
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Fault Tolerance for High-Performance
Applications Using Structured

Parallelism Models

Carlo Bertolli

Supervisor

Marco Vanneschi

October 7, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14696399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1
1.1 Reliability Issues in High-Performance Architectures 2

1.1.1 Shared Memory Architectures and Clusters of Workstations . 3
1.1.2 High-Performance Architectures or Large Systems 4
1.1.3 Grids . 4

1.2 Existing Approaches and Contributions of this Thesis 5
1.2.1 Farm Computations . 8
1.2.2 Data Parallel Computations 10
1.2.3 Issues for Fault Tolerance in Structured Parallel Computing

Models Considered in this Thesis 12
1.3 List of Contributions of this Thesis 13
1.4 Outline of the Thesis . 14

2 Parallel Programming and Fault Tolerance 17
2.1 Fault Tolerance for Unstructured Models of Parallel Programming . . 18

2.1.1 Checkpointing and Rollback Recovery Protocols 18
2.1.2 Replication Techniques . 24
2.1.3 Group Membership Services and Group Communication Prim-

itives . 26
2.1.4 Distributed Objects and Advanced Techniques 27

2.2 Fault Tolerance for High-Level Models of Parallel Programming . . . 28
2.2.1 Fault Tolerance in Task Parallelism 29
2.2.2 Specializing Checkpointing and Rollback Recovery for High-

Level Models . 31
2.2.3 Expressing Parallel Computations as Atomic Actions 32
2.2.4 System-Level Fault Tolerance Exploiting High-Level Models

of Parallel Programming . 33

3 A Structured Approach to Fault Tolerance 35
3.1 Programming Model . 35

3.1.1 Farm . 37
3.1.2 Data Parallel . 39

3.2 A Tool to Address Fault Tolerance Aspects 41

4 CHAPTER 0. CONTENTS

3.2.1 A Model for Farm based on I-Structures 44
3.2.2 A Model for Data Parallel based on I-Structures 48
3.2.3 Methodology of Study of Fault Tolerance for Farm and Data

Parallel . 53

4 Checkpointing and Rollback Recovery for Farm 57
4.1 Farm E-W-C Implementation Strategy 59

4.1.1 Round-Robin Scheduling for Farm 59
4.1.2 On-Demand Scheduling for Farm 61

4.2 Farm E-W-C Implementations . 62
4.3 Fault Tolerance at Levels of Abstraction 64

4.3.1 Failure Model and Fault Tolerance Logics for the Abstract
Model . 64

4.3.2 Fault Tolerance for the Farm E-W-C Implementation Strategy 66
4.4 Fault Tolerance for Message Passing Farms 69

4.4.1 Implementation of Supporting Data Structures 71
4.4.2 Synchronous Logging on Input/Output Streams 72
4.4.3 Asynchronous Logging on Input/Output Streams 75
4.4.4 Overhead Analysis . 76

4.5 Comparison with Structure-Unaware Protocols 78
4.5.1 Checkpointing Protocols . 79
4.5.2 Message Logging Protocols . 82

5 Checkpointing and Rollback Recovery for Data Parallel 85
5.1 An Implementation Strategy for Data Parallel Programs 86

5.1.1 Cost Model . 89
5.1.2 Implementation . 89

5.2 Failure Model and Detection and Stable Storage 90
5.3 Coordinated Checkpointing and Global Rollback Recovery 90

5.3.1 Checkpointing Algorithm . 91
5.3.2 Global Rollback Recovery Protocol 96
5.3.3 Protocol Pseudo-Code . 102
5.3.4 Correctness . 104
5.3.5 Overhead of Checkpointing and Performance of Rollback . . . 108

5.4 Coordinated Checkpointing and Partitioned Rollback Recovery 109
5.4.1 Checkpointing Algorithm . 109
5.4.2 Performance Impact of Checkpointing 111
5.4.3 Description of the Partitioned Rollback Recovery Protocol . . 111
5.4.4 Surviving Single Failures . 113
5.4.5 Surviving Concurrent and Recursive Failures 119
5.4.6 Performance of Rollback Recovery 122

5.5 Uncoordinated Checkpointing and Message Logging 122
5.5.1 Checkpointing Algorithm with Message Logging 123

0.0. CONTENTS 5

5.5.2 Rollback Recovery Protocol 125
5.5.3 Correctness of Checkpointing and Rollback Recovery 126
5.5.4 Performance Impact of Message Logging and Checkpointing . 127
5.5.5 Performance of Recovery . 127

5.6 Comparison with Structure-Unaware Protocols 128
5.6.1 Coordinated Asynchronous Checkpointing 128
5.6.2 Communication-Induced-Checkpointing 132
5.6.3 Message Logging . 133

6 Implementation of the Fault-Tolerant Stream 137
6.1 Preliminaries . 137

6.1.1 Efficient Interprocess Communications on a Same Node 137
6.1.2 Communication Protocol without Fault Tolerance 139

6.2 Introduction to the FT-Stream . 145
6.2.1 FT-Stream Abstract Model and Implementation Features . . . 146

6.3 FT-Stream Implementation . 148
6.3.1 Notation . 150
6.3.2 Communication Support for Stable Storage on the Receiver

Disk . 151
6.3.3 Synchronous FT-Streams . 159
6.3.4 Analysis of the Communication Latency 159

6.4 Exploiting the FT-Stream . 160
6.4.1 The Test-Bed . 161
6.4.2 A Simple Rollback Recovery Protocol 161

6.5 Related Work . 166

7 Performance of Parallel Computations in Presence of Failures 177
7.1 Implementation of the Master-Slave Farm Strategy and its Fault Tol-

erance Support . 178
7.2 Working Assumptions . 178
7.3 Upper Bounding Completion Time by Means of a Bulk-Synchronous

Model . 179
7.4 A Markov Model for Fault-Tolerant Farm Computations 180

7.4.1 Existing Approaches to Reliability Quantification by Exploit-
ing Markov Chains . 181

7.4.2 Simple Model Examples . 181
7.4.3 A General Model . 184
7.4.4 Re-Organizing the Model . 188
7.4.5 Computation of the Average Number of State Entries 192

7.5 A Framework to Study the Completion Time 193
7.6 Experimental Results . 194

7.6.1 Testing Environment . 195
7.6.2 Mapping the Failure Model in muskel 197

6 CHAPTER 0. CONTENTS

7.6.3 Implementation of Fault Injection 198
7.7 Numerical Results . 200

7.7.1 Tests for A Simple Case . 201
7.7.2 Tests for the General Model 202

8 Conclusions 203

Bibliography 205

List of Figures

2.1 Example of the definition of the macro data-flow graph in a muskel program. 30

3.1 Representation of the I-Structure properties and their relationships
with FT aspects. 42

3.2 Abstract model of a generic farm computation. Two incomplete struc-
tures model input and output streams. Workers independently access
them. The scheduling of task to workers, and the collection of results
is modeled in the choice of positions made by workers in the accesses. 44

3.3 Pseudo-code of the abstract behavior of workers in a farm computation. 45

3.4 Example of computation of a farm, showing the relationship between
input task element positions, worker names, and output stream el-
ement positions. The notation R = F x

y (Ti) denotes that the y-th
worker is performing its x-th evaluation of F on the input task ob-
tained from the i-th position on the input I-Structure. 46

3.5 Pseudo-code of the generic virtual processor. 49

3.6 Example of execution of a data parallel model: each VP accesses the
state values computed at the previous step, at north and south (not
for the border VPs). 50

3.7 Dependency graph of elements w.r.t. computation step for the exam-
ple of Figure 3.6. 51

3.8 Example of interaction graphs for data parallel programs. 51

4.1 Implementation strategies of the farm: the first one (left) is based on
a master-slave strategy, in which the master (m) is responsible for
performing stages 1 and 3, while stage 2 is replicated on slaves (s).
The second strategy decouples stages 1 and 2 in two implementation
modules, the emitter e, and the collector c. 58

4.2 E-W-C implementation strategy for farm computations. The emitter
exploits just local knowledge to implement the scheduling strategy. . 59

4.3 Pseudo-code of the emitter module, in the case of farm with round-
robin scheduling policy. N is the number of workers. 60

4.4 Pseudo-code of the worker module, in the case of farm with round-
robin scheduling policy. 60

8 CHAPTER 0. LIST OF FIGURES

4.5 Pseudo-code of the collector module, in the case of farm with round-
robin scheduling policy, and FIFO collection strategy. 61

4.6 E-W-C implementation strategy for farm computations. The emit-
ter exploits local knowledge and worker information (passed on free
streams) to implement the scheduling strategy. 62

4.7 Two implementations, based on shared memory and message passing,
of the Farm E-W-C strategy. 63

4.8 Architecture of the nodes executing the sender and the receiver pro-
cesses in the case of communication through an FT-Stream. 73

5.1 Implementation strategy for data parallel programs. Each VPM is as-
signed a partition of the global state, modeled as a single I-Structure.
The model exploits a number of I-Structures equal to the number of
VPMs. In this figure we show that each VPM can access its local par-
tition with put and get operations but can access remote partitions,
i.e. assigned to other VPMs, only with get ones. 87

5.2 VP pseudo-code of a generic data parallel program. The Partition
data structure implements the local partition of a VPM. The parti-
tions data structure implements a container of Partition data structures. 88

5.3 VPM pseudo-code extended with the first version of the checkpoint-
ing algorithm. Each VPM periodically saves its local state partition
on stable storage. The partition and partitions data structures imple-
ments, respectively, a local partition and a collection of partitions. . . 92

5.4 Representation of execution of a fixed stencil data parallel program,
where each VP passes its local state to the upper VPM. 95

5.5 VPM pseudo-code extended with the handling of communication prim-
itives. The rollback() function is the routine that performs the roll-
back recovery protocol as non leader VPM. The isVoid-failure-ch()
function checks if the failure notification channel is void, and the
VPM possibly performs the rollback protocol. 97

5.6 Temporal representation of the messages exchanged during the roll-
back protocol. We only show the answer by D (r0) because its rollback
step is lower than all the other ones. 99

5.7 Pseudo-code of a failed and restarted VPM for the first rollback re-
covery protocol. 103

5.8 Pseudo-code of the function performed by the leader of a rollback
protocol in the case of concurrent failures. 104

5.9 Pseudo-code of the function performed by a VPM participating in
the rollback protocol not as leader. 105

5.10 Checkpointing algorithm for the partitioned rollback recovery proto-
col. At the beginning of each step (loop iteration) the computation
step is checkpointed and saved onto stable storage. 110

0.0. LIST OF FIGURES 9

5.11 Example of inconsistent state obtained after a rollback. The global
state includes the checkpoints at the end of step p for C, D and E,
and the computation states of A and B while executing step R. In
this case P = {C, D, E} and E = {A, B} 113

5.12 Pseudo-code of a failed and restarted VPM for the second rollback
recovery protocol in the case of a single failure. 115

5.13 Optimized rollback recovery protocol in the case of a single failure. . 116
5.14 Recovery protocol performed by VPMs participating in the rollback

protocol. 117
5.15 Example of concurrent and recursive failures during recovery, to in-

troduce the concept of recovery session. 119
5.16 Checkpointing algorithm with message logging: each VP periodically

saves its local state partition on stable storage, and the ghost parti-
tions received from its neighbors. 124

5.17 Pseudo-code of a failed and restarted VPM for the rollback recovery
protocol based on message logging. 125

5.18 Pseudo-code of the recovery protocol, based on message logging. . . . 125

6.1 Example of synchronous communication between two processes on a
same node. 138

6.2 Architecture of NS and NR nodes. The KP on the nodes are mapped
on a special hardware, and implement the communication protocol.
The dotted line shows the path of a message sent from S to R. 139

6.3 Data structures implementing the communication channel on the
sender and receiver, respectively. The message buffer is only on the
receiver side. 140

6.4 Data structures used to implement the communication protocol. The
M data structure is used to implement the send operation, and it
is used between S, KPS and KPR. The A data structure is used to
notify KPS of the result of the local send on the receiver. The W data
structure is used from R to wake up S, when the receiver removes a
message from a full channel queue. 142

6.5 Architecture of the nodes executing the sender and the receiver pro-
cesses for the implementation of FT-Streams. 149

6.6 Graphs of communication of two processes on a stream, from an ab-
stract (left) and implementation viewpoint (right). 150

6.7 Implementation of the communication channels, on the sending (left)
and receiving (right) sides. Highlighted fields are related to the FT
strategies (both for stream and application levels). 155

6.8 Message types implementing the communication protocol with mes-
sage logging. 156

6.9 Pseudo-code describing the implementation of the send operation per-
formed by the sender process. 168

10 CHAPTER 0. LIST OF FIGURES

6.10 Pseudo-code describing the implementation of the KP process. 169
6.11 Pseudo-code describing the implementation of the KP process when

receiving a message of type M. 170
6.12 Pseudo-code describing the implementation of the send operation per-

formed on the receiving node. 171
6.13 Pseudo-code describing the implementation of the send result notifi-

cation, performed by the receiving KP. 172
6.14 Pseudo-code describing the implementation of the receiving behavior

of the wake-up messages on the sending KP. 173
6.15 Pseudo-code describing the implementation of the receive operation. . 174
6.16 Pseudo-code of the sender in the test-bed of FT-Streams. 175
6.17 Pseudo-code of the receiver in the test-bed of FT-Streams. 175
6.18 Relative positions of S and R in the case of concurrent and recursive

failures. The italic letters indicates the relative positions of R and C
w.r.t. the one of S. 175

7.1 Markov chain M1 modeling the execution of 1 task on 1 slave. Arcs
are labeled with triplets (a, b, c), where a is the result of the try (suc-
cess or failure), b is the probability of the transition, and c is the time
required by the transition. 182

7.2 Markov chain M2 modeling the execution of 2 tasks on 2 interpreters. 183
7.3 Markov chain modeling the execution of n task on m slaves, in the

case of failure/restart of the processes. 185
7.4 Markov chain of the model for n tasks performed on 2 slaves. 186
7.5 Representation of the Markov model of computation of n tasks on m

slaves (with n >> m), where each slave can fail to perform a task
with probability q. 188

7.6 Markov model of computation of n = 4 tasks on m = 2 slaves, each
slave can fail with probability q. State numbering denotes the number
of pending tasks. 190

7.7 Snapshot of the graphical representation of Markov models in the
case of m = 5 and n = 15, to compute the average number of entries
into state 5. 193

7.8 muskel implementation as a master-slave, and its FT strategy. 196
7.9 Representation of the first instances of the fault injection technique.

Whenever a slave fails (1) it detects the failure in TF time (2), and
it re-spawns it (3) in TR time (dotted arrows). 200

List of Tables

3.1 Dependencies between input elements, function evaluations and out-
put elements of example 3.2.1. The indexes of T and R denote the
positions of tasks and results on the input and output streams respec-
tively. 47

7.1 Evaluation of N for n = 5, and n = 10. 194
7.2 Evaluation of N for n = 5, and n = 10. 194
7.3 Evaluation of N for n = 5, and n = 10. 195
7.4 Evaluation of N for n = 5, and n = 10. 195
7.5 Results of the experiments for 2 tasks performed by 2 slaves. We

show the discrepancies between monitored and theoretical completion
times. The first set of lines is related to delta > ∆, while the second
to its inverse. For each set, we show the average discrepancy (Av.
Disc.). At the bottom we show the total average discrepancy for all
values (Total Av. Disc.). 201

7.6 Experimental results for m = 5. 202
7.7 Experimental results for m = 10. 202

12 CHAPTER 0. LIST OF TABLES

A Soraya

Em demano: què és preferible:
un passament mediocre, alegroi i conformat,

o una obsessió com aquesta, apassionada, tensa, obsessionant?
Josep Pla

Acknowledgments

My main thanks go to my supervisor Marco Vanneschi: his high didactic and re-
search skills both with his patience are the key to understand the ambition behind
this thesis, its methodology and its results.

I am indebted with Prof. Massimo Coppola for teaching me the “dark side” of
a researcher life: his (very patient) teaching and his comments are included in the
main contributions of this thesis.

A special thanks goes to Joaquim Gabarró for teaching me his research approach
and methodology, which actually represented an improvement of the quality of this
thesis.

Finally, I would like to thank my past and present colleagues (Alessio, Massi-
miliano, Gianmarco, Francesco, Silvia, Gabriele and Daniele), which contributions
are scattered on the whole thesis, my parents and my relatives for supporting me
psychologically and economically during my PhD.

4 CHAPTER 0. LIST OF TABLES

Abstract

In the last years parallel computing has increasingly exploited the high-level models
of structured parallel programming, an example of which are algorithmic skeletons.
This trend has been motivated by the properties featuring structured parallelism
models, which can be used to derive several (static and dynamic) optimizations at
various implementation levels. In this thesis we study the properties of structured
parallel models useful for attacking the issue of providing a fault tolerance support
oriented towards High-Performance applications. This issue has been traditionally
faced in two ways: (i) in the context of unstructured parallelism models (e.g. MPI),
which computation model is essentially based on a distributed set of processes com-
municating through message-passing, with an approach based on checkpointing and
rollback recovery or software replication; (ii) in the context of high-level models,
based on a specific parallelism model (e.g. data-flow) and/or an implementation
model (e.g. master-slave), by introducing specific techniques based on the prop-
erties of the programming and computation models themselves. In this thesis we
make a step towards a more abstract viewpoint and we highlight the properties
of structured parallel models interesting for fault tolerance purposes. We consider
two classes of parallel programs (namely task parallel and data parallel) and we
introduce a fault tolerance support based on checkpointing and rollback recovery.
The support is derived according to the high-level properties of the parallel models:
we call this derivation specialization of fault tolerance techniques, highlighting the
difference with classical solutions supporting structure-unaware computations. As a
consequence of this specialization, the introduced fault tolerance techniques can be
configured and optimized to meet specific needs at different implementation levels.
That is, the supports we present do not target a single computing platform or a spe-
cific class of them. Indeed the specializations are the mechanism to target specific
issues of the exploited environment and of the implemented applications, as proper
choices of the protocols and their configurations.

6 CHAPTER 0. LIST OF TABLES

Chapter 1

Introduction

High-Performance applications feature intensive computations whose execution on
a single computing node can be performed in an unacceptable length of time. In
some cases it is also necessary that parts of the computation, or the whole applica-
tion, is performed according to some timing constraints. The natural choice to meet
these demands is to execute such applications on multiple computing nodes. Thus,
High-Performance applications are expressed as parallel programs to be mapped on
computing platforms featuring many nodes, i.e. parallel computing architectures.
Existing parallel architectures span from clusters of off-the-shelf computers or work-
stations [5] and shared memory architectures [33], featuring ten to hundreds of nodes
and interconnected by relatively slow networks, up to highly distributed platforms,
like Grids [45]. In the middle of this classification, we can characterize highly inte-
grated architectures, featuring specialized resources and with hundreds/thousands
of computing nodes [63] and massively parallel architectures [83, 34], including hun-
dreds of thousands of nodes and interconnected by high-performance networks. As
a general trend the demand for computing power of High-Performance applications
increases over time. In the development of parallel architectures, the answer to such
a demand is to increase the number of computing nodes available to applications.

Independently of the architecture being used one problem is the possibility of
computing resources failing, even if we assume that we are executing correct (i.e.
error-free) applications. Failures of computing nodes can be sporadic for small archi-
tectures, but they increase exponentially with the number of nodes, leading to very
high failure rates for architectures with large numbers of computing resources [72].
This is also true if we choose to build parallel architectures with single components
featuring a higher level of reliability. Thus, to exploit the whole computing power of
such architectures, applications must be supported with fault tolerance mechanisms.

The fault tolerance research field studies the issue of supporting applications
(both sequential and parallel) in order to survive1different kinds of failures. As

1In this thesis, as in the fault tolerance computing field, we say that a process or an application
survives one or more failures if it continues in its execution in spite of those “catastrophic” events.
A process that is not failed is said to be a survived process.

2 CHAPTER 1. INTRODUCTION

fault tolerance computing is a stand-alone research field its results are techniques and
mechanisms that exist independently of the context in which they are applied. In
some cases, these results cannot be applied to High-Performance computing because:

• they are defined for different computation models, not appropriate for ex-
pressing highly parallel computations and/or based on different assumptions
or targeting different kinds of applications;

• they can induce overheads that increase with the degree of parallelism of ap-
plications according to some super-linear functions.

Several contributions have been given to study and provide solutions to the issue of
supporting failures for parallel computations. In some cases High-Performance pro-
gramming exploits existing solutions of the fault tolerance computing field. In some
others, fault tolerance is supported in an ad-hoc fashion. In this thesis we face fault
tolerance issues in the context of High-Performance computing by focusing on the
relationships between computation models, used to support parallel languages, and
the fault tolerance logics. Indeed, the focus is on the properties that the implementer
of the parallel language can use to introduce fault tolerance mechanisms. In the re-
maining of this thesis we will use the term specialization to denote the methodology
of definition of fault tolerance techniques based on the exploitation of high-level
properties of the structured parallelism models. The specialization highlight the
difference with more classical approach, based on unstructured models of parallel
computing. As a consequence, we will also say that our support is specialized for
structured parallel models.

In this chapter we briefly review recent parallel architectures and the problems
of exploiting them due to failures. The review characterizes computing platforms
w.r.t. their vulnerability to failures. Next we outline existing contributions towards
providing solutions to this issue. Finally, we introduce our research contributions and
we state its differences with existing solutions. In the description of the differences
we refer to the taxonomy of parallel architectures described here.

1.1 Reliability Issues in High-Performance Archi-

tectures

Several taxonomic schemes exist in order to describe High-Performance parallel ar-
chitectures. These depend on which properties we are interested in highlighting.
Here we focus on the reliability ones: we want to characterize parallel architectures
w.r.t. some metrics indicating the quantitative and qualitative aspects of failures.
There are several factors involved in the definition of the reliability of a parallel com-
puting platform. Examples of such factors are the reliability of the single hardware
components or of the system and application software. We focus on the reliability

1.1. RELIABILITY ISSUES IN HIGH-PERFORMANCE ARCHITECTURES 3

of hardware components implementing a parallel architecture, which we discuss in
relation to a classification of parallel architectures w.r.t. the following aspects:

Size This represents the number of computing resources (node, network links, etc.)
of the architecture. We are interested in characterizing parallel architectures
w.r.t. the number of resources that can fail, according to some failure model.

Interconnection of Computing Resources This represents the type and the
performance of the interconnection network linking computing nodes. Some
parallel architectures exploit off-the-shelf networks, while others are supported
by specialized and highly optimized networks. In some cases a subset of the
computing resources is assigned to the task of implementing node linking fa-
cilities, as in [34].

Degree of Integration This represents the degree of distribution in space of the
resources in the platform. In some cases parallel architectures are highly inte-
grated (the same chassis, the same room/building), in others they are highly
distributed, covering geographic areas that span from metropolitan networks
to wide area networks.

We derive some representative classes of the architectures based on these factors. For
each class we discuss their reliability in terms of the frequency of failures and how
they impact on the whole platform, according to the analysis presented in [72]. This
analysis is a mathematical evaluation of the overall Mean Time Between Failures
(MTBF)2 of a system w.r.t. the number of its computing resources, assuming that
they can independently fail.

1.1.1 Shared Memory Architectures and Clusters of Work-
stations

These are architectures featuring a low number of computing nodes (actually not
reaching 100 units). As smaller representatives of this class, we can characterize
architectures supported at hardware-level shared memory, like in Symmetric Multi-
Processors or Non-Uniform Memory Access architectures (see [33]). Interactions
between processes are implemented at the lower level with concurrent accesses to
shared variables. As a consequence the interconnection networks are mainly assigned
to the task of the linking of processing nodes to the shared memory hierarchy. The
degree of integration is often limited to a single chassis. As far as concerns reliability,
in some cases the failure of a single processing node can induce the failure of the
whole platform.

We characterize small clusters of workstations [5] in the same class, whose par-
allelism degree does not exceed hundreds of units. The interaction model is that

2The mean time between failure is a metric denoting the average time that pass between two
successive failures.

4 CHAPTER 1. INTRODUCTION

of distributed systems, i.e. message passing over communication channels, and im-
plemented by off-the-shelf interconnection networks (e.g. fast Ethernet) linking
computing nodes. This kind of architecture features a large degree of integration
(typically in the same room). The failure of nodes does not have an impact on the
availability of the whole platform, if non-failed nodes can still be reached and if
system functionalities are still available.

For this class of architectures the frequency of failures does not exceed one hun-
dred of hours, according to [72]. Thus, standard solutions to fault tolerance [19]
seem to meet the desired trade-off between the performance overhead they induce
w.r.t. the reliability provided.

1.1.2 High-Performance Architectures or Large Systems

In this class, we characterize modern cluster architectures for High-Performance
computing. The size of these architectures spans from hundreds up to hundreds of
thousands computing nodes. In smaller systems we include architectures composed
of workstations in a same building used to support High-Performance computing.
They are interconnected through (relatively) slow networks, (e.g. local area net-
works). These smaller systems can be geographically composed to build a parallel
computing platform with larger numbers of nodes, at the cost of slower intercon-
nection networks [50]. In the same class we characterize large systems implemented
as specialized architectures, for which the hardware configuration is built ad-hoc.
The integration degree of this class of architectures is high w.r.t. the number of
computational resources. Some of the computational nodes are exploited to imple-
ment the interconnection facility, which include several hardware technologies. In
[72] this class represents the critical part of the failure rate, which is shown to grow
exponentially with the number of nodes. For example, for architectures with size
around one hundred a MTBF between 100 to 20 hours is estimated. For the largest
architectures, the MTBF decreases to zero, i.e. there is a high probability of failure
every instant of time.

For smaller cluster systems, existing fault tolerance solutions are possibly mixed
up and properly configured to minimize the performance impact they induce on
computations (e.g. [64]). This methodology can be difficult to apply, or can induce
unacceptable overheads, depending on the actual structures and quantitative aspects
of both the applications and the systems. In some cases, the fault tolerance support
requires the introduction of advanced techniques to meet the desired degrees of
performance (e.g. [40, 46]).

1.1.3 Grids

In this last class we consider highly distributed and dynamic platforms, composed
of heterogeneous computing resources. There is not an upper limit for the size of
these systems, which can be supported by Internet-wide interconnection facilities

1.2. EXISTING APPROACHES AND CONTRIBUTIONS OF THIS THESIS 5

and can be composed of both small scale networks and/or large scale ones. The
exploitation of these kinds of platforms has brought about several research issues
and relative solutions, but there is no an accepted methodology for their exploitation
for High-Performance computing. Also, the MTBF is theoretically evaluated at zero.

Fault tolerance solutions for these kinds of platforms are necessarily ad-hoc w.r.t.
the actual and dynamic configuration of the exploited platform. As a general trend,
standard techniques are reported to provide poor scalability to applications [41],
while specialized ones seem to be much more promising (e.g. [91]).

1.2 Existing Approaches and Contributions of this

Thesis

There exist several approaches and techniques to fault tolerance computing. In the
context of parallel and distributed platforms the most notable ones are replication
[51] and checkpointing with rollback-recovery [39].

Replication has been traditionally introduced to support sequential computa-
tions: a single sequential module is replicated and executed on multiple nodes,
distributed over the network, to enhance its fault tolerance. The coordination of
the replicas is defined in such a way that the sequential computation is emulated.
In this model no parallelism is exploited. Research works in the context of high-
performance computing highlighted how replication can be extended to cope with
parallel computations [14]. Other approaches are specialized for task-parallel compu-
tations and they introduce task-replication (re-scheduling or duplication) techniques
(e.g. [18, 2]).

In this thesis we focus on checkpointing and rollback recovery-based techniques.
These are traditionally associated to the distributed computing research field. The
computation model on which they are based is composed of a set of stateful inde-
pendent processes, each performing its own program. Processes can only interact
between themselves according to the message-passing paradigm. The communica-
tion model influences the general system model and it can be based on reliable
or unreliable (message losing or duplication) protocols. Channels can be FIFO or
they can re-order messages. Essentially computations feature nondeterminism: two
different runs of the same distributed program on the same input data can gener-
ate two different sequences of states. In some cases the nondeterminism is relegated
only to the communication semantics, while in some other cases also local sequential
computations can be nondeterministic.

Checkpointing and rollback recovery techniques essentially consists in period-
ically saving the global state of the computation (checkpointing) on some mem-
orization support. In the case of failure one of such states is restored (rollback)
and its correctness is possibly re-built (recovery) if this has not been done during
checkpointing or rollback. A checkpointing protocol can require the coordination of

6 CHAPTER 1. INTRODUCTION

all application processes (coordinated checkpointing), either by means of a global
synchronization [82] or asynchronously by saving application messages during the
protocol execution [27]. More advanced checkpointing protocols do not require pro-
cess coordination but they record global “correct” states by locally analyzing the
process inter-dependencies, due to communications. The information on process
inter-dependencies is passed between processes as attached to application messages.
It is important to notice that such dependencies are only known at run-time, ac-
cording to the computation model, and they can change between two different runs
of a same program.

Another way of implementing checkpointing without process coordination is to
collect also application messages. These can be collected synchronously with the
computation (pessimistic logging) or asynchronously with it (optimistic logging). In
this former case it is not guaranteed that a correct state different from the initial one
can be restored during rollback (incurring in the domino effect, see Chapter 2). A
further logging technique, causal logging, introduces a trade-off between optimistic
and pessimistic logging. It is based on logging messages (or information about it)
on the volatile memories of multiple processes (e.g. the senders), which avoids both
process blocking during logging operations and the domino effect.

These techniques have been implemented and experimented in several works (e.g.
[22]) and they have been also exploited to support high-performance computing ap-
plications (e.g. MPICH-V [19, 92]). Experimental results show that they perform
well for clusters of workstations [22]. Checkpointing protocols have been also in-
troduced to support large-scale systems [32], Grid Computing applications [12] and
in the case in which Grid resources can be mobile [84]. In some cases, for larger
computing platforms (large-scale architectures, grids, mobile grids) the experiments
are not made on “actual” platforms, but they are emulated on clusters with a rela-
tively small number of nodes [22, 12]. In other cases actual large systems are used
for experiments, but showing an high performance impact [32].

It can be observed that these kinds of techniques, applied to the above described
computation model, are difficult to analyze in principle (that is, statically). A clear
example is the one of MPICH-V [22]: several checkpointing and rollback recovery
protocols are provided to the programmer and previous experimental results can
guide him/her in the selection of the best mechanisms, based on the current appli-
cation features (if available) and configuration of the exploited platform.

According to a critical view of this research field, it can be noticed that it is
lacking of a general methodology. An useful methodology should state, in a formal
and analytical way, given a concrete application (or some abstract description of
it) and a configuration for the targeted computing platform, (i) which is/are the
best protocol(s) to be exploited and (ii) how this/these will impact on the (failure-
free) performance of the computation and on the costs of rollback recovery. In
this thesis we make a step towards the definition of this methodology and we give
an answer to point (ii) of above by introducing cost models for our checkpointing
and rollback recovery techniques. This is possible because we base our approach on

1.2. EXISTING APPROACHES AND CONTRIBUTIONS OF THIS THESIS 7

the state-of-the-art on programming models for parallel computing: we show how
the exploitation of the models of the structured parallelism paradigm allows us to
introduce several checkpointing and rollback recovery protocols specialized w.r.t. the
implemented applications and featuring cost models describing their performance
impact. In this study we have characterized the following points as being the keys to
understanding the advantages of exploiting structured parallelism models to support
fault tolerance:

• The computations that can be expressed with the constructs of structured par-
allelism are essentially deterministic, in the sense that they generally express
the evaluation of some complex functions. In our programming model we com-
pose in a stream-based graph-structure parallel and sequential computations
(or nodes). Nondeterminism happens (or is expressed) in the inter-connection
between nodes, while parallel and sequential computations inside the nodes
are deterministic.

• As stated above, there is a static knowledge of the structure of the interactions
between the parallel entities composing the computations. This allows us to
move at compile-time the majority of the mechanisms to support and analyze
fault tolerance.

The first point is a characterizing factor for the computations which High-Performance
applications express. It also clearly characterizes the differences between our pro-
gramming model and the ones studied in the context of fault tolerance computing
and in the context of the unstructured models of parallel programming. As stated
above, in such models non-determinism is a key factor in the design of fault tolerance
mechanisms. Unlike this approach we highly exploit determinism of computations
inside program nodes (see above) to design fault tolerance techniques.

The second point allows us to introduce the possibility of configuring the run-
time support of computations depending on application- and platform-specific factors
to target optimizations. In particular, we can extend the models describing the
performance behavior of computations to include the overhead induced by fault
tolerance mechanisms. This is the key to control and configure our checkpointing
and rollback recovery protocol.

Operationally, the deterministic semantics of computations, both with the knowl-
edge of the parallel structure of the interactions, allows us to define several check-
pointing and rollback recovery protocols which target the optimization of different pa-
rameters, to meet different kinds of applications and several platform configurations.
For instance (see Section 5.3) we can minimize the failure-free performance induced
by checkpointing activities by making processes take checkpoint independently but
according to a global coordination (without exploiting any message logging tech-
nique). This can be done by exploiting both the properties of above and it comes
at the cost of a more heavyweight rollback recovery protocol. In details, we can
control the performance impact of checkpointing by choosing different checkpointing

8 CHAPTER 1. INTRODUCTION

frequencies to meet an optimization of the rollback depth3. In this way, we also
obtain a control over the recovery time. This is especially useful for cluster-based
platforms for high-performance computing, in which the failure rate is (typically)
low.

In another setting, we can require a minimization of the number of processes
involved in a rollback (rollback width) or the number of discarded checkpoints. For
instance, the protocol presented in 5.4 minimizes the rollback width, according to
the structural shape of the program. This solution is useful for large-scale systems
to limit the synchronizations needed during rollback. The rollback depth can be
optimized by introducing global synchronizations in the protocol presented in 5.3.
This can be viable for small-scale platforms in the case in which failures are frequent.

All these optimizations and the selection of proper solutions can be done stat-
ically, by exploiting the cost models describing the performance impact of check-
pointing on computations and the performance of rollback recovery protocols.

We shortly discuss two examples of structured parallel models showing how they
can be efficiently supported if we consider the information on their structure.

1.2.1 Farm Computations

A farm computation is based on a set of replicated stateless modules which per-
form all the same function(s) (functional replication). The computation consists in
applying that function on a typed input stream of tasks to obtain a typed output
stream of results (one for each task). Task (i.e. function evaluations on each input
data) are independent and are performed in parallel on the set of replicated mod-
ules. Moreover, they are scheduled to the modules according to several well-defined
policies (e.g. on-demand or round-robin).

Structure-Aware Case

For the sake of the discussion, suppose we are in the case in which the application
programmer is provided with an high-level parallel language in which a farm com-
putation can be expressed with a specific construct. Our viewpoint is the one of the
implementer of the support of these constructs, which can be done, for instance, by
exploiting a compiling-based approach. The discussion on fault tolerance techniques
which follows is based on this setting. This is done only in this section of the thesis:
in the next chapters will not exploit this specific compiler-based case, but we study
the models of structured parallel programming independently of their actual realiza-
tion and provisioning to application programmers. In general, to exploit our results,

3In this thesis we use the term “rollback depth” to denote the number of discarded checkpoints
during a rollback. We use it, instead of the more common one “rollback extension”, to distinguish
with the “rollback width” one, which concerns the number of processes involved in a rollback
protocol.

1.2. EXISTING APPROACHES AND CONTRIBUTIONS OF THIS THESIS 9

it is sufficient to have the knowledge of the properties of the models, independently
of the way in which we obtain them.

Farm modules are stateless and the only data of the computation are input tasks
and output results. Thus, it seems a reasonable solution to exploit a message logging
technique: in fact the “history” of the computation is made up of the streams of
input and output data of the farm. We can evaluate the time needed to log a
message onto a stable storage support (which survives module failures) because we
know the types of the elements passed on the input and output streams. This has
to be instantiated to the specific stable storage implementation (e.g. local disks of
computing nodes, or remote specialized supports).

We can also consider the performance of the context surrounding the farm as
the input stream inter-arrival time. Thus, we can exploit the knowledge of the
parallel farm structure to model the impact of message-logging on the computation
performance (actually, existing performance models do not consider fault tolerance
techniques). We can apply this model to the specific application and platform and
we can select the best technique between optimistic and pessimistic logging. That
is, we can choose the ones which best instantiate the trade-off between failure-free
performance and costs of rollback recovery. Then, if we implement input and output
streams according to a specific asynchrony property (see Chapter 6), we can also
place an upper limit on the number of lost messages in the case of failure. This can
be done by asynchronously coordinating the behavior of implementation modules
accessing a stream. This control over the upper bound on lost messages can be
used to control the trade-off between performance and overhead of optimistic and
pessimistic message logging.

Structure-Unaware Case

Now suppose that we are at the level of a generic unstructured parallel programming
model (e.g. MPI). We want to implement a fault tolerance support for a farm
computation implemented on top of this programming model. As a consequence of
the constructs of the model, we are not provided with the structural information as
in the previous case. In fact, we just know that we have to execute a set of processes
which communicate in an arbitrary way. We can select one of the checkpointing and
rollback recovery techniques, but we do not know which one is the best. In fact, the
best methodology is to select it according to the features of the execution platform
we target. This can be done only by analyzing previous experimental results, which
are necessarily related to different applications. Thus, we are not guaranteed of
the results until we perform experiments and each variation of the experimental
conditions is a source of uncertainty. Moreover, this structure-unaware support is
not specialized w.r.t. the specific application (that is, w.r.t. its parallel structure).

The situation is even worst because we do not know which is the useful part of the
state of the processes implementing the computation. We are also forced to insert
checkpoints in casual point in the computation. Unlike the previous case, in which

10 CHAPTER 1. INTRODUCTION

we could save only messages and at proper points of the module computation, we
have to save also the whole process states (data sections, but also the code one and
operating system information). In the case we exploit a message logging technique
we have also to save message payloads and (possibly) dependency information.

In Chapter 4, after describing our specialized techniques for farm computations,
we compare them with the case in which we exploit standard structure-unaware
techniques. The comparison is driven by the main issues described in the next
section.

1.2.2 Data Parallel Computations

In a data parallel computation a same function is applied to each element of a
complex (large) data structure. This state is partitioned over a set of identical
modules, which apply in parallel the function to their local partitions. We consider
the case in which the function application is iterated for a given (possibly unknown)
number of steps. A module can communicate with other modules to obtain their
previous results for its local computation. For instance, we can functionally describe
the k-th application of a given function F on the i-th position of an array A in the
following way:

Ak[i] = F (Ak−1[i], Ak−1[i + 1], Ak−1[i + 2])

In this example, to compute the k-th value of A[i] we need the values of the previous
iteration (k-1) of the same element and the two next ones. If these “neighbor” values
are assigned to another module, a communication is required between the module
evaluating F on A[i] and its neighbor.

The structure of the dependencies between function evaluations characterize the
computation and they can vary at different iterations of the program or they can be
equal for all steps. Indeed, in this thesis we assume that they are completely spec-
ified at compile-time for the whole computation. Moreover, the inter-dependencies
between parallel modules can be modeled (and implemented) as streams of typed
elements. Examples of applications falling in this class are the numerical approxi-
mation of the solutions to a system of differential equations (e.g. according to the
Jacobi method) or the computation of the shortest path tree of a graph. Also compu-
tation and communication patterns, such as reduce operations, are straightforwardly
modeled according to this model.

Structure-Aware Case

For data parallel programs we can introduce several checkpointing and rollback
recovery protocols. In this thesis we analyze three solutions which are representative
of the main classes in which checkpointing and rollback recovery protocols have been
characterized [39].

For the sake of the discussion, similarly to the previous case of the farm compu-
tations, suppose we are implementing a support for an high-level parallel construct

1.2. EXISTING APPROACHES AND CONTRIBUTIONS OF THIS THESIS 11

to express data parallel computations, according to a compiling-based strategy. As
a result of the properties of the data parallel programming model we have a graph
of dependencies between abstract parallel activities (the modules) which, if prop-
erly mapped during compilation, can be used to statically generate a dependency
graph between implementation modules. Notice that this graph must be gener-
ated at run-time in communication-induced-checkpointing protocols, because of the
nature of the computation model. As a consequence of this static knowledge, we
can select different sets of consistent states (possibly according to different consis-
tency properties) and we can automatically insert checkpointing procedures in the
implementation. This can be done to meet different optimizations. Moreover, we
can also limit the asynchrony between implementing modules (which is the differ-
ence between the iterations at which they are executing) by supporting interactions
with an optimized channel implementation which limits the number of sent but yet
unreceived messages.

Structure-Unaware Case

Suppose now that we are provided of a set of processes which implement a spe-
cific data parallel application, but we do not have any structural information. For
instance, we are supporting fault tolerance for a data parallel computation imple-
mented on top of MPI. As the farm case, we have to checkpoint the whole state of
processes and not just the partition of the state assigned to each process. More-
over, we cannot rely on specific patterns of communication between processes and
we have to choose between standard checkpointing and rollback recovery protocols,
which are not specialized for the data parallel case.

For the case of coordinated synchronous checkpointing [82], we can analyze the
cost of a global synchronization but it is difficult to understand the time needed
to perform a global checkpointing of the computation. In the case of asynchronous
coordinated checkpointing (e.g. [27]) we do not know in advance which will be
the amount of messages saved during the checkpointing operations. This variable
depends on the relative speed of processes, which is known only at run-time, and on
structural information, which is unknown in this programming model.

In the case of communication-induced-checkpointing we have to build the pro-
cess inter- dependencies during the execution, and to attach this information on
application messages. The attached information can be, depending on the actual
protocol, very large and induce a degradation of the communication performance.
This highlights the difference with the previous case, in which we can statically in-
troduce checkpointing operations by analyzing the process inter-dependencies. As
a consequence, it is not possible to understand a priori the amount of checkpoints
taken by each process and, as a consequence, the impact on the performance of the
computation.

Suppose now we select a message logging technique. Optimistic and pessimistic
message logging cannot enjoy of the types of the data exchanged between processes,

12 CHAPTER 1. INTRODUCTION

as in the structure-aware case. This cannot be done because MPI channels (as in
the general case of distributed systems) are not typed. As a consequence we cannot
estimate the overhead due to checkpointing and we have to perform experiments to
choose between the pessimistic and optimistic cases. We can just select the best
one depending on the targeted execution platform, avoiding optimizations based on
application knowledge. Causal message logging techniques can help in improving
our support from a performance viewpoint, but it still does not provide any useful
a priori information about the final overheads incurred by the computation.

In Chapter 5 we present our optimized mechanisms, both with their cost models
to describe their performance impact. We compare them with existing protocols
according to the issues described in the next section.

1.2.3 Issues for Fault Tolerance in Structured Parallel Com-
puting Models Considered in this Thesis

As mentioned in the previous subsections, in the thesis we compare classical structure-
unaware fault tolerance techniques with the ones we define according to the following
list of issues:

Analysis of Performance We will show that, according to the hypotheses of
structured parallel programming models, we can derive fault tolerance tech-
niques which allows us to introduce a static definition of the performance
overhead of parallel computations. We will also show that this analysis is not
possible for unstructured models of parallel programming. For this purpose
we provide cost models of the solutions we present and we compare them with
the analysis of standard techniques.

Consistency Definitions We will show that under the hypotheses of structured
parallel programming models we can derive simple consistency properties for
global sets of checkpoints. This is especially important for data parallel pro-
grams, for which the tasks that compose the computation are inter-dependent.
We will also show that more complex definitions are needed for unstructured
models of parallel programming, forcing the definition of more complex and
costly fault tolerance techniques.

Determinism of Computations We will see that under the hypotheses of struc-
tured parallel programming models we can relegate nondeterminism at the
implementation level, by providing program structures to control them (e.g.
on-demand scheduling of tasks of the farm computations). This is not true for
structure-unaware programming models and we will show the consequences on
the fault tolerance protocols. In particular we will show which is the informa-
tion required to implement protocols of the class of communication-induced-
checkpointing (CIC in short), to control the nondeterminism of computations.

1.3. LIST OF CONTRIBUTIONS OF THIS THESIS 13

We consider CIC protocols because they provide the best trade-off between
coordinated and uncoordinated checkpointing protocols.

Modularity and Composability We will see that the modular definition of struc-
tured parallel programs allows us to define fault tolerance techniques and
mechanisms which are themselves modular. We will also show how to compose
them with an optimized message-logging mechanisms. Also this composition
mechanism enjoys the high-level definition of the models of structured paral-
lel programming, in particular by exploiting the static knowledge of the data
types passed between different parallel modules.

Experimental Results A clear comparison between our solutions and the classi-
cal ones should consider experimental cases according to different computing
platforms and applications. In this thesis we theoretically compare our tech-
niques with existing ones whenever it is possible to do it statically. We exploit
the comparison to prove the actual beneficial of our approach for different ap-
plications and computing platforms. We demand to future work experimental
experiences.

1.3 List of Contributions of this Thesis

A detailed list of the contributions of this thesis follow:

• We precisely characterize a programming model that is well-suited to study
the fault tolerance issue for High-Performance applications.

• We introduce a formal tool that allows us to highlight the properties of the
introduced model that can be used to define fault tolerance mechanisms.

• We show how fault tolerance can be derived from such abstract properties for
two main constructs of the structured parallelism describing task and data
parallel computations.

• We extend the cost models of the performance of task and data parallel con-
structs to model the overhead given by fault tolerance mechanisms. We also
show how these models are instantiated to the actual implementations, which
we present at various levels of virtualizations.

• We show how we can derive a study of the performance of task parallel compu-
tations in the presence of failures. The performance analysis of data parallel
programs in presence of failures has not been faced in this thesis: but sev-
eral recent research works introduce techniques to study this issue (see, for
instance, [87]). We demand to future work this research issue.

14 CHAPTER 1. INTRODUCTION

• As a feedback of our study, we characterize the main issues of unstructured
models of parallel computing, and of the models studied in the context of
fault tolerance computing, which introduce complexities in the definition of
fault tolerance supports.

1.4 Outline of the Thesis

The outline of the thesis follows:

• Chapter 2 reviews the fault tolerance mechanisms exploited in the context of
High-Performance parallel and distributed computing. The mechanisms are
presented w.r.t. the class of programming models to which they have been
applied. This allows us to provide a description of the dependencies between
programming model features and fault tolerance logics.

• Chapter 3 introduces the programming model on which we base our study
of fault tolerance, giving details of its characterizing properties. To highlight
such properties, we also describe two main constructs to express task and
data parallelism. For fault tolerance modeling, we introduce a formal tool
inspired from I-Structures[7], which is used to highlight the properties which
are interesting in this context. We apply this tool to the structured parallel
constructs we describe in the model in order to discuss their properties.

• Chapter 4 describes the implementation of the task parallel construct, intro-
ducing fault tolerance mechanisms. The logic of the mechanisms is derived
from the abstract model, and refined and extended with information related
to its implementation. We also show an implementation of the fault tolerance
logic, in a specific case in which task parallelism is mapped onto a distributed
set of processes which communicate through message passing.

• Chapter 5 shows fault tolerance logics and mechanisms, according to the same
methodology of the previous point, for data parallel programs. Also in this
case, we show an implementation of fault tolerance mechanisms in the case
in which the data parallel construct is implemented as a distributed set of
processes which communicate through message passing. We describe three
configurable solutions that can be derived from the properties of the high-
level model, each targeting different optimizations.

• Chapter 6 describes the implementation in a distributed environment of the
stream construct, extended with message logging mechanisms, which we ex-
ploit in the implementation of fault tolerance for task and data parallel con-
structs. It also discusses, in general terms, the overhead impact of message
logging on communication latency and the properties of the implemented pro-
tocol.

1.4. OUTLINE OF THE THESIS 15

• Chapter 7 introduces a statistical model, based on Markov Chains, which
describes the performance impact of failures for the task parallel construct.
The model provides an evaluation that can be proved to be an upper bound
the actual performance behavior of task parallel computations.

• Chapter 8 presents the conclusions of this thesis and describes the future work.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Parallel Programming and Fault
Tolerance

As we highlighted in Chapter 1 High-Performance computing requires a large degree
of computing power, which demand is even increasing as more complex applications
are developed. The natural choice to answer this demand is to build parallel and
distributed platforms with increasing numbers of computational nodes. This trend
has a clear drawback as highlighted by several research works [72]: the failure rate
increases with the number of nodes or processing elements according to an expo-
nential distribution. Several research and industrial efforts have been presented
in the literature to attack and provide solutions to this issue by supporting high-
performance applications with fault tolerance. The main issue in these studies is
to limit the performance overhead due to the fault tolerance supports. Typically,
this impact is shown by means of experimental results of benchmark applications.
In other cases analytical tools are provided in order to study the performance im-
pact before the applications are actually executed. In some cases High-Performance
computing inherits fault tolerance techniques from the research context of fault tol-
erance computing. In some other cases new specialized techniques are introduced.
From the fault tolerance computing literature, parallel computing has exploited: (a)
checkpointing and rollback recovery protocols, (b) techniques based on replication
of modules, and other techniques (e.g. atomic actions). It is worth of notice that
some central issues in the context of fault tolerance computing are only of marginal
interest in High-Performance computing. One of the most clear case is failure detec-
tion in asynchronous systems, which is one of the most studied of the fault tolerance
literature. However, in the context of High-Performance computing this issue is
typically relegated to the lower layers (e.g. to the communication support) and a
very simple failure model is assumed (e.g. the fail-stop failure model [76]).

In this chapter we discuss the fault tolerance techniques exploited in the con-
text of High-Performance computing and we describe the related works presented in
the literature. We are mainly interested in the relationship between fault tolerance
techniques and parallel programming languages and abstractions. We also review a

18 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

system-level fault tolerance technique that exploits a computational model from the
parallel computing research field. The discussion is characterized by the program-
ming model on which the studies are based. We characterize unstructured models
of parallel programming and high-level ones. Typically:

• Unstructured models exploit existing fault tolerance techniques.

• High-level models introduce specialized supports by exploiting some knowl-
edge/assumption given by the model itself.

There are clear and interesting cases in which this classification fails. We will high-
light also such cases. When needed in the description of the related works we shortly
introduce existing fault tolerance techniques and mechanisms.

In the next chapters we will introduce in a formal way some concepts that we
just informally describe here. Moreover, in the last chapters of this thesis we have
inserted ad-hoc sections about related works: these allows us to discuss in a pre-
cise way the differences between our contributions and the ones presented in the
literature.

2.1 Fault Tolerance for Unstructured Models of

Parallel Programming

Unstructured models of parallel computing typically feature a set of processes which
implement a distributed program and that interact by means of message passing.
The main characteristic of these models is that there is not a static knowledge
of the structure of the interactions between processes. Moreover, a process can
send/receive a message to/from another one in every phase of the computation.
Computations can be nondeterministic in the sense that communications can be
performed according to information retrieved externally from the system and/or
to partial results of the computation itself. As a consequence, a same program
executed multiple times can generate different computations. Message passing is
implemented with communication channels linking processes and can be point-to-
point or can involve multiple parties (e.g. multicast communication). The main
techniques introduced for this kind of computation model are checkpointing and
rollback recovery protocols, and replication ones. Below we give an overview of each
technique and we describe some notable research studies exploiting them.

2.1.1 Checkpointing and Rollback Recovery Protocols

Checkpointing and rollback recovery protocols are studied in the context of an ab-
stract computation model, which is similar to the one we described above. Moreover
they target the fail-stop failure model. A computation consists in a set of processes
executing a distributed program, which interact through message passing. Each

2.1. FAULT TOLERANCE FOR UNSTRUCTURED MODELS OF PARALLEL PROGRAMMING19

process is supported by a local volatile1memory. Communication channels can be
reliable or unreliable (by duplicating or losing messages) and can be FIFO or can
re-order messages (in a nondeterministic fashion). Processes can independently ac-
cess an abstraction, called stable storage, onto which they save their local state. The
stable storage, differently from the volatile one, is assumed to survive the failures
modeled in the failure model.

One of the main references in the checkpointing and rollback recovery literature is
[39], which presents a survey and introduces a taxonomy of the related literature. We
exploit the same terminology introduced in this survey. We shortly give a reference
list of terms exploited in this thesis and in the literature:

• Consistent Global State: a global state is a snapshot of the computation. It
is composed of the local state of all processes taken at a given instant of the
computation. A global state is said to be consistent if it can be passed by any
correct computation. That is, as computations are nondeterministic multiple
values for global states can be generated and can be possibly different between
different executions. In the fault tolerance literature several research studies
have introduced properties for global states to ensure their consistency. These
properties are often referred to as consistency properties. In Chapter 3 we
introduce two consistency properties at different virtualization levels, which
we prove to be related between themselves. In [68] it is introduced an elegant
theory that is called zig-zag theory by the shape of the graphical representa-
tion of the consistency property. The zig-zag theory precisely characterizes
necessary and sufficient conditions for global states to be consistent.

