexing large bodies of documents. The

documents are first tokenized to create sets of words contained in each document.

This mapping of documents to words is then inverted to create a list of containing

documents for each encountered word. This makes it easy to efficiently return all

documents containing a given word. Moreover, the inverted lists of documents can be

sorted according to the rank of the documents, which makes it possible to efficiently

return the best-ranking results.

Inverted indexes, however, do not solve our general problem due mainly to the

initial tokenization process. This process can only be applied when a natural tok-

enization method exists, which is true in the case of natural language documents,

but not so in the case of, for example, biological databases. It also causes the loss of

proximity information between the words in the document. This makes the inverted
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index much less efficient for answering more complicated queries, such as substring

search.

An indirect form of ranking can be found in the (dynamic) rectangular inter-

section with priorities [53]. This work presents a structure for answering rectangle

stabbing queries which returns the highest priority (or best-ranking) rectangle, which

is a special case of a rank-sensitive query, with k = 1.

A somewhat related problem is the document listing problem described in [65].

Muthukrishnan’s structure builds on the suffix tree [87] to answer substring queries.

However, it additionally takes into account that the source underlying the indexed

text is not a single document, but a collection of documents. It then returns not all

of the occurrences of the pattern in the text, but all of the documents containing the

pattern. Moreover, the structure is output-sensitive, which means that the linear

component is proportional to the number of containing documents and not to the

total number of occurrences as in the case of the regular suffix tree. In some cases,

the latter can be a much smaller number and be a much more meaningful result to

the user.

For a certain class of data structures, such as suffix trees, we can formulate the

ranking problem as a geometric problem. Note that the results of a query on a suffix

tree correspond to a range of its leaves. We can therefore associate two coordinates

with each leaf e of the tree — one, pos(e), corresponding to its inorder position in

the tree and the other, rank(e) corresponding to its rank. Let the range ei to ej be

the result of one query. The rank-sensitive version of the query takes parameter k

and is effectively a three-sided or 11
2
-dimensional query on pos(ei) . . . pos(ej) along

the x-axis, and 0 . . . rank(e′) along the y-axis, where e′ is the kth entry in rank order

such that pos(ei) ≤ pos(e′) ≤ pos(ej).

Priority search trees [59] and Cartesian trees [85] are among the prominent data

structures supporting these queries, but do not provide items in sorted order (they

can end up with half of the items unsorted during their traversal). Since we can

identify the aforementioned e′ by a variation of [41], in O(k) time, we can retrieve the

top k best-ranking items in O(log n+k) time in unsorted order. Improvements to get

optimal O(k) time can be made using scaling [44] and persistent data structures [32,

37, 54, 52]. Priority search trees are described in detail in Section 1.1.

What if we adopt the above solution in a real-time setting? Think of a server that

provides items in rank order on the fly, or any other similar real-time application

in which guaranteed response time is mandatory. Given a query, the above solution

and its variants can only start listing the first items after O(t(n) + k log k) time,
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where the t(n) component is the search time and k log k accounts for the reporting

time of the output-sensitive query and the time to sort the items reported according

to rank. In contrast, rank-sensitive data structures work in real-time. After O(t(n))

time, they provide each subsequent item in O(1) worst-case time according to the

rank order (i.e. the qth item in rank order is listed after c1t(n) + c2q steps, for

1 ≤ q ≤ k and constants c1, c2 > 0).

Persistent data structures Persistent data structures [32, 37, 54, 52] are dy-

namic structures which provide access not only to their latest versions, but also

to all of their intermediate versions, as opposed to ephemeral data structures which

provide access only to their most recent version. Persistent data structures which al-

low access to all of their versions, but allow the modification only of the most recent

version are called partially persistent data structures. Fully persistent data struc-

tures are those in which each intermediate version can be both accessed an modified.

There exists also the notion of confluently persistent data structures which refers

to fully persistent data structures which support merge operations involving more

than one intermediate version.

In [32], the authors present a general technique for making any pointer-based

data structure partially persistent with only a constant overhead on time and space

complexity and logarithmic access time to any version with respect to the number of

versions. This technique can be used to solve the static version of our problem in the

following way. Let us use e0, e1, . . . , en−1 to denote the list of leaves of a suffix tree,

as in the preceding paragraph. The entries ei for increasing i are sorted according

to the structure of the tree and a range ei to ej is the result of a query.

Using the partially persistent version of the linked list, we create O(log n) lists of

lengths 20, 21, . . . , 2blog nc. The first version of the list of length 2r contains elements

e0, e1, . . . , e2r−1 sorted in rank order. The second version does not contain e0, but

instead contains e2r and is still sorted according to rank — and so on: each sub-

sequent version is obtained from the previous by removing one element of the list

and adding another, so that version i contains elements ei−1, ei, . . . , e2r+i−2 in rank

order. Each subsequent list version adds only a constant overhead to the persistent

structure, because removing and adding elements in a linked list modifies only a

constant number of nodes. Since the structure is persistent, we can access any of

the versions in logarithmic time with respect to the number of versions, so in ef-

fect we can get any subset of e0, e1, . . . , en−1 whose length is a power of two sorted

according to rank.
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Figure 1.1: A sample priority search tree.

In order to retrieve any subset of leaves ei to ej sorted according to rank, we

compute the largest r such that 2r ≤ j− i. Among the versions of the sublists for 2r

entries, we take the one starting at ei and the one ending in ej . Merging these two

lists on the fly for k steps solves our problem. This solution uses O(n log n) space

and the query time is O(log n + k). It only works in the static setting since a single

change in e0, e1, . . . , en−1 can affect Θ(n) linked list versions in the worst case.

1.1 Priority search trees

As mentioned in the preceding section, priority search trees solve a problem which

is somewhat similar to our rank problem — that of answering three-sided queries

(see Definition 1.1.1). The structure was first introduced by McCreight in [59].

Definition 1.1.1 Given a set D of order pairs 〈x, y〉 ∈ D and values x0, x1, y1, a

three-sided query returns all pairs 〈x, y〉 ∈ D such that x0 ≤ x ≤ x1 and y ≤ y1.

A priority search tree (PST) for a set D of points 〈x, y〉 is a balanced binary tree

in which each tree node can be mapped to one of the points in D. Additionally, a

pivot value P (v) is associated with each node v of the tree. The following conditions

hold:

• For any two points 〈x1, y1〉 ∈ D and 〈x2, y2〉 ∈ D, if the node associated with

〈x1, y1〉 is an ancestor of the node associated with 〈x2, y2〉, then y1 ≤ y2.

• For any two points 〈x1, y1〉 ∈ D and 〈x2, y2〉 ∈ D, if the node associated with

〈x1, y1〉 belongs to the left subtree of some node v and the node associated

with 〈x2, y2〉 belongs to the right subtree of v, then x1 ≤ P (v) and x2 > P (v).
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Operation Complexity
PST construction O(n log n)

Single element insertion O(log n)
Single element deletion O(log n)

Three-sided query (k is the number of items reported) O(log n + k)

Table 1.1: Operations supported with the use of a priority search tree and their
corresponding complexities.

• Priority search trees are balanced (i.e. their height is O(log n) where n = |D|).

See Figure 1.1 for an example of a priority search tree.

1.1.1 Complexity

A priority search tree storing n items occupies O(n) space. The supported opera-

tions and their complexities are summarized in Table 1.1. Note that with respect

to the three-sided query, priority search trees are output-sensitive. Insertions and

deletions can be performed on a dynamic priority search tree, which is a variant of

the structure covered in detail in Section 1.1.4.

1.1.2 Construction

A priority search tree PST(D) for the set D of points 〈x, y〉 can be constructed

according to the following recursive definition:

• If D = ∅, then PST(D) is an empty tree.

• If D 6= ∅, then:

– Let 〈x′, y′〉 be a point in D such that for each 〈x, y〉 ∈ D, y′ ≤ y.

– Let D′ = D − 〈x′, y′〉.
– Let x′′ be the median of the x coordinates of the points in D′.

– Let DL be the set of 〈xL, yL〉 ∈ D′ such that xL ≤ x′′.

– Let DR be the set of 〈xR, yR〉 ∈ D′ such that xR > x′′.

– The root of PST(D) is a node v associated with point 〈x′, y′〉. P (v) = x′′.

The left child of the root is PST(DL) and the right child of the root is

PST(DR).



8 State of the Art

Note that this construction produces a balanced tree as long as the x coordinates

of the points in D are distinct (an assumption which can always be made, because

in the case of repeating values we may introduce an additional distinction). The

construction takes O(n log n) time, where n = |D|.

1.1.3 Three-sided query

A three-sided query (see definition 1.1.1) on a priority search tree, given parameters

x0, x1, y1 and a priority search tree PST(D) is performed as follows.

1. If the tree is empty, return an empty set.

2. If the tree is not empty, then:

(a) Let v be the root of the tree and let 〈x′, y′〉 be its associated point and

let P (v) be its associated pivot point.

(b) Let PST(DL) and PST(DR) be the left and right subtrees of v respec-

tively.

(c) If y′ > y1, return an empty set.

(d) If y′ ≥ y1, then:

i. If x0 ≤ x′ ≤ x1, report 〈x′, y′〉.
ii. If x0 ≤ P (v), recursively search PST(DL).

iii. If x1 > P (v), recursively search PST(DR).

It is clear that this algorithm reports only the points satisfying the query. Parts

of the tree omitted in Step 2c of the algorithm do not contain relevant points on

account of the heap property of the tree. Parts of the tree omitted in steps 2(d)ii

and 2(d)iii of the algorithm do not contain relevant points on account of the ordering

of the points in the tree with respect to the pivot point. Therefore, the algorithm

lists exactly the points satisfying the query.

One can base the complexity analysis of the query algorithm on categorizing the

points visited by the algorithm. It is clear that each point is visited at most once.

Each visited point falls into one of the three categories:

1. Points which are reported.

2. Points which are not reported, because the condition in Point 2(d)i fails.
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Figure 1.2: A sample dynamic priority search tree.

3. Points which are not reported, because the condition in Point 2c fails.

There are k points in category number 1, where k is the number of items satis-

fying the query.

On each level of the tree there at most two nodes which fall into category num-

ber 2. This is because on each level the inorder order of the nodes corresponds to

the order of the x coordinates of their corresponding points. Due to Step 2(d)ii of

the algorithm, if we visit a point in this category which is to the left of the x0–x1

range, then we will not visit points to the left of this point. Analogically, due to

Step 2(d)iii of the algorithm, if we visit a point in this category which is to the right

of the x0–x1 range, then we will not visit points to the right of this point. Therefore,

there are at most O(log n) points in this category, because the tree is balanced and

has logarithmic height.

As for category number 3, if a point falls into it, then its parent must fall into

categories 1 or 2. This is because after Step 2c of the algorithm we do not visit the

child nodes of the node in question. Therefore, there at most as many points in this

category as there are points in the remaining two categories.

Overall, the complexity of the algorithm is O(log n + k) where n is the size of

the tree and k is the number of items satisfying the query.

1.1.4 Dynamic priority search trees

Dynamic priority search trees are slightly different from their static counterparts.

In a dynamic priority search tree, each point is associated with a leaf of the tree and

may also be associated with one of the internal nodes. Therefore, a tree storing n
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points has 2n− 1 nodes. The inorder order of the leaves corresponds to the x order

of the points. Each internal node v is associated with the point with the smallest y

among the points associated with the leaves descending from v which is not already

associated with a parent of v (such a point may not exist, in which case v is not

associated with any point). See Figure 1.2 for an example of a dynamic priority

search tree.

The tree is balanced using the balancing mechanism of the red-black tree [26].

The dynamic version of the priority search tree has the same heap property with

respect to the y coordinate and ordering with respect to the x coordinate (points

stored in the left subtree of a node all have the x coordinate smaller than the items

stored in its right subtree), so the three-sided query can be performed in the same

way.

Dynamic priority search tree construction Dynamic priority search trees can

be constructed in a bottom-up fashion. First, the points are sorted according the

their x coordinate to create the leaves of the tree. Pairs of consecutive leaves are

joined to create the lowest level of internal nodes. Each internal node is associated

with the point with smaller y among the two leaves. In each subsequent step internal

nodes are a joined to create a higher level of internal nodes. When two internal nodes

are joined, one of the points stored in the two nodes being joined is moved to the

parent, leaving the lower node “free”. At this point, a point from a lower internal

node is moved up, and so on until the bottom is reached or no point remains to

move up (in which case the node remains empty).

Sorting the elements takes O(n log n) time. Then, there are O(n) joins which

may cause nodes moving up, but those are limited by the height of the tree, hence

O(log n) time. Overall, the construction takes O(n log n) time as with static priority

search trees.

Insertion Insertion into the dynamic PST requires a number of steps. First, the

new leaf needs to be added. The location of the new leaf can easily be found using

the tree itself, because the tree is a balanced search tree with respect to the leaves,

so it is enough to follow a path from the root according to the usual binary search

tree rules. Once a leaf is reached, it is replaced with an internal node with this leaf

as one of its children and the new leaf as the other child.

Following the insertion of the leaf, the internal node values need to be updated.

This stage is accomplished by “pushing down” the new node along a path which
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starts at the root of the tree. The y value of the point associated with each internal

node considered is compared to the y value of the point being pushed down. If the

y value of the pushed point is greater, then the algorithm continues down according

to the x coordinate of the pushed point. If the y value is smaller, then internal node

is associated with the pushed point. After this, the algorithm takes the old point

associated with this internal node and continues down, pushing down this old point

until the bottom of the tree or an empty internal node is reached.

After each insertion, balance is maintained by re-balancing the underlying red-

black tree using the standard red-black tree rotations [26]. Note that these rotations

by definition maintain the binary search tree order on the x coordinates of the nodes.

As for the heap order, this can again be corrected using the pushdown operations.

Since the rotations and pushdown operations all pertain to just one path in tree,

the overall insertion time is bound by O(log n).

Deletion Similarly to insertions, deletions require removing the associated leaf,

updating the values associated with the internal nodes, and possibly re-balancing

the tree.

Again the associated leaf can be found and removed by using the binary tree

properties of the PST. Internal nodes need to updated on the path from the leaf to

internal node associated with the deleted point. This can be done bottom-up using

the same algorithm as is used in the construction of the tree.

Finally, rotations may be required in order to re-balance the tree. These can be

performed just like the rotations resulting from the insertions, that is, by coupling

them with any necessary pushdown operation required to maintain the heap order

of the tree.

1.1.5 Priority search trees and ranked queries

As mentioned earlier in this chapter, we can use priority search trees to solve a

problem similar to our ranking problem, although the resulting structure is not

fully rank-sensitive. Let us take a data structure, such as a suffix tree, such that the

result of the query is a sublist of a list e0 . . . en−1 — in the case of the suffix tree it

is a sublist of the leaves of the tree ordered according to their (inorder) position in

the tree.

If we treat the positions of the elements in this list pos(e) as x coordinates and

ranks of the elements rank(e) as y coordinates, then the top-k query for the range
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of elements ei to ej is actually a three-sided query with pos(ei) and pos(ej) as the

x bounds and rank(e′) as the y bound, where e′ is the kth entry in rank order such

that pos(ei) ≤ pos(e′) ≤ pos(ej).

We can identify the element e′ by a variation of [41], in O(k) time. However,

the three-sided query returns items in unsorted order, so sorting them according to

rank takes another O(k log k) time. Therefore the overall query time is O(log n +

k log k), so the priority tree-based structure for answering ranked queries offers only

superlinear query complexity with respect k and hence is not rank-sensitive.

1.2 Cartesian trees

Cartesian trees have been introduced 25 years ago by Vuillemin [84, 85]. Due to

their unique properties (cf. [44]), they have found numerous applications in priority

queue implementations [40], randomized searching [73], range searching [74], range

maximum queries [44], least common ancestor queries [12, 48], integer sorting [6],

string algorithms [34] and memory management [77], to name a few.

1.2.1 Definition

A Cartesian tree T is a binary tree, in which each node is associated with a pair

of values. We may view these values as points 〈x, y〉 in the Cartesian plane. The

nodes of T satisfy the following conditions:

1. The order on the x-coordinates of the points matches the inorder of the nodes

in T .

2. The order on the y-coordinates of the points complies with the heap order on

the nodes in T .

1.2.2 Construction

From the definition of the Cartesian tree, we may deduce the following recursive

algorithm for building it, given a set of points to store in its nodes:

1. Take the point 〈x̄, ȳ〉 with the maximum y-value in the set (y-values can be

viewed as a priority measure). This point has to be the root of the tree,

otherwise the heap condition (Condition 2) would be violated.
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Figure 1.3: An example of a Cartesian tree. The nodes storing points 〈x, y〉 are lo-
cated at coordinates (x, y) in the Cartesian plane. The edges e = (〈xL, yL〉, 〈xR, yR〉)
are depicted as lines connecting the two coordinates (xL, yL) and (xR, yR). The tree
induces a subdivision of the Cartesian plane, which is illustrated by dotted lines.
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2. The x-value of the root, x̄, induces a partition of the remaining elements into

sets L = {〈x, y〉 : x < x̄} and R = {〈x, y〉 : x > x̄}. Set L must constitute the

left subtree of 〈x̄, ȳ〉 and set R must constitute the the right subtree, in order

to maintain Condition 1. So the roots of the Cartesian trees obtained from L

and R are the left and right children of the root 〈x̄, ȳ〉, respectively.

Example 1.2.1 Figure 1.3 shows a sample Cartesian tree containing a set of 22

points.

This construction takes O(n log n) time. If we have the points in the tree already

sorted according to their first coordinate, we can construct the tree left to right in

linear time in the following fashion. Suppose Ci is the Cartesian tree containing

points 〈x0, y0〉 . . . 〈xi, yi〉. We construct Ci+1 by adding 〈xi+1, yi+1〉 somewhere on

the rightmost path of Ci. We do it by traversing the rightmost path from the

most recently added node upwards to find the place to add 〈xi+1, yi+1〉. The key

observation is that each node can only join the rightmost path once and leave it also

just once, so even if in one step we traverse i steps of the rightmost path, we are

shrinking the rightmost path by i elements, so the total construction time is O(n).

Up to now Cartesian trees have only been studied in the static setting. In Part III

we explore how to make this structure dynamic.

1.3 Weight-balanced B-trees

Weight-balanced B-trees [7] are a type of balanced dynamic search tree, which have

the unique property the a rebalancing operation on a node v with x descendants

happens only every O(x) times. This property is very useful when additional data is

associated with each node, the data is O(x) in size and needs to be reorganized when

the node is rebalanced. In such a case, due to the property, the cost of rebuilding

the associated data can be amortized. This can be exploited in the case of dynamic

operations on range trees (see Section 2.2.6). We also use this property in our

dynamic version of Cartesian trees (see Section 5.8.1).

1.3.1 B-trees

B-trees [9, 10, 25] are a dynamic search trees with amortized logarithmic query

and update time. They are the most commonly used structure in database and file

system applications mainly because they behave well in external memory.
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Each B-tree node other than the root has between a and 2a − 1 children1. The

root of a B-tree has between 2 and 2a− 1 children. A node v with x children stores

x − 1 values in such a way as to maintain the search property, that is all of the

values stored in the first i children of v and their descendants are less than the i-th

value stored in v and the remaining children of v and their descendants store values

greater than the i-th value in v.

All of the leaves of a B-tree are at the same level and the tree is logarithmic in

height.

Query operations are performed as with binary search trees except more than

one value has to be checked in each node. The number of values in each node is

limited by the constant a, so the query time is O(log n).

As with binary trees, the insertion of an item starts with the search for this item

ending in a leaf. If the found leaf has less than then maximum allowed number of

values, then the value is inserted into the leaf. Otherwise, the leaf is split into two

leaves, resulting in the middle value being pushed up into the parent. If the parent

size is exceeded then it has to split as well and so on until a node is reached which

is not full or the root is split and a new root is formed.

Since each value stored in a node acts as a separator value for the subtrees, dele-

tion is a bit more involved. First, the value to be deleted is swapped out with a value

from a child node in such a way as to maintain the search ordering. This continues

until a leaf is reached. If the value can be removed from the leaf without invalidating

the size of the leaf, then the operation terminates. Otherwise if a neighboring leaf

is of more than the minimum size, then the elements are redistributed between the

leaves so as to maintain the size requirements. In the case in which both the leaf

in question and its neighbors are already of minimum size, the leaf is fused with its

neighbor and one value from the parent node. This may leave the parent node with

illegal size in which case the process propagates upwards until a node with more

than minimum size is reached or the root is removed.

1.3.2 Weight-balanced B-trees

A weight-balanced B-tree is balanced based on the weight of each node rather than

its degree. The weight of a node v is defined as the total number of elements stored in

the leaves which descend from v (or in v if v itself is a leaf). A weight-balanced B-tree

1A more general structure is a weak B-tree or an (a, b)-tree [60] which limits the number of
children to a range from a to b, where a and b are any positive numbers such that 2a ≤ b.
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with branching parameter a and leaf parameter k has the following properties [7]:

1. All leaves are on the same level and store between k and 2k − 1 elements.

2. The weight w(v) of a node v on level ` which is not the root satisfies 1
2
a`k <

w(v) < 2a`k, where levels are numbered bottom-up starting from 0 at the leaf

level.

3. The weight of the root at level ` is less than 2a`k and the root has more than

one child.

From the above conditions it follows that the nodes of the tree have no more

than 4a children and all nodes except for the root have at least a/4 children and the

height of the tree is logarithmic.

Insertion As with the regular B-tree, insertion starts at a leaf and may result in

split operations which are propagated upwards until a node of less than maximum

size is reached or the root splits and new root is formed. The difference here is that

maximum size is determined by the weight and not the degree of a node, hence a

node splits if it would otherwise have to exceed the maximum weight of 2a`k − 1.

A node on level ` is split at the i-th value, where i is such that the weights of the

nodes resulting from the split are within 2a`−1k of a`k. This is always possible due

to the weight limit of each of the children.

