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Introduction

In this work we consider the problem of stabilizing complex nonlinear dynamical
systems where feedback signals are subject to delays and bandwidth limitations
due to the less-than-ideal nature of communication channels used to close the high-
level loop, by exploiting a feed forward-feedback scheme inspired to vertebrate-like
adaptive control system.
Chapter 1 is a short introduction to control theory and related problems. Section
1.1 presents the concepts of open and closed loop control, the concept of stability
and the problem of stabilization through feedback (closed loop) control. A brief
sketch of the solution of this problem for linear systems is presented. Section 1.2
presents ideas and motivations of adaptive control, i.e control of partially unknown
or changing dynamics, and some classical solutions to this problem (direct and in-
direct adaptive control) along with two examples of adaptive control scheme (the
high-gain adaptive control and adaptive sliding control). Finally we present open
problems linked to communication constraints of real control schemes and a pos-
sible solution, the Embedded Control Design.
Vertebrate movement learning represents a fascinating example of such a control
and Chapter 2 includes a survey of known results about it. Main features are the
existence of a virtual trajectory of instantaneous fixed point (section 2.3.2) stabi-
lized by a small set of motor primitives codified in the spinal cord and activated by
feed forward motor commands descending from the central nervous system (section
2.3.3), and the role of reflexes in achieving adaptation and learning (section 2.3.5).
In the light of these results, a vertebrate-like adaptive control system is presented
(section 2.4). We introduce problems linked with this working scheme, that are
(i) stability of nonlinear closed-loop system in the presence of control parameter
uncertainties and input disturbances, (ii) possible models and implementations of
the neural representation of motor commands and reflexes in the spinal cord and
in the central nervous system, looking in particular at the chaotic nature of neural
dynamics and possible ”meaning representation” applications of chaos control.
Chapter 3 is a technical chapter which introduces a powerful tool for analyzing
stability properties of nonlinear systems under persistent excitations, the Input-
to-State Stability (ISS) (section 3.1) and its relations with control system (3.2),
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including a possible application to analyze and synthesize a feedback control design
with minimal bit rate and a practical example, the nonlinear inverted pendulum
on a cart with unknown length.
Chapter 4 is an introduction to chaotic systems and to some of their more pecu-
liar characteristics, in order to exploit the neural-chaotic representation problem.
In particular, section 4.1 introduces ergodicity and topological transitivity, which
will turn out to be fundamental for controlling chaos; sections 4.2-4.4 describe
instruments and results for analyzing stability properties of nonlinear dynamics,
with a strong emphasis on the concept of unstable periodic orbit ; section 4.5 points
out how chaotic dynamics can be seen as shadowing an infinity of unstable periodic
orbits (the chaos skeleton) in terms of the expectation value of some observables,
while section 4.6 does the same in a more heuristic way.
Chapter 5 introduces chaos control and shows how it is naturally (local) Input-
to-State Stable, due to the very own nature of chaotic dynamics (sections 5.1-5.2),
which would imply the robustness of any neural representation based on it. Section
5.3 verifies this result on a pair of coupled FitzHugh-Nagumo equations, chosen as
model neurons. Looking forward to synthesizing a possible vertebrate-like adaptive
control system, including reflex adaptation, we also study chaotic synchronization
of two pairs of coupled chaotic equations through small perturbations (section
5.4.1).
Finally, in Chapter 6 we propose a possible adaptive control system based on
an ISS synergy controller. We describe problems linked with the approximation
of real parameters through synergy activation modification (as in the vertebrate),
and propose two possible tuning procedures. The first makes use of an analogical
synergy controller (such as vertebrate muscle-skeletal system), while the second is
based on a synergy digital controller with minimal bit-rate (more useful for prac-
tical implementation).
The main original contributions in this thesis are results of sections 3.2.1-3.2.4,
theorem 2 (although the proof follows the same line of [2], it has been generilized
here to include parameter uncertainties) and Theorem 5. The relative simula-
tions (sections 3.2.7 and 5.3.1) are original contributions. Even though it does not
include any new results, section 2.4 proposes an original (up to our knowledge)
practical implementation of a vertebrate-like adaptive control system, as well as
Chapter 6, where this model (including new results about ISS of control systems
and chaos control) is further developed and tested on the inverted pendulum on a
chart.
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Chapter 1

Adaptive control theory and open
problems

1.1 Control theory

This section is based on [1]

Since the beginnings of Calculus, differential equations have provided an effec-
tive mathematical model for a wide variety of physical phenomena. Consider a
system whose state can be described by a finite number of real-valued parameters,
say x = (x1, . . . , xn). If the rate of change ẋ = dx/dt is entirely determined by the
state x itself, then the evolution of the system can be modeled by the ordinary
differential equation

ẋ = g(x). (1.1)

If the state of the system is known at some initial time t0 , the future behavior
for t > t0 can then be determined by solving a Cauchy problem, consisting of (1.1)
together with the initial condition x(t0) = x0.
We are here taking a spectators point of view: the mathematical model allows
us to understand a portion of the physical world and predict its future evolution,
but we have no means of altering its behavior in any way. Celestial mechanics
provides a typical example of this situation. We can accurately calculate the orbits
of moons and planets and exactly predict time and locations of eclipses, but we
cannot change them in the slightest amount. Control theory provides a different
paradigm. We now assume the presence of an external agent, i.e. a controller, who
can actively influence the evolution of the system. This new situation is modeled
by a control system, namely

ẋ = f(x, u), u(·) ∈ U, (1.2)
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where U is a family of admissible control functions. In this case, the rate of change
ẋ(t) depends not only on the state x itself, but also on some external parameters,
say u = (u1, . . . , um), which can also vary in time. The control function u(·),
subject to some constraints, will be chosen by a controller in order to modify the
evolution of the system and achieve certain preassigned goals, g (for example, steer
the system from one state to another, maximize the terminal value of one of the
parameters, minimize a certain cost functional, etc...)
The control law can be assigned in two basically different ways. In open loop
(Figure 1.1A) form, as a function of time: t→ u(t), and in closed loop or feedback
(Figure 1.1B), as a function of the state: x → u(x). Implementing an open loop
control u = u(t) is in a sense easier, since the only information needed is provided
by a clock, measuring time. On the other hand, to implement a closed loop control
u = u(x) one constantly needs to measure the state x of the system.

Figure 1.1: Block representation of A) open loop control and B) closed loop control

Designing a feedback control, however, yields some distinct advantages. In
particular, feedback controls can be more robust in the presence of random per-
turbations. For example, assume that we seek a control u(·) which steers the
system from an initial state P to the origin. If the behavior of the system is
exactly described by (1.1) , this can be achieved, say, by the open loop control
t→ u(t). In many practical situations, however, the evolution is influenced by ad-
ditional disturbances which cannot be predicted in advance. The actual behavior
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Figure 1.2: External disturbances effect on, left, open loop control and, right, closed loop
control

of the system will thus be governed by

ẋ = f(x, u) + η(t), (1.3)

where t → η(t) is a perturbation term. In this case, if the open loop control
u = u(t) steers the system (1.2) to the origin, this same control function may not
accomplish the same task in connection with (1.3), when a perturbation is present.
In Figure 1.2(left) the solid line depicts the trajectory of the system (1.2), while
the dotted line illustrates a perturbed trajectory x(·). We assumed here that the
disturbance η(·) is active during a small time interval [t1, t2]. Its presence puts the
system off course, so that the origin is never reached.
Alternatively, one can solve the problem of steering the system to the origin by
means of a closed loop control. In this case, we would seek a control function
u = u(x) such that all trajectories of the O.D.E.

ẋ = g(x) = f(x, u(x)) (1.4)

approach the origin as t → ∞. This approach is less sensitive to the presence
of external disturbances. As illustrated in Figure 1.2(right), in the presence of
an external disturbance η(·), the trajectory of the system does change, but our
eventual goal, steering the system to the origin, would still be attained.
In what follows we will always deal with closed loop systems of the form (1.4).
Assume that f(x, 0) ≡ 0, so that x is an equilibrium point when the null control is
applied. In general, this equilibrium may not be stable: a trajectory which starts
at a point x0 ∼ x may get very far from x at large times. For many practical
situation, an important problem is to design a feedback control

u = k(x) (1.5)

such that the resulting system

ẋ = g(x) = f(x, k(x)) (1.6)
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is asymptotically stable at the point x.
A formal way to define global asymptotic stability is the Lyapunov stability.

Definition 1 Consider the differential equation

ẋ = g(x) (1.7)

x ∈ <n, let x(t, x0) be the solution with initial data x(0) = x0. We say that the
system (1.7) is Lyapunov stable at the origin if the following holds (see fig.)

1. For every ε > 0 there exists δ > 0 such that if |x0| < δ then for every t ≥ 0
we have |x(t, x0)| < ε.

2. For every x0 ∈ <n we have limt→∞ x(t, x0) = 0

Figure 1.3: Lyapunov stability

For a general nonlinear system, checking its stability is not an easy task. A
standard method for proving Lyapunov stability is to construct a positive function
that decreases monotonically along all trajectories of the system. We review here
the basic ideas of this approach.
Given an open set Q ∈ <n a C1 function V : Q→ < is called a Lyapunov function
for (1.7) on Q if following conditions hold.

1. V is proper, i.e. for every r > 0 the sub-level set x : V (x) ≤ r is compact;

2. V is positive definite, i.e. V (0) = 0 and V (x) > 0 for every x 6= 0;

9



3. V is strictly decreasing along trajectories of the system: For x 6= 0 we have
∇V (x)g(x) < 0.

It can be shown that Lyapunov stability is equivalent to the existence of a
Lyapunov function(see [1]).
A complete characterization of Lyapunov stability can be given in the case of a
linear system with constant coefficients:

ẋ = Ax, (1.8)

which is Lyapunov stable if and only if all the eigenvalues of A have strictly negative
real part (see [1]).
The last equivalence can be used to stabilize a linear control system

ẋ = Ax+Bu, x ∈ <n, u ∈ <m, (1.9)

where A is an n× n matrix and B an n×m matrix. If all the eigenvalues of the
matrix A have negative real part, the system is already stable in connection with
the null control u ≡ 0.
In the case where the uncontrolled system (1.8) is unstable, our aim is to find a
linear feedback u = Fx, with F an n ×m matrix, such that the resulting linear
system

ẋ = (A+BF )x

is Lyapunov stable at the origin. In this case, the control u = Fx is called a
stabilizing feedback. From the characterization of Lyapunov stability for linear
systems, we can conclude that this will be the case if and only all eigenvalues of
the matrix A+BF have negative negative real part. The existence of the matrix F
is equivalent to the controllability of the system, that is the possibility of reaching
any point in <n at a given time t > 0 starting from the origin through a suitable
control (see [1]). In the case of nonlinear control systems of the kind (1.4), one
can apply the last result to the linearized system at the origin, in the case where
f(0, 0) = 0, by setting

A =
∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0). (1.10)

If the linearized controlled system is Lyapunov stable, then there exists a neighbor-
hood of the origin W , such that the system restricted to W admits a continuous
stabilizing feedback.
We will come back to stability properties of nonlinear systems in Chapter 3.
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1.2 Adaptive control and communication con-

straints

In many practical situations the dynamics to be controlled will depend upon a set
of parameters. In general, the stabilizing law will depend on this parameters as
well. It can happen that these parameters are not exactly known, or that they can
change in time (think of a self-guided aircraft which looses weight by consuming
fuel). Adaptive control deals with system having a controller with adjustable param-
eters and a mechanism for adjusting the parameters . To adapt means to change
oneself so that one’s behavior will conform to new or changed circumstances.
Like classical control theory, the performance of adaptive control is generally as-
sessed according to certain rigorous criteria such as stability, convergence and ro-
bustness. Stability means that when a system is sufficiently close to equilibrium,
the system states can be kept arbitrarily close to the equilibrium point under per-
turbation and return to the equilibrium point when the perturbation is removed
([13]). Convergence means that given a bounded input, the output will be bounded
and tends to a steady state over time. Besides output convergence, convergence of
the parameter estimates for the plant (i.e., the process to be controlled) and con-
troller to their true values is also of major concern in adaptive control and system
identification problems. Finally, an otherwise stable controller may become un-
stable in the presence of small disturbances or unmodeled dynamics. Robustness
describes the amount of such uncertainty the system can tolerate before controller
performance is significantly compromised ([14]; [15]; [18]). We will come back to
these concepts in Chapter 3, Section 3.2.
For the moment we will just describe classical solution to face adaptability and re-
lated problems. Adaptive control can be mainly classified into direct and indirect
adaptive control.
In direct adaptive control, the adaptation law is implemented directly whereas in
indirect adaptive control, the adaptation law is implemented by first estimating
some unknown plant parameters and/or state variables. Figure 1.4 shows the basic
architecture of direct adaptive control. Here, the controller parameters C(t) are
adapted directly based on the input/output and control signals, with no explicit
estimation of the plant parameters or state variables necessary. In contrast, in in-
direct adaptive control (Fig. 1.4) the unknown plant parameters or state variables
are continuously updated based on some parameter estimation or state estimation
law. The resultant estimates are then used to compute the controller parameters
at each time t.

In general, indirect adaptive control is more flexible than direct adaptive con-
trol because the estimation law and control law can be designed separately ([15]).
However, stability and convergence are not guaranteed because the estimated plant
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Figure 1.4: Top: direct adaptive control. The controller is adapted directly from the in-
put/output signals. Bottom: indirect adaptive control. The controller is adapted by first esti-
mating the plant parameters and/or state variables.

model may not always satisfy controllability and stability conditions which are
requisite for controller design ([15]). Persistent excitation of the input signal is
generally required for unbiased identification of the system parameters. However,
identifiability could be lost under closed-loop conditions ([14]). For direct adaptive
control, parametrization of the plant model into the controller parameters is not
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necessary ([15]). Also, stability and convergence can be guaranteed with proper
design of the controller. However, designing an adaptive controller directly is a
challenging task that is not always feasible. The following provides a few examples
of direct and indirect adaptive control.
Self-tuning regulator. In classical feedback control, the controller design is deter-
mined as a function of the plant. When the plant model is unknown, the controller
parameters are adapted using an (implicit or explicit) estimate of the plant model
based on measurements of the instantaneous output and control signals. The esti-
mation and adaptation procedures are performed online automatically. This con-
struction is called self-tuning regulator (STR) to emphasize the automatic tuning
of the controller. STR can be direct or indirect. In STR, learning is unsupervised,
i.e., without the need for an explicit teacher or reference model.
High-gain adaptive control. High-gain adaptive control (HGAC) is the simplest
STR in the form of direct adaptive control. In classical feedback control of an
unstable plant, a proportional controller with a sufficiently high gain can stabilize
the closed-loop system even when the plant is nonlinear, provided the plant sat-
isfies certain strictly positive realness (SPR) condition 1([16]). This is in contrast
to non-SPR systems, where high gain may lead to instability especially when the
feedback has significant delays. This idea is employed in HGAC with a continu-
ously adapting controller gain K (Fig. 1.5). Here, stabilizing the plant output is
equivalent to tracking a zero reference input, i.e., r(t) = 0. In this case the control
and adaptation laws can be formulated, respectively, as follows:

Figure 1.5: A proportional gain controller can stabilize an unstable plant by increasing the
feedback gain, K, until the feedback error tends to zero, provided the SPR conditions are satisfied.

u = −Ke

K̇ = αe2

1A system is said to be SPR if its transfer function, G(s), is analytical on Re(s) > 0 and
G(jw) +G∗(jw) > 0 for w ∈ [0,∞).
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where K is the controller gain, e(t) = r(t) − x(t) is the error signal, and α is the
adaptation rate. It can be easily verified that e(t) will converge to zero asymp-
totically as K increases to some large but finite value. Estimation of the plant
parameters is not necessary. Indeed, convergence is guaranteed even when the
plant input-output relationship is nonlinear (but bounded). However, convergence
is restricted to the reference input r(t) = 0 only. For any non-zero and/or time-
varying reference input, e(t) generally does not converge to zero. Moreover, this
design scheme is not robust to measurement errors ([17]).
Adaptive sliding control. Slotine and Li ([19]) have presented a STR algorithm
(Fig. 1.6) which consists of a proportional-differential feedback loop and a full dy-
namics feedforward loop, with the unknown system parameters estimated online.
By assuming a linearly parametrized dynamic model, the adaptive controller is
proved with Lyapunov stability analysis to be globally stable with zero tracking
errors. This is achieved by introducing a time-varying sliding surface, s, defined
as,

Figure 1.6: The algorithm comprises a fixed feedback and an adaptive feedforward loop. The
sliding variable, s, drives the feedback controller and also adapts the feedforward controller.
Unknown system parameters are estimated online. Convergence of tracking error and estimation
error is guaranteed by Lyapunov analysis.

s = ˙̃qr = q̇ − q̇r = ˙̃q + Λq̃,

q̃ = q − qd,
where q̃, ˙̃q are the error signals in position and velocity, qr is a reference tra-

jectory acting as an intermediate variable to compute the sliding variable s, and
Λ is a symmetric positive definite matrix. The control law is defined as,

u = Y â+KDs
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where u is the control signal, Y = Y (q, q̇, q̇r, q̈r) is generally a matrix function, â is
a vector of the parameter estimates, Y â denotes the estimated inverse dynamics
of the plant and serves as the feedforward controller, and KD is the gain of the
feedback controller. Lyapunov stability analysis then guarantees that the errors
(q̃, ˙̃q) converge asymptotically to the sliding surface s = 0, which corresponds to
zero tracking errors in both velocity and position.
The sliding variable describes the dynamics of a reference model. Adaptation is
achieved by adjusting the parameters in the feedforward control loop, which iden-
tifies a coarse model for the inverse dynamics of the plant. The algorithm provides
a computationally simple method for designing an STR controller that is stable
and robust with fast convergence even for nonlinear plant dynamics.
Adaptive sliding control has important implications in providing a rigorous en-
gineering basis for the feedback error learning paradigm (Fig. 1.7) proposed by
Kawato et al. ([20]) for inverse internal model adaptation during motor learning
(see section 2.3.5).

Figure 1.7: The algorithm is similar to adaptive sliding control except the output of the
feedback controller is used to adapt the feedforward controller which forms the inverse internal
model of the system.

In these classical schemes the state of the system and the used control are com-
pletely available both to the feedback controller and to the learning controller, with
no delays. In practical situations, however, there can be limitation to the amount
of information which can be transmitted through the different data-lines. Limited
information implies digital controller, that is the need to sample and quantize mea-
sures on the state and controls. This is particularly true in the communication
between the plant and the central controller. Also in the case of non adaptive
control, very often the plant, along with its sensors and actuators, will not have
an on-site controller/learner, which is localized physically far from it. Thus, the
needing to implement codification (i.e sampling and quantization) and information
transmission algorithms which efficiently close the feedback control loop through

15



some kind of network. This implies long delays (possibly of the same order of the
time scale of the controlled dynamics and non constant) and measurement errors
due to the codification. As we saw, the high-gain adaptive control, for example,
is not robust to these circumstances, while adaptive sliding controls require for
their same structure that there are no large delays. For example, the feed forward
control in the feedback error learning scheme must be almost synchronized with
the feedback error, in order to correctly derive on-line parameters estimation.

Figure 1.8: A figurative illustration of the traditional view of networked control systems design

In the traditional view of networked control, sketched in fig.1 below, the design
is done in a two dimensional conceptual space. On one axis the physical processes
to be controlled are considered; on the other axis, resources made available by
the network are represented. A loose ordering is alluded to in the figure, whereby
systems of increasing time criticality are reported rightmost, while networking
technologies are arranged according to their dependability, in terms of timing
reliability, predictability, availability etc. At the same intuitive level of description,
requirements in this space can be visualized as iso-performance (i.e stability, safety,
etc...) curves. As an example, in the control of a highly time-critical, open-loop
unstable plant, even the most basic requirement of stabilization can not be robustly
achieved in the presence of low network performances, i.e long delays, information
looses, etc...

In the wider view of an Embedded Control Design space, depicted in fig. 2, a
third axis is added to the picture, representing the amount of intelligence (made of
sensing, computational, actuation resources) that the designer can embed in the
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Figure 1.9: The Networked Embedded Control Design space

system. The design goal is hence to evaluate what is the exact amount of decen-
tralized control capabilities to be embedded in the subsystem, that are needed to
guarantee fulfillment of specified requirements (represented here as iso-performance
manifolds). In the examples above, this amounts to establishing the simplest lo-
cal controller, or the simplest set of distributed collision avoidance rules, that can
guarantee safe execution of higher-level plans received from the network.

Figure 1.10: Left: classical networked control; Right: embedded-networked control design

Figure 1.10 shows classical networked control (left) and embedded-networked
control design. Question marks allude to open possibilities about the kind of
embedded control (green square) and the protocol/contents of the information
lines to and from the central controller.

A possible solution is to synthesize an embedded control law robust to param-
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Figure 1.11: Possible embedded-networked control design with minimal data rate embedded
controller. The D/D’ and D’/D symbols represent the codification from the high bit rate signal
sent through the network to the minimal bit rate input of the embedded controller and the
decodification from the codified output of the embedded controller to the high bit rate input of
actuators, respectively. C(t) is the present set of control parameters, while C ′(t) is the upgrade
due to the learning controller.

eters uncertainties and measurement errors, so that it is possible to use a digital
controller that use as little as computational and observational power as possible,
i.e minimal bit rate, (we will analyze and synthesize such feedback controller in
subsection 3.2.5), while the full state (i.e high bit rate) of the system and relative
control are passed, with very long delays due to the big amount of information,
to the learning apparatus, which will then upgrade the feedback parameters (fig.
1.11) by learning the inverse dynamic of the system. While being very convenient
for the low costs required by the embedded controller, this solution is not very
clever from the point of view of information transmission between the plant and
the central controller, as one has to constantly send big amount of information to
make learning possible.
In the following chapter we will give a survey of known results about movement
learning in the vertebrates and propose a similar inspired adaptive controller.
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Chapter 2

Movement learning modeling

Section 2.1-2.3 are based on materials from ([58]).

2.1 The problem of inverse dynamics

When we learn to move our limb and act upon the environment, our brain becomes
to all effect an expert in physics. To illustrate the complexities of ordinary motor
behaviors, let us consider the task that the central nervous system (CNS) must
solve every time a planned gesture is transformed into an action. If the goal is
to move the hand from an initial position to another point in space, then clearly
there are a number of possible hand trajectories that could achieve this goal: the
solution of this elementary problem is not unique. Even after the CNS has chosen a
particular path for the hand, its implementation can be achieved through multiple
combinations of joint motions at the shoulder, elbow and wrist- again the solution
is not unique. Finally, because there are many muscles around each joint, the net
force generated by their activation can be produced by a variety of combinations
of muscles.
According to the laws of the Newtonian physics, if we want to impress a motion
upon a stone with mass m, we must apply a force F , that is directly proportional
to desired acceleration, a. This is the essence of Newton’s equation F = ma.
A desired motion may be expressed as a sequence of positions, x, that we wish
the stone to assume at subsequent instant of time. t. This sequence is called
a ’trajectory’ and is mathematically represented as a function, x = x(t). To
use Newton’s equation for deriving the needed time sequence of forces, we must
calculate the first derivative of the trajectory, the velocity and then the second
temporal derivative, the acceleration. The above calculation is an example of what
in robotics is called an inverse dynamic problem. The ’direct dynamic problem is
that of computing the trajectory resulting from the application of forces, F =
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F (t). The solution of this problem requires a complex computational process
called integration.
Direct problems are the bread and butter of physicists, who may be concerned,
for example, with predicting the motion of a comet from the known pattern of
gravitational forces. Unlike physicists, the brain deals most often with inverse
problems: we routinely recognize object and people from their visual images -an
inverse optical problem- and we find effortlessly how to distribute the forces carried
out by several muscles to move our limb in the desired way -an inverse dynamics
model.
In the biological context, the inverse dynamic problem assumes somewhat different
form from the case of the moving stone. One of the central questions in motor
control is how the CNS may form motor commands that guide our limb. One
proposal is that the CNS solves an inverse dynamic problem. A system of second
order nonlinear differential equations is generally considered to be an adequate
description of passive limb dynamics. A compact representation of such system is:

D(q, q̇, q̈) = τ(t), (2.1)

where q,q̇,q̈ represent the limb configuration vector -for example, the vector of
configuration angles- and its first and second time derivatives. The term τ(t) is a
vector of generalized forces, for example, joint torques, at time t. Conceptually,
this expression is nothing else than Newton’s law applied to a multi-articular rigid
body. In practice the expression for D may have a few terms for a two-joint
planar arm or it may take several pages for more realistic models of arm’s multi
joint geometry. The inverse dynamic approach to the control of multi joint limbs
consist in solving explicitly for a torque trajectory, τ(t), given a desired trajectory
of the limb, qD(t). This is done by plugging qD(t) on the left side of equation (2.1):

τ(t) = D(qD(t), q̇D(t), q̈D(t)). (2.2)

Another significant computational challenge comes from the need to perform changes
of representation, or, more technically, ’coordinate transformation, between the de-
scription of a task and the specification of the body motion. Tasks, such as ’bring
the hand to the glass of water on the table’, are often described most efficiently
and parsimoniously with respect to fixed reference point in the environment. For
example, the glass may be 10cm to the left of a corner of the table. The hand may
be 20cm to the right of the same corner. So, the hand will need to be displaced
30cm along a straight line in the left direction. This is a very simple description
of the needed movement. However, this description cannot be used to derive the
joint torques, as specified by equation (2.2). To this end, one must represent the
trajectory of the hand in terms of the corresponding angular motion of each joint.
This is a complex transformation known in robotics as ’inverse kinematic’.
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Does the brain carry out similar inverse dynamic calculations for moving the arm
on a desired trajectory? A clear-cut answer is still to come but several alternatives
have emerged from studies in robotics and computational neuroscience.