• Checkpointing: this denotes an algorithm or a protocol performed by a dis-
tributed set of processes to characterize a snapshot of the computation. The
checkpointing for a global computation is composed of a checkpoint from each
process. The expression “a process takes a checkpoint” means that: (1) the
process characterizes its local state that is significant to build a snapshot and
(2) it saves it in some memorization support (e.g. onto the stable storage). In
the literature several tools have been presented supporting system-level check-
pointing for a single process. Checkpointing of a process state depends on the
definition of the process abstraction. For instance, in off-the-shelf operating
systems checkpointing is complex because information related to processes is
not included in the same unit/space but it is sub-divided in multiple parts (of-
ten corresponding to user and system spaces) [74]. This issue can be solved by
re-defining the process abstraction in a proper way [37]. A modular approach
to the previous ones consists in characterizing checkpointing at multiple levels
of abstractions. In this way complex tasks in checkpointing can be made sim-
ple by exploiting the information on the application structure and/or logics.

1In the context of fault tolerance computing the adjective volatile associated to a memorization
support denotes that, in the case of failure, the content of the support is lost.

20 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

In this thesis we exploit this approach, and we assume to be supported of
proper process abstractions (e.g. [37]).

• Rollback: this denotes an algorithm or a protocol which is performed by one
or more processes in the case of failure(s). It consists in retrieving a passed
state of the computation (the rollback target) previously saved on some mem-
orization support. A rollback protocol can involve all processes or a subset of
them. Rollback targets can be also inconsistent or can generate inconsisten-
cies in the global state of the computation. For instance, this can happen if
the checkpointing algorithm builds inconsistent global states. In some cases
a rollback protocol iterates the retrieving of older states until consistency for
the global state is re-built. The domino effect is the case in which the iteration
lasts until the beginning of the computation.

• Recovery: this denotes an algorithm or a protocol performed by a set of pro-
cesses after a rollback. It consists in re-executing the lost computation after
the failure and the rollback. In the case in which the rollback protocol builds
an inconsistent state (see above), it is task of the recovery one to re-build its
consistency.

• Message logging: this denotes the actions performed by a process to char-
acterize the information related to a message sending or receipt event. The
information can include its content (the payload), its source or destination pro-
cess and the ordering of its sending or reception events w.r.t. other events (e.g.
other communications). In the terminology of the rollback recovery literature
this information is called message determinant. The purpose of characterizing
message determinants is to save them on stable storage. They are used during
rollback recovery to re-build consistency for global states.

We give a description of the taxonomy exploited in the context of fault tolerance
computing, presented in [39]. Checkpointing protocols can be characterized in three
main classes each one supported itself by a class of rollback recovery protocols:

• Uncoordinated checkpointing. The processes of the system perform check-
pointing operations without any interactions among themselves. In the case
of rollback recovery, the uncoordination of local checkpointing procedures can
lead to inconsistencies between process states in recovery lines (i.e. set includ-
ing a checkpoint from each process). If some property about the determinism
of the computation can be assumed (piecewise determinism, PWD in short),
uncoordinated checkpointing is extended with message logging (see below). In
this setting the recovery protocol re-builds consistency of global states after
rollback.

• Coordinated checkpointing. The checkpointing procedures performed on
each process are globally coordinated. For instance, a global synchronization

2.1. FAULT TOLERANCE FOR UNSTRUCTURED MODELS OF PARALLEL PROGRAMMING21

of processes can be exploited to implement a coordinated checkpointing pro-
tocol. The synchronization allows processes to collect local checkpoints that
are consistent between themselves. Existing protocols either block the com-
putation during the checkpointing operation or operate in concurrency with
it.

• Communication-Induced-Checkpointing. Protocols in this class repre-
sent a trade-off between: (a) the cost of coordinating processes in coordinated
checkpointing and (b) the building of inconsistent states of uncoordinated
checkpointing. Fundamentally, processes can take consistent checkpoints be-
tween themselves by analyzing process inter-dependencies given by message ex-
changing. The knowledge of process inter-dependencies is exchanged attached
to application messages themselves (piggybacked in the rollback recovery ter-
minology). Typically processes exchange graphs of dependencies, which model
the dynamic relations between their execution and message exchanging events.
The analysis of a dependency graph received as piggybacked to an application
message can induce a forced checkpoint on a process. For this motivation
Communication-Induced-Checkpointing protocols require that processes can
perform checkpointing at any instants of the computation. This requirement
is not always simple or viable to satisfy.

As stated above, uncoordinated checkpointing protocols can be supported with mes-
sage logging. In this way the recovery protocol can re-build consistency for global
states. Several message logging techniques have been introduced in the literature.
We shortly review the taxonomy given in [39]:

• Messages are logged synchronously w.r.t. their receiving operation. Before a
process receives a message its determinant is logged to stable storage. It is
straightforward to notice that, for this kind of protocols, we pay a stable stor-
age access for each communication operation. This case is called pessimistic
message logging because it assumes that failures are frequent. As a conse-
quence, the high overhead incurred because of message logging is justified by
the high failure frequency.

• Messages are logged asynchronously w.r.t. the receiving operations. A received
message can be used also if its determinant is not saved on stable storage. In
the case of failure of the sender or the receiver of an unlogged and received
message we can obtain inconsistent states. As a consequence, the rollback
recovery protocol must deal with this situation. This kind of protocols is
called optimistic message logging because it is based on the “optimistic”
assumption that failures are infrequent. This motivates the possible creation
of inconsistent states and the higher costs of recovery protocols.

• Message contents are logged asynchronously w.r.t. their receiving operation.
Their determinants include the functional dependency they induced, between

22 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

the sending and the receiving processes. The determinants are logged syn-
chronously to stable storage, w.r.t. the receive operations. In the case of
failure, the logged functional dependencies are used in the recovery procedure
to reproduce lost messages, which content was not yet saved on stable stor-
age. This case is called causal message logging, as it exploits the causal (or
functional) dependencies between processes.

For message logging techniques to be used in a correct way a determinism prop-
erty for computations must be assumed: message exchanging is the only source of
nondeterminism. In other terms a part of sequential computation performed by a
process is completely characterized from the messages received before this part.

From this review of checkpointing and rollback recovery techniques it should be
clear that one of the main disadvantages of supporting an unstructured model of
parallel programming is that the fault tolerance support must deal with unknown
patterns of interactions between processes.

We now review some notable works presented in literature on parallel comput-
ing exploiting checkpointing and rollback recovery protocols. The presented works
represent a cross section of the contributions given in this context, which range
from the most lightweight support (failure detection and process restart) to sup-
ports that are transparent to the programmer, or based on some knowledge about
the parallel structure of programs. These works are based on the Message Passing
Interface (MPI)[44], which is implemented to support fault-tolerant computations.
In MPI a computation consists in a set of processes interacting through message
passing. There is no shared memory abstraction to support processes and programs
are typically expressed in the Single Program Multiple Data (SPMD) style.

FT-MPI [42] provides a minimal support to fault tolerance for parallel appli-
cations (failure detection and process restart). It extends the MPI semantics with
concepts related to failures. At the linguistic level the syntactic extensions allow the
programmer to specify:

• The behavior of the run-time support in the case a failure is detected. In
general, when a failure affect the computation the communication support
stops to work. The programmer can specify if the failed processes should be
restarted and which is the behavior of survived ones. It can also specify if
the communication support should be restarted and which is its configuration
after restart.

• Procedures performed in the case of failure detection. These allow the pro-
grammer to implement the fault tolerance logics at the application-level. For
this reason the support provided by FT-MPI is said to be semi-transparent.

At the level of implementation FT-MPI provides a failure detection sub-system,
together with process restart and run-time recovering. The run-time recovering
algorithm involves all processes of the application and it is leader-based [41]. Its

2.1. FAULT TOLERANCE FOR UNSTRUCTURED MODELS OF PARALLEL PROGRAMMING23

behavior can be configured by the programmer by exploiting the support described
above. At the end of the recovery algorithm the user-implemented procedures (if
specified) are called back from the support. Because of the small support it pro-
vides FT-MPI has been exploited to study several fault tolerance techniques at the
application level. For instance, [28] describes a fault tolerance support for a specific
class of parallel applications. It shows several strategies of implementation of stable
storage supports and their properties (e.g. failure resiliency, and costs).

The MPICH-V project provides fully transparent fault tolerance to MPI appli-
cations. Thus, it does not require an extension of the semantics of MPI. The project
provides several checkpointing and rollback recovery protocols which are inherited
from the fault tolerance literature. They range from a coordinated checkpointing
protocol to an uncoordinated checkpointing one associated with message logging
protocols. An assumption to enable fault tolerance transparency is made: the only
way in which processes can interact is through message passing. This is not required
to the FT-MPI programs because the implementation of the application-level fault
tolerance logic is relegated to the user. The checkpointing of process states is auto-
matically performed by the run-time by exploiting an existing checkpointing library
[59]. The protocols available to the programmers are:

• Uncoordinated checkpointing associated to a pessimistic message logging pro-
tocol [19]. The implementation exploits an abstraction calledchannel mem-
ories associated to each MPI process. A channel memory is responsible of
storing all the messages received by a process onto a stable storage. Perfor-
mance results show that this approach is effective only in the case of high node
volatility[20].

• An optimization of the previous protocol exploiting sender-based message log-
ging [20]. In sender-based message logging the determinant of messages is
saved to the volatile memory of the sender process. Experimental results show
that this approach performs much more better for general configurations of the
execution environment. However, for some applications high communication
latencies were monitored due to message logging.

• Uncoordinated checkpointing associated with causal message logging protocol
to avoid the high latencies incurred by the previous protocol. As shown by
experimental results the drawback of this approach resides in an higher re-
execution time w.r.t. the previous cases. [24].

• Also a coordinated checkpointing protocol is supported to be compared with
the previous ones from a quantitative viewpoint.

Some experimental results, showing the performance of the support without per-
forming any checkpointing protocol, and the performance of various causal logging
protocols are presented in [23]. In general the results show that some of the pro-
tocols provide better performances, depending on the failure rate, on the kind of

24 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

application and on the configuration of the execution environment. No support is
provided to dynamically change the protocol used to obtain fault tolerance. A prob-
lem associated with the approach of MPICH-V is that recovery algorithms are not
configurable. It is not possible to introduce optimizations based on the knowledge
of the parallel structure of programs: the only choice that the programmer can take
is related to the rollback/recovery algorithm to be used.

The MPI/FT [11, 10] approach represents the link between unstructured model
of parallel computing and high-level ones. It is based on the intuition that fault
tolerance strategies can be easily introduced when there is some knowledge of the
structure of the computation. The fault tolerance support is restricted to applica-
tion programmed as master-slave or data parallel expressed in the Bulk-Synchronous
Model [80] (BSP). The implementation is based on a coordinator that monitors the
application, logs the exchanged messages, restarts failed process and implements all
the control needed for redundancy implementation (e.g. in master-slave computa-
tions it controls the task redundancy). The coordinator is the more critical point
w.r.t. reliability: for this reason it can be replicated. The fault tolerance support
for data parallel programs is based on the BSP model of implementation: the pro-
cesses take coordinated and synchronized checkpoints at the beginning of each loop
iteration. Experiments show that the drawback of this approach resides in the poor
scalability that the coordinator can support (order of 10 computational nodes).

Other fault-tolerant implementations of MPI provides supports similar to the
ones of the above projects. LAM/MPI [92] provides a coordinated-checkpointing
support to applications. The starfish project [1] provides both coordinated and un-
coordinated checkpointing. FTC-Charm++[93] provides a support based on coordi-
nated checkpointing and rollback recovery performed by all processes implementing
the applications. A notable work on MPI has been developed in the context of the
LA-MPI project [48]: failures addressed are related to the network, instead of the
computational nodes. LA-MPI replaces the TCP/IP protocol with a specialized
one, which includes a fault tolerance support for communications and that targets
high-performance networks, which are typically exploited as interconnection facility
of massively parallel systems.

2.1.2 Replication Techniques

In replication techniques processes are typically characterized in servers and clients.
Server processes provide a set of services that can be invoked as remote procedures.
Fault tolerance is achieved by replicating the processes implementing servers. The
support to the management of replicated processes can exploit group membership
services [29] and/or group communication primitives [36] (see below). In [51] two
main replication schemes are characterized and related to the mechanisms needed
to implement them:

Primary/Backup one of the replicas of a process (the primary) receives all the

2.1. FAULT TOLERANCE FOR UNSTRUCTURED MODELS OF PARALLEL PROGRAMMING25

requests from the clients. For each request it forwards the input data to all
other replicas (the backups). Next, all replicas (both primary and backups)
perform the same request in parallel. When the primary terminates to perform
the request it waits for all other replicas to acknowledge their termination and
it returns the results to the client [25]. The failure of a backup does not require
a special support: the primary replica stops to forward requests to it. Some
additional support is needed to survive the primary failure: one of the backups
is elected as new primary replica. In the case of failure during the service of a
request the client must re-send its request. The support needed to implement
the leader elections is traditionally encapsulated in a group membership pro-
tocol (see below). Fundamentally, it is required to all replicas to have the same
view of the failed and survived processes. The group membership protocol is
included in the communication support of replicas.

Active all replicas are identical and perform the same requests at the same time.
The clients issue their requests to the whole set of replicas and receive an
identical answer from all of them. No specific support is required in the case
of failure of replicas: the clients avoid to send their request to failed replicas.
In the active replication scheme the replicas of a same process are required to
behave deterministically w.r.t. each others. This can be obtained by making
them perform the very same sequence of requests. Thus requests incoming
from different clients must be totally ordered on the replicas. This behavior is
traditionally encapsulated in a communication primitive, which is called total
ordering broadcast (see below). To implement determinism it is also required
to replica to perform deterministic computations w.r.t. each others. For this
reason replicas are described as state machines [77].

In the literature other techniques have been introduced as hybrids between the
primary/backup and active ones. The semi-active replication technique [71] is based
on the same interaction scheme of the active replication. The nondeterministic part
of the computation is performed by a single replica. The information related to this
part of the computation is periodically propagated to other replicas. These ones
perform only the deterministic part of the computation. Semi-active replication is
based on more relaxed assumptions related to process determinism w.r.t. the case
of active replication. This is the main motivation behind its introduction. In the
semi-passive replication technique [35] all replicas receive the requests from clients
but only one of them actually performs the computation in absence of failures. Also
in this case failure resiliency is supported with checkpointing of the actually active
replica.

26 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

2.1.3 Group Membership Services and Group Communica-
tion Primitives

We briefly review two main research fields in the context of fault tolerance computing
that have been exploited to support replication techniques.

A group membership service is a mechanism that allows a set of processes be-
longing to a same logical group (e.g. a set of replicas) to interact between themselves
in a correct way. Each interaction can involve multiple parties and it is required
that all processes have the same knowledge of the participants of the group (in the
fault tolerance terminology this is called the same view). The uniform vision of the
participants is made difficult in the case of failures if failure detection is subject
to some kind of asynchrony (see [26]). Sources of asynchrony characterized in the
context of fault tolerance computing are:

• Asynchrony of process computations: in general it cannot be assumed which is
the time needed for a process to perform a part of its computation. Moreover,
it is not possible to relate the relative speeds of different processes during the
computation.

• Asynchrony of communications: processes cannot rely on any timing assump-
tions about the latency of communications.

Group communication primitives [36] allow a set of processes to communicate
between themselves. A typical case is that of interactions involving multiple pro-
ducers and/or consumers. The primitives are characterized w.r.t. their properties.
A partial list of properties that can be provided follows:

Agreement If a process receives a message, then all other processes eventually
receive the same message. This property is said to be uniform if it applies
both to failed and survived processes.

Total Ordering Suppose that multiple clients perform multiple requests to the
same set of receivers. The communications are said to be totally ordered if
the ordering of different client requests to receivers is equal for all recipients.
The uniformity feature is the same of above. Uniform total ordering is a
critical operation also for data base management systems to implement atomic
commitment at the end of an atomic action (see Section 2.2.3 below).

Causal Ordering It is defined exploiting a transitive ordering relation between
the nondeterministic events in a distributed system (see [57]). In this order-
ing of events a send operation precedes the corresponding receive one. As
processes are assumed to be internally sequential, successive operations on
a same process are trivially ordered. Causal ordered communications ensure
that communication orderings reflect the ordering of events: if the sending
operation for a message (to multiple recipients) causally precedes the sending
of another message then they are accordingly ordered on the receivers.

2.1. FAULT TOLERANCE FOR UNSTRUCTURED MODELS OF PARALLEL PROGRAMMING27

Ensuring these properties is trivial for point-to-point communications, whereas it is
an issue for multiple processes if the asynchrony issues described above arise. The
relationship between the synchrony assumptions for a system and the possibility to
implement the above mechanisms is discussed in [38].

It is straightforward to notice that group membership services and group com-
munication primitives are strictly related between each others. For instance, an
algorithm implementing total ordered multicast can be exploited to implement a
group membership service. The reduction is possible because the problems at the
core of both mechanisms can be reduced to the (solution of the) consensus prob-
lem. In the fault tolerance literature this problem has been chosen to characterize
several research issues. For instance, an earlier work state that it is impossible to
solve consensus in totally asynchronous systems in spite of even a single failure [43].
This problem is partially solved by introducing failure detection systems with some
weak property [26], which extend the system model with some kinds of synchrony
properties.

2.1.4 Distributed Objects and Advanced Techniques

Replication techniques have been also employed to support fault tolerance for more
abstract programming models like multi-agent systems and distributed objects. In
these models there is no knowledge of the structure of interactions between dis-
tributed/parallel entities and local computations can be nondeterministic. For this
reason, we review these contributions in this section.

In the context of a multi-agent system (see [62]) standard replication techniques
are introduced. Also several hybrids of the above techniques have been provided
to support agent replication. In addition it is possible to organize a same group
of replicas according to different schemes (e.g. active and semi-passive) which are
applied at the same time (i.e. to replicas of a same agent). The choice on the
exploited technique can be done to optimize a criticity factor, which describes the
resiliency to faults of the system of replicas.

In the context of distributed objects several CORBA implementations exploit
replication techniques to implement the fault tolerant CORBA specifications [69].
As services are replicated, a single request consists in a set of replicated invocations.
The main issue faced in these studies is the way in which to handle these replicated
invocations. The solutions can be characterized according to the way in which the
management of this handling is introduced in the CORBA architecture:

• Integrative: the Object Request Broker (ORB) is modified to provide specific
mechanisms for managing requests issued to replicated objects.

• Interception-based: invocations of clients to the ORB are captured externally
to it. Requests are mapped in calls to a group communication library if a
replicated service is invoked.

28 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

• Service-based: a set of CORBA objects implement a service for managing the
replication of application-defined objects.

The Eternal system [66] belongs to the class of interception-based implementations.
It provides a support for active and passives replication schemes. Some additional
support is provided for checking the possibility of nondeterministic actions in the im-
plementation of objects. The implementation of replicated invocations exploits the
Totem [65] system that provides group communication primitives with ordering con-
straints. The DOORS project [67] provides an implementation of the fault tolerance
CORBA specifications following the service-based strategy. Two main components
are provided for applications: a replication manager, which provides active and pas-
sive schemes, and a failure detector system. AQuA [55] is a framework belonging to
the class of interception-based strategies.

The Co-Replication technique [14] applies to a more abstract level of descrip-
tion of the computation (w.r.t. the process level). It represents the connection link
between unstructured models of parallel programming and high-level ones in the
context of replication. The computation is composed of a set of stateful modules
that are replicated. Each module deterministically modifies its local state during
the computation. The Co-Replication technique is introduced by observing that in
classical replication techniques all replicas of a same process perform the very same
computation, i.e. they simulate in parallel a sequential computation. Unlike this be-
havior co-replicated modules perform the same program on different input data, i.e.
they perform different computations. As a consequence the local state of each replica
assumes different values. To survive failures the co-replicas periodically exchange
information related to their local state, in a way that the contributions to the whole
computation of each replica is disseminated on all other replicas. Operationally
when a replica receives the local state of another replica it merges up its state with
the received one. To support this kind of information sharing co-replicated modules
are required to perform a computation that, at some abstraction level, can be mod-
eled as a Complete Partial Ordering (CPO in short). The implementation of state
merging exploits the CPO definition of the local state of replicas. Co-Replication
has been proved to be well-suited to support the master-slave strategy. It can be
also applied to data parallel computations.

2.2 Fault Tolerance for High-Level Models of Par-

allel Programming

High-level programming models do not expose the process level directly to the pro-
grammer, but they provide abstractions to express parallel and distributed compu-
tations. In some cases, programs are defined as a set of inter-dependent tasks (or
functions) to be performed on some input provided at run-time. Task dependencies
can be expressed as direct acyclic graphs (DAG in short) [78], data-flow graphs [2], or

2.2. FAULT TOLERANCE FOR HIGH-LEVEL MODELS OF PARALLEL PROGRAMMING29

inter-dependent functions [18]. The implementation is typically based on a master-
slave strategy or on a set of identical executors. For instance, in [2] a data-flow graph
is encapsulated in a single function and replicated on a set of independent slave pro-
cesses. The master is responsible of providing input data to slaves. Similarly, [78]
implements the task inter-dependencies on a (logically) centralized scheduler, which
assign works to a set of identical executors. In [18] a set of parallel workers ex-
change tasks according to the dependencies between the functions in evaluation. In
some other cases the programmer is provided with constructs expressing well-known
parallel structures (e.g. skeletons) for which the interactions between the parallel
activities follow some known pattern. In [31] it is presented a set of library functions
expressing skeletons as extension of the Message Passing Interface. In [56] skeleton
constructs are provided as library functions for C/C++ programs. A different ap-
proach based on a coordination language is described in [89]. The implementation
of this kind of models is not fixed (e.g. based on master-slave) but it is ad-hoc w.r.t.
the parallel structure.

2.2.1 Fault Tolerance in Task Parallelism

We review the fault tolerance support provided by high-level models of parallel
programming. In general fault tolerance is achieved by exploiting the functional
replication expressed at some level of virtualization (e.g. implementation or pro-
gramming model levels).

Cilk [18] extends the C language with abstractions to express parallel procedures
implemented with multiple threads. Programs are represented as nested functions
and parallelism is achieved by parallelizing the evaluation of functions and sub-
functions on multiple identical workers. In practice, the programmer defines a set
of threads which perform subparts of the computation and that can spawn new
threads, as sub-procedures. Unlike sub-procedure calls, spawned threads can be
executed in parallel with their caller. In [18] it is presented an example of Cilk
program computing Fibonacci numbers according to a recursive style. The Cilk
control-flow is implemented by means of a task dissemination technique called work
stealing, which also implements load balancing between workers. Fault tolerance
is based on the parallel structure of the implementation: in the case of failure of
one of the workers, the sub-part of the computation it was evaluating is assigned to
another worker. The failure of a worker that previously scheduled sub-computations
to other workers is obtained by checkpointing its local state and by recovering it in
the case of failure.

Satin [91] enjoys the programming model and implementation of Cilk, but it tar-
gets Grid environments. It aims at providing the programmer with a construct to
express Divide-and-Conquer computations. The computation consists in performing

30 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

a set of interdependent tasks organized in a dynamically generated tree structure.
A Satin program includes a set of Java methods, which the programmer specify as
executable in parallel and which are opportunistically performed in parallel by the
run-time system. The programming style is similar to the Cilk one, except that it
extends an objective programming language, instead of an imperative one. In [88] it
is shown a simple program computing the Fibonacci numbers according to a recur-
sive style. The implementation of Satin is based on a set of identical workers, and
shares the work stealing techniques of Cilk. Fault tolerance is achieved by exploiting
a global result table replicated over workers. The result table is locally updated by
each worker and kept consistent in an asynchronous fashion between them. In the
case of failure and recovery of a worker the result table is analyzed to schedule the
lost tasks. Clearly, as result tables on different workers can be inconsistent w.r.t.
each others tasks execution can be replicated.

Muskel As described above, a muskel [2] program is defined as a data-flow graph.
As example, in Figure 2.1 we show the graph part of a muskel program that specifies
the graph of the program. Two farms, defined at lines 1 and 3, are composed in a

1 Compute worker1 = new Inc();

2 Compute stage1 = new Farm(worker1);

3 Compute worker2 = new Inc();

4 Compute stage2 = new Farm(worker2);

5 Compute main = new Pipeline(stage1,stage2);

Figure 2.1: Example of the definition of the macro data-flow graph in a
muskel program.

pipeline of two stages, defined at line 5. The implementation of muskel is based on
a master-slave scheme and it maps a whole graph into a same function replicated on
a set of identical slaves. The master is responsible of assigning tasks and obtaining
results from slaves. The kinds of failures that are supported are restricted to (the
nodes executing) slave processes. The master process is assumed to be executed on
some robust node or implemented in some failure-resiliency fashion (e.g. replicated
over several nodes). The failure of a slave induce the loss of the partial computation
of the task it was performing. The fault tolerance strategy is based on re-scheduling
the tasks that were performed by failed slaves. Failure detection is based on the one
provided by the communication support which links the master to the slaves.

Charlotte [9] provides the programmer with constructs to express parallel and
sequential routines. Parallel routines are expressed as blocks delimited by two
Charlotte primitives: ParBegin and ParEnd. The commands inside parallel blocks

2.2. FAULT TOLERANCE FOR HIGH-LEVEL MODELS OF PARALLEL PROGRAMMING31

spawn parallel computations. The implementation of Charlotte exploits a master-
slave strategy. Fault tolerance is achieved by task re-scheduling in the case of slave
failure, while the master failure is not addressed.

Master-Worker [47] expose to the programmer constructs to express a master-
slave computations. Fault tolerance of slave processes is implemented with task
re-scheduling by the master. The programmer is also provided with checkpointing
facilities that can be inserted in the master code to support master fault tolerance.

Comparison of Fault Tolerance Techniques for Task Parallelism As it
should be clear from this review, fault tolerance is based on the definition of a
computational unit (the task) and on their replicated execution. The replication can
be both a kind of hot redundancy and cold redundancy. In the former case a same
task can be performed in parallel on different executors. In the latter one a task
execution is replicated only if it fails. The main contribution of these kind of projects
resides in the intuition that the replication of tasks can be managed in a proper way
if there is a global identification of tasks. This point is clear in [91] in which the
fault tolerance support exploits a replicated result table.

2.2.2 Specializing Checkpointing and Rollback Recovery for
High-Level Models

Checkpointing and rollback recovery techniques have been also used to support fault
tolerance to high-level models of parallel programming. The task of defining the
mechanisms and the protocols implementing the support is made easier by exploiting
the assumptions on which the programming model is based. In this section we review
a notable contribution in the context of High-Performance computing. We describe
in details this contribution because it is representative of a class of complex research
studies that highlight the relationships between abstraction properties and fault
tolerance mechanisms.

The ProActive environment [12] features a well-defined programming and com-
putation model based on a process abstraction called activity. Fundamentally, an
activity is made up of a main thread and an active object along with a local private
state. An active object is a unit of computation that provides methods that can
be remotely invoked with explicit requests. Activities can send requests to active
objects and they can possibly receive back replies. Multiple requests to a same ac-
tive object are sequentialized in a local queue w.r.t. their arrival order. When an
activity requests for a method execution on an active object, if there is a result, its
actual value is replaced by a placeholder of it (the future). The placeholder will be
replaced by the result value when it is sent back from the active object.

As stated above, the fault tolerance support of ProActive is based on checkpoint-
ing and rollback recovery, which is defined by exploiting properties of the computa-

32 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

tion model. These properties define a relation between the ordering of communica-
tion events and the computation of active objects. To support fault tolerance two
properties are derived:

• The ordering of requests made to an active object does not influence the general
semantics of the computation.

• An active object computation can be fully characterized by the ordering of
requests it receives. To characterize a request it is sufficient to use the identity
its sender.

The implemented checkpointing protocol belongs to the class of Communication-
Induced-Checkpointing (or CIC, see Section 2.1.1), which require processes the abil-
ity of taking checkpoints at any instants of the computation. Active objects cannot
take a checkpoint at any instants of the execution because their state is not sta-
ble while serving a request. As a consequence the CIC protocol builds inconsistent
recovery lines (see Chapter 3) because some checkpoints can include orphan mes-
sages. Application messages are piggybacked with checkpointing indexes. Local
checkpoints are labeled with progressive indexes: the triggering of a checkpointing
operation on an active object is given by the receiving of a higher checkpoint index
on an application message. To support correct recovery to consistent states after a
failure a message logging technique is introduced. The logging protocol is defined as
following: suppose that an activity requests an active object to execute a method.
When the object receives the request it synchronously saves on stable storage its
determinant (i.e. the identity of the requesting activity). In the case of failure all
activities rollback to a same checkpointing line, i.e. they all select the checkpoint
labeled with the same index. Next each active object retrieves from stable storage
the identity list of other activities that previously sent a request. Active objects
recover to a consistent state by serving requests according to the recovered list. In
fact, the same ordering of events is enforced in the re-computation.

As a rationale of this approach notice that the computation model of ProActive
does not include any structuring of the interactions between distributed activities.
This induces the exploitation of existing checkpointing and rollback recovery tech-
niques, without giving any chances of optimizations to the programmers. However,
the high-level model of computation is used to define in a simple way a checkpointing
protocol and to prove its correctness in an elegant fashion.

2.2.3 Expressing Parallel Computations as Atomic Actions

An atomic action is a portion of a (possibly parallel) program which consists in a
set of operations that modify the state of the computation. The operations included
in an atomic action are performed in an indivisible way, i.e. the operations are
performed “all or none”. The consequences of this property, called recoverability,
are that, if one or more failures occur during the execution of the operations in an

2.2. FAULT TOLERANCE FOR HIGH-LEVEL MODELS OF PARALLEL PROGRAMMING33

action, the value assumed by the state before the first operation(s) of the action
is restored. Otherwise, if no failures occur, all performed state modifications are
made persistent (i.e. successive failures cannot affect them). Another property of
atomic actions, which is more interesting from the concurrency control viewpoint, is
their serializability : the execution of a set of atomic actions, which are concurrently
executed on the same state, semantically corresponds to an execution performed
according to some serial scheduling of them. In the description we give here we
will focus only on the recoverability property of atomic actions because it is strictly
related to the fault tolerance context.

We are interested in the case in which the operations of an atomic action are
performed on different processes, which are possibly executed on different compu-
tational resources. In this case the atomic action is said to be concurrent. From
the syntactic viewpoint programmers are (at least) provided with two primitives to
define an atomic action:

• A primitive to define the beginning of an atomic action, which ensures that
the state of the computation can be recovered at the end of the action.

• A primitive to terminate the execution of an atomic action, which ensures that
the state modifications have been made persistent to failures (i.e. successive
failures will not induce the loss of information).

In the context of data base management systems several research issue have been
faced: [13] reviews some earlier research issues and the provided solutions, which
are still the basis of current solutions.

Atomic actions are the base mechanism to support fault tolerance in the Pact
parallel programming environment [60]. In Pact the parallelism at the level of the
programming model is based on a task parallelization scheme over a shared memory
abstraction. An action is defined as a set of tasks and it is started and terminated by
two specific primitives of the language. These primitives implements the atomicity
of the actions inside the parallel construct that modify shared variables. The imple-
mentation is based on a set of identical parallel processes and it exploits a two-phase
commit protocol [49] to ensure the correct termination of actions. To support fast
recovery of long-running atomics, the programmer can also exploit a checkpointing
facility for parallel executors. Also in [81] atomic actions are exploited to support
task parallel computations.

2.2.4 System-Level Fault Tolerance Exploiting High-Level
Models of Parallel Programming

In the previous sections we have focused on fault tolerance supports to parallel and
distributed programming. Fault tolerance have been defined also at the level of
operating systems for massively parallel architectures, in a way in which several
mechanisms are transparently provided to processes. In this section we highlight a

34 CHAPTER 2. PARALLEL PROGRAMMING AND FAULT TOLERANCE

contribution in this field that is based on a high-level model of computation, which
has been developed in the context of parallel programming.

The intuition at the base of this contribution is that the system software of
a (massively) parallel system is actually a parallel application like any other user
applications. An example of a system software task that is a parallel computation
is the scheduling of processes to multiple processors. In this approach existing
solutions to parallel programming are also applied to system tasks. In [46] the Bulk
Synchronous Model (BSP in short) is chosen as computation model to implement
a minimal set of system primitives. In a BSP [80] computation parallel activities
proceed in synchronized supersteps each one including:

• A computation phase, in which the parallel activities locally perform the com-
putation. In this model interactions are assumed to be poor w.r.t. computa-
tion operations and are delayed to the communication phase.

• A communication phase, in which all pending interactions are performed.

In the context of this kind of operating system all activities proceed according to
a global synchronization signal, which is issued every amount of microseconds. All
communication operations are delayed until the next signal is received. After the
signal is issued all pending communications are performed. Next a new superstep is
performed.

The characterization of the computation in supersteps gives some interesting
properties that can be exploited to efficiently support communications and high-
level tasks. We are mainly interested in the determinism that this model induces on
the computations. In general, communications can be characterized w.r.t. the source
of nondeterminism for computations, which induce the creation of inconsistencies in
the case of failure and rollback (see Section 2.1.1). By forcing communications to be
performed in a BSP-like behavior the state of the computation can be characterized
w.r.t. communication operations. Actually, after a synchronization, all pending
communications are performed, and the applications (both user and system ones) are
in a consistent state (orphan message avoidance, see Section 3). As a consequence of
this consistency property it is simpler to define coordinated checkpointing protocols
than in totally asynchronous and nondeterministic computational models.

In the context of unstructured models of parallel computing the BSP model
has been exploited to implement the MPI interface [70]. Applications exploiting
the communication support of this implementation of MPI enjoy the BSP model of
computation. Thus checkpointing protocols can be easily defined in a coordinated,
efficient and user-transparent fashion.

Chapter 3

A Structured Approach to Fault
Tolerance

In this chapter we introduce the programming model on which we based our study
of fault tolerance for High-Performance computing. We give a detailed description
of two constructs, expressing two main classes of parallel computations, namely task
and data parallel. In this thesis we fully develop fault tolerance aspects for these
constructs to show our research methodology. Next, we introduce a formal tool to
highlight the properties of the model that are interesting for reasoning about fault
tolerance. We show how to apply this to these two highlighted classes of parallel
programs.

3.1 Programming Model

The structured parallelism programming model is based on high-level constructs
that express specific classes of parallel computations. Each class features a specific
structure (or pattern of structures) of the interactions between the parallel entities
defining the computation. We name these kinds of computations structured parallel
computations (for brevity, we sometimes omit the “parallel” adjective), or structured
constructs, in the case in which we are referring to their linguistic shape. Instances
of structured computations are algorithmic skeletons [31], that express well-known
parallel computations. Skeletons have been defined because:

• They can be specialized to implement specific parallel algorithms. The appli-
cation programmer is provided with constructs expressing parallel structures
that must be completed by specifying which are the functions implementing
the wanted behavior. Thus, the programmer tasks are: (1) to choose a proper
parallel structure for its application, or part of it; (2) to specify the actual
semantics of the computation, by providing sequential functions that imple-
ment the application. Syntactically, a structured computation can be seen as a

36 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

higher-order general function [30] to which the application programmer passes
the user-defined functions which specialize its behavior.

• They relieve the programmer of dealing with implementation and architectural
specific issues. For instance, the programmer is unaware of the mechanisms
used to implement the interactions between the parallel activities of the ap-
plication (e.g. message-passing, or shared memory). These tasks, which are
highly error-prone, are delegated to the programmer of the support to the
structured construct.

• Each of them has an associated cost model, describing their performance be-
havior w.r.t. the user provided functions and the platform on which they
are executed. These models, usually called performance models, have been
employed to support skeletons with adaptive behaviors [90], and to ensure
performance portability [89].

From the expressiveness viewpoint, the structured parallel computations are more
general constructs w.r.t. skeletons, since a single structured construct can express
a class of skeletons. We will see below two examples of structured computations
which express two different classes of algorithmic skeletons.

To overcome the clear expressive limits of stand-alone skeletons, we compose
structured computations in generic graphs. Thus, a parallel application can be
viewed as a graph, where nodes are internally parallel or sequential (corresponding
to structured computations), and edges are streams, i.e. possibly unlimited se-
quences of typed elements. Also graphs feature a high-level and partially structured
definition because:

• The types of stream elements and of interfaces of the linked parallel and se-
quential nodes are specified in the program.

• The streams are statically defined, i.e. the programmer specifies which are the
interfaces that each stream binds.

In general we assume that structured computations, which we compose in generic
graphs, are stream-based. That is, a structured computation has a set of input
streams, from which it obtains its input data, and a set of output streams, on which
it provides the results. The results of a structured computation, provided on an
output stream, can be consumed, according to the application graph, as input data
for other computations (i.e. other nodes of the application graph).

In this chapter we study fault tolerance for structured parallel computations by
exploiting their high-level definition and properties. The high-level definitions allows
us to separate the concerns of:

• Description of the computation from an abstract viewpoint, including its struc-
ture and semantic.

3.1. PROGRAMMING MODEL 37

• Description of its implementation.

As a consequence of this separation, we can describe in abstract terms the fault
tolerance mechanisms and protocols. Next, we can map them in the implementation.
Moreover, the properties featuring structured computations are used to optimize
the fault tolerance support. The impact of such optimizations on the fault tolerance
overhead, and consequently on the whole application performance, are modeled by
extending the performance models of structured computations.

To illustrate our approach, we consider two examples of structured computations,
and we describe the modeling and implementation of a fault tolerance support, based
on checkpointing and rollback recovery techniques. Concerning the two classes:

• The first class is characterized by functional replication: a stateless module,
which implements the evaluation of a “pure” function, is replicated on a set
of identical executors.

• The second class features state partitioning and replication of functions: the
same functions are applied to different partitions of a same data structure.
The evaluation happens in parallel and it is applied to the whole state. We
also assume that evaluations are iterated.

These two classes represent a large set of parallel programs, typically named task
parallel (the former), or farm, and data parallel (the latter). Below we give a formal
model of these classes, that is used in the definition of the fault tolerance support.
We leave the description of the fault tolerance support for generic graphs to future
work, which will be a composition of the solutions presented here.

3.1.1 Farm

We define farm computations as the parallel evaluation of a (user-provided) function
F (without side-effects) on a stream of input elements generating a stream of output
elements. The applicability of this structure of parallelism is independent of the
actual semantics of F. We define the task of the computation as the evaluation of
F on an input element. Tasks are independent w.r.t. each other. The entity that
executes tasks is called worker, and represents the unit of replication for parallelism.
Different workers perform different tasks and generate different results. The farm
model includes a notion of management of workers for the distribution of input
elements and the collection of results. That is, it can be characterized by the strategy
of scheduling it employs: typical strategies are round-robin, and on-demand. The
collection of results can be performed according to the FIFO policy. Otherwise, it
can be performed by re-ordering output results w.r.t. the sequence of arrival of the
corresponding input elements.

We can now clarify the difference between algorithmic skeletons and structured
parallel computations: the farm parallel paradigm is a structured computation while

38 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

its instances, based on specific scheduling and collection strategies, are specific al-
gorithmic skeletons.

Cost Model

We identify the three main stages composing a farm support as:

Stage 1 or Input Stage: collection of input elements and their scheduling to work-
ers.

Stage 2 or Computation Stage: application of the function F to an input element,
producing an output result.

Stage 3 or Output Stage: collection of results from workers, and propagation to
the output stream.

Clearly, these stages are performed in parallel, according to a pipeline semantics.
We can associate a cost to each phase:

• The first stage requires the time needed to apply the scheduling strategy, and
to obtain an input element. We denote this cost with TIN .

• The second stage requires the time to evaluate F once. We denote this cost
with TF .

• The last stage requires the time to apply the collection strategy and to provide
a result. We denote this cost with TOUT .

Starting from these quantities we can obtain some interesting metrics, like the output
stream bandwidth, and the optimal number of workers:

Service Time the bandwidth of the output stream can be computed as the inverse
of the farm service time which is: Tfarm = max(TF , TIN , TOUT). This is derived
from the pipeline semantics of the three stages composing the farm.

Optimal Number of Workers The optimal number of workers, i.e. the maxi-
mum number of workers after which no performance gain is obtained, is limited
by the performance of the IN and OUT stages. It can be computed as:

nopt =
TF

max(TIN , TOUT)

The performance model for a specific application executed on a specific platform can
be obtained by instantiating the three variables to the actual values, given by the
execution platform (static or dynamic) configuration, and the application-specific
costs (i.e. the cost of F).

3.1. PROGRAMMING MODEL 39

3.1.2 Data Parallel

Data parallel programs are based on a strong notion of state, typically represented
as a collection of elements. The computation consists in iteratively applying a given
function F to each element, until some termination condition is eventually satisfied.
A virtual processor (VP) is the abstract unit of parallelism and it is defined as
the iteration of the evaluation of F on a single state element. We also assume
that each VP is the only one that can modify the value of its assigned element
(Owner-Computes rule). For modeling purposes, we uniquely identify VPs. In
some cases, we will map names onto integer numbers reflecting, when possible, the
assigned element indexes. Data parallel programs are characterized by the functional
dependencies between the VPs, commonly referred to as stencil. The application
of F to a state element can require the old values of other elements. A stencil
defines for each step of the computation which are the elements needed to evaluate
F on each element of the state. Stencils can be modeled as graphs of dependencies
between VPs during execution. We can classify data parallel programs w.r.t. the
moment in the compilation/execution phase in which functional dependencies are
known:

Static stencil The subset of elements needed at each iteration for each evaluation
is completely specified in the program, i.e. it is known at compile-time.

Dynamic stencil The subset of elements needed at each iteration for each evalua-
tion is known only at run-time. For instance, it depends on the values assumed
by the state.

The first class can be further characterized depending on the variability of the stencil
w.r.t evaluation steps:

Map the application of F to an element at each step requires only the value of the
same element computed at the previous step.

Fixed Stencil the evaluation of F for a given element needs a subset of other
elements (along with the element itself), which is equal for all iterations. Also
in this case, the values used are those computed at the previous step.

Variable Stencil the evaluation of F for an element needs, at each iteration, dif-
ferent subsets of other elements, whose values are computed at the previous
step (along with the element itself).

In the programming model we target, we indeed assume that the elements needed for
each evaluation are referred to the same step, i.e. the previous one: for evaluating
F at the i-th iteration the values of the needed elements are obtained from the i− 1
step. In this thesis, we will study the fault tolerance support for static stencil data
parallel programs.

From this description it is important to notice that the computations expressed
by data parallel programs are deterministic in two ways:

40 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

• Multiple applications of F to the same input data always produce the same
output result.

• For static stencils, dependencies between VPs does not change between differ-
ent runs of the same computation, as they do not depend on the state values,
or on external factors.

We show the difference between the concept of algorithmic skeleton and struc-
tured parallel computation for the data parallel case. We consider the generic class
of data parallel programs as a structured parallel computation, where the stencil
of the program is still to be instantiated. Each data parallel instance, given by a
specific stencil rule, is an algorithmic skeleton.

Cost Model

Typically, the performance model of a data parallel program describes the comple-
tion time of the computation, and is based on:

• The time needed by VPs to exchange the elements between themselves, to
satisfy the functional dependencies given by the stencil. We will denote this
quantity TINT (l)1, where l is the size of an element.

• The time needed to apply F to the local element. We will denote this quantity
with TF .

Notice that the first quantity depends on the kind of stencil required to evaluate F.
In a Map program this cost is null because no interactions are needed to perform
the local computations. For static stencils, TINT varies only according to the ele-
ment size, and it is instantiated, at the lower virtualization level, with the costs of
interactions, which depends on their implementation. For fixed stencil programs,
TINT is equal at all steps, unless there are dynamic variations of the performance
of the support implementing the interactions between VPs. This is not true for
variable and dynamic stencils, for which the variation at each step of the pattern of
interactions also induces a variation of TINT .

We define T i
Step = TF + TINT (l) for a generic VPi with an element of l size,

and we compute the data parallel completion time for M VPs as: Tcomp = N ×
max0≤i≤(M−1)(T

i
Step), where N is the number of times that F is evaluated. Notice

that we assume to know the number of iterations that the computation will take.
If this is not the case, we can still obtain the step performance of the computation.
We also assume that the slowest VP (we take the maximum step time) is always the
same. If this is not true, we have to compute, for each step, the slowest one.

1The INT subscript stands for “interaction”.

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 41

3.2 A Tool to Address Fault Tolerance Aspects

We introduce a tool to describe structured computations that allows us to highlight
the properties used in the definition of fault tolerance at various implementation
levels. Below, we also show how the tool can be applied to the chosen classes
of structured computations. The tool is inspired by an existing data structure,
defined for data-flow languages: the Incomplete Structures [7], or I-Structures. An
I-Structure can be defined as a collection of typed elements, possibly of unlimited
size. Elements in an incomplete structure have a unique position, or an index. Two
operations are defined in order to access an I-Structure:

• put : stores a given element in a given position. The prototype of this operation,
which will be used in the next section, is put(position, element), where both
arguments are input.

• get : given a position, it returns the element that is contained, or will be
contained, in that position. The prototype of this operation, which will be
used in the next section, is: get(position, element), where the first argument
is an input, and the second one is an output.

These operations are characterized by two main properties, which give the actual
semantics of interactions that can be expressed with I-Structures:

Property 1 No more than one put can be performed on the same position.

Property 2 The get operation on a given position blocks until a put operation has
been performed on that position.

We exploit I-Structures to model the streams, the state variables, and the compu-
tation of structured constructs. The general idea behind this approach is that we
introduce sequence identifiers to model control- and data-flow, which can be used
to introduce consistency definitions, to design checkpointing and rollback recovery
logic, and to design specialized stable storage supports. In particular, the sequence
identifiers relate the actions and events of the computations (the control-flow), to
the modifications on the state, or to the interactions between parallel activities (the
data-flow). The sequence identifiers of computations can be derived by exploiting
the property 1:

Definition 1 The control-flow of each parallel activity (either worker, or VP in the
examples of above) is modeled as a sequence of logical steps. For a generic parallel
activity, each step is defined as its activation, exploiting the blocking semantics on
its input streams. Computation steps can be defined with sequence identifiers locally
on each parallel activity.

We will see below how farm and data parallel control-flow can be modeled exploiting
this lemma. Sequence identifiers for state and streams can be derived by modeling
them with I-Structures. In particular, we can derive two lemmas:

42 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

Lemma 3.2.1 Suppose we model a stream with an I-Structure. The elements are
assigned a unique position, that cannot be modified, i.e. elements cannot be over-
written in the abstraction as a consequence of property 2. A position of an element
represents its sequence identifier.

Lemma 3.2.2 Suppose we model a state variable with an I-Structure. Each suc-
cessive value assumed by the variable is mapped onto a new I-Structure position,
which cannot be modified, according to property 2. A position of a value represents
its sequence identifier.

We exploit the relationship between computation sequence identifiers and state or
stream sequence identifiers to define stable storage and consistency definition, to
support checkpointing and rollback recovery. Figure 3.1 shows the relationships

garbage collection

checkpointing + RR protocols

computation steps

for logical

sequence identifiers

consistency definitions

programming model
accesses defined on

Stable Storage

St. St. M
anag.

(values)
state

(elements)

identifiers for

sequence

write−once blocking getpositions

stream

I−Structures

Figure 3.1: Representation of the I-Structure properties and their relationships with
FT aspects.

between I-Structures and FT aspects. The I-Structure properties are (top of the
figure): (1) elements have a (unique) position; (2) the put is write-once; (3) the get
is blocking. We have seen from lemmas 3.2.1, and 3.2.2 that element positions can
be used to introduce sequence identifiers for stream elements and the values of state
variables. On the other hand, definition 1 allows us to assign sequence identifiers

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 43

to the parallel steps performed by each parallel activity composing the computa-
tion. We can exploit the relationship between sequence identifiers of stream/state
and computational steps to define abstract consistency in the data-flow of parallel
computations. The consistency definition we give is abstract in the sense that it
does not involve implementation abstractions. Rather, it is placed at the level of
definition of the parallel activities making up the applications. Consistency defini-
tions are then exploited at the lower level to implement checkpointing algorithms,
and rollback recovery protocols. We also exploit the write-once property to model
stable storage at the level of programming model abstractions. That is, at the level
of programming model we define the interactions between parallel activities as oper-
ations on I-Structures. These are used as hooks at the implementation level to insert
stable storage accesses, and also to exploit the knowledge of the stream/state types.
Clearly, the accesses to the stable storage must be inserted according to some logic:
for instance, the logic of checkpointing (e.g. consistency) is derived from the analysis
of the parallel structure and semantics, and from the exploitation of the sequence
identifiers for stream/state and computational steps. Finally, garbage collection of
checkpoints can be based on general properties of the semantics and structure of the
parallel computations, and the checkpointing and rollback recovery tasks.

Below we exemplify the exploitation of incomplete structures by focusing our
attention on the two specific structured computations described in Section 3.1. We
highlight how the above lemmas can be exploited to define consistent states (i.e.
states that can be used as rollback recovery targets), and how this information is
propagated to the lower implementation levels to define rollback recovery.

Finally, for the data parallel model, we have to add a parameter to the put and
get operations, in order to address a specific field of a data structure value at a given
position:

• put(pos, field, el) denotes that we write the element el in the field field of
the modeled data structure at the position pos.

• get(pos, field, el) denotes that we want to store in el the field field of the
position pos of the modeled data structure.

Motivations for Introducing I-Structures and Other Data Structures In
this thesis we have selected I-Structure to model the properties of structured par-
allel programs useful for fault tolerance purposes. I-Structures seem to capture the
essential idea behind checkpointing techniques, which are the basis of rollback re-
covery protocols. The idea is to describe, at some level of abstraction, the history
of a parallel computation (by means of I-Structure positions), which must not be
overwritten (write-once property), as it happens in actual levels of implementation.
That is, the data-flow semantics abstract in a proper way the idea of checkpointing.
Checkpointing procedures are also introduced by exploiting the high-level definition
of parallel programs, on the hooks naturally introduced by blocking points of the com-
putation, defined according to the get blocking property. In these points, which are

44 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

characterized by such hooks, the state of the computation is completely specified, as
in the case of reconf-safe points in the modeling of dynamic supports for structured
parallel programming [90].

Other data structures introduced in the context of data-flow languages have been
also considered. M-Structures [6] have been introduced to model atomic accesses
to variables. Unlike I-Structures, the elements stored in a M-Structure are removed
when read by some consumer. This is in contrast with the interesting logic behind
the I-Structure for checkpointing, for which elements cannot be removed from the
abstraction. Such elements could be useful as later rollback targets. The semantics
of accesses to J-Structures [58] is similar to the one of I-Structures, in such a way that
the former can be used to implement the latter [58]. Finally, L-Structures [58] are as
I-Structures, but they also support nonlocking read accesses. In our programming
model we have expressed this nonlocking semantics inside the alternative constructs
which allow a module to select a ready stream amongst a list of input streams.

3.2.1 A Model for Farm based on I-Structures

We present an abstract model of farm structured computations, highlighting fault
tolerance aspects, that we use to implement checkpointing and rollback recovery.
Recall that, in farm computations, workers access in mutual exclusion to an input
stream, to obtain input data, and to an output stream, to provide output results
of local computations. We manage worker accesses in terms of proper accesses to
incomplete structures that model the input and output streams. That is, we map
the two streams in two different I-Structures, as shown in Fig. 3.2. In more details,

.

4 3 2 1 0 01234

put

put

get

get 1

N

W

.

 .

 .

W

Figure 3.2: Abstract model of a generic farm computation. Two incomplete struc-
tures model input and output streams. Workers independently access them. The
scheduling of task to workers, and the collection of results is modeled in the choice
of positions made by workers in the accesses.

the behavior of each worker is shown in Figure 3.3.
The first parameter of the put and get operations are encapsulated in two special

purpose functions, named compute-next-position and compute-free-position. This is

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 45

1 while (true) {
2 get (compute−next−po s i t i o n (in s t ream) , element) ;
3 r e s u l t = F(element) ;
4 put (compute−f r e e−po s i t i o n (out stream) , r e s u l t) ;
5 }

Figure 3.3: Pseudo-code of the abstract behavior of workers in a farm computation.

motivated by the fact that, at this level of description, we are not interested in
modeling the way in which such positions are actually generated. We only exploit
the concept of worker coordination, encapsulated in the get and put semantics, and
we add all possible policies as part of the language.

The point highlighted in this model is that we dynamically associate a sequence
identifier to each stream element. This is also associated to the corresponding eval-
uation of the function F on the input data, to the worker performing it, to the
corresponding output result, and its sequence identifier on the output stream. No-
tice that, in the most general case, the index of an element on the input stream
is not necessarily equal to that of its corresponding result on the output stream.
That is, input data and output results can be un-ordered. The relationship between
sequence identifiers is exploited at the implementation level to define rollback recov-
ery protocols (see Chapter 4). We also argue that this relationship can be used to
express garbage collection strategies. We will study this problem in details in future
work (see Chapter 8). Also for garbage collection strategies, the knowledge on the
parallel structure of computations can be exploited to introduce structure-driven
optimizations.