The following lemma is crucial to our (Section 5.8.1) and other applications of

weight-balanced B-trees.

Lemma 1.3.1 ([7]) After splitting a node v on level ` into two nodes, v′ and v′′, at

least 1
2
a`k insertions have to be performed below v′ (or v′′) before it splits again. After

creating a new root in a tree with n elements, at least 3n insertions are performed

before it splits again.

Proof : A node splits when its weight reaches 2a`k and results in nodes whose weight

is at most a`k + 2a`−1k < 3
2
a`k. Therefore the a weight increase of 1

2
a`k, and thus

so many insertions are needed for the node to split again.

A root is created when its weight (the number of elements in the tree) reaches

2a`−1k and splits when it reached 2a`k > 8a`−1k which is four times the size of the

tree at the time of the root creation.
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Deletion Deletion in a weight-balanced B-tree can be performed using the global

rebuilding technique [68]. This means that the deletions are implemented as weak

deletions : marking an element as deleted, but not removing it from the structure.

Once the number of weak-deleted elements reaches a predefined constant fraction of

the total number of elements, the entire structure is rebuilt without the weak-deleted

elements. This way the cost O(n log n) of rebuilding the structure is amortized over

O(n) deletions, so deletion effectively take O(log n) amortized time.
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Chapter 2

Base data structures

2.1 Suffix trees

A suffix tree is an output-sensitive static data structure used for identifying the

occurrences of a substring in a text, though it also has a variety of other uses (see

Section 2.1.3).

A suffix tree is a special case of a compacted trie [42] or PATRICIA tree [63].

A trie is a tree used for storing a set of strings over an alphabet. Each edge

in the tree is labeled with a character of the alphabet in such a way that all edges

from a node to its children are labeled with distinct characters and the set of words

obtained by concatenating the characters along each paths from the root to each of

the leaves is the set of strings stored in the structure.

Tries can be used for quickly (in time proportional to the size of the input string)

determining if a string belongs to a given set, as well as retrieving all strings with a

given prefix, so they are widely used in spell-checkers and for auto-completion.

Most often in natural language applications, tries contain a large number of

unary nodes, which makes them space-inefficient. PATRICIA trees are modified

tries in which series of edges between any two branching nodes are compacted into

single edges. Depending on the application, the labels of the compacted edges also

have to be compacted somehow. If the PATRICIA tree is only used for verifying if a

string belongs to the subset, it is enough to store the first edge label and the length

of the original path in the compacted edge. If an application requires reproducing

the entire string of characters along the original path, we may take advantage of the

fact that every such path corresponds to a substring of the original input and store

a reference to this original input in the compacted edge.

A suffix tree is a PATRICIA tree which stores all of the suffixes of a given text.
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Figure 2.1: Suffix tree for the string senselessness$. Longer substrings are repre-
sented using start and end positions of the substring in the text. Leaves contain
starting positions of their corresponding suffixes.

Since every substring of a text is prefix of some suffix of this text, every internal node

of the trie of the suffixes corresponds to a substring of the text. Since the suffix tree is

compacted though, some of the edges may correspond to more than one substring.

As with the PATRICIA tree, edge labels in a suffix tree may correspond to long

substrings of the text, but those can be represented using the start and end indexes

of their corresponding substrings, provided the original text is also stored.

In order to maintain a useful one-to-one correspondence of text suffixes and tree

leaves, the original text is padded at the end with an out-of-alphabet character,

typically denoted $. Generalized suffix trees [46] are suffix trees constructed for a

set of texts by concatenating all of the texts into a single text while using out-of-

alphabet characters in between them.

Example 2.1.1 Figure 2.1 shows a suffix tree for the text senselessness$. Longer

substrings are represented using their start and end positions in the original text.

2.1.1 Complexity

Suffix trees for a text of length n occupy O(n) memory words, provided the word is

large enough to address the size of the original text and to store a character of the

alphabet. They can be constructed in O(n) time using an online algorithm which

processes the text from left to right [80, 82] (see 2.1.2).
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Determining if a substring of length m belongs to the indexed text can be per-

formed in O(m) time by using the same algorithm as used for pattern matching

in a trie. Listing all of the occurrences of the substring involves locating its corre-

sponding node and then listing all of the leaves descending from this node (provided

the text is padded with the out-of-alphabet symbol at the end). Since the tree is

compacted and all nodes have at least two children, this task takes O(m + `) time,

where ` is the number of occurrences of the substring in the text.

2.1.2 Construction

There are several other algorithms for constructing suffix trees which have been

known earlier (see for example [87, 58, 23]). The Ukkonen algorithm [80, 82] be-

came the most popular, though, because it is the first online one: It processes each

character of the input text from left to right and in each step it has constructed the

prefix of the text containing all of the characters processed so far. We will describe

the Ukkonen algorithm in this section.

Ukkonen suffix tree construction is based on the construction of the correspond-

ing uncompressed trie. Each node in the suffix tree corresponds to a node in the

corresponding trie. Since the suffix tree is compressed, however, there are nodes

in the trie which do not correspond to nodes in the suffix tree. Following [82] we

will refer to the trie nodes as states and refer to those having a counterpart in the

suffix tree as explicit states and the rest — implicit states. Implicit states can be

understood as locations in the middle of a suffix tree edge. An implicit state can

be uniquely defined by the parent of such an edge and the prefix of the edge label,

referred to in [82] as the canonical reference pair .

The construction operates on an augmented version of the suffix tree being con-

structed. The augmentation involves adding an auxiliary state ⊥ and suffix links.

Suffix links are pointers from each node v to the node f(v), where f is the suffix

function. The suffix function f assigns a node to every node in the tree in the fol-

lowing way: For each node v other than the root, if v corresponds to the string ax

for some character a, then f(v) is the node corresponding to x. For v equal to the

root, f(v) = ⊥. Note that the transition function can also be defined for implicit

states.

Crucial to the online construction of suffix trees is the introduction of open edges .

As we mentioned earlier, each edge in the suffix tree is labeled with the start and

end indexes of its corresponding substring. Note that this means that each edge
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leading to a leaf has the current string length as the second part of its label. If

we were to update these labels in each step of the online algorithm, the algorithm

would end up quadratic. To address this, the notion of an open edge is introduced.

An open edge is an edge leading to a leaf. Since we know that the second part of

the label of such an edge is always the last index of the string, we do not store it

explicitly, but instead denote it as ∞. This eliminates the need for updating all the

edge labels of the open edges explicitly in each step.

The boundary path of the suffix tree is the path which follows suffix links from

the deepest node (the one corresponding to the entire string) to the root and finally

the auxiliary state ⊥. Adding each subsequent letter to the end of the string on

which the suffix tree is based involves updating the nodes on the boundary path.

Ukkonen’s algorithm is based on the observation that the boundary path can be

split into three segments:

1. The first segment contains nodes at the end of edges which need to be extended

by one when adding the new character.

2. The middle segment contains nodes at the end of edges which need to be split

when adding the new character. The splitting of such an edge results in a new

leaf.

3. The last segment contains nodes which already have a transition corresponding

to the letter being added.

Due to the open edge concept, nodes belonging to the first segment do not need

to be updated at all. Nodes belonging to the last segment do not need to updated

either, since they already have the required transition. The only nodes which need

to be updated are nodes belonging to the middle segment, but each of these creates

a new leaf, so their creation can be amortized by the number of leaves in the tree

O(n).

The algorithm keeps track of the beginning of the middle segment, the so called

active point . Therefore, it is able to traverse and update only the middle segment

in each step. The overall complexity of the algorithm is O(n) for the construction

of a suffix tree for a text of length n.

2.1.3 Applications

Suffix trees are usually used as static data structures, because changes in the un-

derlying text can potentially change the entire structure of the tree. For example,



Range trees 23

a suffix tree for the text aa. . . a$ is a binary “comb”, while changing just the mid-

dle letter to form aa. . . abaa. . . a$ reduces the height two-fold while increasing the

degree of most nodes to three.

Apart from finding the occurrences of a substring in text, suffix trees have mul-

tiple other applications [45]. Those range from finding common substring of a set

of strings or detecting palindromes [46], to clustering web search results [91]. Suffix

trees can also be used for approximate string matching — see for example [81].

Multiple applications of suffix trees can be found in the field of computational

biology where the indexed text represents a sequence of amino acids or nucleotides.

One such application is genome alignment, a process which determines the simi-

larity between two or more genomes [29, 28, 50]. Another application is signature

selection [51]. Signature selection requires finding short subsequences which occur

in only one sequence of a set of sequences thus identifying this sequence. Such sig-

natures are used for building microarrays, since the sequences bind to different areas

of the microarray allowing one to measure the number of sequences of each type —

gene expression. Suffix trees are also used in computational biology to find tandem

repeats [47] (consecutive occurrences of the same substring).

2.2 Range trees

Besides suffix trees, range trees are an another versatile output-sensitive data struc-

ture which can be made rank-sensitive using the techniques presented in this work

(see Chapter 5).

Range trees have been introduced by Bentley [14] in 1980 and since then have

been the base for most orthogonal range searching data structures [2].

Orthogonal range search is a special case of geometric range search. Geometric

range search deals with searching a set of elements which can be represented as

points in a multidimensional space and locating elements which fall within a specified

geometric range.

With orthogonal range search the range is a multidimensional rectangle with

sides parallel to the axis of the geometric space. This rectangle can be open-ended

on some of its sides. Variations of orthogonal range search queries include listing all

of the points in the rectangle, determining their number, or determining if any such

points exist.

In this work, when speaking of orthogonal range search, we will mean the first

variation (see Definition 2.2.1).
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Definition 2.2.1 Orthogonal range search query operates on a set of d-dimensional

points (x1, . . . , xd). The query specifies a rectangle with corners at (a1, . . . , ad) and

(b1, . . . , bd) and returns the set of points (x1, . . . , xd) such that ai ≤ xi ≤ bi for

i = 1 . . . d.

2.2.1 Definition

The structure of the range tree can be defined recursively with respect to the di-

mensionality d of the points stored in the structure.

1-dimensional range trees A range tree in one dimension is a minimum-height

binary tree with the elements stored in the leaves ordered from left to right from

smallest to largest. The leaves are additionally organized in a doubly linked list. Al-

ternatively, in the static model, the 1-dimensional range tree may also be represented

simply as a sorted array of all of the elements.

d-dimensional range trees A d-dimensional range tree stores points from a

d-dimensional space. It is a minimum-height binary tree with the points stored

in the leaves and ordered from left to right according to the first coordinate. We

call this tree the primary tree or primary structure. Each internal node v contains

a (d − 1)-dimensional range tree of the points stored in the subtree rooted at v pro-

jected onto a (d − 1)-dimensional space by disregarding the first coordinate. We will

call these trees the secondary structures.

See Figure 2.2 for an example of a 2-dimensional range tree.

2.2.2 Space complexity

A range tree storing n d-dimensional points occupies O(n logd−1 n) space. This can

be shown through induction.

A 1-dimensional range tree occupies O(n log1−1 n) = O(n) space, because it is

a binary tree with n leaves. Linking the leaves in a list does not induce additional

complexity.

In a d-dimensional range tree each node stores a (d − 1)-dimensional range tree

holding all of its descending points. Since the tree is of minimum-height, there are

m = O(log n) levels in the tree. There are O(2i) nodes at levels i and each of

them is an ancestor of O( n
2i ) other nodes. Therefore, assuming (inductively) that
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Figure 2.2: Range tree for the set of points {(1, 15), (2, 5), (3, 8), (4, 2), (5, 1), (6, 6),
(7, 14), (8, 11), (9, 16), (10, 13), (11, 4), (12, 3), (13, 12), (14, 10), (15, 7), (16, 9)}.
For clarity, the first coordinate has been omitted in the second-level tree nodes. The
query 1 ≤ x ≤ 13, 2 ≤ y ≤ 11 is considered. The path of the query is marked
using bold edges. The leaves and the roots of the second-level nodes considered for
the query are marked with black dots. Finally, the ranges of points reported are
indicated using gray rectangles.
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a (d − 1)-dimensional tree occupies O(n logd−2 n) space, the space occupied by the

d-dimensional tree holding n points, S(d, n), can be calculated as follows:

S(d, n) =
log n
∑

i=0

O(2i) ∗ S(d − 1, O(
n

2i
))

=
log n
∑

i=0

O(2i) ∗ O(
n

2i
logd−2 n

2i
)

= O(n)
log n
∑

i=0

O(logd−2 n

2i
)

= O(n)
log n
∑

i=0

O(logd−2 n)

= O(n) log(n) ∗ O(logd−2 n)

= O(n logd−1 n)

2.2.3 Construction

A range tree can be constructed in optimal time, that is in time linear with respect

to its size O(n logd−1 n), provided that the points are already sorted with respect to

one coordinate. Again, this can be shown by induction with respect to d.

A 1-dimensional range tree is a binary tree, so it can be constructed in O(n)

time provided that the elements are already sorted. Linking the leaves into a linked

list does to increase the complexity.

Now let us assume, by inductive assumption, that a (d − 1)-dimensional range

tree can be constructed in time linear with respect to its size. In order to con-

struct a d-dimensional range tree, we need to construct the primary tree which

takes O(n log n) time. We then have to construct the (d − 1)-dimensional range

trees stored in each node. We already know from Section 2.2.2 that the total size

of these structures can not exceed O(n logd−1 n) and by inductive assumption their

construction time is linear, so the total time of building a tree of two or more di-

mensions is O(n log n + O(n logd−1 n)) = O(n logd−1 n).

2.2.4 Orthogonal range search query

1-dimensional range trees Orthogonal range search query in one dimension is

simply locating elements within a given range. It can be accomplished using a

1-dimensional range tree by finding one of the endpoints of this range using the

binary search tree and then listing all of the elements by traversing the linked list
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until the other endpoint is reached. If the range is open-ended on one side, this

algorithm still works, provided we start from the closed end of the range. In the

case in which the tree is represented as an array, locating elements within a range

involves a binary search on the array to locate one endpoint of the range and then

listing the consecutive elements in the array until the other endpoint of the range is

reached.

d-dimensional range trees Orthogonal range search query in d-dimensions in-

volves reporting all points within the multidimensional rectangle with corners at

points (a1, . . . , ad) and (b1, . . . , bd). It is performed as follows: The leaves corre-

sponding to a1 and b1, as well as their lowest common ancestor v, are found using

binary search. The points in these leaves are reported depending on if they fall in

the range or not. Then, the right children of the nodes on the path from the left leaf

to v (excluding the leaf and v) and the left children of the nodes on the path from

the right leaf to v (again excluding the leaf and v) are considered if they are not

part of these paths (see Figure 2.2). All of the leaves descending from these nodes

have a first coordinate falling in the desired range. The (d − 1)-dimensional range

trees stored in these nodes are used to recursively report all the points in the range.

Example 2.2.2 Figure 2.2 shows an example of a 2-dimensional range tree con-

taining 16 points and illustrates the process of performing a query on that tree.

Range search query using a d-dimensional range tree containing n points takes

O(logd n + `) time, where ` is the number of points in the range. This can be shown

by induction with respect to d.

A 1-dimensional range query is reduced to tracing two paths in a minimum-

height binary tree which takes O(log n) time and following ` entries in a linked list,

which takes O(`) time. Overall, the query time is O(log n + `).

A range query on a d-dimensional range tree involves tracing two paths in a

minimum-height binary tree (O(log n) time) and querying O(log n) (d − 1)-dimensional

range trees. The latter results in reporting ` items (O(`) time) and a O(log n ∗
logd−1 n = logd n) total search time. The overall query time is O(log n+logd n+`) =

O(logd n + `).

For d ≥ 2, the query time can be improved to O(logd−1 n + `) with the use of

fractional cascading (see next section).
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2.2.5 Fractional cascading

Fractional cascading was introduced in [22] as general technique for speeding up

various operations in different data structures. It can be applied to data structures

which store the same element more than once, such as the range tree. It is based

on the idea that instead of searching for the same item more than once, we can link

copies of the same item into a list and in effect search for each item only once.

Fractional cascading can be used to improve the query time in 2-dimensional

range trees by a factor of O(log n), which in turn improves the query time by the

same factor for any d-dimensional range tree where d ≥ 2, which follows directly

from inductive query time analysis in 2.2.4.

Let us recall that in a 2-dimensional range tree, each node stores a secondary

structure which is a 1-dimensional range tree. Each of these secondary structures is

a list of points ordered by their second coordinate with a balanced binary tree for

answering range queries on this list. When a query is performed on the 2-dimensional

range tree to return points in the rectangle defined by corners (a1, a2) and (b1, b2)

it follows a logarithmic path in the tree and in each node the range query a2 – b2 is

performed on the secondary structure.

These secondary queries can take O(log n) time and there are O(log n) of them,

which is why the query time is O(log2 n). However, observe that in each node the

query range is the same — bounded by a2 and b2. Also, each secondary structure

holds a subset of the structure stored in the parent node.

Fractional cascading applied to the 2-dimensional range tree augments each sec-

ondary structure with pointers. Each element in the secondary structure of node

v has two pointers — one to the secondary structure of the left child of v and one

to the secondary structure of the right child of v. If v stores the point with second

coordinate y, then the pointers both point to elements storing such a y′ that y′ is

the smallest second coordinate stored in the respective structure which is greater or

equal to y (see Figure 2.3).

With the fractional cascading pointers, when performing the 2-dimensional range

query (a1, a2) – (b1, b2), it is enough two perform the 1-dimensional range query on

the secondary structures only once — in the lowest common ancestor node v (see

Section 2.2.4). This can be done either using a binary tree if the last level secondary

structures are lists, or a binary search on an array if they are arrays. One can then

follow the fractional cascading pointers of elements at the ends of the identified

range down the two paths of the query in the main tree. Note that from the query
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Figure 2.3: The second-level structures of the range tree in Figure 2.2 linked using
fractional cascading. For clarity, the first-level nodes are not depicted — they are
the same as the ones in Figure 2.2. The bold lines indicate the fractional cascading
pointers following the paths of the query in the primary tree. The bold dashed lines
indicate the fractional cascading pointers followed from a node on the main query
path to its child whose secondary structure needs to be queried.
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algorithm described in Section 2.2.4, each node whose secondary structure is queried

has a parent located on this path. Therefore, instead of querying these structures,

we can use the path of the fractional cascading pointers to obtain the desired range

in constant time each time (see Figure 2.3).

Fractional cascading increases the space complexity of the range tree only by

a constant factor, because each element of a secondary structure stores two extra

pointers. The query time becomes O(log n + log n + `) = O(log n + `). As men-

tioned earlier, due to the recursive argument in Section 2.2.4, the query time for

d-dimensional range tree with fractional cascading is O(logd−1 n + `) for d ≥ 2.

Example 2.2.3 Figure 2.3 shows the secondary structures from the tree in Exam-

ple 2.2.2 augmented with fractional cascading pointers. The fractional cascading

pointers followed during the query 1 ≤ x ≤ 13, 2 ≤ y ≤ 11 are indicated.

2.2.6 Dynamic operations on range trees

Range trees can support insertion and deletion operations. In the dynamic case, the

primary tree structure is a weight-balanced B-tree (see Section 1.3). Insertion or

deletion into the tree involves the insertion or deletion into the main tree and the

insertion or deletion into a logarithmic number of secondary structures. As with the

previous operations, we can show by induction that this takes O(logd n).

Rebalancing operations on a node v require rebuilding the secondary structure

associated with v. From Section 2.2.3 we know that this takes time linear with

respect to the size of this structure, which in turn is linear with respect to the number

of leaves descending from v. Due to the property of the weight-balanced B-tree (see

Section 1.3), each rebalancing operation on a node with x descendants happens only

every O(x) operations, hence the amortized cost is constant and rebalancing does

not increase the amortized complexity of the dynamic operations.

2.2.7 Applications

Range tree structures have numerous applications in many fields. If the elements

stored in tree are treated as points, range trees offer an efficient way of performing

geometric orthogonal searching. However, the elements can be interpreted as any

other kind of data having d scalar attributes, where d is the dimensionality of the

tree. For example, the elements can be employee records in a database, for which

the salary, position, and seniority is stored. In such a case, range trees can be used
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to answer queries of the form “Return all employees holding a managerial position,

with a salary between 100000 and 120000, who have been with the company for

more than 10 years”.
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Part II

Making structures rank-sensitive





Chapter 3

Introduction and definitions

Output-sensitive data structures are at the heart of text searching [46], geometric

searching [27], database searching [83], and information retrieval in general [8, 90].

They are the result of preprocessing n items (these can be textual data, geometric

data, database records, multimedia, or any other kind of data) into O(n polylog(n))

space in such a way, as to allow quickly answering on-line queries in O(t(n) + `)

time, where t(n) = o(n) is the cost of querying the data structure (typically t(n) =

polylog(n)). The term output-sensitive means that the query cost is proportional

to `, the number of reported items satisfying the query, assuming that ` ≤ n can be

much smaller than n. In literature, a lot of effort has been devoted to minimizing

t(n), while the dependency on the variable cost ` has been considered unavoidable

because it depends on the items satisfying the given query and cannot be predicted

before querying.

In recent years we have been literally overwhelmed by the electronic data avail-

able in fields ranging from information retrieval, through text processing and com-

putational geometry to computational biology. For instance, the number ` of items

reported by search engines can be so huge as to hinder any reasonable attempt at

their post-processing. In other words, n is very large but ` is very large too (even

if ` is much smaller than n). Output-sensitive data structures are too optimistic in

a case such as this, and returning all the ` items is not the solution to the torrent

of information. For instance, the aforementioned search engines return millions of

Web pages per query—an amount no human can read and no computer can quickly

crawl over for post-processing.

Search engines are just one example; many situations arising in large scale search-

ing share a similar problem. But what if we have some preference regarding the items

stored in the output-sensitive data structures? Perhaps we do not just want any
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occurrences of a string, the items from a geometric range search, or a group of sim-

ilar genotype sequences, but we want them returned in some order. This order may

have nothing to do with the linear order underlying the internal organization of the

output-sensitive data structure. More importantly, we might not need all of the

elements, but just the top k best-ranking ones. For example, we might want to see

the first 100 occurrences (in left-to-right order) of a string in a text, the lowest 5

points lying between two vertical lines, or the 10 longest genotypes similar to that

of the fruit fly.