2.2 Solution based on feedback

Many of the problems that the brain must face to control movements are indeed
similar to those that engineers must solve to control robots. In spite of great differ-
ences between the multi joint vertebrate system and current robotic arms, the field
of neuroscience, unquestionably, has derived benefits from the theories and proce-
dures that have guided the construction of man-made limbs. For instance, from
early on, neuroscientists have been influenced by the notion of feedback. Feedback
control is a way to circumvent the computation of inverse dynamics. At each point
in time, some sensory signal provides the information about the actual position
of the limb. This position is compared with a desired position and the difference
between the two is a measure of the error at any given time. Then, a force may
be produced with amplitude approximately proportional to the amplitude of the
error in the direction of the desired position. This method of control is appealing
because of its great simplicity.
Multiple feedback mechanisms have been found in both vertebrates and inverte-
brates. These mechanisms were discovered by Sherrington at the beginning of the
last century ([21]). They have been shown to control the muscles level of contrac-
tion, the production of force and the position of joints. Sherrington observed that
when a muscle is stretched the stretch is countered by an increase in muscle activa-
tion. This stretch reflex is caused by sensory activity that originates in the muscle
spindles-receptors embedded within the muscle fibres. Sherrington put forward
the daring hypothesis that complex movements may be obtained by combining
stretch reflexes as well as other reflexes in a continuous sequence or chain. In this
way, movement patterns as complex as the locomotion cycle could be generated by
local reflexes, without central supervision. A similar idea was later proposed by
Merton ([22]), who suggested that central commands via the gamma muscle spin-
dle system might initiate the execution of movement, not by directly activating
the muscles, but by triggering a stretch reflex through the modulation of muscle
spindle activities. Both Sherrington and Mertons hypotheses are attempts at ex-
plaining movements as automatic responses to sensory feedback, thus limiting the
role and the arbitrariness of voluntary commands. However, both Sherringtons
ideas on compounding of reflexes and Mertons hypothesis have taken a new form
following subsequent experiments which clearly demonstrated the generation of
movements in the absence of sensory activities. For example, Taub & Berman
([23]) found that monkeys can execute various limb movements after the surgi-
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cal section of the pathways that convey all sensory information from the limb to
the nervous system. Shortly thereafter, Vallbo ([24]) was able to record muscle
spindle discharges in human subjects and to compare these discharges with the
activation of the muscles, as revealed by electromyography (EMG). Vallbos study
showed that, in a voluntary movement, muscle activation does not lag but leads
the spindle discharges, contrary to the predictions of Mertons hypothesis.
In addition to the experimental findings described above, the idea that biological
movements may be carried out by feedback mechanism has been challenged based
on consideration about limb stability and reflex delays. It takes more than 40ms
before a signal generated by the muscle spindles may reach the supra spinal motor
centers and it takes 40-60 ms more before a motor command may be transformed
into a measurable contraction of the muscles. These transmission delays may cause
instability (Hogan et al. 1987). The effects of delays are even greater when the
limb interacts with the environment. For example, if a robotic arm were to contact
a rigid surface, a delay of 3Oms would initiate a bouncing motion also known as
chattering instability. This instability is again due to the fact that the control
system could detect the contact only after it has occurred. This would cause a
back-up motion that would move the arm away from the surface. Then, the con-
troller would move again towards the surface and so on in a repeated bouncing
motion.

2.3 Solution based on feedforward

An alternative to feedback control would be for the CNS to pre-program the
torques that the muscles must generate for moving the limbs along the desired
trajectories. This method is often referred to as feed-forward control. The torques
needed to move the arm can only be computed after the angular motions of the
shoulder, elbow and wrist have been derived from the desired movement of the
hand-that is after an inverse kinematics problem has been solved. Investigations
in robot control in the late 1970s and early 1980s showed that both the inverse
kinematic and inverse dynamic problems may be efficiently implemented in a dig-
ital computer for many robot geometries ([25]). On the basis of these studies,
Hollerbach & Flash ([26]) put forward the hypothesis that the brain may be car-
rying out inverse kinematic and dynamic computations when moving the arm in
a purposeful way. Their experimental investigation of arm-reaching movements,
combined with inverse dynamics calculations, showed that all components of the
joint torque played a critical role in the generation of the observed hand trajec-
tories. In particular, Hollerbach & Flash found that while executing reaching
movements the subjects were accurately compensating for the dynamic interac-
tions between shoulder and elbow joints.
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Evidence that the brain is carefully compensating for the interaction torques was
further provided by more recent studies of Ghez and of Thach and their co-workers.
Sainhurg et al. ([27]) studied the movements of subjects suffering from a rare pe-
ripheral neuropathy. A consequence of this disease is the complete loss of proprio-
ceptive information from the upper and lower limbs. These investigators found that
the abnormal motions observed in these subjects could be accounted for by lack of
compensation for the joint interaction torques. A similar conclusion was reached
later by Bastian et al. ([28]) about the movements produced by patients suffer-
ing from cerebellar lesions. In summary, a substantial body of evidence suggests
that the CNS generates motor commands that effectively represent the complex
dynamics of multi joint limbs. However, there are different ways for achieving this
representation.

2.3.1 Memory based computation

A rather direct way for a robot to compute inverse dynamics is based on carrying
out explicitly the algebraic operations after representing variables such as positions,
velocity , acceleration, torque and inertia. Something similar to this approach
had been first proposed by Raibert ([29]). He started from the observation that
inverse dynamic can be represented as the operation of a memory that associates a
vector of joint torques to each value of joint angles, angular velocities and angular
accelerations. A brute-force approach to dynamics would simply be to store a
value of torque for each possible value of position, velocity and acceleration-a
computational device that computer scientists call a look-up table. This approach
is extremely simple and in fact look-up tables were implicit in early models of
motor learning, such as those proposed by Albus ([30]) and Marr ([31]). However,
a closer look at the demands for memory size in a reasonable biological context
shows that the look-up table approach may be impracticable.
The number of entries in a look-up table grows exponentially with the number
of independent components that define each table entry. Being well aware of
this problem, Raibert suggested splitting the arm dynamics computations in a
combination of smaller subtables: one can obtain the net torque by adding (i)
a term that depends on the joint angles and on the angular accelerations to (ii)
a term that depends on the joint angles and on the angular velocities. These
two terms may be stored in separate tables. Assuming a resolution of only ten
values per variable, the control of a two joint limb would require two tables with
104 entries each. For a more complete arm model, with seven-joint coordinates,
each table would have 1014 entries. These are still exceedingly large numbers. A
method for reducing the size of look-up tables was suggested by Raibert & Horn
([32]), who represented the dynamic problem as a sum of three elements, each one
requiring a table that depended only on the joint angles. Thus, the two-joint limb
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involved tables with 100 entries and the seven-joint limb tables with 107 entries.

2.3.2 The equilibrium point hypothesis

The work of Raibert & Horn ([32]) showed that inverse dynamics of complex
limbs may be computed with a reasonable number of operations and with rea-
sonable memory requirements. However, this work did not provide any direct
evidence that the brain is ever engaged in such computations. Furthermore, on
a purely theoretical basis, explanations based on computing inverse dynamics are
unsatisfactory because there is no allowance for the inevitable mechanical vagaries
associated with any interaction with the environment. For instance, if an exter-
nal force perturbs the trajectory of the arm, dramatic consequences may follow.
When we pick up a glass of water, we must update the pattern of torques that
our muscles must apply to generate a movement of the arm. When we open a
door, we must deal with a constraint, the hinge, whose location in space is only
approximately known. One may say that most of our actions are executed upon a
poorly predictable mechanical environment. It would then be erroneous to suggest
that a stored pattern of neuromuscular activations corresponds to some particular
movement. Instead, the movement that arise from that pattern is determined by
the interaction of the muscle forces with the dynamics of the environment.
Hogan ([33]) developed this concept in a theory known as impedance control.
Hogans ideas relate to earlier experiments of Feldman ([34]) and Bizzi and co-
workers. In one of these experiments, Polit & Bizzi ([35]) trained monkeys to ex-
ecute movements of the forearm towards a visual target. The monkey could not
see their moving arm nor could they perceive it as their proprioceptive inflow had
been surgically interrupted by the transection of cranial and thoracic dorsal roots-
a procedure called deafferentation. Surprisingly, Polit & Bizzi found that, despite
such radical deprivation of sensory information, the monkeys could successfully
reach the visual targets. What was more unexpected was that the monkeys could
reach the intended target even when their arm had been displaced from the initial
location just prior to the initiation of an arm movement. This result did not seem
to be compatible either with the idea that goal-directed movements are executed
by a pre-programmed sequence of joint torques or with the hypothesis that sensory
feedback is essential to reach the desired limb position.
The performance of the deafferented monkey can be accounted for by the hypoth-
esis that the centrally generated motor commands modulate the stiffness and rest
length of muscles that act as flexors and extensors about the elbow joint. As a
consequence, the elastic behavior of the muscles, like that of an opposing spring,
defines a single equilibrium position of the forearm. A position that ultimately
is reached in spite of externally applied perturbations, without need for feedback
corrections. This result led to a question concerning the execution of target- di-
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rected movements. Are these movements executed ,just by setting the equilibrium
point of a limb to the final target? Or does the descending motor command specify
an entire trajectory as a smooth shift of the same equilibrium point? Bizzi et al.
([36]) addressed this question in another experiment. If, as suggested by the first
hypothesis, there is a sudden jump of the limbs equilibrium to the target location,
an elastic force driving the hand toward the target would appear from the onset
of the movement. This force would be directed all the time towards the target.
The experiment of Bizzi and co- workers disproved this hypothesis. As in the work
of [35], they instructed deafferented monkey to execute arm movements towards a
visual target but with the vision of the arm blocked by an opaque screen. As soon
as the EMG activity indicated the onset of a movement, a motor drove the arm
right on the target. If this were the equilibrium position specified by the muscle
commands at that time, the arm should have remained in place. On the contrary,
the experimenters could observe an evident motion backward towards the starting
position followed by a forward motion toward the target. This finding indicate that
the muscular activation does not specify a force or a torque, as suggested by the
inverse dynamic models, nor a final target position. Instead, the response to the
initial displacement suggests that the activation of the muscles produces a gradual
shift of the limbs equilibrium from the start to end location. Accordingly, at all
times the limb is attracted by an elastic force towards the instantaneous equilib-
rium point. If during a goal-directed movement, the limb is forcefully moved ahead
towards the target, the elastic force will drive it towards the lagging equilibrium
point, as observed in the experiment.
The sequence of equilibrium positions produced during movement by all the mus-
cular activations has been called by Hogan ([37]) a virtual trajectory. The virtual
trajectory is a sequence of points where the elastic forces generated by all the
muscles cancel each other. By contrast, the actual trajectory is the result of the
interaction of these elastic forces with other dynamic components such as limb
inertia, muscle velocity-tension properties and joint viscosity. To intuitively illus-
trate this distinction, consider a ball attached to a rubber band. When the hand
is displaced from its equilibrium position, a restoring force is generated with am-
plitude proportional to the displacement. If we move the free end of the rubber
band, we control the equilibrium position. As we move the rubber band along a
trajectory the ball will follow a trajectory that results from the interaction of the
elastic force with the mass of the ball.
The idea of a virtual trajectory provides a new unified perspective for dealing with
(i) the mechanics of muscles, (ii) the stability of movement, and (iii) the solution
of the inverse dynamic problem. In fact, a strictly necessary and sufficient con-
dition for a virtual trajectory to exist is that the motor commands directed to the
muscle define a sequence of stable equilibrium positions. If this requirement is met,
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then there exists a single well-defined transformation from the high-dimensional
representation of the control signal as a collection of muscle activations, to a low-
dimensional sequence of equilibrium points. An advantage of this low-dimensional
representation is that, unlike muscle activations, the virtual trajectory may be
directly compared with the actual movement of the limb.
The relationship between actual and virtual trajectory is determined by the dy-
namics of the system and by the stiffness, which transform a displacement from
the equilibrium into a restoring force. In the limit of infinite stiffness, the ac-
tual trajectory would match exactly the virtual trajectory. On the other hand,
with low stiffness values, the difference between virtual and actual trajectory may
become quite large. In a work that combined observations of hand movements
and computer simulations, Flash ([38]) tested the hypothesis that multi joint arm
movements are obtained by the CNS shifting the equilibrium position of the hand
along a straight and rectilinear motion from the start to end position. As shown
by Morasso ([39]), approximately straight hand paths characterize planar hand
movements between pairs of targets. If the same movements are analyzed at a
finer level of detail, however, the paths present certain degrees of inflection and
curvature, depending on the direction of movement and on the work-space loca-
tion. In the simulations Flash made the assumption that the hand equilibrium
trajectories (but not necessarily the actual trajectories) are invariably straight.
In addition, she assumed that the equilibrium trajectory had a unimodal velocity
profile. The results obtained from the simulation captured the subtle inflections
and the curvatures of the actual trajectories. Moreover, the direction of curvature
in different work-space locations and with different movement directions matched
quite closely the observed movements.
It must be stressed that the stiffness values used in this simulation were taken from
measurements that had been performed not during movements but while subjects
were maintaining their arm at rest in different locations ([40]). Gomi & Kawato
([41]) repeated Flashs simulation using lower values of stiffness and found, not sur-
prisingly, that in order to reproduce the actual trajectory of the hand, the virtual
trajectory had to follow a much more complicated pathway. The results obtained
by Gomi & Kawato are at variance with those of Won & Hogan ([42]), who were
able to show that for relatively slow and low-amplitude arm trajectories the virtual
equilibrium point was close to the actual trajectory. Clearly, the complexity of the
virtual trajectory depends critically upon the elastic field surrounding the equilib-
rium point. Experimental estimates of the elastic field under static conditions have
shown that the local stiffness, i.e. the ratio of force and displacement, changes at
different distances from the equilibrium point ([43]). Specifically, it was found that
the stiffness decreased with this distance. This is a nonlinear feature of the elastic
field. Accordingly if, as in ([41]), one attempted to derive the equilibrium point
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using a linear estimate based on the stiffness at the current position, one would
overestimate the distance between current and equilibrium position. At present,
however, there is not yet an acceptable technique for measuring the elastic force
field generated by the muscles during movement. But, if the shape of the virtual
trajectory is a complex path, as in Gomi & Kawatos simulations, then the ap-
parent computational simplicity of the earlier formulation of the equilibrium-point
hypothesis is lost.
Another challenge to the equilibrium-point hypothesis comes from the work of
Lackner & Dizio ([44]) who asked subjects to execute reaching hand movements
while sitting at the center of a slowly rotating room. Because of this rotation,
a Coriolis force proportional to the speed of the hand perturbs the subjects arm.
The Coriolis force acts perpendicularly to the direction of motion. Lackner & Dizio
found that, under this condition, there is a systematic residual error at the final
position in the direction of the Coriolis force. This finding seems incompatible with
the equilibrium-point hypothesis because the Coriolis force depends upon hand ve-
locity but not upon hand position. Therefore, it should not alter the location of
the final equilibrium point. However, the experimental results of Lackner & Dizio
are in apparent contrast with other experimental findings obtained with similar
force fields. In particular, Shadmehr & Mussa-Ivaldi ([45]) used an instrumented
manipulandum for applying a velocity-dependent field to the hand of the subjects.
In this paradigm the perturbation acted specifically on the arm dynamics and did
not affect in any way other systems, such as the vestibular apparatus. Shadmehr &
Mussa-Ivaldi found that the final position of the movement was not substantially
affected by the presence of velocity-dependent fields, in full agreement with the
equilibrium-point hypothesis. The cause of the discrepancy between these results
and those of Lackner & Dizio ([44]) has yet to be determined.

2.3.3 The building blocks for computation of dynamics:
spinal force fields

Recent electrophysiological studies of the spinal cord of frogs and rats by Bizzi and
co-workers ([46]; [47];[48]) suggest a new theoretical framework that combines some
features of inverse dynamic computations with the equilibrium-point hypothesis.
In these studies, electrical stimulation of the interneuronal circuitry in the lumbar
spinal cord of frogs and rats has been shown to impost a specific balance of muscle
activation. The evoked synergistic contractions generate forces that direct the
hindlimb towards an equilibrium point in space (figure 2.1).

To measure the mechanical responses of the activated muscles, Bizzi et al.
([46])and Giszter et a1. ([47]) attached the right ankle of the frog to a force
transducer. To record the spatial variations of the force vectors generated by the
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Figure 2.1: Force fields induced by microstimulation of the spinal cord in spinalized frogs. (a)
The hindlimb was placed at a number of locations on the horizontal plane (indicated by the
dots). At each location a stimulus was derived at a fixed site in lumbar spinal cord. The ensuing
force was measured by a six-axes force transducer. (b) Peak force vectors recorder at the nine
locations shown in (a). (c) The work-space of the hindlimb was partitioned into a set of non-
overlapping triangles. Each vertex is a tested point. The force vectors on the three vertices are
used to estimate, by linear interpolation the force in the interior of the triangle. (d) Interpolated
force fields.

leg muscles, they placed the frogs leg at a location within the legs work-space.
Then, they stimulated a site in the spinal cord and recorded the direction and
amplitude of the elicited isometric force at the ankle. This stimulation procedure
was repeated with the ankle placed at each of nine to 16 locations spanning a large
portion of the legs work-space. The collection of the measured forces corresponded
to a well-structured spatial pattern, called a vector field. In most instances, the
spatial variation of the measured force vectors resulted in a field that was at all
times both convergent and characterized by a single equilibrium point.
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Figure 2.2: Temporal evolution of a spinal force field. Following the stimulation of a site in
the spinal cord, the force vectors change in a continuous fashion. The result is a mechanical
wave, described here by a sequence of frames ordered by increasing latency from the onset of the
stimulus. The frames are separated by intervals of 86 ms. The dot indicates the location of the
static equilibrium point (where the estimated force vector vanishes) in each frame.

In general, the activation of a region within the spinal cord does not produce a
stationary force field. Instead, following the onset of stimulation, the force vector
measured at each limb location changes continuously with time (figure 2.2). As the
force vectors elicited by a stimulus change, so does the equilibrium position: the
sites occupied by the equilibrium position at subsequent instants of times define
a spatial trajectory. The time- varying field is the expression of a mechanical
wave that summarizes the combined action of the muscles that are affected by
the stimulation. Mechanical waves of the same kind can be used to describe the
operation of central pattern generators and of other natural structures involved in
the control of motor behavior. At all latencies after the onset of stimulation, the
force field converges towards an equilibrium position. The temporal sequence of
these equilibrium positions provides us with an image of a virtual trajectory, as in
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the sequence of frames of figure 2. Sometimes we found that the virtual trajectories
observed after electrical stimulation followed circular pathways starting and ending
at the same point ([49]). In contrast, the virtual trajectories inferred by Flash ([38])
from reaching arm movements followed rectilinear and smooth pathways, from
start to final position of the hand. This is not a surprising discrepancy given the
great difference in experimental conditions, limb mechanics and neural structures
involved in these studies. Despite these differences, however, it is remarkable that
the essential biomechanics of the moving limb is the same for the hindlimb of the
spinalized frog and for the arm of the human subject. In both cases, movement
is described as a smooth temporal evolution of a convergent force field produced by
the spring-like properties of the neuromuscular apparatus.

Perhaps the most interesting aspect of the investigation of the spinal cord in-
frogs and rats was the discovery that the fields induced by the focal activation of
the cord follow a principle of vectorial summation (figure 2.3). Specifically, Mussa-
Ivaldi el al. ([50]) developed an experimental paradigm involving the simultaneous
stimulation of two distinct sites in the frogs spinal cord. They found that the
simultaneous stimulation of two sites led to vector summation at the ankle of the
forces generated by each site separately. When the pattern of forces recorded at the
ankle following co-stimulation were compared with those computed by summation
of the two individual fields, Mussa-Ivaldi et al. ([50]) found that co-stimulation
fields and summation fields were equivalent in more than 87% of cases. Similar
results have been obtained by Tresch & Bizzi ([48]) by stimulating the spinal cord
of the rat. Recently, Kargo & Giszter ([51]) showed that force field summation
underlies the control of limb trajectories in the frog.
Vector summation of force fields implies that the complex nonlinearity that char-
acterizes the interactions both among neurons and between neurons and muscles is
in some way eliminated. More importantly, this result has led to a novel hypoth-
esis for explaining movement and posture based on combinations of a few basic
elements. The few active force fields stored in the spinal cord may be viewed as
representing motor primitives from which, through superposition, a vast number
of movements can be fashioned by impulses conveyed by supra spinal pathways.
Through computational analysis, Mussa-Ivaldi & Giszter ([52]) and Mussa-Ivaldi
([53]) verified that this view of the generation of movement and posture has the
competence required for controlling a wide repertoire of motor behaviors.
The fields generated by focal activation of the spinal chord are nonlinear func-
tions of limb position, velocity and time: φi(q, q̇, t), where the velocity dependence
describes viscous property of the muscle-skeletal system. Consistent with the ob-
servation that these fields add vectorially, one may modify the formulation of the
inverse dynamic problem by replacing the generic torque function, τ(t), with a
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Figure 2.3: Spinal force fields add vectorially. Fields A and B were obtained in response to
stimulations delivered to two different spinal sites. The & field was obtained by stimulating
simultaneously the same two sites. It matches closely (correlation coefficient larger than 0.9) the
force + force field, which was derived by adding pairwise the vectors in A and B. This highly
linear behavior was found to apply to more than 87% of dual stimulation experiments (from [50])

superposition of spinal fields:

D(q, q̇, q̈) =
K∑
i=1

ciφi(q, q̇, t). (2.3)

Here each spinal fields is tuned by a (non-negative) scalar coefficient, ci that rep-
resent a descending supraspinal command. We should stress that in this model,

31



the descending commands do not alter the shape of the fields- that is their de-
pendence upon state and time. This is consistent with the empirical observation
that the pattern of force orientation of spinal fields remained invariant in time
and with different intensities of stimulation ([47]). Thus, it is plausible to assume
that the supraspinal signals select the spinal fields by determining how much each
one contributes to the total field. The computational model of equation (2.3) is
simply a reformulation of inverse dynamics, with the additional constraint that
joint torque is produced by the modulation of a set of pre-defined primitives, the
fields φi(q, q̇, t).
The vector fields generated by the spinal cord offer a clear example of the impedance
control that has been discussed in section 2.3.2. The experiments suggest that the
circuitry in the spinal cord-and perhaps also in other areas of the nervous system-is
organized in independent units, or modules. While each module generates a spe-
cific field, more complex behaviors may be easily produced by superposition of the
fields generated by concurrently active modules. Thus, we may regard these force
fields as independent elements of a representation of dynamics, what are commonly
referred to as central pattern generators, circuitries capable of generating motor
patterns without sensory input.

2.3.4 Evidence for internal model

The findings on the spinal cord suggest that the CNS is capable of represent-
ing the dynamic properties of the limbs as in a classical internal model scheme.
The term ’internal model’ refers to two distinct mathematical transformations: (i)
the transformation from a motor command to the consequent behavior, and (ii)
the transformation from a desired behavior to the corresponding motor command
([54];[55];[56]). A model of the first kind is called a ’forward model’. Forward mod-
els provide the controller with the means not only to predict the expected outcome
of a command, but also to estimate the current state in presence of feedback de-
lays. A representation of the mapping from planned actions to motor commands
is called an ’inverse model’. Studies by Wolpert et al ([57]) proposed that the neu-
ral structures within the cerebellum perform sensory-motor operations equivalent
to a combination of multiple forward and inverse models. Strong experimental
evidence for the biological and behavioral relevance of internal models has been
offered by the experimental results obtained by Shadmehr & Mussa-Ivaldi ([45]),
which clearly demonstrate the formation of internal models. Their experimental
subjects were asked to make reaching movements in the presence of externally
imposed forces. These forces were produced by a robot whose free end-point was
held as a pointer by the subject (figure 2.4). The subjects were asked to execute
reaching movements towards a number of visual targets. Since the force field pro-
duced by the robot significantly changed the dynamics of the reaching movements,
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the subjects’ movements initially were grossly distorted when compared with the
undisturbed movements. However with practice, the subjects’ hand trajectories
in the force field converged to a path similar to that produced in absence of any
perturbing force (figure 2.5top)

Subjects’ recovery of performance is due to learning. After the training had
been established, the force field was unexpectedly removed for the duration of
a single hand movement. The resulting trajectories (figure 2.5bottom), named
’after-effects’, were approximately mirror images of those that the same subjects
produced when they had initially been exposed to the force field. The emergence of
after-effects indicates that the CNS had composed an internal model of the external
field. For example, in motor learning, neurons in the primary motor cortex (M1)
and the supplementary motor area (SMA) ([59]) are found to encode the changes in
movement dynamics. Such changes in neuronal activities represent the adaptation
outcomes of kinematics-to-dynamics transformation, which could represent either
direct or indirect adaptive control. The internal model was generating patterns of
force that effectively anticipated the disturbing force that the moving hand was
encountering. The fact that these learned forces compensate for the disturbances
applied by the robotic arm during the subjects’ reaching movement indicates that
the CNS programs these forces in advance. The after-effects demonstrate that
these forces are not the product of some reflex compensation of the disturbing
field. They are, instead, a feed forward motor command.