To clarify the relationship between sequence identifiers, we show an example of
execution of three workers. We denote with Ti the input element with position i on
the input stream; with Rj the result of the evaluation of the function F, copied in
the j -th position of the output stream. Each input element is assigned to a different
worker, that, after having evaluated F, stores the result in a different position of
the output stream (w.r.t. other results). Function evaluations are identified by the
index of the worker performing them, and with the application number on the same
worker: Fy

x denotes that the worker Wx performs the y-th evaluation of F. In the
first Figure 3.4(a) we show the assignment of the first three input elements. In
this example, the scheduling is performed depending on the order in which worker
requests arrive. In the example the order is W1, W0 and W2. That is, accesses and
computations of different workers are completely asynchronous w.r.t. each other.
After having completed the computation each worker stores the computed result
in the first free position. Figure 3.4(b) shows the next assignment of the tasks.
The next accesses from workers to input and output streams are different, in the
positions, from the previous ones. Clearly assignments and collections could proceed
totally asynchronously for each worker. This is not shown in this example, as the

46 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

2

4321001234

W

W

W

2

1

0

.

R

R

R

2

1

0
T

T

T

0R = F (T)1

2R = F (T)0

R = F (T)0

1

0

0

(a)

2

W

W

W

2

1

0

T

T

T

R

R

R

.

43210 501234

4

3

5

5

4R = F (T)1

0

1R = F (T)3

1

5R = F (T)1

(b)

Figure 3.4: Example of computation of a farm, showing the relationship between in-
put task element positions, worker names, and output stream element positions. The
notation R = F x

y (Ti) denotes that the y-th worker is performing its x-th evaluation
of F on the input task obtained from the i-th position on the input I-Structure.

first three results of the first three tasks are copied in the first three positions of the
output stream, before any workers could perform other tasks. A clear case could be
that of a worker that consumes input elements and produces output elements faster
than the others, accessing and occupying contiguous positions, respectively on the
input and output streams.

The building of the relation between evaluations and stream elements is done
dynamically. For this example, the relation for the first two evaluations on each
worker is shown in Table 3.1. This specific relation is a possible way of scheduling
input elements to workers, and of collecting output results. As any workers can per-
form any tasks, any other mappings are allowed by the semantics parallel structure.

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 47

T0 → F 0
2 → R2

T1 → F 0
0 → R0

T2 → F 0
1 → R1

T3 → F 1
1 → R4

T4 → F 1
0 → R5

T5 → F 1
2 → R3

Table 3.1: Dependencies between input elements, function evaluations and output
elements of example 3.2.1. The indexes of T and R denote the positions of tasks
and results on the input and output streams respectively.

Consequently, from the fault tolerance viewpoint, it is not strictly required that the
same relation is re-built in the case of failure and rollback recovery. We will see that
we do not want to enforce the same scheduling of a previous execution, in the case
of failure, but we just need to avoid the re-computation of results.

It is useful to show how the consistency property for global states, defined in the
context of distributed systems of processes [27], can be mapped at this abstraction
level. In simple terms, the property states that, for a set of checkpoints,:

Property 3 If the state of a process A includes the event “receive(B,m)”, then the
state of the process B must include the corresponding event “send(A,m)”.

We map this property at this level as:

Property 4 If the state of a module A, consumer of a stream (with name str), in-
cludes the event “str.get(position,element)”, then the state of the module B, producer
on the same stream, must include the corresponding event “str.put(position,element)”.
Notice that the two positions specified by the two modules are equal.

In the case of farm computations, at this level of abstraction, the producers and
consumers, respectively on the farm input and output streams, are beyond the scope
of the computation. The set including all the possible above relations is void. As a
consequence we can derive the following lemma:

Lemma 3.2.3 A snapshot of the execution of a farm program, including a local
state from each worker, is always consistent during the whole computation.

According to this lemma uncoordinated checkpointing (see Chapter 2) for farm
computations can be applied without incurring in domino-effects. However, at the
level of implementation, we will have to deal with lost and duplicated messages.

Below we introduce the fault tolerance strategy which we selected in this thesis
to support farm computations and we provide motivations of this choice.

48 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

3.2.2 A Model for Data Parallel based on I-Structures

We introduce a model of data parallel programs to characterize the structured paral-
lelism properties that we exploit in the definition of the fault tolerance support. We
have seen above that these properties are modeled by the I-Structures, as they allow
us to characterize the relationship between state modifications and computational
steps. In particular,

• The blocking property of the get operation allows us to model the computa-
tions of a VP as a sequence of logical steps. The global computation of VPs is
coordinated but asynchronous2. The labeling of steps allows us to define the
relation between computation and interactions between VPs. This relation
resembles the one defined for events in [57], which, differently from the one
defined here, is defined at process level.

• Modeling the state and the VP computation under the requirements of the put
property forces the design to avoid the overwriting of old state values that,
in principle, can be used as rollback targets. The avoidance of overwriting of
old state values, applied at all virtualization levels, is not sufficient to survive
failures. We also have to “stabilize” all or some of the state values, to avoid
loosing them in the case of failures. To do so we can insert periodic check-
pointing operations of the state values, saving them on stable storage, on the
hooks provided by the I-Structure operations.

It should be remarked that the write-once property of the put operation does
not include saving the state values on stable storage, but it only requires that posi-
tions are not overwritten, independently of I-Structure implementation. In the case
of failure, the values included in some positions that have not been stabilized are
lost and are to be re-computed again. Theoretically, after rollback a new instance of
I-Structure is used, where older “stable” values for the state are in their previous po-
sitions. The positions of the lost values are empty in the new instance of I-Structure.
Recovery is equal to the lost computation, in the sense that it re-generated the same
state values. Thus, the re-computed state values will be re-written in the same po-
sitions during recovery.

The I-Structure model of data parallel programs follows: a set of Virtual Proces-
sors (VPs) iterate the evaluation of a function F on their assigned elements. We have
seen that F applied on a single element can be dependent, along with the element
value itself, on the value of other elements assumed after the previous evaluation.
In the abstraction, we model the state S with a single incomplete structure, where
each position includes a set of elements e0, . . . , eN−1. Each position of the incom-
plete structure represents a value assumed by S at each parallel evaluation of F. Each

2The logical coordination of a set of parallel activities is not obtained only by means of syn-
chronizations, but it can be derived from the program/computation structure, as we show for data
parallel programs. In data parallel programs, the coordination is a consequence of the fact that all
virtual processors (see below) actually perform the same number of logical steps.

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 49

VP can access with put and get operations its own element, but only with get ones
can it access its neighbor elements. The dependency rules between evaluations on
elements, representing the program stencil (see above), are implemented by making
VPs access the I-Structure modeling the state in a proper way. In Figure 3.5 we show
the pseudo-code of a generic VP. The step variable is used to count logical steps:

1 int s tep = 0 ;
2 while (! termCondition) {
3 get (step , . . , element−1) ;
4 get (step , . . , element−N) ;
5 r e s u l t = F(element−1, . . , element−N) ;
6 put (s tep +1, . . , r e s u l t) ;
7 s tep++;
8 }

Figure 3.5: Pseudo-code of the generic virtual processor.

without loss of generality, we map sequence identifiers of incomplete structures into
integer numbers. At each iteration of the evaluation of F, each VP collects the
needed elements (according to the stencil, but we do not show the addressed fields),
it applies F to the obtained elements, and it puts the result in the proper field of
the next I-Structure position.

In Figure 3.6 we show an example of execution of a static stencil data parallel
program: at each step, each VP accesses the elements of an array data structure at its
north and south fields. Border VPs accesses only the element at south (upper VP),
and at north (lower VP). The snapshot of execution is taken at the i -th application
of F. For instance, the border VP0 accesses with get operations the fields with
indexes 0 and 1 whose values have been computed at the previous step, i.e. i − 1.
The expression get(i-1, 0, A[0]) means that we access the i − 1 position of the
I-Structure, at the field 0, and we store the obtained value in the first position of
a local array A (A[0]). VP0 computes the next value for its assigned field 0, and
it stores it in the next I-Structure position, i, with the operation put(i, 0, res),
where res is the value computed by applying F. In the figure, we also show that at
step i, the I-Structure has “grown” by one position.

We formalize the description given by the model based on I-Structures, to define
a consistency property exploited by the fault tolerance support. We denote with L99
the causal dependency between a state element value and the other older elements
needed to be passed to F for its evaluation. We denote with Si[k] the field k of S
computed at the i-th step. We denote the i− th evaluation of F as F i(. . .). For the
above example, for no border VPs we have that:

Si[k] = F i−1(Si−1[k], Si−1[k − 1], Si−1[k + 1])

Thus,
Si[k] L99 Si−1[k], Si−1[k − 1], Si−1[k + 1]

50 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

VP

n

1
VP

0

VP

. . .

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
��������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
��������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

.

i−1

. . .

. . .

. . .

. . .

get(i−1, N, A[N])

get(i−1, N−1, A[N−1])

get(i−1, 1, A[1])

get(i−1, 0, A[0])

res = F(A[1], A[0], A[2])

i. . .i−1

put(i, N, res)

put(i, 2, res)

put(i, 1, res)

. . .

. . .

res = F(A[0], A[1])

res = F(A[N], A[N−1])

N

2

1

. . .
VP

VP

VP

. . .

. . .

Figure 3.6: Example of execution of a data parallel model: each VP accesses the
state values computed at the previous step, at north and south (not for the border
VPs).

The L99 definition depends on the kind of stencil. For static stencil, L99 is known
at compile-time, while this is not true for dynamic stencil. For fixed stencil, L99 is
equal at all steps, while this is not true for the variable stencil. For the special case
of the Map, the L99 relation is void. Recall that we target static stencil data parallel
programs: we exploit the compile-time knowledge of L99 to support fault tolerance,
at the implementation level.

For fault tolerance purposes, we can define the consistency property for states by
exploiting the L99 definition. If this definition is given at compile-time (the static
stencil case) the support can optimize the checkpointing and rollback recovery tasks
to target some cost metrics. We will illustrate an example of such optimizations in
Chapter 5

In the description of fault tolerance support, we will use two kinds of graphs
describing (1) the state values and their relations, (2) the VP computations and
their interactions. Figure 3.7 shows the dependency between state values for the
above data parallel program. In the figure, we show the i − 1-th to i + 1-th values
assumed by the fields S[k − 1], S[k], S[k + 1]. The arrow connects two functionally
dependent values (see the L99 example above).

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 51

S[k−1]

fields

step i+1ii−1

S[k+1]

S[k]

Figure 3.7: Dependency graph of elements w.r.t. computation step for the example
of Figure 3.6.

Figure 3.8 shows two graphs describing the interactions between VPs, reflecting
the L99 relation). The first graph (see Figure 3.8(a)) shows the interactions between
VPs for the above example (Figure 3.6), for two steps (i − 1 and i) for three VPs
(VPk−1, VPk, and VPk+1). VP executions are the horizontal lines, which are
characterized in: (1) interaction phases, in which the VP performs the put and get
on the state I-Structure, represented as short darker rectangles; (2) computation
phases, in which the VP locally applies F, represented as long lighter rectangles.
The black rectangles on computation lines represent the execution points at which
VPs are. In this example, VPs are all at step i. The second graph (see Figure 3.8(b))

i−1

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

k−1

iVP

step

k+1

k

(a) Example of a graph representing the interactions between VPs
implementing the stencil of a data parallel program.

i−1

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

k−1

i

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

VP

step

k+1

k

(b) Example of a graph as 3.8(a), but for a different kind of stencil,
to highlight the possible asynchrony of VPs execution.

Figure 3.8: Example of interaction graphs for data parallel programs.

refers to another stencil, for which each VP sends to its south neighbor at each odd

52 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

step, and to its north neighbor at each even step (we assume i− 1 to be odd). With
this example we highlight the asynchrony that can hold between VPs according to
the asynchrony degree that can be supported by the implementation of interactions,
and the stencil. Notice that VPk−1 is computing the i − 1-th evaluation of F,
while the other two VPs are at the next step. We highlight this point to clarify the
difference between this model, based on I-Structures, and the Bulk-Synchronous one
[80], in which each interaction phase, performed every “super-step”, forces the VPs
to perform a global synchronization (i.e. a barrier).

Consistency Definition for State

We now give a definition of consistent state for data parallel programs which we will
exploit, at lower virtualization levels, to define the checkpointing algorithms and the
rollback recovery protocols.

The consistency definition is based on the ones introduced in [39, 27]. It is worth
of re-writing these definition before introducing our property. The definition of [39]
follows:

Definition 2 In a consistent state there are no orphan messages, i.e. messages
whose send event is not included in the sender process state, but the corresponding
receiving event is included in the receiver process state.

The definition of [27] states that

Definition 3 For each application channel c, if m is the number of messages sent
along c and m’ is the number of messages received along c then a consistent state is
one for which m = m′.

In our model we denote with Ci = {Si
k}0≤k<N the set of values assumed by the

state S at the step i, where N is the number of elements composing the state. We
formalize the property of consistency for data parallel states:

Definition 4 A consistent state for a data parallel program is one for which all its
element values are results of the same number of computing steps. In other words,
all its element values are result of the same number of evaluations of the F function.

A consistent state is one of those possible that can be passed during the computation.
Clearly there are other states that are actually passed during the computations, but
we choose the states of the definition to support fault tolerance. We can show
how this model reflects, at an more abstract level, the definition given in literature
[39, 27], by proving that:

Theorem 3.2.1 There do not exists two elements S[k], S[j] ∈ Ci for which S[k] L99
S[j] or S[j] L99 S[k].

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 53

Proof 3.2.1 Recall from our definition of data parallel programs (see 3.1.2) that,
to apply F on a given element, we need a sub-set of other elements, whose values
are taken at the previous step. In a consistent state we consider elements all taken
at the same step (i.e. the values they assume at the same step). Consequently, it is
not possible that S[k] L99 S[j] or S[j] L99 S[k], for any possible values of k and j.

In the implementation of data parallel programs, we will show how this property
is sufficient to prove that Ci states are consistent, according to the definition of
[39, 27].

Below we introduce three fault tolerance techniques which we selected in this
thesis to support data parallel programs. We also given motivations of this choice.

3.2.3 Methodology of Study of Fault Tolerance for Farm
and Data Parallel

In the next two chapters we present a fault tolerance support for farm and data
parallel structured computations based on checkpointing and rollback recovery. As
previously stated, that these two tasks can be generally defined as:

Checkpointing An algorithm or a protocol that copies a global state of a com-
putation (or a snapshot) onto a stable storage support, i.e. a support that
survives the failures targeted from the defined fault tolerance. Usually, check-
pointing is a procedure local to each module implementing the application.
Checkpointing is based on a higher-level definition (w.r.t. the implementation
one) of consistency for global system states, that we introduce in Chapters 4
and 5.

Rollback and Recovery These are protocols applied in the event of failure by a
(sub)set of modules implementing the application. The rollback protocol takes
a set of modules, in which some of them have failed, back to an older state.
Clearly some portions of the older state can be retrieved from stable storage (at
least the states of the failed modules). A rollback target, i.e. a global state to
which the rollback has taken back a computation, can be computed iteratively
by trying to re-build consistency. That is, in the case that the rollback target
is not consistent, the rollback recursive course can re-select older states. In the
case that the rollback iterates to the beginning of the computation, we have the
domino-effect. This effect can be avoided by building consistent states, and
select them during rollback. If the rollback protocol selects an inconsistent
state, the recovery protocol re-builds consistency by re-executing part of the
computation, or by recovering specific information from stable storage. The
necessary and sufficient conditions to define and apply rollback recovery in a
correct way are shown in an elegant framework in [68].

54 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

Typically checkpointing and rollback recovery techniques are based on the fail-stop
failure model [76], for which, the behavior of a software module in the case of failure
is to stop its execution. Some issues related to the performance of failure detection,
that can induce delays in the application of the rollback recovery protocols (or that
can render it impossible) have been studied in [26] (see Chapter 2). We can support
checkpointing techniques by considering the high-level definition of the state, and its
data-flow, and by mapping this information at the implementation level. In the next
chapters we consider an implementation based on distributed processes communi-
cating through message-passing of farm computations and data parallel programs.
Methodologically, we define checkpointing strategies by exploiting different abstrac-
tion levels:

At the level of programming model We characterize the computation state as
the composition of the states of the entities of the structured computation.
For instance, in the farm computations we define the checkpointing of stream
elements by exploiting the knowledge on their abstract properties as the static
knowledge of their data types (recall that streams are typed). In data parallel
computations the checkpointing strategies we introduce are based on the local
state of VPs, and (possibly) on the information they exchange to implement
the stencil. Also in this case the information on types are used to optimize the
implementation, and to describe the overhead introduced by the checkpointing.

At the level of implementation We define checkpointing techniques for the pro-
cesses and communication channels implementing the parallel computations
by exploiting the high-level information. We consider several typical config-
urations of existing computing platforms, and fault tolerance supports (e.g.
stable storage implementations). The goal is to obtain cost models featuring
the communication, computation, and fault tolerance overheads, which can be
instantiated to the actual configurations.

Rollback recovery protocols are defined at the process level, by exploiting the ab-
stract properties of consistency built at the abstraction level. To simplify the dis-
cussion, and to model abstract performance models of failure recovery overhead, we
define rollback recovery exploiting the high-level properties, and, in some cases, by
introducing a simplified model of the structured computation.

Another approach to fault tolerance, that we do not show here, is to exploit
the natural functional replication of the two structures to introduce computational
replication. Computational replication is mapped on the implementation by sup-
porting software module replication [14, 51], and/or re-scheduling techniques [18].
Anyway, we can introduce replication as extension of the introduced model and sup-
port, based on checkpointing and rollback recovery, by highlighting the I-Structure
properties that can be used to define replication. We will address this issue in future
work.

3.2. A TOOL TO ADDRESS FAULT TOLERANCE ASPECTS 55

We now give details on the selected fault tolerance strategies for farm and data
parallel structures.

Selected Fault Tolerance Technique for Farm

In the next chapter we show a fault tolerance support for farm computations based
on task re-scheduling and message logging [39].

During the computation we log synchronously or asynchronously messages onto
stable storage. We also keep some data structures, which reflect the functional
dependencies between input and output elements, to enable correct recovery after
a failure. In the case of the failure of one of the modules implementing a worker
we re-schedule to another worker the task it was executing before the failure. We
avoid checkpointing of workers. This is motivated by the absence of a high-level
state in the definition of workers, at the abstract description level of farm. At the
implementation level, the modules feature a local state which reflects the execution
of a task. Thus, checkpointing of worker states has a sense only if considered at
implementation level and it could be introduced only at that level. Anyway, in this
thesis, we avoided to exploit this feature to make clear which are the fault tolerance
techniques that we can define by exploiting high-level definitions. Optimizations
due to implementation choices are only introduced when they come to support an
high-level defined technique. For instance, this is the case of the control over the
asynchrony degree of FT-Streams, see Chapter 6.

We have also avoided to exploit task duplication techniques, for which a same
task is evaluated in parallel by different workers. This technique can be easily
introduced in our farm model, by exploiting unique identifiers of stream elements.
By exploiting task duplication, the parallelism degree of the farm depends on the
degree of duplication of the evaluation of each task. In this thesis we have chosen
to avoid task duplication to enable the highest possible parallelism degree. That
is, we have chosen that farm computations incur in performance overheads only in
the case of failure. We demand to future work the integration of task duplication
techniques in our model and implementation.

The techniques we introduce (message logging and re-scheduling) can be properly
used and configured to target specific optimizations. These can be done by exploiting
the cost models that can be derived for each configuration to meet the application
and platform needs. In Chapter 4 we only show two possible configurations, leaving
to future work the complete description of all configurations and the characterization
of their costs.

At the end of Chapter 4 we argue that, at the level of implementation, the
fault tolerance technique we introduce can be seen as a causal message logging
protocol [39]. Unlike classical protocols [3], the technique we introduce minimizes
the information collected to enable recovery by exploiting the knowledge of the farm
semantics and structure.

56 CHAPTER 3. A STRUCTURED APPROACH TO FAULT TOLERANCE

Selected Fault Tolerance Techniques for Data Parallel

Chapter 5 is devoted to the introduction and description of three kinds of check-
pointing and rollback recovery protocols.

The selected checkpointing algorithms have been chosen to show how to control
the trade-off between failure-free performance and recovery costs. The first protocol
we describe implements coordinated checkpointing without requiring any kinds of
synchronizations nor communications during its execution. This comes at the cost of
a global rollback recovery in the case of failure. That is, all implementation modules
must participate to it and they possibly lose performed computation steps.

With the second protocol we show how checkpointing can be extended to record
on stable storage also the relative positions of implementation modules. This incurs
in higher failure-free overheads (w.r.t. the previous one), but we show how it can be
exploited to minimize the number of participants to rollback recovery, depending of
the defined data parallel stencil.

The last protocol we introduce provides the worst failure-free performance w.r.t.
the previous two, but it enables local rollback recovery. It is based on a message
logging technique: in this thesis, for brevity, we have shown the support only in the
case of pessimistic message logging. Further solutions, possibly based on optimistic
message logging, can be thought as a composition of this solution with the previous
two. We demand this study to future work.

These three protocols should be intended as a snapshot of all possible solutions
which can be selected by exploiting our structure-aware methodology.

Chapter 4

Checkpointing and Rollback
Recovery for Farm

In Chapter 3 we have described the abstract farm model that allows us to define a
relation between input elements, workers and output elements. We have also seen
that tasks (i.e. function evaluations on different input elements) are independent
w.r.t. each other. Thus, consistency can be derived by considering independently all
the elements processed in the farm when they are on the interaction points (i.e. on
put and get). That is, we logically characterize elements when they are passed to put
and get operations. We consider “inconsistent” an element while it is processed in a
worker (i.e. when the worker is applying it F). This choice sets the minimum scope
of recovery to the average time needed to perform a task, for the fault tolerance
support we present.

Farm computations can be implemented according to several strategies. In Fig-
ure 4.1 we show two possible strategies:

Master-Slave Strategy We can implement the farm by mapping stage 1, and 3
on the same software module, the master (m). The master is responsible for:
(1) collecting input elements; (2) selecting a worker for scheduling; (3) deliver-
ing the input element to the selected worker; (4) selecting a worker to collect
a result; (5) collecting a result from the selected worker; (6) delivering the
collected result to the output stream. In a concurrent language-like formal-
ism, we could encapsulate the two tasks as different guards of an alternative
command. Stage 2 is replicated on the slave (s) modules.

Emitter-Worker-Collector (E-W-C) We map each stage in a different software
module: an emitter (E) on which we map the stage 1; a set of workers (W)
on which we map the stage 2; and a collector (C) on which we map the last
stage 3. This implementation targets the maximization of the input/output
stream bandwidth, when it is possible to decouple them.

To define checkpointing and rollback recovery we exploit the E-W-C implementa-
tion strategy, because it allow us to study separately the fault tolerance issues for

58 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

I−Structures

ce

w

w

w

w

m

s

s

I−Structures

Emitter − Worker − CollectorMaster−Slave

Implementation Strategies

Farm − Semantics

I−Structures

Figure 4.1: Implementation strategies of the farm: the first one (left) is based on a
master-slave strategy, in which the master (m) is responsible for performing stages
1 and 3, while stage 2 is replicated on slaves (s). The second strategy decouples
stages 1 and 2 in two implementation modules, the emitter e, and the collector c.

the first and last stages of the farm. We exploit the master-slave strategy to study
the impact of slave failures on the overall performance of a farm computation (see
Chapter 7).

We discuss the concept of nondeterminism for farm computations. As stated
in Chapter 3, in the abstract farm model the generation of positions to access the
input and output I-Structures is encapsulated in the put and get semantics. This
generation should reflect the asynchronous and nondeterministic computation of
workers because we are assuming that their executions are totally asynchronous
between each other. At the next level of abstraction we encapsulate the control of
nondeterminism in the emitter and collector (or master) behaviors. As a consequence
we can state that:

• Workers computation is composed of deterministic steps each corresponding
to an evaluation of F. Thus, we assume the Piecewise Determinism (PWD in
short) property [39] for worker computations: each step is completely charac-
terized, from the determinism viewpoint, by its input value (the one obtained
from the input stream).

• Also the emitter and the collector can be modeled according to the PWD prop-
erty: given the scheduling decision and the input values, the nondeterministic

4.1. FARM E-W-C IMPLEMENTATION STRATEGY 59

choice is controlled according to the semantic of an alternative command of a
concurrent language.

As a consequence we can exploit message logging techniques [79, 4, 3] in a sound
fashion.

4.1 Farm E-W-C Implementation Strategy

We describe the farm implementation strategy based on the Emitter-Worker-
Collector scheme, in two versions. The first one features a round-robin strategy for
the scheduling of input elements to workers. The second one features an on-demand
scheduling strategy. In more general terms, the first version models the case in
which the emitter exploits just local knowledge to decide which is the next worker
to schedule. The second one also exploits information provided by workers. The
strategies describe in which way we implement farms, but they are still abstract
enough to target different implementation environments (e.g. distributed processes,
or threads on a same node). Also at this level of description, we exploit Incomplete
Structures: this allows us to highlight the relations between module computations
and their interactions.

4.1.1 Round-Robin Scheduling for Farm

In Figure 4.2 we show a graphical representation of the first farm implementation
model based on incomplete structures. Suppose, in this implementation, that the
emitter schedules tasks to workers exploiting just local knowledge. A typical policy
in this case is the round-robin. Along with input and output streams, we define two
streams for each worker, one for the emitter-worker interactions, the other for the
worker-collector ones. The semantics of the emitter process in the case of round-

. . .

. . .

. . .

. . .

. . .

. . .

N

stage 3stage 2stage 1

1
W

.

 .

 .

E

W

C

Figure 4.2: E-W-C implementation strategy for farm computations. The emitter
exploits just local knowledge to implement the scheduling strategy.

robin scheduling policy is described in Figure 4.3. The emitter receives all the

60 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

1 int nextWorker = 0 ;
2 int po s i t i o n = 0 ;
3 while (true) {
4 in−stream . get (po s i t i on , element) ;
5 worker−in−streams [nextWorker] . I−St . put (worker−in−streams [

nextWorker] . nex tPos i t i on++,element) ;
6 nextWorker = nextWorker + 1 % N;
7 po s i t i o n++;
8 }

Figure 4.3: Pseudo-code of the emitter module, in the case of farm with round-robin
scheduling policy. N is the number of workers.

elements passed on the input stream, generating incremental positions in the input
I-Structure. The round-robin scheduling is implemented with an integer variable,
incremented at each scheduling action. Consider the abstract farm model presented
in Section 3.2.1. We have implemented the decision process to access the input I-
Structure, made in a distributed fashion on workers, as part of the emitter behavior.
The worker-in-stream array contains an item for each worker. Each item has
two fields: (a) a reference to the worker input stream I-St; (b) an integer variable
nextPosition that contains the next I-Structure position to be accessed for the
corresponding I-Structure. At each loop, the nextWorker variable is incremented
for the next scheduling.

Worker modules do not need to make any special decision on the positions to be
addressed in the input streams, but they just receive all the input elements scheduled
by the emitter to them. This is implemented by making workers access their input
stream with incremental positions. The same behavior is exploited to access the I-
Structure modeling their output streams. The worker pseudo-code is represented in
Figure 4.4. In the pseudo-code, the names in-stream and out-stream are unique

1 int po s i t i o n = 0 ;
2 while (true) {
3 in−stream . get (po s i t i on , element)
4 r e s u l t = F(element)
5 out−stream . put (po s i t i on , r e s u l t)
6 po s i t i o n++;
7 }

Figure 4.4: Pseudo-code of the worker module, in the case of farm with round-robin
scheduling policy.

for each worker.
The collector module, whose behavior is given as pseudo-code in Figure 4.5, is

4.1. FARM E-W-C IMPLEMENTATION STRATEGY 61

responsible for: (a) deciding from which worker to collect the result, (b) to collect
a result, (c) and to deliver it to the output stream. In this case, a typical policy for

1 int po s i t i o n = 0 ;
2 while (true) {
3 worker = dec ide (worker− l i s t) ;
4 worker−out−streams [worker] . I−s t . get (workers−out−streams [

worker] . nex tPos i t i on++, r e s u l t) ;
5 put (p o s i t i o n++, r e s u l t) ;
6 }

Figure 4.5: Pseudo-code of the collector module, in the case of farm with round-robin
scheduling policy, and FIFO collection strategy.

this decision process is the First In First Out (FIFO), which can be implemented by
exploiting just local information. We encapsulate the collection policy in the decide
function, which returns a worker index. This is used to obtain a reference to the
output stream of the selected worker, from a local array of I-Structures (the workers-
out-stream variable). Each item in the array of worker output streams includes two
fields: (a) a reference I-st to the corresponding I-Structure; (b) the next position on
that I-Structure to be accessed. The collector properly increments the single position
fields when it accesses the I-Structures modeling the worker output streams. The
collected results are put in the output stream. As above, the generation of positions
on such a stream is implemented by incrementing at each put operation a local
integer variable (position).

4.1.2 On-Demand Scheduling for Farm

We introduce a second implementation to express scheduling policies of input ele-
ments to workers, based on information related to worker execution. We consider the
on-demand policy as a typical example of this kind of scheduling: each worker no-
tifies the emitter that it is ready to perform a new task. Unlike the previous model,
we add a stream for each worker, on which it makes such notifications. Also these
streams, which we call free input/output streams, are modeled exploiting Incomplete
Structures. However, we will not exploit the properties of I-Structures to model
the fault tolerance mechanisms for this kind of streams. The motivation to use the
same abstraction is to obtain an uniform vision of this level of description. Further
abstraction defined “ad-hoc” for these kinds of interactions could have broken the
model uniformity.

As for the first implementation we implement the scheduling logic on the emitter.
In Figure 4.6 we show a graphical representation of this implementation.

We do not give a detailed implementation of this version of the farm, but we
only describe the behavior of the modules:

62 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

free

free

tasks

tasks

stage 3stage 2stage 1

1

N

E

W

C

W

.

 .

 .

Figure 4.6: E-W-C implementation strategy for farm computations. The emitter
exploits local knowledge and worker information (passed on free streams) to imple-
ment the scheduling strategy.

Emitter It alternatively waits for a new element on the input stream by performing
a get on the next position and for a worker to ask for a new task on the
free input streams. Notice that the worker notifications are consumed only
if the emitter can assign a task. This behavior can be expressed by means of
an alternative command, to avoid the emitter to block waiting for a worker
notification message (see [53] for a description of alternative commands).

Worker The behavior of a worker is similar to the previous case (round-robin im-
plementation), but, after having performed a task, it also puts a “free bit” on
the next free position of its output stream towards the emitter.

Collector It performs the same behavior as the previous implementation.

Notice that, unlike input and output elements, notifications from workers to the
emitter do not need to be distinguished between each other. This is also true in
the case in which we assume that modules can fail and restart. Below, we will see
that the information on worker availability is automatically re-obtained, after the
emitter failure and restart, as a re-notification performed by free workers.

4.2 Farm E-W-C Implementations

We characterize two environments in which we map the E-W-C farm implemen-
tation strategy. Each execution environment is characterized by the way in which
interactions between modules are expressed. In Figure 4.7 we show the two possible
implementations. The first one is based on a shared memory environment in which
modules are implemented as threads. In the other one we map modules in dis-
tributed processes, and interactions between modules in communication channels.
We give details of the implementations:

4.2. FARM E-W-C IMPLEMENTATIONS 63

Implementation

c

w

w

e

c

w

w

tasks results

e

send & receive

Message Passing

read & write

Shared Memory

ce

w

w

w

w

m

s

s

Implementation Strategies

I−Structures

Master−Slave

I−Structures

Emitter − Worker − Collector

I−Structures

Farm − Semantics

Figure 4.7: Two implementations, based on shared memory and message passing,
of the Farm E-W-C strategy.

Shared Memory In this case, the emitter, the workers, and the collector modules
interact through accesses to variables mapped in a shared memory. The mod-
ules can be both threads or processes, depending on the support provided by
the exploited platform. We ensure mutual exclusion for the accesses on shared
memory, which are denoted with read and write. The emitter and the workers
interact through an input element queue (the tasks) mapped onto the shared
memory. The workers and the collector interact through a queue of result
elements (the results). We do not show how the emitter and the collector in-
teract through the input and output streams, respectively. This could be done
either through the shared memory, or other supports (e.g. communication
channels, or memory-mapped I/O).

Message Passing Modules are mapped in processes, and their interactions are im-
plemented as send and receive operations on communication channels. Thus,
input elements and output results are passed as messages in communication
channels.

For fault tolerance purposes, the first model requires the shared memory to imple-
ment some kind of stable storage support, or it must be supported by a further

64 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

level of stable memory. In this setting, it is possible to move the checkpointing and
rollback recovery logic to the level of the memory hierarchy. This has been proved
to be fruitful for general parallel computations (e.g. see [8]). However, in this thesis
we target the second model to exploit the structure compile-time information: we
derive stable storage accesses from I-Structure accesses, which are performed ac-
cording to the parallel implementation of the farm. This allows us to fully exploit
the knowledge of the computation structure in the design and implementation of the
stable storage. Consequently we can introduce structure-driven optimizations. This
point is also claimed for general parallel computations (e.g. see [28]). In Section 4.4,
we detail the implementation of farm computations as a set of distributed processes
interacting through message passing.

4.3 Fault Tolerance at Levels of Abstraction

We consider the three description levels we introduced above to discuss fault toler-
ance issues for farm computations. This study is based on the following steps:

1. Definition of a failure model on the abstract farm model, i.e. semantics of
failures. This definition includes also the concept of detectability of faults.

2. Mapping of the failure model in the implementation strategy, and in the im-
plementation of farms as distributed programs.

3. Definition of fault tolerance techniques. As we introduced in Chapter 1, in
this thesis we target checkpointing and rollback recovery techniques.

4. Implementation of the fault tolerance techniques for the message-passing E-
W-C farm. This point is discussed in the next section.

4.3.1 Failure Model and Fault Tolerance Logics for the Ab-
stract Model

We target the fail-stop failure model [76]: at any level of abstraction, whenever a
module fails, it stops executing its tasks. At the level of the abstract farm model, we
can distinguish the following cases (we also show the mapping in the implementation
targeted strategy):

1. A worker fails by stopping its execution during the evaluation of the function
F. In the implementation strategies, this corresponds to the failure of a module
that performs the tasks (i.e. the worker).

2. A worker fails during the execution of a put or get operation. We assume
that failures are atomic w.r.t. put and get operations. At the level of imple-
mentation strategy, this corresponds either to the failure of a put or get on

4.3. FAULT TOLERANCE AT LEVELS OF ABSTRACTION 65

an I-Structure linking two modules, or the failure of the module on which we
map the task 1 and 3 (the master, or the emitter and the collector).

3. Both points 1 and 2 hold.

As far as concerns the detectability issue, in the event of a failure all entities par-
ticipating in the computation are assumed to be informed of this event after an
unbounded but finite amount of time [26]. This assumption does force all entities
to participate in the rollback recovery protocol. We do not enforce any constraints
on the frequency and concurrency of failures and we will consider both transient
and permanent failures. In this failure model we do not include the possibility for
modules to restart. However, in the general model we assume that new workers can
join the computation.

At the level of the abstract model, concerning the failures of type 1, the compu-
tation performed by the failed worker is lost. We assume that partial computations
are not saved and the evaluation must be re-executed from its very beginning. This
choice has been motivated in Chapter 1. As a consequence of this choice, another
worker has to obtain the input element of the lost computation and re-evaluate the
function on it. We can model this by making the next available worker access the
position of the input I-Structure of the element whose computation has been lost.
This implements task re-scheduling for farm, as in [2, 18].

Thus, the compute-next-position function is designed according to this require-
ment, i.e. to take into account failures. In more general terms, this means that:

• The actions to tolerate a worker failure involve an adaptation of the task
scheduling strategy.

• The adaptation is possible because we assume that input tasks are not lost.

We ensure the latter point in the implementation, by exploiting the information
derived from the I-Structure model.

If a get or put operation returns an error (failures falling in the case 2) neither
computation nor tasks are lost. First consider the failure of the operations on the
whole set of workers: depending on the duration of the failure, either the access from
external entities to the results produced by the farm, or the access to input elements
by the workers could be impossible. Both such situations can be associated to the
failure of the whole farm program.

An interesting case is to consider the failures of put and get operations on a
single worker. If a worker cannot execute a put operation anymore (permanent
failure), the result of its computation is lost, and another worker should re-execute
the evaluation of the function on the same input element. The actions to tolerate
this kind of situations (i.e. the recovery procedure) are equal to those provided in
the case 1. If a worker cannot execute anymore a get operation, it cannot obtain
input elements from the input stream, and it is excluded from the computation.

66 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

In both cases, a failure corresponds to a reduction of the the parallelism degree.
Otherwise, if the duration of the failure is limited in time (transient), when the
failure is recovered, the worker can return the result of a computation or obtain a
new input element. In this case, the duration of the failure affects the performance
of the farm, by lowering the amount of parallelism for the whole duration of the
failure. The recovery procedure can be based on some timing constraint (on a given
amount of time K):

• if the failure lasts more than K seconds, the worker is considered to be failed,
and its task is re-scheduled to another worker. Eventually, when the worker
re-joins the computation, it discards its partial computation and re-starts the
execution of a new task.

• Otherwise, if the failure lasts less than K seconds, the result is obtained from
the same worker.

Finally, case 3 allows a worker to fail both during the function F evaluation or during
the put and get operations. The consequences of these failures and the actions
introduced to tolerate them can be provided independently for the first two cases,
and combined together. This simply means that the failure handling is composed
in the same worker program.

We exploit these fault recovery logics at the lower levels of implementation.

4.3.2 Fault Tolerance for the Farm E-W-C Implementation
Strategy

In this section, we define rollback recovery for the E-W-C implementation strategy.
Our goal is to define rollback recovery protocols for each module composing the
computation, by exploiting the I-Structure properties. As stated above, the failure
model we consider is a possible mapping from the abstract one:

• Failures during the evaluation of F are mapped onto failures of worker modules.

• Failures during the get operations on the (abstract) workers are mapped onto
the failure of the emitter module.

• Failures during the put operations on the (abstract) workers are mapped onto
failures of the collector modules.

• The last case, as composition of the first two abstract cases, is a composition
of the three above cases.

We provide a fault tolerance support for the two versions of the farm computations,
with round-robin scheduling policy, and with the on-demand one. In the presented

4.3. FAULT TOLERANCE AT LEVELS OF ABSTRACTION 67

support, we exploit the I-Structure properties: for instance, we re-access input ele-
ments without worrying about where they are stored. This will be implemented at
the lower layer by proper mechanisms, as described in Section 4.4.

We describe a fault recovery protocol for both scheduling strategies. When
needed we characterize the discussion w.r.t. each strategy.

Supporting Data Structures

We introduce three data structures to model the transition of elements in the farm
modules, and their relationships. These data structures reflect the functional de-
pendencies of farm described in Chapter 3. Next we state which is the minimal
information included in such data structures required to support the failure of the
modules implementing the farm.

We denote with Ti the data structure that relates the position of the worker Wi

input stream to the global input stream positions. We denote the whole set of these
data structures with T0, . . . , TN−1, where N is the number of workers. For each
worker, its T data structure can be characterized in two sub-sets: (a) the input
positions of the set of elements whose results have been passed to the collector (for
Wi we denote this set with T out

i); (b) the input position of the set of elements
not yet evaluated, plus the element being evaluated (for Wi we denote this set with
T in

i). Similarly, we can define a data structure modeling the relation between worker
output stream positions (towards the collector) and global output stream positions.
We denote such data structures as: R0, . . . ,RN−1. Finally, we define the O data
structure that models the relation between output stream positions and input stream
positions. Notice that we can exploit T and R structures to obtain the mapping
between output stream positions, and input stream ones. This is easy to see by
pointing out that the worker behavior is locally sequential: the result of the i-th
element obtained (with a get operation) from the worker input stream is put on
the i-th position of the worker output stream position. As a consequence the O
structure is redundant w.r.t. the other: it can be defined by merging the T and R
structures.

All the data structures described above are built dynamically during the compu-
tation by the put and get operations. At this level of abstraction we do not enforce
a mapping of them on the implementation modules. In this way, at this level of
description the failure of a modules does not cause the loss of information.

Fault Recovery Protocol

We characterize which is the information required for restoring the computation in
different failure scenarios, by exploiting the data structures introduced above. In
the discussion, we will assume that fault tolerance for workers is implemented by
a proper re-scheduling of the input elements to survived workers. This behavior
reflects the failure model, in which:

68 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

• Failed workers are possibly replaced by new workers.

• Failed emitter and collector are replaced by new modules with the same be-
havior.

The fault recovery protocol is similar for the cases of round-robin and on-demand
scheduling strategies, except for the fact that the T in structures in the latter case
include at most one element.

• Suppose that the emitter fails in isolation. Looking at its pseudo-code in
Figure 4.3, we can see that it can process at most one element at time. The
remaining ones have been copied on the worker input streams, which can
include multiple elements to be computed. Thus, at most one element from
the input stream is lost. If we lose such an element, we re-obtain it from
the input I-Structure. This translates to accessing the next position on the
input I-Structure not yet scheduled to any workers. The next position on
the input I-Structure to be accessed is computed as maxi{T in}i∈[0,...,N−1] + 1,
i.e. we take the maximum value in the T data structures and we sum 1 to
it. The emitter also needs to obtain the next positions to be accessed on all
I-Structures towards the workers. Also this information can be retrieved from
the T structures. For the round-robin scheduling, if we do not save the last
scheduled worker on a stable storage support, we have to set it to a default
value (e.g. 0) at each restart. For this reason, there are failure patterns for
which we can obtain a sequential behavior for the farm, by assigning all tasks
to the same worker.

• If one or more workers fail: the emitter has to re-obtain and re-schedule all
the elements in the T in sets of all failed workers. If we can access such struc-
tures, the emitter directly exploits them to re-access the input stream, and
it re-schedules the tasks to survived workers. Otherwise, we have to further
distinguish two cases: (a) if all workers failed, it is sufficient to access either
the O structure, or the T and R ones (as stated above they include equivalent
information). (b) if a subset of the workers failed, we have to avoid the re-
scheduling of tasks previously scheduled to survived workers. Unlike the point
(a) the O structure is not sufficient to know which is the task that is to be
re-obtained. We also need the T structures of survived workers, to understand
which tasks are to be re-assigned.

• If the collector fails in isolation: the restarted collector has to re-obtain the
next position to be accessed on the output stream, and the next positions to be
accessed on each worker output stream. For this task, the collector needs both
the O and R data structures. Operationally: it recovers the identifier of the
last position (say x) accessed on the output stream. Next, it re-starts sending
out elements whose identifiers are greater than x on each data structure R.

4.4. FAULT TOLERANCE FOR MESSAGE PASSING FARMS 69

For this behavior to be sound w.r.t. the concurrency semantic of farm, we use
the property for which the results produced by a same worker are ordered on
the output stream position (i.e. the R structures of a worker are ordered sets).

• If the emitter and one or more workers fail concurrently: in this case we lose
the elements scheduled to failed workers, and (possibly) the one on the emitter.
The lost elements can be re-obtained by the new restarted emitter in the same
way as in the case of worker(s) failing in isolation. The position of the next
element to be accessed is computed as in the case of the emitter failing in
isolation.

• If the collector and one or more workers fail concurrently: as in the case of the
collector failing in isolation we possibly lose a result. The collector needs also:
(1) to re-obtain the last accessed position on the farm output stream; (2) to
re-obtain the last accessed positions on the survived worker output streams.
This is supported as in the case of collector failing in isolation. For modeling
purposes, we assume the most general case, in which we lose also the result
elements on the I-Structures between the failed workers, and the collector.
Such results are those in the T out data structures of the failed workers, and
must be re-computed. We implement the re-scheduling of such elements from
the emitter side, like in the case of workers failing in isolation.

• If the emitter, the collector and one or more workers fail concurrently: we
build the recovery protocol by simply merging up the above cases in a modular
fashion.

4.4 Fault Tolerance for Message Passing Farms

We show an implementation of the farm E-W-C strategy based on distributed
processes interacting through message-passing. This level features the following
abstractions:

Processes are the unit of execution. We map the emitter, worker and collector
modules, at the abstraction level, in corresponding processes. As a working
assumption processes are executed on different computational nodes. Each
computational node has a main volatile memory, and a local secondary stor-
age (e.g. a hard-disk) that is resilient to faults. We do not distinguish between
the failure of a computational node, and the process it is executing. When a
node fails, the volatile memory is lost, while the information on the secondary
storage can be eventually accessed, when and if the node restarts. We assume
the emitter and the collector process to be restarted on the same computa-
tional node. Workers are not restarted, but we admit new workers to join the
computation.

70 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

Communication Channels implement the streams. At this level we will con-
versely use the terms streams and communication channels. A channel links
two processes executed on different nodes, it is either synchronous or asyn-
chronous, and can be supported by message logging. The communication
primitives are denoted with send(ch, msg), and receive(ch,msg), whose
meaning is obvious. The asynchrony of channels is limited by a known value
K, that is configured at compile-time, and can possibly be modified at run-
time in an atomic fashion, to target optimizations. The meaning of asynchrony
K is that the message queue between the communicating parties can contain
up to K messages. If a sender fills up the queue it stops until a receive is
performed. For optimization purposes there is a single channel data structure
including the message queue mapped onto the receiver volatile memory. This
implements the 0-copy technique [73]. We name Fault-Tolerant Streams (or
FT-Streams) the streams supported by message logging (both synchronous or
asynchronous [4]).

Chapter 6 describes a full implementation of FT-Streams, which we exploit in the
implementations of this chapter, whenever message logging is required. Here we give
a short description of FT-Streams to allow the reader to understand the hypotheses
on which the fault tolerance support is based.

Message logging on communication channels includes the copy of all messages
passed on streams to an abstract stable storage [4]. The stable storage is imple-
mented by a process that receives all messages from the sender (exactly as the
receiver does), and that copies them on a secondary storage. There is one such
process for each communication channel supported by message logging. We call it
message-logging process (M-L process or, in short, M-L), it can be executed on
both the node executing the sender of the stream, on the one executing the receiver,
or on an external node. Each choice corresponds to a different implementation strat-
egy of the stable storage featuring a different support to higher levels, and different
costs. This issue is discussed in Chapter 6. The logging of messages can be done
synchronously or asynchronously, and is performed as part of a send operation. The
synchrony semantics is the following: we ensure that, when the receiver process
performs a receive operation, the corresponding message has previously been copied
to stable storage (see Chapter 6). The communication between the sender and the
M-L processes is made through a communication channel, which is logically asso-
ciated with the one linking the sender to the receiver. Both channels contains the
same messages during the whole computation, but not at the same time. We do not
enforce that the receiver process is synchronized with the corresponding M-L. In the
case of asynchronous communication channel (asynchronous FT-Stream), also the
one connecting a sender to the M-L process features an asynchrony degree that can
be possibly different from the application one.

We show the relationships between I-Structures and communication channels:

• Each message passed on a communication channel is uniquely assigned an

4.4. FAULT TOLERANCE FOR MESSAGE PASSING FARMS 71

identifier, which abstractly corresponds to the position on the I-Structure.
The sequence identifiers of the last logged messages (before the failure) are
provided to failed and restarted (communicating party) processes by the FT-
Stream support. Such identifiers are used according to the rollback recovery
behavior described in Section 4.3.2, for the T , R and O data structures.

• Messages on a channel queue cannot be overwritten until consumed by the
receiver. For later re-accesses (i.e. after a message has been received), messages
are retrieved from either the sender or the stable storage. This implements
the write-once property of the put operation.

• The receive operation blocks in the case in which no message is ready on the
message queue. This implements the blocking property for the get operation.

We exploit sequence identifiers to support rollback recovery protocols. In the im-
plementation based on FT-Streams sequence identifiers are copied into the channel
data structures. In the case of failure, these are used to support message re-sending
and recovering from stable storage.

According to the description given in Chapter 6 we choose to map the M-L
process in the receiver node: the M-L process acts as a hard disk manager on the
receiver. The local send support, on the receiver node, copies the message on the
channel queues between the sender and the receiver, and the sender and the M-L
process.

We now describe the implementation of the supporting data structures. Based
on this implementation, we describe the fault recovery protocols for the round robin
and on-demand cases, respectively supported by synchronous and asynchronous FT-
Streams. There is not any constraints behind this choice: these examples have been
chosen to cover a subset of the possible configurations. Another choice could have
been to support the round robin version with asynchronous FT-Streams and the
on-demand one with synchronous FT-Stream, without any changes in the general
idea behind our solution.

4.4.1 Implementation of Supporting Data Structures

We show how we implement the T , R and O data structures. As describe above,
there is a T data structure for each worker. For a given worker, this structure
relates sequence identifiers of the worker input streams with sequence identifiers
of the farm input stream. Messages passing on the FT-Stream abstractions are
piggybacked with their sequence identifier on that stream. Thus, we can build T
structures according to the following rules:

• On the emitter, whenever an element is received and assigned to a worker, we
can build the relation between the input (from the external world) and output
(to a worker) identifiers.

72 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

• On the workers we have to piggyback the sequence identifier of the input
stream also to the messages between the emitter and the workers. Whenever
a worker receives an element it builds the relation.

The R data structure maps sequence identifiers of the worker output streams to
sequence identifiers of the farm output stream. R structures can be dynamically
built:

• By the collector, whenever it receives a result and it sends it to the output
channel.

• By the workers, if the collector sends back to each worker the sequence iden-
tifiers assigned to each result.

Finally, to build the O data structure on the collector we have to piggyback each
result with the input stream sequence identifier that generated it. This can be done
on the workers. The information in the O data structure can also be propagated
from the collector to the emitter.

4.4.2 Synchronous Logging on Input/Output Streams

In this subsection we choose a specific configuration for the logging techniques ap-
plied to farm computations: we implement the input and output streams of the farm
as FT-Streams; we implement the streams between the emitter and workers and the
workers and collector with communication channels without message logging. This
configuration is based on the re-scheduling of lost element, in the case of worker fail-
ure. This choice allow us to discuss how the supporting data structures described
above are exploited in the case of failure of processes inside the farm. That is, we
can avoid to describe the support to the failure of outer modules. For the same
purpose, FT-Streams are supported by synchronous message logging, and messages
are stored on the receiver secondary storage. Figure 4.8 shows the architecture of
the sender and receiver nodes of an FT-Stream. We assume that:

• All communications are partially implemented by two processes, one for each
party, that we name KP. The KPs can be executed on a specialized support
for communications (as in Figure 4.8). We conversely denote with KP both
the process, and the specialized support executing it.

• A KP process interacts with the local Network Interface Card (NIC), imple-
menting the low level networking protocol. The KP on the receiver node also
interacts with a local secondary storage manager, which copies the received
messages on the local secondary storage.

• We exploit two data structures for each communication: one for the com-
munication between the sender (S) and the receiver (R); the other for the

4.4. FAULT TOLERANCE FOR MESSAGE PASSING FARMS 73

ch−r

Receiver nodeSender node

Network

NICNIC

M−L P.
ck

RS

KP

M

P

ch

P

M

KP

ck−r

Figure 4.8: Architecture of the nodes executing the sender and the receiver processes
in the case of communication through an FT-Stream.

communication between the sender, and the message logger (M-L). Both data
structures are associated to the same FT-Stream, and are partially included
in both the sender (ch-r, and ck-r, where “r” stands for “remote”) and the
receiver (ch, and ck). The ch and ck ones are the only ones that include
the message queue (0-copy optimization), while the other ones are used to
synchronize the sender with the local KP.

• The KP on the receiver node is responsible for copying each message on both
the ch and ck channels, and for synchronizing the sender with the receiver
process and the message logger.

• As describe above, in the case of failure, the emitter and the collector processes
are restarted on the same computational node. Workers can be restarted on
different computational node, obtained by some resource management sub-
system. When the process is restarted we assume that the communication
subsystem properly re-generates the communication channels it needs.

As we exploit synchronous message logging at the termination of a send operation
messages are copied to the secondary storage of the receiver node. In the case of
failure and restart of the receiver, the local KP replies the messages from the stable
storage. The sender is not involved in the rollback recovery. The computations of
the two parties are characterized in logical steps (or computational steps), each one
initiated with a communication operation and terminated with the following one.
We exploit computational steps to implement the rollback recovery of the sender
processes. Messages are assigned the same sequence number as the computational

74 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

step that the process is performing. In the case of failure of the sender its local
KP retrieves the last sequence identifier copied on the channel queue. The sender
avoids all the send operations until it reaches the same sequence identifiers, plus one,
provided by its KP. Operationally, the send operation requires a channel reference,
a message reference, and a sequence identifier. In the case of rollback recovery if the
sequence identifier is less or equal to the re-set one, the message is not sent but simply
discarded. We assume that processes on a communication take independently local
checkpoints, which are labeled with the computational step identifier. In the case of
failure and restart a process recovers the local state and its sequence identifier. The
latter information is used to perform the next communication. We will see that the
emitter and the collector do not have a local state to checkpoint. They exploit the
sequence identifier provided by their local KP for the next communications, both
with the supporting data structures.