The solution in this case involves assigning an application-dependent ranking to

the items, so that the top k best-ranking items among the ` ones satisfying an on-

line query can be returned sorted in rank order. (We assume that k ≤ ` although

the general bound is indeed for min{k, `}.) Note that the overload is significantly

reduced when k � `. For example, PageRank [70] is at the heart of the Google

search engine, but many other rankings are available for other types of data. Z-

order is useful in graphics, since it is the order in which geometrical objects are

displayed on the screen [49]. Records in databases can be returned in the order of

their physical location (to minimize disk seek time) or according to a time order

(e.g. press news). Positions in biological sequences can be ranked according to their

biological function and relevance [46]. These are just basic examples, but more can

be found in statistics, geographic information systems, etc.

To address this, we define the concept of rank-sensitive data structures as follows.

Definition 3.0.4 Throughout this work, we will use the term rank to refer to the

given linear order defined on the items stored in a structure, which represents a

preference regarding these items. We will identify it with a function rank which

assigns an integer value form the range 1 . . . n to each of the n items in the structure

in such a way that rank(x) < rank(y) if and only if the item x is better ranking

than the item y.

Definition 3.0.5 A rank-sensitive data structure is the result of preprocessing n

items into O(n polylog(n)) space in such a way, as to allow the answering of on-

line queries in O(t(n) + k) time, where t(n) = o(n) is the cost of querying the data

structure and the parameter k, given at query time, is the number of items reported.

The k reported items are the top k (according to rank) items satisfying the query

and the items are reported in rank order. The rank is a given linear order defined

on the n items stored in the structure.
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Adding rank-sensitivity to suffix
trees

4.1 Introduction

From the architecture of suffix trees (see Chapter 2.1), the result set of a query on

a suffix tree corresponds to the set of leaves descending from a particular internal

node. Therefore, in order to obtain a rank-sensitive version of the suffix tree, we need

a way of augment this structure in such a way as to enable the efficient returning of

only the top-ranking subset of leaves descending from any given node.

In this chapter, we present a way to augment any tree data structure, given

a rank (a linear order) defined on its leaves, to enable the returning of the top k

best-ranking leaves descending from node q, in rank order, for any given k and q, in

time linearly proportional to k.

This method can be used to create rank-sensitive suffix trees, but can also be

used on other tree index structures, which have the property that the query results

correspond to the leaves in a subtree. Any kind of trees which represent hierarchies

have this property. In computational biology, hierarchical trees are used to express

the similarity level between organisms or proteins or DNA structures, or to express

the ancestor-descendant relationship between them. A query on such a structure

could be something like “return all species from the genus Escherichia”. Large

hierarchical trees also often result from automatic hierarchical clustering [86].

Other databases also often reflect a hierarchy – for example the organizational

hierarchy of the employees of a company. The increasingly popular XML format [18]

is intrinsically hierarchical and queries on XML documents may involve returning

the leaves descending from a node.
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4.2 Preliminaries

The base for our data structure is a tree which we will call the original tree. The

original tree has a specified root, hence the parent-child relationship between its

nodes is well defined (the parent of a node is the next node on the path from this

node to the root; the root has no parent; a node is a child of its parent). The nodes

of such a tree can be divided into internal nodes (nodes with at least one child) and

leaves (nodes without children).

From this point on, we will assume that the original tree is a full binary tree —

one whose nodes have either two or no children. Any tree can be transformed into a

full binary tree (with no more than twice the nodes) in such a way that every subset

of leaves previously defined as being the descendants of some node, is still the set of

leaves descending from some node in the full binary version of the tree.

Definition 4.2.1 The depth of a node is defined as the number of edges on the path

from this node to the root.

Rank is defined on the set of leaves of the tree.

4.2.1 Light and heavy edges

Essential to our approach is a partition of the original tree based on the one utilized

in [75]. We classify all tree edges into light edges and heavy edges in such a way that

for each internal node vp and its children vc1 and vc2 the following properties hold.

1. Among the two edges, (vp−vc1) and (vp−vc2), one edge is heavy and the other

is light.

2. The edge (vp − vc1) is heavy if and only if the subtree rooted at vc1 contains

no less nodes than the subtree rooted at vc2 .

This definition may not be entirely unambiguous (if two sibling nodes are roots

of equal-sized subtrees), but a consistent classification can always be established.

Example 4.2.2 Figure 4.1 shows a tree with edges correctly partitioned into light

and heavy ones.

Definition 4.2.3 A heavy path is a path in the tree composed solely of heavy edges.

Definition 4.2.4 The light depth of a node is defined as the number of light edges

on the path from this node to the root.
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Figure 4.1: A sample tree with the leaf rank indicated inside the leaf symbols. Heavy
edges are depicted using solid lines and light edges are depicted using dashed lines.
Some nodes have labels below for reference.
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4.2.2 Rank-predecessor and rank-successor

Definition 4.2.5 We use the phrase “rank-predecessor of v at w” (predw(v)) to

mean the predecessor of the leaf v in rank order in the set of leaves descending from

the node w. Analogously, we define “rank-successor of v at w” (succw(v)) as the

successor of v in rank order in the set of leaves descending from w. If no rank-

predecessor or rank-successor exists, we write predw(v) = ∅ or succw(v) = ∅.

Example 4.2.6 See Figure 4.1 for examples of rank-predecessors and of a rank-

successor.

4.3 Approach

4.3.1 Naive solution with quadratic space

Let us recall that the problem in question is to quickly list the best-ranking leaves

descending from a given node in rank order. The simplest way to achieve this is to

preprocess the tree and to store the following information.

1. For each node w — the best-ranking leaf descending from w.

2. For each leaf v and its ancestor w — the rank-successor of v at w.

With the above information accessible in constant time (this can be easily imple-

mented using a set of arrays) a query can be answered in output-sensitive time, by

first returning the best-ranking leaf descending from the query node and then for

each returned node, looking up its rank-successor at the query node until the desired

number of leaves is returned.

Example 4.3.1 A preprocessing of the tree in Figure 4.1 produces a table such as

the one in Table 4.1 and stores information about the best-ranking descending leaf

for each node. To subsequently list the best-ranking leaves descending from query

node q, one can first use the latter information to find out that the leaf of rank 1

should be returned first. Next, one can use the row of the table corresponding to

a depth of 1 (since 1 is the depth of query node q) to return each subsequent leaf

until the desired number of leaves is returned. The entry for the leaf of rank 1 at

depth 1 is the leaf with rank 2 so 2 is returned next. Analogously, leaves of rank 3,

5, 8, 9, 10, 11, 13, 14, 15, 16 are returned next in that order.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∅
1 2 3 5 6 8 7 12 9 10 11 13 ∅ 14 15 16 ∅
2 2 3 14 7 8 ∅ 12 9 10 11 13 ∅ 15 16 ∅ ∅
3 ∅ 3 14 7 10 - ∅ 9 11 ∅ 13 ∅ 15 16 ∅ ∅
4 - 14 16 ∅ ∅ - ∅ 11 ∅ ∅ 13 - 15 ∅ ∅ ∅
5 - ∅ ∅ - - - - 13 - - 15 - ∅ ∅ ∅ ∅
6 - - - - - - - ∅ - - ∅ - ∅ - ∅ -

Table 4.1: A table for the quick answering of rank-successor queries computed for
the tree in Figure 4.1. A cell in column i and row j identifies the rank-successor of
leaf i at the ancestor of i whose depth is j. For clarity, leaves are labeled with their
rank.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∅

1 2 3 5 6 8 7 12 9 10 11 13 ∅ 14 15 16 ∅

2 2 3 14 7 8 ∅ 12 9 10 11 13 ∅ 15 16 ∅ ∅

3 ∅ 3 14 7 10 - ∅ 9 11 ∅ 13 ∅ 15 16 ∅ ∅

4 - 14 16 ∅ ∅ - ∅ 11 ∅ ∅ 13 - 15 ∅ ∅ ∅

5 - ∅ ∅ - - - - 13 - - 15 - ∅ ∅ ∅ ∅
6 - - - - - - - ∅ - - ∅ - ∅ - ∅ -

Table 4.2: Table 4.1 with only the distinct rank-successors of each leaf distinguished.
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This naive solution matches our bounds only in the case of a logarithmic-height

tree, which is not always the case for suffix trees [31]. In the worst case, the size

of the lookup table can be quadratic with respect to the number of leaves in the

original tree. The following sections describe how O(n log(n)) space can be achieved

in the case of any tree, regardless of its shape.

4.3.2 Naive solution with non-optimal time

The problem with the lookup table described in the previous section is its pessimistic

space complexity. Notice, however, that many entries in this table repeat themselves.

In particular, the rank-successor of a given leaf often does not change from one

ancestor to the next. Hence, let us consider only these rank-successors of a leaf which

differ from the rank-successors at the next depth (for an example see Table 4.2). The

number of these distinct rank-successors can not exceed n log(n)/2, which will be

shown in detail as part of the complexity analysis in Section 4.6.

So, in order to guarantee O(n log(n)) space complexity, we now store only the

distinct rank-successors as a list for each node (from now on we will use distinct

to mean differing from the value corresponding to a larger depth). However, with

this change we lose constant-time access to the rank-successor of a leaf at a given

height, since retrieving this information now requires traversing the list associated

with the leaf and not an array lookup. Using balanced search trees instead of

lists could guarantee logarithmic-time access to any sought rank-successors, but no

data structure can guarantee the constant-time access which is needed to turn this

solution into an output-sensitive one.

The following section shows how to modify this solution to achieve output-

sensitive time while maintaining O(n log(n)) space complexity.

4.3.3 Rank-tree solution

This section provides an outline of the solution. For a formal description of the

structure and algorithm see sections 4.4 and 4.5.

Solution outline

There are three key tricks we use to transform the solution from the previous section

into one with optimal query time. These are enumerated below.
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1. Instead of using rank-successor information, we use rank-predecessor infor-

mation and list the best-ranking occurrences in reverse rank order. Thus

produced output can be easily reversed back to its correct order with the use

of a stack while maintaining optimal time complexity. The reversal of these

pointers significantly reduces the number of list elements which need to be

considered. We will later show why this is so.

2. The above modification complicates the procedure of finding the first element

to return. Let us recall that when answering a query in the correct order one

would always start from the best-ranking element and so the starting element

could be stored explicitly for each possible query node. Now that the items

are returned in reverse order, the first element should be the k-th ranking leaf

descending from q and hence it depends not only on the query node q, but

also on the number k of items to list. We address this issue by storing the

starting element for each possible query node q and for each possible k′ which

is a power of 2. Storing this information requires O(n log(n)) space, so it does

not increase the space complexity of the solution. When answering a query,

the number k of elements to return is rounded up to k′ — the nearest power

of 2 and k′ elements are actually considered. Since k′ is never more than twice

k, this maneuver does not increase the time complexity of the query.

3. The distinct rank-predecessors of each leaf at the different ancestors of this leaf

are stored in lists for each leaf. These lists are additionally augmented with

pointers which allow constant time access to areas of the list corresponding to

different light depths. Since a leaf can have at most a logarithmic light depth,

this does not worsen the space complexity. At the same time, it allows us to

consider only a part of the list.

Query algorithm

After these modifications, the query algorithm for listing k best-ranking leaves de-

scending from q in rank order can be summarized in the following steps.

• The initial element to list in reverse order is chosen using pre-computed values

stored for each query node q and each number k′ which is a power of two.

This element will be k′-th leaf in rank order descending from q, where k′ is the

smallest power of two greater than or equal to k.
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If k is greater than half the number of leaves descending form the query node,

then the worst-ranking descendant is chosen as the starting node.

• Each subsequent leaf to return is found by traversing part of the list of rank-

predecessors of the leaf just returned. The part of the list traversed is the part

corresponding to the leaf’s ancestors which have the same light depth as the

query node.

• Since this procedure returns elements in reverse rank order, the elements are

pushed on a stack and then popped to produce the actual solution.

Why it works

While it is pretty clear that the space complexity of the structure is O(n log(n)), the

time complexity of the algorithm is not at all obvious. There are 2k′ stack operations,

which is of the order of k, since k′ < 2k, but each procedure of establishing the next

leaf to return involves traversing part of a list, which is not a constant operation.

The key part of the analysis is showing that this procedure is indeed of constant

time when amortized over all the times it is performed while answering one query.

That is to say, even if the length of list to traverse at one point will turn out to be

ten elements long, then in ten other cases it will be of length one.

The reason for this phenomenon is that the need for an element of the list to

be examined is directly caused by a different leaf descending from the query node.

Moreover, this responsible leaf is one of the k′ leafs listed during the run of the

algorithm and each leaf can be responsible for at most one other. So the total

length of list portions to consider is still linearly proportional to k and hence so is

the entire query algorithm.

4.4 Ranked tree structure

A ranked tree consists of the original tree (a full binary rooted tree with distinguished

light and heavy edges), leaf lists (LLs), leaf arrays (LAs) and node arrays (NAs).

The latter three data structures are described in detail in the following sections.

The algorithms in Section 4.5 and complexity analysis in Section 4.6 shed light

on why these data structures are actually necessary for solving the problem.
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4.4.1 Leaf lists

Each leaf v of the original tree has an associated leaf list LL(v) in the ranked tree.

The leaf list of a given leaf contains all of this leaf’s distinct rank-predecessor at

each node on the path from this leaf to the root.

Formally, the leaf list for a leaf v (assuming v has depth d) may be constructed

by performing the following actions.

1. Create a list of pairs

〈(d, p0, predp0
(v)),

(d − 1, p1, predp1
(v)),

(d − 2, p2, predp2
(v)),

. . . ,

(0, pd, predd(v))〉,

where 〈p0 = v, p1, p2, . . . , pd = root〉 is the path from v to the root of the tree.

2. Remove from this list all entries (d − i, pi, predpi
(v)), such that predpi

(v) =

predpi−1
(v).

Example 4.4.1 The leaf list of leaf v in the example tree in Figure 4.1 would be

〈(6, v, ∅),

(4, p2, l8),

(3, p3, l9),

(2, p4, l10), 〉

where lx is the leaf with rank x. Note that there are no entries corresponding to

depths 5, 1 and 0, since predp1
(v) = predp0

(v) = ∅ and predp6
(v) = predp5

(v) =

predp4
(v) = l10.

We will use next(e) to denote the next element after the element e on the list and

depth(e), node(e), and leaf(e) to denote the element’s first (depth), second (node),

and third (leaf) components respectively.

Note that from the point of view of the algorithm, there is no reason to store the

second (node) component in the leaf list, because it is never referenced. We introduce

it here since it is very useful in the analysis of the correctness and complexity of

the system, but an actual implementation would only need to take into account the

depth and the leaf components.
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4.4.2 Leaf arrays

In addition to the leaf list, each leaf v possesses a leaf array LA(v). This zero-based

array is a set of pointers to the leaf list of this leaf and contains one more element

than is the leaf’s light depth.

Let us use di to denote the depth of the deepest node of light depth i on the

path from v to the root. In that case, the i-th element of LA(v), LA(v)[i], points to

such an entry (j∗, w, u) of LL(v) that j∗ = max{j : j ≤ di∧ (∃l((j, w, u) ∈ LL(v)))}.

Leaf arrays allow constant access to each of the separate heavy paths to which

entries on the leaf list correspond.

Example 4.4.2 Leaf v in Figure 4.1 has a light depth of 1 and hence its leaf array

has two items. LA(v)[1] points to the (6, v, ∅) item of LL(v), since v is the deepest

node on the path from v to the root with a light depth of 1. LA(v)[0] points to

(4, p2, l8) since p2 is the deepest node on the path from v to the root with a light

depth of 0. If an entry corresponding to p2 were not present on LL(v), then LA(v)[0]

would point to the last entry on the list before the place where the p2 entry would

have been.

4.4.3 Node arrays

Each node v of the tree has an associated (zero-based) node array NA(v). If the

subtree rooted in v contains l leaves then NA(v) contains dlog2(l)e + 1 elements.

For i < dlog2(l)e, the i-th element of NA(v), NA(v)[i], is a pointer to the 2i-th

leaf, in rank order, in the set of leaves descending from v. The last element of the

array, NA(v)[dlog2(l)e] is a pointer to the worst-ranking leaf in the set of leaves

descending from v.

Example 4.4.3 Node q in Figure 4.1 is the ancestor of 12 leaves {l1, l2, l3, l5, l8,

l9, l10, l11, l13, l14, l15, l16}, so NA(q) has dlog2(l)e + 1 = 5 elements: NA(q)[0] = l1

(l1 is 20-ranking leaf descending from v), analogically NA(q)[1] = l2, NA(q)[2] = l5,

NA(q)[3] = l11 and NA(q)[4] = l16, because l16 is the worst-ranking leaf descending

from v.

4.5 Ranked tree algorithms

4.5.1 Top-k query

Input: Node q, positive integer k.
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Output: Top k best-ranking leaves, in rank order, descending from q.

1. Let d be the depth of q.

2. Let ld be the light depth of q.

3. Let l be the number of leaves descending from q.

4. If k > l/2 then let k′ = l and let v = NA(q)[dlog2(l)e] else let k′ = 2dlog2(k)e

and v = NA(q)[dlog2(k)e].

5. Create an empty stack S.

6. Repeat k′ times (while v 6= ∅).

(a) Push v on the stack S.

(b) Let e = LA(v)[ld].

(c) Repeat while next(e) 6= ∅ and depth(next(e)) ≥ d.

i. Let e = next(e).

(d) Let v = leaf(e).

7. Repeat k times.

(a) Output Pop(S).

Lemma 4.5.1 The first outer loop (Point 6) of the algorithm pushes k′ best-ranking

leaves descending from q on the stack S in reverse rank order.

Proof : The fact that the k′ rank leaf is pushed first follows directly from the def-

inition of node arrays. It remains to be shown that the leaf pushed on the stack

directly after v is predq(v).

Notice that the query node q lies on the path from v to the root, because from

the definition of node arrays, v is a node descending from q. The auxiliary pointer

e is initialized to e = LA(v)[ld].

From the definition of leaf lists and arrays, node(e) is either the deepest node on

the path from v to the root with a light depth of ld or it is a node on this path with

a light depth greater than ld. Either way, node(e) can not be less deep than q.

The iterations of the loop in Point 6c can not move node(e) off of the path from

v to the root, because of the way leaf lists are defined. For the same reason, each

iteration causes node(e) to be less deep so the loop must exit eventually.
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After exiting, e is such an entry on the leaf list v that depth(e) is the lowest

one which does not exceed d (d is the depth of q). This follows from the exit

condition of the loop. From the definition of the leaf list, we can conclude that at

leaf(e) = predq(v) for the value of e on exiting the loop.

Theorem 4.5.2 If k is less than the number of leaves descending from q, then

the algorithm returns the k best-ranking leaves descending from q in rank order.

Otherwise, it returns all of the leaves descending from q in rank order.

Proof : This follows almost entirely from Lemma 4.5.1. We must only note that

k′ ≥ min(k, l) (l is the number of leaves descending from q) and that the pushing

and subsequent popping of elements on a stack reverses their order.

Example 4.5.3 Let us consider the example in Figure 4.1. Suppose we want to

list the five best-ranking leaves descending from node q (k = 5). The initialization

phase sets d = 1, ld = 0, l = 12, k′ = 2dlog2(5)e = 23 = 8 and v = NA(q)[dlog2(5)e] =

NA(q)[3] = v.

The leaf v is pushed on the stack and LL(v) is considered. As we recall from

Sections 4.4.1, this list has the form 〈(6, v, ∅), (4, p2, l8), (3, p3, l9), (2, p4, l10)〉.
The light depth of q (ld) is 0 and we know from Section 4.4.2 that LA(v)[0]

points to the (4, p2, l8) entry of LL(v), so this is the element e is initialized to. The

depth of the next element on the list, (3, p3, l9), is still greater than d (3 > 1), so we

set e to point to this next element.

Similarly, we execute another turn of the loop and set e = (2, p4, l10). This is

where the process ends, because there are no more elements on the list. At this

point, we know that l10 = predq(v). If that were not the case, there would be

another entry on the list with a depth greater than 2 and smaller or equal to 1 to

indicate that the predecessor of v changes at that point on the path.

In the subsequent steps l10, l9, l8, l5, l3, l2, and l1 are pushed on S. Popping

k = 5 elements returns l1, l2, l3, l5, l8, which is the correct answer.

4.6 Complexity

4.6.1 Space complexity

Leaf lists

Each leaf list LL(v) has at least one initial element (depth(v), v, ∅). If n is the number

of leaves in the original tree, then this accounts for exactly n leaf list elements.
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Now let us calculate the maximum number of leaf list elements which are not the

first elements on the list. These elements will have the form (depth(w), w, predw(v)),

where w is an internal node of the tree.

Let l be the son of w such that (w − l) is a light edge and let h be the son of w

such that (w−h) is heavy. If the entry (depth(w), w, predw(v)) exists in LL(v), then

either v descends from l and predw(v) descends from h or the other way around —

v descends from h and predw(v) descends from l.

If both v and predw(v) descended from the same son of w (let us call this son s),

then predw(v) would be equal to preds(v). Since depth(s) = depth(w) + 1, LL(v)

would not contain the entry (depth(w), w, predw(v)).

From this we can conclude that for each internal node w, there are at most twice

as many leaf list entries (depth(w), w, predw(v)) as there are leaves descending from

l (twice, because each leaf descending from l can either play the role of v or that

of predw(v). This leads to the following recurrence equation for the maximum total

length L(n) of leaf lists in a binary tree of n leaves (if m is the number of leaves

descending from a son of the root of the tree, then min(m, n −m) is the number of

leaves descending from the son at the light edge).