2.3.5 The role of sensory feedback: adaptation and learn-
ing

In ([60]) it was studied how deafferentation, that is the elimination of sensory
inflow, modifies muscles’ synergy structure and activation.
It was found that the spinalized frog was still able to swim and jump almost in the
same way, again confirming the central pattern generators hypothesis. Moreover,
it was found that the functional form of most of the synergies is invariant under
sensory feedback. This means two things: first, that their dependence upon space
and time is not changed if a feedback signal, like a spinal reflex, is present; second,
that the supraspinal motor centers are organized in modules, in the same way as
the spinal chord motor primitives are.
So, what is the real role, if there is any, of sensory feedback?
Sensory inflows adapt the recruitment of synergies to the unpredicted constraints
imposed by the task. That is they can finely tune the activation coefficient, ci of
2.3. This is particularly true for fast movement, such as jumping, when the CNS
does not have the time to compensate for uncertainties in the feed forward way,
due to long delays between sensory apparatus and the CNS. In particular it is
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Figure 2.4: Adaptation to external force fields. (a) Sketch of the experimental apparatus.
Subjects executed planar arm movements while holding the handle of an instrumented manip-
ulandum. A monitor (not shown) placed in front of the subjects and above the manipulandum
displayed the location of the handle as well as targets of reaching movements. The manipulandum
was equipped with two computer-controlled torque motors, two joint-angle encoders and a six-
axes force transducer mounted on the handle. (b) Velocity-dependent force field corresponding
to the expression

F = Bv, withB =
[
−10.1 −11.2
−11.2 11− 1

]
The manipulandum was programmed to generate a force F that was linearly related to the
velocity of the hand, v = [vx, vy] Note that the matrix B has a negative and a positive eigenvalue.
The negative eigenvalue induces a viscous damping at 23 whereas the positive eigenvalue induces
an assistive destabilizing force at 113. (c) Unperturbed reaching trajectories executed by a
subject when the manipulandum was not producing disturbing forces (null field). (d) Initial
responses observed when the force field shown in (b) was applied unexpectedly. The circles
indicate the target locations(modified from [45]).
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Figure 2.5: Top: Time-course of adaptation. Average and standard deviation of hand trajec-
tories executed during the training period in the force field of figure 2.4b. Performance is plotted
during the (a) first, (b) second, (c) third and (d) final set of 250 movements. All trajectories
shown here were under no-visual feedback condition (from [45]). Bottom: After-effects of adap-
tation. Average and standard deviations of hand trajectories executed at the end of training in
the field when the field was unexpectedly removed on random trials. Compare these trajectories
with the initial-exposure movements of figure 2.4d (from [45]).
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Figure 2.6: Schematic representation of a spinal reflex. Each kind of neuron represented should
be interpreted as the neuron pool relative to a certain muscle synergy.

found that, during jump extension, feedback plays a prominent role in enhancing
the activation amplitude of the related synergies. During jump extension, the frog
needs to generate more power to accelerate the body against gravity within the
shortest possible time independently of external dynamical condition, for example
ground reactivity. Power generation might be enhanced by increased activation of
the Golgi tendon organs and Ib interneurons, assisting in maximal activation of
the extensors’ synergies through a positive feedback loop.
The analysis of coefficient amplitudes also reveals that feedback uncouples multiple
synergies that are centrally organized; therefore, afferents might allow for more
individuated control of each synergy. Conversely, the synergies coupled by feedback
may be subservant to similar biomechanical functions.

Sensory feedback is also due to discrepancies between expected and actual be-
havior of the muscular system. In particular, different type of neurons and relative
fibers bring to the spinal chord information about muscle length (II-muscle spindle,
static response), and length and rate of change of length, (Ia-muscle spindle, dy-
namic response). The second kind of response is modulated by the gamma muscle
spindle, which alters the sensitivity of the Ia-muscle spindle (an introduction to
these concepts can be found in ([61])). This way it is possible to set an activation
level that induces a task-dependent sensory inflow. Let us make it clear with an
example. If the planned motion is to move the right hand in a straight line from
the chest to a glass of water in front of us at a certain velocity, and an unpredicted
force, like a strong wind (or the force field induced by the manipulandum of section
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2.3.4), slightly deviates our arm to the right, then the Ia-muscle spindle will fire
in consequence of such deviation and a spinal reflex motor command, due to some
changes in synergy activation (fine tuning), will contrast this deviation to bring
the hand back in track, i.e no Ia spindle firing (see figure 2.6).
We stress that higher loop reflexes are also possible at the supraspinal level (through
visual feedback, and slower reflexes, for example), but here we are interested only
in the fast, low level adaptation due to the muscle-skeletal system proprioceptors
and spinal motor synergy tuning through sensory feedback. Neilson et al. sug-
gested that motor learning may be modeled as an internal model representation
by some adaptive filter networks in the brain. Kawato et al. ([20]) proposed a
feedback error learning model as a possible mechanism of adapting internal models
(see section 1.2, figure 1.7). To support this hypothesis in vertebrate motor learn-
ing, R.Osu et al. ([62]) in the same experiment as that of Figure 2.4 measured the
hand path error between actual and desired trajectory. Their results completely
support the feedback error learning hypothesis.
Furthermore, in the case of vertebrate motor learning the error signal sent to
the CNS will not be the reflex motor command itself, but the change in synergy
activations.

2.4 The proposed model and relative problems

2.4.1 Survey of movement learning and related problems

From what was explained in the last section, it seems that the vertebrate movement
learning system can be devised in two parts:

• the muscle-skeletal system and the spinal cord

• the central nervous system (motor cortex, supraspinal motor center, etc ...)

The first one serves to actuate motor commands through the combination of a few
modules on the base of feedforward supraspinal activation commands, to retrieve
information from the environment and to adapt to unpredictable changes (fine tun-
ing). The second one serves to learn appropriate activation patterns in order to
execute planned movements and to compensate for external dynamic constraints
in feed forward manner, that is learning the inverse dynamic.
Their common aim is to stabilize the (expected) instantaneous virtual trajectory
point.
The CNS is very likely to learn the inverse dynamic through feedback error learn-
ing. In any case, the supraspinal descending commands do not deal with actual
muscle inputs, but with codified synergy activation patterns. Indeed, there are no

37



reasons to think that the feedback error signal will be given in term of changes in
muscle inputs, or sensory inflows, rather than in changes in the activation of motor
primitives. From this point of view, we can imagine the CNS to be completely
disconnected from afferents and muscle activation, as the only necessary signals
between the actuator (muscle-skeletal system & spinal cord) and the learning ap-
paratus (CNS) are codified muscle synergy activation patterns (see figure 2.8).
Let us make this clearer with the perturbed hand example. Let µ ∈ <p be a
real vector which parametrize the environment dynamics and ν ∈ <p the present
knowledge that the CNS has of it. Before learning, in order to move the hand in
a straight line a set of motor primitive activation coefficients, parametrized by the
present knowledge of the inverse dynamics, {cνi }i=1,...,K , descends from the CNS to
the spinal chord, where i runs over the synergies. When the hand starts to move
the unexpected perturbing force field deviates it and some muscles will have an
unexpected elongation or elongation’s rate of change. This generates a sensory
response which reaches the spinal cord. Here, the only possible feedback reaction
is to modulate the feed forward activation coefficients of the synergy/ies relative
to the spiking muscles, in order to compensate for the deviation, that is

cνi → c̃νi , i = 1, . . . , K. (2.4)

Spinal reflexes require some 10ms. Moreover, the changes in activation that result
will be small (a fine tuning), and most of the time will not suffice to completely
compensate for the unknown dynamics. This is why reflexes alone are not sufficient
to stabilize the desired trajectory. In any case, changes due to their activation are
sent to the central nervous system too. From computations, the CNS will derive a
change in its knowledge of the system parameters and in the next trial of the same
movement it will send a descending motor command based on the upgraded set of
parameters. As long as the approximate knowledge does not suffice to correctly
predict unknown dynamical properties some sensory inflows will tend to modify
the feed forward activation coefficients, and so on until the internal model of the
CNS is close enough to the actual environment dynamics, so as to stabilize the
desired virtual trajectory.

This scheme implies different problems. First of all, limb, or plant, stabil-
ity problems. In general, the exact knowledge of the system parameters can be
only approximated through the internal representation, and physical disturbances
(neural noise, trial to trial variability, etc ...) can perturb the muscle activations,
or inputs. During all the learning phases, that is independently of the present
knowledge of the inverse dynamics and perturbations, the system needs to be con-
tained around the desired trajectory, even if not stabilized or, equivalently, there
must exist a neighborhood W of the instantaneous virtual trajectory point which
attracts the state of the system (see figure 2.7). This way, the system tends to
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Figure 2.7: Independently from the initial conditions of the system, spring like characteristics
of the muscle skeletal system and feed forward activation of its force fields create an attracting
set, W , around the instantaneous point of the desired virtual trajectory which guarantees the
boundness of actual trajectories. In the limit of exact knowledge and representation of the inverse
dynamic W reduces to the instantaneous point of the desired virtual trajectory.

stay near the desired trajectory. Failure of this condition would imply injuries, or,
in general, plant damage.
Then, the neurons in the CNS and the spinal neurons have to represent in some
way the internal model and the set of activation coefficients. We do not want to
enter the details of such representation. In any case, some basic knowledge on
neuron dynamics brings us to model them as groups of coupled nonlinear oscil-
lators ([63],[64]). This representation must be encoded in some way in the state
of these oscillators ([65],[66],[67]) and this representation has to be stable under
disturbances and uncertainties. Coupled nonlinear oscillators can show chaotic
dynamics ([68]). As we will see in chapter 4, chaotic systems embed an infinity of
unstable different dynamics, both periodic and chaotic, and the periodic ones can
be stabilized through small perturbations (chaos control, [74]). We would point
out that this not the case for non chaotic dynamics, where, in general, one would
need perturbations of the same order of the unperturbed dynamic. The idea of
assigning a different meaning to different periodic orbits has already been applied
in Chaotic Neural Networks ([83][79]), and it is also the guiding idea of our neural
representation model (as we will explain in section 5.3, a very easy and robust
practical chaos control algorithm may also turn out to be biological plausible). In
any case, it would also be important that this control is robust, otherwise even
very small changes in the characteristics of the oscillators, that occur normally for
real neurons, would compromise the stability of the representation.
Finally, the communication between the spinal cord and the brain can have long
delays, compared to the time scales of the controlled dynamic. Hence, the CNS
cannot send control input directly to the muscle skeletal system, but every de-
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scending command has to first be codified in the synergies activation coefficient
stored in the spinal cord.

2.4.2 Control theory approach

The muscle skeletal system interacting with the environment can be modeled
through a nonlinear control system, the plant, parametrized by a vector of real
parameters, µ ∈ <p, which defines the changing conditions,

ẋ = f(x, u, µ),

where x ∈ <n, and u ∈ <m is the control variable. As we said, the problem of
movement learning can be reduced to the problem of stabilizing the instantaneous
virtual trajectory point. In analyzing this problem in the control theory framework
we will then limit our attention to the stabilization of the origin of the system,
and will drop time dependence. We further assume that there exists a stabilizing
feedback law u = kµ(x), which renders the closed loop system asymptotically
stable at the origin. It is then natural to adopt an adaptive control point of view
when trying to describe it. Vice-versa, adaptive control theory can inspire from
vertebrate movement learning in order to synthesize efficient controllers. In what
follows and in figure 2.8 we propose a possible vertebrate inspired adaptive control.

The activation of muscle synergies generates a nonlinear force field, kν(x),
where ν ∈ <p is the internal model approximation of the real of parameter vector
µ. This force field will be given by the superposition of some invariant nonlinear
force fields, {φi}i=1,...,K , that is

u = kν(x) =
K∑
i=1

cνi φi(x) (2.5)

where cνi , i = 1, . . . , K, is the feed forward activation coefficient, stored in the
synergy activation tuner. In this case there is no state quantization, as the con-
troller the controller is analogical. On the other hand, its output will be in general
affected by strong disturbances, p. Moreover, the fact that only the combination
of few modules is available will lead to further approximations of the parameter
vector (see section 6.1). If we use a digital controller with bandwidth limitations,
the effect of state quantization can be still reduced to a perturbation term on the
output of an ”ideal controller” (see section 3.2 for more details on this point).
In the case of an analogical controller, sensors contained in the plant will codify
possible divergences from the origin, similarly to muscle spindles, and send a signal,
r (sensory inflow), to the adaptive controller with a short delay. This is possible by
defining a suitably measured (by the sensors) variable x̃(t) = m(x(t)) ∈ <s and a

40



sensor activation level S0 ∈ <s for this variable. This way, we define an admissible
region, A ⊂ <s. If the system leaves this region a codified error signal is sent to the
synergy tuner and synergy activation coefficients will be changed in accordance,
through a suitable algorithm, thus leading to adaptation and, by sending these
changes to the central controller as well, learning. In general the more synergies
that are used, the more it will be possible to approximate the exact stabilizing
feedback law, kµ(x) (see section 6.1). Note that, if the feed forward coefficients
already suffice to stabilize the desired dynamics no signal is necessary from sensors
to the adaptive controller.
In the case of a digital controller, in order to define the role of sensors, we first
have to specify the particular kind of controller we are using. As we will explain
in the next chapter, we will choose a controller which makes use of minimal bit
rate. Chapter 6 explains a possible sensor implementation for this controller, which
makes use only of a particular statistical property of the coded variable and allows
for finer parameter vector estimation.
Even if it is possible to store and modify activation coefficients in many ways, a
possible one, which takes inspiration from chaotic neural dynamics, makes use of
chaos control. Beside the biological aspect, there are other reasons to use this
method:

• a single chaotic system can have an infinity of different ordered states (one
for each unstable periodic dynamic); each of them can represent a different
meaning and be modulated to carry different messages (such as standard
sinusoidal waves modulation [82])

• positive entropy and symbolic dynamics makes chaotic systems natural dig-
ital information sources

• we will show that chaos control procedures are robust to noise and parameter
uncertainties (see Chapter 5)

• chaos control can be implemented through simple microelectronic circuitry
with low power consumption even at very high frequencies (some 10Mhz)
(see [80] and the literature therein)

• chaos synchronization allows for secure and robust information transmission
([75])

Chaos control has already been used for chaotic neural networks, in which the
chaotic dynamics represent the ground state, no stimulus, while different UPOs
carries information about the stimulus (see [79],[83]). This system has been found
to be surprisingly robust to noise (in accordance with the results we will give in
chapter 5). In the following we will not focus on specific communication aspects
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between the plant and the central controller, nor on specific learning algorithms,
nor on specific activation coefficient codification through chaos control. Instead
we will be interested in stability properties, both of the closed loop dynamics in
case of parameter uncertainties, input disturbances and state quantization, and of
the controlled chaotic dynamics, which will assure robust codification, in case of
changing conditions or noise. Moreover we will try to specify efficient adaptation
algorithms, both for the analogical and for the digital synergy controller.
Finally, the open ”technical” problems are:

• find a general formalism to exploit stability analysis of nonlinear closed loop
dynamics of the kind ẋ = f(x, kν(x) + p, µ), where p is some disturbance,
and, in general, ν 6= µ

• study chaos control stability

We will exploit these problems in Chapters 3-5.
Finally in Chapter 6 we describe two embedded adaptive control algorithms, one
for the analogical controller (which includes a possible simple way of using chaos
synchronization to implement reflex modification of synergy activation) and one
for the digital controller (which makes use of a statistical property of the coded
variable to tune synergy activation).
This way we can partially neglect the network problems (delays and communi-
cation constraints) explained in section 1.2, as the simple embedded controller
already suffices to keep the system bounded near the origin, to obtain (partial)
adaptation and to send appropriate signals to the learning controller (the brain).
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Figure 2.8: Left: Biological model of vertebrate movement control and learning through feed-
forward activations of spinal force fields and the relative reflex adaptation. Right: inspired
adaptive control scheme. For the biological model stabilization refers to the desired instanta-
neous virtual trajectory point, while for the control model it refers to the origin. Explanation:
a task dependent activation command, composed by a feedforward synergy activation pattern,
{cνi }i=1,...,K , parametrized by the present knowledge of the system parameter vector ν is sent
from the learning/control apparatus (CNS) to synergy feedback controller (red region, the muscle
skeletal system and the spinal cord). In particular it is stored in the synergy tuner (blu region,
the spinal cord) and serves to activate a fixed set of nonlinear force fields, {φi}i=1,...,K (spinal
cord motor primitives) which add vectorially, weighted with the relative activation coefficient.
In the figure the i-th synergy is activated with coefficient ci, and not cνi , because the possible
reflex modification of the feedforward activation was already included. The resulting nonlinear
force field, k(x) (muscle co-contraction force field) is the input, u of a nonlinear control system,
ẋ = f(x, u, µ), that models the interaction of the limb with the external dynamics. In real cases
there will be input perturbations p, due to different causes (neural noise, trial to trial variabil-
ity, state quantization in the case of a digital controller, ...). The state of the system, x(t) is
fed back to the controller. Here it has two roles: (i) obviously it determines the control input
u(t) = k(x(t)), (ii) it is measured by adaptive sensors (muscle proprioceptors: muscle spindles),
x̃(t) = m(x(t)). The state of x̃ is compared to a task dependent admissible region, A (determined
by the gamma muscle spindle), and in case it leaves this region an error signal (sensory inflow)
is sent to the synergy activation tuner (the spinal cord). On the base of a predetermined tuning
algorithm, the synergy activation tuner will modify the activation coefficient of some synergies
(sensory feedback). These changes are sent to the learning/control apparatus, too, which will
then upgrade its internal model representation, similarly to the feedback error learning scheme,
through some adaptive filter (neural network, Kalman filter, ... ). Delays and computational
power refer to the relative loop: feedforward & learning, adaptive, feedback. Delay magnitude
is compared to typical dynamic time scales.
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Chapter 3

Input-to-state stability and
consequences

We want to build a formal framework to exploit stability analysis of nonlinear
dynamical systems. We introduce a general definition for stability with respect
to a given set, which allows for very powerful technical procedures. To exploit
the power of such formalism, we show how it is possible to synthesize a digital
feedback controller which makes use of minimal data rate and which succeeds in
stabilizing unstable dynamics in the case of parameter uncertainties, too. As a
paradigmatic example, we synthesize such control for the inverted pendulum on a
cart with unknown length.

3.1 Characterizations of Input-to-state stability

This section is based on [70].

Consider a general dynamical system of the form

ẋ = f(x, ω), (3.1)

where x ∈ <n is the states variable, ω ∈ <m is some disturbance acting on the sys-
tem and f : <n×<m → <n is a locally Lipschitz function, with solution x(t, x0, ω).
The questions to be addressed all concern the study of the size of each solution as
a function of the initial condition x0 = x(0) and the magnitude of the perturbation
ω(·).
For nonlinear systems, there is no complete agreement as yet regarding what are
the most useful formulations of system stability with respect to input perturba-
tions. One candidate for such a formulation is the property called ”input-to-state
stability” (ISS), introduced in ([69]).
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In some cases, authors have suggested apparent variations of the ISS property.
Here we want to point out that ISS is theoretically equivalent to many other sta-
bility formulations for nonlinear systems, and, thus, a quite general assumption.
For practical purposes, a weaker formulation, the local ISS (LISS), is equivalent to
the trivial assumption that the unperturbed system is globaly asymptotic stable
(0-GAS).
All the results in this section are taken from ([70]) and can easily be generalized
to discrete time systems.

3.1.1 Basic definition and Notations

Euclidean norm in <n or in <m is denoted simply as | · |. Instead of single fixed
point, we will study the notions relative to nonempty subset A ⊂ <n; for such set
and ξ ∈ <n, |ξ|A = inf{d(η, ξ), η ∈ A} denotes the point to set distance from ξ to
A. We also let, for each ε > 0:

B(ε,A) := {ξ | |ξ|A < ε}, B(ε,A) := {ξ | |ξ|A ≤ ε}.

By input (disturbance) we mean a measurable and locally essentially bounded
function u : I → <m, where I is a subinterval of < which contains the origin, so
that u ∈ U ⊂ <m for almost all t.
Given any input u defined on an interval I and ξ ∈ <n, there is a unique maximal
solution of the initial value problem ẋ = f(x, u), x(0) = ξ. This solution is defined
on some maximal open subinterval of I, and it is denoted by x(·, ξ, u). A forward
complete system is one such that, for each u defined on I = <≥0, and each ξ, the
solution x(t, ξ, u) is defined on the entire interval <≥0. The Lm∞-norm of an input
u is denoted by ‖u‖∞. That is, ‖u‖∞ is the smallest number c such that |u(t)| ≤ c
for almost all t ∈ I.
A function F : S → <, S ⊂ <n containing 0 is positive definite if F (x) > 0 for
all x ∈ S, x 6= 0, and F (0) = 0. A function γ : <≥0 → <≥0 is of class N (or
an N function) if it is continuous and non-decreasing; it is an N0 function if in
addition it satisfies γ(0) = 0. A function γ : <≥0 → <≥0 is a K function if it
is continuous, positive definite, and strictly increasing, and a K∞ function if it is
also unbounded. Finally, recall that β : <≥0 ×<≥0 → <≥0 is said to be a function
of class KL if for each t ≥ 0, β(·, t) is of class K and for each fixed s ≥ 0,β(s, t)
decreases to zero as t→∞, and of class KK if for each t ≥ 0, β(·, t) is of class K
and for each fixed s ≥ 0, β(s, ·) is of class K

3.1.2 Catalog of properties

A zero-invariant set A for a system (3.1) is a subset A ⊆ <n with the property
that x(t, ξ, 0) ∈ A for all t ≥ 0 and all ξ ∈ A.
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From now on, all definitions are with respect to a given forward complete system
as in equation (3.1), and a given compact zero-invariant set A for this system. The
main definitions follow.
We first recall the definition of the ISS property:

∃γ ∈ K, β ∈ KL : ∀ξ ∈ <n ∀u(·) ∀t ≥ 0

|x(t, ξ, u)|A ≤ β(|ξ|A, t) + γ(‖u‖∞). (3.2)

It is known that a system is ISS if and only if it satisfies a dissipation inequality,
that is to say, there exists a smooth V : <n → <≥0 and there are functions
αi ∈ K∞, i = 1, 2, 3 and σ ∈ K so that

α1(|ξ|A) ≤ V (ξ) ≤ α2(|ξ|A) (3.3)

and
∇V (ξ)f(ξ, v) ≤ σ(|v|)− α3(|ξ|A) (3.4)

for each ξ ∈ <n and v ∈ <m. A very useful modification of this characterization is
the fact that ISS is also equivalent to the existence of a smooth V satisfying (3.3)
and Equation(3.4) replaced by an estimate of the type ∇V (ξ)f(ξ, v) ≤ −V (ξ) −
α3(|ξ|A). A weaker version, yet very useful in practice, of the ISS property is the
local ISS (LISS), which requires that both the initial state and control are small,
that is:

∃ρ > 0, γ ∈ K, β ∈ KL : ∀|ξ|A ≤ ρ, ∀‖u‖∞ ≤ ρ

|x(t, ξ, u)|A ≤ β(|ξ|A, t) + γ(‖u‖∞) ∀t ≥ 0. (3.5)

For the unforced system (u = 0) we will use the prefix 0-. We can express 0-global
asymptotic stability(0-GAS) as

∃β ∈ KL : ∀ξ ∈ <n ∀t ≥ 0

|x(t, ξ, 0)|A ≤ β(|ξ|A, t), (3.6)

and 0-asymptotic stability(0-AS) as

∃ρ > 0, β ∈ KL : ∀ξ ∈ <n ∀t ≥ 0

|x(t, ξ, 0)|A ≤ β(|ξ|A, t). (3.7)

Next we introduce some concepts about the perturbed system. The limit property
(LIM) holds if every trajectory must at some time get to within a distance of A
which is a function of the magnitude of the input:

∃γ ∈ N0 : ∀ξ ∈ <n ∀u(·)
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inf
t≥0
|x(t, ξ, u)|A ≤ γ(‖u‖∞). (3.8)

The asymptotic gain property(AG) holds if every trajectory must ultimately stay
not far from A, depending on the magnitude of the input:

∃γ ∈ N0 : ∀ξ ∈ <n ∀u(·)

lim
t→∞
|x(t, ξ, u)|A ≤ γ(‖u‖∞). (3.9)

Now we can state some of the most notable ISS equivalences:

Theorem 1 (E.D Sontag, [70]) Assume given any forward complete system as
in equation (3.1) and a compact zero-invariant set A for this system. The following
properties are equivalent:

a) ISS

b) LIM & 0-AS

c) LIM & 0-GAS

d) AG & 0-GAS

e) AG & LISS

We find it convenient to give also the following implications:

ISS⇒ 0-GAS⇒ LISS. (3.10)

3.2 ISS and control system

We want to deal with a general nonlinear control system, whose dynamics is
parametrized by a real vector µ

ẋ = f(x, u, µ) ( x(l + 1) = f(x(l), u(l), µ) ) (3.11)

where x ∈ <n is the state variable, u ∈ <m is the control variable, µ ∈ Ω ⊂ <p is a
parameter which changes the dynamics of the system, and f : <n×<m×<p → <n
is a Lipschitz function satisfying f(0, 0, µ) = 0 ∀µ. Note that f is Lipschitz also
with respect to the parameter.
All the results can be generalized to discrete time systems, for which we will only
give results without demonstration, but explaining the necessary adjustments to
notation in round brackets.
In what follows, we find it convenient to use the infinity norm ‖x‖∞ := max{|xi| :
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1 6 i 6 n} on <n. We let Bn
∞(x0, r) denote a ball with respect to this norm with

radius r and center x0.
First of all we formalize the ISS assumption to our system. In this case the
perturbation will sum to the feedback function in the control variable and we can
write:

Assumption 1 : System (3.11) admits a Lipschitz, both in the state and in the
parameter vector dependence, feedback law u = kµ(x) ( u(l) = kµ(x(l)) ), µ ∈ Ω,
which satisfies kµ(0) = 0 and renders the close-loop system input-to-state stable
(ISS).