Implementation of the Fault Recovery Protocol

We characterize the rollback recovery protocols of the emitter and the collector w.r.t.
the failure pattern:

Emitter failing in isolation We have synchronously saved on stable storage the
messages passed to the emitter, both with their sequence identifiers. The
identifier of the message at the top of the receiver message queue corresponds
to maxiT in + 1. If we have saved it on the stable storage, the local KP can
provide this value to the emitter. Otherwise we have to check for T structures:
if we assume that the emitter does not checkpoint them on stable storage, they
can be re-obtained from the workers.

Workers failing in isolation The tasks assigned to failed workers are lost and
the emitter must re-obtain them from stable storage and re-assign them to
survived workers. As we assume that communication queues are placed on the
receiver side, the results in the channels between the failed workers and the
collector are not lost.

Collector failing in isolation We lose the result that is possibly in elaboration
on the collector, and all the results that were placed in the channel queues
between the workers and the collector. The collector can re-obtain the last
sequence identifier it used on the output stream from the channel itself: it
corresponds to the sequence identifier of the bottom message on the receiver
queue. Lost results must be re-computed: we implement it on the emitter by
re-scheduling all the elements in the T data structures, not yet included in
the R data structures. We can also exploit the O structure if: (a) we keep it
replicated on workers, or (b) the collector saves it on stable storage.

Concurrent failure of the emitter and one or more workers In this case, we
lose: (a) the element in processing on the emitter; (b) the elements scheduled

4.4. FAULT TOLERANCE FOR MESSAGE PASSING FARMS 75

to the failed workers, and the elements they were evaluating before the failure.
The results, passed from the workers to the collector, are stored in the chan-
nel data structure on the main collector memory. If the emitter saves the T
structures on stable storage, it directly computes those elements which are to
be re-obtained and it assigns them to survived workers. Otherwise, we lose the
T structures of the failed workers. Thus, the emitter also needs the O data
structure from the collector. The elements can be directly recovered from the
local stable storage.

Concurrent failure of the collector and one or more workers In this case we
lose the input elements of failed workers and the results of all workers placed
in the channels between the workers and the collector. The emitter needs to
re-schedule all such tasks: for this purpose it needs both the T structures of
survived workers and the O structure. We recall that the structure could have
been propagated from the collector to the emitter. Otherwise, the collector
needs to save it on stable storage and to retrieve it to allow the emitter to
implement the recovery protocol.

Concurrent failure of the emitter, one or more workers, and the collector
This case is similar to the previous one, except that we cannot assume that
the O data structure can be retrieved form the emitter volatile memory. Thus,
it requires the collector to save it on stable storage. If we assume that at least
one process implementing the farm does not fail concurrently with the other
ones, we can survive this kind of failures by propagating the O data structure
on all processes. The trade-off in this choice is between the time needed to
access stable storage and the time needed to propagate the information on all
processes.

4.4.3 Asynchronous Logging on Input/Output Streams

We consider the same architecture as above, depicted in Figure 4.8, where the M-L
process and the channel queues are implemented on the receiver node. Unlike the
previous case, messages are logged asynchronously to stable storage. In the case
of failure of the receiver process, some elements are copied onto the stable storage
(i.e. the receiver secondary storage), some others must be replayed by the sender.
The number of the elements that must be replayed is, at any instant of time, upper
bounded by the asynchrony degree of the message logging channel (see Chapter 6).
If we assume that the sender and the receiver take checkpoints in an uncoordinated
fashion, we can limit the rollback depth (i.e. the number of the lost checkpoints)
with the receiver checkpointing frequency, plus the sender checkpointing frequency
(in the worst case). In the case of the farm, we logically map a sending operation
of a result on the output stream and its copy on stable storage onto a global farm
checkpointing operation. The task that generated this result is no longer needed,
and will not be requested from the external world.

76 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

As in the previous case, the streams linking the emitter to the workers, and
the workers to the collector are implemented as communication channels without
message logging. We need to extend the previous recovery behavior to support the
possibility of loosing stream elements:

• In the case of failure of the emitter we lose some elements passed on the
channel but not yet copied on stable storage. Suppose the emitter is the only
failed process. A set of tasks with contiguous sequence identifiers are to be
re-generated from the sender. These tasks are those copied in the channel ck
but not yet received by the message logger. The emitter obtains the sequence
identifier of the last logged message, and it requests the sender of the stream
to re-generate all the following elements. In the case in which the emitter fails
concurrently with other processes we apply the same scheme as above: we pass
the sequence number of the older unlogged message to the sender.

• In the case of failure of the receiving party on the farm output stream, (possi-
bly) the collector is required to regenerate some elements. The receiving side
passes the collector the sequence identifier of the last logged message. In this
case we have to re-obtain the input tasks, and to re-schedule them to workers
to re-compute the lost results. The required results are all the contiguous ones
from the received sequence identifier and there on (according to the ordering
on the farm output stream). The recovery is similar to the case of failure of
the collector for synchronous message logging.

4.4.4 Overhead Analysis

We extend the cost model of the farm to include the overhead due to message logging
on the input and output stream. We first instantiate the abstract model, presented
in Section 3.1, to the chosen implementation. As stated above, the cost model was
based on three quantities: TIN is the time needed to obtain an input element, and
to apply the scheduling strategy; TF is the time needed to evaluate F on an input
element; TOUT is the time needed to apply the collection strategy, and to provide a
result on the output stream. In the abstract model, we mapped these quantities in
the worker behavior. We now map these quantities onto the farm implementation:

• TIN is mapped onto the service time of the emitter process, that we denote
with TE. In the case of round-robin strategy, this quantity includes the time
needed to receive an element, to apply the scheduling strategy (i.e. to get the
next worker index), and to send the element to the selected worker. In the case
of on-demand scheduling strategy, in the worst case this quantity corresponds
to the time needed to receive an element, to check for an available worker, and
the time needed to send the element to the selected worker.

• TF is mapped onto the service time of the worker process, that we denote with
TW . For both scheduling cases, this time includes the time needed to receive

4.4. FAULT TOLERANCE FOR MESSAGE PASSING FARMS 77

an element, the time needed to evaluate F, and the time needed to send an
element.

• TOUT is mapped onto the service time of the collector. This consists in the
time needed to select a worker, the time needed to receive a result, and the
time needed to send it to the output stream.

We have to define the communication costs to instantiate the above quantities. We
denote with Tsend(K) the time needed to send a message of size K on a communi-
cation channel, without message logging. We denote with Trecv(K) the time needed
to receive a message of size K on a communication channel, without message log-
ging. Now consider the case of FT-Streams. We denote with TS−FT−Send(K) the
time needed to send a message of size K to a synchronous FT-Stream. This cost
corresponds to: TS−FT−Send(K) = Tsend(K) + Tlog(K), where the second quantity
is the time needed to copy the message to the stable storage, which depends on
the chosen implementation. For instance, in the case in which the stable storage
is implemented on the receiver secondary storage, Tlog(K) corresponds to the time
needed to locally copy a message of size K on the hard disk. We denote with
TS−FT−Recv(K) the time needed to receive a message on a synchronous FT-Stream.
If we consider a single receive operation, we have TS−FT−Recv(K) = Trcv(K), i.e. no
logging impact is experienced on the receiver. Clearly, as the corresponding send
operation is heavier than a send on an unlogged stream, the overall input bandwidth
of the receiver will be lower than the corresponding case without message logging.
Now consider asynchronous FT-Streams. We denote with TA−FT−Send(K) the time
needed to send a message of size K on an asynchronous FT-Stream. In general,
TA−FT−Send(K) = Tsend(K), if the producer has not filled up the communication
queues. We denote with TA−FT−Recv(K) the time needed to receive a message of
size K from an asynchronous FT-Stream. As above, TA−FT−Recv(K) = Trecv(K).
Notice that the high-level description of farm computations allows us to know the
message size at compile-time, as the definition of streams (and I-Structures) requires
the elements to be typed.

We now instantiate the cost model of the farm implementation. The emitter
service time for the round robin scheduling can be computed as:

TRR
E = TS−FT−Recv(K) + Tnext−w + Tsend(K)

= Trecv(K) + Tnext−w + Tsend(K)

where input elements have size K, and Tnext−w is the time needed to access an
integer variable, and to increment it. For the on-demand scheduling the cost is:

TON−D
E = TA−FT−Recv(K) + Tnext−w + Tsend(K)

= Trecv(K) + Tnext−w + Tsend(K)

In this case, Tnext−w is the time needed to check the availability of a worker. The
worker service time is:

TW = Trecv(K) + TEval + Tsend(K)

78 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

where TEval is the time needed to evaluate once F. Finally, the collector service time
for the round-robin strategy is:

TRR
C = Tnext−w + Trecv(K) + TS−FT−Send(K)

= Tnext−w + Trecv(K) + (Tsend(K) + Tlog(K))

This quantity, in this case, depends on the logging overhead. In the on-demand
case, this is not true (in the best case):

TON−D
C = Tnext−w + Trecv(K) + TA−FT−Send(K)

= Tnext−w + Trecv(K) + Tsend(K)

Notice that the asynchronous case has a lower overhead, w.r.t. the synchronous
one. This property is inverted in the case of rollback recovery, as asynchronous FT-
Streams can require processes to re-provide elements, which in the synchronous case
are recovered only from the stable storage. Optimizations can be based on choosing
the synchrony of exploited FT-Streams, and configure proper asynchrony degrees,
in the case of asynchronous FT-Streams.

4.5 Comparison with Structure-Unaware Proto-

cols

In this section we consider checkpointing and rollback recovery protocols defined for
structure-unaware programming models. These techniques are applied to farms im-
plemented as distributed processes interacting through message passing, according
to the E-W-C strategy. Our purpose is to discuss the pros and cons of exploiting
these techniques and to compare them with the multiple configurations of the so-
lution we presented above. The comparison is guided by the issues we introduced
in Chapter 1, which we re-write here: analysis of performance, consistency defini-
tions, determinism of computations, modularity and composability and experimental
results.

The main issue to be faced in farm computations is represented by its frequent in-
teractions with the provider and consumer modules on the input and output streams.
That is, while a data parallel computation performs the larger part of its compu-
tation without interacting with the external modules (see Chapter 3), farm com-
putations are defined to perform “frequently” these interactions, also during the
same computation. In general terms such external modules cannot be controlled by
the farm fault tolerance: they cannot participate to any checkpointing and rollback
recovery protocol. In the context of classical checkpointing and rollback recovery
protocols this issue is formalized with a special process, called the Outside World
Process (OWP in short). In rollback recovery the OWP interacts from the outside
with the application processes, it cannot fail nor it can rollback and recover. As

4.5. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 79

a consequence, the messages it sends to the application cannot be replayed and it
cannot receive duplicated messages. Checkpointing and rollback recovery protocols
face this issue according to different techniques (see [39]). Below we discuss these
techniques w.r.t. the one which we introduced for farm computations, based on
FT-Streams (see Chapter 6).

4.5.1 Checkpointing Protocols

Suppose we apply existing checkpointing protocols to the farm structure at the level
of implementation. These protocols are based on several consistency definitions for
global states. In [27] it is introduced a consistency property for global states which
consider the number of sent and received messages on each application channel,
which must be equal. A global state including a state for each process and featuring
this property is consistent. In [39] a consistent global state must not include orphan
messages (see Chapter 3). At the abstraction level, we have shown that these con-
sistency definitions are useless: the provider and consumer of the input and output
streams respectively are not included in the farm model. As these are the only com-
munications (more correctly, interactions), we need to apply the solutions to the
interactions with the OWP to support farm fault tolerance according to classical
checkpointing schemes.

At the implementation level we have to consider also the communication chan-
nels between E-W-C processes. If we exploit the structure-unaware programming
model, the set of processes of the farm must be supported with some checkpointing
technique to build or recover consistent states. This can be done by exploiting the
above definitions. For instance, suppose that the emitter process fails. One or more
workers are performing a previously assigned task. The scheduling messages of these
tasks are orphan if the emitter has not saved its state after the scheduling actions.

In our structure-aware model we can avoid the message re-sending from the
emitter process by exploiting the supporting data structures we introduced in this
chapter. During recovery, if the emitter is the only failed module, it re-builds the
information on scheduled input elements by interacting with workers and the collec-
tor. This support has been defined by exploiting the high-level properties of farm
computations, according to the I-Structure model (see Chapter 3).

Further consistency definitions can be derived by exploiting the so-called Z-
theory [68], to introduce Communication-Induced-Checkpointing (CIC) protocols.
These definitions give necessary and sufficient conditions for a checkpoint to be part
of a global consistent state. In practice, each checkpoint should not be part of a Z-
Cycle (see Chapter 2). If we consider the abstraction level of farm computations, we
can see that it is not possible to create Z-Cycles: the dependency graph originates
from the external module, which provides input elements, it includes one of the
workers and it terminates with another external module, which receives output
elements. Thus, at this level of abstraction this theory is useless.

Similar considerations are valid at the implementation level, because functional

80 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

dependencies between E-W-C processes “flow” in just one sense: from the OWP,
passing the emitter, the workers, the collector and terminating to the OWP. As
OWP is, by its definition, outside the application, we cannot consider this a Z-
Cycle. The only chance of building Z-Cycles is in the on-demand case, because
of the free streams from worker processes to the emitter one. If we apply a CIC
structure-unaware technique (for instance [52]) it is possible that these interactions
induce checkpointing operations on some processes. For the purposes of this thesis it
is necessary to evaluate in abstract, by applying the Z-theory, if such checkpointing
operations are actually forced and how these impacts on the farm performance.
We demand to future work this study and, below, we discuss why checkpointing
techniques are not well-suited for farm computations from a general viewpoint on
performance aspects, aside the considerations on consistency definitions we give here.
Anyway, apart of the issue of free streams in the on-demand case, whose solution can
be provided by considering the farm semantics (see below), we can deduce that in
farm computations no forced checkpoints will be induced. As a result CIC protocols
are a mix of uncoordinated (because of local process checkpointing) and globally
coordinated (because of interactions with OWP) checkpointing protocols.

In our solution we face with the possible inconsistencies built because of free
stream dependencies by noticing that, in the case of failure, it is useless to manage
such messages: the consistency of the farm is automatically guaranteed by the
functional stateless definition of the modules implementing farms. The losing of such
messages is supported with their re-sending, after a failure. Their duplication does
not influences the general semantics of the farm, but it only lowers the performance
of load balancing.

We also consider nondeterminism issues to compare structure-aware and unaware
checkpointing protocols. In our farm model, nondeterminism is relegated to the time
at which elements are received on the input stream, to the scheduling decision and
to the collection one. This information (on the relegation of nondeterminism) is
not available for structure-unaware techniques: any process can be affected by a
nondeterministic event. This must be properly supported classical checkpointing
techniques. Thus, also for this aspect, it is not possible to relax the hypotheses
of checkpointing protocols and provide a simpler technique for farm computations
w.r.t. the ones for structure-unaware computation models.

As far as concerns performance and performance analysis, two main issue must
be considered to compare structure aware and unaware techniques:

• according to any checkpointing technique, the states of the E-W-C processes
could checkpointed at any instant of time. For instance, checkpointing can
happen during the evaluation of the function F on the workers and during the
scheduling and collection phases on the emitter and the collector respectively
(this issue is central in [12]). If we consider the definition of E-W-C processes
we can see that their whole states1are useless for the purpose of re-building
global correctness in the case of failure. The supporting data structures we

4.5. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 81

exploit in our solution characterize the necessary and sufficient information
needed to re-start from a correct state after a failure. Again, this information
is collected, managed and recovered by exploiting the high-level properties of
farm computations; as a consequence checkpointing the state of farm imple-
mentation processes is just a source of performance overhead;

• the interactions with the Outside World Process must be supported with a
global coordination of the whole set of processes for all flavors of checkpoint-
ing protocols [39] (actually, it is a nonsense for uncoordinated checkpointing).
On the one hand each message receive event and each message sending event,
respectively on the emitter and on the collector, must start a global checkpoint-
ing. On the other hand a farm structure should be exploited (and actually
it is!) when the parallelism of workers can be fully used. That is, when the
frequency of input element arrivals is sufficiently high to allow all workers to
be evaluating a task in each moment of the computation. In other terms, there
should not be a moment in the time in which a worker is not evaluating a task
because there are not available ones. In our techniques the events “receive
an element from the input stream” and “send an element onto the output
stream”, in the worst case, correspond to a synchronous logging operation on
stable storage (if we choose synchronous logging for FT-Streams). It is simple
to see that a single access to stable storage, in the worst case, is less costly
than running a whole coordinated protocol (see Chapter 2) at the end of which
we have to perform N accesses to stable storage (with N equal to the number
of processes).

From these observations we conclude that the exploitation of checkpointing tech-
niques for farm computations imposes high degradations to its performance.

This evaluation can be also explained by considering the modularity and com-
posability of the parallel programs that can be expressed according to the struc-
tured parallelism paradigm. The drastic solutions to support the interactions with
the OWP in checkpointing protocols, based on global coordination of checkpoint-
ing operations, are due to the lack of a modular programming model, typical of
structure-unaware models (e.g. it is the case of MPI). In our approach modularity
and composition of parallel and sequential modules is exploited to support composi-
tion of fault tolerance techniques: these can be easily and soundly composed with the
FT-Stream abstraction and the resulting composition can be analyzed by exploiting
the farm cost models and the FT-Stream one (see Chapter 6). Fundamentally, it can
be argued that this is the result of a different definition of the behavior of the OWP
in our model (w.r.t. the ones made for classical checkpointing protocols). The OWP
behavior is encapsulated in the high-level properties of the FT-Stream semantics.

1In general, the state of a process includes its code and data sections and operating system data
structures and (in some cases) procedures.

82 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

4.5.2 Message Logging Protocols

Message logging protocols typically support uncoordinated checkpointing: inconsis-
tent global states, built because of the uncoordination of checkpointing operations,
are recovered to consistent ones by exploiting the logged determinants of the mes-
sages. A message logging protocol, to guarantee correct recovery, must implement
the so-called always no-orphan process conditions: during the execution there can-
not be any process which execution depends on nondeterministic events which de-
terminants are not logged on stable storage or cannot be replayed during recovery
[4]. Nondeterminism for this kinds of computations is relegated to message receive
events. That is, message logging techniques assume the Piecewise Nondeterminism
(PWD) hypothesis (see Chapter 2).

In the first part of this Chapter we have seen that the farm computation model
satisfy the PWD hypothesis: nondeterminism for farm is relegated in input stream
accesses and on scheduling and collection decision. Sequential computations of pro-
cesses is deterministic, given the same input messages (or elements). Input and
output streams are managed by means of FT-Stream, which is the structured way
of introducing message logging techniques. Scheduling and collection operations are
managed, during recovery by exploiting the knowledge of the structure of the farm
and its semantics. In fact, the always no-orphan condition is satisfied by our tech-
niques: by exploiting the high-level properties of the programming model we have
characterized the minimal information required to manage nondeterminism and to
re-build consistency after a failure. This information is organized in the supporting
data structures for farm, whose description is given in the implementation part of
this chapter.

We discuss also performance analysis in the case of exploitation of classic message-
logging techniques. While optimistic message logging must be supported with proper
operations to solve the Outer World Problem, pessimistic logging guarantee its so-
lution without any effort. The trade-off is clear: while optimistic message logging
performs asynchronously or in proper points in the execution the stable storage ac-
cesses, pessimistic logging performs them at each message receive. As a consequence,
pessimistic logging is (much) more costly than the optimistic one.

Consider to support message logging (both optimistic and pessimistic) at the
implementation level. As we do not have any information about the communications
or the structural shape of the computation, we cannot know which one is best-
suited to meet our needs. That is, we cannot statically analyze their impact on the
performance of the computation.

Causal message logging has been introduced to enable an optimization of this
trade-off. The always no-orphan condition is satisfied by exploiting the volatile mem-
ories of multiple application processes to store the determinants of the same nonde-
terministic event. Correct recovery requires much more effort than for pessimistic
logging, but it can be enabled by registering and storing antecedence information of
the dependencies between processes induced by communications. Also this informa-

4.5. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 83

tion is stored on the volatile memories of multiple processes and scattered by means
of application messages piggybacking. Anyway, it is difficult to understand statically
which is the actual impact on the performance of computations. While in practice
causal logging techniques perform well in some experiments (by fixing application
and execution environment), in theory there is not a cost model to describe their
impact of the performance.

Now consider the case of structure-aware programming model. We can access
the structural information of farm computations. In the previous sections we have
chosen a specific configuration, by implementing input and output streams with
synchronous-logging FT-Streams. Internal farm streams are not supported with
any logging technique. Cost models have been derived to statically analyze the
impact on the computation performance for this specific solution. Anyway, there
are multiple configurations which can be expressed for farm. For instance, we can
support synchronous (pessimistic) logging for all streams in the farm. In this case we
are implementing a pessimistic logging strategy. Cost models can be simply derived
by exploiting the high-level model of farm and FT-streams. In another case we can
avoid to support all streams with synchronous message logging. In our solutions,
we exploit asynchronous logging version of the FT-Stream and we can guarantee
recovery costs by exploiting implementation features (see Chapter 6). Also this
second limit case can be analyzed with specific cost models.

While in this thesis we presented the cost models for just one configuration,
we leave to future work the description of similar cost models for optimistic and
pessimistic logging techniques. In this way we give the application programmer a
analytical mechanism to select the most appropriate message logging flavor.

Finally consider causal logging techniques. Our solution is based on the depen-
dencies between input stream elements, workers and output stream elements. These
dependencies are mapped at the implementation level and collected, managed and
used to support correct recovery after a failure. That is, we have introduced some
kind of technique to manage antecedence graphs at the programming model level.
Thus, our solutions represent an optimized causal logging technique, based on the
structural hypotheses of farm computations. Unlike standard causal logging the
different configurations of our solution can be statically modeled by cost models.

As message logging techniques seem to meet more specifically the needs of (fault
tolerance for) farm computations, it could be useful to show, by means of experi-
ments, how we can configure message logging for farm to meet optimizations which
cannot be introduced in standard structure-unaware techniques. We demand to
future work this experimental session.

It has been noticed that message logging techniques are an optimized solution
for applications which, for several reasons, enjoy modular design and module com-
positions [64] (for instance, it is the case of cluster federations). In our model we
characterize this aspect in the FT-Stream model, which properties are exploited to
optimize the overhead as a proper configuration of the fault tolerance techniques.
This can be done because we exploit an high-level model based on structured paral-

84 CHAPTER 4. CHECKPOINTING AND ROLLBACK RECOVERY FOR FARM

lel programming. As a consequence, our techniques can be thought as an high-level
definition of the properties of message logging techniques which favor modular ap-
plications.

Chapter 5

Checkpointing and Rollback
Recovery for Data Parallel

In this chapter we present our study on fault tolerance for data parallel programs
based on the computation model and consistency definition introduced in Chapter 3.
We describe three different solutions, each addressing different kinds of optimiza-
tions, which influence the failure-free execution and the rollback recovery perfor-
mance:

• The first solution we present exploits just the (uncoordinated) checkpointing
of the local module states. The rollback recovery protocol is performed in
a synchronized fashion by all modules implementing the computation. For
this solution, we minimize the failure-free performance at the cost of a global
synchronization during rollback recovery.

• The second solution extends the previous one by checkpointing and copying to
stable storage also the computational step reached by a VPM. As a mapping
lies between the computational steps and the number that F is evaluated on a
VPM, this also means that the computational steps are checkpointed at each
evaluation of F locally on each implementation module. This information is
recovered and used in the rollback recovery protocol to minimize the number of
participating VPs (also called the rollback recovery width). The minimization
of the rollback recovery width is obtained at the cost of a local stable storage
access at each computational step.

• The last solution exploits the mapping between computational steps and the
stencil definition by introducing a logging mechanism: the elements exchanged
between VPMs, to implement the stencil, are checkpointed and saved on stable
storage. In this case the rollback recovery width is limited to the failed module
but at the cost of lower failure-free performance. This is due to larger and more
frequent stable storage accesses and to the exploitation of a message logging
technique.

86CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

Similarly to the farm case, we introduce an implementation strategy for data
parallel programs. The strategy is based on I-Structures that allow us to describe
the mapping between the local computation, the information exchanged between
VPs, and the values assumed by the state. Next, we present an implementation of
the strategy based on processes interacting through message-passing. At this level
of description, we show the implementation of the three checkpointing algorithms
and rollback recovery protocols.

5.1 An Implementation Strategy for Data Paral-

lel Programs

The implementation strategy is represented in Figure 5.1. At this level of descrip-
tion we define a computational unit as a Virtual Processor Module (VPM in short)
and we map abstract Virtual Processors in VPMs. Each VPM is responsible for
executing a subset of VPs and it owns their assigned elements as a local partition.
Stencils are implemented as interactions between VPMs, properly resolving the data
dependencies, and they consist in passing sub-parts of the local partition between
VPMs. Each VPM computation is characterized in steps, reflecting those of the
VPs. At each step a VPM evaluates the function F on all its assigned elements in
a sequential fashion. Each VPM is the only entity that can perform put operations
on its local partition (Owner-Computes rule). We model each VPM partition with
an I-Structure: each value assumed by the local partition of a VPM is placed at a
different position on the related incomplete structure.

As a rationale of this implementation strategy it should be noticed that it reflects
the abstract programming model by introducing a relationship between VPM com-
putational steps, and the values assumed by their local partitions. This is achieved
by modeling each local partition as an I-Structure. Figure 5.2 shows the pseudo-
code of a generic VPMi for a generic data parallel program. In the pseudo-code we
avoided to show the initialization phase performed by each VPM and we just show
the steady-state behavior. In this implementation strategy we map I-Structure po-
sitions onto integer values: the positions are counted by means of an integer variable
(step) which is incremented at each program loop. The ghosts variable represents
a set of references to neighbor sub-partitions obtained at each step according to the
stencil definition. We do not show how the computation terminates but we just use
a variable term, which we assume to be properly modified according to the program
semantics. At each iteration the program performs the following actions:

1. The VPM obtains the sub-partitions of its neighbors according to the stencil
(lines 5 to 10):

(a) It obtains a list of references to neighbor partitions by applying the sten-
cilNeighParts to the current step value and the VPM identifier. The

5.1. AN IMPLEMENTATION STRATEGY FOR DATA PARALLEL PROGRAMS 87

VPM

PP
1

0
S

S
1

2
S

N

N21

. . .

P

. . .

. . .

. . .

. . .

. . .VPM VPM

2

Figure 5.1: Implementation strategy for data parallel programs. Each VPM is
assigned a partition of the global state, modeled as a single I-Structure. The model
exploits a number of I-Structures equal to the number of VPMs. In this figure we
show that each VPM can access its local partition with put and get operations but
can access remote partitions, i.e. assigned to other VPMs, only with get ones.

function implements the VP stencil at the level of VPMs and it depends
of the mapping of the formers onto the latters.

(b) For each element in the neighbor partitions pList it obtains the edges of
the sub-partitions it needs to pass and

(c) It performs a get operation with the current step value.

(d) The obtained value is stored in the next free position of the ghosts
variable.

2. The VPM obtains the value of its partition (line 11). The myPart variable
contains a reference to the I-Structure that models the local partition of the
VPM. Notice that we exploit notation of the get operation used to access
the whole content of the I-Structure position. The result is stored on a local
variable localPart.

3. The VPM applies the function F to the local partitions, and the remote ghost
sub-partitions, obtaining a result (line 13).

4. The result is put on the next free position of the I-Structure that models the
local partition (line 15, 16).

88CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

1 pa r t i t i o n l o c a lPa r t ;
2 p a r t i t i o n s ghost s ;
3 int s tep = 0 ;
4
5 while (! term) {
6 pLi s t = s t enc i lNe i ghPa r t s (step , myid) ;
7 for each p in pLi s t do {
8 ghostEdges = obtainSubPart (p , step , myid) ;
9 p . get (step , ghostEdges , &tmp−ghost) ;

10 ghost s . add (tmp−ghost) ;
11 }
12 myPart . get (step , l o c a lPa r t) ;
13
14 r e s = F(l o ca lPar t , ghost s) ;
15
16 s tep++;
17 myPart . put (step , a l l , r e s) ;
18 }

Figure 5.2: VP pseudo-code of a generic data parallel program. The Partition data
structure implements the local partition of a VPM. The partitions data structure
implements a container of Partition data structures.

Notice that differently from the abstract model presented in Section 3.2.2, which is
based on the VP abstraction, in this implementation strategy there is an independent
I-Structure for each VPM. We map the sub-set of state elements assigned to a VPM
onto this I-Structure, according to the mapping between VPs and VPMs.

We map the relation L99 defined between state elements onto state partitions:

Definition 5 Pk depends of Pj at step i (Pk L99iP Pj) if there are two elements l,m
of S, for which Si[l] L99 Si−1[m], and S[l] ∈ Pk and S[m] ∈ Pj.

In other words suppose that the evaluation of F on an element of a partition Pk

needs the value of at least one element of another partition Pj. Notice that the
values of Pj are referred to the previous step. In this case Pk depends on Pj. The
definition of consistent states for data parallel computations can be based on the
definition of L99P :

Definition 6 A consistent state is a set composed of the local partitions of all VPMs
in which all elements included in all partitions are taken at the same computational
step. In other words it is not possible to relate (according to L99P) any pairs of
states in the set.

In this way we simply group the Ci sets defined in 3.2.2 in partitions assigned to
VPMs. This consistency rule will be exploited in the implementation that we show
in the next sub-sections, which is the basis to implement checkpointing algorithms.

5.1. AN IMPLEMENTATION STRATEGY FOR DATA PARALLEL PROGRAMS 89

Below we also exploit a L99V PM that relates VPMs instead of their partitions as
a mapping of L99P from partitions to corresponding VPMs.

5.1.1 Cost Model

We can instantiate the cost model of data parallel programs presented in 5.1 to
the implementation strategy of above. The step performance is the time needed to
perform a computational step. In this context it is referred to a VPM unit and it
consists of:

• Evaluating the function F on all elements of the local partition. We denote
with g the size of a local partition and with TF (g) the time needed to apply F
to g elements.

• Implementing the stencil with get operations applied to the I-Structure. We
denote this quantity as Tget(g), which value depends on the size of the local
partition.

• Copying each new computed partition values to the proper I-Structure by
means of a put operation. We denote this quantity with Tput(g).

The time needed to perform a loop iteration for a generic VPMi is:

T i
step = TF (g) + Tget(g) + Tput(g)

5.1.2 Implementation

We implement data parallel programs according to the strategy we described above
in a distributed environment. Thus, the computation consists of a set of processes
communicating through message passing. We map each VPM onto a process, whose
local memory includes (at least) the local partition of the mapped VPs. We place
a communication channel between each pair of VPMs1, which interact according to
the stencil definition. The messages exchanged between the processes implementing
the VPMs are the sub-partitions (or ghosts) exchanged between VPMs. One of
the solutions we present exploits the FT-Stream abstraction (see Section 4.4, and
Chapter 6) to implement message logging techniques. We also add a communica-
tion channel between each pair of VPMs to carry control messages related to the
rollback recovery protocols. We denote such channels as rollback channels or failure
notification channels, depending on the way in which the VPMs use them. Clearly,
this represents a simplification of optimized implementations of failure notification
sub-systems, and rollback recovery communications. We use this simplification to
abstract the specific needs of optimized supports: this allows us to make clear the

1At the implementation level we will use the term VPM to denote the process implementing an
abstract VPM.

90CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

description of the checkpointing algorithms and rollback recovery protocols. The
actual implementation of data parallel programs is described as a pseudo-code of
the behavior of VPMs and it includes the checkpointing algorithms.

5.2 Failure Model and Detection and Stable Stor-

age

We assume that the failure model is the fail-stop one [76] which is applied to VPMs:
a VPM can fail by stopping its execution. Other VPMs are informed of its failure
when they try to communicate with it. After a failure some sub-system restarts the
VPM on a computing resource and it provides it with the needed rollback recovery
information (see below). We avoid the description of the process restart sub-system.
When a VPM restarts it can send, by means of their failure notification channels,
a message to all other VPMs to indicate its failure and restart. This message is
eventually received at all destinations.

We assume reliability of communications between processes that have not failed.

We also assume that communications implementing stencils are atomic w.r.t.
failures. This means that we can provide a support to communication that makes
a set of communications performed at a same computation step atomic. For each
solution that we describe we also discuss when this feature is actually exploited and
on which sets of communications.

5.3 Coordinated Checkpointing and Global Roll-

back Recovery

The main feature of the first checkpointing algorithm we present is the low over-
heads it induces on processes: periodically each VPM checkpoints and saves on
stable storage its local partition. No further stable storage accesses are needed. The
checkpointing frequency is equal on all VPMs and it can be configured at compile-
time or dynamically. This last case can be obtained by implementing an atomic
modification of the value on the whole set of VPMs. The resulting checkpointing
algorithm is coordinated (according to the taxonomy in [39]), but it is totally asyn-
chronous, as each VPM checks locally for the reached computational step. The
coordination of checkpointing operations is used to dynamically build consistent
sets of local VPM states. The rollback recovery protocol, exploiting such consistent
states as rollback targets, involves the whole set of VPMs. This is a clear drawback
of this protocol and it represents the cost to be paid for exploiting a lightweight
checkpointing algorithm.

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 91

5.3.1 Checkpointing Algorithm

Here we informally describe the algorithm, give the pseudo-code for a generic VPM
and discuss its correctness. We do this by proving that it builds consistent states in
stable storage.

Informal description

In this algorithm each VPM exploits sequence identifiers to label evaluation steps,
reflecting those of the abstract definition of data parallel programs. Labels are
mapped onto integer numbers and they are implemented as an integer variable which
is local to each VPM. This is incremented at each evaluation of F. Checkpoints are
taken whenever the variable reach some threshold, which we require to be equal
for all VPMs. In the VPMs code we can implement the threshold as a constant
value or a variable, which can possibly be modified atomically during run-time on
all VPMs. Thus, the VPMs coordinately but asynchronously checkpoint their local
state elements on their portion of stable storage at the same step indexes: this
means that they independently check for the step value, and (if it is the case) they
copy the local partition to the stable storage, without any interactions with the
other VPMs. The checkpointed state element is labeled with the step index at
which it was taken. We guarantee consistency for dynamically built global states by
exploiting the assumptions on the parallel structure of data parallel programs. This
statement is proved below.

VPM pseudo-code

In Figure 5.3 we show the pseudo-code for a generic VPM which identifier is myid
and that performs the checkpointing algorithm. The actions performed by each
VPM are:

• Interactions with the neighbors, according to the stencil (lines 6-9). These
are implemented with receive operations on proper channels. The channel
list is obtained by applying the stencilInNeighChannels function, which
implements the stencil definition and the mapping of VPs onto VPMs. Notice
that there is a mapping between the get operations of the implementation
strategy (see Section 5.1). and the receive operations. This is due to the choice
of mapping each VPM in a separate process. Notice that in the pseudo-code we
also pass the current step value. This supports the elimination of duplicated
messages in the case of rollback recovery (see below). The elimination is
implemented at the level of the communication support.

• Evaluation of the function F on each element of the local partition (line 11).
We denote this operation in the same way in which we denote the function F,
even if we are applying it to multiple elements instead of a single one. The

92CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

1 pa r t i t i o n myPart ;
2 p a r t i t i o n s ghost s ;
3 int s tep = 0 ;
4
5 while (! term) {
6 ch InL i s t = stenc i l InNe ighChanne l s (step , myid) ;
7 int i = 0 ;
8 for each ch in ch InL i s t do
9 r e c e i v e (ch , &ghost s [i ++], s tep) ;

10
11 myPart = F(myPart , ghost s) ;
12
13 s tep++;
14 i f (s tep % CHK−DELTA == 0) {
15 s t s t−checkpo int (myPart , s tep) ;
16 }
17
18 chOutList = stenc i lOutNeighChannels (step , myid) ;
19 for each ch in chOutList do
20 send (ch , ghost (myPart , ch) , s t ep) ;
21 }

Figure 5.3: VPM pseudo-code extended with the first version of the checkpointing
algorithm. Each VPM periodically saves its local state partition on stable stor-
age. The partition and partitions data structures implements, respectively, a local
partition and a collection of partitions.

evaluation exploits also the neighbor elements (ghosts) that are received at
the beginning of the loop.

• Increment of the step variable, check for its value and (possibly) copy of
the local partition on the stable storage (lines 13-16). This part implements
the checkpointing algorithm. Notice that the computational steps are imple-
mented by means of a local private variable on each VPM. This is locally
incremented without exploiting any information provided from other VPMs.
We assume that the stable storage access is performed synchronously, i.e. the
VPM computation does not proceed until the checkpointing operation is ter-
minated.

• Passage of the local sub-partitions to other VPMs according to the stencil
(lines 18-21). The stencilOutNeighChannels function returns the chan-
nels on which sending sub-parts of the local partition. Clearly, each neighbor
VPM can need different partitions of the local partition. The ghost function
returns the correct sub-partition, by exploiting the channel identifier. In our

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 93

implementation the channel identifier on a VPM represents the identifier of
its neighbor. We also pass the current step value to send operations to sup-
port the elimination of duplicated messages. Notice that differently from the
implementation strategy of Section 5.1 a single put of the result, obtained by
the application of F, is mapped onto: (1) a copy of the result on the local
partition variable (myPart) and (b) multiple send operations to implement
the stencil.

The variable that implements the local partition of a VPM is overwritten at each
iteration, i.e. the variable does not implement an I-Structure. In fact, we exploit
the I-Structure model to implement the checkpointing algorithm: the checkpointed
state at each step s is saved to stable storage with the label s. The checkpoint is
not overwritten on stable storage, as we could need also old checkpoints (see the
rollback recovery protocol below). That is, the checkpointing algorithm is based on
the mapping between the sequence identifiers of state values and the computational
steps, which logic is given by the abstract I-Structure model.

Correctness of the Checkpointing Algorithm

Proving the correctness of the checkpointing algorithm consists in:

• Proving that it implements the consistency rule defined at the level of imple-
mentation strategy.

• Proving that it builds consistent “global” states, according to the literature
consistency rule 3. That is, the checkpointed states, which are built according
to our abstract rule, do not include orphan messages.

It is trivial to map the L99V PM relation onto a relation between the corresponding
processes that implement the VPMs. Next we can prove the following:

Theorem 5.3.1 The set of checkpoints of VPMs taken at the same iteration of the
data parallel loop is consistent.

Proof 5.3.1 To prove this theorem we have to prove that all the elements collected
from VPMs at the same step are results of the same number of evaluations, i.e. the
value assumed at the same computational step.

We first consider the values of the elements in a same partition. A single VPM
is responsible for evaluating the function F on each elements in its partition. At
each program loop F is applied to all elements in the local partition. For some
elements the evaluation can be void in the sense that we simply apply the identity
function to the element. Consequently, the elements of a partition checkpointed to
stable storage at the same evaluation step are all results of the same number of
evaluations, corresponding to the value of the step variable.

94CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

Now consider multiple partitions. We logically label each checkpointed partition
with the step value at which the local snapshot is taken. According to the check-
pointing algorithm partitions on different VPMs are checkpointed to stable storage
at the same computational steps. This is true because the CHK-DELTA value is
the same on all VPMs at any instants of time. Consequently, locally to a VPM all
elements in the same checkpoint are result of the same number of evaluations, which
corresponds to the local partition label. Globally the set of local checkpoints labeled
with the same step value includes elements which are results of the same number
of evaluations. This proves the consistency of a set of checkpoints which are taken
taken at the same step according to the Definition 6.

As a lemma of this theorem we have the correctness of the algorithm:

Lemma 5.3.1 The checkpointing algorithm builds global consistent states, according
to Definition 6.

We have now to prove the actual correctness of the protocol, w.r.t. the definition
given in literature (Definition 3).

Theorem 5.3.2 A global consistent state, which is built by the checkpointing algo-
rithm, is consistent w.r.t. definition 3.

Proof 5.3.2 We have to prove that for a consistent state built by the checkpointing
algorithm there are no orphan messages, i.e. there is no a message m which send
operation is not included in the state but the receive one is. More precisely: if the
state of a VPM process A includes the event “receive(ch-from-B,m)”, then the state
of the process B must include the corresponding event “send(ch-to-A,m)”. ch-from-B
and ch-to-A are the channel references on A and B which link them.

Consider the checkpoints taken by all VPMs at step s. If the state is not consis-
tent there exists an orphan message m from VPMi to VPMj. The set of checkpoints
reflects the reception of m by VPMi, but not its sending from VPMj. This means
that VPMj sends m some step after the checkpoint at step s and that VPMi receives
it before s. Denote with t the step at which VPMi receives m and with p the step
at which VPMj sends it. We know that t < s and s < p. For transitivity we have
that t < p. This means that m is sent at a given step and received some step before.
This is in contrast with the assumptions of Sect. 3.1.2, for which a message sent at
a given step is received at the very same step. Consequently there cannot be orphan
messages in the set of checkpoints.

Here we give an example of how the checkpointing algorithm works, and how
it builds global consistent states for a specific data parallel program. Consider the
execution of a simple fixed stencil data parallel shown in Figure 5.4. The behavior
of each VPM (locally) alternates communication to computation. The end of each
computation can include the (independent) checkpointing of the local state, which in

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 95

. . .

. .
. . .

R

S

R

S

S

R

R

S

. .
. . .

R

S

R

S

S

R

R

S

i!2VP

i+1VP

iVP

i+1VP . . .

F

F

. .

. . .

. . .

. . .

. . .

. . .
. .

F

F

F

F

F

.
. . .

i+2VP

. . .

. . .

. . .

. . .

C

CF

C

CF

F

C

Figure 5.4: Representation of execution of a fixed stencil data parallel program,
where each VP passes its local state to the upper VPM.

the figure is represented in black. Again, it is important to notice that the execution
of VPMs is asynchronous, and it is only constrained by the program stencil and the
asynchrony degree of communications. As we have highlighted in Section 3.1.2
VPMs can execute a different steps of evaluation.

After a checkpoint is taken, each VPM performs a send of the local state to
the upper neighbor and it receives a partition of the state of the lower neighbor.
Suppose now that VPMs are executing at some (possibly different) steps after the
shown checkpoint step s. Suppose also that VPMi fails at step f (not shown in the
figure) and it rollbacks to its last checkpoint at step s. For the sake of discussion,
assume that all other VPMs will eventually rollback to the same checkpoint step (as
the rollback recovery protocol presented below actually does). The set of checkpoints
{C1, . . . , Cn} represents a consistent state if it does not include orphan messages.
The undone send operations are those from the failure step, to s. We have to show
that also the corresponding receive operations are undone. All VPMs rollback to the
same checkpoint step: all receive operations preceding s are not undone, while all
those following s are undone. According to the data parallel programming model,
the send operation related to the state computed by VPMi at the step s will be used
at some step after s. But all receive operations on all VPMs after s are undone,
and there are no orphan messages. This applies to all other VPMs. Consequently,
orphan messages are not included in the checkpointed state. From the figure we can
observe that this can be derived from the property for interactions between VPMs
introduced in Section 3.1.2: each evaluation is related to the local and remote state
element values computed at the previous step.

It is important to notice that another class of messages, i.e. lost messages, are
not created by the checkpointing algorithm. Lost messages are those whose send
operation is not undone, whereas the receive one is undone. Similarly to orphan

96CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

messages, we can prove that no lost messages are created:

Theorem 5.3.3 No lost messages are included in a global consistent state.

Proof 5.3.3 Similarly to the proof of the previous theorem, consider a global check-
point performed at step s. Suppose an orphan message is sent at step t, with t < s,
and received at step p, with s < p. For transitivity we have that t < p. This is not
possible under the hypothesis of the data parallel model, because a message sent at a
step s is received at that very same step.

5.3.2 Global Rollback Recovery Protocol

The rollback protocol, for the checkpointing algorithm described above, involves the
whole set of VPMs, and it selects the last consistent global checkpoint that all VPMs
have passed. The protocol synchronizes all VPMs to avoid inconsistencies due to
their asynchronous execution. The recovery protocol is performed after the rollback
one, from a consistent state: it consists in a re-execution of the lost computation
steps, as in a normal execution. The protocols are designed to manage also:

• Concurrent failures, i.e. the concurrent failure of multiple VPMs. In these
kinds of situations, multiple VPMs can start the execution of an instance of
rollback recovery. Multiple instances are merged together, by selecting one of
the failed VPMs as leader.

• Recursive failures, i.e. failures of the same VPM during the rollback protocol.
In this case a new instance of the rollback protocol is started.

• Recovery failures, i.e. failures happening during the rollback protocol. Also in
this case, a new instance of rollback recovery is started.

During the execution of rollback recovery, the VPMs exchange control messages.
Such messages are not copied to stable storage (either synchronously or asyn-
chronously). In the case of one of the above failures, the information related to
the rollback recovery protocol in execution is lost. This is a choice, which can
possibly be changed with the aim of minimizing the cost of rollback recovery.

Rollback Protocol Description

We assume that whenever a failure affects one of the VPMs, say VPMf , all the other
ones are eventually informed of its failure. This behavior reflects the asynchronous
execution of VPMs: when VPMf is restarted it notifies all other VPMs of its failure
by sending a control message (see below for the messages used in the protocol). If
some of the other VPMs attempt to communicate with a failed VPM during the fail-
ure, a fault exception is returned from the communication subsystem. Along with
failure detection provided by the communication support, each VPM checks at the

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 97

beginning of each step if any of its rollback channels contains a failure notification.
We extend the VPM implementation to manage communication failures and notifi-
cations in the pseudo-code of Figure 5.5. All communication operations are checked

1 pa r t i t i o n myPart ;
2 p a r t i t i o n s ghost s ;
3 int s tep = 0 , r e s = OK;
4
5 while (! term) {
6 ch InL i s t = stenc i l InNe ighChanne l s (step , myid) ;
7 int i = 0 ;
8 for each ch in ch InL i s t do
9 r e s = r e c e i v e (ch , &ghost s [i ++], s tep) ;

10 i f (r e s == ERROR) r o l l b a c k (ch) ;
11
12 myPart = F(myPart , ghost s) ;
13
14 s tep++;
15 i f (s tep % CHK−DELTA == 0) {
16 s t s t−checkpo int (myPart , s tep) ;
17 }
18
19 chOutList = stenc i lOutNeighChannels (step , myid) ;
20 for each ch in chOutList do
21 r e s = send (ch , ghost (myPart , ch) , s tep) ;
22 i f (r e s == ERROR) r o l l b a c k (ch) ;
23
24 i f (isVoid−f a i l u r e −ch () == fa l se) r o l l b a c k (nu l l) ;
25 }

Figure 5.5: VPM pseudo-code extended with the handling of communication prim-
itives. The rollback() function is the routine that performs the rollback recovery
protocol as non leader VPM. The isVoid-failure-ch() function checks if the failure
notification channel is void, and the VPM possibly performs the rollback protocol.

for errors: in the case of detection, the VPM performs the rollback protocol. To
simplify, we assume that the error management on receive operations for application
channels returns the control to the caller also if any of the rollback channels received
a failure notification. Moreover, at the end of each loop, the VPMs check for the
failure notification channels if some of the other VPMs have sent a rollback message
to denote the request of execution of an instance of the rollback recovery protocol
(denoted with the isVoid-failure-ch function). During the time between a failure
notification is sent and received, other VPMs go on in the computation, possibly
communicating to implement the stencil. Some of them can eventually receive a

98CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

failure notification because of dependencies on a failed VPMs. They can also stop
attempting to communicate with some VPMs that received a failure notification,
and are waiting to perform the rollback protocol. During this time, further failures
can be incurred by notified VPMs that, generally, lose the notification messages
(as explained above). The rollback protocol manages concurrent failures as multi-
ple rounds, and by forcing all VPMs to choose the same rollback step. We exploit
the ordering relation between steps, implemented as integer values, to choose from
multiple rollback steps: suppose that k VPMs fail concurrently and/or recursively.
Suppose that VPMm is the one executing at the lowest step index, and that its last
checkpoint is at step min. VPMm can be any VPMs, i.e. both a failed and not-failed
one. The protocol forces all VPMs to choose min as rollback target from all other
proposed steps. In the case that two failed VPMs propose the same rollback step we
exploit the ordering between VPM indexes to select a leader of the rollback protocol.

As far as concern the rollback recovery protocol, the messages used in the pro-
tocol are:

• Rollback messages, sent by a failed and restarted VPM to all other VPMs. It
includes the name of the failed VPM and its rollback step.

• Acknowledgment messages (ack in short), sent by a notified VPM after it has
received a rollback message. It includes its identifier, and its last checkpointing
step.

• Restart messages, used by one of the concurrently or recursively failed VPMs
to restart the computation after a rollback. It includes the minimum rollback
step proposed during the rollback.

These messages are those exchanged in the case of failure to implement rollback
recovery protocols, exploiting the rollback channels. Their reception, as seen above,
takes place on the rollback channels of each VPM. Notice that, due to the asynchrony
of the transmission between different processes, we cannot guarantee the ordering of
messages sent from the same sender to the same destination on different channels. In
other words, we cannot guarantee causal ordering of messages on different channels
(see Chapter 2).

We first give a detailed description of the behavior of VPMs performing the
rollback protocol. Next, we show the pseudo-code of the protocol.

• A failed and restarted VPM starts a rollback protocol as leader, by sending all
other VPMs a rollback message, including its selected rollback step, and its
name. The send operations are checked for failures. Concurrent failures are
discussed below.

• All other VPMs eventually receive the rollback message, and answer the notify-
ing VPM with an acknowledgment message, including their last checkpointing
step.

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 99

• The leader VPM receives an ack message from all other VPMs, and it selects
the minimum checkpointing step min from the proposed ones.

• The leader VPM sends a restart message including the min rollback step.

• At the end of the protocol, all VPMs know the checkpointing step: they obtain
the checkpointed state from the stable storage, and they clear the application
channels to avoid duplicated messages. Finally, they restart the execution
from that step by properly modifying the local variables.

The clearing of the application channels is not sufficient to avoid all duplicated mes-
sages, but only those that have been received until the end of the rollback protocol.
There can still be application messages that are sent before the start of the roll-
back protocol, and received after its termination. This can happen because, as we
notice above, we exploit two different channels for rollback control messages and
application messages, and their ordering cannot be ensured in the hypothesis of
complete communication asynchrony. These messages will be regenerated during
the re-execution and as such duplicated. Their elimination is relegated to the com-
munication support, which exploits the step values piggybacked to each application
message (provided with the send operations), and the step values provided with the
receive operations.

We describe an example of the rollback recovery protocol execution in order
to study some interesting aspects. Figure 5.6 shows a simple case of four VPMs
exchanging the messages during the rollback recovery protocol. A is the failed and

r1

r1

1r

r1

1

0<

r

r0

0r

r0

r
R

t

NM

restart
ack
rollback

D

C

B

A

PO

Figure 5.6: Temporal representation of the messages exchanged during the rollback
protocol. We only show the answer by D (r0) because its rollback step is lower than
all the other ones.

restarted VPM. After its restart, A sends a rollback message to all other VPMs,
indicating its name and the step from which it was restarted, namely r0. After

100CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

sometime all VPMs receive the rollback message. In the most general case, suppose
that B and C are executing after r0 and that D is executing at r1, with r1 < r0: the
protocol selects r1 as the rollback target of all VPMs; D answers to A with an ack
message, including its last checkpointing step. A decides for r1, and it sends all other
VPMs a restart message including r1; next, all VPMs recover their r1 checkpoint
from stable storage, and they restart the execution. To avoid inconsistencies in
message passing, the communication channels for application messages are cleared.

We also have to discuss failures during the communication operations (see the
VPM pseudo-code in Figure 5.5, lines 5 to 10, and 19 to 23). For this kind of protocol,
all VPMs rollback to a common checkpoint and restart the execution from the same
step. Consequently, previously sent messages will be completely replayed during
recovery (this corresponds to a full re-execution). Message channels can be cleared
at the beginning of the recovery phase. Also partial execution of the communications
performed before any failures are cleared from the recipients. Thus, no atomicity is
required to support both the set of send and receive operations.

We define the notion of concurrent failure as the failure of a VPM (possibly the
same failed before) while it is performing the rollback protocol. We define recovery
failures as those happening during a re-execution. In Figure 5.6 consider the failure
of D during the rollback protocol. We have different scenarios depending on the
concurrency of events.

We define the time intervals during the rollback protocol (M, N, O and P) to
describe the actions performed in the case of failures during rollback. Each such
interval is referred to each VPM:

• The interval M starts from any point in the execution and it terminates when
the rollback message is received.

• The interval N starts from the receiving of the rollback message and it termi-
nates when the acknowledgment is returned to the leader.

• The interval O starts from the sending of the acknowledgment to the leader
and it terminates when the restart message from the leader is received.

• The interval P is any point in the execution after the restart message is re-
ceived.