L(1) = 1

L(n) = max
0<m<n

(

L(m) + L(n − m) + 2 min(m, n − m)
)

Since the maximum always occurs when the subtrees are of equal size, the second

equation can be written as L(n) = L(n/2) + L(n/2) + 2n/2 = 2L(n/2) + n. It

is easy to verify that the solution to this equation is L(n) = n + n log2(n), so

L(n) = O(n log(n)).

Leaf arrays

The size of the leaf array in each leaf is proportional to its light depth. Since a light

depth cannot exceed log n, the total sum of these is again O(n log n).

Node arrays

The size of the node array of a node is logarithmic with respect to the number of

leaves descending from that node, so it is at most log n and hence the total sum of

these arrays is O(n log n).
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4.6.2 Time complexity

Lemma 4.6.1 The number of executions of the first outer loop (Point 6) of the

algorithm (k′) is less than twice the number of items returned (k′ < 2k).

Proof : In the case that k > l/2 and k′ = l, we have k > k′/2, so k′ < 2k. Otherwise

k′ = 2dlog2(k)e, so k′ < 2log2(k)+1, and so again k′ < 2k.

Lemma 4.6.2 The total number of executions of the internal loop (Point 6c) in

one run of the entire algorithm does not exceed k′.

Proof : The outer loop (Point 6) of the algorithm is executed k′ times, and in effect,

k′ leaves are pushed on the stack S. Let us associate one credit with each leaf pushed

on the stack. Each of these credits will be used for paying for an execution of the

internal loop (Point 6c) which took place before the leaf was pushed on the stack.

We will show that all executions are paid for, and hence there can not be more than

k′ of them.

Let us use proj(v, q) to denote the deepest node belonging to the intersection

of the path from v to the root and the heavy path containing q (proj stands for

the projection of v on the heavy path of q). Since v descends from q, such a node

must exist. Moreover, note that proj(v, q) is uniquely defined for every v and q.

When a leaf v is pushed on the stack, its associated credit will be used to pay for

an execution of the internal loop which occurred when the leaf succproj(v,q)(v) was

on top of the stack.

On the other hand, each time the internal loop is executed with some leaf v′

on top of the stack, e assumes a new value, which is an entry in LL(v′) and

hence is of the form (depth(pi), pi, predpi
(v′)). From the boundary conditions of

the loop, we know that depth(pi) ≥ depth(q). Moreover, e is initialized to equal

e = LA(v′)[lightdepth(q)], so from the definition of leaf arrays, we know that each

subsequent leaf list entry after the initial one has a light depth not greater than that

of q. Therefore, each of the leaf list entries considered (except possibly the initial

one), (depth(pi), pi, predpi
(v′)), corresponds to a node pi which is on the heavy path

containing q. Moreover, the leaf predpi
(v′) can not descend from the heavy son of pi

or the entry would not be on the leaf list. So, pi = proj(predpi
(v′), q). The following

observations can be made.

1. If v is on top of the stack, then predpi
(v′) will eventually be pushed on the

stack as well. This follows from the fact that predpi
(v′) has higher rank than v
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(it is its rank-predecessor), that it descends from q (it descends from pi which

descends from q) and the algorithm lists best-ranking leaves descending from

q in rank order (Lemma 4.5.1).

2. Once pushed on the stack, predpi
(v′) will use its credit to pay for the loop

execution in question. That is because:

succproj(predpi
(v′),q)(predpi

(v′)) =

succpi
(predpi

(v′)) = v′.

It follows from these observations that each execution of the loop with v′ on top

of the stack which ends with e = (depth(pi), pi, predpi
(v′)) is paid for by the credit

associated with the leaf predpi
(v′), which will eventually be listed. Therefore, there

are at most k′ executions of the internal loop (Point 6c).

Example 4.6.3 Again, let us consider leaf v from Figure 4.1. After v is pushed on

the stack, e traverses LL(v). Initially e = (4, p2, l8). After the first execution of the

internal loop (Point 6c), e is moved along the list and becomes (3, p3, predp3
(v) = l9).

According to the amortization argument, this loop execution should be paid using

the credit associated with l9.

Indeed, it is clear that l9 will be pushed on the stack after v = l11, since it has

a better rank and also descends from q. At the same time p3 = proj(l9, q) and

so v = succproj(l9,q)(l9). The next loop execution leaves (2, p4, predp4
(v) = l10) and

hence is paid by the credit associated with l10. Again we can check that l10 will be

pushed on the stack and that v = succproj(l10,q)(l10).

Theorem 4.6.4 The algorithm is output-sensitive, i.e. its running time is O(k).

Proof : The first external loop is executed k′ < 2k times (Lemma 4.6.1) and the

second external loop is executed k times (by definition). At the same the internal

loop is executed no more than k′ times in total. All individual instructions within

the loops require constant time under the assumption that all pointers can be stored

in a machine word. This yields an overall time complexity proportional to c1k
′ +

c2k + c3k
′ < 2c1k + c2k + 2c3k = O(k) (ci are constants).
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Figure 4.2: Transforming a four degree node into a binary subgraph. Edge labels
are indicated with letters a, b, c, d. A special label ε is used on the new edges.

4.7 Experimental results

We implemented this algorithm in C++ and compiled using Microsoft Visual C++

2008 Express Edition with the full optimization (/Ox) option. All runs were per-

formed on a 3GHz Core 2 Duo CPU with 4GB RAM running a 64-bit Windows Vista

operating system (although the compilation was 32-bit). The query times were mea-

sured using the system performance counter (the QueryPerformanceCounter func-

tion). Function recursion is not used, instead we rely on the stack implementation

in the Standard Template Library [76].

As input to the algorithm we used suffix trees created from a text file using an

implementation by Zhao [92] which uses the Ukkonen algorithm [80]. The suffix

trees, originally of higher degree, were transformed into binary trees by replacing a

node with d children with a path of d − 1 nodes (for d > 2) and labeling the edges

on the new path with special empty labels (see Figure 4.2). This does not have any

significant impact on the suffix tree query algorithm and is only an implementation

detail, which is necessary for conforming with the assumption that the original tree

is binary.

For the rank function we used the position of the substring in the text, so that

a substring occurring earlier in the text would be ranked higher than a substring

occurring later.

In order to investigate the behavior of the algorithm given different suffix tree

shapes occurring in real life, we tested the algorithm on three types suffix trees built

from three types of text files:
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• English language text. The text file used was an English language version of

Leo Tolstoy’s novel “War and Peace” obtained from the Project Gutenberg

website (http://www.gutenberg.org).

• DNA sequence. The file used was in FASTA [71] format and contained a frag-

ment of the drosophila melanogaster genome. It was obtained from the website

of the Berkeley Drosophila Genome Project (http://www.fruitfly.org).

• Random file. The file used contained a decimal representation of the constant

π with a precision of 3000000 decimal digits. It was generated with Wolfram

Mathematica 6. Such a file can be considered a uniformly random stream over

a 10-digit alphabet as far as the shape of the suffix tree is concerned.

When a dependency on tree size was being considered, smaller files were obtained

by taking a prefix of the original file.

The goal of the experiments was to

• Assert the correctness of the solution.

• Provide a real-life usage scenario.

• Investigate the query time as a function of

– the parameter k,

– the total number of items satisfying the query,

– the size of the indexed tree,

– the shape of the indexed tree.

• Investigate the structure size as a function of

– the size of the indexed tree,

– the shape of the indexed tree.

We did not compare the algorithm with existing algorithms offering the same

functionality, because we are not aware of any such algorithms. Instead we compared

this approach with the what can be achieved using just the original suffix tree.

We found that we can successfully index files of up to approximately 3Mb in

length using our algorithm. A memory-optimized implementation would allow for

larger file sizes, but our focus was on asymptotic performance and implementation
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clarity. Setting up the index structure does consume extra time and memory with

respect to using just a simple suffix tree, but it does not create any unmanageable

overhead. After the augmented suffix tree structure is set up, top-k queries drasti-

cally outperform traditional suffix tree queries in the case in which k is much smaller

than the total number of occurrences. In fact, top-k queries show a linear depen-

dency on the parameter k providing empirical proof that the algorithm is indeed

rank-sensitive.

The algorithm illustrates how the rank tree structure can be used in the case

in which top-k query performance needs to be fast and cannot depend on the to-

tal number of items satisfying the query — for example, in the case of real-time

applications.

The next section provides some insight on the structure construction algorithm

used and the following sections summarize the experiment results.

4.7.1 Structure construction algorithm

The algorithm used to construct the structure can be outlined as follows.

1. Augment the tree with subtree sizes stored in each node

2. Partition edges into light and heavy

3. Augment the tree with depth and light depth stored in each node

4. Set up leaf lists and node arrays in a bottom-up fashion

5. Set up leaf arrays

The first three steps are simple, as each requires a single linear traversal of the

tree top-down or bottom.

The only non-trivial part of the construction algorithm is Step 4. We realize it by

constructing the structures in a bottom-up fashion. With each node v we associate

a temporary sorted (according to rank) array TA of leaves descending from this

node. We cannot, however, keep this array for all of the nodes at the same time,

or else the total memory requirement would become quadratic, severely reducing

the usefulness of the algorithm. Instead, we use the arrays of the child nodes to

construct the array of the parent node and to update the appropriate leaf list and

node array entries and then we remove the temporary arrays of the child nodes from
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memory — that way the total length of the temporary arrays is always equal to the

number of leaves, hence is linear with respect to the size of the tree.

Step 4 of the construction can be outlined as follows.

1. For each leaf v:

(a) Set NA(v) = {v}. Node arrays of leaves have just one element.

(b) Set TA(v) = {v}. Temporary arrays of leaves also have just one element.

(c) Set LL(v) = (depth(v), ∅). The theoretical description of the algorithm

would refer to this entry as (depth(v), v, ∅), but as mentioned earlier, we

do not actually have to store the middle component of the triplet. This

is just the first the entry of LL(v), more entries will be added during the

next steps of the construction.

2. For each node v with children c1 and c2, such that TA(c1) and TA(c2) are

computed, but TA(v) is not:

(a) Construct TA(v) by merging arrays TA(c1) and TA(c2) while preserving

the rank order on the leaf entires.

(b) For every entry l1 coming from the child c1 preceded in TA(v) by an entry

l2 coming from the child c2, add the leaf list entry (depth(v), l2) at the

end of LL(l1).

(c) For every entry l2 coming from the child c2 preceded in TA(v) by an entry

l1 coming from the child c1, add the leaf list entry (depth(v), l1) at the

end of LL(l2).

(d) Set up NA(v) by taking the entries from TA(v) which are powers of 2

and the last entry of TA(v) in the case in which the number of leaves

descending from v (equal to the size of TA(v)) is not a power of 2.

(e) Free memory occupied by TA(c1) and TA(c2).

Step 5 of the construction is again simple and can be realized by traversing the

path to the root from each leaf.

4.7.2 Query time results

In order to investigate the top-k query time under different circumstances, we ran the

query for different tree shapes, sizes, search substrings, and values of k. The varying
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tree shapes were obtained by building suffix trees over the random text, natural

language text, and DNA sequence. Varying tree sizes were obtained by taking

different prefixes of the files. The search substrings used depended on the tree shape

used. For the random decimal file they were strings of consecutive 0’s of varying

lengths. (Since the file is random, any substring of a given length appears roughly

the same number of times.) For the DNA sequence they were strings of consecutive

A’s of varying lengths. For the natural text, the following strings were consider in

order to obtain varying frequencies of occurrence: “e”, “n”, “d”, “he”, “the”, “of”,

“you”, “here”, “they”, “head”, “house”, “night”, “heaven”, “complacently”.

All queries were performed 100 times in a row and the average time was measured.

Only the reporting phase (and not the search) was taken into account. Additionally,

the whole experiment was performed four times and a minimum query time between

the four runs was taken into account in each case in order to minimize the impact

of any external disturbances on the query time.

For comparison, we also measured the time to extract all of the occurrences using

a standard subtree traversal.

In order to take a representative sample of the results without sampling all

possible file lengths and values of k, we ran the queries for file sizes and values of k

which were powers of 2.

To ensure that Lemma 4.6.2 holds and that the algorithm is indeed output-

sensitive, we also counted the number of the executions of the internal loop (Point 6c)

of the query algorithm.

Internal loop executions

In accordance with Lemma 4.6.2, the number of executions of the inner loop of the

query algorithm never exceed 2k in any of the runs (the largest ratio was found in

the language text ≈ 1.9 for 61 executions and k = 32). However, it is interesting to

observe that the way this ratio varies between 0 and 2k distinctly depends on the

size as well as shape of the tree (although not on k itself), which has an impact on

the overall query time for the different structures.

For both the natural language and random text, the ratio stays in the 1.4–1.6

range growing slightly for larger texts (see Table 4.3). In the case of the DNA

sequence, however, the ratio quickly drops to below 1. This suggests that the DNA

sequence tree shape is correlated with our measure of rank, so the algorithm has

to perform less work. Indeed the DNA sequence contains long sequences of the A
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File size DNA Random Language
128 1.54 1.53 1.46
256 1.51 1.55 1.40
512 1.12 1.43 1.42
1024 1.03 1.39 1.45
2048 1.10 1.52 1.45
4096 1.13 1.51 1.44
8192 0.82 1.54 1.49
16384 0.83 1.55 1.51
32768 0.87 1.53 1.54
65536 0.91 1.56 1.56
131072 0.96 1.56 1.56
262144 0.94 1.57 1.57
524288 0.94 1.58 1.58
1048576 0.94 1.59 1.58
2097152 0.95 1.59 1.59

Table 4.3: The average ratio of the number of executions of the inner loop to k
depending on the suffix tree size and shape.

character and we were searching for substrings of the form Ai. The occurrences of

these substrings would be subsequent positions within the long A chains and would

also correspond to subsequent (according to inorder) leaves of the tree. Therefore

the rank (for which we use the position in the text) of these occurrences is highly

correlated with the inorder position of the corresponding leaves in the tree.

Our algorithm performed faster on a tree exhibiting this correlation much like

many sorting algorithms perform faster on a sequence which is already partially

sorted.

Query time depending on k

As expected, the overall reporting query time depends mainly on k in a linear way.

It also depends on the size and shape of the tree due to the phenomenon discussed

in the preceding section, so for the same value of k we get slightly different query

time. However, the query time per each element returned across the entire result

set fits in a linear range and is limited by 0.000255ms per each item returned. See

Table 4.4 and Figure 4.3.
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k Query time in ms
1 0.0015 – 0.0017
2 0.0015 – 0.0017
4 0.0016 – 0.0017
8 0.0016 – 0.0018
16 0.0019 – 0.0021
32 0.0026 – 0.0035
64 0.0037 – 0.0055
128 0.0065 – 0.0101
256 0.0121 – 0.0225
512 0.0240 – 0.0400
1024 0.0460 – 0.0738
2048 0.0910 – 0.1409
4096 0.1860 – 0.2724
8192 0.4238 – 0.5968
16384 1.2012 – 3.094
32768 5.7078 – 8.1701
65536 13.2288 – 16.7001
131072 28.5475 – 33.2209
262144 59.5983 – 66.5709

Table 4.4: The query time in milliseconds depending on k.
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Figure 4.3: The query time in milliseconds depending on k.

Top-k query time as compared to returning all unsorted results

As we mentioned earlier, we also measured the time to report all results using the

standard suffix tree method, that is by traversing the relevant subtree (we used

the stack implementation in the Standard Template Library [76] to recurse through

the subtree). We compare this to running our query with k = `, where ` is the

total number of elements matching the query (the number of occurrences of the

substring).

Note that our top-k query has the advantage over the standard query in that

the results returned are sorted by rank, while the results returned by the standard

query are not sorted.

We found that for ` < 10000 our query has very similar running time to the

standard query and even often outperforms it for small values of ` (see Figure 4.4).

It is only for very large values of ` (over 100000) that we saw an up to six-fold

advantage of the standard query over our top-k query returning all of the results

sorted (see Figure 4.5). The relative speed of the top-k query with respect to the

standard one did not show a dependence on the size of the tree.
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Figure 4.4: Ratio of top-k (sorted) query time to standard suffix tree (unsorted)
query time for k = `, where ` (the total number of occurrences) is less than 10000.

Top-k query time as compared to returning all results and sorting them

We also compared results obtained using our structure to obtaining the same result

by traversing the suffix tree in the usual way and then sorting the results using

the Standard Template Library list::sort function. That is, in both cases we

output the results of the query into a Standard Template Library list structure

(implemented as a linked list). Using our structure it was enough to create the list

from end to beginning (no change in the complexity) and the result was a sorted

list. Using the standard tree traversal, we output the results into the list, but then

had to additionally invoke list::sort the obtain the rank-sorted list which results

from using our structure. In all cases, we ran the tests for k = `.

The result is that our structure consistently outperforms the standard method

in returning rank-sorted results (see Figure 4.6). For very small ` there is really

no difference between the two and measurement fluctuations prevail in the results,

but for ` in the hundreds or thousands, our structure is approximately four times

faster. For larger ` the relative performance of our structure is slightly worse, but

still better than the alternative.



Experimental results 61

100000 200000 300000 400000 500000
1

2

3

4

5

Figure 4.5: Ratio of top-k (sorted) query time to standard suffix tree (unsorted)
query time for k = `, where ` (the total number of occurrences) is more than 10000.
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Figure 4.6: Ratio of query time using our structure to obtaining the same result by
retrieving all of the items from the suffix tree and sorting them using the Standard
Template Library list::sort function. Results shown for k = ` on a logarithmic
scale of ` for clarity.
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DNA Random Language

Text length NA LL LA Time NA LL LA Time NA LL LA Time

4 12 7 7 0.10 12 7 7 0.10 12 7 7 0.10

8 32 15 15 0.09 30 17 16 0.09 32 15 15 0.09

16 73 35 34 0.11 68 39 36 0.10 73 37 34 0.11

32 157 81 74 0.14 139 99 85 0.14 155 85 75 0.14

64 321 190 162 0.22 288 227 187 0.22 320 187 159 0.23

128 652 464 376 0.39 598 499 405 0.36 625 441 356 0.37

256 1307 1184 864 0.73 1168 1130 897 0.70 1231 1019 797 0.69

512 2463 2417 2127 1.38 2339 2443 1920 1.30 2396 2288 1748 1.32

1024 4792 5319 4529 2.77 4731 5286 4125 2.65 4774 4892 3718 2.49

2048 9365 11860 9833 5.43 9449 11451 8794 5.17 9430 10067 7725 4.97

4096 18477 25659 21935 10.94 18773 24678 18733 10.17 18939 22457 16908 10.25

8192 36663 55592 47094 22.56 37727 52645 39529 21.04 38000 49029 36523 21.49

16384 72963 118791 99154 48.49 75613 112458 83554 45.99 75591 105918 78367 45.95

32768 145564 254230 211109 105.54 150122 238861 176000 98.74 151125 226539 167261 99.56

65536 291091 539672 446908 228.09 301337 503955 369413 210.52 300935 478358 353916 223.66

131072 582004 1137054 942122 479.79 605114 1063767 774289 457.03 600452 1007260 747749 513.68

262144 1180491 2358979 1961077 1055.78 1202964 2243983 1620448 1021.32 1199255 2119975 1577009 1106.11

524288 2592192 4724605 3997045 2369.75 2404242 4707727 3383228 2118.42 2399670 4421080 3304868 2287.09

1048576 5040222 10087227 8442637 5032.81 4838610 9851230 7048631 4483.80 4797763 9267206 6923060 4878.23

2097152 11764144 20066454 16841888 18555.66 9653744 20625087 14666161 9638.04 9596879 19376074 14469231 10434.83

Table 4.5: Structure size and construction time (in milliseconds) depending on the length and type of the indexed text.
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4.7.3 Structure size results

We counted the number of leaf list, node array, and leaf array entries which com-

bined constitute our augmented structure. We also measured the time to create

the structure. As with the query time, we ran four independent test sets and took

the minimum construction time of the four in order to minimize the impact of any

external disturbances.

The results are summarized in table 4.5.

We found that for the random and natural language texts, the total node array

size, although theoretically bounded by O(n log(n)) is in practice linear with respect

to the size of the tree. For the unusual shape of the genetic sequence tree it does,

however, grow slightly faster than the tree itself. The total size of the other two

structures — leaf lists and leaf arrays — approached in practice the theoretical

upper bound of O(n log(n)) for larger tree sizes.

The structure construction time, although theoretically pessimistically quadratic

with respect to the size of the tree, in practice turned out mainly proportional to

the size of the structure, hence of the order of O(n log(n)). Only for very large trees,

did the quadratic component start showing slightly and was evident mainly in the

case of the highly irregular genetic sequence tree. Constructing the structure for a

tree of 4194303 nodes took roughly 10 seconds for the random and natural language

texts, 18 seconds for the genetic sequence.

4.8 An alternative approach using Cartesian trees

4.8.1 Data structure

Another approach to solving the same problem uses Cartesian trees [85] in addition

to the light and heavy edge partition [75].

Let us define an index node as a node which is not connected to its parent with

a heavy edge. In particular, the root of the tree is an index node. Note that from

the properties of the light and heavy partition [75], a leaf has at most a logarithmic

number of index node ancestors.

We associate a Cartesian tree with each index node. The Cartesian tree C(w)

for the index node w is constructed from a list of all leaves descending from w. For

each such descending leaf v, we note its rank (rank(v)) and the distance from w to

the first light edge on the path from w to v (depthw(v)).
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We then use the pairs (rank(v), depthw(v)) to construct the Cartesian tree for

w just like described in [85], except that we use a reversed order on the second

coordinate, so that the elements with the largest (and not the smallest) depth end

up on top of the Cartesian tree (see Figure 4.7).

Each node v of the Cartesian tree is augmented with a pointer to its nearest

ancestor to the left of that node L(v).

Each node u of the tree stores a reference to its nearest index node ancestor (w)

and the distance to it (depthw(u)). It also stores a node array (NA(u)[i]) logarithmic

in size with respect to the number of leaves descending from u. The value NA(u)[i]

is a reference to a node the Cartesian tree C(w) corresponding to the descendant of

u which is number 2i in rank1 among all the leaves descending from u.