Written in terms of the infinity norm and for piecewise continuous inputs (which
is sufficient for our purposes), this condition means that there exist functions
β ∈ KL and γpert ∈ K such that for every initial condition x(t0) and every piecewise
continuous signal p the corresponding solution of the system

ẋ = f(x, kµ(x) + p, µ) ( x(l + 1) = f(x(l), kµ(x(l)) + p(l), µ) ) (3.12)

satisfies

‖x(t)‖∞ 6 β(‖x(t0)‖∞, t− t0) + γpert

(
sup
t0≤s≤t

‖p(s)‖∞
)
<∞, ∀t > t0 (3.13)

(
‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γpert

(
sup
l0≤s≤l

‖p(s)‖∞
)
<∞, ∀l > l0

)
.

(3.14)
Now we want to show some consequences of the ISS. In particular we will derive
the following implications:

• ISS ⇒ ISS with respect to measurement error (ISSwrme)

• ISS ⇒ containability (i.e the system remains bounded around the unstable
fixed point) when there are uncertainties over system parameters (PC)

• ISS ⇒ ISC (Input-to-state containability )

• ISS ⇒ ISC with respect to measurement error (ISCwrme)

For each point, we will use the fact that the control function kµ(·) is Lipschitz,
both in the state and in the parameter vector.
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3.2.1 ISS⇒ ISS with respect to measurement error

ISSwrme means that the perturbation does not act directly on the input u of the
system, but on the measure of the state used to apply the control law

kµ(x)→ kµ(x+ e) ( kµ(x(l))→ kµ(x(l) + e(l)) ).

In any case, we can reduce this measure error to an input perturbation by writing

kµ(x+ e) = kµ(x) +

∫ 1

0

[
∂kµ(y)

∂y

]
y=x+αe

dα · e = kµ(x) + pe(x) (3.15)

(
kµ(x(l) + e(l)) = kµ(x(l)) +

∫ 1

0

[
∂kµ(y)

∂y

]
y=x(l)+αe(l)

dα · e(l)

= kµ(x(l)) + pe(l)(x(l))

)
(3.16)

with pe(x) ( pe(l)(x(l)) ) bounded due to the Lipschitz property of the control
function.
Now we can define the function γerr ∈ K by

γerr(‖e‖) = sup
x∈A

(
sup

x′∈Bn∞(x,‖e‖)
γpert (‖pe′(x)‖)

)
, (3.17)

where A is a suitable set and e′ = x′ − x.
Thus, written in terms of the infinity norm and for piecewise continuous inputs
, the ISSwrme condition, means that there exist functions β ∈ KL and γerr ∈ K
such that for every initial condition x(t0) and every piecewise continuous signal e
the corresponding solution of the system

ẋ = f(x, kµ(x+ e), µ) ( x(l + 1) = f(x(l), kµ(x(l) + e(l)), µ) ) (3.18)

satisfies

‖x(t)‖∞ 6 β(‖x(t0)‖∞, t−t0)+γerr

(
sup
t0≤s≤t

‖e(s)‖∞
)
<∞, ∀t > t0, A = {x(s)}t0≤s≤t

(3.19)(
‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γerr

(
sup
l0≤s≤l

‖e(s)‖∞
)
<∞, ∀l > l0,

A = {x(s)}l0≤s≤l

)
. (3.20)
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3.2.2 ISS ⇒ Containability

Uncertainties over system parameters means that in computing the feedback func-
tion, which will depend in some way on them, we are using a wrong parameter
vector. That is

kµ(x)→ kν(x) ( kµ(x(l))→ kν(x(l)) )

Setting k(x, µ) ≡ kµ(x), also in this case we can reduce this error to an input
perturbation by writing

kν(x) = kµ(x) +

∫ 1

0

[
∂k(x, η)

∂η

]
η=µ+α(ν−µ)

dα · (ν − µ) = kµ(x) + pµν(x) (3.21)

kν(x(l)) = kµ(x(l))+

∫ 1

0

[
∂k(x(l), η)

∂η

]
η=µ+α(ν−µ)

dα · (ν−µ) = kµ(x(l))+pµν(x(l))

(3.22)
with pµν(x) ( pµν(x(l)) ) bounded due to the Lipschitz property of the control
function.
Now we can define the function γpar ∈ K by

γpar(∆µ) = sup
x∈A

(
sup

ν′∈Bp∞(µ,∆µ)

γpert (‖pµν′(x)‖)

)
, (3.23)

where A is a suitable set, ∆µ = ‖ν − µ‖∞.
Thus, written in terms of the infinity norm and for piecewise continuous inputs,
the Containability condition means that there exist functions β ∈ KL and γpar ∈ K
such that for every initial condition x(t0) the corresponding solution of the system

ẋ = f(x, kν(x), µ) ( x(l + 1) = f(x(l), kν(x(l)), µ) ) (3.24)

satisfies

‖x(t)‖∞ 6 β(‖x(t0)‖∞, t− t0) + γpar (∆µ) <∞, ∀t > t0, A = {x(s)}t0≤s≤t
(3.25)

( ‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γpar (∆µ) <∞, ∀l > l0, A = {x(s)}l0≤s≤l ) .
(3.26)

3.2.3 ISS ⇒ Input-to-State Containability (ISC)

In this case we have a perturbation acting on the input and a wrong parameters
vector, that is

kµ(x)→ kν(x) + p ( kµ(x(l))→ kν(x(l)) + p(l) ).
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We define the functions pµν(x) as in the case of containability and define the
function γ̃ ∈ KK by

γ̃(∆µ, ‖p‖) = sup
x∈A

(
sup

ν′∈Bp∞(µ,∆µ)

(
sup

p′∈Bm∞(0,‖p‖)
γpert (‖pµν′(x) + p′‖)

))
, (3.27)

where A is a suitable set, ∆µ = ‖ν − µ‖∞.
To separate the dependence from parameter uncertainties and input perturbation
we can write

γ̃(∆µ, ‖p‖) = rµν+(γ̃(∆µ, ‖p‖)−rµν) = rµν+γµν(‖p‖), where rµν = γ̃(∆µ, ‖p‖)
∣∣
p=0

Thus, written in terms of the infinity norm and for piecewise continuous inputs,
the ISC condition, means that there exist functions β ∈ KL and γµν ∈ K such
that for every initial condition x(t0) the corresponding solution of the system

ẋ = f(x, kν(x) + p, µ) ( x(l + 1) = f(x(l), kν(x(l)) + p(l), µ) ) (3.28)

satisfies

‖x(t)‖∞ 6 β(‖x(t0)‖∞, t−t0)+γµν

(
sup
t0≤s≤t

‖p(s)‖
)

+rµν <∞, ∀t > t0, A = {x(s)}t0≤s≤t
(3.29)(

‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γµν

(
sup
l0≤s≤l

‖p(s)‖
)

+ rµν <∞, ∀l > l0,

A = {x(s)}l0≤s≤l

)
. (3.30)

3.2.4 ISS ⇒ ISC with respect to measurement error

In this case we have an error in the measurement of the state and a wrong param-
eters vector, that is

kµ(x)→ kν(x+ e) ( kµ(x(l))→ kν(x(l) + e(l)) ).

Again, we set k(x, µ) ≡ kµ(x), and reduce both errors to an input perturbation by
writing

kν(x+ e) = kµ(x) +

∫ 1

0

[
∂k(y, η)

∂y

]
y = x+ αe
η = µ+ α(ν − µ)

dα · e+
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+

∫ 1

0

[
∂k(y, η)

∂η

]
y = x+ αe
η = µ+ α(ν − µ)

dα · (ν − µ) =

= kµ(x) + pe,µν(x) + pµν,e(x). (3.31)

with pe,µν(x) and pµν,e(x) bounded due to the Lipschitz property of the control
function.
Now we can define the function γ̃ ∈ KK by

γ̃(∆µ, ‖e‖) = sup
x∈A

(
sup

ν′∈Bp∞(µ,∆µ)

(
sup

x′∈Bn∞(x,‖e‖)
γpert (‖pe′,µν′(x) + pµν′,e′(x)‖)

))
,

(3.32)
where A is a suitable set, ∆µ = ‖ν − µ‖∞ and e′ = x′ − x.
To separate the dependence from parameter uncertainties and input perturbation
we can write

γ̃(∆µ, ‖e‖) = rµν+(γ̃(∆µ, ‖e‖)−rµν) = rµν+γµν(‖e‖), where rµν = γ̃(∆µ, ‖e‖)
∣∣
e=0

(3.33)
Thus, written in terms of the infinity norm and for piecewise continuous inputs,
the ISCwrme condition, means that there exist functions β ∈ KL and γµν ∈ K
such that for every initial condition x(t0) the corresponding solution of the system

ẋ = f(x, kν(x+ e), µ) ( x(l + 1) = f(x(l), kν(x(l) + e(l)), µ) ) (3.34)

satisfies

‖x(t)‖∞ 6 β(‖x(t0)‖∞, t−t0)+γµν

(
sup
t0≤s≤t

‖e(s)‖
)

+rµν <∞, ∀t > t0, A = {x(s)}t0≤s≤t
(3.35)(

‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γµν

(
sup
l0≤s≤l

‖e(s)‖
)

+ rµν <∞, ∀l > l0,

A = {x(s)}l0≤s≤l

)
. (3.36)

3.2.5 Quantized digital feedback with minimal bit rate

In this section we want to show how to define a digital controller that preserves
the stability properties (asymptotic stability and containability) of the system.
This will allow implementation of the ISS feedback laws more easily in a practical
situation.
First, we will describe the codification and control algorithm, then we will prove

52



how this algorithm suffices to stabilize or, in the presence of parameter uncertain-
ties, contain the system.
The statement of the main Theorem (2) is equal for the continuous and discrete
time case. The few differences in the proof will be written in round brackets.

The control strategy and the proof of theorem 2 are inspired to [2]. The introduction of
parameter uncertainties is an original result.

Control Strategy and Assumption

We assume that a finite subset Bn
∞(0, E0) of <n to which the initial condition

belongs is known (if this is not the case we can find it by zooming out the system,
see ([2])).
From what we have seen in Section 3, ISS is equivalent to substituting Assumption
1 with the following

Assumption 2 : There exists Ω ∈ <p such that system (3.11) admits a locally
Lipschitz feedback law u = kν(x) which satisfies k(0) = 0 and renders the close-
loop system input-to-state containable (ISC) with respect to measurement errors,
if ν 6= µ and ν ∈ Ω, µ ∈ Ω (see (3.40)) for the correct definition of Ω), and
input-to-state stable (ISS) with respect to measurement errors, if ν = µ.

Again, written in terms of the infinity norm and for piecewise continuous inputs
(which is sufficient for our purposes), this condition means that there exists func-
tions β ∈ KL and γ ∈ K∞ such that for every initial condition x(t0) and every
piecewise continuous signal e the corresponding solution of the system

ẋ = f(x, kν(x+ e), µ) ( x(l + 1) = f(x(l), kν(x(l) + e(l)), µ) ) (3.37)

satisfies

‖x(t)‖∞ 6 βµν(‖x(t0)‖∞, t− t0) + γµν

(
sup
s6t
‖e(s)‖∞

)
+ rµν <∞∀t > t0

with rµν > 0, rµν = 0 if µ = ν. (3.38)(
‖x(l)‖∞ 6 β(‖x(l0)‖∞, l − l0) + γµν

(
sup
s≤l
‖e(s)‖

)
+ rµν <∞ ∀l > l0.

)
(3.39)

Take κ to be some classK∞ function with the property that κν(r) > max‖x‖6r ‖kν(x)‖
for all r > 0. Then we have ‖kν(x)‖∞ 6 κν(‖x‖∞)∀x.
Let L be the Lipschitz constant for the function f on the region

{(x, u) : ‖x‖∞ 6 D, ‖u‖∞ 6 κν(D)} × Ω (3.40)
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where
D := βµν(E0, 0) + γµν(N

1/nE0) +N1/nE0 + rµν (3.41)

and Ω is a convex subset of <p. Define

Λ := eLτ ≥ 1 ( Λ = L ≥ 1, if L < 1 the system is already stable ) (3.42)

Define
E ′0 = ΛE0

We know x(0) ∈ Bn
∞(0, E

′
0), for sure.

Assumption 3 The number N1/n is an odd integer. If it is not an integer, choose
N ′ 6 N such that N ′1/n is an integer instead.

The last assumption allows to define the encoding function q0 as follows: Divide
Bn
∞(0,ΛE0) into N equal hipercubic boxes, numbered from 1 to N in some specific

way, and let q0(x) be the number of the box that contains x, if x ∈ Bn
∞(0,ΛE0),

and 0, otherwise (actually, a 0 in this case means an error occurs, in this case we
can shift to the “zooming out” stage of [2]). If q0(x(0)) > 0, then the encoded
measurement specifies a box with edges at most 2ΛE0/N

1/n which contains x(0).
Let x̂(0) be the center of this box, we obtain

‖x̂(0)− x(0)‖ 6 ΛE0

N1/n
.

For t ∈ [0, τ), we apply the control law

u(t) = kν(x̂(t)) (3.43)

where x̂(·) is the solution of ˙̂x = f(x̂, u, ν) with initial condition x̂(0). At time
t = τ , we consider the box Bn

∞(x̂(τ−),Λ2E0/(N
1/n)). To define q1 divide this

box into N equal hypercubic boxes and let q1(x) be the number of the box that
contains x, or q1(x) = 0 if x /∈ Bn

∞(x̂(τ−),Λ2E0/(N
1/n)). If q1(x(τ)) > 0, then the

encoded measurement singles out a box with edges at most 2Λ2E0/(N
1/n)2 which

contains x(τ). Let x̂(τ) be the center of this box to obtain

‖x̂(τ)− x(τ)‖ 6 Λ2E0

(N1/n)2
= E1

and continue. If q1(x(τ)) = 0, in this case it means we are in case (3.46) and we
will act in the same way.
Repeating this procedure, we see that, as long as the measurements received by
the controller are positive, the upper bounds on the norm of the estimation error
‖x̂− x‖∞ at the sampling time form a geometric progression with ratio Λ/(N1/n).
This leads to
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Assumption 4 We have

Λ < N1/n.

In view of the definition of Λ, this inequality characterizes the trade-off between
the amount of information provided by the encoder at each sampling time and the
required sampling frequency. This relationship depends explicitly on the Lipschitz
constant L which, as we will see, can be interpreted as a measure of expansiveness
of (3.11). We are now ready to prove the main result about quantized feedback.

Main Result

Before proceeding we need another assumption, which poses a lower bound on the
prior knowledge we have of the system. Let E∆µ = N1/n∆µ, then

Assumption 5 E0 > E∆µ.

Theorem 2 Under Assumptions 2-5, the control law described in the previous
section semi-globally contains (semiglobally asymptotically stabilizes) the system
(3.11) with ν 6= µ (ν = µ).

Proof We first show that ‖x(t)‖∞ < D and ‖x̂(t)‖∞ < D for all t ≥ 0, where
D is defined by (3.41). Suppose that this is not true. Then, since x is continuous
with ‖x(0)‖ ≤ ΛE0 < D and x̂ is continuous from the right with x̂(0) ≤ ΛE0 < D,
the time

t := min{t > 0 : max{‖x(t)‖∞, ‖x̂(t)‖∞} > D} (3.44)

is well defined. So, for all time t ∈ [0, t), formulas (3.43) and the property of kν
imply that (x, u) and (x̂, u) stay inside region (3.40) . Let us define the estimation
error

e := x̂− x. (3.45)

We know that ‖e(0)‖∞ ≤ E0 < D. Now we combine equation (valid between
sampling times)

ė = f(x̂, kν(x̂), ν)− f(x, kν(x̂), µ)

with the formula

‖f(x̂, u, ν)− f(x, u, µ)‖∞ 6 Lmax{‖e‖∞,∆µ}.

If ‖e(t)‖∞ > ∆µ we can apply the Bellman-Gronwall lemma, and conclude that
for every interval (t1, t2) ⊂ [0, t) not containing any sampling time we have

‖e(t2)‖∞ 6 eL(t2−t1)‖e(t1)‖∞ 6 Λ‖e(t1)‖∞ ( ‖e−(l)‖∞ ≤ Λ‖e(l − 1)‖∞ )
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where the last inequality follows from (3.42). If ‖e(t)‖∞ < ∆µ

‖e(t2)‖∞ 6 ‖e(t1)‖∞+L∆µ(t2−t1) 6 Λ‖e(t1)‖∞ ⇔ ‖e(t1)‖∞ >
L(t2 − t1)

(Λ− 1)
∆µ

(
‖e−(l)‖∞ ≤ Λ∆µ ≤ Λ‖e(l − 1)‖∞ ⇔ ‖e(l − 1)‖∞ ≥ ∆µ

)
This in turn guarantees that at each sampling time kτ ∈ [0, t), we have

Λk

N
k
n

E0 = Ek−1 >
log(Λ)

(Λ− 1)
∆µ ⇒ qk(x(kτ)) > 0 (3.46)

(
Λl

N
l
n

E0 = El−1 ≥ ∆µ ⇒ ql(x(l)) > 0

)
(3.47)

If Ek−1 <
log(Λ)
(Λ−1)

∆µ, we may get qk(x(kτ)) = 0. In this case we just set x̂(kτ) =

x̂(kτ−) with error Ek = E∆µ > Λ log(Λ)
(Λ−1)

∆µ, where the last inequality comes from

Assumptions 4-5. This way we satisfy condition (3.46), and we know that x(kτ) ∈
Bn
∞(x̂(kτ), Ek). In any case, the upper bound on ‖e‖∞ is divided by N1/n until

condition (3.46) is satisfied. We thus can conclude

∃t1 = kτ : ‖e(t)‖ < ΛE∆µ, ∀t > t1

Invoking Assumptions 4-5, we arrive at the bound ‖e(t)‖ < ΛE0 for all t ∈ [0, t).
If t is not a sampling time, then e is continuous in t; if t is a sampling time then
e can only decrease in t. In either case, we actually have

‖e(t)‖∞ < ΛE0, ∀t ∈ [0, t]. (3.48)

Now, Assumption 2 expressed by (3.2.5) with t0 = 0 implies that ‖x(t)‖∞ 6
βµν(E0, 0) + γµν(ΛE0) + rµν < D for all t ∈ [0, t], where the last inequality fol-
lows from Assumption 3. Using (3.45) and (3.48), we also obtain ‖x̂(t)‖∞ 6
βµν(E0, 0) + γµν(ΛE0) + ΛE0 + rµν < D for all t ∈ [0, t]. This yields a contradic-
tion with the definition (3.44) of t.
We have thus established that all of the previous estimates are valid with t = ∞.
In particular, by Assumption 4, we have that ‖e(t)‖∞ decreases at each sampling

time as long as ‖e(t)‖∞ > log(Λ)
(Λ−1)

∆µ. Thus, remembering the procedure for qk = 0,

the system is governed by (3.37) with ‖e‖∞ < ΛE∆µ, which, for the ISC property
of this system, implies ‖x(t)‖∞ 6 βµν(E0, t) + γµν(ΛE∆µ) + rµν, and, for large
times ‖x(t)‖∞ 6 γµν(ΛE∆µ) + rµν, which ends the proof for ν 6= µ.
If ν = µ, then ‖e(t)‖∞ −→ 0 as t −→∞, and , for the ISS property of this system
with respect to e we conclude that x converges to 0 as well. It remains to prove
that the origin is a stable equilibrium. For this proof see ([2]) �
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Thus, once we know everything about the system, we are able to build a digital
controller, which uses as low information as permitted by the expansiveness of the
system, and which stabilizes it.
In the case we have uncertainties about the parameters, we can take the system
contained around the origin and have all the time to learn its inverse dynamics.
In particular, with the notation of equation (3.33), we have

‖x(t)‖ 6 γµν(ΛE∆µ) + rµν

for both the discrete and the continuous time case.
To be sure that our approximation hold all the time, we should ask that the
parameters of the system remain unchanged enough time to be learned, that is

Assumption 6 The rate of change in the parameter Rp is much lower than min-
imum between the rate of the inverse dynamic learning R` and the inverse of the
delay time T for the communication to the learning apparatus:

Rp �
1

2
min{Rl, T

−1},

that is, for each parameter change, the adaptive controller has the time to stabilize
the system (i.e, learn the inverse dynamic).

It’s worth to say that the hypothesis of ISS can be relaxed (see [2] and [11]), using
a larger number of bits.

3.2.6 Practical estimation of containability borders

In the case we want to estimate the subset in which the system will be contained
we can make use of the Practical Stability theory.
The notion of practical stability in dynamical system was discussed by Lasalle
and Lefshetz ([7]) in the 1960s and then was treated by Liao ([8]). Recently,
this concept has been renewed by Kapitaniak and Brindley ([10]) in dealing with
stability of chaotic attractors and synchronization.
We recall here the classical practical stability of equilibrium points of dynamical
systems. Consider a dynamical system described by

ẋ = g(x, t) (3.49)

where g(0, t) ≡ 0, g ∈ Cr[B × <+,<n], and B is a region in <n containing x = 0.
Let the system (3.49) be under influence of a permanently acting perturbation
p(x, t) with ‖p(x, t)‖ 6 δ so that the perturbed system is

ẋ = g(x, t) + p(x, t) (3.50)
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Definition 2 Given a positive number δ and two sets Q and Q0 such that 0 ∈
Q0, Q0 ⊂ Q ⊆ B and Q is bounded. If every solution x(t0, x0, t) to Eq. (3.50)
satisfies x(x0, t0, t) ⊂ Q for ∀x0 ∈ Q0 and ∀p(x, t) with ‖p(x, t)‖ 6 δ, then the
equilibrium solution x = 0 to Eq. (3.49) is called practically stable with respect to
δ,Q,Q0.

The following theorem can be used for the estimation problem

Theorem 3 Suppose that Q0 ⊂ <n is a compact set containing 0 ∈ <n. If there
exists a function V (x, t) ∈ Cr[<n ×<+,<] such that

D+V (x, t)|(3.50) 6 0 ∀x ∈ Qc
0

and
V (x1, t1) < V (x2, t2) ∀x1 ∈ Q0, ∀x2 ∈ Qc, t2 > t1 > 0,

where D+ denotes the Dini derivatives. Then every solution x(x0, t0, t) to Eq.
(3.12) is contained in Q for t > t0 thus the equilibrium solution x = 0 to Eq.
(3.49) is practically stable with respect to δ,Q,Q0.

In fact, we can scalar multiply the vectorial control perturbation (3.31) due to mea-
surement errors and parameter uncertainties and the general input perturbation
p, with the vector function∫ 1

0

[
∂f(x, y, µ)

∂y

]
y=kµ(x)+αpi(x)

dα

bounded for the Lipschitz property of f , where i run over the kind of perturbation,
obtaining the general form

Pe,µν(x) + Pµν,e(x) + P (x) (3.51)

which can be added explicitly in the system(3.11), and allows us to use the last
theorem. The existence of a Lyapunov function is assured by the ISS assumption
(see Section 3.1)

Containability border of the quantized digital controller

We want to find the largest set of parameters which can guarantee that, as long as
the parameter vector changes remain in this set, the system remains containable.
Thus, we are looking for the largest convex subset Ω0 ⊂ <p, such that, for a fixed
trial parameter vector, ν, the system is contained for all real parameter vectors µ.
Ω0 represents how sharp our knowledge of the system’s parameters is.
Conditions of Theorem3 assure that, for any initial condition x(0) ∈ <n, there

58



exists t0 such that x(t) ∈ Q for ∀t > t0. We can apply this result to estimating the
maximum size of Ω0, such that the system is bounded in a determined region of
the state space we want it to.
First, we define such a region as a ball of acceptable states

x(t), x̂(t) ∈ Bn
∞(0, R) ∀t.