We now describe the behavior of VPMs in the case of recursive failure. The
first two behaviors below are related to concurrent failures, whereas the third one is
related to recovery failures:

• if D fails during M : the send operation from A to D fails and an error is
returned to A. A knows now that D has failed and it waits for a rollback
message instead of the ack one. A postpones the restart message after the
decision about the new leader of the rollback will be taken. All other VPMs,

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 101

while waiting for the restart message, will eventually receive the rollback mes-
sage from D. Thus, they will decide a new rollback step and a new leader. The
leader VPM is the one proposing the oldest step: in this way we guarantee the
same choice is taken by all VPMs. If A is the leader it receives the D rollback
message, it checks that its step is older than the one proposed by D and it
re-sends the same rollback message to D. This decision is taken locally by
all other VPMs. Otherwise, if D proposes the oldest step, A is not anymore
the leader and it will answer to D with an ack message. Also this decision is
taken locally on all other VPMs. The leader VPM terminates its round of the
rollback protocol and a new round, with D as leader, is performed. If equal
steps are proposed, A is chosen by all VPMs as the leader of the protocol
(exploiting in this case the lexicographic ordering between VPM names). This
is the reason behind the introduction of VPM names in the rollback control
message. Notice that we do not need to exploit a group membership service
to guarantee a same view of active processes. This is due to the fact that we
assume that processes are restarted and that the re-start sub-system provides
a failed VPM with its identity.

• if D fails during N : A attempts to receive the ack message from D and the
communication support notifies it of the failure. The protocol is similar to
the above one but it can happen that A receives an ack message from one of
the non-failed VPMs indicating a different step than the one it notified. This
can happen if one of the VPMs receives the rollback message from D before
the one from A. In this case, A knows that at least another failure happened,
and it waits for the rollback message from D. This is the motivation behind
the introduction of the rollback step in the ack messages. This behavior is not
strictly required for the correct execution of the protocol but it optimizes the
dissemination of the failure information.

• If D fails during O or P : D has yet sent its checkpointing step to A. A new
instance of the rollback protocol will be re-executed with D as leader. As no
further computation is performed D will decide the same checkpointing step
selected as a result of the previous protocol. This happens in both the case of
failure during O and P : the only difference is that A can detect the failure of
D when sending the restart message, and it can automatically wait for the D
rollback message rather than performing unuseful computation. In the next
instance of the protocol, all VPMs propose the same checkpointing step, and
D remains the leader of this protocol, if no further failures happen. If other
failures affect the rollback protocol, we apply the same scheme we described
in these three points.

Notice that recursive failures can be seen as an instance of the above points because
survived VPMs receive multiple instances of rollback message from the same VPM.
The proposed step is the same at each recursive failure because the failed VPM

102CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

cannot execute some steps until the rollback protocol is terminated. The survived
VPMs, which receive multiple rollback messages from the same VPM, simply re-start
the rollback protocol from its very beginning.

5.3.3 Protocol Pseudo-Code

We give the pseudo-code of VPMs related to the rollback protocol. The pseudo-code
is in the style of a generic imperative language.

The procedure described in Figure 5.7 implements the protocol performed by a
failed and restarted VPM. The parameters passed to the procedure from the restart
sub-system are the VPM identifier (i) and its nearest checkpointing step r. The
getRollbChannels function returns the list of input and output rollback channels
from and to all other VPMs, given a VPM name. The results are stored in two local
list. In the first part (lines 9 to 21), the VPM sends to all other VPMs a rollback
message which indicates its identity and its rollback step. Each communication is
checked for failure: in the case one of the other VPMs fails (case M of Figure 5.6)
a new leader is elected. The VPM waits for the rollback message from the other
failed and restarted VPM. The pairs exchanged between VPMs include the rollback
step and a VPM identifier. Two pairs p1 = (r1, i) and p2 = (r2, j) can be related
according to the following rule2:

p1 > p2 ⇔ r1 < r2 ∨ r1 = r2 ∧ i < j

This rule is implemented in the decideLeader function (see Figure 5.8). Notice
that the two pairs are received from all VPMs before the restart message of the
initial protocol is sent: this because the leader of that protocol waits for the rollback
message from the new failed VPM. If the VPM is still leader of the rollback protocol,
we re-send to the new failed VPM the same rollback message that we previously
sent. In this way it can decide the new leader. To re-send rollback messages to
concurrently failed and restarted VPMs we have to perform this sequence of actions
until all VPMs have decided the same leader. If the VPM is not anymore leader, it
performs the rollback protocol as simple participant. From line 23 to 36, the leader
VPM receives the acknowledgment messages. In the case of concurrent failures (case
N of Figure 5.6), we decide a new leader, as above. At each received ack message, we
check for the proposed value, and we possibly set a new minimum. Next (lines 38 to
46), the leader VPM sends to all other VPMs the decided minimum. Failures in this
phase (case O of Figure 5.6) are managed by sequentializing a new instance of the
rollback protocol. The leader VPM detecting a failure, does not start a new leader
election, but it waits for a new rollback message from the newly failed VPM (or from

2There is no apparent reason behind the choice of exploiting the proposed rollback step to
decide which is the leader of a protocol. The actual reason behind this choice is that we can simply
extend this protocol if we make this assumption. Essentially, in the extension we choose from only
the rollback steps of failed VPMs and not from all VPMs. We do not show the extension in this
thesis.

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 103

1 fa i l edAndRestarted (name = i , ro l l back−s tep = r) {
2 //we assume r i s the minimum
3 ro l l back−s tep min = r ;
4
5 (CH−IN−List ,CH−OUT−L i s t) = getRol lbChannels (i) ;
6
7 outTmp = CH−OUT−L i s t ;
8
9 while (isEmpty (outTmp) == fa l se) {

10 for each ch in outTmp −> {
11 try {
12 send (ch , ‘ ‘ r o l l b a c k (i , r) ’ ’) ;
13 } catch (Fa i l u r e) { // wa i t s f o r r o l l b . message
14 ch−in = getInFromOut (ch) ;
15 bool iAmLeader = dec ideLeader (i , r , ch−in)
16 i f (iAmLeader == fa l se)
17 partRol lback (i , r , ch , ch−in) ;
18 }
19 remove (ch , outTmp) ;
20 }
21 }
22
23 while (isEmpty (outTmp) == fa l se) {
24 for each ch in CH−IN−L i s t −> {
25 try {
26 r e c e i v e (ch , ‘ ‘ ack (i , s) ’ ’) ;
27 i f (s < min) min = s ;
28 } catch (Fa i l u r e) { // wa i t s f o r r o l l b message
29 ch−in = getInFromOut (ch) ;
30 bool iAmLeader = dec ideLeader (i , r , ch−in)
31 i f (iAmLeader == fa l se)
32 partRol lback (i , r , ch , ch−in) ;
33 }
34 remove (ch , CH−IN−L i s t) ;
35 }
36 }
37
38 bool immediateRestart = true ;
39
40 for each ch in CH−OUT−L i s t −> {
41 try {
42 send (ch , ‘ ‘ r e s t a r t (i , min) ’ ’) ;
43 } catch (Fa i l u r e) {
44 immediateRestart = fa l se ;
45 }
46 }
47
48 i f (immediateRestart == true) {
49 myPart = s t s t−r e cove r (min) ;
50 c l ea rApp l i ca t i onChanne l s () ;
51 r e s t a r t from min ;
52 } else {// I w i l l r e c e i v e a r o l l b message
53 <wait for r o l l b a c k message>
54 }
55 }

Figure 5.7: Pseudo-code of a failed and restarted VPM for the first rollback recovery
protocol.

104CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

1 bool dec ideLeader (name = i , r o l l b a c k step = r , channel = ch)
{

2 r e c e i v e (ch , ‘ ‘ r o l l b a c k (j , s) ’ ’) ;
3 i f ((r < s) | | ((r == s) && (i < j))) { // I am l eade r
4 return true ;
5 }
6 return fa l se ;
7 }

Figure 5.8: Pseudo-code of the function performed by the leader of a rollback pro-
tocol in the case of concurrent failures.

other failed VPMs). If no failures are detected, the VPM restarts its execution from
the selected minimum: it recovers the checkpoint that corresponds to the minimum
step (line 49) and it clears the communication channels for application messages
(clearApplicationChannels procedure).

In Figure 5.9 we show the behavior of a VPM participating in the rollback
protocol (not as leader). The very same actions described above (see the previous
subsection) are performed. Notice that, before receiving a restart message, we check
for the presence of rollback messages on the input rollback channel. These are the
channels on which any other VPMs sends its rollback message in the case of failure
and restart. If another VPM is failed, a new leader can be locally decided with the
same rule of above. If the leader changes, the rollback protocol is restarted from its
very beginning. Also notice that we check for the leader failure (recursive failures)
and that we manage this case by restarting the rollback protocol. When a round
terminates, i.e. a restart message is received, a VPM recovers the checkpointed state
from stable storage, clears the communication channels for application messages, and
restarts the execution from the selected step.

5.3.4 Correctness

The described rollback protocol is based on the well-known notions of leader election
and rotating coordinator [26, 86] (where, in our terminology the coordinator is the
leader). A new leader is elected at each concurrent failure, according to the rule
described above. The choice is independent of the precedence of failure events and
rollback notifications, because it only depends on the proposed rollback step and the
VPM identifier. Each new leader election corresponds to a new round of the rollback
protocol. Each round can terminate by deciding for a rollback step. Otherwise it
can fail by incurring in a rotation of the leader due to a concurrent failure. Indeed,
the rotation is needed to ensure that all VPMs participating in the protocol actually
choose the same leader independently of the local sequence of events.

The correctness proof consists in proving that, in spite of k concurrent failures

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 105

1 partRol lback (name = i , r o l l b a c k step = r , channel ch−out ,
2 channel ch−in) {
3 try {
4 send (ch−out , ‘ ‘ ack (i , r) ’ ’) ;
5 } catch (Fa i l u r e) { // r e cu r s i v e f a i l .
6 partRol lback (i , r , ch−out , ch−in) ;
7 }
8
9 // check f o r my r o l l b a c k input channel

10 i f (isEmpty (mych−in) == fa l se) { //new r o l l b mess .
11 r e c e i v e (mych−in , ‘ ‘ r o l l b a c k (k , s) ’ ’) ;
12 i f ((k < r) | | ((k == r) && (s < i))) { // s new l eade r
13 partRol lback (i , r , getOutChannel (s) , getInChannel (r)) ;
14 }
15
16 try {
17 r e c e i v e (ch−in , ‘ ‘ r e s t a r t (i , min) ’ ’) ;
18 } catch (Fa i l u r e) { // r e cu r s i v e f a i l .
19 partRol lback (i , r , ch−out , ch−in) ;
20 }
21
22 myPart = s t s t−r e cove r (min) ;
23 c l ea rApp l i ca t i onChanne l s () ;
24 r e s t a r t from min ;
25 }

Figure 5.9: Pseudo-code of the function performed by a VPM participating in the
rollback protocol not as leader.

106CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

(failures in M or N of Figure 5.6):

• All VPMs eventually elect the same leader, and

• After the last concurrent failure all VPMs decide for the same rollback step.

To prove these points, we start from some lemmas:

Lemma 5.3.2 The rollback protocol is correct in spite of a single failure.

Proof 5.3.1 Obvious from the algorithm: the leader is the failed and restarted VPM.
It receives the proposed steps appended to ack messages, it locally computes the
minimum, and sends all other VPMs the decided step.

Next, we consider concurrent failures. We start from proving that, in the case of a
concurrent failure, all VPMs take the same decision: they either start a new round,
or sequentialize the management in a new rollback protocol.

Lemma 5.3.3 Suppose VPMs are in a round di of the rollback protocol and that
one of them fails. All other VPMs uniquely decide to either start a new round or
sequentialize the management in a new protocol.

Proof 5.3.2 We can prove that it is not possible that two VPMs decide differently
on the action to be undertaken. Consider four VPMs (named L1, L2, S, and T):
L1 is the leader of the current protocol; L2 is the concurrently failed VPM and we
assume that L2 becomes leader of the new protocol; S and T are participants to
the current protocol. We consider the different cases that can happen w.r.t. the
concurrency of events.

Suppose that L2 fails before it can send the ack message to L1 (case M and N).
To consider a new round S and T have to receive its new rollback message either
before the one from L1, or after it and before they can send the ack message. To
sequentialize the protocols S and T have to receive the L2 message after they have
sent they ack message. Suppose that T receives the L2 message in the first case
(before sending the ack message to L2). In this case, it decides for a new round.
The current protocol cannot be terminated, as L1 will not receive the ack from T. S
will not receive the restart message from L1. S and L1 eventually receive the rollback
message from L2, and they can decide for a new round with its new leader.

Suppose that T receives the rollback message from L2 after sending its ack mes-
sage to L1. T sequentialize the protocol. The case of S receiving the notification
from L2 before it can send its ack message to L1 is the same of the previous with S
and T inverted. If S receive it after sending the ack message to L1, then it decides
to sequentialize the protocol.

Finally assume that: (a) S decides for a new round, i.e. it receives the L2 rollback
message before sending the ack message to L1; (b) L1 decide to sequentialize the
rollback protocol for the L2 failure, i.e. L2 failed after sending to L1 the ack message

5.3. COORDINATED CHECKPOINTING AND GLOBAL ROLLBACK RECOVERY 107

for the current protocol. For L1 to send its restart message, it is required to it to
have received an ack from all other VPMs. But we have assumed that S does not
send its ack message to L1. Thus, the hypothesis is wrong, and S and L1 decide for
a new round.

Consequently, no two pairs of VPMs decide for a different behavior.

Now we consider the whole set of rounds. The main problem is represented
by the asynchrony of communications. In principle each VPM can start a different
rollback protocol, each performed for a different failure. In the following theorem we
consider multiple concurrent failures and multiple VPMs starting a different rollback
protocol with a different leader. We prove that, at the end of the protocol, all VPMs
have decided the same leader.

Theorem 5.3.4 The same leader is elected from all VPMs in spite of k concurrent
failures.

Proof 5.3.4 Consider k concurrent failures and k VPMs respectively notified of the
failures. Suppose that each notified VPM receives the failure notification from a dif-
ferent failed VPM. In other words, we have k leaders each notifying (at least) one
VPM. According to the previous lemma, as failures are concurrent, all VPMs decide
to make a new round of the protocol, every time they are notified. Denote the k noti-
fied VPMs with {Vi}i∈1,...,k, each starting in a different round {ri}i∈1,..K. Concurrent
failures prevent each round to terminate the rollback protocol in a decision. Each
VPM is eventually notified of all other failures before the termination of any previous
rounds. We denote the set of decisions taken by Vi at the j-th failure notification as
di

j. Thus, Vi takes the following set of decisions: Di = di
1, d

i
2 . . . , di

k. Each decision
consists in applying the decision rule of above, by computing a minimum between
two pairs (step and VPM index). The minimum function features commutativity in
the sense that its result is independent of the sequence of the factors. In other terms,
if we denote with ⊕ the rule above, we have that (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c). Con-
sider the whole set of decisions taken by all VPMs. We have the sets D1, . . . , Dk

each corresponding to different sequences of decisions, i.e. application of ⊕ to a
different sequence of operators. Denote with ri = Di the result of the sequence of
decisions taken by Vi. As the ⊕ operations is commutative we can conclude that
r1 = r2 = . . . = rk, i.e. all VPMs eventually decide for the same leader.

After the last failure a leader is eventually elected, and all other VPMs are required
to send to it their proposed step:

Lemma 5.3.4 After all failures the leader eventually receives an acknowledgment
message from all other VPMs.

Proof 5.3.3 Obvious from the algorithm: at the last round all VPMs restart the
rollback protocol by sending their ack message to the new leader.

108CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

As a consequence of theorem 5.3.4 and lemma 5.3.4, we obtain:

Theorem 5.3.5 The rollback protocol is correct in spite of concurrent failures.

Proof 5.3.4 Consequence of lemmas 5.3.4 and 5.3.4.

5.3.5 Overhead of Checkpointing and Performance of Roll-
back

We model the performance of the presented implementation of data parallel pro-
grams with two metrics:

• The cost of a computational step. This is a mapping of the abstract cost
models presented in the previous sections.

• The cost of performing the rollback protocol.

The cost of a computational step is similar to that of the implementation strategy,
in which we replace put and get costs with communication costs. For each loop in
which we do not perform checkpointing and stable storage access each VPM pays:

• The cost of evaluating F on all elements of the local partition. As above, we
denote this quantity with TF (g), where g is the size of the local partition.

• The cost of receiving the elements from the neighbors. We denote this quantity
with Tstenc−in(g, i), which depends on the cost of receiving a message, the
average size of partitions g and the step index that we are performing. We
instantiate the cost w.r.t. the step index, because of the possible variability of
the stencil.

• The cost of sending sub-partitions of the local one to neighbor VPMs. We
denote this quantity with Tstenc−out,i(g, i), which depends on the send commu-
nication latency, the average size of partitions g and the step index that we
are performing.

The quantities Tstenc−in(g), and Tstenc−out(g) are instantiated with the actual stencil
of the program. The time needed to perform a step is:

Tstep,i = TF (g) + Tstenc−in(g, i) + Tstenc−out(g, i)

If we denote with Tchk(s) the function modeling the cost of checkpointing and
copying to stable storage a data of size s we can express the cost of a step in which
we perform checkpointing as:

Tstep−chk,i = TF (g) + Tstenc−in(g, i) + Tstenc−out(g, i) + Tchk(g)

We analyze the cost of the execution of an instance of the rollback protocol in
the case of a single failure: we consider the time that passes between the failed VPM
starts to send the rollback messages, and the time at which the last VPM receives
the restart message. The time is a sum of the following quantities:

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY109

• The communication latency for the rollback messages to all VPMs. This cost
depends on the available support: if a multicast operation is supported, com-
munications can be performed in overlap w.r.t. each others, and we pay
the cost of a single communication Trollback = Tsend(rollsize), where rollsize
is the size of the rollback message. If multicast is not supported, the cost is:
Trollback = N · Tsend(rollsize), where N is the number of VPMs.

• The maximum time needed by VPMs to detect the failure. This is upper
bounded by the time Tstep needed to perform a computational step, in the
worst case.

• The communication latency for the acknowledgment messages. This costs as
N communications: Tack = N · Tsend(asize), where asize is the size of the
acknowledgment message.

• The time needed by the failed and restarted VPM to send N restart messages.
As for rollback ones, this cost depends on the presence of a multicast support:
Trestart = Tsend(ressize), if it is provided, Trestart = N · Tsend(ressize), if it is
not, where ressize is the size of the restart message.

5.4 Coordinated Checkpointing and Partitioned

Rollback Recovery

As stated above, the rollback protocol presented in the previous section includes all
VPMs. We extend the previous protocol by introducing a new rollback recovery
protocol, which possibly includes a subset of all VPMs. The protocol is strongly
based on the assumption of the compile-time knowledge of stencils, which charac-
terizes subsets of VPMs as units of rollback recovery. The protocol is supported by
a checkpointing algorithm that extends the one presented in the previous section.
The extension consists in checkpointing and saving onto stable storage, at each loop
of the program, also the computation step reached. This has a stronger impact
on the program performance w.r.t. the previous algorithm. Unlike the previous
rollback recovery protocol: (a) this one can exploit inconsistent states as rollback
targets; (b) the very same previous rollback protocol is applied to a subset of VPMs.
Thus, the inconsistency of rolled back states derives from the fact that not all VPMs
participate in the rollback protocol: the task of the recovery protocol is to restore
consistency after rollback.

5.4.1 Checkpointing Algorithm

The checkpointing algorithm is similar to the previous one, as each VPM periodically
saves the checkpoint of its local state onto stable storage. In addition, we also save
onto stable storage the value of the computation step at each iteration. This is

110CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

done at the beginning of each iteration. The information on the computation step
is provided to the VPM in the case of rollback recovery, both in the case of failure
and restart, and in the case of rollback due to the failure of another process. In
Figure 5.10 we show the pseudo-code of the checkpointing algorithm. Each VPM,

1 pa r t i t i o n myPart ;
2 p a r t i t i o n s ghost s ;
3 int s tep = 0 , r e s = OK;
4
5 while (! term) {
6 s t s−checkpoint (s tep)
7
8 ch InL i s t = stenc i l InNe ighChanne l s (step , myid) ;
9 int i = 0 ;

10 for each ch in ch InL i s t do {
11 r e s = r e c e i v e (ch , &ghost s [i ++], s tep) ;
12 i f (r e s == ERROR) r o l l b a c k (ch , s tep) ;
13 }
14
15 myPart = F(myPart , ghost s) ;
16
17 s tep++;
18 i f (s tep % CHK−DELTA == 0) {
19 s t s t−checkpoint (myPart , s tep) ;
20 }
21
22 chOutList = stenc i lOutNeighChannels (step , myid) ;
23 i = 0 ;
24 for each ch in chOutList do {
25 r e s = send (ch , ghost (myPart , ch) , s tep) ;
26 i f (r e s == ERROR) r o l l b a c k (ch , s tep) ;
27 }
28
29 i f (i s vo id−f a i l u r e−ch () == fa l se) r o l l b a ck (nu l l , s t ep) ;
30
31 }

Figure 5.10: Checkpointing algorithm for the partitioned rollback recovery protocol.
At the beginning of each step (loop iteration) the computation step is checkpointed
and saved onto stable storage.

at the beginning of the loop, checkpoints and saves onto stable storage the value
of the step variable, i.e. the reached computation step (line 6). As in the previous

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY111

algorithm, we support message duplication by passing the current step value to the
communication primitives. At the end of the loop we also check if a failure has been
notified on the failure notification channels. It a failure notification is received, we
call the rollback procedure passing it the current step value. This is due to the
need of supporting partitioned rollback recovery protocols, as we explain below.

5.4.2 Performance Impact of Checkpointing

We extend the cost model of the first protocol (see 5.3.5) with the cost of check-
pointing the step value at each iteration of the VPM loop. For steps in which we do
not perform the checkpointing of the local state the cost is:

Tstep,i = TF (g) + Tstenc−in(g, i) + Tstenc−out(g, i) + Tchk(sizeof(int))

We add each step the cost of synchronously accessing the stable storage to copy
an integer variable (we implement step identifiers with integer values). For steps in
which we perform checkpointing of the local state we have:

Tstep−chk,i = TF (g) + Tstenc−in(g, i) + Tstenc−out(g, i) + Tchk(sizeof(int)) + Tchk(g)

5.4.3 Description of the Partitioned Rollback Recovery Pro-
tocol

The protocol we present optimizes the number of participating VPMs by exploiting
the knowledge of the step at which the failure happens or a rollback control message
is received. As stated in Section 5.3 each VPM has at each computation step two
lists of neighbors: one including the VPMs from which it receives the ghost parti-
tions; another including the ones to which it sends sub-parts of its local partition.
We implemented the neighbor lists as lists of communication channels, respectively
called stencilInNeghChannels and stencilOutNeighChannels. These corre-
spond to the implementation of the neighbor lists at the programming model level,
which are completely specified in the program. The protocol we present is not based
on message logging. Consequently, if we consider a rollback protocol of a VPMi,
from failure step f to rollback step r, we need to replay all messages sent to it be-
tween r and f, i.e. we have to replay lost messages. Suppose now that some of the
VPMs, to which VPMi sends some messages between r and f, are not involved in
the rollback protocol. The re-sending of such orphan messages, during the recovery
of VPMi, is incorrect: the state of the receiver VPM includes such messages, sent in
a previous execution. Thus, we avoid re-sending orphan messages during recovery.
The main problem of the recovery protocol is to characterize which messages are
orphan or, in other terms, which VPMs are involved in each rollback recovery in-
stance. As a consequence, from the consistency viewpoint, the rollback protocol also
exploits as targets inconsistent states. The recovery procedure re-builds a consistent

112CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

state starting from the rollback one by replaying lost messages, and avoiding send
operations for orphan ones

Duplicated messages are managed in the same way as in the previous protocol,
i.e. at the level of communication support. No duplications are created in the case
of orphan messages as their sending operations are avoided. The only duplications
are related to re-sent messages during recovery, whose management is, also in this
case, relegated to the communication support (as described in Section 5.3).

In the protocol we present in this section we target a static knowledge of the
participants to any rollback recovery instances on each VPM.

To characterize the set of VPMs participating in a rollback after a failure we
define two sets:

P (for participating) is the set of VPMs from which the failed one functionally
depends on at all steps and transitively, according to the program stencil.

E (for excluded) denotes the set of VPMs not in P.

Notice that we consider functional dependencies at all steps, even if they can be
different, and we could, in principle, characterize each step with different subsets.
We consider all steps as we can:

• Define statically P and E as the list of neighbor VPMs for which a VPM has
an input channel.

• Avoid global synchronizations of VPMs needed to compute the actual list of
participants in every rollback recovery that depends on their reached step.

Another possibility, which we will study in future work (see Chapter 8), is to precisely
characterize the functional dependencies between VPMs between the rollback and
failure step of all VPMs. This information is known dynamically, as the VPMs
compute in a total asynchronous fashion, only constrained by the stencil and the
degree of communication asynchrony.

More precisely, suppose that a generic VPMi fails at some step. In this section
we define the P set, for the rollback recovery protocol executed because of the VPMi

failure, as the set including all VPMs for which VPMi and its neighbors have an input
channel. This corresponds to the recursive merge of the stencilInNeighChannels
lists from each step.

Operationally, for each VPMi we add all VPMs from which VPMi receive the
partition at some steps. For each such VPMs we recursively add all the ones for
which they have an input channel. In a more formal fashion, as we denote with
i L99V PM j the fact that VPMi has an input channel for VPMj (i.e. at some steps
VPMj sends its local state to VPMj), P can be defined as the transitive closure of
L99V PM .

Fig. 5.11 shows an inconsistent state that is used for restart after a failure. In
this example P = {C, D, E} and E = {A, B}. C fails at step r and rolls back at the

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY113

end of step p. D and E rollback with C because it has an input channel for D and D
has one for E (as stated above, P is defined transitively). A and B do not participate
in the protocol. The global state composed of the local states of each VPM includes
two orphan messages sent from C to B at steps p and q. The recovered state will
include the states of all VPMs at the end of step r. Notice that B will possibly
and eventually stop waiting for the message from C until the recovery protocol is
terminated. Possibly because the recovering VPMs can reach the step r+1 before
B terminates the execution of step r. Eventually because this happens also in the
case of further failures, which force B to participate in some rollback recovery. Both
situations can happen because B is not informed of the execution of the recovery
protocol of C, D and E.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

rqp

E

D

C

B

A

Figure 5.11: Example of inconsistent state obtained after a rollback. The global state
includes the checkpoints at the end of step p for C, D and E, and the computation
states of A and B while executing step R. In this case P = {C, D, E} and E = {A, B}

We discuss a first version of the protocol supporting single failures. Next we
extend it to support concurrent and recursive ones. For the second case, as the
recovery protocol is different from a normal execution, we express the recursive
course of recoveries using sessions. Information on sessions must be kept stable
during recursive rollback recoveries to avoid the loss of recovery information because
of recursive failures.

5.4.4 Surviving Single Failures

The key to understand this protocol is that we exploit the same synchronization
scheme of the previous protocol, but we apply it to just the P set of the (single)
failed VPM.

Protocol Pseudo-Code

The pseudo-codes describing the behavior of VPMs during rollback recovery exploit
two functions:

114CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

P-ch that, given a VPM identifier id, returns a pair including (1) the list of rollback
channels from VPMid to the VPMs in its P set (see above) and (2) the list of
rollback channels to VPMid from the VPMs in its P set.

Stencil-Out that, given a VPM identifier id and an execution step s, returns the
list of rollback channels to the VPMs to which the VPMid must send its local
partition at step s, according to the program stencil.

As stated before, both functions can be defined at compile-time by exploiting the
knowledge of the program stencil.

Figure 5.12 shows the behavior of the failed VPM during rollback. VPMi fails
at step f and restarts at step r. It computes the set of rollback channels of the
VPMs participating to the rollback recovery protocol, both in input and output, by
applying the P-ch function to its identifier. The pair is stored in the list variables
P-IN-List, and P-OUT-List. As in the previous rollback recovery protocol, a syn-
chronization protocol starts, selecting, as a result, the minimum proposed rollback
step. All VPMs, which rollback channels are included in the P-CH-List, are notified
of the failure (with a rollback message). Next they acknowledge the receiving of the
rollback message and receive a restart message from the failed VPM. Notice that
we avoid to check for failures of communication primitives, because we do not need
to support failures during rollback recovery. For this reason this protocol consists
in a single round of the previous one (see 5.3). After the synchronization the leader
VPM: (1) clears all the application channels from the VPMs which participate in
the protocol (clear-P-ApplicationChannels function); (2) recovers from stable
storage the checkpoint labeled with min; (3) performs the recovery protocol from
step min to step f. Finally, it re-starts the normal computation from step f+1.

Figure 5.13 shows the behavior of VPMj that receives a rollback message from
VPMi, which failed at step f and rolled back to step r. The VPM answers the roll-
back message with an ack message, including the rollback step it proposes which is
obtained by applying the getMyLastChkStep function. Next, it receives the min-
imum step selected by the leader VPM (the failed and restarted one). It retrieves
from stable storage the checkpoint that corresponds to the minimum step and it
clears the application channels from the VPMs participating in the protocol. Next,
it performs the recovery protocol from the minimum step to its failure step. In the
pseudo-code the rollback procedure is provided with the input rollback channel from
which the rollback message is received. VPMj obtains the corresponding output roll-
back channel towards the failed VPM by applying the function getOutRollbChannel.

Here we discuss the atomicity (w.r.t. failures) of the set of send and receive
operations in the VPM program loop (see Figure 5.10). For a generic VPM we notice
that application channels for VPMs in the P set are cleared (in fact not all channels
in the set are cleared, but only the ones to which the VPM is directly connected
to) All receive operations (beginning of the loop) are undone and the VPMs in P
participate in the rollback. Thus, receive operations are not required to be atomic.

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY115

1 f a i l edAndRestar ted (name = i , f a i l u r e s tep = f , r o l l b a ck step
=

2 r) {
3
4 (P−IN−List ,P−OUT−L i s t) = P−ch (i) ;
5
6 s tep min = r ;
7
8 for each ch in P−OUT−L i s t {
9 send (ch , ‘ ‘ r o l l b a ck (i , r) ’ ’) ;

10 }
11
12 for each ch k in P−IN−L i s t {
13 r e c e i v e (ch , ‘ ‘ ack (k , s) ’ ’) ;
14 i f (s < min) min = s ;
15 }
16
17 for each ch k in P−OUT−L i s t {
18 send (ch , ‘ ‘ r e s t a r t (i , min) ’ ’) ;
19 }
20
21 c l e a r−P−Appl icat ionChannels () ;
22
23 myPart = s t s t−r e cove r (min) ;
24
25 r e cove r (i , min , f) ;
26
27 r e s t a r t from f ;
28 }

Figure 5.12: Pseudo-code of a failed and restarted VPM for the second rollback
recovery protocol in the case of a single failure.

116CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

1 partRol lback (name = j , r o l l b a c k step = r , f a i l u r e s tep = f ,
2 channel ch−in) {
3
4 ch−out = getOutRollbChannel (ch) ;
5
6 p = getMyLastChkStep () ;
7
8 send (ch−out , ‘ ‘ ack (j , p) ’ ’) ;
9

10 r e c e i v e (ch , ‘ ‘ r e s t a r t (i , s) ’ ’) ;
11
12 c l e a r−P−Appl icat ionChannels () ;
13
14 myPart = s t s t−r ecovery (s) ;
15 r e cove r (j , s , f) ;
16
17 r e s t a r t from f +1;
18 }

Figure 5.13: Optimized rollback recovery protocol in the case of a single failure.

This is not true for send operations: if a failure affects the computation during
these communications, some messages could have been delivered for the failure step,
whereas some others could not. This can induce inconsistencies at the last step
of recovery: for simplicity, we assume the set of send operations at the end of the
program loop to be atomic w.r.t. failures. This can be implemented by the VPMs
by re-executing all send operations when they reach the last step of recovery and
attaching the computation step to the messages. Then, the communication support
can discard duplicated messages by just checking the attached step value.

In Figure 5.14 we show the pseudo-code for the recovery procedure of a generic
VPMi failed at step f and rolled back to step r. Also in this case the P-List variable
contains the result of application of the P function to the VPM identifier. The
re-computation phase consists in re-executing steps from r+1 to f. To avoid the
resending operations of orphan messages the Stencil-Out function is exploited at
each step: the set resulting of the application of Stencil-Out to the VPM identifier
and the actual re-computation step is intersected with the set (of channels) of VPMs
participating to the recovery protocol. The result is a list of VPM channels to which
sending the local state partition. This is stored in the variable S-CH-List. S-CH-List
is successively used as target of the send primitive. As stated before, for all VPMs
(which output channel is included) in the Stencil-Out list (i.e. the ones participating
in the rollback recovery) no orphan messages have been created. This is due to the
fact that they rollback to the same step of the failed VPM. This is not necessarily

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY117

1 r e cove r (i , r , f) {
2 (P−IN−List ,P−OUT−L i s t) = P−ch (i) ;
3
4 for (s tep = r+1; s tep <= f ; s tep++) {
5 ch InL i s t = stenc i l InNe ighChanne l s (step , myid) ;
6 int i = 0 ;
7 for each ch in ch InL i s t do {
8 r e s = r e c e i v e (ch , &ghost s [i ++]) ;
9 i f (r e s == ERROR) r o l l b a c k (ch , s tep) ;

10 }
11
12 myPart = i t F(myPart , ghost s) ;
13
14 S−CH−L i s t = i n t e r s e c t (P−OUT−List , S t enc i l−Out(i , s tep)) ;
15 for each ch in S−CH−L i s t do
16 send (ch , ghost (l o c a l−s t a t e)) ;
17 }
18 }

Figure 5.14: Recovery protocol performed by VPMs participating in the rollback
protocol.

true for the VPMs in Stencil-Out that did not rollback. The receive operations for
this protocol are performed as in a normal execution, because all VPMs for which
VPMi has an input channel participate in the rollback recovery. The function F
is applied to the local partition elements and the result is the next value of the
local partition. Notice that the saving on stable storage of the local partition is
not performed in the recovery protocol: the partition has been saved in the first
execution of the recovered steps and we assume that it is not garbage collected.
This assumption can be relaxed to minimize the size of occupied stable storage
at the cost of slower recovery times. The two solutions are viable: we leave the
discussion of garbage collection strategies to future work (see Chapter 8).

Correctness

We want to prove the correctness of the rollback recovery protocols for single failures.
From the previous protocol (see 5.3) we inherit the correctness property for VPMs
that participate in the protocol: the state of VPMs participating in a rollback
recovery protocol is consistent. In general, as stated above, the global state after a
rollback, which includes also the VPMs that did not rollback, can be inconsistent.
We need to prove that the state is consistent after recovery. We start from some
lemmas.

118CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

Lemma 5.4.1 All messages from any VPMs participating in the rollback recovery
protocol to any VPMs not participating in the protocol are avoided.

Proof 5.4.1 Obvious from the recovery protocol.

We denote orphan-avoidance the property stated by this lemma. We also consider
the lost messages:

Lemma 5.4.2 All messages from any VPMs participating in the rollback recovery
protocols to any other VPMs participating in the same protocols are re-executed
during recovery.

Proof 5.4.2 We have seen that a recovery protocol is equal of a normal execution
except for sending events to VPMs that do not participate in the rollback recovery
protocol. Message sending operations to VPMs participating in the protocol are not
avoided.

As a consequence of this last lemma (5.4.2), we can state that:

Lemma 5.4.3 After a recovery, the participating VPMs recover to their initial fail-
ure step that they were performing before the rollback recovery.

Proof 5.4.3 VPMs participating in a rollback recovery perform the recovery protocol
from the globally selected minimum step to their own failure step, i.e. the step at
which they detected a failure or they failed. According to 5.4.2 all messages exchanged
between participating VPMs are re-executed. Thus, there are no orphan or lost
messages at the end of the recovery and the state including all the local states of the
participating VPMs is consistent.

With lemmas 5.4.1 and 5.4.3 we obtain the correctness theorem:

Theorem 5.4.1 The rollback recovery protocol is correct in spite of single failures.

Proof 5.4.1 According to 5.4.3, the state of the VPMs that participate in a rollback
recovery is consistent both after rollback and after recovery. According to 5.4.1 each
VPM avoids all message sending operations from the rollback step to its failures step
towards VPMs not participating in the rollback protocol. Thus, orphan message re-
sending is avoided and the state of all VPMs after a rollback recovery is consistent.

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY119

A

rf f" f’r

D

C

B

Figure 5.15: Example of concurrent and recursive failures during recovery, to intro-
duce the concept of recovery session.

5.4.5 Surviving Concurrent and Recursive Failures

Here we extend the previous protocol to survive concurrent failures. In the protocol
described in Section 5.3, failures during the rollback execution were managed as
rounds of the same protocol, or sequentialized, depending on the time at which
the first VPM detected them. Moreover, the recovery protocol was exactly equal
to a full re-execution of the lost computational steps. Thus, failures during the
recovery were managed in the same way as failures during normal execution. To
extend the protocol for single failures we have to face three main problems: (a) not
all VPMs participate to the protocol, (b) the recovery protocol is not a total re-
execution of the lost computational steps, i.e. some communication operations are
avoided, and; (c) the participants at each rollback recovery can change depending
on the identity of the failed VPM. Consequently, each VPM needs to precisely
characterize the participants in each protocol it performs, in order to understand
which communication operations are needed. Figure 5.15 shows an example of two
successive failures: black squares denote execution before any failures, gray ones
execution during the first recovery and white ones during the second recovery. The
VPM B fails at step f ’ and recovers to r. According to its P set, also C and D
participate in the rollback recovery. During the recovery, from r to f ’, it will avoid
send operations to A. We characterize this recovery protocol of B in a recovery
session which includes: (1) the rollback step r ; (2) the failure step f ; (3) the list of
VPMs to which perform send operations. For this recovery, this list is empty. Each
participating VPM has its own recovery session instance for this recovery. During
recovery, A recursively fails at step f”, forcing all other VPMs to rollback again to r,
because they are all in its P set. In this second recovery we require B to perform the
communication operations lost, because of the failure of A. To support this behavior
we organize recovery sessions on a same VPM in a stack of recoveries (denoted with
S) and we perform the following actions:

120CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

• Each recovery corresponds to a new recovery session that we push onto the top
of the stack. In the example, when B rolls back for the second time, it pushes a
new recovery session onto S, composed of the failure step fr, the recovery step
r and the list of neighbors on which to perform the send operations (includes
just A). Notice that, differently from the previous session, we now have A in
the send list.

• When a recovery terminates, we pop up the top of the stack of sessions, and
we merge up the send list of the popped element, to the one at the top of S.
In the example, when B returns back to fr, it pops up the recovery session
for the recursive failure on the top of S, it merges up the two lists obtaining
the list including just A, and it assigns the list to the element at the top of
S. From this point to the end of the recovery at step f ’, B will perform send
operations to A.

Consider the case of a recursive failure of the same VPM during recovery. Even if the
same rollback step is selected, the failure step changes, and the information related to
recovery sessions must be recovered. For instance, suppose in the previous example
that B recursively fails during the second recovery protocol. A will not participate
in this third rollback recovery. When B returns back to the second failure step it
has to restart the recovery session including A. Functionally, we merge up send lists
as in the above case, but we have also to support session stacks with stable storage
to avoid losing information. Thus, the stack S is kept in stable storage, and its
modifications are synchronously saved: (1) at the end of a rollback, the new pushed
session is copied onto stable storage, and (2) at the end of a recovery, the pop of
the top element, and (if it changes) the merge of the send lists are also copied onto
stable storage.

We discuss the cases of failures during rollback recovery and we informally intro-
duce the support to each case. Consider multiple failures during a rollback protocol:
we exploit an example to describe the actions performed by VPMs on the stack of
recovery sessions and in the rollback protocol. Suppose a VPM C is participant in
a rollback protocol started by the failure of VPM A. In the rollback protocol A is
the leader. In addition suppose that B fails during the rollback. We assume that
C ∈ P(B) and we distinguish the cases w.r.t. the P sets of A and B:

• If B ∈ P(A) and A ∈ P(B), B was participating to the rollback protocol. We
denote this case rollback failure. In this case, all participating VPMs decide a
new leader by applying the same rule of the first protocol (see Section 5.3).

• Also if B ∈ P(A) and A 6∈ P(B), B was participating to the rollback protocol.
In this case there can be a VPM, say D, for which D ∈ P(A) but D 6∈ P(B).
We choose A as leader of the rollback protocol, because its P set is larger than
the one of B. All VPMs participating in the protocol can select A as leader by
checking for its P set. That is, the rule for deciding a leader change w.r.t. the
previous point.

5.4. COORDINATED CHECKPOINTING AND PARTITIONED ROLLBACK RECOVERY121

• If B 6∈ P(A) and A ∈ P(B), we select B as new leader of the protocol and we
perform a further round, as we do in the above case.

• If B 6∈ P(A) and A 6∈ P(B), the management cannot be performed in common
for the two events, as rounds of the same protocol. C participates indepen-
dently to both rollback protocols. It acknowledges the leader of the protocols
with its rollback step and it starts recovery from the selected step. Suppose
that the rollback step decided in the rollback leaded by A is greater than the
one of B. C first pushes a recovery session from the A decided rollback step.
Next it pushes another session for the rollback step of B. It recovers according
to the sequence of sessions.

The last cases we consider are those featuring C 6∈ P(B). We can assume that
A 6∈ P(B), because, if we assume the contrary, we negate the hypothesis on C (P is
transitive by its definition). We have only two cases:

• If B 6∈ P(A), the failure of B does not affect the execution of A and C both
during normal execution and rollback recovery.

• If B ∈ P(A), C is not aware of its failure. According to the rule of above C
continues to see A as its leader. Also A and B selects the former one as leader,
because we have that C ∈ P(A) but C 6∈ P(B) (according to the modified rule
as in the second point of the above ones).

Failures during a recovery protocol can induce further rollback and recovery
executions. As stated above, each recovery has a different set of participants. We
have to properly manage recovery sessions to reflect the correct behavior in different
cases. In the same setting of above, first suppose that C ∈ P(B):

• If A 6∈ P(B) and B 6∈ P(A), C performs a new rollback recovery and it pushes
a new recovery session onto the top of the stack for the protocol performed
with B.

• If A 6∈ P(B) and B ∈ P(A), all VPMs in P(B) re-execute rollback recovery by
selecting B as leader. A is not involved in this protocol.

• If A ∈ P(B) and B 6∈ P(A), a new rollback recovery is performed. In this case
B is elected as leader of the new protocol.

• Also if A ∈ P(B) and B ∈ P(A), a new rollback recovery is started but the
decision about the leader of the protocol is done according to the rule of the
protocol described in Section 5.3.

Suppose now that C 6∈ P(B). Also in this case we cannot consider the case in which
A ∈ P(B) because we negate the hypothesis on C. We have only two cases:

122CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

• If B ∈ P(A), A is elected leader from B and C independently by locally
checking that P(C) ⊂ P(A) and P(B) ⊂ P(A)

• B 6∈ P(A), no support is needed, as neither A nor C are notified of the failure.

5.4.6 Performance of Rollback Recovery

In this thesis we only give a qualitative description of the costs of the rollback
recovery in the case of single failures.

The cost of performing the rollback protocol is similar to the previous protocol
(see Section 5.3). In this case we have to instantiate the costs to the actual number
of participating VPMs, which depends on the implemented stencil. Thus, it can be
computed statically.

In principle, the cost of recovery for participants to the rollback recovery is lower
than a complete re-execution of the lost steps (as it happens for the global rollback
recovery protocol). This because some sending operations are avoided.

Finally, the cost of rollback recovery for VPMs which do not participate to
rollback recovery is void, but they can incur in degradations: some of the VPMs
from which they need to receive an element could be involved in (possibly several)
rollback recovery protocols, which, in fact, increase the number of computational
steps which execution is replicated.

5.5 Uncoordinated Checkpointing and Message Log-

ging

The protocols presented above are based on the replaying of lost messages from
their producers in the case of failures. In this section we show a protocol supporting
failures with receiver-based message logging, i.e. whenever a VPM receives a message
we ensure that it is copied onto stable storage. Message logging techniques can be
safely exploited because, as envisioned in Chapter 1, the data parallel programming
model features the piecewise determinism property. We discuss synchronous message
logging: a VPM that receives a message has to wait for its logging onto stable storage
before proceeding in the execution. In this solution a failed VPM performs rollback
recovery in complete isolation without any interactions with the other ones. This
comes at the cost of a higher overhead to the VPM execution w.r.t. the two previous
protocols. During rollback a VPM re-obtains the last checkpointed state and it
performs the recovery protocol replaying all messages from the rollback step to the
failure one. We label messages with the I-Structure position of the state value from
which they have originated, as in the previous protocols (recall that VPMs exchange
sub-parts of local partitions). In this case the labels are exploited during recovery
to replay messages in the correct order and not to manage duplications.

5.5. UNCOORDINATED CHECKPOINTING AND MESSAGE LOGGING 123

It should be noticed that this solution is not based on the consistency definition
we introduced in Chapter 3 for data parallel programs. The pessimistic logging
technique we exploit allow us to introduce uncoordinated checkpointing to save
local VPM states. In this section we exploit the following consistency property:

Definition 7 A consistent global state for a data parallel program includes the local
states of VPMs taken at arbitrary steps, where each local state is attached also with
the message received from the checkpointing operation to the current execution step.

This protocol supports concurrent and recursive failures without any specific
extensions:

• Recursive failures, i.e failure of the same VPM during rollback recovery, are
managed as a re-execution of rollback recovery.

• Concurrent failures do not affect any other VPMs during rollback recovery.
Thus, no special support is needed.

5.5.1 Checkpointing Algorithm with Message Logging

In Figure 5.16 we show a checkpointing algorithm with message logging. Unlike
the previous algorithms (see 5.3 and 5.10) we do not need any coordinations of
checkpointing operations. Each VPM has its own MY-DELTA-CHK value which
denotes the number of steps between two successive checkpoints. At each loop we
guarantee that all messages that a VPM receives are synchronously copied onto
stable storage. In the case of rollback the last checkpointing step is passed to the
procedures implementing the rollback recovery protocols. Notice also that we have
modified the implementation of the stencil at the end of the loop (line 30) w.r.t.
the previous solutions. The messages exchanged are labeled with the step value of
the sender. Suppose we are at the beginning of step s. We assume that all receive
operations are performed only after all messages for step s are copied on stable
storage. We can ensure this atomicity property in the implementation of the com-
munication support by providing proper localized functions for rolling back message
receipt events. In the pseudo-code we model this support with lines 11 and 12: the
allStable function checks if, for all channels in chInList, the messages for step s
are copied on stable storage. Next the VPM can copy on stable storage also the
reached computation step, i.e. the VPM is ensured that all messages are copied
on stable storage for that step. In the previous recovery protocols the ordering of
messages exchanged by VPMs was ensured by the synchronous execution of the
rollback protocol: all VPMs participating in the rollback recovery started from the
same rollback step. Thus, the messages exchanged between them were in the cor-
rect order. In this protocol, we label messages exchanged between VPMs to support
message replaying during recovery in the correct order. This task is relegated to the
failed and recovering VPM and it is not a consequence of the coordination between

124CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

1 pa r t i t i o n myPart ;
2 pa r t i t i o n ghost s [] ;
3 int s tep = 0 ;
4
5 while (! term) {
6 ch InL i s t = stenc i l InNe ighChanne l s (step , myid) ;
7 int i = 0 ;
8
9 // wa i t s f o r a l l message to be copied on s t a b l e s t o rage

10 while (a l l S t a b l e (ch InL i s t) != true) {}
11 s t s t−checkpoint (s tep) ;
12
13 for each ch in ch InL i s t do
14 r e c e i v e (ch , &ghost s [i ++], s tep) ;
15
16 s t s t−checkpoint (ghosts , s t ep) ;
17
18
19 myPart = F(myPart , ghost s) ;
20
21 s tep++;
22 i f (s tep % MY−CHK−DELTA == 0) {
23 s t s t−checkpoint (myPart , s tep) ;
24 }
25
26 chOutList = stenc i lOutNeighChannels (step , myid) ;
27 i = 0 ;
28 for each ch in chOutList do
29 send (ch , pa i r (ghost (myPart , ch)) , s tep)) ;
30 }

Figure 5.16: Checkpointing algorithm with message logging: each VP periodically
saves its local state partition on stable storage, and the ghost partitions received
from its neighbors.

functionally dependent VPMs. Also notice that we do not check for communication
errors because we do not need to consider concurrent failures. In the case a VPM
fails we assume that the communication support blocks the sender VPM to perform
further send operations to the same destination until the receiver is restarted. Next
the communication channels of the restarted VPM are cleared. They can be filled up
of new application messages which are still unreceived in the execution performed
before the failure. We ensure that no messages are lost because of the synchroniza-

5.5. UNCOORDINATED CHECKPOINTING AND MESSAGE LOGGING 125

1 f a i l edAndRestar ted (name = i , f a i l u r e s tep = f , r o l l b a ck step
=

2 r) {
3 myPart = s t s t−r e cove r (r) ;
4 r e cove r (i , r , f) ;
5 r e s t a r t from f ;
6 }

Figure 5.17: Pseudo-code of a failed and restarted VPM for the rollback recovery
protocol based on message logging.

1 r e cove r (i , r , f) {
2 p a r t i t i o n s ghost s ;
3 for (s tep = r+1; s tep <= f ; s tep++) {
4 ghost s = s t s t−recover−message (s tep)
5
6 myPart = F(myPart , ghost s) ;
7 }
8 }

Figure 5.18: Pseudo-code of the recovery protocol, based on message logging.

tion of message logging. When the failed VPM terminates the recovery it re-starts
receiving messages from the newly created communication channels.

5.5.2 Rollback Recovery Protocol

The rollback recovery protocol is performed in isolation from failed VPMs, with-
out any coordinations. Consequently, no control messages are exchanged between
VPMs and the rollback recovery protocols are implemented as a procedure locally
performed on failed VPMs. The failed VPM is provided with its name, the step at
which it failed, and the step of its last checkpointed state (see Figure 5.17). The
VPM recovers the state at step r, and performs the recovery protocol. Next, it
restarts its execution from the failure step.

In the recovery protocol, shown in Figure 5.18, a VPM accesses the stable storage
at each re-executed step to recover messages. The stst-recover-message functions
takes the current step value as input, and it returns the set of messages copied onto
stable storage (labeled with the current step). Notice that no communication with
other VPMs is performed during recovery.

We discuss the atomicity feature of communication operations in the VPM pro-
gram loop (see Figure 5.16). After a receive operation we guarantee that the message
is copied onto stable storage. Thus, if a failure happens during the set of receive

126CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

operations, some messages are copied onto stable storage, some others not (the ones
not yet copied on stable storage). We assume the communication protocol guaran-
tees the copy of such messages in the application channels after recovery. At the last
step of recovery the VPM will avoid all send operations: we require the set of send
operations to be atomic w.r.t. failures (see Chapter 8). This can be implemented
by exploiting attached computation steps, in a similar way to the previous protocol
(see Section 5.4).

We can support synchronous message logging with synchronous FT-Streams by
modifying their support w.r.t. the one described in Section 4.4 and Chapter 6.
For synchronous FT-Streams the sender is synchronized with the message logging
process, i.e. a send operation terminates after the logging is performed. In the
current implementation a message can be copied onto the application channel (the
one linking the sender to the receiver), even if the message logger has not yet copied
it onto the stable storage. Consequently, the receiver can obtain a message that
is still unlogged. We want to avoid this situation, as we assume the receiver can
independently re-play messages during recovery. In the modified version of the FT-
Streams, the receive operation blocks until the message is copied onto stable storage.
This is implemented by the KP on the receiver node, which copies the message onto
the application channel only after the message has been logged onto stable storage.

5.5.3 Correctness of Checkpointing and Rollback Recovery

From the description of the checkpointing algorithm (Figure 5.16) we can notice
that each VPM takes checkpoints at a possibly different step. That is, there is not
a property that guarantees the consistency of a set of checkpoints. The rollback
recovery protocol is performed in isolation, i.e. it is not required to VPMs to co-
ordinate during the execution of the protocols. Informally speaking, the rollback
protocol selects as a target a state that is inconsistent w.r.t. the set of all other
states of VPMs because it generates orphan and lost messages. Orphan messages
are those sent from a failed VPM between the rollback step (plus 1) r + 1 and the
failure step f to any other VPMs. Lost messages are those received from the failed
VPM in the same steps. The recovery protocol manages orphan messages to re-build
consistency of global states. Lost messages are regenerated by retrieving them from
stable storage. If we consider a failure at step f and a recovery from step r + 1 of a
VPM we can assume the followings:

Lemma 5.5.1 All send operations from r+1 to f are avoided. All messages received
from step r + 1 to step f are replayed from the stable storage.

Proof 5.5.1 Obvious from the recovery protocol.