4.8.2 Query algorithm

Given query node q and a value k, we first locate the nearest indexed node an-

cestor of q (w) the distance to it (depthw(q)), and the node in C(w) identified by

the node array entry NA(u)[i] = v, such that 2i ≥ k. We consider the sequence

of nodes produced by following the auxiliary pointers L starting from v, that is

(v, L(v), L(L(v)), . . . , Ls(v)), such that Ls(v) does not have an ancestor to the left

of it. We then reverse this list to produce l = (Ls(v), Ls−1(v), . . . , L(v), v). We then

follow the procedure:

1. For each element t in l

(a) Traverse the left subtree of t in infix order, but consider only values2

whose second coordinate is greater or equal to depthw(q). Return the

items visited (their corresponding leaves).

(b) Return the leaf corresponding to t.

Example 4.8.1 Figures 4.8 and 4.9 show two examples of queries, for query node

q1 and k = 4 and for query node q2 and k = 8. In both cases, w is identified as the

index node and the distances of the query node to it are noted (depthw(q1) = 2 and

depthw(q2) = 1). Next the node arrays are accessed to produce the lists. In case of

(q1, 4) the list is l = ((8, 5), (9, 3), (10, 2)) and in case of (q2, 8) it is l = ((8, 5), (11, 4))

1Actually, the last value points to the lowest ranking element, like in the version of the structure
described in the previous section, but this is just an implementation detail.

2We can do that, because the tree is a heap with respect to the second coordinate, so we are
just considering some top part of it.
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Figure 4.7: A sample tree with the rank order indicated inside the leaves. Light
and heavy edges are indicated using dashed and solid lines respectively. Leaves
are marked gray. Index nodes are marked using solid outlines. The nontrivial
(containing more than two nodes) Cartesian trees are included.
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C(w) = (13, 6)

(8, 5) (15, 4)

(5, 2) (11, 4) (14, 1)

(2, 1) (9, 3) (12, 0)
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(6, 0)

Figure 4.8: An example query. Query node is q1, k = 4 = 22. The index node
of q1 is w, depthw(q1) = 2, NA(q1)[2] = (10, 2), L(10, 2) = (9, 3), L(9, 3) = (8, 5),
L(8, 5) = NULL.

(we label the nodes by their corresponding pair of coordinates). Next all the elements

in the lists are considered together with their left subtrees. The subtrees are cut off

at the appropriate depths (2 and 1).

4.8.3 Discussion

With points of the form (x, y) stored as a Cartesian tree C, the query reduces to

the following: Return the first k (according to the x coordinate) elements of C,

whose y coordinate is grater or equal to some d. An infix traversal of C guarantees

returning items according to the x coordinate (rank) and its heap structure allows

considering all items above a given depth. So if the query would be to return all

leaves descending from a node in rank order, there would be no problem — we could

just traverse the Cartesian tree using an appropriate cut-off value and that would

be it. The problem is the additional, vertical cut-off due to k. During the infix

traversal, while going “down”, we visit elements which will be listed later. With

the k limit, these items may never end up listed, so the algorithm would seize to be

output-sensitive. See, for example, how in the first query example we are able to

skip the node (11, 4) — this node would be considered in a regular traversal of the

tree and would keep the algorithm from being output-sensitive (there could be many

such nodes). That is why we need the sequence of nodes l — to identify exactly all

the nodes visited during the traversal and no more. Unfortunately, this list depends

both on q and k.
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C(w) = (13, 6)

(8, 5) (15, 4)

(5, 2) (11, 4) (14, 1)

(2, 1) (9, 3) (12, 0)

(1, 1) (7, 0) (10, 2)

(4, 0)

(3, 1)

(16, 1)

(6, 0)

Figure 4.9: An example query. Query node is q2, k = 8 = 23. The index node of q2

is w, depthw(q2) = 1, NA(q2)[3] = (11, 4), L(11, 4) = (8, 5), L(8, 5) = NULL.

Note: The L pointers in the tree correspond to (some of) the leaf list pointers

in the original solution and the “first pointer” in the three-pointer version. The other

pointers are made obsolete by the fact that we now traverse all the little subtrees.

Sadly, there is still the need to “know where to start”, so we still need the old node

arrays.

The main problem with the dynamization of this structure is inserting items into

the Cartesian trees while additionally maintaining the the L pointers in these trees.

For a study of dynamic Cartesian trees, see Part III.
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Chapter 5

Rank-sensitivity — a general
framework

5.1 Introduction and definitions

In this chapter we present a framework for adding rank-sensitivity to a class of

output-sensitive data structures. The class in question contains data structures, in

which the items are ordered in such a way, that the items satisfying a query form

O(polylog(n)) intervals of consecutive entries each, where n is the number of items

stored in the structure.

For example suffix trees store items in such a way that the result of a query

corresponds to a set of leaves descending from one of the internal nodes. If we

consider the order on the leaves defined by the tree structure, then the result of a

query corresponds to a single interval of consecutive leaves.

One-dimensional range trees again have this property, that the items returned

by a query correspond to a single interval of consecutive leaves, if we consider the

tree-induced order on the leaves. For higher dimensions of range trees, rather than

one interval, we will have a number of intervals of the order of O(polylog(n)), where

n is the number of items in the range tree. These intervals are, however, always

disjoint.

We provide a framework for transforming such structures into rank-sensitive

data structures (see Definitions 3.0.5 and 3.0.4). Let s(n) be the number of items

(including their copies) stored in any such data structure D. Let O(t(n) + `) be its

query time and let |D| be the number of memory words of space it occupies, each

word composed of O(log n) bits. We obtain a rank-sensitive data structure D′, with

O(t(n) + k) query time, increasing the space to |D′| = |D|+ O(s(n) logε n) memory
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words, for any positive constant ε < 1.

We allow for changing rank on the fly during the lifetime of the data structure D′,

with ranking values in the range from 0 to O(n). In this case, query time becomes

O(t(n)+k) plus O(log n/ log log n) per interval and each change in the ranking takes

O(log n) time per item copy.

Our solution operates in real time as we discuss later.

When D allows for insert and delete operations on the set of items, we obtain an

additive cost of O(log n/ log log n) time per query operation and O(log n) time per

update operation in D′. The space occupancy is |D′| = |D|+O(s(n) log n/ log log n)

memory words. Whether |D′| = |D|+(s(n)) space is attainable, is an open problem.

The preprocessing cost of D′ is dominated by sorting the items according to rank ,

plus the preprocessing cost of D.

In order to achieve these bounds, we base our solution on a general scheme

borrowed from previous work on two-dimensional range trees [27], adapting it to

our case so as to improve time bounds with respect to the best known results for

two-dimensional range searching [64] (since our problem is simpler). At the heart

of our solution is an extended version of the Q-heap [43], which we call the multi-

Q-heaps , described in Section 5.3.

As far as we know, previous work on range searching cannot be easily adapted

to achieve our bounds. For example, a structure for range searching on the grid

has been given by Overmars [69]. It takes O(n log n) space and the query time is

O(
√

log n + k) for arbitrary four-sided range queries. However, this solution solves

a different problem than the one we are solving for the following reasons. First, the

items returned are not sorted. Second, what is specified in the query is the largest

(smallest) rank to be returned and not the number k of items to return. One does

not follow from the other in any trivial way. These observations hold also for other

range trees, e.g. [5], and for priority search trees [27] which handle arbitrary values

and three-sided queries.

5.2 The static case and its dynamization

Our starting point is a well-known scheme adopted for two-dimensional range trees

[27]. Following the global rebuilding technique described in [68], we can restrict our

attention to values of n in the range 0 . . . O(N) where n = Θ(N). Consequently, we

use lookup tables tailored for N , so that when the value of N must double or halve,

we also rebuild these tables in o(N) time. Our word size is O(log N). As can be
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seen from [68], time bounds can be made worst-case.

We recall that the interval is taken from the list of items L = e0, e1, . . . , en−1,

indicating with pos(ei) the dynamic position of ei in L (but we do not keep pos

explicitly) and with rank(ei) its rank value in 0 . . .O(N). We use a special rank

value +∞ that is larger than the other rank values; multiple copies of +∞ are each

different from the other (and take O(log N) bits each).

5.2.1 Static case on a single interval

Structure

We employ a weight-balanced B-tree W [7] as the skeleton structure. At the moment,

suppose that W has degree exactly two in the internal nodes and that the n items

in L are stored in the leaves of W , assuming that each leaf stores a single item. For

each node u ∈ W , let R(u) denote the explicit sorted list of the items in the leaves

descending from u, according to rank order (see Figure 5.1). If u0 and u1 are the

two children of u, we have that R(u) is the merge of R(u0) and R(u1).

Using a technique described by Chazelle [21], we can use 0s and 1s to mark the

entries in R(u) that originate, respectively, from R(u0) and R(u1). We obtain B(u),

a bit string of |R(u)| bits, totalizing O(n log n) bits, hence O(n) words of memory,

for the entire W (see [21]).

We also implement fractional cascading [89]. We maintain two bi-directional

pointers, f0, f1, for each element e ∈ R(u)—with f0 pointing to e’s predecessor in

R(u0) and f1 to e’s predecessor in R(u1) in rank order—for its two children u0 and u1.

In particular, exactly one of these pointers will always point to the next-level copy

of e.

Query algorithm

Rank query works similarly to the query performed on range trees (see [27] and

Chapter 2.2). Given entries ei and ej in L, we locate their leaves in W , say vi and

vj . We find their least common ancestor w in W (the case vi = vj is trivial). On

the path from w to vi, we traverse O(log n) internal nodes. If during this traversal,

we go from node u to its left child u0, we consider the list R(u1), where u1 is the

right child of u. Analogously, on the path from w to vj , if we go from node u to its

right child u1, we consider list R(u0) for its left child. In all other cases, we skip the

nodes (including w and its two children). Clearly, we include vi and vj if needed.
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At this point, we reduce the rank-sensitive query for vi and vj to the problem of

selecting the top k best-ranking items from O(log n) rank-sorted lists R(), containing

integers in 0 . . .O(N) (see next Section).

Following Chazelle’s approach, we do not explicitly store the lists R(), but keep

only the bit strings B() (see Figure 5.2) and the additional machinery for translating

bits in B() into entries in R(), which occupies O(n logε n) words of memory, for any

positive constant ε < 1. (See Lemma 2 in Section 4 of [21].) As a result, we can

retrieve the sorted items of lists R() using Chazelle’s approach.

5.2.2 Polylog intervals in the dynamic case

Structure

In the general case, we are left with the problem of selecting the top k best-

ranking items from O(polylog(n)) rank-sorted dynamic lists R(), containing inte-

gers in 0 . . . O(N). We cannot use Chazelle’s machinery in the dynamic setting.

We maintain the degree b of the nodes in the weight-balanced B-tree W , such that

(β/4) log n/ log log n ≤ b ≤ (4β) log n/ log log n, for a suitable constant in 0 < β < 1.

As a result from [7], the height of the tree is O(log n/ log b) = O(log n/ log log n).

We also explicitly store the lists R(), totalizing O(n) words per level of W , and

thus yielding O(n log n/ log log n) words of memory. Note that the cost of split-

ting/merging a node u ∈ W along with R(u) can be deamortized [7].

To enable the efficient updating of all the lists R(), we use a variation of dynamic

fractional cascading [22, 62] described in [72], which performs efficiently on graphs

of a non-constant degree. Fractional cascading does not increase the overall space

complexity. At the same time, for a given element e of list R(u), it allows locating

the predecessor (in rank order) of e in R(u′) when u′ is a child or parent of u.

This locating is performed in time O(log b+log log n) which amounts to O(log log n)

under our assumption concerning b, the degree of the tree.

Let us consider a single interval identified by a rank query. It is described by

two leaves vi and vj , along with their least common ancestor w ∈ W . However,

we encounter O(log n/ log log n) lists R() in each node u along the path from w to

either vi or vj. For any such node u, we must consider the lists for u’s siblings either

to its left or its right. So we have to merge O((log n/ log log n)2) lists on the fly. But

we can only afford O(log n/ log log n) time.

We solve this multi-way merging problem by introducing multi-Q-heaps in Sec-

tion 5.3, extending Q-heaps [43]. A multi-Q-heap stores O(log n/ log log n) items
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Figure 5.1: An overview of the tree structure employed. The actual structure used
is a weight-balanced B-tree. Each internal node stores a list of items stored in the
leaves descending from it, sorted by rank.
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to. Chazelle [21] provides a mechanism for translating these bit values back into
their original values.
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from a bounded universe 0 . . .O(N), and performs constant-time search, insertion,

deletion, and find-min operations. In particular, searching and finding can be re-

stricted to any subset of its entries, still in O(1) time. Each instance of a multi-Q-

heap requires just O(1) words of memory. These instances share common lookup

tables occupying o(N) memory words. We refer the reader to Theorem 5.3.1 in

Section 5.3 for more details.

We employ our multi-Q-heap for the rank values in each node u ∈ W . This

does not change the overall space occupancy, since it adds O(n) words, but it allows

us to handle rank queries in each node u in O(1) time per item as follows. Let

d = α log N/ log log N be the maximum number of items that can be stored in

a multi-Q-heap (see Theorem 5.3.1). We divide the lists R() associated with u’s

children into d clusters of d lists each. For each cluster, we repeat the task recursively,

with a constant number of levels and O(polylog(n)/d) multi-Q-heaps. We organize

these multi-Q-heaps in a hierarchical pipeline of constant depth. For the sake of

discussion, let’s assume that we have just depth 2. We employ a (first-level) multi-

Q-heap, initially storing d items, which are the minimum entry for each list in the

cluster. We employ further d (second-level) multi-Q-heap of d entries each, in which

we store a copy of the minimum element of each cluster.

Query algorithm

To select the top k best-ranking leaves, we extract the k smallest entries from the

lists by using the above multi-Q-heaps: We first find the minimum entry, x, in one of

the second-level multi-Q-heaps, and identify the corresponding first-level multi-Q-

heap. From this, we identify the list containing x. We take the entry, y, following x

in its list. We extract x from the first-level multi-Q-heap and insert y. Let z be

the new minimum thus resulting in the first level. We extract x from the suitable

second-level multi-Q-heap and insert z. By repeating this task k times, we return

the k leaves in rank-sensitive fashion.

This does not yet solve our problem. Consider the path from, say, vi to its ances-

tor w. We have O(log n/ log log n) lists for each node along the path. Fortunately,

our multi-Q-heaps allow us to handle any subset of these lists, in constant time. The

net result is that we need to use just O(log n/ log log n) multi-Q-heaps for the entire

path. For each node u in the path, the find-min operation is limited to the lists

corresponding to a subset of u’s sibling at its right. They form a contiguous range,

which we can easily manage with multi-Q-heaps. Hence, we can apply the above
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2-level organization, in which we have O(log n/ log log n) multi-Q-heaps in the path

from vi to w in the second level. (An analogous approach is for the path from vj to

w.) In this way, we can perform a multi-way merging on the fly for finding the least

k keys in sorted rank order, in O(k + log n/ log log n) time.

Note that the bound is real-time as claimed. In the case of polylog intervals,

we use an additional multi-Q-heap hierarchical organization (of constant depth) to

merge the items resulting from processing each interval separately.

Handling modifications

We now describe how to handle rank changes of entries in L, as well as insertions

and deletions in L.

Changing the rank of entry ei, say in leaf vi ∈ W is performed in a top-down

fashion. It affects the nodes on the path from the root of W to vi.

The list R(u) for each node u along this path contains a copy of ei but whose

rank no longer complies with the ordering of the list. This element is extracted from

the list and inserted into the correct place on this list. Both the element itself and

the new correct place can be located in the list associated with the root in O(log n)

time.

Next, using the fractional cascading structure, we can relocate the copy of ei in

the list for the next node in the downward path to vi, having already done it in the

current node. This takes O(log log n) time per node, thus yielding O(log n) total

time to relocate the copy of ei in all the lists of the path.

As for the insertions in L (and also in W ), they follow the approach in [7];

moreover, the input item e has its rank(e) value, in the range 0 . . . O(N), inserted

into the lists R() of the ancestor nodes as described above.

Deletions are simply implemented as weak, changing the rank value of deleted

items to +∞. When their number is sufficiently large, we apply rebuilding as in [27].

If the original data structure contains multiple copies of the same item (as in

the case of a range tree) then the update in the rank-sensitive structure is applied

separately to the individual copies.

We obtain the following result. Let D be an output-sensitive data structure for

n items, where the ` items satisfying a query on D form O(polylog(n)) intervals of

consecutive entries. Let O(t(n) + `) be its query time and s(n) be the number of

items (including their copies) stored in D.
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Theorem 5.2.1 We can transform D into a static rank-sensitive data structure D′,

where query time is O(t(n) + k) for any given k, thus reporting the top k best-

ranking items among the ` listed by D. We increase the space by an additional term

of O(s(n) logε n) memory words of space, each of O(log n) bits, for any positive

constant ε < 1. For the dynamic version of D and D′, we allow for changing

the ranking of the items, with ranking values in 0 . . .O(n). In this case, query time

becomes O(t(n)+k) plus O(log n/ log log n) per interval. Each change in the ranking

and each insertion/deletion of an item take O(log n) time for each item copy stored

in the original data structure. The additional term in space occupancy increases to

O(s(n) log n/ log log n).

5.3 Multi-Q-heaps

The multi-Q-heap is a relative of the Q-heap [43]. Q-heaps provide a way to represent

a sub-logarithmic set of elements in the universe [N ] = 0 . . .O(N), so that such

operations as inserting, deleting or finding the smallest element can be executed in

O(1) time in the worst case. The price to pay for the speed is the need to set up

and store lookup tables in o(N) time and space. These tables, however, need only

to be computed once as a bootstrap cost and can be shared among any number of

Q-heap instances. So at the price of o(N) (charged to the preprocessing cost), we

obtain a very efficient mechanism for operating on small sets.

Our multi-Q-heap is functionally more powerful than Q-heap, as it allows per-

forming operations on any subset of d common elements, where d ≤ α log N/ log log N

for a suitable positive constant α < 1. Naturally, this could be emulated by main-

taining Q-heaps for all the different subsets of the elements, but that solution would

be exponential in d (for each instance!), while our multi-Q-heap representation re-

quires two or three memory words and still supports constant-time operations.

Our implementation based on lookup tables is quite simple and does not make

use of multiplications or special instructions (see [38, 78] for a thorough discussion of

this topic). Here we describe a simpler version which deals with contiguous subsets

of elements (ranges) rather than arbitrary subsets, however it can be easily extended

to deal also with arbitrary subsets. The supported operations are as follows:

• Create a heap for a given list of elements.

• Find the minimum element within a given range.
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• Find an element within a given range of items.

• Update the element at a given position.

In the rest of the section, we prove the following result.

Theorem 5.3.1 There exists a constant α < 1 such that d distinct integers in

0 . . . O(N) (where d ≤ α log N/ log log N) can be maintained in a multi-Q-heap sup-

porting search, insert, delete, and find-min operations in constant time per operation

in the worst case, with O(d) words of space. The multi-Q-heap requires a set of pre-

computed lookup tables taking o(N) construction time and space.

5.3.1 High-level implementation

The d elements are integers from [N ]. We can refer to their binary representations

of w = dlog[N ]e bits each. These strings can be used to build a compacted trie on

binary strings of length w. However, instead of labeling the leaves of the compact

trie with the strings (elements) they correspond to, we keep just the trie shape and

the skip values contained in its internal nodes, like in [4, 35]. We store the d elements

and their satellite data in a separate table. To provide a connection between the

trie and the values, we store a permutation which describes the relation between the

order of elements in the trie and the order in which they are stored in the table.

When searching for an element, we first perform a blind search on the trie [4, 35].

Next we access the table corresponding to the found element and we compare it with

the sought one. Note that this way we only access the table of values in one place,

while the rest of the search is performed on the trie. With an assumption about

the maximum number of elements stored in the multi-Q-heap, we can encode both

the trie and the permutation as two single memory words. The operations are then

performed on these encodings and only the relevant entries in the value table are

accessed, which guarantees constant time. The operations on the encoded structures

are realized using lookup tables and bit operations.

To support multi-Q-heap operations, we store a single structure containing all

the elements. We implement all the extended operations so as to consider only the

given subset of the elements while maintaining constant time. We assume a word

size of w = O(log N) bits. We use d to refer to the number of items stored in the

multi-Q-heap. We assume d ≤ α log N/ log log N for some suitable constant α < 1.

We use x0, x1, . . . , xd−1 to refer to the list of items stored in the multi-Q-heap. For



78 Rank-sensitivity — a general framework

our case, the order defined by the indexes is relevant (when using multi-Q-heaps in

the nodes of the weight-balanced B-tree of Section 5.2).

5.3.2 Multi-Q-heap: Representation

The multi-Q-heap can be represented as a triplet (S, τ, σ), where S is the array of

elements stored in the structure, τ is the encoding of the compact trie and σ is an

encoding of the permutation. The array S stores the elements x0, x1, . . . , xd−1 in

that order and their satellite data. Each element occupies a word of space. We do

not consider satellite data for the sake of discussion.

The encoding of the trie, τ , can be defined in the following fashion. First, let us

encode the shape of the binary tree of which it consists. This tree is binary, with

no unary nodes and edges implicitly labeled with either 0 or 1. We can encode it by

traversing the tree in inorder (visiting first 0 edges and then 1 edges) and outputting

the labels of the edges traversed. This encoding can be decoded unambiguously and

requires 4d− 4 bits, since each edge is traversed twice and there are 2d− 2 edges in

the trie.

Next, we encode the skip values. The internal nodes (in which the skip values

are stored) are ordered according to their inorder which leads to an ordered list of

skip values. Each skip value is stored in dlog we bits, so the encoding of the list

takes (d−1)dlog we bits. For a suitable value of α the complete encoding of the trie

does not exceed 1/4 log N bits and hence can be stored in one word of memory.