In this way the Lipschitz constant is well defined in the state and in the control
spaces, and we can study its dependence on Ω0, on the contrary to what we did in
the last section, where the real and trial parameter vectors were fixed.
Then we write the correct form of the perturbation (3.51). In the case of the
quantized digital controller, P (x) = 0 and e = x̂ − x, so, for a fixed µ, ν couple,
the perturbation is bounded by

δ‖e‖µν (x) = max
x′:‖x′−x‖=‖e‖

‖Pe′,µν(x) + Pµν,e′(x)‖ , (3.52)

where e′ = x′−x. Here, e is a dynamical variable, but we can put an upper bound
on its norm. In fact, we can leave Assumption 5, and define Ed(Ω0) = N1/nd(Ω0).
Assumption 5 relates the size of the initial condition and the distance between the
real and the actual parameter vector and it was necessary to make sure that, when
we get a zero from the encoder, the state and its estimate remain inside region
(3.40), which was implicitly defined through comparison functions, and thus be
able to well define the Lipschitz constant, while now it is evaluated over region
(3.54). In any case, we will need a similar relation, but this time we will consider
the diameter of the full parameter set, to be sure the state and its estimate remain
inside this region (see Assumption 7).
Then, it results:

‖e(t)‖∞ < E = max

{
Λ2

N1/n
E0,ΛEd(Ω0)

}
, Λ = eτL(Ω∆µ), (3.53)

where Ω∆µ is the smallest convex subset of Ω0 which contains µ and ν, and L(Ω∆µ)
is the Lipschitz constant of the region

{(x, u) : ‖x‖∞ 6 R, ‖u‖∞ 6 κν(R)} × Ω∆µ, (3.54)

κν defined as in (3.40). Note that we have to consider Ed(Ω0) instead of E∆µ

because, when we control the system we don’t know the real difference in the
parameters and we have to use its upper bound, to define the reset error when we
get a zero from the encoder.
Now, we can compute δEµν(x) (actually the typical error to be considered, in the
computation of delta only, is smaller as its norm has exponential decays to zero,
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except the case in which we get a zero from the encoder, see Appendix A for
details), for and find the relative Qµν which can satisfy all the assumptions of
Theorem 2, with Q = Q0 = Qµν . If Qµν is such that ‖x‖∞ ≤ R and ‖x̂‖∞ ≤ R for
all time, then we can follow the control algorithm explained in section 3.2.5, until
we have e 6 ΛEd(Ω0) and Qµν(ΛEd(Ω0)). Comparing with the proof of Th. 1, we
conclude

d(Qµν(ΛEd(Ω0))) = γµν(ΛEd(Ω0)) + rµν , rµν = d(Qµν(0)).

In the case Qµν is too big, for some µ ∈ Ω0, it means we are dealing with too big
a difference in the parameter and the system is not containable with the present
knowledge of them, or that we are dealing with too big a set of initial condition.
In either case we have too low a prior knowledge of the system.
In real cases, we generally can’t control initial condition better than a certain
range (due the low bandwidth), but we can do some failing trials with the system
to sharpen our knowledge of its parameters. We thus have to fix, for example,

E0 =
R

N
,

where we decided to divide the set of possible state in N concentrically hypercubic
boxes with diameter 2R/N, 4R/N, . . . , 2R, assign a symbol to each element of the
associated partition, and start the system so that we get the symbol associated to
the smallest of them, that is x(0−) ∈ Bn

∞(0, E0) and x(0) ∈ Bn
∞(0,ΛE0). Once the

set of initial conditions is fixed, we have to find the largest Ω0 ⊂ <p, for which

d(Qµν) < R− E, ∀µ ∈ Ω0, (3.55)

that assures that both x(t) and x̂(t) remain inside Bn
∞(0, R) for all time, where ν

is the initial trial parameter vector (ν ∈ Ω0). Thus we have

‖x(t)‖∞ < max{R− E,ΛE0} ∀t.

Note that, if ΛE0 > R − E, we have to impose that E < R − ΛE0 to be sure x̂
remains in Bn

∞(0, R), which is in contradiction with ΛE0 > R− E. Thus we have
to impose R− E > ΛE0, which leads to

Assumption 7 a) N > 2Λ, Λ = eτL(Ω0), if ΛEd(Ω0) < Λ2E0/N
1/n

b) N1/nd(Ω0) < R(N − 2Λ), Λ = eτL(Ω0), if ΛEd(Ω0) > Λ2E0/N
1/n

Assumption 7(a) can be more strict than Assumption 4 . Assumption 7(b) is a
lower bound on the prior knowledge we have of the system. We are now ready for
the following
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Proposition 1 Suppose µ ∈ Ω0. Then x(t) and x̂(t) belong to Bn
∞(0, R) for ∀t

Proof The following relations hold for ∀t:

a) ‖x‖∞ < R− E < R

b) ‖e‖∞ 6 E

c) ‖x̂‖∞ 6 ‖x‖+ ‖e‖ < R

�

We now invoke Assumption 6 . After the first parameter vector, µ has been
learned, it can be possible to enlarge the allowed parameters set from Ω0 to Ω,
Ω0 ⊂ Ω. In fact, once the inverse dynamic is learned, the system is stabilized and
the error e=0. Then, when the parameter changes, we have E0 = 0, so that

‖e‖ 6 ΛEd(Ω), Λ = Λ(L(Ω∆µ)).

Thus we can leave Assumption 7 and we can substitute condition (3.55) with the
new one (which imply the old one)

d(Qν′µ) < R− ΛEd(Ω), ∀ν ′ ∈ Ω. (3.56)

In the next section we will show how to study the possible parameter set for
a simple mechanical system, the inverted pendulum on a cart, controlled with
minimal bit rate.

3.2.7 The inverted pendulum on a cart

We suppose that the only unknown parameter is the length of an inverted pendu-
lum on a cart. Our aim is to find the largest Ω0 ⊂ < which can contain the real
length parameter l ∈ <+, for which 3.55 holds for a fixed trial length parameter
ν ∈ <+. Actually, Ω0 will be the union of two sets, one that has ν as its min and
one as its max, and for which 3.55 holds independently. This way the embedded
digital controller with minimal bit rate suffices to contain the system, while the
learning apparatus has all the time to learn the inverse dynamics and find the
correct length parameter (as explained in figure 1.11).
First we have to find an ISS feedback law for the system. The solution is given in
[12]. By choosing the closed-loop Lagrangian from a class of controlled Lagrangian,
closed-loop dynamic is guaranteed to be Lagrangian. This has the advantage that
the stabilization can be understood in terms of energy. In particular, we can make
use of energy methods which provide a Lyapunov function which gives informa-
tion on how to choose the control gains to achieve closed-loop stability. Moreover
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Figure 3.1:

we can calculate its time derivative along non perturbed and perturbed system
trajectories to apply results of Section 3.2.6 and find the containability borders.
First we analyze the system by choosing an arbitrary length, let’s say l = 1.5m

The Lagrangian: Let s denote the position of the cart on the horizontal axis
and let φ denote the angle of the pendulum with up-right vertical (see figure 3.1.
Let M = 3kg be the cart mass, m = 1.5kg the pendulum bob mass, g = 9.8ms−2

the intensity of the gravitational force field. Then

L(φ, s, φ̇, ṡ) =
1

2
(αφ̇2 + 2β cos(φ)ṡφ̇+ γṡ2) + Dcos(φ), (3.57)

where α = ml2, β = ml, γ = M + m, and D = −mgl are constants. The relative
equilibrium defined by φ = φ̇ = ṡ = 0 is unstable since D < 0.
Equations of motion: The equations of motion for the pendulum on a cart with
control force u acting on the cart (and no direct force acting on the pendulum)
are, since s is a cyclic variable

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0,

d

dt

∂L

∂ṡ
= u,

which leads, in the cart reference system, setting φ = x, to

ẋ = y

62



ẏ =
1

l

(m+M)

(m sin(x)2 +M)

(
g sin(x)− (ml)2

(m+M)
cos(x) sin(x)y2 − cos(x)

(m+M)
u

)
.

The relative nonlinear control law, which renders the closed-loop system still La-
grangian is

u(x, y) = k
ml sin(x)(ml2y2 + cos(x)D)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

+

−
c
(
ml2 − ml

m+M
cos2(x)

)
((r(k + 1) + 1)ml cos(x)y)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

,

and the relative closed-loop Lyapunov function (figure 3.2) is

L(x, y) = mgl −
(

1

2

(
ml2 − (ml)2

m+M
(1 + k) cos2(x)

)
y2+

+mgl cos(x)− 1

2
(m+M)r(k + 1)ml cos(x)y2

)
,

where k > M/m, c > 0, r > 0. Note that the control tends to diverge for

x → acos
(√

m+M
m(1+K)

)
. We choose R = 1, thus the ball of admissible state is

B2
∞(0, 1). If we want the control not to diverge when |x| approach 1, we have to

impose

1 + k >
m+M

m cos2(1)
.

Now we can start to look at the Lyapunov function time derivative. From here
on we will write, in accordance to the last section, l = µ. Being ẋ independent
of u, the perturbation will act only on ẏ. Keeping this in mind, we calculate the
time derivative of the Lyapunov function along controlled system trajectories, the
Dini derivative, in both unperturbed and perturbed case, by

dL
dt

= ∇L · (f + p) = ∇L · f +
∂L
∂y
p ≤ ∇L · f +

∣∣∣∣∂L∂y
∣∣∣∣ |p|.

In figures 3.3-3.6, we plot this value for a constant divergent perturbation force
field, F(x, y) = (0, p · sign(y)), and for various values of p. In the perturbed case,
dL/dt will be negative outside the containability region, and positive inside it.
Hence, its zeros define the containability borders. That is why we also plot its
absolute value, for clarity of vision, inside the dark blue line it is positive, outside
negative. Unfortunately, looking just at dL/dt, it seems that the system is not
containable along x. The relative unverified ISS assumption is condition 3.4 with
ξ belonging to x-axis. In fact, dL

dt

∣∣
y=0
≡ 0, ∀x, as the trajectories of the system

are orthogonal to the x-axis.
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Figure 3.2: Lyapunov function for the closed loop System
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Figure 3.3: Dini derivative of the Lyapunov function in non perturbed case

Figure 3.4: Dini derivative of the Lyapunov function, p = 3
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Figure 3.5: Dini derivative of the Lyapunov function, p = 5

Figure 3.6: Dini derivative of the Lyapunov function, p = 7
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Defining the perturbation as in (3.52), and plotting its absolute value in func-
tion of x and y for this system for µ = 1.5, ν = 1.3 (figure 3.7), where the error
has been calculated as in Appendix A, we see that its values tend to grow very
fast only near |y| ∼ 1, where, fortunately, the Dini derivative of the Lyapunov
function is very negative. In the rest of the admissible phase space its values re-
main small, it is almost constant along the x direction, monotonically decreasing
along the negative y axis, and monotonically increasing along the positive y axis.
Moreover, remember that the trajectories are orthogonal to the y = 0 axis, which
means that the system cannot diverge along x directly but will always first explore
the |y| > 0 region. Hence, we can try to apply the procedure explained in section
3.2.6, but limiting our attention to the y coordinate. Then, by adding a constant
divergent field, as in figures 3.3-3.6, we see that the zeros of the Dini derivative of
the Lyapunov function which tend to reach the admissible region borders along y,
e.g |y| = 1, faster as the perturbation intensity increases are those along x = 0.
We want to use these facts to write an algorithm which lets us estimate the con-
tainability region for a fixed couple of real and trial parameter vectors. The idea
is to find the perturbation intensity p for a constant divergent force field along the
y direction, F(x, y) = (0, p · sign(y)) for which condition (3.55) is satisfied along

y. Then find the largest value, y, for which the real perturbation field, δ
‖e‖
µν (3.52),

intensity stays under this value in the region x = 0, y ∈ (−y, y). We want y to
be large, so that the perturbation in the region explored by the system remains
small. When the difference between the real and the trial parameter increases, y
will tend to diminish until it will be smaller than 1 − E, which means that the
perturbation is large in this region too and the system will tend to leave it.

Keeping this in mind, this is the proposed algorithm:

1. choose the set of fix parameter k, c, r (in our case k = 15, c = 100, r = 0.00001)

2. choose a trial length parameter ν (in our simulation ν = 1.25m), a length
parameter axis resolution δµ to choose successive possible real parameters, and
set µ = ν + δµ (in our simulation δµ = 0.01)

3. calculate Λ = eLτ , where τ = 0.005, L = L(B2
∞(0, 1), [ν, µ]) = L(ν, µ) (the

Lipschitz constant of f over the region B2
∞(0, 1)× [ν, µ] ), and the relative N

4. calculate E as in (3.53)

5. solve
(
dL
dt

+ h ·
∣∣∣∂L∂y ∣∣∣)∣∣∣

x=0,y=1−E,µ
= 0 with respect to h, which gives us an esti-

mate of the perturbation intensity of a constant divergent force field for which
(3.55) is satisfied along y
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Figure 3.7: Absolute perturbation intensity

6. starting from y = 1, find the largest y for which δ
‖e‖
µν (0, y) < h, where δ

‖e‖
µν is

defined by (3.52) and the error is approximated as the typical error in Appendix
A.

7. if (y > 1− E) and Assumption 7 is verified ⇒ µ→ µ+ δµ and go back to 3.;
else set µ− δµ = µmax and Ω′0 = [ν, µmax] and proceed to 8.

8. set µ = ν − δµ

9. calculate Λ = eLτ , where τ = 0.005, L = L(B2
∞(0, 1), [µ, ν]) = L(µ, ν) (the

Lipschitz constant of f over the region B2
∞(0, 1)× [ν, µ] ), and the relative N

10. calculate E as in (3.53)

11. solve
(
dL
dt

+ h ·
∣∣∣∂L∂y ∣∣∣)∣∣∣

x=0,y=1−E,µ
= 0 with respect to h, which give us an esti-

mate of the perturbation intensity of a constant divergent force field for which
(3.55) is satisfied along y

12. starting from y = 1, find the largest y for which δ
‖e‖
µν (0, y) < h, where δ

‖e‖
µν is

defined by (3.52) and the error is approximated as the typical error in Appendix
A.
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13. if (y > 1− E) and Assumption 7 is verified ⇒ µ→ µ− δµ and go back to 9.,
else set µ+ δµ = µmin and Ω′′0 = [µmin, ν]

14. to let 3.55 hold in Ω′0 and Ω′′0 at the same time they must have the same
diameter, so that the encoder can us the same d(Ω′0) = d(Ω′′0) when it resets the
quantization error after a zero symbol, and it does not need to know in which of
the two set is the real parameter. So, reduce the largest set between Ω′0 and Ω′′0,
by diminishing µmax (if d(Ω′0) > d(Ω′′0)) or increasing µmin (if d(Ω′0) < d(Ω′′0)),
until the two sets have the same diameter.

15. Ω0 = Ω′0 ∪ Ω′′0

These are the results for this algorithm applied to our the inverted pendulum:
trial parameter ν = 1.25, µmax = 1.49, µmin = 1.05. We reduce µmax to 1.45,
and get Ω0 = [1.05, 1.45], with d(Ω′0) = d(Ω′′0) = 0.2 the allowed parameter set’s
diameter used by the encoder. Other values are: L = 70, Λ = 1.42, N = 4 (N1/2 is
not an odd integer, as required by Assumption 2, but it was only for light notation
purposes, as a similar demonstration can be done in the case of generic integer
N1/n). Thus if the real system parameter is in Ω0, we can contain the system
by choosing ν as the trial parameter. Moreover we can contain it by using just
five symbols (∼2.322 bits of information) for the codification of the state and of
the feedback control. See the figures for the results of simulation. All simulations
have initial conditions (−1/4+0.001,−1/4+0.001). Note that the system actually
remains inside the ball B2

∞(0, R− ΛN1/2d(Ω0).
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Figure 3.8: Phase space for the 1.05 m inverted pendulum, controlled with quantized feedback
law (5 symbols), 5 ms sampling period, 1.25 m controller length parameter
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Figure 3.9: 1.05 m inverted pendulum, controlled with quantized feedback law (5 symbols),
5 ms sampling period, 1.25 m controller length parameter: Top left: Angle temporal evolution.
Top right: angular speed temporal evolution. Bottom left: Absolute value of the difference be-
tween measured and actual angle temporal evolution; note the local inverse exponential behavior.
Bottom right: applied control temporal evolution.
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Figure 3.10: Phase space for the 1.45 m inverted pendulum, controlled with quantized feedback
law (5 symbols), 5 ms sampling period, 1.25 m controller length parameter
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Figure 3.11: 1.45 m inverted pendulum, controlled with quantized feedback law (5 symbols),
5 ms sampling period, 1.25 m controller length parameter: Top left: Angle temporal evolution.
Top right: angular speed temporal evolution. Bottom left: Absolute value of the difference be-
tween measured and actual angle temporal evolution; note the local inverse exponential behavior.
Bottom right: applied control temporal evolution.

72



Chapter 4

Chaos skeleton

In this chapter we will introduce some general facts about deterministic chaotic
systems, in particular that each chaotic dynamic can be decomposed into an infin-
ity of periodic orbits, its skeleton. We will assume that the reader is familiar with
the concepts of Autonomous Dynamical Systems, Autonomous Flows and Maps.
In what follows we will deal with a d-dimensional autonomous dynamical system

ẋ = f(x) (4.1)

or, equivalently, with its flow x(t) = F t(x(0)), where is F is a (locally) smooth
function.
In the case of maps, xn = fn(x0), with fn a (locally) smooth function for each n.

4.1 What is chaos?

The present section offers preliminary information about the dynamic of chaotic
processes. For a more detailed presentation we refer the reader to ([71]). The
chaotic systems represent a class of indeterminacy models differing from the stochas-
tic models. Whereas with a knowledge of the current system state the determinis-
tic model can predict the future trajectory for an arbitrarily long period and the
stochastic model cannot make a precise forecast, generally speaking, even for an
arbitrarily short time, the forecast error of the chaotic model grows exponentially
and, consequently, a forecast can be made only for a limited time defined by the
admissible forecast error.
In order to define chaotic systems, we have to introduce the concept of attractor.

Definition 3 A closed set W ⊂ <n is called an attractor of the system (4.1) if
(a) there exists an open set W0 ⊃ W such that all the trajectories x(t) beginning
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in W0 are definite for t ≥ 0 and ‖x(t)‖W → 0 for t → ∞, where the point-to-set
distance, ‖ · ‖W , is defined in section 3.1.1, (b) no other eigensubset of W has this
property.

Now we can define the chaotic property for an attractor. There are many ways
to do this, and we will just use the simpler, even if it is not the more precise
(in particular, chaos implies this definition, but not vice-versa, see [71] for more
details).

Definition 4 An attractor is said to be chaotic if any two nearby trajectories
starting in it separate exponentially. That is the norm of every infinitesimal dis-
placement δx(0), belonging to a chaotic attractor and transported by the flow F t,
grows exponentially:

‖δx(t)‖ = eλt‖δx(0)‖, λ > 0

The dynamical system (4.1) is said to be chaotic if it has at least one chaotic
attractor.
Thanks to this definition it is very easy to understand why the forecast error for
a chaotic system grows exponentially: for any finite accuracy in the initial data
δx the dynamics is predictable, up to an accuracy L, only for the finite time
TLyap ≈ − 1

λ
ln |δx/L|.

Contrarily, chaotic systems have very nice properties, too: recurrence of the tra-
jectories and ergodicity on their chaotic attractors.

Definition 5 The function x : < → <n is called recurrent if for any ε > 0 there
exists Tε > 0 such that for any t ≥ 0 there exists T (t, ε), 0 < T (t, ε) < Tε, such
that ‖x(t+ T (t, ε))− x(t)‖ < ε.

That is with time any trajectory hits an arbitrarily small neighborhood of its
position in the past.
We already defined the concept of invariant subset in section 3.1.2. We now define
the restriction of the dynamical system (4.1) to an invariant closed setW as follows.

Definition 6 The restriction of the dynamical system (4.1) to the invariant closed
set W is the dynamical system

ẋ = fW (x) = f(x), ∀x ∈ W, x(0) ∈ W

.

Definition 7 The dynamical system (4.1) is said to be ergodic on W if the only
invariant set for its restriction to W is W , apart from sets of zero measure, with
respect to some invariant measure m, where an invariant measure is such that
given a set U , m(U) = m(F t(U)), ∀t.
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Sets of zero measure can be unstable fixed points or manifold, for example. We
refer the reader to ([71]) for more details. In any case, sets of zero measure are in
practice never visited by the natural evolution of the system. What is important
is that ergodicity implies topological transitivity :

Definition 8 A continuous flow x(t) = F t(x(0)) is said to be topological transitive
on a closed set W if for any two subset U, V of W there exists t ≥ 0 such that
F t(U) ∩ V 6= ∅

This means that for almost every initial condition, its image transported by the
ergodic flow will visit any subset belonging to W .
Recurrence of the trajectories and ergodicity are at the base of the fact that the
skeleton of every chaotic dynamic is made of an infinity of Unstable Periodic
Orbits (UPOs), that these periodic orbits are dense in the chaotic attractor and
the natural evolution of the system shadows them continuously, yet never falls on it,
because they are all unstable, which corresponds to the hyperbolicity assumption.
In what follows we will give just a ”physical” derivation, based on the fact that
the mean value of any observable of a chaotic dynamics takes contribution only
from UPOs.

4.2 Poincaré sections

The following sections in this chapter is based from ([72])

Successive trajectory intersections with a Poincaré section, a (d−1)-dimensional
hypersurface or a set of hypersurfaces P embedded in the d-dimensional phase
space M, define the Poincaré map P (x), a (d− 1)-dimensional map of the form

x′ = P (x) = F τ(x)(x), x′, x ∈ P . (4.2)

Here the first return function τ(x) is the time of flight to the next section for
a trajectory starting at x. The choice of a section hypersurface P is altogether
arbitrary. The hypersurface can be specified implicitly through a function U(x)
that is zero whenever a point x is on the Poincaré section.
The gradient of U(x) evaluated at x ∈ P serves a two-fold function. First, the
flow should pierce the hypersurface P , rather than being tangent to it. This leads
to the transversality condition

(f · U) 6= 0, Uj =
d

dxj
U(x), x ∈ P . (4.3)

Second,the gradient Uj defines the orientation of the hypersurface P . The flow
is orientated as well, and even the shortest periodic orbit (F t(x) = F t+Tp(x), for
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a given minimum period Tp) can pierce P twice, transversing in either direction.
Hence a more natural definition of Poincaré return map is obtained by supple-
menting (4.2) with the condition

xn+1 = P (xn), U(xn+1) = U(xn) = 0, n ∈ Z+

f(xn) · U(xn) > 0. (4.4)

In this way the continuous time t flow F t(x) is reduced to a discrete time n sequence
xn of successive oriented trajectory traversal of P .
In general, there are no explicit form for the Poincaré map. Anyway, it can be
found numerically in different ways.

4.3 Local stability

4.3.1 Flow transport of neighborhood

We want to investigate the deformation of a neighborhood of a starting point
x0 = x(0). This is best understood by considering a trajectory originating near x0

with an initial infinitesimal displacement δx(0), and letting the flow transport the
displacement δx(t) along the trajectory x(x0, t) = F t(x0). The system of linear
equations of variations for the displacement of the infinitesimally close neighbor
x + δx, from the vector field associated to the flow ẋi = fi, by Taylor expanding
to linear order read

ẋi + δẋi = fi(x+ δx) ≈ fi(x) +
∑
j

∂fi
∂xj

δxj.

The infinitesimal displacement δx is thus transported along the trajectory x(x0, t),
with time variation given by

d

dt
δxi(x0, t) =

∑
j

∂fi(x)

∂xj

∣∣∣∣
x=x(x0,t)

δxj(x0, t). (4.5)

As both the displacement and the trajectory always depend on the initial condition
point x0 and the time t, we shall often abbreviate the notation x(x0, t)→ x(t)→
x, δxi(x0, t)→ δxi(t)→ δx in what follows. Taken together, the set of equation

ẋi = fi(x), δxi =
∑
i

Aij(x)δxj (4.6)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent space δx ∈ TxM to every point x ∈M. The matrix of
variations

Aij(x) =
∂fi(x)

∂xj
(4.7)
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describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow.

Taylor expanding a finite time flow to linear order,

F t
i (x0 + δx) = F t

i (x0) +
∑
j

∂F t
i (x0)

∂x0j

δxj + . . . (4.8)

one finds that the linearized neighborhood is transported by the Jacobian (or
fundamental) matrix

δx(t) = Jt(x0)δx(0), Jtij(x0) =
∂xi(t)

∂xj

∣∣∣∣
x=x0

, (4.9)

which describes the deformation of an infinitesimal neighborhood at finite time t
in the co-moving frame of x(t). Looking at eigenvectors and eigenvalues of this
matrix, one finds: unstable directions (eigenvalue magnitude larger than 1), along
which nearby trajectories separates exponentially; stable directions (eigenvalue
magnitude smaller than 1), along which nearby trajectories approach each other
exponentially; marginal directions (eigenvalue magnitude equal to 1), along which
nearby trajectories change their distance with a rate less than exponential.
If xq is an equilibrium for the flow, than Jt(xq) = eAt, where A is the linearization
of the velocity field in xq.
As the eigenvalues of Jt have invariant meaning only for periodic orbits, we post-
pone their interpretation to Section 4.4.

4.3.2 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the
iteration of a map follows from Taylor expanding the iterated mapping at discrete
time n to linear order, as in (4.8). The linearized neighborhood is transported by
the Jacobian matrix evaluated at a discrete set of times n = 1, 2, . . . ,

Jnij(x0) =
∂fni (x)

∂xj

∣∣∣∣
x=x0

. (4.10)

Stability of Poincaré return maps

We now relate the linear stability of the Poincaré return map (4.2,4.4) to the
stability of the continuous time flow in the full phase space.
The hypersurface P can be specified implicitly through a function U(x) that is
zero whenever a point x is on the Poincaré section. A nearby point x+ δx is on P
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if U(x + δx) = 0, and the same is true for variation around the first return point
x′ = F (x0, τ(x0)) so expanding U(x′) to linear order in δx leads to the condition

Ui(x)
dx′i
dxj

∣∣∣∣
P

= 0. (4.11)

In what follows Ui is the gradient of U defined in (4.3), unprimed quantities refer
to the initial state, and the primed quantities to the first return. Both the first
return x′ and the time of flight to the next section τ(x) depend on the starting
point, so the Jacobian matrix

Ĵ(x)ij =
dx′i
dxj

∣∣∣∣
P

(4.12)

with both initial and the final variation constrained to the Poincaré section hyper-
surface P is related to the continuous flow Jacobian matrix by

dx′i
dxj

∣∣∣∣
P

=
∂x′i
∂xj

+
dx′i
dt

dt

dxj
= Jij + v′i

dt

dxj
.