This is also true for recursive failures because the same protocol is re-executed. We
can consider the consistency of recovered states with this lemma:

5.5. UNCOORDINATED CHECKPOINTING AND MESSAGE LOGGING 127

Lemma 5.5.2 After an arbitrary number of concurrent and recursive failures and
successive rollback recovery executions the states of VPMs are consistent w.r.t. each
others.

Proof 5.5.2 To prove this we have to prove that the states do not include orphan
messages. Suppose that an arbitrary number of concurrent and recursive failures
affect the computation. After all recoveries, which are performed locally by all failed
VPMs, lemma 5.5.1 ensures us that no sending operations previously performed will
be performed again. Thus the states of recovered VPMs include the message sending
operations performed at the first execution of the recovery steps for orphan messages.
Thus no orphan messages are included in the states of VPMs.

5.5.4 Performance Impact of Message Logging and Check-
pointing

We can model the cost of message logging on the performance of VPMs in the same
way that we did for the first two solutions (see 5.3.5, and 5.4.2). Unlike the previous
checkpointing algorithm we admit uncoordination of checkpointing frequencies to
VPMs. Thus, to obtain the general formula for the completion time, the formula
for the step performance should be properly multiplied for each VPM checkpointing
frequency. The performance of steps if we do not perform the checkpointing of the
local state is:

Tstep−ml,i = TF (g)+Tstenc−in(g, i)+Tstenc−out(g, i)+Tchk(sizeof(int))+Tchk(ghost(i))

In this formula we denote with ghost(i) a function that, given a step identifier,
returns the size of the ghost partitions received from neighbors at that step. Notice
that, under the hypothesis of synchronous (i.e. pessimistic) logging, the cost of the
allStable function is included in the Tstenc−in quantity.

The step performance in the case of checkpointing is a simple extension of the
above one as in the previous solutions:

Tstep−chk+ml,i = TF (g) + Tstenc−in(g, i) + Tstenc−out(g, i) +

+Tchk(sizeof(int)) + Tchk(ghost(i)) + Tchk(g)

5.5.5 Performance of Recovery

For this protocol it is simple to derive a formula describing the cost of a single
recovery for a VPM. Suppose we are recovering n steps from step r to step f. Suppose
also that the cost of a single access to stable storage for a checkpoint of k words
is Tst−read(k). We can also suppose to be provided with a function ste-size which
returns the total size of all messages received from a VP at a given step.

128CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

The total time needed to perform the recovery protocol is:

Trecovery(r, f) =

f∑
i=r

TF (g) + Tst−read(ste− size(i))

where g is the average size of the state partition assigned to a VPM.

5.6 Comparison with Structure-Unaware Proto-

cols

In this section we consider a protocol from each class presented in [39] and we apply
it to data parallel computations. When it is possible, we derive a static analysis of
the performance of these protocols and we compare it with the ones we introduced
in this thesis. While performance comparison between protocols is our main goal in
this section, we also consider each specific issue introduced in Chapter 1 to discuss
the differences between the protocols. It is worth of re-write these issues: analysis of
performance, consistency definitions, determinism of computations, modularity and
composability and experimental results.

In the discussion we take the point of view of the implementer of the fault
tolerance support starting from a structure-unaware basis: data parallel programs
are implemented as a set of processes, interacting through message-passing. In
deriving fault tolerance supports, we do not exploit high-level structural information.

5.6.1 Coordinated Asynchronous Checkpointing

We consider the Chandy-Lamport[27] protocol as a well-studied representative of
this class of protocols. In this protocol, messages are logged with local states dur-
ing the checkpointing operations. The global coordination is obtained in an asyn-
chronous way: processes are not blocked in the computation during this phase. The
protocol is based on the exchanging of markers on application channels: when a
marker is received on a channel proper actions related to checkpointing are per-
formed. In fact, markers are the start signal of the checkpointing protocol. This
technique based on markers can be applied only if each pair of processes has some
communication path which link them. Otherwise, the protocol cannot terminate.
This property is true for a large part of data parallel programs, but not for all of
them. For instance, in map programs there is no application channel between any
processes. This protocol is based on a different definition of consistent states w.r.t.
the one that we presented in 3:

Definition 8 A consistent state for a parallel program includes a checkpoint from
each process. Moreover, for each process we have to add to the checkpoint all the
messages received during the execution of the checkpointing protocol.

5.6. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 129

The protocol we present here is based on a single coordinator and it is a slightly
modified version of the one originally presented in [82]. Unlike the original protocol,
which assumed a crash-stop failure model, in the one we present here we assume the
fail-stop model. The protocol is started from the coordinator with a broadcast of a
special control message. Next, it waits for all other processes to answer back to its
message. A generic participant notifies to all its neighbors that it is participating to
the rollback and it waits for a same message from all of them. During this phase, all
the application messages are attached to the checkpoint. When all neighbors have
answered back, the participant acknowledges to the coordinator its local termina-
tion. After receiving such acknowledgment from all other processes, the coordinator
broadcast a control message to restart the computation.

To implement this behavior the coordinator performs the following actions:

1. Send a “checkp-start” message to all other processes.

2. Take a tentative checkpoint.

3. Receive messages on all its input channels and checkpoint the content as part
of the current checkpoint until it receives an “ack” message from all other
processes on the same channels. Notice that the answer from participant
processes is sent along application channels or, in the case no application
channel is placed between a process and the coordinator, on the rollback one.

4. Send a “restart” message to all other processes.

For comparison purposes, we have also avoided to manage reincarnation of this
protocol due to recursive failures and we have assumed that the coordinator directly
contact the whole set of processes of the application, instead of implementing an
optimized neighbor-based protocol. The behavior of a generic participant to this
protocol follows:

1. Check for the rollback channel at each computation step and eventually receive
the “checkp-start” message.

2. Send a “checkp” message to every process for which it has an application
channel.

3. Take a tentative checkpoint.

4. Receive messages from application channels and append them to the current
checkpoint until a “checkp” message is receive on each channel.

5. Send a “ack” message to the coordinator (choose the rollback channel if no
application channel towards the coordinator is available).

6. Receive a “restart” message from the coordinator, confirm the checkpoint and
restart the computation.

130CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

In this description notice that we have to synchronize each participant process with
the neighbor processes for which it has an application channel. This cannot be
avoided because it implements the correctness of the checkpointing protocol w.r.t.
the consistency definition for global states.

We have discussed above the consistency property on which is based this pro-
tocol. We now consider the remaining issues. By looking at the protocol of above
we can see that the overhead incurred because of checkpointing on each process
depends on their relative speed. The costs of checkpointing can be subsumed as
following: the cost of taking a checkpoint (stable storage access) plus the cost of the
broadcasting of the “checkp-start” message. Next, specific operations are performed
before the termination of the protocol: application messages are logged and, when
all processes have answered with an ”ack” message, a broadcasting of a “restart”
message is needed. The costs of local checkpointing and broadcasting are fixed, while
the remaining costs depend on the relative speeds of processes and on their causal
dependencies built during checkpointing. As a consequence it is difficult, when not
impossible, to estimate the amount of logged messages during global checkpointing
because at this level of implementation we do not have any information related to
the parallel structure of the computation.

For comparison purposes we describe a coordinated protocol for data parallel
programs featuring the same characteristics of this one for which we can analyze
its costs. This analysis is possible because of the knowledge of the structure of the
parallel computations. Next, we compare this protocol with the ones we described
above in this Chapter. In this way we can compare the Chandy-Lamport protocol
with the ones that can be derived according to our approach.

The protocol exploits the knowledge of computation steps of data parallel pro-
grams and it is based on the consistency definition given in Chapter 3. The purpose
of this protocol is to select the maximum computation step between all processes
and to roll-forward all of them to that point. The execution of the processes is
blocked only when they reach the maximum step, while waiting for all other ones
to reach it.

The protocol includes an exchanging of control messages between a coordinator
and all other processes to decide which is the maximum execution step. This phase
requires three control messages. Next all processes reach the maximum step and
they all notify to the coordinator that they are ready to restart. The coordinator
restarts the execution by broadcasting a proper control message.

The actions of the coordinator follow:

1. Send all other processes a “checkp-start(step)” message indicating its current
execution step.

2. Receive a “ack(step)” message from all process.

3. Select the maximum between the received step values.

5.6. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 131

4. Send the computed maximum to all other VPMs with a “max(step)” message.

5. Proceed in the computation until the selected maximum step.

6. Wait for an “reached” message from all other VPMs.

7. Take a checkpoint.

8. Send a “restart” message to all other VPMs and restart the computation.

The behavior of a generic participant to this protocol is:

1. Check for the rollback channel at each computation step and eventually receive
the “checkp-start(step)” message.

2. Select the maximum between the current step and the received one.

3. Send a “ack(step)” message to the coordinator indicating the selected maxi-
mum.

4. Receive the “max(step)” message from the coordinator.

5. Execute until the received maximum step (if needed).

6. Take a checkpoint.

7. Send a “reached” message to the coordinator.

8. Receive the “restart” message from the coordinator, confirm the checkpoint
and restart the computation.

For performance analysis purposes, notice that the distance, in terms of steps, be-
tween the process at the minimum step and the one at the maximum one influences
the blocking time for the latter process. Thus, unlike the previous protocol, this one
partially blocks the computation. The maximum distance between VPMs can be
computed by statically analyzing the program graph: for map programs it cannot
be limited, thus the solution presented in 5.4 is more efficient. For step-synchronous
programs, the difference between steps is 0, and the cost of synchronization is equal
to the time needed to perform a single computation step. For other programs (for
instance, see Figure 5.15) it depends on the asynchrony degree of communication
channels which, according to our framework (see 6), can be controlled. Thus, we can
conclude that structure-based protocols allow us to statically analyze fault tolerance
techniques, while this is not possible for structure-unaware protocols.

Finally we discuss the scalability of applying the Chandy-Lamport protocol to
a whole application, instead of exploiting it modular definition which is part of the
structural information in our study. The Chandy-Lamport protocol does not blocks
processes during the computation. Anyway, it requires a global communication,

132CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

which in the original work could be done not by a global broadcasting of information,
but by exploiting the process communication graph. Thus, the time needed to
perform a global checkpoint, which influences the cost paid by each process during
the checkpointing phase, depends also on the number of processes in the system.
An experimental session should analyze the scalability of this solution w.r.t. the
number of processes and compare it with the coordinated protocol we introduced in
Section 5.3.

5.6.2 Communication-Induced-Checkpointing

In Chapter 2 we have seen that CIC protocols are based on the Z-theory[68] to define
consistency properties for global states. In the model of CIC protocols processes
take independent checkpoints and the protocol induces some forced checkpoints
which guarantee the building of global consistency. The Z-theory allows the fault
tolerance designer to derive useful predicates which can be used by each process to
locally decide if it is needed to take a checkpoint (forced ones). This evaluation
must be done before any message delivery event and it is applied to local control
information of the process and to control information appended (or piggybacked)
on application messages by the senders. These checks can be done only at run-time
because computations are nondeterministic both in communication and computation
[39]. There exist many CIC protocols, from more simple ones [17] to more complex
ones [52]. In [52] it is introduced a theoretical framework which can be used to
derive a class of CIC protocols.

CIC protocols are characterized between each others w.r.t. the predicate to be
evaluated when a message is received. This depends on the kind of information
kept on the process and piggybacked to application messages. For instance in [52]
a process receiving a message needs to check for maximum values inside received
arrays of remote timestamps. The array sizes are equal to the number of processes,
powered to two.

Rollback recovery supported by CIC protocols are themselves characterized w.r.t.
the specific checkpointing protocol. In some cases it is required a selection of a
recovery line different from the last checkpoint taken by each process. In some
other cases, the last checkpointing line can be selected as the checkpointing protocol
guarantees its consistency [39].

We compare CIC protocols with the ones that we introduced in this thesis,
according to the issues introduced in Chapter 1. The kinds of data parallel pro-
grams which we considered in this thesis are the ones featuring static stencil. In
these programs the programmer specifies at the abstraction level the needed inter-
actions between virtual processors. At the implementation level this can be mapped
in a graph of interactions between the processes implementing the application (in
our terminology, between virtual processor modules implementing the virtual pro-
cesses). Indeed these graphs of interactions can be properly transformed in graphs
of dependencies between implementation processes. This allows us to derive a con-

5.6. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 133

sistency model for the computations which is exploited by checkpointing algorithms
inserted directly at compile-time without the need of sharing information between
processes. That is, application processes can decide whenever to take a checkpoint
only by using local information, without the need of exchanging control messages
or to piggyback application messages. As a consequence, we can statically define
the costs incurred by the checkpointing algorithm and we can control these costs.
On the other hand, for CIC protocols the frequency of forced checkpoints on each
process depends on: the frequency of local checkpoints, taken independently; on
the interactions between processes. Typically, the design of a CIC protocol requires
the minimization of forced checkpoints or, if possible, the control of their frequency.
The problem behind the performance characterization of CIC protocols according to
this metric is highlighted in [52]: it is not possible to estimate the number of forced
checkpoints taken by a CIC protocol because this depends on the causal dependen-
cies built at run-time, which depend on the relative speed of processes and on the
local checkpointing frequency. The latter factor can be, in the most general case,
a nondeterministic event. As a consequence, some literature works tried to analyze
the failure-free performance of CIC protocols by means of statistical analysis (e.g.
see [61]). The goal of knowing the number of checkpoints taken by a protocol and
to possibly control it before the application is executed is obtained in this thesis for
the checkpointing and rollback recovery protocols we have defined in the previous
sections.

CIC protocols are performed by the whole set of processes. In more complex
cases the information piggybacked on application messages includes data structures
which size is equal to (or depends on) the number of processes. This is a clear
limit to the scalability of these protocols: in our approach a parallel program is
composed of a set of parallel and sequential modules in a stream-based graph. Each
module is supported by its own protocol, which can be chosen also to optimize its
mapping on the execution platform. The different protocols and techniques applied
on each module are composed together to target global correctness. In Chapter 6
we have introduced an optimized technique based on message logging to support
the composition of fault-tolerance of different modules. They can be also composed
together to meet some global constraints (e.g. some QoS) related to the costs of
checkpointing and rollback recovery and, as a consequence, to the performance of
the application. In some simple cases the information is not a source of overhead,
but the related protocols force too many checkpoints [52]: it is the case of the CIC
protocol which forces to take a checkpoint before every message is processed.

5.6.3 Message Logging

As we described in Chapter 2, message logging techniques can be classified according
to three flavors:

134CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

• optimistic message logging, in which messages are not synchronously copied
onto stable storage whenever received, but some buffering is exploited;

• pessimistic message logging, in which message copying onto stable storage is
done synchronously, by blocking the computation;

• casual message logging, which is a trade-off between the previous two tech-
niques and it is based on partially saving dependency information about pro-
cesses on the volatile memories of processes.

While pessimistic and casual message logging are domino-effect free techniques, op-
timistic logging is not: by exploiting this technique it is possible to rollback to the
very beginning of the computation. This is due to the possibility of incurring in a
failure while one or more messages are not yet logged on stable storage and if such
messages cannot be recovered.

We have seen that message logging techniques base their consistency properties
on the piecewise determinism assumption (PWD, see Chapter 2). According to this
assumption, processes local computation is deterministic: given the same inputs,
the same outputs and actions are produced. Nondeterminism happens in input
communications: in the case in which multiple messages from multiple senders are
ready on an input channel, one of them is nondeterministically selected and delivered
to the application [4]. This is valid for any process of the computation

In our model we assume the piecewise nondeterminism property but, unlike what
happens in unstructured models of parallel programming, we relegate nondetermin-
ism in message receive events in specific points of the programs. Nondeterminism
can be expressed in the choice of the input from which receive a message, for generic
parallel modules (e.g. implementing a farm o a data parallel program). Inside any
parallel module communications are deterministic for data parallel programs, or fol-
low a well-defined pattern (e.g. they implement a pipeline semantics, as in the farm
case). Consequently, we can exploit these properties in supporting fault tolerance.
This assumption cannot be done in structure-unaware programming models: any
communication point is assumed to be nondeterministic.

In the previous sections of this chapter we have studied only solutions which avoid
the domino-effect. Thus, we cannot compare the optimistic logging techniques with
ours if we apply it to the whole computation. The comparison can be done if we
limit the extent of optimistic logging to a subset of the application modules. Then
we have to guarantee that all causally precedent nodes in the program graph are
domino-effect free and that they can recover lost messages. In this way the whole
fault tolerance of the application is domino-effect free. This solution, which study is
demanded to future work, exploits the knowledge of the interconnections, by means
of stream, between parallel and sequential modules of our programming model (see
Chapter 3).

In Section 5.5 we have implemented a pessimistic logging protocol: whenever a
VPM receives a message, it is logged onto stable storage. VPMs perform an unco-

5.6. COMPARISON WITH STRUCTURE-UNAWARE PROTOCOLS 135

ordinated checkpointing protocol and during recovery messages are recovered from
stable storage. The consistency definition on which is based this solution is the same
of pessimistic logging protocols (see Section 5.5). We discuss the possibility of ana-
lyzing the performance in the case in which we do not have structural information.
Suppose we are supporting data parallel programs with fault tolerance at the level of
processes communicating through message-passing. We do not know that the pro-
cess programs implement a data parallel computation. We exploit uncoordinated
checkpointing on each process: differently from our solution, we do not have “hooks”
in which we can abstractly characterize the state of each process, which correspond
to the beginning of the data parallel loop (see Figure 5.16) in our protocol. We have
indeed to save the whole state of the process (data and code sections, information
related to the operating system). The checkpointing operations on each process can
be triggered, for instance, by some time-based mechanisms. Thus, we statically know
the frequency of checkpointing on each process, but the information is stochastic.
We extend checkpointing with pessimistic message logging: at compile-time we do
not know how much messages will be passed between processes, because we do not
have the information on the dependencies between processes. As a consequence, we
cannot obtain a formula expressing the total costs incurred because of checkpointing
and message logging: this information will be only available at run-time.

In more general terms, if we cannot derive an expression of the overheads incurred
because of this fault tolerance technique we cannot decide if pessimistic message
logging is well-suited depending on application- and platform-specific information.
This can be done by exploiting our framework, by simply computing the costs of
each VPM during failure-free executions.

We also consider causal logging protocols. These are based on recording on the
volatile memories of multiple processes the dependency graphs of the computation
(actually antecedence graphs), by replicating it as piggybacked on application mes-
sages. Piggybacking can enjoy incremental techniques, for which the size of the
piggybacked information does not increase with the number of dependencies during
the computation. In our methodology of supporting fault tolerance, the antecedence
graph of processes (VPMs) is known at compile time, as it is specified as part of
the program itself. The determinants of nondeterministic events are: in part rep-
resented in the stencil graph and are part of the distributed programs of processes;
in part collected on stable storage (or possibly multiple volatile memories) during
the execution. For instance, the protocol described in Section 5.4 saves on stable
storage the reached computation step at each program iteration. This information,
both with the stencil knowledge, is sufficient to re-build correctly the computation
graph of the lost computation steps. As a consequence, the solution presented in
Section 5.4 can be seen as a causal message logging protocol, in which we optimize
the information that must be saved on stable storage during the execution. The
main difference with this approach and the one of structure-unaware programming
models is that we know statically the graph of dependencies between processes.
Thus, we can exploit this information to introduce proper actions during compile-

136CHAPTER 5. CHECKPOINTING AND ROLLBACK RECOVERY FOR DATA PARALLEL

time and, as a consequence, we can study the impact on the failure-free performance
before the applications are actually executed. Also in this case, static performance
analysis is a key point in the comparison with structure-unaware solutions.

Message logging techniques for structure-unaware programming models are well-
suited to meet the needs of large applications, both in sense of the number of used
processes and their distribution on execution platforms. In particular causal log-
ging seems to optimize the trade-offs of communication and computation required
by these kinds of applications [4]. To evaluate this issue we should define an ex-
perimental session which goals are to compare our modular approach to parallel
programming with structure-unaware ones. The experimental configuration should
be defined in the following way:

• define an application (or more applications) composed of several parallel and
sequential modules composed by means of streams. Apply our message logging
protocols, possibly exploiting optimistic logging for some nodes of the graph.
The choice of the techniques should be guided by the cost models of the pro-
tocols to target optimizations for specific application and execution platform
parameters. Finally, test the implementation to prove the correctness of the
results of the exploitation of the cost models;

• define the same application(s) of the previous point according to a structure-
unaware programming model. Support the whole application(s) with pes-
simistic and casual logging protocols and test the implementation.

We demand the implementation of this testing experience and the comparison of
the numerical results to future work.

Chapter 6

Implementation of the
Fault-Tolerant Stream

In this chapter we show an implementation of the Fault Tolerant-Stream (or FT-
Stream), which we preliminarily described and exploited in Chapter 3. We first
introduce some preliminary mechanisms related to interprocess communication on
a same machine and on remote ones. The FT-Stream implementation is presented
as a composition and extension of these mechanisms. This implementation is not
done on actual computing platforms, but it is based on the preliminary concepts
which we introduce in the next section. This choice is done because our aim is to
perform analytical studies. We address in future work actual implementations and
experiments (see Chapter 8).

6.1 Preliminaries

We introduce some preliminary notions that are used in the description of the FT-
stream. This section discusses the following points:

• How synchronous interactions between processes in a same computational node
are implemented. The aim is to minimize the number of information copied
during this operation.

• The communication protocol without fault tolerance support in a distributed
environment, i.e. for processes running on different nodes.

The following subsections analyze separately each point.

6.1.1 Efficient Interprocess Communications on a Same Node

We consider the case of message exchanging between two processes on a same com-
putational node. The communication is synchronous and avoids any copies of the
content of the message (0-copy property).

138 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

In the most general case, suppose two processes are respectively executed on the
main processor (say process A) and on an auxiliary one (say process B). A passes
information to B through the interruption mechanism. Our goal is to minimize the
quantity of information copied in this process. We assume the processes can access a
same shared memory support. To implement the communication we make processes
pass references to the variables they want to communicate. We illustrate a possible

release!cap(capD)
}

A:: {
//builds D
D =
//obtain D cap.
capD = transmit!cap(D)
//interrupts B

interp!comm(capD,B)
}

Main Memory

Bus I/O
capD

netwPmainP

D

BA

B:: interr!handler {

D = obtain!addr(capD)
//obtain the addr. from the cap.

//works on D, e.g.
if(D....) then
//after work. release the cap.

Figure 6.1: Example of synchronous communication between two processes on a
same node.

instance of this kind of communication in an example. In Figure 6.1 we show the
communication of a data structure D from A to B. A is executed on the main
processor Pmain. B on another one Pnetw and it is specialized in the implementations
of communications between different nodes. B is responsible of managing input and
output communications and it is connected directly to the network interface card
(NIC in short). The communication protocol is the following: A builds the data
structure D by filling up its fields. Next it obtains a reference to D (that we call
capability of D) and it copies it in a variable, say capD. The function that performs
this task is called transmit-cap. Finally A passes B the reference capD through the
interruption mechanism. We denote this operation with the function interp-comm.
When B receives the interruption from A it performs the corresponding handler and
(possibly in the main loop, or in the handler) it uses the reference capD to D to
address it. The function that makes this task is called obtain-addr. After working
on D B releases its capability (release-cap function). This last step implements
the minimal privilege mechanism for which any variables cannot be accessed unless
explicitly authorized for the minimum possible time required. That is, A authorizes
B to access D and when the access terminates B has no more privilege to access it.
Notice that the protocol avoids to copy the variable D during the communication
between A and B.

6.1. PRELIMINARIES 139

6.1.2 Communication Protocol without Fault Tolerance

Suppose two processes S (for sender) and R (for receiver) are executed on different
nodes (NS and NR respectively). We assume that there is no an external shared
memory support. We show the implementation of the communication support (as
send and receive primitives) in the case without fault tolerance support.

The channel CH, for the communication from S to R, is mapped in the receiver
node NR. On NS a smaller data structure CHrem is exploited for the interactions
between S and its local communication process. We will name KP the communica-
tion process on each node, i.e. the process implementing communications. Thus on
NS we exploit a KPS and on NR a KPR. Messages from S to R are typed and are
copied only in the channel CH. CHrem does not contain the messages to be sent. We
notice that this choice is a point in the differences with the model on which message
logging protocols are based (see [79]). In that model there is a message buffer on
both the sender and the receiver nodes.

R

NNS

NICNICP

M
KP

S

KP
M

P

CHrem CH

R

Figure 6.2: Architecture of NS and NR nodes. The KP on the nodes are mapped
on a special hardware, and implement the communication protocol. The dotted line
shows the path of a message sent from S to R.

Figure 6.2 shows the entities implementing the communication and their mapping
onto the nodes. The communication protocol is composed of the behaviors of S, KPS,
KPR and R. We describe each behavior according to their sequence in the protocol.
In the example we have mapped the KP processes in a special hardware on each
node. Clearly, this is not mandatory and the protocol works also in the case KPs
are executed on the main processor. In the rest of the chapter we will assume to be
supported with this special hardware. We also assume that each node is provided of
a Network Interface Card (NIC) that implements the lower levels of the networking
protocol. The NIC in a node can access the main memory of that node through the
Direct Memory Access (DMA) mechanism. In the description of the communication
protocol and its data structures we make use of the following terms for the states
characterizing a process execution:

140 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

CH ReceiverCH Sender

wait

semlocksemlock

local

L

K

(true)

CAP−PCB

CAP−VTG

SIZE

INS

EXT

Q−CAP

dest−node−id

K

L

local
(false)

source−node−id

used−channel

Figure 6.3: Data structures implementing the communication channel on the sender
and receiver, respectively. The message buffer is only on the receiver side.

Running the process is in execution on one of the available processors.

Waiting the process is waiting for an event to happen. For events related to the
communication we make use of specific macros, which we describe below.

Ready the process is ready for being executed on one of the processors.

Figure 6.3 shows the fields of CH and CHrem, i.e. the data structures implement-
ing the communication channel on the receiver and on the sender, respectively. A
description of their fields follows. CHrem contains:

semlock this is the semaphore used to support concurrent accesses on the data
structure from KPS and S.

local this is a boolean variable indicating if the channel is local or remote. It is
used in the case we want to implement the message queue on the sender and
on the receiver. As we have decided that the message queue is mapped onto
the receiver space this variable is always set to false in this data structure.

dest-node-id this is the identifier of the node executing the receiver process. It is
used by the lower layer routing support to obtain the NR network address.

6.1. PRELIMINARIES 141

used-channel this is used to synchronize S and KPS in successive send operations.

L this is the length of messages exchanged on this stream (recall that communication
channels are typed).

K this is the asynchrony degree of the channel, which indicates the maximum num-
ber of messages that can be placed in the message queue. In the case in which
the queue is filled up of K+1 messages the sender blocks until the next receive
is invoked.

CH contains:

semlock this is the semaphore used to support concurrent accesses on the data
structure from KPR and R.

local with the same meaning as above, here it is set to true.

source-node-id this is the identifier of NS. It is used by the lower layer routing
support to obtain its network address.

wait this is a boolean indicating if one of the two parties is waiting for the other
one.

L this is the length of messages (equal for all messages).

K this is the asynchrony degree of the channel (see above).

CAP-VTG this is the capability of the target variable, which is used in the case
the receiver waits for a message (see below).

CAP-PCB this field can contain the Process Control Block (PCB) of the sender
or the receiver, in the case in which they transit in the waiting state.

SIZE this is the number of messages in the queue.

INS this is the index of the next free position in the queue.

EXT this is the index of the next position in the queue from which extract a
message.

Q-CAP this is the message queue. It can contain up to K + 1 messages: in the
case the queue is filled the next send will block the sender. Before transiting
into the waiting state the support copies the message in the K +1 position. In
this way, when the sender is woken up, it is not needed to copy the message.

142 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

M WA

result

CAP−CH

source−node−id

CAP−PCB

TYPE
(W)

CAP−CH

CAP−CH

dest−node−id

CAP−MSG

CAP−PCB

L

source−node−id

CAP−PCB

TYPE
(R)

id−ch

TYPE
(R)

Figure 6.4: Data structures used to implement the communication protocol. The
M data structure is used to implement the send operation, and it is used between
S, KPS and KPR. The A data structure is used to notify KPS of the result of the
local send on the receiver. The W data structure is used from R to wake up S, when
the receiver removes a message from a full channel queue.

Figure 6.4 shows the data structures passed between the processes to implement
the communication protocol. All data structures contain a TYPE field, which
contains the type of the message. It is used by KPs to select the proper actions
when a request is received.

The M structure is used to pass a message from the sender to the receiver. It
contains:

dest-node-id this is the identifier of the destination node. It is used by the NIC
on the sender node to implement the routing protocol, i.e. to address NR.

id-ch this is the identifier of the channel in which to place the carried message.
KPR uses this value to obtain a reference to the channel1.

CAP-CH this is the capability of CHrem, which is used for the management of
control messages from R and KPR to KPS.

CAP-PCB this field contains the capability of the PCB of S and it is used to
implement process operations, like waiting and wake up ones.

L this is the length of the message.

CAP-MSG this is the capability of the message.

1Recall that KPs implement all the communications incoming to an outgoing from a node.

6.1. PRELIMINARIES 143

The A structure is used to transmit the send result from KPR to KPS. It
contains:

source-node-id this is the identifier of NS, which is used for routing purposes.

CAP-CH this is the capability of CHrem.

CAP-PCB this is the capability of S.

result this field contains the result of the send operation.

The W data structure is used from R to wake up the sender in the case it goes
into waiting status, i.e. when up to K + 1 unreceived messages are placed in the
message queue. It contains:

source-node-id this is the identifier of NS, which is used for routing purposes.

CAP-CH this is the capability of CHrem.

CAP-PCB this is the capability of S.

Refer to the next paragraphs for a complete explanation of the meaning of the
channel and message fields.

S Sends a Message to R S calls the send primitive with the following parameters:
send(ch,m), where ch is the identifier of the channel on which sending the message
and m is the message to be sent. The following operations are performed:

• S acquires the lock on CHrem.

• It checks if the channel is used, i.e. if the previous send operation is terminated.
If the used-channel field is true S sets its state in its Process Control Block
(PCB) to SPEC-WAIT2, releases the lock on the channel and it transits in
the special waiting state. It will be moved back to the ready queue by the
local KPS when the result of the previous send will be received (see below).
When S is woken up it automatically re-acquires the lock on the channel.

• Either if the CHrem.used-channel field is false or after S is woken up it continues
the communication protocol. It sets the used-channel field to true and it
releases the lock on the channel.

• S fills up a data structure M (see above) with: (1) the identifier of the desti-
nation node, which is used for routing purposes; (2) the identifier of CH used
by KPR to access the channel data structure; (c) the capability of its PCB;
(d) the capability of CHrem, to implement the send result notification and

2SPEC-WAIT denotes that the process is waiting for the previous communication on CH to
terminate. We denote that the process is waiting for other events with the WAIT macro.

144 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

wake up operations; (e) the length in bytes of the message, which is obtained
from the CHrem.L field. (remember that we are implementing typed streams);
(f) the capability of the message, which is obtained through the transmit-cap
function. Below we use the name of the type of used variables (e.g. M) to
denote also their specific instances during a communication. The reference to
the PCB of S is used to move back the process from the waiting status to the
ready or running ones, in the case it is blocked because the channel was full.

• Next S copies in a variable capM the capability of the built M variable that
is obtained exploiting the transmit-cap function.

• Finally, S performs an interprocess communication passing capM on KPS (see
the local interprocess communication protocol).

KPS is interrupted from S: by looking at the dest-node-id field it understands that
the communication is related to a remote channel. It forwards to NIC the capability
capM of M. We call delegate this forwarding operation performed by KPs. NIC
acquires the capability of M, obtains the address of NR from the logical identifier of
the receiver (M.dest−node− id field) and it copies M and m in the network. Recall
that NIC can access m by means of its capability copied in M.CAP-MSG field.

When NIC on the receiver side receives M, it copies it and m in the main memory
and it passes its capability to KPR through an interrupt. KPR performs the following
actions which we call “local send”:

• It acquires the capability of M and m.

• It obtains the local channel CH exploiting its identifier M.id-ch.

• It acquires the lock on the channel.

• If R is waiting for a message, it obtains the capability of the target variable in
which to copy the received message. It copies m in this variable, releases its
capability and wakes up R3.

• Otherwise, if R is not waiting for a message, m is copied in CH. KPR obtains
the capability of the first free position in the message queue CH.Q-CAP. It
copies the capability of the message (i.e. m) in that position and it releases
the acquired capability.

• KPR updates the field indicating the number of messages in the channel, and
the next free position in CH.Q-CAP.

• KPR checks if the channel queue is full. In the case it is full it copies to
CH both the capability of the remote channel (on the sending side) and the
capability of the PCB of S. Otherwise no action is performed.

3Notice that this is an optimization inspired from [73]

6.2. INTRODUCTION TO THE FT-STREAM 145

• KPR builds up an A variable that includes the result of the send: stop in the
case the channel is full, go in the case the channel is not full.

KPR delegates the local NIC to send the A variable to NS.
When KPS receives the A variable it checks the send result: (a) if the result is go

CH.used-channel is set to false and if S was in the SPEC-WAIT state it is moved
back to the Ready or Running ones (depending on its priority); (b) if the result
is stop and the sender is not waiting CH.used-channel is left to true. Otherwise, if
S is waiting (not only in the SPEC-WAIT state), CH.used-channel is set to false.

Finally we describe the receive protocol performed by R, which possibly sends
a wake up message to KPS if the channel was full. R performs the following ac-
tions that correspond to the call of receive(ch,tgv), where ch is the identifier of the
communication channel and tgv is the target variable on which to copy the message:

• R acquires the lock on CH.

• R checks if the channel is empty. In that case it sets CH.wait to true and
it copies the capability of its PCB and of the target variable in the fields
CH.PCB and CH.TGV, respectively. Next R releases the lock on CH.R. It
will be woken up by KPR at the next message reception (see above the KPR

behavior). Notice that, in this case, the message will be directly copied in the
target variable and the receive terminates without further actions.

• Otherwise, if there is at least one message in the channel, R obtains it by
accessing the CH.EXT field and the queue CH.Q-CAP.

• R checks if the sender was waiting because the message queue was full by
checking the wait field. If S is waiting R builds a W variable with the capability
of the remote channel CHrem and the capability of the PCB of the sender. This
information was copied in CH by KPR in the case the channel was full. R sets
CH.wait to false.

• Finally R releases the lock on the channel.

In the case S was waiting KPS receives the W message and it will move S back to
states Ready or Running only if it is in the SPEC-WAIT state. Otherwise no
action is performed.

6.2 Introduction to the FT-Stream

We introduce the FT-Stream that extends the stream abstraction with message
logging. Message logging have been widely employed in the context of fault tolerance
to support uncoordinated checkpointing (see the Chapter 2). In this context, to
minimize the overhead incurred in logging messages, we target an asynchronous
logging technique (i.e. an optimistic message logging technique). To minimize the

146 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

number of lost messages in the case of failure we exploit an implementation feature
(K-asynchrony), which is essentially based on avoiding the producer on a stream to
send “too many” messages.

From the fault tolerance modeling viewpoint the FT-Stream abstraction allows
the communicating parties to uncoordinately perform checkpointing operations.
That is, communicating parties decide independently when to take checkpoints.
This comes at the cost of the message logging overhead but it enables a simple and
optimized rollback recovery scheme. Uncoordination of checkpointing is a suitable
feature in the case checkpointing operations cannot be introduced in a system-wide
logic. It is the case in which we are building our parallel application up of separated
modules, possibly internally parallel (see Chapter 3, for a description of the pro-
gramming model we target). Moreover, the FT-Stream enables localized rollback
recovery and it allows us to model the performance behavior of parallel programs
independently of the behavior of other modules which interact with it.

In this chapter we give a detailed description of the implementation of FT-
Streams and we show an example of its exploitation in a simple test-bed. We also
define the performance model of communication and we show some interesting prop-
erties. The test-bed represents an important component to implement structured
parallel programs. We have seen that this scheme is exploited in farm computa-
tions to implement input and output streams (see Chapters 4 and 5, where we make
extensive use of FT-Streams).

In Section 6.3 we describe the FT-Stream abstraction, a possible implementation
of it, together with its cost model. In Section 6.4 we show how we can exploit it in a
simple parallel program, which is used as building block of more complex programs.
The example includes a complete rollback recovery protocol and its evaluation.

This document does not discuss the following issues:

• Failure model and failure detection: we assume the fail-stop model, in which
processes can restart. Failures are detected in unbounded but finite time [26].

• Process restart mechanisms: we assume processes are restarted by some ad-hoc
sub-system which is resilient to failures.

• Unknown process dependencies which are built at run-time.

The last one is a key point in our research work: we exploit the knowledge on the
interaction patterns of structured parallelism models to insert proper and optimized
checkpointing procedures and rollback recovery protocols (see Chapters 3, 4 and 5).

6.2.1 FT-Stream Abstract Model and Implementation Fea-
tures

To model message logging techniques we exploit I-structures (see Chapter 3) which
are defined as sequences of named and typed elements. We map each stream ele-

6.2. INTRODUCTION TO THE FT-STREAM 147

ment in a I-Structure element. A whole stream is modeled as a single I-Structure
connecting the producer to the consumer. Operations on I-Structures are:

• put(position,element) This operation stores the given element in the given
position. It is semantic of I-Structures that no more than one put can be per-
formed on the same position (write-once property). That is, it is not possible
for two elements to have the same name.

• get(position,target) This operation stores the content of the given position
in the target variable (used as output of the operation). According to the
semantic of I-Structures the get operation is blocking: if a position is empty
the control-flow of the process performing a get operation blocks until a put
is performed on that position (blocking property).

Clearly, the producer will exploit put operations to produce elements on the stream,
whereas the consumer get ones.

The properties of put and get operations model message logging on streams as:

• The write-once property is used to uniquely identify stream elements. We
exploit the element identities to implement message logging and fault recovery
schemes. As stream elements cannot be re-written at the level of the model, the
write-once property also expresses the general semantics of rollback recovery:
elements passed on streams are not lost but they can be recovered when needed.

• The blocking property implements the receive blocking semantics in the case
the message queue is empty (see the communication protocol above).

The controlled asynchrony degree, blocking the sender after K + 1 sends, is not
modeled by the I-Structure model and it is an implementation feature. The general
idea behind this choice, which leaves such a property at the implementation level, is
motivated by the fact that the consequences of I-Structure properties are sufficient
to implement rollback recovery strategies. The controlled asynchrony degree is an
optimization of the number of messages that must be re-sent on a stream, in the
case of failure.

The implementation of streams is based on the communication channels de-
scribed in Section 6.1. We focus on single producer and consumer streams and we
leave the implementation for multiple producers and consumers to future work.

The main feature of the implementation of the FT-Stream we describe is that it
is based on a controlled asynchrony: the number of messages enqueued cannot be
larger than a given value, which is known at compile-time. As a consequence of this
property, the number of messages re-sent during fault recovery is upper bounded.
This property is independent of the actual frequencies of checkpointing operations.
Moreover, the message logging support is based on the same implementation of
unlogged channels. The versatility of the channel implementation is well-suited to
transparently support different logging strategies. For instance, we can support

148 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

logging of messages onto the local disk of the receiver or onto the volatile memories
of remote nodes.

6.3 FT-Stream Implementation

In this section we describe the FT-Stream implementation. We introduce a message
logging procedure in the implementation of streams, and we provide hooks to sup-
port rollback recovery protocols. Whenever one of the two parties communicating
through an FT-stream fails, the other one is informed at the next communication
operation. The communication exceptions are handled by executing some rollback
recovery protocol. The semantics of rollback recovery depend on the application
semantics and its parallel structure (as shown in Chapter 3).

We can consider different implementations of the FT-Stream, each depending on
the way in which the stable storage is implemented:

• Stable storage implemented on the local disk of the node executing the receiver.

• Stable storage implemented by a subsystem executed remotely w.r.t. the
sender and receiver.

In the first case message logging is implemented as a local communication, in the
receiver node, between the process managing communications (the KP) and the
local disk manager. In the second case the implementation can be made in two
ways:

• The KP of the sending node locally performs the send to the stable storage
address, along with the remote send to the receiver node on the application
channel.

• The KP of the receiving node locally performs the send to the stable storage
address, along with the local support on the application channel.

In this chapter we show the implementation for the first case as represented in
Figure 6.5. In the figure the sender process (S) is executed on the main processor
(P) on the sending node (NS). The receiver process (R) is executed on the main
processor of the receiving node NR. We exploit two processes implementing the
communication protocol which we denote KPS and KPR. These are executed on a
special hardware: also in this case we avoid to distinguish between the process name
KP and the hardware executing it. A network interface card (or NIC) is an I/O
device that implements the low-level network accesses. We denote with NICS and
NICR these devices on the sender and receiver node, respectively. To implement
message logging on the receiver hard disk we exploit an hard disk manager, which
we name message logger (or ML in short). We assume that ML is executed on the
I/O device managing the hard disk on the receiver. The interactions between any

6.3. FT-STREAM IMPLEMENTATION 149

ch!r

RSN

NICNIC

MLML
ck

RS

KP
M

P

ch

P

M
KP

ck!r

N

Figure 6.5: Architecture of the nodes executing the sender and the receiver processes
for the implementation of FT-Streams.

processes executed on NR with ML are implemented through local communication
channels. For this purpose KPR can address the local memory of the I/O device
executing ML, according to the Memory Mapped I/O mechanism.

The implementation of FT-Streams exploits two channels: one for the commu-
nication between S and R; the other one for the communication between S and ML.
This is transparent to the programmer which only exploits an FT-Stream abstrac-
tion at the level of programming language. The local memory on the sending node
contains two data structures: one representing the channel between S and the re-
ceiver (R), denoted with (ch-r); the other one representing the channel between S
and the checkpointing process, denoted with (ck-r)4. These data structures are
used only to synchronize S with KPS, i.e. we avoid to copy messages in such data
structures. On NR we exploit two data structures, which correspond to the ones
on NS. ch is mapped on the main memory, and it implements the communication
between S and R. ck is mapped on the memory of the I/O device executing ML and
it implements the communication between S and ML. These data structures include
both a message queue.

The presented solution is valid also if:

• The sender and the receiver are mapped on the same resource. In this case
we can optimize the support by implementing communications in a shared
memory environment.

4The letter “r” of the channels on the sender stands for remote, in the sense they are remote
to the actual variable implementing the channel that is implemented on the receiver node.

150 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

R

P

C

S S S S

R R R

(a) Example of graph of a communica-
tion on a stream between a producer
P and a consumer C. The horizontal
lines denote the execution of the pro-
cess. The ones connecting the horizon-
tal lines denote communications. The
points on the lines in which the hor-
izontal ones are connected denote the
instants of times in which the send and
receive operations are performed.

C

SSP

RR
C

KP

KP

P

(b) Example of graph of the implemen-
tation of send operations. Unlike the
abstract example we have also included
two horizontal lines denoting the com-
munication processes (KP). The exam-
ple shows the protocol performed dur-
ing a communication, which we detail
in the text.

Figure 6.6: Graphs of communication of two processes on a stream, from an abstract
(left) and implementation viewpoint (right).

• There is not a specialized hardware supporting communications and KP is
executed on the main processor.

6.3.1 Notation

In this chapter we will make use of time/event graphs to describe message logging
and rollback recovery. Figure 6.6(a) shows a simple example of a producer-consumer
interaction pattern: two processes communicate through a stream. The upper hor-
izontal line denotes the execution of the producer process, the lower one of the
consumer. Each line that links the horizontal ones denotes a communication be-
tween the producer and the consumer. The connection points denote the execution
of a send operation on the producer and of a receive operation on the consumer.

In Figure 6.6(b) it is depicted the same behavior from an implementation view-
point. The communications are partially implemented by local communication pro-
cessors (KP, see above). In this case the horizontal lines denote the execution of
single processes (P, KPP , KPC , C). The other lines, connecting points on the hor-
izontal ones, denote communications (both local and remote). Notice that, at this
level, there are communications also from the consumer node to the producer one:
we will see below that these ones carry control messages which implement the mes-
sage logging protocol.

In some cases we will add vertical lines to denote computational steps, whenever
it makes some sense to relate the discretization of the execution of the producer and
the consumer of a stream.

6.3. FT-STREAM IMPLEMENTATION 151

6.3.2 Communication Support for Stable Storage on the Re-
ceiver Disk

For brevity in this thesis we present only the description in the case in which the
stable storage is mapped onto the local hard disk of the node executing the receiver
process. The other cases (e.g. stable storage implemented on a remote node) enjoy a
very similar semantics to this case and the implementations can be made by slightly
modifying the one presented here. We demand to future work a full description of
the implementations for all stable storage mappings.

We first describe the abstract behavior of the protocol. Next we define the data
structures and we show the implementation of the communication protocol.

The implementation that we describe extends the one for streams presented in
the previous sections with a simple modification. In the implementation of streams
we copy (a) the capability of the data structure on the sending node (CAP-CH field)
and (b) the capability of the PCB of the sender in the message sent from the sender
to textKPR. This reference was used by KPR to notify KPS of the send result and
to possibly implement the wake up procedure of S. In the case of the FT-Stream we
are assuming that:

• Processes can fail and restart.

• A failed process can be restarted on a different computational node. In the
implementation that we describe we limit this property to the sender process
because we implement the stable storage on the receiver secondary storage.

In the implementation of streams a capability is a logical reference in the physical
memory of a computational node. In the case of failure and restart the physical mem-
ory associated to a logical variable changes. This problem is especially highlighted
in the case in which processes restart on different nodes: references to physical ad-
dresses cannot be equal on different machines. In the implementation of FT-Streams
we modify the implementation of capabilities: we exploit logical identifiers for the
communication of information between remote nodes that we assume to be defined
statically in the compilation of processes. In this way we avoid to pass capabilities
between processes, to implement the communication protocol. We exploit specific
functions to map identifiers onto capabilities and vice-versa. In the case of failure
and restart we assume that such functions are re-initialized by the process restart
sub-system. Unlike this approach the capabilities that are not passed between nodes
(e.g. the list of capabilities of queue positions in the channel data structure on the
receiver nodes) have the same implementation of the stream case without message
logging. We assume that, after a failure and restart, they are properly re-initialized
by the restart sub-system.

152 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

High Level Protocol Description

Suppose that a process S wants to send a message msg marked with sequence number
seq-num5to the receiver onto the application channel CH. The implementation of
the send is partially performed remotely onto the sender node and locally onto the
receiver node. As usual the terms “remote” and “local” are used w.r.t. the mapping
of the communication data structures that include the message queue (in our case
onto the receiver node). The sent messages are copied both onto the application
channel and the checkpointing one. S checks if the previous send has terminated.
If it has terminated it collects the needed information in a special data structure
(called M). Next it delegates its local KP to perform the remote send for it. It
also sets a boolean field in the channel to true (used-channel field, see below).
If the previous send has not yet terminated S goes into SPEC-WAIT-ONE or
SPEC-WAIT-BOTH status: the choice depends on which send results have been
received (as stated above, we perform two copies, one for the application channel,
the other one for the checkpointing one). S will transit back in the ready or running
state only after all needed results will be received from KPS. The variable M, which
S passes to KPS, includes information to retrieve the communication channel, the
destination node, a reference to the message to be sent, its PCB, and information
for fault tolerance purposes. KP delegates itself the transfer of the message to the
NICS if the channel is not marked as failed. In this latter case the receiver signaled
a failure and restart event: S can perform proper actions to recover to a correct
state (see Section 6.4.1).

The request is passed from NICS to NICR that simply forwards the request to
the local KPR. KPR, which receives a message M from a remote node, performs a
sequence of actions for the related application channel and a similar sequence for the
checkpointing one. The operations for the application channel are: (1) it retrieves
the channel on which sending the message, (2) it copies the messages in the next
free position, (3) it increments the number of messages in the queue, (4-stop) in the
case the channel is full, the result of the local send is stop, (4-go) otherwise it is
go. The sequence of operations for the checkpointing channel are equal to those for
the application one. We also obtain an equal result: stop if the channel is full, go
otherwise. The results of the two send operations are collected in a single message
of type A with information for fault tolerance purposes and for KPS to retrieve the
correct channel and the sender process.

When KPS receives a result notification for a send it behaves according to the
values of the result fields:

app = stop, checkp = stop both channels (application and checkpointing) are
full. If S is not waiting KPS leaves the used-channel variable set to true in

5The sequence numbers are not directly used in the implementation of fault tolerance for
streams. In the next section, we will show how they can be exploited by rollback recovery protocols
defined at higher-levels.

6.3. FT-STREAM IMPLEMENTATION 153

both of them (see the data structures below). The sender will stop at the
next attempt to send a message on the application channel. Otherwise, if the
sender is waiting, both used-channel fields are set to false. In both cases KP
waits for two wake up messages from the destination node before re-activating
the process (see below).

app = stop, checkp = go the application channel is full. If the sender is not
waiting the used-channel field in the application and checkpointing channels
are, respectively, left to true and changed to false. The next attempt to send
a message will block the calling process. Otherwise, if the sender is waiting,
both used-channel fields are set to false. In both cases KP waits for a wake
up message from the destination node.

app = go, checkp = stop this case similar to the previous one but the used-
channel variables are set with reversed values w.r.t. the previous case. KP
waits for a single wake up message.

app = go, checkp = go both used-channel variables are set to false. In the case
that the sending process is waiting for the send result it is moved to the ready
queue. Otherwise, if the process is not waiting or it is waiting for another
event to occur, its state does not change.

The behavior of the process R or ML performing a receive is: (1-empty) if the
queue is empty the process blocks waiting for a message; (1-not empty) otherwise
the message is copied in the target variable; (2-wait) if the sender was waiting to
complete a send operation (channel full) it delegates KPR to send a wake up message.
It passes KPR a data structure of type W which includes all the information needed
for waking up the sender, i.e.: the capability of the PCB of S, the capability of
the channel and the sequence number of the received message. Otherwise (2-not
waiting) no more actions are needed.

When a wake up message is sent from the destination node to the sending one
KPS behaves according to the state of the S process and of the values of the used-
channel variables:

• Suppose the sender is waiting for both channels. When KP receives the first
wake up message it sets the used-channel variable to false in the related chan-
nel. It avoids to wake up the process by looking at the used-channel field in
the other channel (that is set to true). When KP receives the second wake up
message it sets the used-channel of the related channel to false. By analyzing
the used-channel of the counter part channel it knows that the process state
can be set to ready.

• Suppose the sender is waiting for only one of the two channels. When KP
receives the wake up message, by checking the used-channel variable of the
counter part channel, it knows that the process can be woken up. It sets

154 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

the used-channel variable of the related channel to false and it wakes up the
process.

Clearly it is not possible that S is not waiting for the wake up message and a wake
up message is received.

Similarly to the case of the stream implementation, we optimize the copy of
messages in the case the receiver is waiting. KPR directly copies the received message
in the target variable, which capability has been provided form R before passing in
the waiting status.

In the case of failure of S or R the restart sub-system, after having re-initialized
their data structures, restarts them by calling proper rollback recovery procedures.
Such procedures are callbacks provided by some upper-level. To enable the failure
detection between the communicating parties, when a process restarts it passes a
message of type V to the other party. The purpose of the message is:

• To communicate the new address of the process if it is different from the
previous one;

• To set a special variable in the channel indicating that the other party has
failed. In this way the process performing communication on the channel is
informed of the failure.

We do not employ any kind of timeouts: these are hidden by the process restart
mechanism that we do not discuss in this thesis and can be supported by existing
techniques.

Implementation of the Communication Support: Data Structures

The fields of the local and remote channels, respectively mapped in the destination
and source nodes, are shown in Figure 6.7.

We extend the channel data structure on the sending side (w.r.t. the stream
implementation, see Section 6.1), with the following fields:

seq-num this contains the last sequence number that was passed to a send.

hasCounterPart this indicates if the channel has an application or checkpointing
counter part. We recall that we associate a checkpointing channel to each
application channel only for FT-Streams. This field is used by the KP support
to choose if to implement an unlogged communication or a logged one.

CAP-CP this is the capability of the counter part channel.

failed this field is a boolean value used by KPS to signal to S that the receiver
failed and restarted.

The fields of the channel on the receiving side are extended with the following fields:

6.3. FT-STREAM IMPLEMENTATION 155

CH ReceiverCH Sender

used−channel

(false)

source−node−id

proc−id

Tail−SN

Head−SN

wait

semlocksemlock

failed

failed

local

L

K

(true)

CAP−VTG

SIZE

INS

EXT

Q−CAP

dest−node−id

K

L

CAP−CP

seq−num

hasCounterPart

local

Figure 6.7: Implementation of the communication channels, on the sending (left)
and receiving (right) sides. Highlighted fields are related to the FT strategies (both
for stream and application levels).

Head-SN this is the sequence number of the first un-received message, i.e. the
message at the head of the queue.