The permutation σ reflects the array order x0, x1, . . . , xd−1 with respect to the

order of these elements sorted by their values (which is the same as the inorder of

the corresponding leaves in the trie). There are d! possible permutations, so we

choose α so that log d! < 1/4 log N and the encoding on the permutation fits in one

word of memory. We use the encoding described in [66], which takes linear time to

rank and unrank a permutation, hence to encode and decode it.

5.3.3 Multi-Q-heap: Supported operations

Init

The Init operation sets up all the lookup tables required for implementing the multi-

Q-heap. It needs to be performed only once. See Section 5.3.4 for details concerning

the lookup tables. These lookup tables are used in the implementations of the

operations described below. If invoked multiple times, only the first is effective.
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Create

The Create operation takes the array S of values x0, x1, . . . , xd−1 and sets up the

structures τ and σ. It takes the time required to construct the compact trie for d

elements, hence O(d).

Findmin

The function Findmin returns the smallest element among the elements xi, . . . , xj

stored in the multi-Q-heap. We implement it using the lookup table Subheap and

Index . We use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the structure for elements

xi, . . . , xj. We then use Index [σ′, 1] to obtain the array index of the smallest element

in the range.

Search

The function Search searches the subset of elements xi, . . . , xj stored in the multi-

Q-heap and returns the index of the element in the multi-Q-heap which is smallest

among those not smaller than y, where y ∈ [N ] can be any value. As previously,

we use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the subheap for elements xi, . . . , xj .

We then search the reduced trie for x′, the first half (bitwise) of x, by looking

up u = Top[τ ′, x′]. Next, using LDescendant[τ ′, u], we identify one of the strings

descending from u and compare this string with x′ to compute their longest common

prefix length lcp.

This computation can be done in constant time with another lookup table, which

is standard and is not described. If lcp < 1/2 log N , then LDescendant[τ ′, u] iden-

tifies the sought element. If lcp = 1/2 log N , we continue the search in the bottom

part of the trie by setting u = Top[τ ′, x′, u]. Also here LDescendant[τ ′, u] provides

the answer.

Update

The Update operation replaces the element xr in the array S with y, where y ∈ [N ]

can be any value. It updates τ and σ accordingly.

We first simulate the search for y in τ , as described in the previous para-

graph to find the rank i of y among x0, . . . xd and use this together with the table

UpdatePermutation [σ, r, i] to produce the updated permutation. We then use values

obtained during the simulated blind search for y in τ to obtain values needed to ac-

cess the UpdateTrie table. During the search we find the node u at which the search



80 Rank-sensitivity — a general framework

for y ends (in the second half of the trie in the case the search gets that far) and the

lcp obtained by comparing its leftmost descendant with y. We use Ancestor [τ, u, lcp]

for identifying the node whose parent edge is to be split for inserting. The lcp is the

skip value the parameter c depends on the bit at position lcp + 1 of y. With this

information, we access UpdateTrie to obtain the encoding of the updated trie.

5.3.4 Multi-Q-heap: Lookup tables

This section describes the lookup tables required to perform the operations described

in the previous section. The number of tables can be reduced, but at the expense

of the clarity of the implementation description.

Index

The Index table provides a way for obtaining the array index of an element given the

inorder position of its corresponding leaf in the trie (let us call this the trie position).

It contains the appropriate array index entry for every possible permutation and trie

position.

The space occupancy is 21/4 log N × d × log d = N1/4 × d × log d = o(N).

Inverse index

The Index−1 table is the inverse of Index in the sense that it provides a way of

obtaining a trie position from an index, by containing a position entry for every

possible permutation and index.

The space occupancy is the same as for Index .

Subheap

The Subheap table provides a means of obtaining a new subheap structure, (S, τ ′, σ′),

from a given one (S, τ, σ). The new subheap structure uses the same array S, but

takes into account only the subset xi, . . . , xj of its items. Note that only τ , σ, i, and

j are needed to determine τ ′ and σ′ and not the values stored in S.

The new trie τ ′ is obtained from the old trie τ by removing leaves not corre-

sponding to xi, . . . , xj (these can be identified using σ). The new permutation σ′ is

obtained from the old one σ by extracting all the elements with values i, . . . , j and

moving them to the beginning of the permutation (without changing their relative

order) so that they now correspond to the appropriate j− i+1 leaves of the reduced

trie.
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The space occupancy of Subheap is 21/4 log N × 21/4 log N × d × d × 1/4 log N ×
1/4 log N = N1/2 × d2 × (1/4 log N)2 = o(N).

Top and Bottom

The Top and Bottom tables allow searching for a value in the trie. The searching

for a value must be divided into two stages, because a table which in one dimension

is indexed with a full value, one of O(N) possible, would occupy too much space.

We therefore set up two tables: Top for searching for the first 1/2 log N bits of the

value and Bottom for the remaining.

The table Top contains entries for every possible trie τ and x′, the first 1/2 log N

bits of some sought value x. The value in the table specifies the node of τ (with

nodes specified by their inorder position) at which the blind search [4, 35] for x′

(starting from the root of the trie) ends.

The table Bottom contains entries for every possible trie τ , x′′ (the second

1/2 log N bits of some sought value x) and an internal node of the trie v. The

value in the table specifies the node of τ at which the blind search [4, 35] for x′′

ends, but in this case the blind search starts from v instead of from the root of the

trie.

The space occupancy of Top is 21/4 log N × 21/2 log N × log d = N3/4 × log d = o(N)

and the space occupancy of Bottom is 21/4 log N × 21/2 log N × d × log d = N3/4 × d ×
log d = o(N).

UpdateTrie

The UpdateTrie table specifies a new multi-Q-heap and permutation which is created

from a given one by removing the leaf number i from τ and inserting instead a new

leaf. The new leaf is the c child of a node inserted on the edge leading to u. This

new node has skip value s.

The space occupancy is 21/4 log N × d× 2× 2log log N × d× 1/4 log N × 1/4 log N =

N1/4 × d2 × 1/8 log3 N = o(N).

UpdatePermutation

The UpdatePermutation table specifies the permutation obtained from σ if the ele-

ment with index r is removed and an element ranking i among the original elements

of the multi-Q-heap is inserted in its place.

The space occupancy is 21/4 log N×d×d×1/4 log N = N1/4×d2×1/4 log N = o(N).
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LDescendant

The LDescendant table specifies the leftmost descending leaf of node u in τ .

Its space occupancy is 21/4 log N × d × log d = N1/4 × d × log d = o(N).

Ancestor

The Ancestor table specifies the shallowest ancestor of u having a skip value equal

to or greater than s.

The space occupancy is 21/4 log N ×d×2log log N × log d = N1/4×d× log N× log d =

o(N)

5.3.5 General case

In order to implement a general multi-Q-heap which handles arbitrary subsets

rather than just ranges, we need to encode a permutation π in a single word since

x0, . . . , xd−1 can be further permuted due to the insertions and deletions. An arbi-

trary subset is represented by a bit mask that replaces the two small integers i and

j delimiting a range. The sizes of the lookup tables in Section 5.3.4 increase but

still remain o(N).

5.4 Conclusions

In this chapter we presented a general framework for adding rank-sensitivity to a

class of output-sensitive data structures, such as suffix trees or range trees.

We showed how such a structure can be augmented to answer rank-sensitive

queries, that is to return the top k highest-ranking query results. Our rank-sensitive

query achieves reporting time proportional to the query parameter k rather than to

the total number of items satisfying the query.

We showed results for both the static and dynamic model. In the static model,

we achieved rank-sensitivity at the cost of increasing the space complexity by a

factor of O(logε n) for any positive constant ε < 1, while in the dynamic model the

space complexity is increased by a factor of O(log n/ log log n).
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Dynamic Cartesian trees
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5.5 Introduction

Cartesian trees are described in Section 1.2. Note that the recursive construction of

the structure does not contain any ambiguities, which means that the set of points

uniquely determines the shape of the Cartesian tree1. The points induce a rigid

subdivision of the Cartesian plane, because each point divides the space below it

into two halves and no tree edge can cross this dividing vertical line.

This “rigidness” is exploited in applications but does not leave room for any

balancing operations. The tree height can even be linear with respect to the number

of elements it stores, which leads to very high update time in the worst case. For this

reason, Cartesian trees have only been used as static data structures or considered in

a stochastic setting. To our knowledge, the amortized cost of modifying a Cartesian

tree has not been studied.

In this part of the work, we study the amortized cost of update operations on

the Cartesian tree and present the first dynamic version of the Cartesian tree. Our

solution supports insertions and week deletions in amortized logarithmic time per

operation. We do not maintain an equivalent representation of the Cartesian tree,

but provide its actual form, so that the tree structure can be exploited between each

operation, as needed, regardless of the particular application.

5.5.1 Background

In 1978 Francon et al. [40] introduced a priority queue structure called the pagoda,

which shares some features of the Cartesian tree. The term Cartesian tree itself was

introduced by Vuillemin [85] in a work aiming to illustrate the usefulness of such

geometrical objects in various algorithms involving sorting and searching. Since

then, Cartesian trees have appeared in a number of different of settings and have

found numerous applications.

An important and heavily exploited feature of Cartesian trees is that they

provide a parallel between the range maximum query (rmq) and the least com-

mon ancestor (lca) problems (see for example [12]). It is easy to check that if

〈x̄, ȳ〉 = lca(〈xL, yL〉, 〈xR, yR〉) for some xL < xR then ȳ = rmq(xL, xR) is the

maximum y value among the nodes whose x values fall between xL and xR. This

fact is the basis for the realization of an optimal static structure supporting range

maximum queries [12].

1Throughout this paper we assume that all of the points have distinct coordinates.
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Applications of Cartesian trees can also be found it the domain of text algo-

rithms. Besides the fact that the aforementioned rmq and lca algorithms, which

are based on Cartesian trees, play an important role in many string algorithms (see

for example [34]), Cartesian trees also have a meaning in themselves. In particular,

they provide a connection between two important structures used in string algo-

rithms: the suffix tree [87] and the least common prefix (lcp) array. A suffix tree

for a given text can be seen as a Cartesian tree of index-value pairs of items in the

lcp array for this text (provided neighboring nodes of the Cartesian tree with the

same y value are joined).

Cartesian trees are also known as treaps [73] when the priorities (y values) of

the nodes are assigned randomly with a uniform distribution and the tree is used

as a binary search tree (for the x values). The random distribution of y values

guarantees good average dynamic behavior of the tree as the height is expected to

stay O(log n) in this case. It is important to note at this point that the logarithmic

expected update time is indeed achieved only under a random uniform distribution

(with x values independent from y). In fact, a thorough study of the average behavior

of Cartesian trees Devroye [30] shows that if there is a dependence between the x

and y values, then the expected height of the tree (and hence the time to perform

update operations) is O(
√

n ) or even O(n) in some cases.

Cartesian trees are also used in dynamic memory management. Stephenson [77]

introduces a storage allocation scheme which uses Cartesian trees to store available

blocks according to their physical location (x coordinate) and size (y coordinate).

This approach is called Fast Fits and is implemented in some operating systems,

such as SunOS 4.1.

Shi and JáJá [74] use Cartesian trees for range reporting. Cartesian trees in

themselves can be used for dominance reporting in a straightforward way, much like

many other similar structures. Note, however, that only Cartesian trees are capable

of reporting items according to the order defined by one of the coordinates, which

may be very useful in some applications.

Priority search trees [59] somewhat resemble Cartesian trees. The main dif-

ference between the two is that the partition into subtrees in Cartesian trees is

determined by the x coordinate of the root, while in priority trees it is chosen so as

to maintain balance in the tree. This balance makes priority search trees an efficient

tool for answering range search queries. However, the price to pay for the balancing

is the loss of the x order present in the Cartesian tree and so priority search trees

can not always be used where Cartesian trees can. For example, note that the items
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returned by a range query on priority search trees returns items in an order which

matches neither the x nor y order of the nodes, while a query on Cartesian trees

returns items in x order, as this order matches that of the tree traversal.

As far as we know, the amortized complexity of updating the Cartesian tree

is currently unknown, except for the fact that a Cartesian tree can be built from

scratch in O(n log n) time, or even in O(n) time when the points are already given

in sorted order [44].

5.5.2 Motivation

We are interested in studying Cartesian trees in a dynamic setting, under insertions

and deletions of arbitrary points. Before discussing the algorithmic issues, we mo-

tivate our study by observing that Cartesian trees are difficult to update and no

polylogarithmic update bounds are currently known. There exist similar structures

with good update time, such as priority search trees [59], but those have weaker

topological properties in the Cartesian plane and can not always be used in place of

Cartesian trees. Due to the difficulty of the updates, the use of Cartesian trees has

been confined to the static case.

Along with the least common ancestor query (lca), Cartesian trees can be used

to answer range maximum queries (rmq) in constant time. Range maximum queries

are a generalization of priority-queue queries in which the find-min operation is

restricted to ranges of values. The implementation of lca itself in [12] uses Cartesian

trees for a reduction from general trees to rmq, while the dynamic version of lca [24]

does not use Cartesian trees. Hopefully, the efficient dynamization of the Cartesian

trees can make a first significant step in finding a suitable array of applications in a

dynamic setting, such as solving the dynamic version of the constant-time rmq (in

logarithmic update time). This can stimulate further research, such as extending

the dynamic constant-time lca to treat cut and link operations among trees (in

logarithmic update time).

From an algorithmic point of view, designing the update algorithms for a Carte-

sian tree T and analyzing their amortized complexity is challenging and non-trivial.

The aforementioned rigidness of T is an obstacle when updating the structure since

it can lead to a very unbalanced shape (uniquely defined by the points in T ). We

do not simply maintain an equivalent representation of T . We obtain the actual

structure of T as it results from the standard O(n)-time insertion algorithm. Under

these assumptions, we obtain an amortized update cost of O(log n) time.



88

The requirement of maintaining the actual Cartesian tree between each operation

does not permit the efficient amortization of a sequence of interleaved insertions and

deletions of points in T . Using the configuration shown in Figure 5.3, it is not difficult

to create a sequence of updates that requires changing O(n) edges per operation.

However, we study the results of a sequence of pure insertions or pure deletions and

show that the worst-case scenario from Figure 5.3 can not happen repeatedly for

such a sequence.

5.5.3 Our results

In order to illustrate our findings, let us split the cost of inserting a new point 〈x̄, ȳ〉
into the Cartesian tree T . We evaluate the searching cost as the time complexity of

traversing T and locating the place in which to insert 〈x̄, ȳ〉, as well as locating the

edges which should be modified. We then account for the restructuring cost as the

time complexity of actually changing the structure of T as a result of the insertion

of 〈x̄, ȳ〉. (Looking at Figure 5.3, we can realize that the searching cost does not

amortize because of T ’s traversal.)

We analyze the behavior of T in a combinatorial setting, and prove that the

restructuring cost of insertions is O(1 + H (T )/n) time, where H (T ) = O(n log n)

is an entropy-related measure for the partial order encoded by T , as described in

Section 5.7. The key observation is that the worst-case situation depicted in Fig-

ure 5.3 cannot happen repeatedly when subsequent insertions are performed in the

same neighborhood.

This analysis based on H (T ) may be interesting in itself, since it could also be

useful when analyzing the average height of random treaps and other heap-based

data structures. A random choice of y values maximizes the entropy at the root,

and recursively at its two children, giving rise to an almost balanced tree structure.

We also show that the search cost can be reduced to O(log n) time. The lat-

ter requires locating the elements to update and actually performing the update.

Moreover, most of these updates are of a special kind, a fact which will be vital to

the next part of our work, where we show a reduction to a constrained problem on

intervals.

Here, weak deletions (logically marking nodes as deleted and periodically re-

building T ) can be amortized when coupled with insertions, at the price of having

a constant fraction of nodes in T marked as deleted. We can maintain T under

insertions and weak deletions in O(log n) amortized time per operation, using O(n)
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space. (Handling both insertions and deletions cannot be amortized well otherwise.)

As previously mentioned, the amortized cost of restructuring T is O(1 + H (T )/n)

time per operation.

We employ the companion interval tree in our solution, which is based on the

interval tree [33] implemented using a weight-balanced B-tree [7]. We take advantage

of the special properties of the constrained problem and the results of our analysis

to provide algorithms that match the amortized analysis.

Previous work already exploited a constrained version of stabbing queries on

dynamic sets of intervals. [36] and [79] consider interval endpoints which belong to a

bounded universe, while ours belong to a unbounded universe under the comparison

model. [53] devises a special solution for nested intervals (as in our case) and the

stabbing query identifies the max-priority interval using the max-cost operation in

dynamic trees.

In our case, however, we need a more constrained query, namely, reporting all

the stabbed intervals having priority below an arbitrary threshold, which cannot

be handled by max-cost. [1] presents an improvement over the work of [53], but

this still cannot help in our queries. Furthermore, all the aforementioned solutions

cannot guarantee an important property that allows us to obtain logarithmic bounds.

Our intervals can shrink O(n log n) times. The above solutions only allow a shrink

operation to be implemented as a deletion followed by an insertion, at a non-constant

cost. This is not sufficient in our case, so we prove combinatorial properties of our

intervals, which guarantee that each shrink operation requires just O(1) amortized

time and does not require deleting and reinserting the interval.

5.6 Preliminaries

We consider a set of points — ordered pairs 〈x, y〉 drawn from an unbounded uni-

verse. We assume a total order defined on the first as well as the second coordinate

of the points. We assume that the points have distinct coordinates. We define a

Cartesian tree for the set of points as follows:

1. The root stores the point 〈x̄, ȳ〉 with the maximum y-value in the set.

2. The x-value of the root, x̄, induces a partition of the remaining elements into

sets L = {〈x, y〉 : x < x̄} and R = {〈x, y〉 : x > x̄}. The roots of the Cartesian

trees obtained from L and R are the left and right children of the root 〈x̄, ȳ〉,
respectively.



90

We identify T with the set of points it stores in its nodes and hence write 〈x, y〉 ∈ T

for a point in T . Since the set of points uniquely determines the Cartesian tree, this

is not misleading.

We write e = (〈xL, yL〉, 〈xR, yR〉) to denote an edge in the tree.

All logarithms are to the base of 2.

5.6.1 Properties of Cartesian trees

As follows from the recursive definition, a rigid subdivision of the Cartesian plane

is induced by T (see Figure 1.3), because each point divides the space below it into

two halves and no tree edge can cross this dividing vertical line. Also this space

subdivision is determined unambiguously by the set of points in T . We shall exploit

the properties of this space subdivision in the rest of the paper, so it is useful to

express it by means of the following fact:

Fact 5.6.1 Let T be a Cartesian tree. Let 〈x, y〉 ∈ T be a node in the tree and let

e = (〈xL, yL〉, 〈xR, yR〉) be and edge in T (xL < xR). If y > min(yL, yR) then either

x < xL or x > xR. In other words, no edge can cross the vertical line originating

from any node and extending down.

From the above fact, we can deduce the following properties of Cartesian tree

edges:

Fact 5.6.2 Let e = (〈xL, yL〉, 〈xR, yR〉) and e′ = (〈x′
L, y′

L〉, 〈x′
R, y′

R〉) be edges in

Cartesian tree T and suppose that xL < x′
L. In this case, either x′

R < xR (the

projections of the edges onto the x-axis are nested) or xR ≤ x′
L (the projections of

the edges onto the x-axis do not overlap or overlap only by point xR = x′
L).

Fact 5.6.3 Let e = (〈xL, yL〉, 〈xR, yR〉) and e′ = (〈x′
L, y′

L〉, 〈x′
R, y′

R〉) be edges in

Cartesian tree T , if the projection of e′ is nested within the projection of e, then

y′
i ≤ yj for i, j ∈ {L, R}.

Fact 5.6.4 Let e = (〈xL, yL〉, 〈xR, yR〉) and e′ = (〈x′
L, y′

L〉, 〈x′
R, y′

R〉) be edges in

Cartesian tree T , if the projections of the edges onto the x-axis are nested, then e

and e′ lie on the same path in T .
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x̄x̄
u0 C u0 CL

u1u1

u2u2

u3 u3 CR

u4u4

u5u5

u6u6

u7u7

u8u8

u9u9

u10u10

u11u11

u12u12

u13u13

Figure 5.3: The outcome of operation split(C, x̄) (from left to right) resulting from an
insertion, and that of merge(CL, CR) (from right to left) resulting from a deletion;
one is the other’s inverse. Note that the path revealed in the illustration can be
proportional in length to the overall tree size in which case an insert or delete
operation affects O(n) edges of a tree of size n.

5.6.2 Dynamic operations on Cartesian trees

The main dynamic operations on a Cartesian tree are those of inserting and deleting

points. We review these operations as they will be the basis for the analysis in the

rest of the paper. It is useful to see insertions and deletions as based on the more

basic operations of splitting and merging Cartesian trees.

Split

We define split(C, x̄) for a Cartesian tree C and a value x̄ as the operation returning

CL = {〈x, y〉 ∈ C : x < x̄} and CR = {〈x, y〉 ∈ C : x > x̄} (see Figure 5.3). In other

words, this operation splits the Cartesian tree C with a vertical line at x̄. Nodes

to the left of this line end up in tree CL and nodes to the right of it end up in CR.

Edges not crossed by the line are not affected by the split operation and are present

in either CL or CR (depending on if they are left or right of the line). We study

what happens to the edges crossed by the vertical line at x̄ as a result of the split

operation. These edges are marked in bold in Figure 5.3 and we refer to them as

affected edges.

Notice that the affected edges are each one below the other, because they are all



92

crossed by the vertical line x̄. Hence, from facts 5.6.2 and 5.6.4, they are nested

and are all part of the same path. We label the nodes along this path u0, u1, . . . us,

as in Figure 5.3.

The affected edges, when removed, partition C into a number of subtrees. We

can order these subtrees according to the y order of their roots. Every second subtree

belongs to CL and the remaining belong to CR. In C, the affected edges connect

these subtrees according to the y order of their roots. These edges are no longer

present in CL and CR. However, new edges in CL and CR connect the subtrees

within the CL tree as well as within CR separately, still according to the y order of

the roots.