The return time variation dt/dx can be eliminated by substituting this expression
into the constraint (4.11), yielding the projection of the full-space Jacobian matrix
to the Poincaré map Jacobian matrix:

Ĵij =

(
δik −

f ′iU
′
k

f ′ · U ′

)
Jik. (4.13)

Given that f(x(t)) = Jtf(x0), it’s easy to verify that f(x) is a zero eigenvector of
Ĵ

Ĵ · f = 0 (4.14)

so the Poincaré section eliminates variations parallel to f , and Ĵ is a rank (d− 1)
matrix

4.4 Cycle stability

For chaotic systems almost all trajectories are aperiodic - nevertheless, stationary
and periodic orbits will turn to be the key to unraveling chaotic dynamics.
An obvious virtue of periodic orbits is that they are topological invariants: a fixed
point remains a fixed for any choice of coordinates, and similarly a periodic orbit
remains periodic in any representation of the dynamics. Any re-parametrization of
a dynamical system that preserves its topology has to preserve topological relations
between periodic orbits, such as their relative inter-windings and knots. So, the
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mere existence of periodic orbits suffices to partially organize the spatial layout of
a non-wondering set. No less important, as we shall now show, is the fact that
cycle stability eigenvalues are metric invariants: they determine the relative size
of neighborhood in a non-wandering set.
To prove this, we start by noting that due to the multiplicative structure of the
Jacobian Matrix,

Jt+t
′
(x) = Jt

′
(x′)Jt(x), where x′ = F t(x),

the stability of the rth repeat of a prime cycle of period Tp is

JrTp(x) = JTp(F (r−1)Tp(x)) . . .JTp(F Tp(x))JTp(x) = (Jp(x))r, (4.15)

where Jp(x) = JTp(x) is the stability matrix for a single traversal of the prime cycle
p, x ∈ p is any point on the cycle. Hence, it suffices to restrict our consideration
to stability of prime cycles.

4.4.1 Stability eigenvalues

We sort the stability eigenvalues Λp,1,Λp,2, . . . ,Λp,d of the [d× d] Jacobian matrix
Jp evaluated on the p-cycle into sets e,m, c

expanding: {Λp}e = {Λp,j : |Λp,j > 1}
marginal: {Λp}m = {Λp,j : |Λp,j = 1} (4.16)

contracting: {Λp}c = {Λp,j : |Λp,j < 1}

and denote by Λp (no jth eigenvalue index) the product of expanding eigenvalues

Λp =
∏
e

Λp,e. (4.17)

As Jp is a real matrix, complex eigenvalues always come in complex conjugate
pairs, so the product of expanding eigenvalues is always real.
From stability eigenvalues we can define stability exponents, the stretching/contracting
rates per unit time

λp,i =
1

Tp
ln |Λp,i|. (4.18)

If all stability exponents of all periodic orbits of a flow are strictly bounded away
from zero, |λi| ≥ λmin > 0, the flow is said to be hyperbolic. Otherwise the set is
said to be non-hyperbolic.
Cycle eigenvalues are intrinsic properties of a cycle. Consider the ith eigenvalue,
eigenvector pair (Λp,i, ei) computed from Jp evaluated at a cycle point,

Jp(x)ei(x) = Λp,iei(x), x ∈ p. (4.19)
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Consider another point on the cycle at time t later, x′ = F t(x) whose Jacobian
matrix is Jp(x

′). As JTp+t = Jt+Tp , the Jacobian matrix at x′ can be rewritten
either as

JTp+t = JTp(x′)Jt(x) = Jp(x
′)Jt(x), or Jt+Tp = Jt(x)Jp(x).

Multiplying (4.19) by Jt(x), we find that the Jacobian matrix evaluated at x′

has the same eigenvalue Λp,i of the Jacobian matrix evaluated at x, but with
eigenvector Jt(x)ei(x)

Jp(x
′)ei(x

′) = Λp,iei(x
′), ei(x

′) = Jt(x)ei(x). (4.20)

4.4.2 Stability of Poincaré map cycles

When a continuous flow periodic orbit p pierces the Poincaré section P once, the
section point is a fixed point with stability (4.13), but with all primes dropped,
being x = x′

Ĵij =

(
δik −

fiUk
f · U

)
Jik (4.21)

We have already established in (4.14) that the velocity f(x) is a zero-eigenvector
of the Poincaré section Jacobian matrix. Consider next (Λp,α, eα), the full phase
space αth (eigenvalue,eigenvector) pair (4.19), evaluated at a cycle point on a
Poincaré section

J(x)eα(x) = Λαeα(x), x ∈ P . (4.22)

If we multiply (4.21) by eα and inserting (4.22), we find that the Poincaré section
Jacobian matrix Ĵ has the same eigenvalue as the full phase space Jacobian matrix,

Ĵ(x)êα(x) = Λαêα(x), x ∈ P (4.23)

where êα is a projection of the full phase space eigenvector onto the Poincaré
section:

(ê)i =

(
δik −

fiUk
f · U

)
(eα)k. (4.24)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has the same
set of stability eigenvalues {Λp,1, . . . ,Λp,d} as the full phase space Jacobian matrix
Jp .
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4.5 Dynamical averaging, evolution operators, traces

and determinants, dynamical zeta function:

why cycles are so important

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible phase space.
Hence for chaotic dynamics one cannot follow individual trajectory for a long time;
what is attainable is a description of the geometry of the set of possible outcomes,
and evaluation of long time averages. Example of such averages are transport co-
efficient for chaotic dynamical flows, such as escape rate, mean drift and diffusion
rate; power spectra; and a host of mathematical constructs such as generalized
dimensions, entropies and Lyapunov exponents. Here we outline how such aver-
ages are evaluated within the evolution operator framework. The key idea is to
replace expectation values of observable by the expectation values of generating
functionals. This associates an evolution operator with a given observable, and
relate the expectation value of the observable to the leading eigenvalue of the
evolution operator. It will be then shown how these eigenvalues are dual to the
spectrum of periodic orbit, which can be interpreted as the skeleton of a chaotic
dynamics. For practical purpose an approximated formulation for long time leads
to the dynamical zeta function, which vanishes on the leading eigenvalue of the
evolution operator.

4.5.1 Time and space averages and evolution operator

Let a = a(x) be any observable. We define the time average of a, along a trajectory
starting in x0, as

a(x0) = lim
t→∞

1

t
At(x0), (4.25)

where

At(x0) =

∫ t

0

dτa(F τ (x0)) (4.26)

is the integrated observable.
We remind that, being the system ergodic and mixing, this time average is equal to
the spatial mean with respect to the natural measure of the system, ρ0, and hence
to the expectation value we are seeking. In most practical cases, this equality does
not help, as it requires either the knowledge of the natural measure, or very long
observation time.
There is another, more clever way to avoid this problem. We define the space
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average of a, 〈a〉(t) as

〈a〉(t) =
1

|M|

∫
M
dxa(x(t)) (4.27)

|M| =

∫
M
dx.

We would have used any initial smooth density, perhaps concentrated on some
small neighborhood, as any density will naturally tend to ρ0. The worst case is
the one just consider, that is, we weight every point the same. We then define the
expectation value of a, 〈a〉, as

〈a〉 = lim
t→∞

∫
M
dx

1

t

∫ t

0

dτa(F τ (x)). (4.28)

The expectation value is a space average of time averages, with the advantage of
averaging over space which smears over the starting point which were problematic
for the time average, such as periodic points. While easy to define, the expectation
value 〈a〉 turns out not to be particularly tractable in practice. Here come a simple
idea which is the basis of all that follows: we investigate the space averages of form〈

eβ·A
t
〉

=
1

|M|

∫
M
dx eβ·A

t

. (4.29)

In the present context β is an auxiliary variable of no particular physical signifi-
cance, and we will limit to consider scalar values of it.
As we already said, being the system ergodic, we expect the time average (4.25)
to tend to same value 〈a〉 for almost all trajectories, and the integrated observable
(4.26 to tend to t〈a〉. So, as t → ∞ we would expect the space average (4.29) to
grow exponentially with time 〈

eβ·A
t
〉
∝ ets(β),

and its rate of grow to go to a limit

s(β) = lim
t→∞

1

t
ln
〈
eβ·A

t
〉
. (4.30)

Now we understand one reason for why it is smarter to compute
〈
eβ·A

t〉
rather

than 〈a〉: the expectation value of the observable (4.28) and the moment of the
integrated observable (4.26) can be computed by evaluating the derivatives of s(β)

∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1

t
〈At〉 = 〈a〉,

∂2s

∂β2

∣∣∣∣
β=0

= lim
t→∞

1

t
〈(At − t〈a〉)2〉, (4.31)
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and so forth.
We can make the flow dependence of (4.29) explicit rewriting this quantity as〈

eβ·A
t
〉

=
1

|M|

∫
M
dx

∫
M
dyδ(y − F t(x))eβ·A

t

. (4.32)

Here δ(y − F t(x)) is the Dirac delta function: for a deterministic flow an initial
point x maps into a unique point y at time t. Formally all we have done above is
to insert the identity

1 =

∫
M
dyδ(y − F t(x)), (4.33)

to make explicit the fact that we are averaging only over the trajectories that
remain in in M for all times. However, having made this substitution we have
replaced the study of individual trajectories F t(x) by the study of the evolution
of density of the totality of initial conditions. Instead of trying to extract a tem-
poral average from an arbitrarily long trajectory which explores the phase space
ergodically, we can now probe the entire phase space with short and controllable
finite time pieces of trajectories originating from every point in M.
We will refer to

Lt(y, x) = δ(x− F t(x))eβ·A
t(x). (4.34)

as the evolution operator. As a matter of fact infinitesimally short time evolution
can suffice to determine its spectrum and eigenvalues.
In term of the evolution operator, the expectation value (4.29) is given by〈

eβ·A
t
〉

= 〈Lt1〉,

where 1(x) = 1 for all x. If Lt were a matrix we would be computing a weighted
sum of its eigenvalues which is dominated by the leading one as t → ∞. By
analogy, as the trace of Lt is also dominated by the leading eigenvalue as t→∞,
we might just want to look at the trace〈

eβ·A
t
〉

= trLt =

∫
dxδ(x− F t(x))eβ·A

t(x). (4.35)

Apart from practical advantages, inserting the identity (4.33) in equation (4.29)
allows the following interpretation in term of periodic orbits of expectation values.
We recall the property of the Dirac delta function∫

dxδ(y − F t(x)) =
∑

(x−F t(x))=0

1

|det∂F t(x)
∂x
|
. (4.36)
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According to this formula, the trace (4.35) picks up contribution whenever x −
F t(x) = 0, that is, whenever x belongs to a periodic orbit.
The explicit form of this trace can be derived, both for discrete and continuous
time systems. In the first case we also apply the zeta-transform, and in the second
the Laplace-transform (which is nothing but the zeta-transform with z = e−s).
Doing this will lead to an explicit duality between the spectrum of eigenvalues of
the evolution operator and the spectrum of periodic orbit.

4.5.2 Trace and determinants

We have shown how global average relate to eigenvalues of appropriate evolution
operators. Traces of evolution operators can be evaluated as integrals over Dirac
delta functions, and this way spectra of evolution operators become related to
periodic orbits. Here we want to show explicitly the global↔local duality which
says

the spectrum of eigenvalues (global) is dual to the spectrum of
periodic orbits (local)

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selsberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will introduce.
First of all, we recall the hyperbolicity assumption, that is we assume that Jp has
no marginal eigenvalue. It’s easy to understand why we have to do this in the
case of discrete time maps (the continuous time is just more coumbersome, but
conceptually identical).
The contribution to trace of an isolated prime cycle p of period np for a map f can
be evaluated by restricting the integration to an infinitesimal open neighborhood
Mp around the cycle,

trpLnp =

∫
Mp

dxδ(x− fnp(x)) =
np

| det(1− Jp)|
= np

d∏
i=1

1

|1− Λp,i|
, (4.37)

which can be carried out only if the cycle Jacobian has no eigenvalues of unit
magnitude.
In this case we can also factorize the trace (4.37) into a product over the contracting
and expanding eigenvalues

| det(1− Jp)|−1 =
1

|Λp|
∏
e

1

1− 1/Λp,e

∏
c

1

1− Λp,c

, (4.38)

where Λ =
∏

e Λp,e.
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Trace formula for maps

With the above assumption the trace formula for map can be written as

trLn =
∑
p

np

∞∑
r=1

erβ·Ap

| det(1− Jrp)|
δn,npr, (4.39)

with the Kronecker delta δn,npr projecting out the period contribution of total pe-
riod n. This contribution is awkward, and will be more awkward in the continuous
time case, where it yields a series of Dirac delta functions. Such sums are familiar
from the density-of-states sums of statistical mechanics, where they dealt with in
the same way as we shall do here: we smooth this distribution by taking a Laplace
transform, or in the discrete time case, a zeta transform.
We define the trace formula for maps to be the zeta transform of (4.39), which,
for discrete time mappings, is simply the generating function for the trace sums

∞∑
n=1

zntrLn = tr
zL

1− zL
=
∑
p

np

∞∑
r=1

znprerβ·Ap

| det(1− Jrp)|
. (4.40)

Expressing this formula in terms of the sum of the eigenvalues of L, we obtain the
trace formula for maps :

∞∑
α=0

zesα

1− zesα
=
∑
p

np

∞∑
r=1

znprerβ·Ap

| det(1− Jrp)|
, (4.41)

which expresses the duality between the spectrum of the evolution operator and
the spectrum of periodic orbit.

Trace formula for flows

It can be derived that in continuous time case the trace (4.35) can be written as

trLt =
∑
p

Tp

∞∑
r=1

erβ·Ap

| det(1− Jrp)|
δ(t− rTp). (4.42)

A trace formula follows by taking a Laplace transform. This is a delicate step,
since the transfer operator becomes the identity in the t → 0+ limit. In order to
make sense of the trace we regularize the Laplace transform by a lower cut-off ε
smaller than the period of any periodic orbit, and write∫ ∞

ε

dt e−sttrLt = tr
e−(s−A)ε

s−A
=
∞∑
α=0

e−(s−sα)ε

(s− sα
) =

=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)

| det(1− Jrp)|
, (4.43)
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where A is the generator of the semigroup of dynamical evolution

Lt = eAt. (4.44)

The classical trace formula for flows is the ε→ 0 limit of the above expression:

∞∑
α=0

1

s− sα
=
∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)

| det(1− Jrp)|
. (4.45)

This formula is still another example of the duality between the (local) cycles and
(global) eigenvalues.

Asymptotic trace formula

The Laplace transform (4.41) and (4.45) are designed to capture the time→ ∞
asymptotic behavior of the trace sums. By the hyperbolicity assumption, for large
t = rTp, the cycle weight approaches

| det(1− Jrp)| → |Λp|r (4.46)

where Λp =
∏

e Λp,e, the product of the expanding eigenvalue of Jp. Substituting
in (4.45, we get the asymptotic trace formula

Γ(s) =
∑
p

nptp
1− tp

, tp = e−sTpeβ·Ap/|Ap|. (4.47)

To recover the maps case, e−s → z, Tp → np.

From traces to determinant

The problem in dealing with traces (4.41) and (4.45) is that we have to determine
their poles in order to get eigenvalues.
There is a simple way to get rid of this problem by considering the matrix identity

ln det(1−M) = tr ln(1−M) = −
∞∑
n=1

1

n
trMn, (4.48)

which leads to the relation between spectral determinant and trace for an evolution
operator

det(1− zL) = exp

(∑
p

∞∑
r=1

1

r

znprerβ · Ap
| det(1− Jrp)|

)
(4.49)
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for the maps case, and

det(s−A) = exp

(∑
p

∞∑
r=1

1

r

er(β·Ap−sTp)

| det(1− Jrp)|

)
(4.50)

for flows. Now we can recover trace formula (4.41) and (4.45) from, respectively,

tr
zL

1− zL
= −z d

dz
ln det(1− zL) (4.51)

and

tr
1

s−A
=

d

ds
ln det(s−A). (4.52)

This way we avoid the problem of determine poles by finding zeros. Note that,
with the substitution z = e−s, spectral determinant has the same form both for
maps and for flows.

4.5.3 Dynamical zeta function

If instead of the exact traces, we consider the large time behavior of the Jacobian’s
eigenvalues product (4.46) and the relative asymptotic trace formula (4.47), the
spectral determinant (4.50) is replaced by the dynamical zeta function

1/ζ = exp

(
−
∑
p

∞∑
r=1

1

r
trp

)
, (4.53)

which, resumming the logarithm by
∑

r t
r
p/r = − ln(1− tp), can also be written as

1/ζ =
∏
p

(1− tp), (4.54)

with tp defined by equation (4.47).
Also in the case of asymptotic behavior, there is a trace-determinant relation given
by

Γ(s) =
d

ds
ln ζ−1 =

∑
p

Tptp
1− tp

. (4.55)

Hence, the dynamical zeta function is important because

1/ζ(s) = 0

vanishes at s = s0 the leading eigenvalue of Lt.
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4.6 Cycles are dense!

Our goal was to show that unstable periodic orbits form the skeleton of any chaotic
dynamics. We show this by considering the dynamical averaging of some observ-
able, concluding that it picks up contributions only from periodic orbits. However
the average over all periodic orbits can accomplish the job only if the periodic
orbits fully explore the asymptotically accessible phase space. Why should the
unstable periodic points end up being dense?
The cycle are intuitively expected to be dense because on a connected chaotic set
a typical trajectory is expected to behave ergodically, and pass infinitely many
times arbitrarily close to any point on the set, including the initial point of the
trajectory itself. The argument is more or less the following. Take a partition of
the phase space M in arbitrarily small regions, and consider particles that start
out in region Mi, and return to it in time T after a peregrination in phase space.
In particular, a particle might return a little to the left of its original position,
while a close neighbor might return a little to the right of its original position. By
assumption, the flow is continuous, so generically one expects to be able to gently
move the initial point, that is, one expect a periodic point of period T in cell i.
As we diminish the size of region Mi, aiming to find a trajectory that returns
to Mi becomes increasingly difficult. Therefore, we are guaranteed that unstable
(because of the expansiveness of the flow) orbits of larger and larger period are
densely interspread in the asymptotic non-wandering set.
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Chapter 5

Chaos control

As we explained in the last chapter, chaotic systems are characterized by three
main features:

• sensitivity to initial conditions

• there is an infinite number of unstable periodic orbits embedded in the un-
derlying chaotic set. In other words, the skeleton of a chaotic attractor is a
collection of an infinite number of periodic orbits, each one being unstable

• the dynamics in the chaotic attractor is ergodic, which implies that during
its temporal evolution the system ergodically visits small neighborhoods of
every point in each one of the unstable periodic orbits embedded within the
chaotic attractor

A relevant consequence of these properties is that a chaotic dynamics can be seen
as shadowing some periodic behavior at a given time, and erratically jumping from
one periodic orbit to another. The idea of controlling chaos is then when a tra-
jectory approaches ergodically a desired periodic orbit embedded in the attractor,
one applies small perturbations to stabilize such an orbit. If one switches on the
stabilizing perturbations, the trajectory moves to the neighborhood of the desired
periodic orbit that can now be stabilized. This fact has suggested the idea that
the critical sensitivity of a chaotic system to changes (perturbations) in its initial
conditions may be, in fact, very desirable in practical experimental situations.

The important point here is that, because of chaos, one is able to pro-
duce an infinite number of desired dynamical behaviors (either periodic
and not periodic) using the same chaotic system, with the help of only
tiny perturbations chosen properly. We stress that this is not the case
for non chaotic dynamics, wherein the perturbations to be made for
producing a desired behavior must, in general, be of the same order of
magnitude as the unperturbed evolution of the dynamical variables.
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There are many practical reasons to control chaos. Formally, the main reason to
stabilize an unstable orbit, is that we can bring some observable to have a desired
expectation value.
In fact, consider a chaotic flow and one of its unstable periodic orbit p of period Tp.
If we manage to stabilize it, it will be the only surviving cycle and the determinant
(4.50) will become

det(s−A) = exp

(
∞∑
r=1

1

r

er(βAp−sTp)

1− Λ′r

)
, (5.1)

where Λ′ is the product of the eigenvalues of the new Jacobian’s matrix evaluated
on cycle p.
Another very fascinating point, is that there is a simple connection between chaos
and communication theory. Chaotic systems can be viewed as information sources
that naturally produce digital communication signals. The formal connection be-
tween chaotic dynamics and information theory began with the introduction of
the concept of measure-theoretic entropy in ergodic theory. Chaotic systems are,
indeed, characterized by having positive entropy and thus they are information
sources. By assigning a discrete alphabet to the system state space using the for-
malism of symbolic dynamics, the chaotic system becomes a symbol source, and
because it is a continuous-time waveform source, it is also a digital signal source.
This fact can be used to synthesize ”meaning sources” through chaos control,
such as in Associative Memories, obtained through chaotic neural networks (CNN)
([79],[83]). It is then possible to modulate each single chaotic orbit, as we would
have done with standard sinusoidal wave, to carry different information on each of
them ([82]). Moreover chaos synchronization through small perturbations allows
for secure and robust communication ([75]).

5.1 Formulation of the problem and main result

There are several practical techniques fro obtaining stabilization of unstable peri-
odic orbits (UPOs) (see [73] for an overview of them). In any case, for the moment
we want to deal only with the existence problem of a state feedback law which pos-
sesses some particular stability properties. Given these properties we will be able
to explain in term of local input-to-state stability, the robustness of chaos control
methods against parameter uncertainties and measurement/control disturbances.
Consider the following dynamical system described by ordinary differential equa-
tions

ẋ = f(x) (5.2)

and the controlled system
ẋ = f(x) + u(x) (5.3)
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where f(x) is a continuously differentiable map <n to <n, and u(x) is a continuous
feedback controller. Denote by φ(x0, t) the orbit of (5.2) with initial condition x0,
i.e. φ(x0, 0) = x0, and by φu(x0, t) the orbit of the controlled system (5.3) with
initial condition x0.
Since we are interested in controlling chaotic systems, it is natural to make the
following assumptions, due to ergodicity of chaotic systems on their attractors.

Assumption 8 There exists a compact invariant set A for (5.2) on which the
dynamic of (5.2) is chaotic.

With this assumption the following property holds.

Property 1 There exist non-wandering points in (5.2).

Here a non-wandering point is defined as follows.

Definition 9 A point x ∈ <n is said to be a non-wandering point of (5.2), if it
satisfies the condition that for each neighborhood U of x, there exists a T > 0, such
that

φ(U, T ) ∩ U 6= ∅

where ∅ denotes the empty set.

The problem concerned here is: whether it possible to construct a small feedback
control law for (5.3) to create a new asymptotically stable periodic orbit (fixed
point)?
Note that here, unlike the treatment of this problem in the literature ([73]), we
do not demand that the new asymptotically stable orbit is an unstable periodic
orbit of the uncontrolled system (5.2). Futhermore this latter case is included as
a special case.
In the case of Property 1, it is not difficult to prove the existence of small pertur-
bation (feedback control) to guarantee the creation of a new asymptotically stable
periodic trajectory by virtue of closing lemma theory (see [74]).

Theorem 4 (X. Yang, [74]) Suppose that xp ∈ M ⊂ <n is a non-wandering
point of (5.2), where M is an invariant set of (5.2). For each ε > 0, there exists
a small feedback control up(x(t)) satisfying

‖up(x(t))‖ < ε,

which ensures that the orbit φup(xp, t) of the controlled system (5.3) is an asymp-
totically stable periodic orbit.
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5.2 Analysis of stability properties

Here we want to use characteristics of chaotic dynamics to derive stability prop-
erties of chaos control.
The general idea is that the system being chaotic, any typical trajectory is ex-
pected to behave ergodically, and pass infinitely many times near any points on
the set. This peculiarity allows, under certain assumptions, to relate local stability
properties to global stability properties. Once the system is on the attractor, this
result is immediately proved. Problems can derive from two factors:

• the attractor is strange

• the rate of convergence of the points in the basin of attraction is too slow

The first problem requires careful attention, as it deals with the intrinsic geomet-
rical properties of the attractor, as only strange or hyperbolic attractors can have
fractional dimensionality (they are fractals, see [71]). By dimensionality D we
mean the ratio between its Hausdorff dimension, DH (see [81] for an introduction
to this concept) and the geometrical dimension of the system n, which we want to
be 1

D(A) =
DH(A)

n
.

In the case of it being lower, the chaotic attractor has zero Lebesgue measure,
that is, intuitively, it is a small set surrounded by holes, and its basin of attraction
can have fractal boundaries too (see the literature at this page for details on this
argument see [86]) such that infinitesimal displacements in initial conditions will
lead to completely different dynamical behaviors.
Hence we have to exclude this case.