Tail-SN is the sequence number of the last message put in the channel, i.e. the
message at the tail of the queue. Because we avoid unordered sequences of
messages in the queue Tail-SN ≥ Head-SN.

failed this is set by KP in the case in which the sender node is restarted. It is used
to support rollback recovery and process migration in the case of failure.

The data structure exchanged to implement the communications are shown in
Figure 6.8. As usual each data structure contains a first TYPE field that contains
the operational code of the message. The fields of the M structure which are passed
from the sending process to KPS are:

dest-node-id this is the identifier of the destination node. NIC uses this value to
obtain the node address.

156 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

VAM W

id−chproc−id

id−ch

(W)
TYPE

seq−num

source−node−id

proc−id

id−ch

proc−id

seq−num

source−node−id

TYPE
(V)

addr

id−ch

(R)
TYPE

R−chk

R−app

seq−num

source−node−id

seq−num

L

CAP−MSG

dest−node−id

TYPE

dest−node−id

(R)

Figure 6.8: Message types implementing the communication protocol with message
logging.

ch-id this is the identifier of the channel. It is used by KPR to obtain the capability
of the local channel.

proc-id this is the identifier of the sending process.

L this is the length of the message.

CAP-MSG this is the capability of the message.

seq-num this is the sequence number of the message.

The fields of the A structure, which are passed from the receiving process to the
local KPR to notify S of the send results, are:

source-node-id this is the identifier of the source node. NIC will use this value to
obtain the node address.

ch-id this is the identifier of the channel. It is used by KPS to obtain the capabilities
of the data structures ch-r and ck-r.

proc-id this is the identifier of the sending process.

seq-num this is the sequence number of the message whose receive induced the
sending of this message.

R-app this is the result of the local send onto the application channel.

R-chk this is the result of the local send onto the checkpointing channel.

6.3. FT-STREAM IMPLEMENTATION 157

The fields of the W structure which is passed from the receiving node to the
sending one to wake up S are:

source-node-id this is the identifier of the source node. NIC will use this value to
obtain the node address.

ch-id this is the identifier of the channel. It is used by KPS to obtain the capabilities
of the data structures ch-r and ck-r.

proc-id this is the identifier of the sending process.

seq-num this is the sequence number of the message which receive induced the
sending of this message.

The V structure is used to implement rollback recovery protocols in the case of
process re-start. It is exchanged between KPs (when they are re-started) to notify
the failure and restart and the rollback sequence number. Its fields are:

source-node-id this is the identifier of the source node, i.e. the node that has
rolled back. It is used to notify the other KP of the identity of the failed node.

dest-node-id this is the identifier of the destination node, i.e. the one notified of
the failure.

ch-id this is the identifier of the channel on which notifying the failure. We assume
that channel identifiers are statically assigned to (pair of) processes.

addr this is valid only in the case S is the failed and restarted process. It includes
the new address of the node in the case the sender has been re-started on a
different computational node. We recall that in this implementation we are
assuming the receiver restarts on the same node.

seq-num this is the sequence number of the checkpoint to which the notifying node
has rolled back. It is used by upper-level rollback recovery protocols.

Implementation of the Communication Support

We now give the implementation of the communication protocol in pseudo-codes.
Figure 6.9 shows the implementation of the send operation. S sends a message msg
on the channel identifier ch-id, with sequence number seq-num. After obtaining the
capability of the channel and its address from the capability (copied in the local
variable ch-r), it locks the associated semaphore. The chidToCap function, given a
channel identifier, returns its capability. Next it checks if the channel is supported
by message logging (hasCounterPart field). We are interested in the case message
logging is supported. S locks the semaphore associated to the checkpointing channel
and it checks if the previous communication, which are composed of two copies of

158 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

the message on the receiver node, is terminated. It do so by checking the used-
channel fields on the application and checkpointing channels. The behavior is the
one described above: if one of the two channels is used by a previous send it transits
into the waiting status. We choose the SPEC-WAIT-BOTH status in the case
both channels are used, SPEC-WAIT-ONE otherwise. Next S unlocks the related
semaphores. When S is moved back to the running state, or if the channels were
not used, it automatically re-acquires the lock on the semaphores. It sets the used-
channel fields to true and it unlock the semaphores. Next it allocates and fills up
a M data structure with proper values. It obtains the capability of the M variable
and it passes it to KPS with an interprocessor communication.

The implementation of a KP process is described in Figure 6.10. It acts as
a server by waiting for requests incoming from processes executed on the same
node or from remote processes, through the network. When KP is signaled of the
arrival of a new request it checks the type of the received message. We describe the
behavior for each message type separately. The behavior in the case a M message
is received is shown in Figure 6.11. If the request is received from a remote node,
KP implements the local send operations by performing two local-send procedures
on the application and checkpointing channels. The procedures return the send
results, which are encapsulated in a A message and passed back to KPS by means
of a request to the local NIC. Otherwise, if the request M is for a remote node, KP
simply delegates the forwarding of the message to the local NIC.

The local-send procedure takes as input the message m and a channel variable
ch on which to perform the send. After locking the related semaphore it checks
if the receiver is waiting for a message. In the case it is waiting it directly copies
the message in the target variable, which the receiver previously copied in the CAP-
VTG field of the channel. Next, it moves the receiver to the ready status if it has not
the privilege to go directly into the running status or if preemption is not admitted.
Otherwise it is moved to the running status. This task is performed by calling a
wake procedure (which implementation is not shown here) on the the PCB of the
receiver, which is obtained by means of the procIdToPCB and obtain-addr functions.
Otherwise, if the receiver is not waiting, the message is copied in the queue. If this
message fills up the queue, the field wait is set to true, and the process identifier
of the sender is copied in the proc-id field. In this case the result of the procedure
is stop. Otherwise, if the message queue is not full, the result is go. Notice that
we assume that process identifiers are names that scope to the whole application,
independently of their actual mapping on computational nodes.

Now we return back to Figure 6.10. In the case the KP receives an A message
it calls the send results procedure, which is shown in Figure 6.13. The procedure
implements the behavior described above. In the case one of the two results is stop
and if S is not waiting the used-channel field is left to true. This blocks the sender
to perform a further send operation (see the send implementation in Figure 6.9).

In the case KP receives a W message (see Figure 6.10) we perform the wake sender
procedure, which is shown in Figure 6.14. Each W message is related to one chan-

6.3. FT-STREAM IMPLEMENTATION 159

nel. KPS behaves according to the following rule:

• If S is in the SPEC-WAIT-BOTH status it moves it in the SPEC-WAIT-
ONE status.

• If S is in the SPEC-WAIT-ONE status it moves it in the ready or running
states.

The management of V message by KP is shown in Figure 6.10.
Finally, Figure 6.15 shows the implementation of the receive operation. R transits

into the waiting status if the message queue is empty. Otherwise it extracts the
message on the top of the queue and it checks if the sender is in the waiting status. If
the sender is waiting it allocates and fills up a W variable by copying the information
from the channel and the actual parameter of the procedure. The built variable is
forwarded to the local KP.

6.3.3 Synchronous FT-Streams

We show how the above implementation can be modified to support the following
properties:

• The sender is synchronized with the message logger.

• We ensure that, when a receive operation terminates, the related message is
copied on stable storage.

The modifications are the following:

• The send onto the checkpointing channel which is performed by the KPR is
synchronous. This means that the control-flow is returned to the KPR only
after the message logger has copied the message in the secondary storage.

• In the local send procedure we first perform the send on the checkpointing
channel. Next we perform the one on the application channel. The second one
can be also asynchronous.

As a result the sender is synchronized with the message logger and the receiver
can obtain only logged messages. We notice that, during a local send, the KPR is
blocked until the message logger has stabilized the element. This can be a drawback
because all other communications are delayed.

6.3.4 Analysis of the Communication Latency

The communication latency depends on the hypotheses on the execution environ-
ment we target. In this thesis we just give a qualitative analysis of the impact of
the checkpointing channel on the communication latency.

If we consider a communication without message logging we can abstractly rep-
resent the latencies in the following way:

160 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

• The time needed to perform a send operation depends on the state of the
channel. We consider the case in which the channel is not full and the sender
does not block. The execution latency is denoted by Tsend. This time includes:
(a) the time needed to check the state of the channel, (b) the time needed
to fill a R variable and (c) the interprocessor/process communication latency.
This last choice depends on the resource that is executing KP.

• The KP on the sending side just delegates the operation of copying the message
in the network to the local network control unit. We denote the latency needed
to perform this operation as TKP−Send.

• The KP on the receiver side: (1) performs a local send to the communication
channel; (2) performs a local send to the checkpointing channel; (3) fills an
A variable and sends it back to the sender KP. If the time needed to perform
a local send is Tloc−send, we can compute the time needed to perform the two
sends as Tloc−send−check = 2·Tloc−send. Notice that we do not assume any specific
optimizations in the execution of the send and, consequently, the evaluation
we give is necessarily an upper bound of the actual time. Each local send takes
the same latency of a send to a channel mapped onto a shared memory (the
main memory of the receiver that can be addressed from KP and the receiver).

• The latency needed to perform a receive, in the case the channel is not empty,
is denoted with Trecv and is equal to the time needed to perform a receive on
a channel mapped on a shared memory support.

• We can denote with Tack and Twake the receiver KP latency needed to send
back the send results to the sender and the time needed to send a wake-up
message to the sender, respectively. We also denote with Tfail−notify the time
needed on a KP to notify the other party of the failure of the local process
(valid for both sender and receiver). All these latencies includes (a) the time
needed to build the variable to be transferred (b) the time needed to delegate
the communication to the network control unit.

• The time needed to transfer a message of length m between two network
interfaces is Ttransf (m).

We can instantiate each quantity above to the actual cases to obtain a general
evaluation of the communication latency.

6.4 Exploiting the FT-Stream

We now describe an example of exploitation of FT-Streams, which we use to high-
light general properties of rollback recovery protocols. The example is described as
a test-bed and it is exploited in several structured parallel programs. For instance,

6.4. EXPLOITING THE FT-STREAM 161

we exploited it in Chapter 3 to implement the communication of emitter and collec-
tor processes with the external entities, which provide input elements and consume
output results respectively.

6.4.1 The Test-Bed

Suppose a sender process executes the program shown in Figure 6.16. The count

variable is used to generate sequence numbers and to perform periodic checkpoints.
The DELTA SEND macro is an integer constant locally defined. In this program,
similarly to the cases of farm and data parallel ones, we have a mapping between
the computational steps, represented by a loop iteration, and the sequence numbers
of stream elements. That is, between computational steps and I-Structure positions.

Similarly suppose that the receiver process performs the computation which
pseudo-code is shown in Figure 6.17.

We exploit message logging as an optimization of the recovery overhead and to
maximize the decoupling of the fault tolerance strategies of processes.

6.4.2 A Simple Rollback Recovery Protocol

We describe the recovery protocols performed by the sender and the receiver. The
protocol is based on uncoordinated checkpointing and asynchronous message log-
ging. The uncoordination of the checkpointing strategy allows the two parties to
take checkpoints without any synchronizations in their implementation. This is
especially important in the case we are composing processes belonging to differ-
ent applications/modules: according to this approach the only requirement for the
implementation is to exploit the FT-Stream abstraction. Otherwise the approach
based on coordinated checkpointing forces a design constraint in the process imple-
mentation. We could implement coordination of checkpoints by choosing the same
checkpointing interval in the two processes. Asynchronous message logging should
be preferred to the synchronous blocking of the local state if the stable storage access
features an high overhead.

The rollback recovery protocols include the behavior of S, KPS, R and KPR.
Thus the protocol is an extension of the FT-Stream communication protocol pre-
sented above. The fault recovery behavior is implemented as an extension of the
procedures performed by KP in the case of failure and restart.

In the protocols below we have defined with C the name of the message logger
process (ML above).

Sender Protocol

Suppose the sender fails at step f and rolls back to step r. We known that the
receiver can be in any steps between t and f + 1, where t ≤ f − k (this last because
of the controlled asynchrony degree). Notice that, if the rollback depth is greater or

162 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

equal than the asynchrony degree (i.e. f − r ≤ k), then it could be that the receiver
is executing some steps before the rollback one (i.e. t ≤ r). Otherwise, if f − r > k,
then it is mandatory that the receiver is executing at a step after the rollback step
(i.e. t ≥ r).

In principle during the recovery from the rollback step to the failure one we
can: (a) avoid the re-sending operations by making the receiver send its sequence
number to the sender process or (b) re-send the messages and force KPR to discard
the duplicated messages. In both cases we keep the invariant property for which
Head-SN ≤ Tail-SN (see Figure 6.7).

To minimize the recovery overhead we choose the first strategy. When the sender
is restarted KPS and S perform some preliminary operations:

• KPS re-generates the data structures for the application and checkpointing
channels.

• S recovers its last checkpoint both with its sequence number and it sets it in
the local channels (CH.seq-num field).

• S passes KPS a V data structure including its new address and its sequence
number.

• KPS delegates the NICS the sending of the message to KPR.

First suppose the receiving node does not fail during the rollback protocol (i.e. from
the sender failure to the beginning of the recovery protocol). In this case all the
send operations performed from r to f must be avoided. To know the actual value of
f the sender asks it to the receiver. The value of f is equal to the sequence number
of the last sent message, which can be found in the Tail-SN variable in the channel
data structures on the receiver. The KPR knows that it is not executing a rollback
protocol: it builds a new V structure including the bottom sequence number (bsn
below) of the application channel and it sends it to S. During recovery S knows
that it can avoid re-sending operations until the bsn step. In the case of recursive
failures of S it will rollback to r again and it will re-perform the same protocol: bsn
will not change in the meantime. Suppose now that the receiver concurrently fails
during the S rollback protocol. When KPR receives the V data structure from S it
knows that it has restarted (the failed field in the channels are set to true). Denote
with rR and rC the rollback steps of the receiver and the checkpointing process,
respectively. Looking at Figure 6.18 if the rollback step of S is less than both rR

and rC KPR selects the minimum between them. Next it sends it to KPS in a V
variable. Otherwise, if both rR and rC are less than r, then S has to rollback again.
Notice that the rollback course of the sender is limited to two steps at most also in
the case of recursive failures. The sender rolls back to the nearest checkpoint before
the minimum between rR and rC . KPS sets the minimum between the rollback
steps in the channel to allow the sender to avoid re-sending operations until the

6.4. EXPLOITING THE FT-STREAM 163

notified rollback step. Notice that, if rR and rC are different, KPR must discard
some messages for the channel with the greatest sequence number. It can do so
by simply checking the message sequence number and the channel ones. Finally
suppose that either rR or rC is less than r. In this case S has to rollback as in the
previous case and the minimum sequence number is selected by KPR to be included
in the V data structure.

The description of the protocol as sequence of actions follows:

• KPR receives a V notification message from S. It checks if CH.failed is set to
true (CH is the name of the application channel data structure):

• case false: KPR builds a new V message including CH.Tail-SN and sends it
to S.

• case true: KPR computes the minimum between CH.Head-SN and CK.Head-
SN (CK is the name of the checkpointing channel). It copies it to a new V
message and it sends it to S.

KPS receives back a V message and it checks if the received sequence number is
greater or lower than its rollback step: (case V.sn ≥ CH.sn) R has not failed
and S avoids re-sending operations until V.sn. KPS sets this value in both data
structures (the one for the application and checkpointing channels). S avoids to
send all messages with sequence number lower than CH.sn. (case V.sn < CH.sn) R
has failed and S has to rollback. KPS sets the new sequence number in the channel.
S, by checking this value before re-starting the recovery protocol, decide to recover
to the checkpoint with sequence number lower and nearest to CH.sn. Then it avoids
re-sending operations for all messages until CH.sn. Notice that this can be done in
a transparent way to the programmer in the send operation: S checks if the message
sequence number is lower than CH.sn.

Receiver Protocol

Suppose the receiver fails at step f and is restarted at step r. During the rollback it
has to re-obtain the messages from r to f (lost messages, see Chapter 3). To do so
it recovers the ones checkpointed on the local disk. For the remaining ones, which
are not copied on the local disk but that are copied in the checkpointing channel, it
forces the sender to rollback and re-send them. The rollback protocol performed by
R, C and KPR when they are restarted follows:

• R obtains its last checkpoint and the corresponding sequence number from the
local disk.

• C obtains the sequence number of the last message copied in the local disk.

164 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

• KPR re-builds the data structures for the communication channels and it waits
R and C to set their sequence numbers in the respective channels. The failed
fields in the channels are set to true. In the meantime KPR discards all mes-
sages received from S until the first phase of the recovery is terminated.

• R and C set their sequence numbers in the new channels.

• KPR obtains the two sequence numbers, it computes the minimum of them
and it includes it in a V message. The message is passed to KPS.

• When KPS receives the V message it sets the failed field of the channel to
true and V.seq-num in the channel. At the next send S gets aware of the R
failure (by checking the failed field) and it rolls back to the checkpoint which
sequence number is lower and nearest to the sequence number set in the local
channel (i.e. the sequence number of the receiving node computed by R). We
denote with ssn such a sequence number.

• S knows that it has to avoid some message sending operations. These are the
ones from ssn to CH.seq-num − 1. We select the minimum between the C
and R sequence number. Thus, some messages that KPR receives are only
for one of the two channels, and must be discarded for the other one. KPR

re-starts performing the normal operations (i.e. copying the message in the
channel queue) (a) for CH when a message with sequence number equal to
CH.seq-num is received, (b) for CK when a message with sequence number
equal to CK.seq-num is received.

The recovery protocol consists in replaying a part of the computation. The first
part (possibly empty) consists in the recovery of S from ssn to CH.seq-num (on
the sender node). In this phase S avoids all sending operations. Next S re-start to
send messages and KPR properly manages them, by checking the message sequence
number and the ones in the channels. That is, it can happen that some messages are
copied in just one channel, depending on the minimum sequence number contained
in them.

In the case of recursive failures (i.e. the receiving node fails again) the same
rollback step is re-selected and the above protocol is re-executed identically. In the
case of concurrent failure of S during the rollback protocol we perform the protocol
of above. In fact, when KPS receives a V message from R it checks if CH.failed is
set to true. In that case it sends back to R a V message according to the protocol
performed in the case of S failure. This means that, in the case of failure concurrency,
we perform the rollback recovery protocol for the S failure.

Protocol Performance

We study now the performance of rollback recovery, in terms of the number of
message replayed and the rollback depth, i.e. the number of discarded checkpoints.

6.4. EXPLOITING THE FT-STREAM 165

Number of Re-Sent Messages It should be clear from the description above
that orphan messages, i.e. messages which sending operation has been unrolled but
not the related receive one (see Chapter 3), are not replayed. We avoid the formal
proof for this property.

The performance of the protocol depends on how lost messages are managed.
Lost messages are the ones for which the sending operation is not unrolled but the
receive one is (see Chapter 3). In the case of rollback we can characterize them in
two main set:

• The ones stored in the local disk of the receiver. The cardinality of this set
depends of the rollback step of R. That is, if the last checkpointed message
has a sequence number lower than the R sequence number the stable storage
does not contain useful messages.

• The rest of them, i.e. the ones from the last checkpointed one to the last sent
by S. S replays all their sending operations.

Looking at the protocol we can see that the cardinality of the second set is limited
by the asynchrony degree of the checkpointing channel. That is, greater asynchrony
degrees in the checkpointing channel make lower the probability of S to be blocked
(better failure-free performance). From the other side, in the case of failure, greater
degrees can induce a larger number of messages to be re-sent (worst recovery per-
formance).

Number of Discarded Checkpoints The number of discarded checkpoints is
different for the receiver and the sender:

• Receiver: it rolls back only in the case it fails and restarts. It always recovers
to its last checkpoint: no checkpoints are lost and older checkpoints can be
directly garbage collected. The checkpointing process has not a state to be
checkpointed.

• Sender: in the case it fails and rolls back it selects its last checkpoint. The roll-
back is deeper only in the case the receiver fails (both alone or concurrently).
In this case the checkpoint preceding the receiver one is selected. Consequently
the rollback depth depends on the receiver checkpointing frequency as in the
previous case.

Clearly, the number of messages to be kept on stable storage depends of the
checkpointing frequency, and the number of messages exchanged between two check-
points. We observe that this information can be deduced from the parallel structure
of programs (see Chapter 3).

166 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

6.5 Related Work

We relate the FT-Stream message logging mechanism with existing ones. For this
purpose we briefly subsume the message logging mechanisms which were previously
described in Chapter 2.

There exist three main flavors of message logging protocols: pessimistic, opti-
mistic, and causal [39]. Message logging protocols typically support checkpoint-
ing protocols, representing a way to speed-up the rollback recovery execution [39].
Typically they are not used in coordinated checkpointing techniques [39] in which
checkpoints are made consistent by coordinating process actions. They are required
in uncoordinated checkpointing protocols [39], to ensure recoverability to consistent
states after a rollback.

In pessimistic logging whenever a process receives a message its determinant is
logged synchronously to stable storage. The determinant of a message receipt event
include the content of the message together with other information related to the
causal execution of the process. In the case of rollback the recovery is straightforward
because the lost receive events are replayed by obtaining them from stable storage.

The MPICH-V1 [19] implementation of the MPI interface exploits pessimistic
logging of messages. A special channel memory abstraction is exploited: each pro-
cess has its own channel memory. When a process wants to send a message to
another process it sends it to its channel memory. The channel memory both saves
the message on stable storage and it delivers the message to the sender. In [19]
the channel memory is implemented as a process and each channel memory can
support multiple communications. In [21] it is reported that this approach does
not provide good performance which depends on the number of exchanged messages
and the number of channel memories and processes in the computation (in fact the
communication bandwidth is divided by a factor of 2 [21]).

In optimistic message logging message receipt events are logged to stable storage
asynchronously. For instance, some buffering of events is exploited: when the buffer
of events becomes full it is flushed to stable storage. In the case of rollback some of
the message receipt events can be lost. The sender of such messages (called orphan
messages) must rollback to re-execute the corresponding send operations. In some
cases the re-sending of unrolled messages can be done in parallel with the actual
process execution, without forcing the process to rollback. Ordering of messages is
needed to support this kind of parallel recovery.

In our approach message logging is performed on a subset of communication
channels in an asynchronous fashion. Differently from optimistic logging protocols,
we impose a limit on the degree of asynchrony. This limit is equivalent to the
level of asynchrony of checkpointing channels, and can be properly tuned statically
or dynamically. This impacts the performance of recovery because the maximum
number of lost messages, which sending must be replayed, is actually limited from
the asynchrony degree of the checkpointing channel. This is different from existing
works where, in the case of failure, an uncontrolled number of messages is lost. In

6.5. RELATED WORK 167

fact the number of lost message in such works only depends on the frequency of
checkpointing operations.

In casual logging protocol, messages are logged asynchronously, as in optimistic
logging protocols. In some cases [21] the messages are logged on the volatile mem-
ory of the senders. Some information related to process inter-dependencies is pig-
gybacked to messages to replicate it on all processes. Also events can be logged
synchronously or asynchronously on stable storage. In the literature the minimiza-
tion of the impact of piggybacked information on application message has been
deeply studied.

Causal logging protocols have been introduced to support the second version of
MPICH-V, namely MPICH-V2. In [22] three protocols are described, each reducing
in a different way the size of piggybacked information on application messages. The
implementation stores the content of messages on senders (sender-based message-
logging) and it asynchronously logs dependency information on a stable storage
abstraction which is called Event Logger (EL).

In contrast with the motivations behind the introduction causal logging pro-
tocols, we address structured parallel computations in which some compile-time
knowledge is assumed on the process dependencies. We exploit such information to
avoid to log dependencies between processes implementing our parallel computations
because they are known at compile-time.

168 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

1 send (ch−id , msg , seq−num) {
2 CAP−CHR = chidToCAP(ch−id) ;
3 ch−r = obtain−addr (CAP−CHR) ;
4 lock (ch−r . semlock) ;
5 // checks f o r the app . or checkp . ch . i f i t must s top
6 i f (ch−r . hasCounterPart == true) {
7 ck−r = obtain−addr (ch−r .CAP−CP) ;
8 lock (cp . semlock) ;
9 switch (ch−r . used−channel , ck−r . used−channel) {

10 case true , true :
11 PCB. s t a t e = SPEC−WAIT−BOTH;
12 unlock (ch−r . semlock) ;
13 unlock (ck−r . semlock) ;
14 wait () ;
15 break ;
16 case false , true :
17 case true , fa l se :
18 PCB. s t a t e = SPEC−WAIT−ONE;
19 unlock (ch−r . semlock) ;
20 unlock (ck−r . semlock) ;
21 wait () ;
22 break ;
23 default : // f a l s e f a l s e
24 unlock (ch−r . semlock) ;
25 unlock (ck−r . semlock) ;
26 }
27 } else { // check j u s t the app . one
28 i f (ch−r . used−channel == true)
29 PCB. s t a t e = SPEC−WAIT−ONE;
30 unlock (ch−r . semlock) ;
31 }
32 // sends the message
33 ch−r . used−channel = true ;
34
35 // i f t h e r e i s counter part , i t i s p rope r l y managed
36 i f (ch−r . hasCounterPart == true) {
37 ck−r . channel−used = true ;
38 unlock (ck−r . semlock) ;
39 }
40 unlock (ch−r . semlock) ;
41 M. dest−node−id = ch−r . dest−node−id ;
42 M.CAP−CH = trasmit−cap (ch−r) ;
43 M.CAP−PCB = transmit−cap (PCB) ;
44 M.L = ch−r . L ;
45 r e l e a s e−cap (CAP−CHR) ;
46 M.CAP−MSG = transmit−cap (msg) ;
47 M. seq−num = seq−num;
48 CAP−M = transmit−cap (M) ;
49 i n t e rp r o c e s s o r−comm(CAP−M, KP) ;
50 }

Figure 6.9: Pseudo-code describing the implementation of the send operation per-
formed by the sender process.

6.5. RELATED WORK 169

1 KP {
2 while (true) {
3 wait () ;
4 //when KP re turns to running s t a t e , i t has r e c e i v ed an

i n t e r r u p t
5 //and i t can access a msg v a r i a b l e
6 switch (msg .TYPE) {
7 case M:
8 manage−M−msg(msg) ;
9 break ;

10 case A:
11 msg−a = (A) msg ;
12 s e n d r e s u l t s (msg−a) ;
13 break ;
14 case W:
15 msg−w = (W) msg ;
16 wake−sender (msg−w) ;
17 @? bf break ˆ ;
18 case V: // sender or r e c e i v e r s i g n a l s i t s r e s t a r t
19 msg−v = (V) msg ;
20 i f (msg−v . dest−node−id != r t . l o c a l−id ()) {
21 // remote update o f rou t ing t a b l e s
22 msg−v . addr = r t . l o c a l−addr () ;
23 de l e ga t e (NIC , msg−v) ;
24 } else { // e l s e l o c a l update rou t ing t a b l e s
25 // mod i f i e s source id −> address f o r NIC
26 r t . updateRouting (msg−v . source−node−id ,
27 msg−v . addr) ;
28 // s e t the f a i l e d f i e l d
29 CAP−CHR = chidToCAP(msg−v . ch−id) ;
30 ch−r = obtain−addr (CAP−CHR) ;
31 ch−r . f a i l e d = true ;
32 i f (ch−r . hasCounterPart == true) {
33 ck−r = obtain−adrr (ch−r .CAP−CP) ;
34 ck−r . f a i l e d = true ;
35 r e l e a s e−cap (ch−r .CAP−CP) ;
36 }
37 r e l e a s e−cap (CAP−CHR) ;
38
39 }
40 break ;
41
42 default : //unknown message type
43 }
44 }
45 }

Figure 6.10: Pseudo-code describing the implementation of the KP process.

170 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

1 manage M msg(msg) {
2 msg−m = (M) msg ;
3
4 //M rece i v ed by KP on the r e c e i v i n g s i d e
5 i f (msg−m. dest−node−id == my−id) {
6 // send on the a p p l i c a t i o n channel
7 CAP−CH = channel− l i s t (msg−m. ch−id) ;
8 ch = obtain−addr (CAP−CH) ;
9 ch . seq−num = msg−m. seq−num;

10 r1 = l o ca l−send (msg−m) ;
11
12 // send on the checkpo in t ing channel :
13 i f (ch . hasCounterPart == true) {
14 ck−ch = obtain−addr (ch .CAP−CP) ;
15 ck−ch . seq−num = msg−m. seq−num;
16 r2 = l o ca l−send (msg−m, ck−ch) ;
17 r e l e a s e−cap (ch .CAP−CP) ;
18 }
19
20 // b u i l d s the answer f o r the sender
21 A msg−a ;
22 msg−a . source−node−id = my−id ;
23 msg−a . ch−id = msg−r . ch−id ;
24 msg−a . proc−id = msg−r . proc−id ;
25 msg−a . seq−num = msg−r . seq−num;
26 msg−a .R−app = r1 ;
27 i f (ch . hasCounterPart == true)
28 msg−a .R−chk = r2 ;
29
30 r e l e a s e−cap (CAP−CH) ;
31
32 de l e ga t e (NIC , msg−a) ;
33 } else //The sending KP re c e i v e an M msg from S
34 // d e l e g a t e s the send to the NIC
35 de l e ga t e (NIC , msg) ;
36 }

Figure 6.11: Pseudo-code describing the implementation of the KP process when
receiving a message of type M.

6.5. RELATED WORK 171

1 local send (m, ch) {
2 l o ck (ch . semlock) ;
3 i f (ch . wait == true) {
4 // r e c e i v e r wa i t ing : d i r e c t copy
5 ch . wait = fa l se ;
6 unlock (ch . semlock) ;
7 vtg−addr = obtain−addr (ch .CAP−VTG) ;
8 msg−addr = obtain−addr (m.CAP−MSG) ;
9 copy (msg−addr , vtg−addr) ;

10 r e l e a s e−cap (ch .CAP−VTG) ;
11 r e l e a s e−cap (m.CAP−MSG) ;
12 CAP−PCB = procIdToPCB(ch . proc−id) ;
13 pcb = obtain−addr (CAP−PCB) ;
14 wake (pcb) ;
15 r e l e a s e−cap (CAP−PCB) ;
16 } else {
17 // copy in the message queue
18 vtg−addr = obtain−cap (ch .Q−CAP[CH. INS]) ;
19 msg−addr = obtain−cap (m.CAP−MSG) ;
20 copy (msg−addr , vtg−addr) ;
21 r e l e a s e−cap (ch .Q−CAP[CH. INS]) ;
22 r e l e a s e−cap (m.CAP−MSG) ;
23 ch . INS = (ch . INS + 1) mod (ch .K + 1) ;
24 ch . SIZE = ch . SIZE + 1 ;
25 // the queue i s f u l l
26 i f (ch . SIZE = ch .K + 1) {
27 ch . wait = true ;
28 ch . proc−id = m. proc−id ;
29 unlock (ch . semlock) ;
30 return ’ s top ’ ;
31 }
32 }
33 return ’ go ’ ;
34 }

Figure 6.12: Pseudo-code describing the implementation of the send operation per-
formed on the receiving node.

172 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

1 send results (a) {
2 CAP−PCB = procIdToPCB(a . proc−id)
3 pcb = obtain−addr (CAP−PCB) ;
4 i f (a .R−chk != NULL) {
5 // logged channel
6 CAP−CH = chIdToCAP(a . ch−id) ;
7 ch−r = obtain−addr (CAP−CH) ;
8 ck−r = obtain−addr (ch−r .CAP−CP) ;
9 switch (a .R−app , a .R−chk) {

10 case ’ s top ’ , ’ s top ’ :
11 i f (pcb . s t a t e == WAITING or
12 pcb . s t a t e == SPEC−WAIT−BOTH) {
13 pcb . s t a t e = WAITING;
14 ch−r . used−channel = fa l se ;
15 ck−r . used−channel = fa l se ;
16 }
17 break ;
18
19 case ’ s top ’ , ’ go ’ :
20 ck−r . used−channel = fa l se ;
21 i f (pcb . s t a t e == WAITING or
22 pcb . s t a t e == SPEC−WAIT−BOTH) {
23 ch−r . used−channel = fa l se ;
24 pcb . s t a t e = WAITING;
25 }
26 break ;
27
28 case ’ go ’ , ’ s top ’ :
29 ch−r . used−channel = fa l se ;
30 i f (pcb . s t a t e == WAITING or
31 pcb . s t a t e == SPEC−WAIT−BOTH) {
32 ck−r . used−channel = fa l se ;
33 pcb . s t a t e = WAITING;
34 }
35 break ;
36
37 case ’ go ’ , ’ go ’ :
38 ch−r . used−channel = fa l se ;
39 ck−r . used−channel = fa l se ;
40 i f (pcb . s t a t e == WAITING or
41 pcb . s t a t e == SPEC−WAIT−ONE or
42 pcb . s t a t e == SPEC−WAIT−BOTH) {
43 pcb . s t a t e = RUNNING;
44 wake (pcb) ;
45 }
46 break ;
47
48 default : //unknown r e s u l t t ypes
49 }
50 r e l e a s e−cap (ch−r .CAP−CP) ;
51 r e l e a s e−cap (CAP−CH) ;
52 } else {
53 ch−r = obtain−addr (a .CAP−CH) ;
54 i f (a .R−app == ’ stop ’) {
55 i f (pcb . s t a t e == SPEC−WAIT−ONE)
56 ch . used−channel = fa l se ;
57 else
58 ch . used−channel = true ;
59 } else {
60 ch . used−channel = fa l se ;
61 i f (pcb . s t a t e == SPEC−WAIT−ONE) {
62 pcb . s t a t e = RUNNING;
63 wake (pcb) ;
64 }
65 }
66 r e l e a s e−cap (a .CAP−CH) ;
67 }
68 r e l e a s e−cap (CAP−PCB) ;
69 }

Figure 6.13: Pseudo-code describing the implementation of the send result notifica-
tion, performed by the receiving KP.

6.5. RELATED WORK 173

1 wake sender (w) : : {
2 CAP−CH = chIdToCAP(w. ch−id) ;
3 ch = obtain−addr (CAP−CH) ;
4 ch . used−channel = fa l se ;
5 i f (ch . hasCounterPart == true) {
6 pcb−s = obtain−addr (a .CAP−PCB) ;
7 i f (pcb−s . s t a t e != SPEC−WAIT−BOTH) {
8 // I can wake up the proces s
9 pcb−s . s t a t e = RUNNING;

10 wake (pcb−s) ;
11 } else { // proces s now wai t s f o r 1 wake up message
12 pcb−s . s t a t e = SPEC−WAIT−ONE;
13 }
14 r e l e a s e−cap (a .CAP−PCB) ;
15 }
16 r e l e a s e−cap (CAP−CH) ;
17 }

Figure 6.14: Pseudo-code describing the implementation of the receiving behavior
of the wake-up messages on the sending KP.

174 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

1 receive (ch−id , tgv , seq−num) {
2 CAP−CH = chidToCAP(ch−id) ;
3 ch = obtain−addr (CAP−CH) ;
4 l o ck (ch . semlock) ;
5 i f (ch . SIZE == 0) {
6 ch . wait = true ;
7 ch . proc−id = getMyID () ;
8 unlock (ch . semlock) ;
9 wait () ;

10 }
11
12 //a message i s ready
13 msg−addr = obtain−addr (Q−CAP[EXT]) ;
14 copy (msg−addr , tgv) ;
15 r e l e a s e−cap (Q−CAP[EXT]) ;
16 ch . SIZE = ch . SIZE − 1 ;
17 ch .EXT = (ch .EXT + 1) mod (ch .K + 1) ;
18
19 i f (ch . wait == true) { // sender wa i t ing :
20 //KP de l e g a t e d to send a wake up message
21 ch . wait = fa l se ;
22 unlock (ch . semlock) ;
23 W msg−w;
24 msg−w. source−node−id = getNodeID () ;
25 msg−w. ch−id = ch−id ;
26 msg−w. proc−id = ch . proc−id ;
27 msg−w. seq−num = ch . seq−num;
28 de l e ga t e (NIC , msg−w) ;
29 } else unlock (ch . semlock) ;
30 r e l e a s e−cap (CAP−CH) ;
31 }

Figure 6.15: Pseudo-code describing the implementation of the receive operation.

6.5. RELATED WORK 175

1 S {
2 int count = 0 ;
3 while (cond) {
4 element = F(s t a t e) ;
5 send (CH, element , count) ;
6 count++;
7 i f (count % DELTA SEND == 0)
8 checkpoint (s ta te , count) ;
9 }

Figure 6.16: Pseudo-code of the sender in the test-bed of FT-Streams.

1 R {
2 int count = 0 ;
3 while (cond) {
4 r e c e i v e (CH, tgv , count) ;
5 G(state , tgv) ;
6 count++;
7 i f (count % DELTA−RCV == 0) then
8 checkpoint (s ta te , count) ;
9 }

Figure 6.17: Pseudo-code of the receiver in the test-bed of FT-Streams.

r

H

H

G

G

F

F

E

E

B

B

A

A

C

R

f
S

Figure 6.18: Relative positions of S and R in the case of concurrent and recursive
failures. The italic letters indicates the relative positions of R and C w.r.t. the one
of S.

176 CHAPTER 6. IMPLEMENTATION OF THE FAULT-TOLERANT STREAM

Chapter 7

Performance of Parallel
Computations in Presence of
Failures

In the previous chapters we have defined cost models describing the performance
of the (chosen) structured parallel constructs. The models quantify the overhead
induced by the fault tolerance support to the performance of the computations and
they can be used for optimization purposes. The idea is that, by exploiting such
cost models, we can decide between several available fault tolerance mechanisms and
optimize them w.r.t. the actual configuration of the execution platforms and the
application. The models are applied to the parallel structure and to quantitative
aspects of the implemented applications (e.g. the time needed to perform a task),
and the (possibly dynamic) configuration of the exploited execution platform. We
have assumed that such quantities can be derived by simulation and/or analysis of
the applications and environments.

In this chapter we start from the observation that the presented cost models
can be used to obtain an evaluation of the performance of applications in the ab-
sence of failures. In this thesis we are also interested in studying the behavior of
the performance in the case of failures during the computation. This is especially
important if our aim is to provide some guarantee of the final performance of appli-
cations, given by the overhead of both the fault tolerance support and the failures.
We target task parallel computations and we base our study on the farm parallel
construct which we described in Chapter 3. We present a study of the completion
time of failure execution of farm computations [15, 16]. The research is based on the
master-slave implementation strategy which is presented in Chapter 4: as we focus
on the modeling of the impact on the performance of task execution failures, we are
not interested in decoupling the scheduling and collection tasks. We present an an-
alytical study, based on Markov chains, which abstracts the actual implementation
model to obtain an upper bound of the completion time. The abstraction of the
implementation model is made to introduce in a simple way a Markov model and

178CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

to allow us to obtain upper bounds of the completion times. That is, the abstract
Markov model is not used to implement farm computations, but only to model thei
performance in presence of failures. We briefly describe the implementation of the
master-slave strategy for farm computations and we show the assumptions under
which we work in this study.

7.1 Implementation of the Master-Slave Farm Strat-

egy and its Fault Tolerance Support

Recall that in the master-slave implementation strategy for farm computations (see
Chapter 4, Figure 4.1) the master is responsible of scheduling tasks to slaves and of
collecting results. The slaves are the unit of parallelism, which behavior is to itera-
tively obtain a task from the master, perform it and return the result. In short, they
implement the computation stage of the farm. In this chapter we illustrate our ap-
proach by implementing farm computations as distributed processes communicating
through message passing:

• The master is mapped on a process.

• Each slave is mapped in a (different) process.

• The I-Structures interconnecting the master to the slaves and vice-versa are
implemented as asynchronous communication channels supported by failure
detection without message logging.

We assume that each process of the computation is executed on a different node. We
do not exploit stable storage mechanisms, as we assume (see below) that the master
cannot fail. Actually, the master represents the centralization point of the fault
tolerance implementation. We claim that the failure-free property of the master
can be obtained by mapping it on a robust node or by exploiting some replication
techniques as we described in Chapter 2 (see for example [14]).

The fault tolerance support is implemented by the master process and it is based
on the re-scheduling of failed tasks: whenever a slave fails the master detects the
failure and it re-schedules the lost task to an available slave. We also assume that
failed slaves are eventually restarted by some sub-system and that they re-join the
computation. In Section 7.8(b) we detail an implementation of this strategy for the
master-slave scheme of the muskel programming environment.

7.2 Working Assumptions

We make further assumptions w.r.t. the previous chapters, which we claim to be
fundamentally viable in the context of high-performance computing and platforms.
A complete list of the assumptions follows:

7.3. UPPER BOUNDING COMPLETION TIME BY MEANS OF A BULK-SYNCHRONOUS MODEL179

• Failure semantics is according to the fail-stop model and it is limited to slave
failures. Failure detection is assumed to be performed in known average time.
Failed slaves are re-started after known average time (see below).

• Failure probability is uniform on the set of slave processes. Each slave fails
independently w.r.t. the other ones. The failure probability for the execution
of a task is assumed to be known and we denote it with the variable q. Conse-
quently, it is also known which is the probability of succeeding in performing
a task, which we denote with the variable p (where p = 1− q). The value of q
(and p) is an input of our model.

• The average task execution time is known, it is an input of our model, and
it is denoted with the variable δ. It can be noticed that an high variance of
actual values lowers the accuracy of the abstract model.

• The fault correction time is known and it is sum of two known variables, which
are an input of our model: (a) the time needed to detect a failure, denoted
with ∆F and (b) the time needed to restart a slave process, denoted with ∆R.
Their sum, plus half the time to perform a task (δ/2), is denoted with ∆.

• The number of tasks to be performed in the whole computation is known and
we denote it with n.

• The number of exploited resources is known and fixed (i.e. the parallelism
degree is fixed). We denote this value with m.

The stronger assumptions we make are related to the failure distribution (uniform)
and to the knowledge of its probability (q). We claim that such assumptions can be
made for massively parallel systems by performing proper static analysis of the ar-
chitectures. For instance, see [75] for an example of estimation of failure probability
analysis by means of system logs.

7.3 Upper Bounding Completion Time by Means

of a Bulk-Synchronous Model

In this analysis we are interested in obtaining an upper bound of the actual com-
pletion time of farm computations. For this purpose we build a proper abstract
computation model and we show the differences with the actual implementation
model.

In the actual computation behavior consider a steady-state of the master exe-
cution in which all slaves are scheduled with a task. Suppose that k tasks remain
to be scheduled: whenever one of the slaves returns the result of a task the master
directly re-schedules it with a new task. Thus k−1 tasks remain to be scheduled. In
another case suppose that one of the slave fails. The master detects the failure and,

180CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

if a slave is available, it directly re-schedules the lost task. We notice that there is
not an explicit coordination between the scheduling actions of the master towards
different slaves.

We build an abstract computation model according to a Bulk-Synchronous Par-
allel computation model [80]. The abstract model we introduce here is used only
for modeling purposes, as we do not exploit it in the implementation. Actually, it
is the quantitative difference between the BSP and implementation models which
introduces the upper-bounds over the completion times. In the abstract model the
master executes according to iterated supersteps, each one including the following
actions:

• It schedules a task to each slave.

• It waits for all slaves to either return a result or fail.

• In the case of failure(s), it waits for all failed slaves to be re-started.

According to the computation variables described above and assuming that we in-
clude in δ and ∆ the scheduling time of the master, each superstep completion time
is the maximum between δ and ∆. This is true because the master waits for all
slaves to terminate or fail before re-scheduling the next set of m tasks. We denote
the superstep completion time with µ = max(δ, ∆).

It is straightforward to notice that the implementation behavior provides lower
completion time w.r.t. the BSP-like behavior because it opportunistically re-schedules
slaves whenever they are available independently of all other slaves. In this thesis
we do not give a formal proof of the quantitative differences between the two models
and we study it in future work (see Chapter 8).

7.4 A Markov Model for Fault-Tolerant Farm Com-

putations

A Markov chain [54] describes a stochastic process as a set of states describing the
process states, and transitions linking states. Transitions between states feature the
probability of being chosen, i.e. the probability of being in the source state and
transit towards the destination state. They can also feature costs, i.e. whenever a
transition is taken we pay the related cost. Markov chains have been exploited to
model the timing behavior of computations (both sequential and parallel), in the
following way [85]:

• Proper state values of the computation are mapped into chain states.

• Transition probabilities between the state of the computation (due for example
to conditional jumps) are mapped into transition probabilities between Markov
states.

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 181

• Transition costs, which represent the time needed to perform a sequence of
operations, are mapped into costs of transitions between markovian states.

We briefly review two notable research studies previously presented in the literature
from which we inherit the analytical formulas. Next we introduce a Markov model
of the BSP-like computation described in the previous section.

7.4.1 Existing Approaches to Reliability Quantification by
Exploiting Markov Chains

In [87] a markovian model is exploited to analyze the performance impact, due
to failures, in the case fault tolerance is achieved by means of a two-level recovery
scheme. The computation model consists in a set of processes executing a distributed
program and which interact through message-passing. The processes are assumed
to periodically take consistent checkpoints. The recovery scheme is two-level in the
sense that checkpointing is performed on both volatile and stable storage supports
at different frequencies. The recovery procedure changes according to the kind of
failure and the availability of collected information to the restarted process. The
markov model that is developed allows the author to: (a) prove that the two-level
scheme enable higher resiliency degrees w.r.t. one-level schemes; (b) show which is
the time needed to perform a portion of the computation in the case of failures.

In [94] the computation model consists of performing a set of independent task,
supporting fault tolerance by checkpointing, i.e. partial execution of tasks is pe-
riodically checkpointed. The failure model considered includes software errors, i.e.
the execution of a task can deliver an incorrect result. A Markov Reward Model is
exploited to analyze the performance impact of checkpointing schemes based on task
duplication. Parameters of the Markovian model are the average time intercurring
between checkpoints, and the total average task execution time. The paper analyzes
four different schemes for fault tolerance, mixing checkpointing, software replication
techniques and forward recovery.

7.4.2 Simple Model Examples

We start the description of the Markovian model for farm computations by showing
two simple examples. These will be used as building blocks of model for the general
case.

One task performed by one slave. Figure 7.1 shows a Markov chainM1 describing
the execution of a single task on a single slave. In the case of failure, we re-schedule
the task on the same slave after it is restarted, according to the fault tolerance
strategy. In the figure, circles are states which labels represent the number of tasks
that remain to be computed. Each transition is labeled with a triplet. The first
component is a symbol in the set {F, S}, denoting respectively the failure or success
of the task execution. The second component is the transition probability. The

182CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

third component is the cost of the transition, that in our model is the time needed
to perform it. This component is a symbol in the set {delta, ∆, µ}. The computation
starts from the state 1, denoting that one task remains to be performed. In the case
of failure F , we remain in state 1 with probability q. In the case of success S we move
to state 0 with probability p. State 0 corresponds to the end of the execution. For
modeling purposes, we added the dummy arc from the state 0 to itself labeled with
probability 1. In the model, this arc denotes that when we transit to 0 we cannot
transit out of it. By definition of Markov chains, this property defines the chain as
an Absorbing Markov Chain[85]. In an absorbing Markov chain, any computations
eventually terminates in one of the absorbing states, with probability 1. Indeed, if
we compute the probability of ending in this state, we obtain:

p + pq + pq2 + pq3 + · · · = p(1 + q + q2 + q3 + · · ·) =
p

1− q
= 1

In our study, we exploit the properties of absorbing Markov chains to evaluate the
completion time for farm computations. We will see that all the graphs that we
derive, especially the one for the general model, are absorbing Markov chains.

In Figure 7.1 notice that the case of failure takes ∆ = ∆F + ∆R + (δ/2) time,
according to its definition. The meaning behind this choice is that, in the case of
failure of one of the slaves, we have to wait for the detection of the fault and for
the restart of the slave (or transparently for the recruiting of a new computational
node). As the failure happens some time after the execution has started, we count
an average task execution time before the fault, equal to half of the task execution
time.

1()_, _,

, δS,)(p

q()F, ∆,

01

Figure 7.1: Markov chain M1 modeling the execution of 1 task on 1 slave. Arcs are
labeled with triplets (a, b, c), where a is the result of the try (success or failure), b
is the probability of the transition, and c is the time required by the transition.

We compute the average number of re-tries τ1 in M1. M1 can be described with
the recursive equation τ1 = q(∆+τ1)+pδ. Defining t1 = pδ+q∆ we get τ1 = qτ1+t1
and finally

τ1 =
1

1− q
t1 =

1

p
t1 = δ +

q

p
∆

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 183

It is tempting to compute τ1 directly as an expectation, then:

τ1 = ∆p + (∆ + δ)qp + (2∆ + δ)q2p + (3∆ + δ)q3p + · · ·

The first term of the expression represents the case without failures. We multiply
the time needed to perform the task with the probability of having no failures.
The following terms represent increasing numbers of failures, and are multiplied by
the corresponding overheads (i.e. ∆ time for each failure, and δ time for the last
successful execution). We explicit the computations: using 1 + q + q2 + q3 + · · · =
1/(1− q) = 1/p we rewrite as:

δp + δqp + δq2p + δq3p + · · ·+ ∆qp + 2∆q2p + 3∆q3p + · · ·
= δp

(
1 + q + q2 + q3 + · · ·

)
+ ∆pq

(
1 + 2q + 3q2 + · · ·

)
= δ + ∆pq

(
1 + 2q + 3q2 + · · ·

)
A closed form for 1 + 2q + 3q2 + · · · is computed just deriving,

d

dq

(1

1− q

)
=

d

dq
(1+q+q2 +q3 +q4 + · · ·) = 1+2q+3q2 +4q3 + · · · = 1

(1− q)2 =
1

p2

Thus, the second expression is q∆/p and we re-obtain, as expected τ1 = δ + ∆ q
p

q 2 ∆()(F,F), ,

p 2

(,(F,_) q , ∆)

(,(S,_) p , δ)

(,(_,_) 1 , _)

()(S,F) ,
2

2pq µ,

()(S,S) , , δ

01

Figure 7.2: Markov chain M2 modeling the execution of 2 tasks on 2 interpreters.

Two tasks performed by two slaves. The next example we consider is the execution
of 2 tasks on 2 slaves modeled by the Markov chainM2 of Fig.7.2. The initial state 2
corresponds to the assignment of the 2 tasks to the 2 interpreters. If both fail (edge
labeled with F , F), we remain in state 2. This event has probability q2 and takes
time ∆. If one fails, and the other succeeds, we transit in the state 1 (transition
labeled F , S) with probability 2pq. It takes µ = max{δ, ∆} to execute it. Recall

184CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

that we use the max over the two times because, in the BSP-like model, we have
to wait for a results from both tasks to decide for the next state. If both succeed,
we transit to state 0 (edge S, S) with probability of p2. It takes δ time (i.e. the
parallel execution time). From state 1 we re-assign the failed task to an interpreter
(possibly the first available). Notice that similarly to the previous example, we have
defined an absorbing Markov chain, as the state 0 is an absorbing state.

We compute the average expected time τ2. The Markov chain M2 give us the
recursive equation τ2 = q2(∆+τ2)+2pq(µ+τ1)+p2δ, defining t2 = q2∆+2pqµ+p2δ
we rewrite τ2 = q2τ2 + 2pqτ1 + t2 and substituting τ1 we obtain

τ2 =
2qt1

1− q2
+

t2
1− q2

=
2pq

1− q2
(δ + µ) + 3∆ · q2

1− q2
+ δ · p2

1− q2

The preceding formula can also be obtained computing directly the expectation. To
do that, we compute the average completion time of the paths to the absorbing
states independently. Using i j to denote paths going from state i to state j we
have

τ2 =
∑

w1=2 1

t(w1) · p(w1) +
2pq

1− q2
·

∑
w2=1 0

t(w2) · p(w2) +
∑

w3=2 0

t(w3) · p(w3)

We have ∑
w1=2 1

t(w1) · p(w1) = 2µ
pq

1− q2
+ 2pq∆

q2

(1− q2)2

2pq

1− q2
·

∑
w2=1 0

t(w2) · p(w2) =
2pq

1− q2

(
δ + ∆

q

p

)
∑

w3=2 0

t(w3) · p(w3) = δp2 1

1− q2
+ p2∆

q2

(1− q2)2
.

Summing up the three parts and after some simplifications we get the result. For
brevity we avoid to show all the computations.

7.4.3 A General Model

We generalize the two example to the case of n tasks performed on m slaves, where
n > m. The Markov chain-based model is shown in Fig. 7.3. At the beginning of
the computation, m tasks are scheduled to the slaves. The next state depends on
the number of failures/successes:

• If we get m failures, we remain in the initial state. The probability that this
happens is equal to qm. The time spent in this operation is equal to ∆, and
the time needed to terminate the computation is equal to the execution of n
tasks on m slaves, as at the beginning.

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 185

m

1
p q

m−1

,µ()

m
pδ ,()

q
m(,∆)

. . .

n−mn

()
n−m+1

,µ
m

m−1
qp

m−1

n−1

Figure 7.3: Markov chain modeling the execution of n task on m slaves, in the case
of failure/restart of the processes.