For reasons which will become apparent later, we prefer not to view the split-

ting operation in terms of removed and inserted edges, but rather it terms of edge

transformations. Notice that for each (but one) affected edge e = (ui, ui+1), there is

an edge e′ = (ui, uj), where j > i + 1 and uj is the root of the next subtree after the

one containing ui on the same side of the x̄ line as ui. The only edge which does not

have such a counterpart is the lowest of the affected edges (indeed CL and CR have

one less edge that C). So each but the lowest edge affected by a split operation can

be considered transformed into its corresponding edge in CL or CR. We call such

a transformation “shrinking”, because it shrinks the projection of an edge onto the

x-axis.

Example 5.6.5 For example, in Figure 5.3, edge (u2, u3) shrinks and becomes

(u2, u5), (u4, u5) becomes (u4, u8), (u7, u8) becomes (u7, u9), (u8, u9) becomes (u8, u12),

and the lowest affected edge (u11, u12) is deleted.

A degenerate case of split(C, x̄) occurs when x̄ is either smaller or greater than

all the x values of the nodes in C. In that case CL is empty and CR = C or the

other way around. In this case the resulting tree has the same number of edges as

the original, rather than having one less, and no parts of the tree are affected by the

split. Most of the following arguments, however, hold also for this extreme case, so

we will not make a distinction between the two cases, unless stated otherwise.

We use k to denote the number of edges which shrink due to split(C, x̄). If the

number of affected edges is one or zero then k = 0. Otherwise k is one less than the

number of affected edges, since the last affected edge gets deleted and not shrunk.

Fact 5.6.6 Edges affected by a split operation are all nested before the split and are

disjoint (or overlap by at most a single point) after the split.
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〈x̂, ŷ〉〈x̂, ŷ〉

〈x̄, ȳ〉

C CL CR

Figure 5.4: An illustration of an insert operation where 〈x̄, ȳ〉 is inserted as the right
child of 〈x̂, ŷ〉.

Insertion

Let us consider T ′ = T ∪ {〈x̄, ȳ〉}, where T is a Cartesian tree and 〈x̄, ȳ〉 is a new

point to insert into T . If ȳ > y for each 〈x, y〉 ∈ T , then the new point becomes the

root of T ′ and its two children are TL and TR, respectively, obtained by invoking

split(T, x̄). In all other cases 〈x̄, ȳ〉 has a parent in T ′. Let us denote this parent

〈x̂, ŷ〉.
We can find 〈x̂, ŷ〉 in the following way. Let 〈xL, yL〉 ∈ T be the rightmost point

such that xL < x̄ and yL > ȳ and let 〈xR, yR〉 ∈ T be the leftmost point such that

xR > x̄ and yR > ȳ. If there are points in T above 〈x̄, ȳ〉, at least one of these two

points must exist. The parent of 〈x̄, ȳ〉 in T ′ is the lower of these two points (i.e.,

the one with the minimum between yL and yR). This follows almost directly from

the recursive construction in Section 5.6.

In the case that 〈x̂, ŷ〉 = 〈xL, yL〉, let C be the right subtree of 〈x̂, ŷ〉 in T and

in the other case let it be the left subtree. Then CL and CR obtained by invoking

split(C, x̄) become the children of 〈x̄, ȳ〉 in T ′. See Figure 5.4 for an illustration.

Note that the edges affected by an insertion are those connecting the new node

〈x̄, ȳ〉 to 〈x̂, ŷ〉 and to CL and CR, the edge which connected 〈x̂, ŷ〉 to C, and the

edges affected by the split of C. Of these, only the edges affected by the split are

not constant in number.

Example 5.6.7 Figure 5.5 shows an insertion applied to the sample tree from Fig-

ure 1.3. The affected and transformed edges are indicated.
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〈1, 2〉

〈2, 22〉

〈3, 9〉

〈4, 18〉

〈5, 12〉

〈6, 17〉

〈7, 15〉

〈8, 13〉

〈9, 11〉

〈10, 7〉

〈11, 1〉

〈12, 3〉

〈13, 14〉

〈14, 5〉
〈15, 4〉

〈16, 8〉

〈17, 10〉

〈18, 19〉

〈19, 21〉

〈20, 16〉

〈21, 20〉

〈22, 6〉

Figure 5.5: The transformation of the Cartesian tree from Figure 1.3 caused by the
insertion of point 〈13, 14〉. New edges are marked in bold and edges no longer present
in the new tree are dashed. Arrows indicate old edges shrinking and becoming new
edges.
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Merge and deletion

Merge and deletion can be viewed as the exact opposites of the split and insert

operations and they cause edge stretching which is the opposite of edge shrinking.

Fact 5.6.8 The insertion (deletion) of a point causes O(1) edges in the tree to be

inserted or deleted and causes k edges to shrink (stretch), where 0 ≤ k ≤ n. Hence,

the number of edge modifications is k + O(1) for each inserted or deleted point.

5.7 Bounding the number of edge modifications

We now focus on the number of edge modifications as expressed by Fact 5.6.8. In

this section, we consider insertions only, so we are interested in bounding the number

of inserted, deleted and shrunk edges for a sequence of n insertions of points into an

initially empty Cartesian tree. Since the number of shrunk edges for each insertion

is k = O(n), it may appear that n insertions cause O(n2) such edge modifications.

However, we make the following observation which will eventually lead to a bound

which is lower: Inserting a point into a Cartesian tree does not require performing

comparisons of the y-coordinates of the nodes in the Cartesian tree (except pertain-

ing to the node being inserted). On the other hand, reversing this operation by

deleting the same node does require a number of comparisons proportional to the

number of affected edges.

In other words, we can fully determine the shape of the Cartesian tree T ′ =

T ∪〈x̄, ȳ〉 if we know the shape of T and are able to compare x̄ and ȳ with the values

stored in the nodes of T and we do not need to compare the values stored in T with

each other. However, in order to determine the shape of T = T ′/〈x, y〉 from the

shape of T ′, we may need to perform comparisons on y values of points in T ′. This

suggests that information is lost as a result of an insertion and that entropy can

serve as a measure of a tree’s potential for costly (affecting many edges) insertions.

We now formalize this intuition. A Cartesian tree T induces a partial order on

its elements: 〈x, y〉 ≺T 〈x′, y′〉 if and only if 〈x, y〉 is a descendant of 〈x′, y′〉. The

intuition behind this definition is that if 〈x, y〉 descends from 〈x′, y′〉 then we know

that y < y′ from the heap condition of the tree. In all other cases we can not guess

the relative order of y and y′ just by looking at the position of these two nodes in

the tree (we must perform an actual comparison on the values y and y′).

Note that even if y values are drawn from a total order, the order ≺T is only

partial. So we can use any y-ordering of points satisfying ≺T without violating the
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heap condition of the tree. We will say that an ordering is valid for T if it satisfies

≺T . Note that unlike the y-ordering, the x-ordering induced by the shape of the

tree is always total.

Consider a partially ordered set 〈P,≺P 〉 of n distinct items. A linear extension

of P is a permutation p1, p2, . . . , pn of the items in P such that if pi ≺P pj is defined,

then 1 ≤ i < j ≤ n. For example, the linear extensions of the partially ordered set

P = {A, T, G, C} where A ≺P T and G ≺P C are ATGC, AGTC, AGCT, GATC, GACT, and

GCAT, since A appears before T in these permutations and G before C (see [88]).

In general, calculating the number of linear extensions of a partial order is

#P-Complete [19]. In this paper, however, we deal only with partial orders in the

form of binary trees in which case the counting of linear extensions is much simpler.

(Anyway, we never use the exact number explicitly—only discuss its bounds.)

For a given Cartesian tree T , let L (T ) denote the number of linear extensions of

the partial order ≺T induced by T . We introduce the notion of the missing entropy

of T as

H (T ) = log L (T ), (5.1)

which is the information needed to sort the set of y values in T starting only from the

information inferred from the shape of the tree. Since the number of linear extensions

cannot exceed the number of permutations, we trivially have H (T ) ≤ log n! =

O(n log n) from order entropy and Stirling’s approximation. However, H (T ) can

even be zero if the partial order is a total order (this occurs when the Cartesian tree

is a single path). We exploit the notion of missing entropy for bounding the number

of shrunk edges.

Theorem 5.7.1 Inserting n points into an initially empty Cartesian tree results in

O(n) edge insertions and deletions and O(n + H (T )) edges shrinking, where T is

the resulting Cartesian tree.

In order to demonstrate Theorem 5.7.1, we use the missing entropy of the Carte-

sian tree given in equation (5.1), as the potential function in our amortized analysis.

The observed loss of information as a result of an insertion T ′ = T ∪ {〈x̄, ȳ〉} is

reflected in the difference between the number of linear extensions of T and of T ′.

This change can be measured by the ratio L (T ′)/L (T ), but it is more convenient

to consider its logarithm, which is the change in our potential, H (T ′)−H (T ). We

recall that this potential is limited by the entropy of a partial order.
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The proof goes along the following lines. Consider an insertion T ′ = T ∪{〈x̄, ȳ〉}
that splits a subtree C of the current Cartesian tree T into CL and CR as discussed

in Section 5.6.2. By Fact 5.6.8, this operation results in O(1) inserted and deleted

edges in T , plus k shrunk edges. We claim that

k = O(H (T ′) − H (T )). (5.2)

Equation (5.2) holds asymptotically, namely, there exist constants c0, k0 > 0 such

that k ≤ c0(H (T ′) − H (T )) for every k > k0. Its proof follows from Lemma 5.7.3

below: Let l = d(k + 2)/2e, and take the logarithms as in (5.1), obtaining

log L (T ) + log

(

k + 2

l

)

≤ log L (T ′).

Since k = O(log
(

k+2
l

)

) = O(log L (T ′) − log L (T )), we obtain the claimed bound

in (5.2). It remains to prove Lemmas 5.7.2 and 5.7.3.

Lemma 5.7.2 Every linear extension of T is also a linear extension of T ′.

Proof : Let us use the terminology of Section 5.6.2: T ′ = T ∪ {〈x̄, ȳ〉} and the

insertion splits a subtree C of T into subtrees CL and CR of node 〈x̄, ȳ〉 in T ′. Let

us use p to denote the parent of 〈x̄, ȳ〉 in T ′. Linear extensions of T do not consider

the newly inserted point 〈x̄, ȳ〉, so we only consider relations between points of T .

We need to show that for any two nodes a, d ∈ T , we have d ≺T ′ a ⇒ d ≺T a (if a

is an ancestor of d in T ′ then it was also an ancestor of d in T ).

Suppose that the premise is true and that a is an ancestor of d in T ′. We break

the proof up into cases according to the locations of d in T ′:

Case 1: d is not a descendant of 〈x̄, ȳ〉 in T ′. In this case also a can not be a descendant

of 〈x̄, ȳ〉 in T ′ and so both nodes belong to a part of tree not affected by the

insertion. So if a is an ancestor of d in T ′ it must also be and ancestor of d in

T .

Case 2: d ∈ CL (resp. d ∈ CR).

Case 2a: a is not a descendant of 〈x̄, ȳ〉 in T ′. In this case a must be an ancestor

of 〈x̄, ȳ〉 in T ′ in order to be an ancestor of d in T ′. Therefore, a is either

p or its ancestor. The node p and its ancestors are not affected by the

insertion and so a must also be p or its ancestor in T . At the same time

d ∈ C in T and so a is an ancestor of d.
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Case 2b: a ∈ CR (resp. d ∈ CL). This is the case in which a and d belong to

different subtrees of 〈x̄, ȳ〉 in T ′. But this contradicts the premise that a

is an ancestor of d in T ′.

Case 2c: a ∈ CL (resp. d ∈ CR). This is the case in which both a and d belong to

the same subtree 〈x̄, ȳ〉 in T ′. Therefore a and d belong to C in T and

end up on the same side of the line at x̄ when split(C, x̄) is invoked. Let

us recall from Section 5.6.2 that the edges affected by split(C, x̄) induce

a partition of C into subtrees. Both a and d must belong to subtrees

on the same side of x̄. If they belong to the same subtree then the path

connecting them is the same in both T and T ′. If they belong to different

subtrees then a must lie on the path containing the affected edges in order

to be an ancestor of d in T ′ and d must lie in a subtree whose root (let us

call it r) has a smaller y value than a. In this case the path from d to r

concatenated with the path from r to a connects d to a. The path from

r to a must exist because it is part of the path containing the affected

edges. Hence, d is a descendant of a in T .

This concludes the proof of Lemma 5.7.2.

Lemma 5.7.3 For each linear extension of T , there are at least
(

k+2
l

)

unique linear

extensions of T ′, where l = d(k + 2)/2e. Hence, L (T ) ×
(

k+2
l

)

≤ L (T ′).

Proof : If k = 0 then the proof follows directly from Lemma 5.7.2, so we will consider

the case where k > 0. In this case CL and CR are not empty and the split of C

causes k edges to shrink.

Let us again use the terminology of Section 5.6.2 and consider the partition of C

induced by the affected edges. This partition results in k+2 non-empty subtrees. Let

us assume without loss of generality (the complimentary case is analogous) that the

first subtree belongs to CL. Let us label the roots of the subtrees vL
1 , vR

1 , vL
2 , vR

2 , . . .

according to their decreasing y values. The last label is either vL
l or vR

l depending

on the parity of k, where l = d(k + 2)/2e.
Now let us consider the partial order ≺T and some permutation P which is a

linear extension of ≺T . Notice that vR
i ≺T vL

i for any i, because all of the subtree

roots belong to one path in T (the path containing the affected edges). Now, P is

also an extension of ≺T ′ by Lemma 5.7.2. However, neither vR
i ≺T ′ vL

i nor vL
i ≺T ′ vR

i

holds, because vL
i and vR

i belong to different subtrees of 〈x̄, ȳ〉 in T ′ and so there

is no ancestor-descendant relationship between them. We can use this property
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to produce further unique extensions from P which are extensions of ≺T ′ , but not

of ≺T , since P enforces just one of the
(

k+2
l

)

distinct ways of merging vL
1 , vL

2 , . . .

with vR
1 , vR

2 , . . ., while ≺T ′ does not specify any ordering between the elements of

the two sets. In other words, for each linear extension P of ≺T we can produce
(

k+2
l

)

distinct valid extensions of ≺T ′ by shuffling the order of subtree roots while

maintaining the relative order within the subtrees as well as between the subtrees

belonging to CL and the subtrees belonging to CR.

We now complete the proof of Theorem 5.7.1. Consider an arbitrary sequence of

n insertions into an initially empty Cartesian tree, denoted T0, where |T0| = 0. Let

T1, T2, . . . , Tn denote the sequence of resulting Cartesian trees, where Ti is formed

from Ti−1 by the ith insert operation in the sequence, which shrinks ki edges by

Fact 5.6.8, for 1 ≤ i ≤ n. Summing up the number of all the shrunk edges, we split

the total sum according to the constant k0 related to equation (5.2), as

n
∑

i=1

ki =
∑

i:ki≤k0

ki +
∑

i:ki>k0

ki. (5.3)

We denote the indexes i such that ki > k0 in (5.3) by i1, i2, · · · , ir, where i1 < i2 <

· · · < ir. Note that kij = O(H (Tij ) − H (Tij−1)) = O(H (Tij) − H (Tij−1
)) by

equation (5.2) and Lemma 5.7.2, for 1 ≤ j ≤ r. Applying these observations to the

last term in (5.3) where i = i1, i2, . . . , ir, we obtain the following bound for (5.3):

∑

i:ki>k0

ki = O





r
∑

j=1

(

H (Tij ) − H (Tij−1
)
)



 = O(H (Tn)). (5.4)

5.8 Implementing the insertions

In this section we show how to exploit the amortized upper bound on the number

of edge modifications obtained in Section 5.7. Our aim is to maintain the Cartesian

tree under a series of insertions. We do not want to maintain an equivalent data

structure, but the actual tree as dictated by the set of points it contains between

each insertion.

In order to describe our ideas, we split the cost of inserting a new point 〈x̄, ȳ〉
into Cartesian tree T into a searching cost and a restructuring cost. The searching

cost is the time complexity of traversing the Cartesian tree and locating the place

in which to insert 〈x̄, ȳ〉 and locating the edges that should be modified as a result
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of the insertion of 〈x̄, ȳ〉. The restructuring cost is the time complexity of actually

changing the structure of T as a result of the insertion.

Let T denote the current Cartesian tree, and let k denote the number of edges

that are shrunk during the insertion of 〈x̄, ȳ〉 into T (see Fact 5.6.8). The resulting

tree is denoted T ′, where T ′ = T ∪ {〈x̄, ȳ〉}.

The restructuring cost is O(1 + k) time according to our terminology. By The-

orem 5.7.1, this can be amortized and becomes O(1 + H (T )/n), provided that we

are able to implement the restructuring in time linearly proportional to the number

of edges modified by the insertion.

The searching cost depends on how the search procedure is implemented. Recall

that the tree can have linear height and so an algorithm relying on traversing the

Cartesian tree would yield an O(n) insertion cost. In order to provide a logarithmic

search algorithm, we reduce the maintenance of the edges of T to a special instance

of the dynamic maintenance of intervals. This reduction is based on mapping each

edge e = (〈x, y〉, 〈x′, y′〉) of T into its companion interval, (x, x′), where (x, x′) is a

shorthand for the set of coordinates x̂ such that x ≤ x̂ < x′. We store the companion

intervals in an interval tree [33] as shown in Figure 5.6.

We shall see that insertion, deletion and shrinking of T ’s edges can be rephrased

in terms of equivalent operations on their companion intervals. In the rest of this

section, we will exploit the peculiarities of these intervals which are caused by the

fact that they are not arbitrary but derived from the “rigid” subdivision of the space

induced by T . We obtain the following:

• We obtain a searching cost of O(log n + k) time using a constrained stabbing

query on the companion intervals and some other custom procedures on the

companion interval tree.

• We obtain a restructuring cost of O(log n + k) amortized time by performing

the O(1) insertions and the deletions in O(log n) time and each edge shrink

operation in O(1) amortized time on the corresponding intervals. Note that

the restructuring cost for the Cartesian tree alone is still O(1 + k). The rest

is for the maintenance of the companion intervals.

At this point it becomes clear why we need the concept of shrinking edges.

Implementing all of the edge transformations as insertions and deletions into a data

structure, such as our companion tree, would give rise to an extra factor of O(log n),

hence O(H (T )/n × log n) = O(log2 n) per each point inserted into T . Instead, we
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〈1, 2〉

〈2, 22〉

〈3, 9〉

〈4, 18〉

〈5, 12〉

〈6, 17〉

〈7, 15〉

〈8, 13〉

〈9, 11〉

〈10, 7〉

〈11, 1〉

〈12, 3〉

〈14, 5〉
〈15, 4〉

〈16, 8〉

〈17, 10〉

〈18, 19〉

〈19, 21〉

〈20, 16〉

〈21, 20〉

〈22, 6〉

Figure 5.6: The tree from Figure 1.3 and its companion interval tree (below). For
clarity, we included a binary interval tree in the illustration, rather than a B-tree.
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are able to implement shrinking in O(1) amortized time per shrunk edge and in this

way maintain the optimal O(log n) cost of insertion.

5.8.1 The Companion Interval Tree

Our companion interval tree, W , is implemented using Arge and Vitter’s weight-

balanced B-tree [7] (alternatively, BB[α]-trees [67] can be employed) (see Section 1.3).

We actually need a simpler version, without the leaf parameter. Let the weight

w(u) of a node u be the number of its descendant leaves. Let us recall that a

weight-balanced B-tree W with branching parameter a > 4 satisfies the following

constraints:

• All the leaves have the same depth and are on level 0.

• An internal node u on level ` has weight (1/2)a` < w(u) < 2a`.

• The root has at least two children and weight less than 2ah, where h is its

level.

We fix a = O(1) in our application, so W has height h = O(loga |W |) = O(log n)

and each node (except maybe for the root) has between a/4 and 4a children. We

denote the number of children of u by deg(u). The n leaves of W store elements in

sorted order, one element per leaf. Each internal node u contains d = deg(u) − 1

boundaries b1, b2, . . . , bd chosen from the elements stored in its descendant leaves.

In particular, the first child leads to all elements e ≤ b1, and the last child to all

elements e > bd, while for 2 ≤ i ≤ d, the ith child contains all elements bi−1 < e ≤ bi

in its descendant leaves. Among others, W satisfies the property:

Lemma 5.8.1 ([7]) After splitting a node u on level ` into two nodes, u′ and u′′, at

least a`/2 insertions have to be performed below u′ (or u′′) before it splits again. After

creating a new root in a tree with n elements, at least 3n insertions are performed

before it splits again.

A weight-balanced B-tree W with n elements supports leaf insertions and dele-

tions in O(log n) time per operation. Each operation only involves the nodes on

the path from the leaf to the root and their children. We do not need to remove

amortization or to split nodes lazily in W , since our bounds are amortized anyway.

We use this structure to store our companion intervals. Let I(T ) denote the set

of companion intervals for the current Cartesian tree T . The leaves of W store the
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endpoints of the intervals in I(T ). We store companion intervals in the nodes of the

tree according to standard interval tree rules. Specifically, each node u contains d

secondary lists, L1(u), L2(u), . . . , Ld(u), where d = deg(u) − 1. For 1 ≤ i ≤ d,

list Li(u) is associated with the boundary bi and stores all intervals (x, x′) ∈ I that

contain bi (i.e., x ≤ bi < x′), but are not stored in an ancestor of u.

Since any two intervals in I(T ) are either disjoint or one nested within the other

(see Fact 5.6.2), every internal node u ∈ W stores a number of intervals that is

bounded by O(w(u)), which is crucial to amortize the costs by Lemma 5.8.1. Note

that the same interval can be stored in up to d secondary lists of the same node, but

not in different nodes, hence, the space occupancy remains linear. We keep these

O(1) copies of each interval in a thread.