Assumption 9 A is a chaotic attractor for the system (5.2), and it is not an
hyperbolic attractor. Moreover initial conditions belong to its basin of attraction
and fall on it in finite time.

Note on hyperbolic attractor

A hyperbolic attractor is a hyperbolic set which is also an attractor. A hyper-
bolic set for a dynamical system is a set entirely made of unstable hyperbolic
trajectory (i.e the Jacobian at every point has non-unitary eigenvalues, except for
the direction parallel to the flow), but with a particularity: each trajectory in the
set has the same number with the same eigenvalues of unstable and stable mani-
folds.. This characteristic leads to very strange behavior of trajectories belonging
to an hyperbolic attractor which makes hyperbolic attractors potential set with
fractional dimensionality. In fact, they belong to the class of strange attractors,
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and only strange attractors can have fractional dimension ([71]). The idea is that
trajectories keep on leaving and entering unstable and stable manifolds each time
with same characteristics, which leads to fractal-like characteristics of the resulting
support.
What may seem strange, then, is that we made the hyperbolicity assumption in
order to define the trace of an evolution operator, and now we want to avoid such
assumption in order to achieve D(A) = 1.
The fact is that, hyperbolicity assumption over single trajectories does not lead
to the global hyperbolicity of the attractor, as trajectory hyperbolicity can be
non-uniform. And it is exactly this non-uniformity (in particular in the number
of stable and unstable directions) which leads to D(A) = 1 for the resulting at-
tractor. The idea is that also in this case trajectories keep on leaving and entering
unstable and stable manifolds, but each time with different characteristics and this
leads to fill the entire geometrical space ergodically.

With the last assumption we are in a good situation, as our initial conditions
belong to an invariant compact set with full dimensionality, and which is explored
ergodically by almost every trajectory.
This means that, given a point x0 ∈ A and a neighborhood U 3 x0,

lim
T→∞

φ(U,−T ) ⊇ A

Reversing this relation, this also means that

∀δ > 0,∀x ∈ A,∃T <∞, such that ‖φ(x, T )− x0‖ < δ. (5.4)

Comparing the definitions of global asymptotic stability and asymptotic stability,
we conclude that, given Assumption 9,

asymptotic stability is equivalent to global asymptotic stability over the
attractor A

We are now ready to state the main result of this section.

Theorem 5 Let up be a state feedback as in Theorem 4, and p the relative asymp-
totically stabilized periodic orbit. Then, the system (5.3) is local input-to-state
stable with respect to p.

Proof For Theorem 4 the system is asymptotically stable with respect to p. As we
noted this is equivalent to saying that system (5.3) is global asymptotically stable
with respect to p over A. For equation(3.10) this implies that system (5.3) is local
input-to-state stable with respect to p. �
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Now we recall the definition of local input-to-state stability (3.5). Locality just
implies that, as long as initial conditions and perturbation are bounded under a
certain norm, ρ, all the approximations that are valid for ISS systems are valid
for LISS systems. In particular all the results given in Sections 3.2.1 to 3.2.4 are
still valid. As we already pointed out, initial conditions can be taken arbitrarily
small with respect to the fixed point, due to system ergodicity. The fact that there
is an upper bound to the allowed perturbation can be understood by considering
that the system has an infinity of unstable periodic orbits, thus, a too strong
perturbation will bring the trajectory either into an other periodic orbit, or, in the
worst case, into a chaotic regime again.
Thus, we can say that, as long as

‖σ‖ < ρ,

where σ is a perturbation acting on the system (due to parameter uncertainties,
measurement errors, input disturbances, ...), the system (5.3) is input-to-state sta-
ble (ISS) with respect to p.

5.2.1 Controlled Poincaré return map and its stability prop-
erties

As we explained in Chapter 4 a continuous time dynamic, as the system (5.2),
induces discrete time map on the Poincaré section, the Poincaré return map. The
same is true for the controlled system (5.3). In fact, given a Poincaré section for
the uncontrolled system, we define the Controlled Poincaré return map P (x, ũ(x))
as

x′ = P (x0, ũ(x0)) = x0 +

∫ τ(x0)

0

[f(x(t)) + u(x(t))] dt, x(0) = x0, (5.5)

where we also define the function ũ(x0) as

ũ(x0) = {u(x(t))}t∈[0,τ(x)) , (5.6)

where x(0) = x0 and x(t) in a solution of the system (5.3).For the discrete time
continuous map, the input variable belongs to the space of Lipschitz functions over
the time interval [0, τ(x)). We thus define its norm in the following way

‖ũ(x0)‖L = sup
t∈[0,τ(x))

‖u(x(t))‖∞. (5.7)

When continuous time control is of the type described in Theorem 4, that is u = up,
the stabilization of an unstable periodic orbit p is equivalent to the stabilization of
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a fixed point xp for the Poincaré map. Being the system (5.3) local input-to-state
stable with respect to p,

the controlled Poincaré map P (x, ũp(x)) will be local input-to-state
stable with respect to xp.

Now we recall the definition of local input-to-state stability (3.5). Locality just
implies that, as long as initial conditions and perturbation are bounded under a
certain norm ρ, all the approximations valid for ISS systems are valid for LISS
systems. In particular all the results given in Sections 3.2.1 to 3.2.4 are still valid.
Again locality with respect to initial conditions is not a problem, while locality
with respect to perturbation intensity reflects the fact that the Poincaré return
map has an infinity of fixed points, thus a too strong perturbation will bring the
system near another fixed point, or, in the worst case into a chaotic regime again.
How does an input perturbation σ in continuous time reflect on the Poincaré map?
By definition we have (x(0) = x0)

Pσ(x0, ũ(x0)) = x0 +

∫ τ

0

(x) [f(x(t)) + u(x(t)) + σ(x(t))] dt = P (x0, ũ(x0) + σ̃(x0))

(5.8)
where ũ(x0) + σ̃(x0) = {u(x(t)) + σ(x(t))}t∈[0,τ(x)) , x(0) = x0. Hence, by sub-
tracting ũ(x0) from both sides, it results

σ̃(x0) = {σ(x(t))}t∈[0,τ(x)) , x(0) = x0

Now we can also relate the norm of this perturbation to the norm of the pertur-
bation in continuous time, by

‖σ̃(x0)‖L = sup
t∈[0,τ(x))

‖σ(x(t))‖∞, x(0) = x0. (5.9)

By taking the max over all possible initial point x0 of both sides, we can say
that the discrete time perturbation has the same norm as the continuous time
perturbation.
Thus, we can say that as long as

‖σ‖ < ρ,

where σ is some perturbation acting on the system (due to parameter uncertain-
ties, measurement errors, input perturbations, ...), the Controlled Poincaré return
map is input-to-state stable (ISS) with respect to xp, where xp is the nonwandering
point of Theorem 4.
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5.3 Practical control algorithm: the Delayed-Feedback-

Control robustness to parameter uncertain-

ties

Results from the last section and results of section 3.2 let us hope that chaos con-
trol will be robust against parameters uncertainties, measurement errors and input
disturbances. We want to test robustness to parameter uncertainties on a practi-
cal algorithm for chaos control: the Pyragas method or Delayed-Feedback-Control
(DFC).

Figure 5.1: Block scheme of the Delay-Feedback-Control

Contrary to other chaos control methods, which require at least the partial
knowledge of the uncontrolled dynamic and real-time computer processing to be
achieved, the DFC method is reference-free and makes use of a control signal ob-
tained from the difference between the current state of the system and the state
of the system delayed by one period of the UPO which has to be stabilized. The
block diagram of the method is presented in figure 5.1. Alternatively, the DFC
method is referred to as a method of time-delay auto-synchronization, since the
stabilization of the target orbit manifests itself as a synchronization of the current
state of the system with its delayed state. The method allows us to treat the
controlled system as a black box; no exact knowledge of either the form of the
periodic orbit or the system of equations is needed. Taking into account only the
period of the unstable orbit, the system under control automatically settles on the
target periodic motion, and the stability of this motion is maintained with only
small perturbations. The DFC algorithm is especially superior for fast dynamical
systems, since it does not require any real-time computer processing.
This control is already known to be robust to the gain parameter K0 (control-
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lability range, see [75]). As we will see from one practical example, the exact
knowledge of the period is not necessary as well, leading to an almost-blind chaos
control method.
Moreover, the redundancy nature of the neural system makes the DFC a natural
candidate to model global synchronous oscillations of groups of neurons as a period
state of a controlled chaotic dynamics. In fact, in ([85]) it is shown how the emerg-
ing synchronization regimes, of a closed chain of uni-directionally coupled chaotic
oscillators, show analogies with the experimental behavior of a single chaotic laser
subjected to a delayed feedback.

5.3.1 Coupled FitzHugh-Nagumo equations chaos control

The uncontrolled system analysis is taken from [68].

In the following, we study a pair of excitable neurons, which are modeled by the
FitzHugh-Nagumo FHN excitable elements ([63, 64, 68]), given by the following
equations:

du1

dt
= u1(u1 − α)(1− u1)− v1 +

K

2
(u2 − u1),

dv1

dt
= (τ(u1 − γv1)), (5.10)

du1

dt
= u2(u2 − α)(1− u2)− v2 +

K

2
(u1 − u2),

dv1

dt
= τ(u2 − γv2),

where α, γ, τ , and K are parameters, u1,2(t) is the activator, and v1,2 is the in-
hibitor. The reason that we use FHN neuron is that the equations are standard
and minimal models for excitable systems in the following sense. The model con-
tains no more than two variables, and does not describe a specific biochemical
reaction: it can be used to describe both neural and cardiac dynamics.
Employing the following parameters: τ = 0.001, γ = 0, each element is excitable
for α > 0, that is, a small but finite perturbation to the rest state (u1, v1, u2, v2) =
(0, 0, 0, 0) leads to a large excursion (an excitation). Because of the excitable nature
of the units, the rest state is a globally stable solution when the coupling is ex-
citable, i.e., K > 0. Indeed, starting from the rest state with a finite perturbation,
these two elements excite and immediately synchronize. After synchronization,
there are no input signals from the other element owing to diffusive coupling, and
then, both elements immediately return to the rest states.
For a phase-repulsive coupling K < 0, however, periodic excitations are observed
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in some parameter regions. A rich variety of cyclic firing patterns is found nu-
merically, as depicted in Fig. 5.2B. To characterize these periodic solutions, we
introduce the following symbolic notation. In Fig. 5.2B-a , after one element
excites, the other element excites soon. After this successive excitations, both el-
ements stay at the quiescence state for a while. These excitations and quiescence
are repeated, and we symbolize this firing pattern as AB-. Note that the code AB-
and BA- correspond to the same periodic solution due to the invariance under the
exchange of each element. In the same way, we characterize periodic solutions in
Fig. 5.2B as AB-AB-BA-BA-, AB-BA-, and ABA-BAB-.

Figure 5.2: A) Firing pattern diagram in (K,α)-parameter space. The line represents the
Hopf-bifurcation line: KHP = −α−γτ . Each colored dot corresponds to different firing pattern,
(a) red: ABA-; (b) blue: ABA-BAB-; (c) green: AB-BA-; (d) orange: AB-; (e) yellow: AB-;
(f) magenta: AB-BA-; and black: longer periodic or chaotic firing patterns. B) Time evolution
of a pair of FHN elements with phase-repulsive coupling. Periodic oscillations appear below a
critical coupling strength K < −0.01. Typical periodic solutions are shown: (a) K = −0.5: AB-
firing pattern, (b) K = −0.093 : AB − AB − BA − BA−, (c) K = −0.012 : AB − BA−, (d)
K = −1.0 : ABA− BAB−. The solid and broken lines represent u1(t) and u2(t) , respectively.
C) Interspike interval as a function of the coupling strength K (from [68])

To see dynamical behaviors, we calculate the interspike interval ISI , which is
defined as follows. Integrating the Eq. (5.10) numerically we have used adaptive
time step algorithm so called the fifth-order Runge-Kutta-Fehlberg formula be-
cause there exist slow and fast variables in the system , we have a sequence of time
ti at which excitation of element 1 occurs. The time sequence of the excitations
can be obtained by T = {ti|(u1(ti) = 0) , (du1(ti)/dt > 0)} . The ISI defined as
the sequence of ISIi = ti+1− ti is often used as a characterization of neural activ-

98



ities ([76]) . After an initial transient disappears, i.e., for i� 1, the superimposed
ISI as a function of the parameter K is plotted in Fig. 5.2C. The ISI shows that
the cyclic firing bifurcates to irregular one at K = K∞ by decreasing the coupling
strength K. Further decreasing K, periodical firing appears again. The chaotic
firing regions in (K,α)-parameter space are shown in Fig. 5.2A.
From stability analysis, it results that the rest state becomes unstable at criti-
cal values KHP = −α − γτ via the Hopf bifurcation, i.e the fixed point loses its
stability as a pair of complex conjugate eigenvalues of the linearization around
the fixed point cross the imaginary axis of the complex plane. Under reasonably
generic assumptions about the dynamical system, we can expect to see a small
amplitude limit cycle branching from the fixed point. The limit cycle is orbitally
stable if a certain quantity called the first Lyapunov coefficient is negative, and
the bifurcation is supercritical. Otherwise it is unstable and the bifurcation is
subcritical.

Figure 5.3: Projection of the chaotic attractor of the system (5.10)

In this case the bifurcation is subcritical, and the solution branch that stems
from it is unstable. This means that for K < KHP the periodic pattern described
in figure 5.2B) are not directly connected to the HP branch of unstable period
solution. On the contrary they are induced by different kind of bifurcation, in-
cluding period doubling bifurcations. In particular there is an accumulation point
for the period doubling bifurcations at K∞ ∼ −0.642 under which the dynamic is
chaotic.
For our chaos control simulation parameters are: K = −0.8, α = 0.01, τ = 0.001,
γ = 0.001. In order to have time scales similar to those of neural dynamics we
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have scaled the time by 2.0 · 105 (not shown in equations). Figure 5.3 shows the
projection of the chaotic attractor on the (u1,v1) plane.
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Figure 5.4: Behavior of D2(T ) =
〈
(u1(t)− u1(t− T ))2

〉
as a function of T , during chaotic

evolution. Minima of the plot approximate unstable periodic orbits periods, as the system
shadows them continuously during its evolution.

To show how chaos control works and its robustness, we will stabilize period
one and two cycles embedded in the system. The fact that the system shadows
unstable periodic orbits allows for a very simple period recognition. We fix dif-
ferent trial values T , and for each of them we calculate the quantity D2(T ) =
〈(u1(t)− u1(t− T ))2〉. The minima of this function will correspond to approxi-
mated values of unstable periodic orbits’ period. Results for the current system
are shown in figure 5.4. The first two minima are at T1 = 0.00638, T2 = 0.0127.

Equations for the controlled system are

du1

dt
= u1(u1−α)(1−u1)− v1 +

K

2
(u2−u1) +u(t), u(t) = K0(u1(t−T )−u1(t)),

dv1

dt
= τ(u1 − γv1), (5.11)
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Figure 5.5: A) Behavior of D2(T ), for T = T1, as a function of the control gain K0. There
are two distinct regions in which the unstable periodic orbit of period T1 turns to be stabilized:
K0 ∈ [0.0031, 0.0045] and K0 ∈ [0.0063, 0.0126] (higher gains were not tested), which verifies the
robustness of the controller against the gain parameter K0. B) Behavior of D2(T ), for T = T2.
The unstable periodic orbit of period 2 turns to be stabilized for K0 ∈ [0.0314, 0.0400] (higher
gains were not tested), which verifies the robustness of the controller against the gain parameter
K0.

du1

dt
= u2(u2 − α)(1− u2)− v2 +

K

2
(u1 − u2),

dv1

dt
= τ(u2 − γv2).

First of all, we want to verify the robustness of the controller against the gain
parameter, K0. To do this we let the system evolve for 0.2 s without control and
then we apply the control for growing values of K0 and T = T1, T2. Then we let
the system to stabilize for another 0.5 s and then calculate D2(T ) for each value
of K0, as in figure 5.5. Both periods turn out to be stabilized for a wide range of
gain parameter, confirming the robustness of the method. Figures 5.6-5.7 show the
stabilized orbits for different values of K0, and for T = T1 and T = T2 respectively.

To test the robustness against the control delay, T , for each cycle, we fix
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Figure 5.6: Projection of the unstable periodic orbit of period 0.00638, stabilized by different
values of the gain parameter K0

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1 -0.5  0  0.5  1  1.5

K0=0.0380
K0=0.0320

Figure 5.7: Projection of the unstable periodic orbit of period 0.0127, stabilized by different
values of the gain parameter K0

the control gain inside the stability region, as found in figure 5.5 (we test for
K0 = 0.0038 and K0 = 0.01 for the cycle of period T1, and K0 = 0.0350 for the
cycle of period T2) and vary T . In this case, for each value of T , we calculate D2(T )
where T = T1, T2 is the period of the stabilized cycle. Looking at plot of D2(T ) as
a function of T (figure 5.8), gives an idea of which delays may succeed in stabilizing
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Figure 5.8: A) D2(T ) for T = T1 calculated for the controlled system 5.11 for different values
of the controller delay and two admissible control gains, as found in figure 5.5. The fact that
the autocorrelation function remains quite small for a wide range of delays may indicate the
robustness of the controller to this parameter. B) D2(T ) for T = T2 calculated for the controlled
system 5.11 for different values of the controller delay and two admissible control gain. The
fact that the autocorrelation function remains quite small, compared to its value on the correct
control period, for a wide range of delays may indicate the robustness of the controller to this
parameter

the unstable periodic orbit. We fix D2(T ) < 0.15 to consider a delay admissible.
Figures 5.9-5.10-5.11 show some of the resulting orbits for different admissible
control delays. The control of period T1 with control gain K0 = 0.01 turns to be
not robust against delay uncertainties (figure 5.10), as the stabilized orbits falls
in the neighborhood of the period T2 cycle. The reasons of this phenomenon are
still to be investigated. One possibility, is that, looking at the shape of the chaotic
attractor (which looks like to pass more often near the T2-cycle) and at the height
of the minima of figure 5.4 (the T2-minimum is lower then the T1 one), the period
T1 orbit is more unstable than the period T2 orbit. In all other cases the control
is robust to delay time uncertainties (figures 5.9-5.11), as predicted by theoretical
results of section 5.2.
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Figure 5.9: Control of the UPO of period 0.00638 s with delay times in the acceptable region
found in figure 5.8 and K0 = 0.0038. The control is robust.
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Figure 5.10: Control of the UPO of period 0.00638 s with delay times in the acceptable region
found in figure 5.8 and K0 = 0.01. The control is not robust, as the stabilized orbit falls near
the UPO of period T2.

5.4 Chaos synchronization

Synchronizing two identical chaotic systems with different initial conditions means
linking the trajectory of one system to the same values of the other so that they
remain in step with each other, through the transmission of a signal. Synchroniza-
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Figure 5.11: Control of the UPO of period 0.0127 s with delay times in the acceptable region
found in figure 5.8 and K0 = 0.0350. The control is robust.

tion can be used to transmit information ([77]), or in a set of neurons to create
coherent states as a form of representation ([65]).
Chaos synchronization has practical application in robust and secure communica-
tion (see [75] and the references therein).

5.4.1 Coupled FitzHugh-Nagumo equations chaos
synchronization through small perturbations

In what follows we will study the synchronization between two pairs of chaotic
FHN equations. There will be a ”guiding” and a ”guided” pair, in the sense that
the signal will be transmitted from a pair to the other and not vice-versa.
Equations of the system are

du1

dt
= u1(u1 − α)(1− u1)− v1 +

K

2
(u2 − u1),

dv1

dt
= τ(u1 − γv1), (5.12)

du2

dt
= u2(u2 − α)(1− u2)− v2 +

K

2
(u1 − u2),

dv2

dt
= τ(u2 − γv2),

du3

dt
= u3(u3 − α)(1− u3)− v3 +

K

2
(u4 − u3) + U
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dv3

dt
= τ(u3 − γv3),

du4

dt
= u4(u4 − α)(1− u4)− v4 +

K

2
(u3 − u4),

dv4

dt
= τ(u4 − γv4),

where U = σ(u1 − u3) is the control signal and σ is the adjustable signal in-
tensity (coupling strength). All the other parameters are as above.
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Figure 5.12: Synchronization as a function of the signal strength σ for two pairs of coupled
chaotic FHN equations.

We study the synchronization in term of the mean absolute difference between
u1 and u3 for various signal intensity (σ ∈ [0, 1] with steps of 0.001) and after the
system has stabilized. To do this we let the system evolve with σ = 0 for 0.2 s, then
switch the signal on and let the system evolve for 0.8 s, then compute the mean of
u1(t)−u2(t), 〈|u1(t)− u2(t)|〉, for 0.2 s. Results are given in figure 5.12. We try to
fit the plot with an inverse exponential function, e−aσ, obtaining a = 51± 3, (5%)
(fig. 5.12). Again, small perturbations, compared to the unperturbed dynamics,
suffice to obtain synchronization.

106



Chapter 6

The proposed model revisited and
conclusions

In chapter 1 the general problem of adaptive control was faced without any tech-
nical instrument. In chapter 2, inspired by movement learning, we propose a
vertebrate-like adaptive controller, but there were still open problems. In chapter
3-5, theoretical instruments to face these problems were presented, including some
practical examples.
Based on these results, we want to synthesize a possible ISS vertebrate like adap-
tive control system. We will use both an analogical control scheme, which can be
seen as a ”biological” model, and a digital one, more useful for practical imple-
mentations, and, as we will see, even more efficient for fine parameter tuning.
We will focus only on the ”feedback loop” and on the ”adaptive loop” of figure
2.8. That is regarding possible ways of implementing a synergy ISS feedback con-
troller and on open problems and possible solutions regarding adaptation through
synergy activation coefficient tuning.

6.1 The ISS synergy feedback controller and adap-

tation problems

For both an analogical and a digital controller, we choose the synergy summa-
tion field (2.5) to be ISS, that is, if ν0 ∈ <p is our present knowledge of system’s
parameters we have to find a function, kν0(x), such that the closed loop system
ẋ = f(x, kν0(x), ν0) is ISS at the origin. This way we are sure that, even if the
real parameter vector, µ, differs from ν0, the system can be contained. Depending
on hardware capabilities, we can split this force field in one or more synergies.
Our aim is to modify their activation coefficients to obtain adaptation through a
suitable algorithm.
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In general, the set of parameter vectors we can approximate by modifying syn-
ergy activation coefficients will depend on the number and on the specific form of
available synergies. In fact, depending on these two factors it will be possible to
approximate more or less precisely the full parameter phase space.
Let us make it clear with an example. Suppose that, for a fixed initial param-
eter vector, ν0, we can split the feedback force field, kν0(x), in K synergies,
{φi(x)}i=1,...,K , of arbitrary form (i.e arbitrary x dependence), with the constraints
that: (i) they add vectorially and their vectorial summation with the initial acti-
vation coefficient set {cν0

i }i=1,...,K gives kν0(x) (ii) K is fixed, (iii) we cannot further
modify their form, apart from their activation coefficients, {ci}i=1,...,K . These con-
straints are equivalent to the fact that we can set the synergy feedback controller
as we want, depending on hardware capabilities, before starting to control the
system, but we cannot further modify it after the control starts.
The easiest case we can imagine is when there is only one unknown parameter.
Indicating with [ν]j the j-th component of a vector ν ∈ <p, this means [ν0]j = [µ]j
for j = 1, . . . , p − 1, [ν0]p 6= [µ]p, and [µ]p is unknown. Then one synergy, given
by kν0(x), is sufficient only if the ISS force field depends linearly on [ν0]p, that is
if kν0(x) = [ν0]p · k′[ν0]1,...,[ν0](p−1)

(x). In fact it is sufficient to set its coefficient

to [µ]p/[ν0]p, through a suitable tuning algorithm. But, slightly complicating
things, if kν0(x) = k′[ν0]1,...,[ν0](p−1)

(x) + [ν0]p · k′′(x), affine dependence, then, in

order to not modify the other parameter dependence, we would need two syner-
gies, k′[ν0]1,...,[ν0](p−1)

(x) and [ν0]p · k′′(x), and then set the coefficient of the first to

1 and the coefficient of the second to [µ]p/[ν0]p. If the hardware does not permit
it and we can use only one synergy, necessarily given by kν0(x), then we can not
blindly set its activation coefficient to [µ]p/[ν0]p, because in this way we will also
modify the dependence of the feedback law on the other parameters.
To formalize this problem, we can describe the synergy activation pattern {ci}i=1,...,K

as a vector c ∈ <K in an obvious manner. Depending on the particular form of the
ISS feedback force field, and on the number and forms of synergies we are using,
there will exist a map

M : <K → <p,

which describes the effect of a change in synergy activation on the parameter
vector components. M will in general depend on x, too. In the case of linear
dependence of only one unknown parameter explained above we will simply have,
M(c) = ([ν0]1, . . . , [ν0](p−1), c · [ν0]p). But, even for the affine case with only one
synergy, the exact form of M will change from case to case, and we can say nothing
in general.
It would be important that M does not depend on x, otherwise a change in synergy
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activation will induce a position dependent change in the parameter vector 1. In
what follows, we then make the following assumption.

Assumption 10 M is independent of x.

Going back to the affine dependence case with only one synergy explained above,
or to any other general case, with the last assumption we can define the vector
ν = M(c). The tuning will then consist in finding the vector, c ∈ <K , that mini-
mizes ‖ν−µ‖∞ through a suitable tuning algorithm, even if in general we will not
be able to obtain ν = µ.