• The cases from 1 to m-1 failures make the state transit in states from n−m+1
to 1, respectively. The probability of each transition is computed exploiting a
binomial expression, properly multiplied for the probabilities. The time needed
to perform the operation is the maximum between δ and ∆ (i.e. µ). The time
needed to complete the computation depends on the amount of remaining
tasks.

• If we get all successes, we transit in the state labeled with n−m. The proba-
bility of such a transition is pm, with time equal to the average task execution
time. The time needed to complete the computation, in this case, is equal to
the computation of n−m tasks.

We can exploit these observations to represent the general model with a single
recurrence over the completion times:

τn,m = qm(∆ + τn,m) +
m−1∑
k=1

(
m

k

)
pkqn−k(µ + τn−k) + pm(δ + τn−m,m)

The first part of the expression is related to m failures. This takes ∆ time and
the additional time needed to perform the whole computation, as we have still to
perform all tasks. The second part of the expression is related to 1 to m-1 failures.
It takes µ time, depending on the actual δ and ∆ values, plus the time needed to
perform the rest of the computation. The last part is related to M successes, that
takes δ time, plus the time needed to perform the rest of the computation.

186CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

It is interesting to show how the general model can be instantiated (Fig. 7.4),
to get some insights on the complexity of the computations required to evaluate the
completion time. For the case of n tasks performed on 2 slaves, we show the linear
recurrence expression, and its solution. The mathematical steps we show are only
the main ones, according to a standard methodology to solve linear recurrences.
The recurrence expression for n tasks performed by 2 slaves is:

(,µ pq)

(,µ q)

(,µ p)
n

n−1

n−2

2

2

2

Figure 7.4: Markov chain of the model for n tasks performed on 2 slaves.

τn = q2 · (∆ + τn) + 2pq · (µ + τn−1) + p2 · (δ + τn−2)

This formula can be expressed in the classical form of linear recurrences as:

τn =
q2

1− q2
τn−1 +

2pq

1− q2
τn−2︸ ︷︷ ︸

homogeneous part

+
q2

1− q2
∆ +

2pq

1− q2
µ +

p2

1− q2
δ︸ ︷︷ ︸

inhomogeneous part

Direct Solution for 2 Slaves

To solve the recurrence, three main steps can be followed:

1. Solve the homogeneous part of the recurrence.

2. Find particular solutions.

3. Substitute boundary conditions in the general solution to develop it.

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 187

The homogeneous part of the linear recurrence is:

(1− q2)τn − 2pqτn−1 − p2τn−2

and we impose it to be equal to zero:

(1− q2)α2 − 2pqα− p2 = 0

We solve it, and we obtain two solutions:

α =

{
1
q−1
q+1

Thus, the homogeneous solution has the following form:

γn = A

(
q − 1

q + 1

)n

+ B(1)n

Next, we find the particular solutions: we guess one of the same or higher degree of
the inhomogeneous, and we verify it is correct. We have found that

τn = cn

is a particular solution, where:

c =
q2∆ + 2pqµ + q2δ

2p

Finally, we obtain the general solution. It has the form:

τn = homogeneous solution + particular solution

We substitute with the expressions found above and we obtain.

τn = A

(
q − 1

q + 1

)n

+ B +
q2∆ + 2pqµ + q2δ

2p

Classically, we substitute the following boundary conditions:

t1 = pδ + q∆

and
t2 = p2δ + 2pqµ + q2∆

We can rework the solution in a way that it depends only on the A variable:

τn = A

(
q − 1

q + 1

)n

+
t2
2p

n− A

(
q − 1

q + 1

)2

− q

1− q2
(t2 − 2t1)

By substituting the boundary conditions t1 and t2 we obtain:

A =

1
1−q2 ·

(
3+q
2
· t2 − 2qt1

)
−

(
1 + 2pq

1−q2

)
· t2

1−q2 − 1
1−q2

(
2pq

1−q2 · 2pq + p2
)
· t1

p(
q−1
q+1

)2

· 2
(q+1)

Below we re-organize the general model to allow an evaluation of the completion
time by means of approximations, without finding a direct solution to the Markov
chain.

188CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

m

level (m/n)−1

level (n/m)

level i+1

level i

level 1

level 0

m−kk
p q

l
m

(i+1,1)

.

(0,0)

(1,1) (1,m). . .

.

(i,j)

(i+1,l)

(i,j+k) (i,m)

(i+1,m)

(i,1)

(m/n −1,1)

(m/n,1)

(m/n −1,m)

(m/n,m)

m−j−l
p q

l

k

Figure 7.5: Representation of the Markov model of computation of n tasks on m
slaves (with n >> m), where each slave can fail to perform a task with probability
q.

7.4.4 Re-Organizing the Model

We re-organize the Markov model of Figure 7.3 to highlight interesting properties for
its evaluation. Figure 7.5 is a graphical representation of the re-organized model.
The states of the Markov chain are represented as black circles labeled with two
indexes. The first index denotes the level (see below) at which we place the state,
while the second one denotes the relative position inside the level. A state of the
Markov chain represents a specific state in the computation we have reached. It can
be formalized as the number of tasks that remain to be performed:

t(i , j) =

{
n i = 0 and j = 0
n− ((i− 1)m + j) oth.

With the initial state (0, 0) we represent the fact that n tasks have to be performed.
Each level of the model includes exactly m states. For simplicity, we assume that
n is a multiple of m. We define an initial level 0 that includes just the initial state
(0, 0). Level 1 include states from (1, 1) to (1, m), where: in (1, 1) we have performed
a single tasks, and n− ((1− 1)m+1) = n− 1 are still to be performed. In (1, m) we
have performed m tasks, and n− ((1− 1)m + m) = n−m are still to be performed.
Below, for labeling the states, we sometimes exploit their t(i, j) value, instead of the
pair notation (i, j).

Now consider the state (0, 0). Recall that we exploit exactly m resources to
perform tasks. We assign a task to each of the m resources, and we can obtain 0 to

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 189

m failures. In the case we obtain m failures, we remain in state (0, 0). In the case
we obtain m − 1 failures, we have performed 1 task, and we transit in state (1, 1),
in the next level. If we obtain 0 failures, we go directly down to state (1, m). As
the maximum degree of parallelism is m, we cannot obtain more than m successes.
Thus, we cannot go from level 0 to level 2 with just one transition. We have first
to pass from at least one of the states belonging to level 1. This is the general
semantics behind the characterization in levels of the Markov model.

In a generic computation, we will transit in some states inside the same level.
Next, we jump into a state in the next level. The transition probabilities and their
weights are given by the general formula for n ≥ m, that we recall:

Tn,m = qm(∆ + Tn,m) +
m−1∑
k=1

(
m

k

)
pkqn−k(µ + Tn−k,m) + pm(δ + Tn−m,m)

Consider the highlighted state (i, j) in Fig. 7.5. We schedule m tasks, and we can:

• Remain in (i, j), if we obtain m failures. This event has probability qm and it
costs ∆.

• Transit in a state at the right of (i, j), if the number of successes is not sufficient
to change level. For instance, we can transit in state (i, j + k), if we obtain k
successes, and m− k failures. This transition has probability

(
m
k

)
pkqm−k, and

it has a weight of µ seconds.

• Transit down-left in a state (i + 1, j − l) in the next level. In this case, we
obtain a number of successes sufficient to make us change level. In this specific
case, the transition has probability

(
m
l

)
pm−j−lql, and it costs µ seconds.

• Transit directly down, if we obtain m successes. We take this transition with
probability pm, and it costs δ seconds, i.e. the average tasks execution time
(as we perform all tasks in parallel).

It remains to consider the case 0 ≤ n < m. Of course, when n = 0 it holds T0,m = 0.
For 0 < n < m, we have

Tn,m = qn(∆ + Tn,m) +
n−1∑
k=1

(
m

k

)
pkqn−k(µ + Tn−k,m) + pnδ

Note that, two types of transitions are not admitted in our model. Transitions
to the left are forbidden. According to the fault tolerance model, we cannot lose
results that we have performed in previous steps (see Sect. 7.1). Transitions to
the down-right are also forbidden. This happens we can obtain up to m successes
for a transition, and going to the down-right means that we obtain more than m
successes.

190CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

q2, ∆

q2, ∆q2, ∆

q , ∆

2pq, µ

2pq, µ

2pq, µ

p2 δ,

p2 δ, p2 δ,

p δ,

4

3 2

1 0

level 0

level 1

level 2

Figure 7.6: Markov model of computation of n = 4 tasks on m = 2 slaves, each
slave can fail with probability q. State numbering denotes the number of pending
tasks.

In general, each computation features a different path in the computation states,
but we can characterize all paths as a behavior. Consider the level k: we transit
in one of the states of level k, from a state of the level k − 1; we transit in one
or more states (possibly all) of the level k, until we jump to one of the states at
the next level k + 1. From a quantitative viewpoint, we can characterize each level
with two quantities. Tstay(k) is the average time passed in level k and Tjump(k),
the average time needed to jump from level k to level k + 1. According to [87],
Tstay(k) =

∑
a,b∈k Va,bQa,bNa, the sum is over all transitions a → b in level k, Va,b

is the time needed in a → b, Qa,b is the state transition probability of a → b
and Na and that is the average number of entries into state a. Similarly, we can
compute the average time needed to jump from a level k, to its successor k + 1 by
considering all the transitions from a state a at level k to the state b at level k + 1:
Tjump(k) =

∑
a∈k,b∈k+1 Va,bQa,bNa. The expected time can be computed as

Tn,m =
∑

0≤k≤m/n

Tstay(k) +
∑

0≤k<m/n

Tjump(k)

Example with 4 tasks and 2 slaves

We develop the preceding approach in a small example with m = 2 and n = 4.
Denoting Tk,2 = τk for 0 ≤ k ≤ 4 we have the equations

τk = q2(τn + ∆) + 2pq(µ + τk−1) + p2(δ + τk−2) , 2 ≤ k ≤ 4

τ1 = q(τ1 + ∆) + pµ , τ0 = 0

7.4. A MARKOV MODEL FOR FAULT-TOLERANT FARM COMPUTATIONS 191

For 2 ≤ k ≤ 4 the recurrence for τk follows the general formula. For k = 1 only
one slave is needed because only one task need to be executed.Finally for k = 0,
τ0 = 0 because there are no pending tasks. The Figure 7.6 is a rewriting of the
recursive equations in terms of the absorbing Markov chain (the Figure 7.6 is a
concrete example of Figure 7.5). States in Figure 7.6 are numbered by the number
of pending tasks, 4 is the initial state and 0 is the final absorbing state.

In the following we use recurrence equations to find Tstay(k) and Tjump(k) for
0 ≤ k ≤ 2. Starting from 4, the expected time before absorption verifies τ4 =
q2(τ4+∆)+2pq(µ+τ3)+p2(δ+τ2) and therefore τ4 = q2

1−q2 ∆+ 2pq
1−q2 (µ+τ3)+

p2

1−q2 (δ+τ2).

This equation give us directly Tstay(0) = q2

1−q2 ∆ and Tjump(0) = 2pq
1−q2 µ+ p2

1−q2 δ. Using
the notations given in Section 7.4.4

Tstay(0) = V4,4Q4,4N4 = ∆q2 1

1− q2

Tjump(0) = V4,3Q4,3N4 + V4,2Q4,2N4 = µ2pq
1

1− q2
+ δp2 1

1− q2

where we can identify N4 = 1
1−q2 . From this point, we have to analyze the system

from level 1 represented by the expression 2pq
1−q2 τ3 + p2

1−q2 τ2. Unfolding this equation
an enough number of times we obtain

Tstay(1) =
q2

1− q2
∆ +

(2pq

1− q2

)2(
µ +

q2

1− q2
∆

)
The term q2

1−q2 ∆ is the expected time looping around states 3 and 4. The term(
2pq

1−q2

)2(
µ + q2

1−q2 ∆
)

give us the probability to take transition (3, 2) coming from 4

multiplied by the expected time going from 3 to 2 and looping in 2 before leaving.
It can be rewritten as

Tstay(1) = V3,3Q3,3N3 + V3,2Q3,2N3 + V2,2Q2,2N2

= ∆q2 2pq

1− q2

1

1− q2
+ µ2pq

2pq

1− q2

1

1− q2
+

+ ∆q2
((2pq

1− q2

)2

+
p2

1− q2

) 1

1− q2

We have N3 = 2pq
1−q2

1
1−q2 and N2 =

((
2pq

1−q2

)2

+ p2

1−q2

)
1

1−q2 . Following this analysis we

find

Tjump(1) =
2pq

1− q2
µ
((2pq

1− q2

)2

+
p2

1− q2

)
+

p2

1− q2
δ
((2pq

1− q2

)2

+ 1
)

Tstay(2) =
((2pq

1− q2

)3

+ 2
pq

1− q2

p2

1− q2

)(
δ +

q

1− q
∆

)

192CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

7.4.5 Computation of the Average Number of State Entries

Recall that we denote with Ns the average number of entries in the state s (where
s is the number of tasks that remain to be performed in that state). We want to
estimate the value of Ns for each non absorbing state s. When s is different from
the initial state, we have [87]:

Ns =
∑

{t|(t,s)is an arc}

Pt,sNt

where Pt,s is the probability of taking the transition t → s. When s is the initial
state we have Ns = 1 +

∑
{t|(t,s)is an arc} Pt,sNt.

Example Let us recompute Nk for 4 ≤ k < 0 for Figure 7.6. Using the equations

N4 = 1 + q2N4 , N3 = q2N3 + 2pqN4 , N2 = q2N2 + 2pqN3 + p2N4

we re-obtain N4,N3 and N2. Finally N1 = qN1 + 2pqN2 + p2N3 and

N1 =
1

1− q
2pqN2 +

1

1− q2
p2N3

=
1

1− q

(2pq

1− q2

)3

+ 2
1

1− q

2pq

1− q2

p2

1− q2

We can check the correctness of the whole approach recomputing

Tjump(1) = δp2N3 + µ2pqN2 + δp2N2

Tstay(2) = ∆qN1 + δpN1

General Case for N Let us consider the general case. According to the Fig-
ure 7.5, (0, 0) corresponds to the initial state with n tasks to be executed. As in the
example we identify (0, 0) and n. As Nn = 1+qmNn we obtain Nn = 1

1−qm . Consider

the state (1, 1) with n−1 tasks has to be executed, as Nn−1 = mpqm−1Nn +qmNn−1,

Nn−1 = m
pqm−1

(1− qm)2

Example Before writing the general case we consider the case m = 5 and n = 15.
We want to compute the expected number of entries into state s = 7. Note that
state 7 appears in the second level of the Markov chain. In Figure 7.7 we show the
representation of the portion of graph needed to compute N7. We sum up all the
contributions to enter 7 and we get

N7 =
1

1− p5

(
5pq4Ns+1 + 10p2q3Ns+2 + 10p3q2Ns+3 + 5p4qNs+4 + p5Ns+5

)

7.5. A FRAMEWORK TO STUDY THE COMPLETION TIME 193

12 11 10

9 8 7

3
p

2
q10

p

q
5

q
4

p p q
23

10
5

5

5p q
4

. . .

. . .

Figure 7.7: Snapshot of the graphical representation of Markov models in the case
of m = 5 and n = 15, to compute the average number of entries into state 5.

General Case We can now easily generalize this formula to the case of m re-
sources:

Ns = pmNs+m + qmNs +
∑

0<k<m

(
m

k

)
pkqm−kNs+k

=
1

1− qm

(
pmNs+m +

∑
0<k<m

(
m

k

)
pkqm−kNs+k

)

7.5 A Framework to Study the Completion Time

As we have seen the values of Ns are different for different nodes s. We study
experimentally the possibility to replace all the different values by a unique average.
We can apply the formula allowing to compute Ns to concrete examples, in order to
get an idea of the behavior of this value. We have implemented a simple program
that takes as input the quantities describe in Section 7.2, and produces the N value
for all states of the Markov chains. The results are shown in Tables 7.1, 7.2, 7.3,
and 7.4.

From these numerical results, it seems a reasonable hypothesis to take the same
average value N . Therefore we assume the following:

Working Hypothesis. In the computation of Tstay and Tjump we replace all
the values Na by an average value N .

First consider the average time passed in the level k:

Tstay =
∑
a,b∈k

Va,bQa,bNa ≈ N ·
∑
a,b∈k

Va,bQa,b

= N ·

[
m∆qm +

∑
0<k<m

(m− k)µ

(
m

k

)
pkqm−k

]

194CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

n m δ ∆ p Navg Nvar

500 5 10 5 0.9 0.223 0.0022
500 5 10 5 0.8 0.251 0.0015
500 5 10 5 0.5 0.401 0.001
1000 5 10 5 0.9 0.223 0.0011
1000 5 10 5 0.8 0.250 0.0007
1000 5 10 5 0.5 0.400 0.0004
2000 5 10 5 0.9 0.222 0.0006
2000 5 10 5 0.8 0.250 0.0004
2000 5 10 5 0.5 0.400 0.0002

Table 7.1: Evaluation of N for n = 5, and n = 10.

n m δ ∆ p Navg Nvar

500 10 10 5 0.9 0.112 0.0026
500 10 10 5 0.8 0.126 0.0020
500 10 10 5 0.5 0.201 0.0014
1000 10 10 5 0.9 0.112 0.0013
1000 10 10 5 0.8 0.125 0.0010
1000 10 10 5 0.5 0.200 0.0007
2000 10 10 5 0.9 0.111 0.0007
2000 10 10 5 0.8 0.125 0.0005
2000 10 10 5 0.5 0.200 0.0004

Table 7.2: Evaluation of N for n = 5, and n = 10.

We can similarly consider all the transitions from any states at a level k to any
states at level k + 1, and compute Tjump as:

Tjump =
∑

a∈k,b∈k+1

Va,bQa,bNa ≈ N ·
∑

a∈k,b∈k+1

Va,bQa,b =

= N ·

[
m∆pm +

∑
0<k<m

(m− k)µ

(
m

k

)
pm−kqk

]

7.6 Experimental Results

In this section we show the experimental results that we performed to test the
effectiveness of the models we introduced. We show results for the simple case of
2 tasks performed by 2 slaves, and n tasks performed by m slaves. The first set
of tests is described to show the differences between the completion time evaluated
with the direct solution to the Markov model, and actual values. The second set of

7.6. EXPERIMENTAL RESULTS 195

n m δ ∆ p Navg Nvar

500 20 10 5 0.9 0.056 0.0030
500 20 10 5 0.8 0.063 0.0023
500 20 10 5 0.5 0.101 0.0018
1000 20 10 5 0.9 0.056 0.0015
1000 20 10 5 0.8 0.063 0.0011
1000 20 10 5 0.5 0.100 0.0009
2000 20 10 5 0.9 0.056 0.0007
2000 20 10 5 0.8 0.063 0.0006
2000 20 10 5 0.5 0.100 0.0004

Table 7.3: Evaluation of N for n = 5, and n = 10.

n m δ ∆ p Navg Nvar

510 30 10 5 0.9 0.038 0.0030
510 30 10 5 0.8 0.043 0.0023
510 30 10 5 0.5 0.068 0.0019
1020 30 10 5 0.9 0.037 0.0015
1020 30 10 5 0.8 0.042 0.0012
1020 30 10 5 0.5 0.067 0.0009
2010 30 10 5 0.9 0.037 0.0008
2010 30 10 5 0.8 0.042 0.0006
2010 30 10 5 0.5 0.067 0.0005

Table 7.4: Evaluation of N for n = 5, and n = 10.

tests, for the general case, shows the differences between the approximated solution,
derived from the framework of above, and actual values. The aim is to show that
the experimental numbers are always lower than the ones derived evaluated with
the model, i.e. the model gives effective upper bounds of the completion time. We
also study the discrepancies between the two sets of values.

We describe the environment chosen to perform tests, and how the experimental
configuration is set up to simulate failures.

7.6.1 Testing Environment

We exploit the muskel programming environment to test the effectiveness of the
theoretical study. We shortly describe the muskel programming model, and its
implementation to motivate its choice.

A muskel program is a macro data-flow graph composed of sequential and par-
allel modules, connected through data streams. Parallel modules are expressed

196CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

var. accesses

restart detect.

task sched / res. coll.

Master

N

1

Task Pool

CT

CT

1

N

S

S

. . .

. . .
. . .

Result Pool

. . .

RD

(a) Graphical representation of the
implementation of muskel exploiting
a master-slave strategy.

7
RD

4

5

CT

3

6

Master

2
1

N

1

Task Pool

CT

CT

1

N

S

S

. . .

. . .
. . .

Result Pool

. . .

S
1−New

(b) Graphical representation of the
master behavior in the case of slave
failure and restart.

Figure 7.8: muskel implementation as a master-slave, and its FT strategy.

as skeletons (e.g. farm, pipeline), and can be nested in arbitrary hierarchies. In
muskel , farm computations express a task parallel computation, where a set of
workers performs the same program on different input data (the tasks) incoming
from an input stream, and producing an output stream of results. In a pipeline
computation, each input data received from an input stream is transformed from a
sequence of nested functions (e.g. out = F1(F2(. . . Fn(in) . . .))). Each function Fi is
performed in a different stage, and the evaluation of two functions on different input
data (can) happen in parallel.

The implementation of muskel is based on a master-slave strategy:

• A whole data-flow graph is mapped in each slave, that represents the unit
of parallelism. The data-flow graph can be modeled as a function F, which
application to an input data represents the task of the computation. A slave
computation consists in iteratively: (1) receiving an input value from the
master; (2) applying it as actual parameter of F, and producing a result; (3)
returning the result to the master. This scheme is applied to a stream of input
values (produced by the master), and it produces an output stream of results
(consumed by the master).

• The master owns a local queue of tasks (i.e. the input data), and is responsible
of coordinating slaves: it schedules to workers the input data, and it receives
results back from slaves.

This implementation reflects the implementation model of farm computations de-
scribed in the previous sections. In this section, we conversely use the terms slave
and remote interpreter mixing up the terminology of the theoretical study described
in the previous sections, and the mapping in the muskel terminology. The fault tol-
erance strategy is implemented in the master process, which structure is represented

7.6. EXPERIMENTAL RESULTS 197

in Fig 7.8(a). We denote processes with squares, threads with circles, and state vari-
ables with rounded rectangles. The master includes two pools, one for tasks, and
the other for their results. Each slave is managed by an independent thread (slave
Si is managed by CTi, where CT stands for Control Thread). Control threads and
slaves are linked with bold double-ended arrows, denoting the task scheduling and
result collection operations. Control threads are also linked to tasks and results to
obtain and collect them (arrows half dotted, half dashed). We also exploit a restart
detection thread (denoted with RD), that is responsible of receiving restart messages
from slaves (dotted arrows). The behavior in the case of slave failure is represented
in Fig. 7.8(b): slave S1 fails (1) and the corresponding bold arrow with its control
thread is closed (2). The control thread detects the closing of the connection, and it
terminates (3). In the implementation, a list of active slaves is also exploited. In the
event of failure, the control thread removes the slave from the list of actives. The list
is used to control the degree of parallelism of the computation. In the same figure
we show the case of slave restart. Suppose slave S1 is restarted by some external
mechanism (4). It communicates the RD thread on the master that it is available to
perform tasks (5). The RD thread spawns a new control thread for its management
(6), that connects to the slave to assign it tasks (7).

The implementation of muskel and its fault tolerance strategy reflect the com-
putation model and fault tolerance strategy we exploited to study farm computa-
tions. This motivates our choice of this programming environment. Also notice
that muskel implements the behavior describe in Section 7.1, in which lost tasks
are immediately re-scheduled to available slaves. This states the difference between
muskel and the BSP-like model, that we use for the theoretical study, and will be
reflected in the differences between the experimental results, and the theoretical
values (see below).

We extended the muskel implementation to set up failure testing. We show
the abstract failure models, and their implementation in muskel , the represent the
mapping of the abstract assumption described in Section 7.2.

7.6.2 Mapping the Failure Model in muskel

We introduce two failure models reflecting in the muskel environment the abstract
one defined in the theoretical study. From a general viewpoint, the first model
is more similar to the theoretical model (see Section 7.2) than the second one,
which better simulates the behavior of an actual execution environment subject to
failures. We characterize failure models w.r.t. qualitative and quantitative aspects.
Qualitative aspects describe the behavior of a resource when it fails, and the features
of the failure detection sub-systems. Quantitative aspects describe the frequency of
faults, their patterns, and duration. The instances of the abstract failure model are
derived by instancing the quantitative aspects in different ways. The qualitative
ones are the same both models. The main features of both models are:

198CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

• Qualitative. Computational resources fail by stopping their execution, accord-
ing to the fail-stop model [76], i.e. after a failure a resource stops to perform its
task. After a failure, a computational resource is eventually restarted. The de-
tectability of failures and restarts are demanded to specific sub-system, which
implementation is not described here.

• Quantitative. The failure of a resource is subject to probability q. Conversely,
we denote with p = 1− q the probability of success of a resource. The failure
is expressed in terms of slave invocations: every t invocations to a slave there
is a q probability of failure. The time needed to detect a failure is represented
by the variable TF . After a failure, it takes a time TR for a resource to be
restarted. No constraints are given for the value that TR can assume, the fault
frequency and their patterns.

In both models we can set the value p. The way in which the failure and restart
latencies are controlled characterize the models.

• First Failure Model. Failures can happen every time a slave is invoked, i.e.
t = 1. The time needed to detect a failure can be upper bounded, but it
cannot be directly controlled: the actual value can vary at each failure and, in
general, it will depend on some lower virtualization level features. We denote
with ∆F the upper bound on failure detectability. The time needed to restart
an interpreter is a random variable in the range 0 ≤ TR ≤ ∆R, and we can set
the upper bound. Also, we can decide the probability distribution the restart
time.

• Second Failure Model. In the second model, failures can happen every t ≥ 1
time a slave is invoked. We can control both the time needed to detect a
failure, and the time needed to restart it, by specifying their upper bounds
and the failure distributions they follow. The constraints on the values of TF

and TR are: 0 ≤ TF ≤ ∆F , and 0 ≤ TR ≤ ∆R. Probability distributions of TF

and TR can be possibly different. In the experiments we can study different
configurations of these parameters to address actual execution environments.

7.6.3 Implementation of Fault Injection

We extend the implementation of muskel to simulate failures and restarts of the
processes. In the implementation, instead of halting and restarting machines, we
kill and restart processes implementing muskel slaves to simulate failures. The
simulation avoids to restart resources because:

• The fail-stop model of the theoretical study does not strictly requires compu-
tational resources to fail, but it just states that the computation module (the
process, in our case) fails by stopping to execute.

7.6. EXPERIMENTAL RESULTS 199

• From a empirical viewpoint, managing failures at software-level is simpler than
dealing with the stop and restart of machines.

We describe the implementation of the two abstract failure models.

Implementation of the First Failure Model. Failures of calls to a slave are imple-
mented as part of their behavior:

RemoteInterpreter::

...

compute(Task t) {

//compute for random time...

//...

double coin = rand();

if(coin <= q) exit(FAILURE);

//compute the remaining of the task

Result r = t.execute();

return r;

}

...

When a request for task execution is received, the slave performs a part of the task
for a random time. Next, a random number is generated and, depending if it is lower
than a fixed value q, the slave either executes the tasks or terminates with failure.
The q value can be configured on each slave as an initialization parameter. Eventu-
ally, we will allow modification of this value at run-time to simulate environments
in which the failure probability of resources can change during the computation.
The feature t = 1 is obtained by tossing a coin at each invocation, in the remote
interpreter code.

The restart of a slave is performed by an external process that monitors for slave
failures and, when it is the case, it restarts them. We will call this module the
Restarter. A parameter for the monitoring is the time between two successive fault
detections (this value should be chosen to target the trade-off between the overhead
it causes to the computation, and the restart latency). This value represents the
upper bound over the fault detection latency, i.e. ∆F .

In Fig. 7.9 we show the implementation of the first instance of the abstract
failure model. Each Interpreter (denoted with Ii) is augmented with a fault injector
(denoted with finj). The master process, running on a robust node, is responsible
of scheduling tasks to interpreters and, in the case of failure, it re-contacts the new
restarted interpreter (bold arrow). The restart subsystem is implemented as a single
process and is executed on a robust node. Whenever a slave fails (1) it detects the
failure in TF time (2), and it re-spawns it (3) in TR time (dotted arrows). In the
figure, we show the failure of In, and the re-spawning of a new instance of it from
the restarter. After the restart, the manager re-connects to the new instance of In.

200CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

n

T

M

R

F

4 1

3

2

T
. . .

. . .

in
te

rp
re

te
rs

sc
he

du
lin

g

robust node

robust node

Rest.

fa
ilu

re
 m

an
ag

.

I 1
finj

I

I

I

finj

finj

finj

2

n

Figure 7.9: Representation of the first instances of the fault injection technique.
Whenever a slave fails (1) it detects the failure in TF time (2), and it re-spawns it
(3) in TR time (dotted arrows).

Implementation of the Second Failure Model. We exploit a single process to termi-
nate slaves (i.e. inject faults), and to restart them. Every TC seconds the program
chooses if it has to terminate a slave (with probability q). If it is the case, it: (1)
waits for TF seconds to simulate the failure detection; (2) it terminates the slave;
(3) it waits TR seconds before restarting the slave.

TC represents the grain at which the failure can happen, and is a random variable,
according to some probability distribution, upper bounded by the value ∆C that is
specified for each machine. We claim that this implementation is correct w.r.t. its
specification, as, given that the average completion time of each task is TT , the t
value can be obtained as: t = dTC

TT
e. It is important to notice that, differently from

the previous model, the decision to fail is taken independently of the frequency at
which an interpreter is called, i.e. it is application independent.

As in the model, TF and TR can follow specific probability distributions. Differ-
ently from the previous model TF is not upper bounded by the monitoring frequency,
but it is directly simulated and can be controlled to study different situations.

7.7 Numerical Results

In this section we show the numerical results we obtained, and the comparison with
corresponding theoretical ones.

7.7. NUMERICAL RESULTS 201

p δ ∆ Texp(avg.) Ttheo Discr.
0.9 10 5 11.37679 12 0.62321
0.8 10 5 12.83438 13.95833 1.12395
0.5 10 5 20.14205 21.66667 1.52465

Av. Disc. for delta > ∆ 1.091
0.9 10 15 13.07644 13.18182 0.10538
0.8 10 15 15.21683 16.875 1.65817
0.5 10 15 26.57598 35 9.42402

Av. Disc. for δ < ∆ 3.729
Total Av. Disc. 2.429

Table 7.5: Results of the experiments for 2 tasks performed by 2 slaves. We show
the discrepancies between monitored and theoretical completion times. The first set
of lines is related to delta > ∆, while the second to its inverse. For each set, we
show the average discrepancy (Av. Disc.). At the bottom we show the total average
discrepancy for all values (Total Av. Disc.).

7.7.1 Tests for A Simple Case

We have tested the case of 2 tasks performed by 2 interpreter exploiting the envi-
ronment shown above, with the first failure model. The results are characterized
w.r.t. the value assume by µ, δ or ∆.

For each configuration, we compute the average value, and the variance, on
the 100 runs we experimented. The average and variance values are computed as
following:

E =
1

n

n∑
x=1

T x
comp

V ar =
1

n

n∑
x=1

(T x
comp − E)2

Where n = 100, Tcomp is the set of the obtained completion times, and T i
comp is

the i-th result.

Table 7.5 subsumes the results we obtained, and their comparison with the the-
oretical values. The results show that the differences between the theoretical results
and the experimental ones depend on the failure rate. This reflects the intuitive
difference between the BSP-like model, and the implementation one: in the case of
failure, the BSP-like model does not immediately re-schedule the lost task, as the
implementation model does. Higher failure rates induce higher probability that this
behavior is repeated, giving higher discrepancies with the implementation model.

202CHAPTER 7. PERFORMANCE OF PARALLEL COMPUTATIONS IN PRESENCE OF FAILURES

n p Tc exp. Tc th. dev. (%)
500 0.9 1014.695 1115.106 9%
500 0.8 1025.893 1253.799 18%
500 0.5 1648.587 1972.688 16.43%
1000 0.9 2037.750 2226.211 8.47%
1000 0.8 2057.511 2503.599 17.82%
1000 0.5 2763.726 3941.438 29.88%
2000 0.9 4047.495 4448.422 9.01%
2000 0.8 4392.028 5003.199 12.22%
2000 0.5 6559.243 7878.937 16.75%

Table 7.6: Experimental results for m = 5.

n p Tc exper. Tc theo. dev. (%)
500 0.9 513.856 560.056 8.25%
500 0.8 595.157 629.500 5.46%
500 0.5 851.208 1004.010 15.22%
1000 0.9 1028.474 1115.611 7.81%
1000 0.8 1036.899 1254.500 17.35%
1000 0.5 1706.031 2003.521 14.85.77%
2000 0.9 2062.921 2226.722 9.01%
2000 0.8 2096.943 2504.500 12.22%
2000 0.5 2165.239 4002.545 16.43%

Table 7.7: Experimental results for m = 10.

7.7.2 Tests for the General Model

We have performed experiments exploiting the muskel support, as extension of the
ones performed for simple cases described above. We have chosen to test the cases
for m = 5, and m = 10, with numbers of tasks equal to 500, 1000, and 2000, with
δ = 10, ∆ = 5, and µ = 10. Tables 7.6 and 7.7 show the completion times we
obtained from the experiments, the corresponding one computed according to the
Tstay and Tjump quantities, and their deviation w.r.t. the theoretical value. Also in
this case the deviation seems to increase with the probability of failure, that actually
gives more uncertainty to the actual result.

Chapter 8

Conclusions

In this thesis we have studied the issue of failures in the context of High-Performance
computing. In particular we highlighted which are the relationships between the
parallel programming models and the mechanisms and techniques to support fault
tolerance. We have presented a review of the works presented in the literature about
parallel programming and fault tolerance computing which characterizes these rela-
tionships. From this study we conclude that there is a a need of the introduction of
a methodology which allows application programmers to select the best-suited fault
tolerance technique and to configure it. We made a step towards this methodol-
ogy by starting from structured parallel programming models and by deriving cost
models to guide the selection and configuration of the supporting techniques.

In particular we have defined a programming model for parallel computations
featuring generality from the expressivity viewpoint but also with strong structural
properties. The structural properties of the parallel constructs of the model charac-
terize the interactions between the parallel activities which compose the computa-
tion. In this way the constructs can be described from the performance viewpoint
by cost models which can be instantiated to the actual features of execution plat-
forms and applications. We have introduced a formal tool to study the relationships
between the constructs of this programming model (more precisely, its structural
properties) and the mechanisms/techniques to support fault tolerance. This tool
allows us to describe parallel computations by highlighting the relation between the
control- and data-flow. By exploiting this relation we can describe the sequence
of events which characterize a parallel computation. We have applied the formal
model to two main constructs of our parallelism model and we have derived the
relationships between the structural properties of the constructs and the fault tol-
erance mechanisms. To completely define our research methodology we have shown
the implementation of fault tolerance support for the two constructs based on check-
pointing and rollback recovery techniques. In the implementation we have exploited
the high-level structural properties, characterized by the formal tool, to introduce
the possibility of configuring the support and, thus, derive optimizations. In this way
we can target the high heterogeneity and dynamicity of parallel computing platforms

204 CHAPTER 8. CONCLUSIONS

and of parallel applications (e.g. in the case they solve irregular problems).
We have also shown how the performance models of structured parallel compu-

tations can be extended to include a description of the overhead introduced by the
fault tolerance support. The models describe the performance behavior of parallel
computations in absence of failures. They can be used to statically target the trade-
off between the performance of computations and their resiliency to failures. We
have also introduced a formal model, based on Markov chains, to study the impact
on the performance of task parallel computations in presence of failures. The study
of the model results in a framework that approximates the actual computation time
by providing an upper bound. As a result of these studies we have completely char-
acterized the performance behavior of task parallel computations both in the case
of failures and in the absence of them.

The work presented in this thesis leaves open several problems for future re-
search directions. In the short term we have to study the relationships between
the structural properties of the parallel computations and the possibility of intro-
ducing optimized garbage collection strategies for checkpoints. It is also interesting
to show how to derive similar relationships to provide an implementation of parts
of the support that we only suggest in our study (e.g. the atomicity properties of
communications).

The techniques introduced in this thesis have been studied and compared to ex-
isting solutions only from an analytical viewpoint, according to the issues described
at the end of Chapter 1. The future work must include experimental assessment of
the analytical results. In both Chapters 4 and 5 we discuss when this experimenta-
tion needs is more necessary and how we should configure them to meet the desired
comparison. The results should be compared with the expected ones, derived from
analytical modeling.

In this thesis we have focused on the models of structured parallel programming.
The fault tolerance computing research field features similar models (e.g. atomic
actions and replication schemes) that we exploit to support parallel constructs. In
the long term we can envision to study the possibility of moving up the models
of fault tolerance computing at the level of parallel programming. As a result we
should obtain more general programming constructs with which the programmers
can express parallelism and fault tolerance features at the same level of abstraction.
For instance, this research scheme has been partially followed in [60, 14]. We also
argue that the results of short and long term future works could help in deriving an
extension of the I-Structure formal tool to meet higher expressivity of fault tolerance
and concurrency aspects.

Bibliography

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic mpi programs
on clusters of workstations. In HPDC ’99: Proceedings of the 8th IEEE In-
ternational Symposium on High Performance Distributed Computing, page 31,
Washington, DC, USA, 1999. IEEE Computer Society.

[2] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel
Computing, 32(7-8):449–462, 2006.

[3] L. Alvisi. Understanding the message logging paradigm for masking process
crashes. PhD thesis, Cornell University, Department of Computer Science,
Ithaca, NY, USA, 1996.

[4] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, causal
and optimal. In IEEE Transactions on Software Engineering, volume 24, pages
149–159. IEEE Computer Society, February 1998.

[5] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for now (networks
of workstations). IEEE Micro, 15(1):54–64, 1995.

[6] Arvind, P. S. Barth, and R. S. Nikhil. M-structures: Extending a parallel, non-
strict, functional language with state. In Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Computer Architecture, pages
538–568, London, UK, 1991. Springer-Verlag.

[7] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: data structures for parallel
computing. ACM Trans. Program. Lang. Syst., 11(4):598–632, 1989.

[8] R. Badrinath, C. Morin, and G. Vallee. Checkpointing an recovery of share
memory parallel applications in a cluster. In CCGRID ’03: Proceedings of the
3st International Symposium on Cluster Computing and the Grid, page 471,
Washington, DC, USA, 2003. IEEE Computer Society.

[9] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff. Charlotte: metacom-
puting on the web. Future Generation Computer Systems, 15(5-6):559–570,
1999.

206 CHAPTER 8. BIBLIOGRAPHY

[10] R. Batchu, Y. Dandass, A. Skjellum, and M. Beddhu. Mpi/ft: A model-based
approach to low-overhead fault tolerant message-passing middleware. Cluster
Computing, 7(4):303–315, 2004.

[11] R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Neelamegam, Y. Dandass, and
M. Apte. Mpi/fttm: Architecture and taxonomies for fault-tolerant, message-
passing middleware for performance-portable parallel computing. In CCGRID
’01: Proceedings of the 1st International Symposium on Cluster Computing and
the Grid, page 26, Washington, DC, USA, 2001. IEEE Computer Society.

[12] F. Baude, D. Caromel, C. Delbe, and L. Henrio. A hybrid message logging-
cic protocol for constrained checkpointability. In Proceedings of EuroPar2005,
LNCS, pages 644–653, Lisbon, Portugal, August-September 2005. Springer.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[14] C. Bertolli, M. Coppola, and C. Zoccolo. The co-replication methodology and
its application to structured parallel programs. In CompFrame ’07: Proceed-
ings of the 2007 symposium on Component and framework technology in high-
performance and scientific computing, pages 39–48, New York, NY, USA, 2007.
ACM.

[15] C. Bertolli and J. Gabarro. On the cost of task re-scheduling in fault-tolerant
task parallel computations. Poster Session CoreGRID Integration Workshop,
11(4), 2008.

[16] C. Bertolli, M. Meneghin, and J. Gabarro. A markov model for fault-tolerant
task parallel computations. In T. Priol and M. Vanneschi, editors, From Grids
to Service and Pervasive Computing, pages 123–136. Springer US, 2008.

[17] B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent rollback
for recovery–an optimistic approach. In Proceedings of the Seventh Symposium
on Reliable Distributed Systems, pages 3–12. IEEE Computer Society, October
1988.

[18] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable parallel computing
on networks of workstations. In USENIX 1997 Annual Technical Symp., pages
133–147, 1997.

[19] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Her-
ault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov.
Mpich-v: toward a scalable fault tolerant mpi for volatile nodes. In Supercom-
puting ’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1–18, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

8.0. BIBLIOGRAPHY 207

[20] A. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and F. Mag-
niette. Mpich-v2: a fault tolerant mpi for volatile nodes based on pessimistic
sender based message logging. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 25, Washington, DC, USA, 2003. IEEE
Computer Society.

[21] A. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and F. Mag-
niette. Mpich-v2: a fault tolerant mpi for volatile nodes based on pessimistic
sender based message logging. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 25, Washington, DC, USA, 2003. IEEE
Computer Society.

[22] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier, and F. Cappello. Impact
of event logger on causal message logging protocols for fault tolerant mpi. In
IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, page 97, Washington, DC, USA,
2005. IEEE Computer Society.

[23] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier, and F. Cappello. Impact
of event logger on causal message logging protocols for fault tolerant mpi. In
IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, page 97, Washington, DC, USA,
2005. IEEE Computer Society.

[24] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. Mpich-
v: a multiprotocol fault tolerant mpi. International Journal of High Perfor-
mance Computing and Applications, 20(3):319–333, 2006.

[25] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup
approach, pages 199–216. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1993.

[26] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of ACM, 43(2):225–267, 1996.

[27] K. Mani Chandy and L. Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[28] Z. Chen, G. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and J. Don-
garra. Fault tolerant high performance computing by a coding approach. In
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, pages 213–223, New York, NY, USA,
2005. ACM Press.

[29] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifica-
tions: a comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

208 CHAPTER 8. BIBLIOGRAPHY

[30] M. Cole. Algorithmic skeletons: structured management of parallel computation.
MIT Press, Cambridge, MA, USA, 1991.

[31] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Comput., 30(3):389–406, 2004.

[32] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and
F. Cappello. Blocking vs. non-blocking coordinated checkpointing for large-
scale fault tolerant mpi. In SC ’06: Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, page 127, New York, NY, USA, 2006. ACM.

[33] D. E. Culler, A. Gupta, and J. Pal Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1997.

[34] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, S. Pakin, and
F. Petrini. A performance and scalability analysis of the bluegene/l architecture.
In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 41, Washington, DC, USA, 2004. IEEE Computer Society.

[35] X. Defago, A. Schiper, and N. Sergent. Semi-passive replication. In SRDS ’98:
Proceedings of the The 17th IEEE Symposium on Reliable Distributed Systems,
page 43, Washington, DC, USA, 1998. IEEE Computer Society.

[36] X. Defago, A. Schiper, and P Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[37] P. J. Denning. Fault tolerant operating systems. ACM Comput. Surv., 8(4):359–
389, 1976.

[38] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[39] E. N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[40] C. Engelmann and G. A. Geist. Super-scalable algorithms for computing on
100,000 processors. In Lecture Notes in Computer Science: Proceedings of the
5th International Conference on Computational Science (ICCS) 2005, Part I,
volume 3514, pages 313–320, Atlanta, GA, USA, May 2005. Springer.

[41] G. Fagg, T. Angskun, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra. Scal-
able fault tolerant mpi: Extending the recovery algorithm. In Proceedings of the
12th European Parallel Virtual Machine and Message Passing Interface Con-
ference - Euro PVM/MPI, pages 76–83. Springer, September 2005.

8.0. BIBLIOGRAPHY 209

[42] G. Fagg, A. Bukovsky, and J. Dongarra. Harness and fault tolerant mpi. Parallel
Comput., 27(11):1479–1495, 2001.

[43] M J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[44] Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
http://www.mpi-forum.org, June 1995.

[45] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[46] E. Frachtenberg, K. Davis, F. Petrini, J. Fernandez, and J. C. Sancho. Designing
Parallel Operating Systems via Parallel Programming. In Euro-Par 2004, Pisa,
Italy, August 2004.

[47] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework
for master-worker applications on the computational grid. In HPDC, pages
43–50, 2000.

[48] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. Dean Risinger, and M. W. Sukalski. A network-failure-tolerant
message-passing system for terascale clusters. Int. J. Parallel Program.,
31(4):285–303, 2003.

[49] J. Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[50] Grid 5000 homepage, https://www.grid5000.fr/.

[51] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance.
Computer, 30(4):68–74, 1997.

[52] J.-M. Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal. Communication-
based prevention of useless checkpoints in distributed computations. Distrib.
Comput., 13(1):29–43, 2000.

[53] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[54] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer Verlag, 1976.

[55] S. Krishnamurthy, W.H. Sanders, and M. Cukier. An adaptive quality of service
aware middleware for replicated services. IEEE Transactions on Parallel and
Distributed Systems, 14(11):1112–1125, November 2003.

210 CHAPTER 8. BIBLIOGRAPHY

[56] H. Kuchen. A skeleton library. In Euro-Par ’02: Proceedings of the 8th Inter-
national Euro-Par Conference on Parallel Processing, pages 620–629, London,
UK, 2002. Springer-Verlag.

[57] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[58] B.-H. Lim and A. Agarwal. Waiting algorithms for synchronization in large-
scale multiprocessors. ACM Trans. Comput. Syst., 11(3):253–294, 1993.

[59] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migra-
tion of unix processes in the condor distributed processing system. Technical
Report 1346, University of Wisconsin-Madison, 1997.

[60] J. Maier. Fault-tolerant parallel programming with atomic actions. In Proc. of
the 1995 Fault-Tolerant Parallel and Distributed Systems, pages 210–219, 1995.

[61] P. Sarathi Mandal and K. Mukhopadhyaya. Performance analysis of different
checkpointing and recovery schemes using stochastic model. J. Parallel Distrib.
Comput., 66(1):99–107, 2006.

[62] O. Marin, M. Bertier, and P. Sens. Darx—a framework for the fault-tolerant
support of agent software. In ISSRE ’03: Proceedings of the 14th International
Symposium on Software Reliability Engineering, page 406, Washington, DC,
USA, 2003. IEEE Computer Society.

[63] T. G. Mattson, D. Scott, and S. R. Wheat. A teraflop supercomputer in 1996:
The asci tflop system. In IPPS ’96: Proceedings of the 10th International Par-
allel Processing Symposium, pages 84–93, Washington, DC, USA, 1996. IEEE
Computer Society.

[64] S. Monnet, C. Morin, and R. Badrinath. Hybrid checkpointing for parallel
applications in cluster federations. In CCGRID ’04: Proceedings of the 2004
IEEE International Symposium on Cluster Computing and the Grid, pages 773–
782, Washington, DC, USA, 2004. IEEE Computer Society.

[65] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A.
Lingley-Papadopoulos. Totem: a fault-tolerant multicast group communication
system. Commun. ACM, 39(4):54–63, 1996.

[66] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Eternal: a component-
based framework for transparent fault-tolerant corba. Softw. Pract. Exper.,
32(8):771–788, 2002.

[67] B. Natarajan, A. Gokhale, S. Yajnik, and D. C. Schmidt. Doors: Towards high-
performance fault tolerant corba. In DOA ’00: Proceedings of the International

8.0. BIBLIOGRAPHY 211

Symposium on Distributed Objects and Applications, page 39, Washington, DC,
USA, 2000. IEEE Computer Society.

[68] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent
global snapshots. IEEE Trans. Parallel Distrib. Syst., 6(2):165–169, 1995.

[69] Object Management Group. Chapter 23 of CORBA/IIOP 3.0.3: Fault-Tolerant
CORBA, January 2008.

[70] F. Petrini, K. Davis, and J. C. Sancho. System-level fault-tolerance in large-
scale parallel machines with buffered coscheduling. In In 9th IEEE Workshop on
Fault-Tolerant Parallel, Distributed and Network-Centric Systems (FTPDS04),
Santa Fe, NM, April 2004.

[71] D. Powell, I. Bey, and J. Leuridan, editors. Delta Four: A Generic Architec-
ture for Dependable Distributed Computing. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1991.

[72] D. A. Reed, C. Lu, and C. L. Mendes. Reliability challenges in large systems.
Future Gener. Comput. Syst., 22(3):293–302, 2006.

[73] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-performance local
area communication with fast sockets. In ATEC’97: Proceedings of the Annual
Technical Conference on Proceedings of the USENIX 1997 Annual Technical
Conference, pages 20–20, Berkeley, CA, USA, 1997. USENIX Association.

[74] E. Roman. A survey of checkpoint/restart implementations. Technical report,
Berkeley Lab Technical Report, July 2002.

[75] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang. Failure
data analysis of a large-scale heterogeneous server environment. In DSN ’04:
Proceedings of the 2004 International Conference on Dependable Systems and
Networks, page 772, Washington, DC, USA, 2004. IEEE Computer Society.

[76] F. B. Schneider. The fail-stop processor approach. In Concurrency control and
reliability in distributed systems. Van Nostrand Reinhold Co., New York, NY,
USA, 1987.

[77] F. B. Schneider. Replication management using the state-machine approach,
pages 169–197. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1993.

[78] R. Sirvent, J. M. Perez, R. M. Badia, and J. Labarta. Automatic grid work-
flow based on imperative programming languages: Research articles. Concurr.
Comput. : Pract. Exper., 18(10):1169–1186, 2006.

212 CHAPTER 8. BIBLIOGRAPHY

[79] A. P. Sistla and J. L. Welch. Efficient distributed recovery using message log-
ging. In PODC ’89: Proceedings of the eighth annual ACM Symposium on
Principles of distributed computing, pages 223–238, New York, NY, USA, 1989.
ACM.

[80] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers
about BSP. Scientific Programming, 6(3):249–274, Fall 1997.

[81] J. A. Smith and S. K. Shrivastava. Fault-tolerant parallel applications using
queues and actions. In ICPP ’97: Proceedings of the international Confer-
ence on Parallel Processing, pages 145–149, Washington, DC, USA, 1997. IEEE
Computer Society.

[82] Y. Tamir and C. H. Sequin. Error recovery in multicomputers using global
checkpoints. In Proceedings of the 13-th International Conference on Parallel
Processing, pages 32–41, 1984.

[83] K. Tani. Earth simulation project in japan - seeking a guide line for the sym-
biosis between the earth and human beings - visualizing an aspect of the future
of the earth by a supercomputer. In ISHPC ’00: Proceedings of the Third Inter-
national Symposium on High Performance Computing, pages 33–42, London,
UK, 2000. Springer-Verlag.

[84] T. Tantikul and D. Manivannan. A communication-induced checkpointing and
asynchronous recovery protocol for mobile computing systems. In Proceedings
of the Sixth International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 70–74. IEEE, 2005.

[85] K. S. Trivedi. Probability and statistics with reliability, queuing and computer
science applications. John Wiley and Sons Ltd., Chichester, UK, UK, 2002.

[86] P. Urban, N. Hayashibara, A. Schiper, and T. Katayama. Performance com-
parison of a rotating coordinator and a leader based consensus algorithm. In
SRDS ’04: Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems, pages 4–17, Washington, DC, USA, 2004. IEEE Computer
Society.

[87] N. H. Vaidya. A case for two-level recovery schemes. IEEE Trans. Comput.,
47(6):656–666, 1998.

[88] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal.
Satin: Simple and efficient Java-based grid programming. In AGridM Workshop
on Adaptive Grid Middleware, New Orleans, Louisiana, USA, September 2003.

[89] M. Vanneschi. The programming model of assist, an environment for paral-
lel and distributed portable applications. Parallel Comput., 28(12):1709–1732,
2002.

8.0. BIBLIOGRAPHY 213

[90] M. Vanneschi and L. Veraldi. Dynamicity in distributed applications: issues,
problems and the assist approach. Parallel Comput., 33(12):822–845, 2007.

[91] G. Wrzesinska, R. van Nieuwpoort, J. Maassen, and H. E. Bal. Fault-tolerance,
malleability and migration for divide-and-conquer applications on the grid.
In Proc. of 19th International Parallel and Distributed Processing Symposium,
Denver, CO, USA, April 2005.

[92] Y. Zhang, D. Wong, and W. Zheng. User-level checkpoint and recovery for
lam/mpi. SIGOPS Oper. Syst. Rev., 39(3):72–81, 2005.

[93] G. Zheng, L. Shi, and L. V. Kale. Ftc-charm++: an in-memory checkpoint-
based fault tolerant runtime for charm++ and mpi. In CLUSTER ’04: Proceed-
ings of the 2004 IEEE International Conference on Cluster Computing, pages
93–103, Washington, DC, USA, 2004. IEEE Computer Society.

[94] A. Ziv and J. Bruck. Analysis of checkpointing schemes for multiprocessor
systems. In Symposium on Reliable Distributed Systems, pages 52–61. IEEE
Computer Society, October 1994.