Properties expressed in facts 5.6.2 and 5.6.3 guarantee that each list Li(u) stores

nested intervals. The order according to which the intervals are nested matches the

y order of their corresponding edges (from Fact 5.6.3). We maintain each list Li(u)

of intervals sorted according to this order, from innermost (lowest) to outermost

(highest). Each list supports the following operations, where ni = |Li(u)| is the

number of items in the list:

• Insert the smallest or largest item in Li(u) in constant time, and any item in

O(log ni) time.

• Delete any item from Li(u) in constant time, provided that we have a pointer

to its location in Li(u).

• Perform a (one-dimensional) range query reporting the f items (in sorted

order) between two values in O(log ni + f) time. In the case of listing the first

items, this takes O(1 + f) time.

• Rebuild Li(u) from scratch in O(ni) time, provided that items are given in

sorted order.

We implement the list Li(u) using a balanced search tree with constant update

time [39, 56], in which we maintain a thread of the items linked in sorted order.2 It is

worth giving some detail on how to maintain the secondary lists when a node u ∈ W

splits into u′ and u′′ (see Lemma 5.8.1). Let bi be the median boundary in u. Node

2Note that we do not need to use the finger search functionality in [56], which requires non-
constant update time, as we can easily keep the minimum dynamically. In practice, we can imple-
ment Li(u) as a skip list.
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u′ gets boundaries b1, . . . , bi−1 while u′′ gets bi+1, . . . , bd, along with their secondary

lists and child pointers. The boundary bi is inserted into u’s parent. Note that no

interval in Li(u) can belong to a secondary list in u’s parent by definition. What

remains is to use the threads of the copies of the intervals in Li(u) for removing

these copies from secondary lists in u′ and u′′. But this takes O(ni) time, which is

O(1) amortized by Lemma 5.8.1.

We will now see how to use the companion interval tree W to implement the

insertion of a new point into a Cartesian tree yielding T ′ = T ∪{〈x̄, ȳ〉}. As it should

be clear at this point, we maintain both T and its auxiliary companion tree W .

Following the insertion scheme described in Section 5.6.2, we should perform the

following actions :

1. Find the node 〈x̂, ŷ〉 in T that will become 〈x̄, ȳ〉’s parent in T ′.

2. Find the edges to shrink in T (and the one to delete) as a result of the split,

which is part of the insert operation.

3. For each of the O(1) edges inserted or removed in the Cartesian tree (see

Section 5.6.2), insert or remove its companion interval from W . In particular

this regards an edge originating from 〈x̂, ŷ〉 (identified by action 1), the deleted

edge identified by action 2, and the new edges connecting 〈x̄, ȳ〉 to other nodes

in T ′.

4. For each companion interval of the k edges identified by action 2 as edges to

shrink, perform the appropriate shrink of an interval in W . Notice that when

an interval shrinks, it is relocated downward in W . The interval cannot go

upward as a result of shrinking.

Action 3 is a standard operation that takes O(log n) time in W , so we focus on

the remaining. Section 5.8.2 deals with actions 1 and 2 while Section 5.8.3 deals

with action 4.

5.8.2 Searching Cost

We exploit the strong connection between the space subdivision induced by T (the

dotted lines in Figure 1.3) and the companion intervals. In particular, we exploit the

properties described in Section 5.6.1. Recall from Section 5.6.2 that the insertion of

〈x̄, ȳ〉 into T involves finding the node 〈x̂, ŷ〉 which will become the parent of 〈x̄, ȳ〉
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(action 1) and locating the edges affected by the split of the subtree of this parent

(action 2). We first show how to perform the latter.

The edges affected by the split caused by the insertion of 〈x̄, ȳ〉 into T are the

edges in T which cross the vertical line at x̄ below ȳ. Therefore, their companion

intervals can be identified by a stabbing query x̄ with the additional constraint that

the y values of the corresponding edges are below3 ȳ. From facts 5.6.2 and 5.6.3 we

know that these intervals are nested and that their nesting order corresponds to the

y order of their corresponding edges.

Let us recall that a regular, unconstrained, stabbing query traverses a path from

the root to the leaf according to the query value x̄. In each node an appropriate

secondary list is considered and some intervals it contains may be reported. Due to

the ordering of the lists, the reported intervals always form a contiguous range at

the beginning of the list, which allows their efficient extraction.

We exploit the special properties of the companion intervals to handle the ad-

ditional constraint in the stabbing query — that the corresponding edges are to

fall below ȳ. Suppose that the search for x̄ in W from the root traverses the path

uh, uh−1, . . . , u1, u0, where u` ∈ W is the node on level ` (hence, uh is the root and u0

is a leaf). Let S denote the set of the k intervals to be identified by the constrained

stabbing query.

Lemma 5.8.2 If for some 1 ≤ j ≤ h, a list Li(uj) in the node uj contains intervals

crossing the line x̄, but not contained in S due to the constraint, then no list Li′(u`)

in node u` above node uj (` > j) can contain intervals in S. Moreover, Li(uj) ∩ S

form a contiguous range within Li(uj).

Proof : The proof follows from facts 5.6.2 and 5.6.3. The order of the interval

endpoints in each secondary list corresponds to the relative vertical position of the

corresponding edges in the Cartesian tree, as already noted previously. Therefore, if

a secondary list contains intervals in S, then these intervals form a contiguous range

within the list. The upper bound of this range is determined by the coordinate x̄ of

the stabbing query, just like in the non-constrained version. The lower bound may

be determined by the constraint that the vertical position of the corresponding edge

must be below ȳ.

We show by contradiction that if this lower bound does not coincide with the

beginning of the list for some list Li(uj), then there are no more intervals in S

3By “below ȳ” we mean that at least one of the two endpoints of the edge has a y value which
is less than ȳ.
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stored in nodes u` above uj (` > j). Suppose that the contrary holds and that some

interval in Li(uj) contains x̄ and corresponds to an edge e, which is above ȳ, while

some other interval stored in Li′(u`) also contains x̄, but corresponds to an edge e′,

which is below ȳ. Since both of these intervals contain x̄, they must be nested by

Fact 5.6.2. But e is above ȳ, so it must also be above e′, since e′ is below ȳ. From

Fact 5.6.3, this means that the interval for e′ must be nested within the interval for

e. So in particular, the interval for e must contain the same boundary as e′ (bi′)

and be stored in u` or in its ancestor, according to the rules governing interval trees.

Thus, we have reached a contradiction.

We exploit Lemma 5.8.2 in the search algorithm as follows. We consider the

path u0, u1, . . . , uh−1, uh of nodes visited during the unconstrained stabbing query x̄

bottom-up, from a leaf to the root, and the appropriate secondary lists. Each time

we check if the edge corresponding to the first interval on the list, Li′(uj′), satisfies

the constraint of being below ȳ (we can do this in O(1) time). As long as it does, we

continue as for the unconstrained query. When this condition is not met, we have

identified node uj from Lemma 5.8.2. At this point we use the property that the

list order matches the y order of the edges to identify the boundaries of the range to

report by Lemma 5.8.2 and we report the f items in this range. This is equivalent

to a one-dimensional range query on Li(uj) and takes O(log |Li(uj)| + f) time. We

then terminate the search, since we know that there are no more intervals in S stored

further up along the path to the root by Lemma 5.8.2. Since we examine the first

entries in the lists for the other nodes (6= uj), we obtain a total cost of O(log n + k)

time. This is the same cost as for a standard unconstrained query plus an additional

constant cost in each node along the considered path and plus the search cost of the

one-dimensional range query.

We are left with the problem of locating the node 〈x̂, ŷ〉 in T that will become

the parent of the new node 〈x̄, ȳ〉 in T ′ after its insertion into the tree (action 1).

We can assume that this node exists (ȳ is not the largest y value in T ′), otherwise

this step does not need to be performed (it is easy to check which case holds for a

given insertion).

We recall from Section 5.6.2 that 〈x̂, ŷ〉 is either the rightmost point in the top-left

quadrant delimited by 〈x̄, ȳ〉 or the leftmost point in the top-right quadrant delimited

by 〈x̄, ȳ〉, whichever is lower. Such a point can easily be located in logarithmic time,

if we maintain an additional data structure for storing points in T , such as a priority

tree [59]. However, we can also use our existing companion interval tree to locate
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the node in logarithmic node, without the need for any additional data structure.

We explain how this can be done in Section 5.8.2.

Lemma 5.8.3 The searching cost (actions 1 and 2) using T and W is O(log n+k)

time.

Locating the insertion point

In order to locate 〈x̂, ŷ〉, we can use some information obtained from executing the

constrained stabbing query. Namely, consider the edge e which is the lowest edge

stabbed by x̄ above ȳ. If this edge exists then it is easy to identify it during the

constrained stabbing query, as it is located in Li(uj), adjacent to the range returned

by the one-dimensional range query performed on that list. This follows directly

from the definition of Li(uj).

If e exists then both of its endpoints lie above ȳ, so they can they be considered

candidates for 〈x̂, ŷ〉. No parents of these endpoints can be closer to x̄ than the

endpoints themselves, or else they would have to lie above e, which contradicts the

basic property expressed in Fact 5.6.1. So any other candidate for 〈x̂, ŷ〉 would have

to be contained in the subtrees of the endpoints of e. There are no nodes in the

rectangle whose corners are 〈x̄, ȳ〉 and the higher endpoint of e, or else they would

violate either the rules of tree construction or the definition of e. Therefore, we need

to search for 〈x̂, ŷ〉 in the subtree of the lower endpoint of e. Suppose, without loss

of generality, that the lower one is the left endpoint. Then, this subtree does not

contain any edges which cross x̄ above y, due to the definition of e. So we need to

search this subtree for the largest x value above ȳ. For that, we need only search

the rightmost branch of this subtree. Note that all of the companion intervals of

the edges on this branch must be nested within the companion interval of e. See

Figure 5.7 for an illustration.

Now let us consider the case in which e does not exist. In this case, the nodes

which have y > ȳ must either all lie to the left of x̄ or to the right of it, otherwise

there would be edges crossing x̄ above ȳ, in particular the lowest one, e. Suppose,

without loss of generality, that they all lie to the left. In this case, the problem boils

down to finding the node 〈x, y〉 having y > ȳ with the maximum x coordinate. This

node is located on the rightmost branch of T .

We can summarize these observations in the following way:

Fact 5.8.4 The sought parent node 〈x̂, ŷ〉 lies on a path of edges in T . This path is

monotonous with respect to both x and y. If the edge e exists, then this path originates
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e

〈x̄, ȳ〉

〈x̂, ŷ〉

Figure 5.7: The edge e and the rightmost branch of its lower endpoint from which
the parent of 〈x̄, ȳ〉, 〈x̂, ŷ〉 must be chosen.
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from the lower endpoint of e and contains edges whose companion intervals are

nested within the companion interval of e. Otherwise, this path is either the leftmost

or the rightmost branch of the tree T . Identifying the edge e as well as verifying its

existence can be performed during the constrained stabbing query (action 2), without

increasing the complexity of this procedure.

We now show how to use Fact 5.8.4 to find the parent node 〈x̂, ŷ〉, given e.

We first consider the case in which e does not exist. In this case the companion

interval of the edge containing 〈x̂, ŷ〉 is located on the leftmost or rightmost branch

of T . This interval can not be nested within any other interval, or else it would not

belong to such a branch. Therefore, if it is stored in some list Li(u) then it must be

stored as the last element of this list. This observation is crucial to the logarithmic

complexity of the procedure, as we only need to spend a constant time examining a

list.

We start by examining the last intervals stored in the root of the companion

tree. These intervals can not be nested within one another (but the same interval

may occur as a last interval in more than one list.) We consider both endpoints of

the edges corresponding to the intervals. These edges are a selection of the edges

lying within the leftmost and rightmost branch of T , sorted according to x. We

consider just the edges belonging to the branch we are interested in. These edges

are also sorted according to y. If there is an edge which crosses the line ȳ then this

is the edge we are looking for — its higher endpoint is 〈x̂, ŷ〉. Otherwise, we use

the y values of the other edges on the appropriate branch as search tree keys to

navigate down in the companion interval tree along a unique path. (Remember that

the y order matches the x order along such a branch, so we can do that.). If all of

the edges in the node belong to the wrong branch (leftmost resp. rightmost) then

we simply navigate to the most extreme subtree (rightmost resp. leftmost). It may

happen that there is no edge in the branch which crosses the line ȳ. In this case

〈x̂, ŷ〉 is the lower endpoint of the lowest edge on the branch.

In the case in which e exists, we may use a similar procedure, except we start

the search from the node uj containing e. The key observation here is that the

sought interval is nested within the interval for e, so it can not be stored above uj

in the interval tree. Therefore, we just need to search uj and its subtree. Again

we can observe that in the descendants of uj the sought interval must occur as

a last interval in its list. That is because we are seeking only intervals directly

nested within e (without any intervals nested in between the two) and any intervals
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encompassing e as well as the sought edge are stored in uj or above. In the node

uj itself we consider the items directly preceding e in all the lists that e belongs to.

We can do that in constant time, since we have already located e and we maintain

a thread of all occurrences of the same edge.

5.8.3 Restructuring Cost

We are left with the implementation of action 4. With reference to the general case

depicted in Figure 5.3, we can observe that the shrinking of edges involves a re-

arrangement at their endpoints. For example, u2 is detached from u3 and attached

to u5 and u4 is detached from u5 and attached to u8. In general, it is just an

implementation detail how to reconnect the Cartesian tree in O(1 + k) time, which

becomes its restructuring cost. What we focus on next is how to maintain the

companion intervals in W . We need the crucial properties below to perform this

task efficiently.

Fact 5.8.5 Let (x, x′) ∈ I(T ) be an interval which shrinks and becomes (x, x′′),

where x < x′′ < x′. (Notice that one endpoint always remains unchanged due to

shrinking. Here we assume without loss of generality that it is the left endpoint.)

Let u ∈ W be the node whose secondary list(s) contain(s) interval (x, x′).

1. The shrinking of (x, x′) does not introduce any new endpoints to be stored

in W . In other words, a leaf of W already stores x′′.

2. If (x, x′′) should be relocated to another node, v, then v is a descendant of u

and (x, x′′) becomes the first interval in the suitable secondary list(s) of v.

A similar result holds when the right endpoint remains unchanged and the shrunk

interval is (x′′, x′).

We need property (1) of Lemma 5.8.5 to guarantee that no restructuring of the

tree shape of W is needed because of a shrinking. Otherwise, the restructuring cost

would increase by a factor of O(log n). Fortunately, this is not the case and we

only need to relocate (x, x′) into O(1) secondary lists of W as (x, x′′) (or (x′′, x′)).

To this end, we need property (2) of Lemma 5.8.5. Relocation moves the interval

downward and requires just O(1) time per node since we need to insert the interval

at the beginning of O(1) secondary lists.

Consequently, we perform the following. Let us consider the path of nodes

uh, uh−1, . . . , u1, u0 traversed for identifying the edges to shrink, as described in
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Section 5.8.2. For each ` = h, h− 1, . . . , 1, if node u` contains f` intervals to shrink,

say e1, e2, . . . , ef`
(already given in order of their left endpoint), we execute the

following steps for j = f`, f` − 1, . . . , 1:

1. Let ej = (x, x′) be the interval shrinking. We assume without loss of generality

that its left endpoint remains unchanged and the shrinking yields (x, x′′). For

each secondary list Li(u`) that contains ej , let bi be the boundary associated

with the list: if x′′ < bi, remove the interval from the list; otherwise leave the

intervals as is. Note that this does not change the order inside the list.

2. If at least one copy of (x, x′′) remains in the secondary lists of u`, stop pro-

cessing the interval.

3. Otherwise, find the descendant v of u`, which is the new location of (x, x′′).

Insert (x, x′′) into the secondary lists of v as needed, and create a thread of

these copies.

The correctness of the method follows from Lemma 5.8.5. As for the complexity,

each relocation may cost O(log n) time, and there are as many as O(n + H (T ))

relocations by Theorem 5.7.1, yielding a cost of O((n+H (T ))×log n) = O(n log2 n)

in the worst case. This is not yet the bound we claimed in the introduction.

We now complete this section by showing that the amortized cost of the relo-

cations in W is O(n log n) as claimed. We focus on what happens to an interval

e ∈ W and base our analysis on the intuition that the downward relocation path

of an interval e is bound by the height of the tree. However, we must also consider

that nodes of W may split, so the formal argument uses credits for e. When e is

first inserted into W , it is assigned h credits where h is the current height of W .

Since h = O(log n), these credits are paid for by the insertion operation. Moreover,

a credit is assigned to e when the node containing it is split in W . According to

Lemma 5.8.1, the cost of splitting a node, proportional to the number of intervals

it contains, can be amortized. Therefore, also the additional credit assigned to each

interval in the node being split, can be amortized. Credits assigned to e are used to

pay for the shrinking operations affecting e. It suffices to prove the following lemma:

Lemma 5.8.6 At any given time, let h be the level of the node u` currently con-

taining e in some of its secondary lists. Then, the interval e has at least h credits

assigned to it.
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Proof : We prove Lemma 5.8.6 by induction with respect to the operations affecting

the height of the node storing e or the number of credits assigned to e.

When e is first inserted into W , then it has h credits by definition.

Suppose a relocation of e moves e to the node u`′ at height h′ = h − ∆h. This

operation is paid for by credits associated with e. The operation cost is proportional

to ∆h and e loses ∆h credits. However, also the height of e decreases by ∆h, so e

now has at least h′ credits and the claim holds.

The credit balance of e can also be affected by a split operation. When a node

splits, one of its boundaries — and hence also the list of intervals associated with

that boundary — is relocated to the parent of the node. This operation may increase

the height of an interval contained in the node being split by one. However, it also

assigns one credit to each interval contained in the splitting node. So for each

interval e contained in node u` at height h, if e has at least h credits before the split

of u`, then after the split of u`, the height of e if h′ ≤ h + 1 and the number or

credits assigned to e is at least h + 1 and so the claim holds.

Theorem 5.8.7 Given a Cartesian tree T , we can maintain it under a sequence

of n insertions of points using a modified weight balanced B-tree W as an auxiliary

data structure, with an amortized cost of O(log n) time per insertion. The amortized

cost of restructuring T is O(1 + H (T )/n) per insertion, where H (T ) = O(n log n)

is the missing entropy of T .

5.9 Implementing deletions

In addition to insertions, our structure supports weak deletions, that is marking

nodes as deleted. Nodes marked as deleted are present in the Cartesian tree until

the overall number of marked nodes in the tree reaches a specified constant fraction α

of all of the nodes in the tree. Once that happens, global rebuilding [68] is performed.

Global rebuilding means that the Cartesian tree as well as the companion interval

tree are rebuilt from scratch using only the nodes which have not been marked as

deleted.

The cost of a weak delete operations is O(log n). It is also inversely proportional

to α, but α is a constant. This cost is not used at the time a node is marked as

deleted, but at the time of the next global rebuilding. The next global rebuilding

occurs after O(αn) weak deletions have occurred and its cost is O(n log n). This

cost includes the cost of building the Cartesian tree, building the companion interval
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tree and accounting for the fact that the potential function used for amortizing the

insertion cost can decrease even by as much as O(n log n) as a result of the deletions.

5.10 Conclusions

In this chapter we showed how the rigid Cartesian tree structure can be turned into

a dynamic one. The contents of the Cartesian tree uniquely define its shape which

renders the structure useful for a variety of applications, but also means that a single

update operation can affect the entire structure.

We base the work on the observation that costly insert operations can not happen

repeatedly and their cost can be amortized.

We first proved that the number of Cartesian tree elements affected by insertion

operations is logarithmic if amortized. We then exploited this fact to create a

dynamic version of the Cartesian tree.

The dynamic version of the Cartesian tree is composed of the original tree aug-

mented with a structure which we call the companion interval tree. The companion

interval tree has the same space complexity as the original tree and enables fast

insert operations on the Cartesian tree by providing access to the Cartesian tree

elements which are affected by the update.

Our result is the first known dynamic version of the Cartesian tree structure.



114



Conclusions

In the work we introduced the concept of rank-sensitive data structures — data

structures which associate a rank with each of the stored elements and when an-

swering a query return only the highest-ranking results sorted according to rank,

where the number of results to return is a parameter given at query time. Such

data structures are very much needed and the need for them is increasing still as

the datasets we deal with are increasing in size dramatically from year to year and

it is more and more difficult to deal with excess of data, especially in such fields as

information retrieval and computational biology.

We explored several approaches to designing rank-sensitive data structures while

discussing the difficulties and trade-offs this incurs. We presented a way to augment

suffix trees in order to make them rank-sensitive. Then, we presented a general

framework for adding rank-sensitivity to any data structures which are in the form

of a tree and the items satisfying a query are stored in the tree’s leaves and form

O(polylog(n)) intervals of consecutive (in infix order) leaves (e.g. suffix trees, range

trees). We presented both static and dynamic versions of the latter with different

spacial and temporal complexities.

Finally we presented the first fully dynamic Cartesian tree structure. Cartesian

trees have many applications in priority queue implementations, range searching,

range maximum queries, and others and they also intrinsically store items in sorted

order according to one dimension and partially sorted in according to the other.

Making Cartesian trees dynamic could prove an important first step in improving

the presented rank-sensitive data structures and designing new ones, as well as

solving other algorithmic problems.

Future work We showed how certain output sensitive structures can be made

rank-sensitive. The trade-off was an increased space complexity and in some cases

search time. Some of the solutions could not be used in the dynamic setting. Future

work should include reducing the time and space overheads incurred by adding rank-
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sensitivity, finding better solutions in the dynamic setting, as well as extending the

class of structures considered.

We also introduced a dynamic version of the Cartesian tree. This new structure

could prove useful in the further work of rank-sensitivity, but could also have other

applications which should be investigated. For example, Cartesian trees are key

in the O(1) solution to the range maximum query problem, but only in the static

setting, so one could investigate if our dynamic version could be used for improving

the bounds for range maximum query in dynamic data structures.
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