6.1.1 Analogical synergy feedback controller

This subsection is an attempt to synthesize an analogical adaptive controller as a
model of vertebrate movement stabilization and adaptation through spinal force
fields and reflexes.
In this case, the feedback force field is given by the co-contraction of different
muscles, and is therefore analogical, but we suppose that its output is affected
by strong disturbances, possibly of the same order of intensity of the force field
itself. Moreover, as we do not need state quantization, there will not be an al-
lowed parameter set Ω0 estimation procedure, as in section 3.2.6. In fact, we
don’t even need to specify an acceptable state region, as, for the ISS nature of
the closed loop dynamics, the system will be contained for any couple of real and
trial parameter vectors, and for any input perturbations (in the case of the digi-
tal controller it was necessary to define a ball of acceptable states, Bn

∞(0, R), in
order to unambiguously define the Lipschitz constant of f(x, u, µ) and correctly
synthesize the adaptive controller). Once we have split the ISS feedback law, kν(x)
in different synergies, {φi(x)}i=1,...,K , we have to define how to tune their activa-
tion, in a similar way to vertebrate reflex adaptation. First, we have to define a
measured variable x̃ = m(x) ∈ <s, in continuous time or sampled, which should
describe divergences from the origin (see section 6.1.1 for a practical example) and
an admissible region, A ⊂ <s, for it. This variable mimics the function of muscle

1If M depends on x and kν(x) = k(x, ν) has smooth dependence on ν, we can use a trick, that
is Taylor expansion in the space of the p′ ≤ p unknown parameters. We can fix a precision, ε,
for the unknown parameter set we want to explore, and then find the relative Taylor expansion
order and expansion terms around ν0. Then choose as fixed coefficient synergy kν0(x) and
as tunable coefficient synergies the expansion terms with null initial coefficients. M will be
determined by the coefficients of the first order terms ci = [δµ]i, i = 1, . . . , p′, as M(c1, . . . , cp′) =
([ν0]1 + c1± ε, . . . , [ν0]p′ + cp′ ± ε, [ν0](p′+1), . . . , [ν0]p)T . In real cases we want K to be small, and
so ε will be large. What is important is that the parameter approximation, which will depend
on the particular system under consideration, due to this fact does not lead to instabilities for
the ISS nature of the feedback force field.
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spindles. In the case it leaves this region, an error signal (sensory inflow) is sent
to the synergy activation tuner, which will change their coefficient, after a certain
delay, on the basis of a suitable algorithm (sensory feedback).
We may want to implement the representation of synergy activation coefficient
through the state of a chaotic system. In this case the error signal will change
the control parameter of a chaos control scheme, inducing the transition from one
periodic orbit to another. Alternatively, it can change the synchronization, for
example by changing the coupling strength, between groups of neurons, to obtain
spatial-temporal coherence as a form of representation. A simple, but effective
idea is to use UPOs stabilization to represent the coarse feedforward activation
coefficient set, due to chaos control robustness. While synchronization could be
used for fine reflex tuning, as it is achieved faster, is easy to implement and leads
to smooth responses, for example to changes in the coupling strength.
As happens for vertebrate movement learning ([62]), adaptation through reflexes
works only if the present knowledge of system parameters does not suffice to sta-
bilize the origin, or, for movement learning, the instantaneous virtual trajectory
point. In the case the system turns out to be already stabilized, this scheme can
do nothing, and different adaptation algorithms, such as metabolic optimization
of power consumption, should be implemented to achieve finer parameter learning.

The inverted pendulum on a cart

We want to test our analogical synergy adaptive controller on the same mechanical
system of section 3.2.7. We recall the equations of motion

ẋ = y

ẏ =
1

l

(m+M)

(m sin(x)2 +M)

(
g sin(x)− (ml)2

(m+M)
cos(x) sin(x)y2 − cos(x)

(m+M)
u

)
.

and relative nonlinear control law, which renders the closed-loop system still La-
grangian is

u(x, y) = k
ml sin(x)(ml2y2 + cos(x)D)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

+

−
c
(
ml2 − (ml)2

m+M
cos2(x)

)
((r(k + 1) + 1)ml cos(x)y)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

, (6.1)

where D = −mgl.
With no state quantization the origin is an asymptotically stable fixed point

for any couple of real and trial parameter vectors, but the case in which the real
acceleration due to gravity, g, is larger than the one used by the controller, g′.
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Thus, we will assume that it is the only unknown parameter.
We can devise the feedback law in two terms, which add vectorially, one, φs(x)
that depends on g′ and one, φd(x) that does not. Their explicit form is

φs(x) = g′
k(ml)2 sin(x) cos(x)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

, (6.2)

φd(x) = k
ml sin(x)ml2y2

ml2 − (ml)2

m+M
(1 + k) cos2(x)

+

−
c
(
ml2 − (ml)2

m+M
cos2(x)

)
((r(k + 1) + 1)ml cos(x)y)

ml2 − (ml)2

m+M
(1 + k) cos2(x)

. (6.3)

From the force field plot of these two terms, we see that the first is a stabilizing
force field , that is negative force for positive angle, and positive force for negative
angle, and it serves to stabilize the system (fig. 6.1 top right), while the second is a
dissipating force field, that is negative acceleration for positive speed, and positive
acceleration for negative speed, and it serves to obtain asymptotic stability (fig.
6.1 bottom).
When the controller uses g′ ≥ g, the origin is the only asymptotically stable
fixed point (fig. 6.1 center left and fig. 6.2), while, when it uses a g′ < g and(
m+M
m

g
(k+1)g−kg′

)1/2

< 1, the origin becomes unstable and two new fixed points

appears for x = ±x(g′, g), x = cos−1

((
m+M
m

g
(k+1)g−kg′

)1/2
)

(see figure 6.1 center

right and figure 6.3).
Now we have to define a suitable measured variable which should describe diver-
gences from the origin. We decide to use a sampled variable with memory, with
sampling time τ . In this case divergences from the origin occur in two cases: (i)
the system is leaving the origin (x · y > 0) and the absolute value of the speed, |y|,
is not decreasing; (ii) the speed is asymptotically going to zero for |x| > 0 (that is
the origin is not the only asymptotically stable fixed point). Hence we define the
measured variable x̃(jτ) ∈ <4 as follows

x̃(jτ) = ( x(jτ)y(jτ), |y(jτ)| − |y((j − 1)τ)|, |x(jτ)|, |y(jτ)|) .

The admissible region, A ⊂ <4 for it is given by

A = ( (x̃(jτ)1 ≤ s̃1) ∪ ( (x̃(jτ)1 > s̃1) ∩ (x̃(jτ)2 < s̃2) ) ) ∩

( (x̃(jτ)3 ≤ s̃3) ∪ ( (x̃(jτ)3 > s̃3) ∩ (x̃(jτ)4 ≥ s̃4) ) ) ∩ A, (6.4)
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where A = [−1, 1] × [−1, 1] × [0, 1] × [0, 1] is the admissible phase space for
x̃ induced by the fact that (x, y) ∈ B2

∞(0, 1), s̃i ≥ 0, i = 1, 2, are fixed tolerance
levels to avoid disturbance effects and in the noise free case they are set to zero.
While s̃3 � 1, s̃4 � 1 determine when we are close to the origin and under which
value the angular speed should be consider as zero, respectively. Let us explain in
the disturbance free case, s̃i ≡ 0, i = 1, 2, the meaning of A.
The first line tells us that the system is stable, but not necessarily at the origin.
In fact (x̃(jτ)1 = ẋ2 ≤ 0) means that the system is not leaving the origin, and
( (x̃(jτ)1 > 0) ∩ (x̃(jτ)2 < 0 ) means that, even if the system is leaving the origin,
the absolute value of the angular velocity is decreasing, and, by the ISS nature of
the force field, which implies boundness of trajectories, it will change sign in finite
time.

The second line tells us the origin is the only stable fixed point. In fact
(x̃(jτ)3 ≤ s̃3) means we are close to the origin, while, (x̃(jτ)4 ≥ s̃4) ) means
that the system is allowed to stay far from it only with non-zero angular velocity,
except when it changes sign. The tolerance level s̃4 � 1 serves to discriminate
whether the system is just passing through y = 0 to change the sign of the angular
velocity, or if it is asymptotically stabilizing on a fixed point different from the
origin. By choosing an arbitrary small s̃4 � 1, in the first case the probability
of sampling x̃ outside A goes to zero, while in the second case, x̃(t) will remain
outside A until it is sampled and an error signal is correctly sent, regardless how
small s̃4 � 1 is, as long as it is finite. In the perturbed case, we will have to
choose s̃i ≥ 0, i = 1, 2 and, possibly, change s̃3, s̃4 in accordance to the perturba-
tion intensity. In particular it will be necessary to set a positive s̃1, as there will
be positive value of x̃1 induced by the perturbation; and it will be necessary to
increase the value of s̃4, as the perturbation will tend to keep x̃4 outside the error
region.
Now we have to define the error signal. Let AC = A/A be the complementary set
of A with respect to A. Then AC = AC1 ∪ AC2 , where AC1 is the complementary
to the set described in the first line of 6.4 and AC2 the complementary to the set
described in the second. Thus, at each sampling time, we can independently check
first if x̃ ∈ AC1 , which tells us wether the system is leaving the origin, and then if
x̃ ∈ AC2 , which tells us that the origin is not the only stable fixed point. In the
former case we will send an error signal r1, in the latter r2. Obviously we can have
both signals.
As we said, in this case modifying the dependence of the feedback law on other pa-
rameters than g′ will not lead to instabilities. That is why we can use only one syn-
ergy, which is given by the full ISS feedback force field 6.1. As we said, φd(x) is in-
dependent of g′, while φs(x) depends linearly on it, and in this case, by setting ν0 =
(l, g′, other parameter)T , it resultsM(c) = (c·l, c·g′, other parameters unchanged)T ,
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independent of x. So in the case of error signal we have to increase the synergy
activation.
We want to include results of section 5.4 in the synergy tuning procedure. Without
specifying an exact combination of periodic orbits to represent their feedforward
activation, we want to use chaos synchronization to modify it through a reflex gain
r ∈ [0, 1]. If c is the feed forward activation, c(r) = c(1 + α · r) is the reflex tuned
activation, where α is the maximum percentual reflex boost. At the beginning
r = 0, while in general we choose it to be proportional to the synchronization
of two coupled pairs of chaotic FitzHugh-Nagumo equations. If σ is the coupling
strength, from results of section 5.4 it results r(σ) ∼ 1 − e−aσ. The role of the
error signals r1 and r2 is to increase σ by δσ1 and δσ2, respectively. At the end
this is the proposed algorithm:

1. set the synergy force field to be φd(x)+φs(x) with parameter g′ and activate
it with initial coefficient 1 (K = 1)

2. let the system start to evolve

3. sample x̃ each τs

4. check if x̃(jτ) ∈ AC1 , in which case send an r1 signal to the synergy activation
tuner

5. check if x̃(jτ) ∈ AC2 , in which case send an r2 signal to the synergy activation
tuner

6. after a fixed delay T , the coupling σ is increased by δσ1, in the case of error
signal r1 and by δσ2, in the case of error signal r2, inducing a reflex boosting
of the synergy activation

7. repeat step 1-6 until one of the following two

(a) the origin is asymptotically stabilized

(b) the reflex gain has gone to 1 without asymptotically stabilizing the
origin

8. in the first case the synergy is correctly tuned

9. in the second start again from step 1, with initial feedforward coefficient
(1 + α) and r = 0

We use the following parameters in simulations (see figures 6.4-6.6): g′ = 9ms−2,
g = 14ms−2, τ = 0.005s, α = 1, a = 50, δσ1 = 0.001, δσ1 = 0.003, T = 0.2. In the
disturbance free case s̃1 = s̃2 = 0, s̃3 = 0.01 and s̃4 = 0.00001.

113



In the perturbed case the output of the feedback controller is perturbed by two kind
of disturbances: (i) a high frequency, ω1, periodic disturbance of constant intensity,
D; (ii) a lower frequency, ω2, periodic disturbance of intensity proportional to the
unperturbed control intensity, with constant proportionality coefficient α. The
first kind of disturbance models fine movement control noise (a shaking hand).
The second tends to be larger whenever the unperturbed control is large, and
models the fact the muscles may control large forces worst than small ones.
In the simulation we choose ω1 = 7Hz, ω2 = 5Hz, s̃1 = 0.05, s̃2 = 0, s̃3 = 0.01
and s̃4 = 0.002 and for different values of D = 0.5, 1, 2 and α = 0.05, 0.1, 0.2. The
frequencies of the disturbances are similar to those of a real shaking hand ([84]).
In both cases, non perturbed and perturbed, the algorithm works to correctly
tune the synergy. In the disturbance free simulation, it is possible to clearly
distinguish the effect of the two different kinds of error signal. In the perturbed
one, unpredictable effects of disturbances lead to a small synergy over boosting.
As we said, finer and higher level tuning procedures, similar to animal metabolic
optimization of power consumption, can be used to correct this problem.

6.1.2 The digital controller with minimal bit rate

The use of an analogical controller can be very unpractical in real situations, and,
as we explained, its tuning algorithm only suffices to stabilize the origin, but is
very poor for fine parameter approximation. Here we want to use properties of
both the synergy controller and the digital controller with minimal bit-rate de-
scribed in section 3.2.5.
After we have found the unknown parameter region which assure containability of
the system, Ω0 ⊂ <p, we choose an initial trial parameter ν ∈ Ω0, and define the
ISS feedback law (in this case we have to impose slightly different conditions on
vectors in Ω0, than what we imposed in section 3.2.6, we will come back on this
point later).
What we said about the approximation of the real parameter vector through the
combination of tuned synergies is still valid. Nevertheless, in this case we are not
allowed to modify the dependence of the feedback law on parameter we have not in-
cluded in the unknown ones. Thus, if we can choose the synergy set {φi(x)}i=1,...,K

such that we can tune them without modifying dependence on known parameters,
there are no problems and we can start the tuning procedure. In the opposite
case we have to include those known parameters, whose dependence is changed
by synergy tuning, with the unknown ones. In both cases, there will be an al-
lowed parameter region, Ω0, which induces an allowed activation coefficient region,
C0 ⊂ <K , where K is the number of synergies we are using, Ω0 = M(C0), and M
is defined in section 6.1.
Once we have done it, the digital controller output allows for a very powerful tun-
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ing procedure. From what explained in Appendix A, the mean number of positive
symbols we get from the encoder, h, is a decreasing function of the difference be-
tween actual and trial parameters, ∆µ = ‖ν − µ‖∞.
We can use this fact to explore the admissible parameter region and find for which
parameter vector h is maximized
Thus, in this case, the output of the sensors will just be an empirical estimation of
h, h̃(c), where c ∈ C0 and ν = M(c) is the present trial parameter, and there will
not be an allowed region. The tuning procedure will then consist in moving the
trial parameter, by changing synergy activation in C0 and stop on the activation
pattern, c ∈ C0, which maximizes h̃. The computation of h̃ will be done by fixing
a large number of sampling times, S̃ � 1, and by counting the number of zeros
from the encoder N0(c) in these samples. Then h̃(c) can be found by solving the
following equation

N0(c)

S̃
=

1

h̃(c) + 1
.

If cν is the initial activation pattern, first we compute h̃(cν), then we start to
explore C0 with a certain resolution δc, that is we fix a constant grid G 3 cν over
C0 of diameter δc and start to explore all of its node until we find the activation
pattern c ∈ C0 ∩ G, which maximizes h̃.
As we said, in computing the allowed parameter region, Ω0, we have to impose
different condition than section 3.2.6. In fact, in this case the trial parameter is
not fixed, so relation 3.55 has to be verified for each real parameter vector µ ∈ Ω0,
but now not just for a fixed trial parameter vector ν ∈ Ω0 but for all possible trial
parameter in Ω0, that is condition 3.55 becomes

d(Qµν) < R− E, ∀µ, ν ∈ Ω0. (6.5)

In the old learning scheme the central controller received the codified variable,
and the relative control, at each sampling time, and from this could learn in some
way (neural network, Kalman filter, ...) the inverse dynamics of the system, so that
the trial parameter could remain fixed, until the correct one has been learned and
the feedback law is consequently tuned, while now we want to implement a faster
adaptation algorithm directly in the (synergy) feedback controller with minimal
bit-rate.

The inverted pendulum on a cart

As in section 3.2.7, we assume that the only unknown parameter is the pendulum
length, l expressed in meters. Without complicating things too much, this time we
will use two synergies, φs(x) independent of l, and φd(x) which depends linearly
on l. Hence if ν is the initial length parameter and cs ≡ 1, then M(cd) = (cd ·
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ν, other parameters unchanged)T , independent of x.
As we mentioned, to find the allowed parameter set, Ω0, we cannot follow the
algorithm of section 3.2.7. In that case we wanted to find the largest possible set
which could contain the real length parameter µ given a fixed trial parameter ν,
while now the trial parameter has to move in order to maximize h, that is why the
system must be containable for each trial and real parameter in Ω0. To make this
possible we use a similar algorithm. We define step 3 to 7 of the old algorithm
followed by

• if (y > 1− E) and Assumption 7 is verified, then give 1 as result; else 0

as the function T (µ, ν). This function gives 1 if the system with real length
parameter µ can be contained with trial parameter ν, and 0 otherwise.
For a fix length-axis resolution δµ, suppose we have found a set of r value, Ωtemp =
{Ωm,Ωm + δµ, . . . ,Ωm + (r − 1)δµ}, for which T (µ, ν) gives 1 for each µ, ν ∈
Ωtemp. Then to enlarge this set for larger values (right side), we use the following
algorithm:

1. set ν = Ωm + rδµ

2. for (i = 1, . . . , r) do ( T (Ωm + (i− 1)δµ, ν) , T (ν,Ωm + (i− 1)δµ) )

3. if in the last step we get a zero, we cannot enlarge the admissible parameter
set for a larger value; else we set r → r + 1

while to enlarge it for a smaller value (left side), we use this

1. set ν = Ωm − rδµ

2. for (i = 1, . . . , r) do ( T (Ωm + (i− 1)δµ, ν) , T (ν,Ωm + (i− 1)δµ) )

3. if in the last step we get a zero, we cannot enlarge the admissible parameter
set for a smaller value; else we set r → r + 1, Ωm = ν

At the beginning we have Ωtemp = ν0, r = 1, and we start to try to enlarge it
alternatively for a larger and a smaller value, until we get an error for one of the
two sides and we continue with the other until an error occur. For our system, we
set initial trial parameter ν0 = 1.25 and δµ = 0.01. At the end we got Ωm = 1.15,
r = 22, thus Ω0 = [1.15, 1.36] with resolution 0.01.
This set corresponds to an allowed φd(x) synergy activation region C0 = [1.15/1.25, 1.36/1.25]
with resolution 0.01/1.25.

The following simulation (figure 6.7) shows the effectiveness of this method.
We measured N0(ν)/S̃, for S̃ = 5000 and trial length parameter ν ∈ Ω0, and
different real length parameter µ ∈ {1.15, 1.25, 1.35}. In each case the minimum
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corresponds exactly to the real parameter. For comparison, we also plot the same
value as computed from Appendix A. In this case we get higher values, as in Ap-
pendix A we computed an upper bound for the typical error, thus a lower bound
on h and an upper bound on N0/S̃, but the similarity in the shape of the two plot
is striking. Again, it confirms the correctness of our predictions.

6.2 Conclusions

The main problem of this work was to study stability properties of non-linear
adaptive control systems with communication constraints. To do this we used two
approaches: (i) the first one was an heuristic approach, based on the way verte-
brates learn to control complex limb movements, which gave us the idea of the
synergy controller activated by feedforward commands, along with its adaptation
through reflexes, and the idea of the neural representation based on chaos control ;
(ii) the second one was a technical approach, based on the Input-to-State Stability
theory, which let us safely face problems such as control of non-linear dynamics
also in the case of bandwidth limitation and parameter uncertainties. Neverthe-
less, the first approach was also the source of a new problem, that is chaos control
stability.
At the end we built a formal framework, based on ISS, to study the stability of
closed loop dynamics (sections 3.2.1-3.2.4) which let us solve the containability
problem for adaptive control system with bandwidth limitation (Theorem 2 and
section 3.2.6), and test these results in a practical situation (section 3.2.7). This
framework also let us study stability properties of the proposed vertebrate-like
adaptive control of section 2.4. In particular we were able to prove the (local)
Input-to-State Stability of chaos control (Theorem 5), which justifies the robust-
ness of neural representations based on it, and to test this result in a practical
situation (section 5.3.1). Finally, in this last chapter we studied consequences of
synergy activation tuning on ISS closed loop dynamics for both an analogical (bi-
ological model) and a digital (practical implementation model) controller, and the
relative tuning algorithm. While for the analogical controller the tuning algorithm
is just a rude emulation of vertebrate sensory feedback, for the digital controller
statistical properties of its measurements allow for fine parameter approximation.
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Figure 6.1: Top left: the force fields of the uncontrolled dynamic; Top right: force field
of the stabilizing synergy; Center left: closed-loop system force field controlled only with the
stabilizing synergy and g′ = g; Center right: force field of the dynamic controlled only with
the stabilizing synergy and g′ < g. When the stabilizing synergy uses the correct value of
the gravity acceleration, the origin is the only stable fixed point, which will then be rendered
asymptotically stable through the dissipating synergy. When gravity acceleration is increased,
without increasing controller parameter, the origin becomes unstable, and two new fixed points
appear.
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Figure 6.2: Stable dynamics phase space (g = g′). Left: only the stabilizing synergy is used.
Right: both the dissipating and the stabilizing synergies are used.

Figure 6.3: Unstable dynamics phase space (g′ < g,
(
m+M
m

g
(k+1)g−kg′

)1/2

< 1). Left: only the
stabilizing synergy is used. Right: both the dissipating and the stabilizing synergies are used.
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Figure 6.4: Phase space of the inverted pendulum controlled by the analogical synergy con-
troller and initial conditions x = 0.5, y = 0 (left) and x = 0.7, y = 0.2 (right) in the unperturbed
case. See figure 6.5 for the time evolution. Right: At the beginning of the evolution x̃ ∈ AC1
and the synergy activation is boosted consequently. After about 8 seconds from the onset of
the evolution x̃ ∈ AC2 and the synergy activation is boosted again. At this point we have
g′ ∼ 9 ∗ 1.59 = 14.31 > g and the origin is an asymptotically stable fixed point. Left: After
about 4 seconds from the onset of the evolution x̃ ∈ AC2 and the synergy activation is boosted.
At this point we have g′ ∼ 9 ∗ 1.47 = 13.23 < g, which makes the origin the only asymptotically

stable fixed point as
(
m+M
m

g
(k+1)g−kg′

)1/2

> 1.
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Figure 6.5: Top left: angle (dashed line) and synergy reflex coefficient (solid line) temporal
evolution with initial conditions x = 0.5, y = 0, unperturbed case. Top right: angular speed
(dashed line) and synergy reflex gain (solid line) temporal evolution with initial conditions x =
0.5, y = 0, unperturbed case. Bottom left: angle (dashed line) and synergy reflex gain (solid
line) temporal evolution with initial conditions x = 0.7, y = 0.2, unperturbed case. Bottom
right: angular speed (dashed line) and synergy reflex gain (solid line) temporal evolution with
initial conditions x = 0.7, y = 0.2, unperturbed case.
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Figure 6.6: Top left: phase space for the inverted pendulum controlled by the analogical synergy
feedback controller in the perturbed case and D = 0.5, α = 0.05 and different initial conditions.
Top right: phase space for the inverted pendulum controlled by the analogical synergy feedback
controller in the perturbed case andD = 1.0, α = 0.1 and different initial conditions. Bottom left:
phase space for the inverted pendulum controlled by the analogical synergy feedback controller
in the perturbed case and D = 2.0, α = 0.2 and different initial conditions. Bottom right:
synergy reflex gain temporal evolution for the inverted pendulum controlled by the analogical
synergy feedback controller in the perturbed case and different initial conditions and perturbation
intensities. The smallest boosts correspond toD = 0.5, α = 0.05 perturbation intensities, the mid
boosts to D = 1.0, α = 0.1 perturbation intensities and the biggest boosts to D = 2.0, α = 0.2
perturbation intensities. In each case there is over-boosting, compared to the unperturbed case,
but with no saturation, as the maximum reflex gain is never reached.
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Figure 6.7: Left: simulation result; Right: results of computation based on Appendix A. In
both cases, we perturb the real parameter by adding 1.0 · 10−15 to it. That is why we do not get
zero, but the minimum is still very evident.
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Appendix A

Typical error computation for the
quantized controller

When we consider the typical error made by the encoder in measuring the state
of the system, it is important, in order not to overestimate it, to consider its
exponential decay with rate (Λ/N1/2)t/τ . In the demonstration of Theorem 2, it
was explained how it can happen that we get the zero symbol, due to a wrong
estimate of the parameters in the encoder. The main point was that when the
error is lower than log(Λ)

(Λ−1)
∆µ, its rate of growth is no more given, between sampling

intervals, by ‖e(t+t0)‖ ≤ ‖e(t)‖eLt0 , but by ‖e(t+t0)‖ ≤ ‖e(t)‖+Lt0∆µ. Thus, it
can not be sufficient to enlarge the encoding region by a factor Λ at each sampling
time to ensure a positive encoder symbol. On the other hand, as soon as we get
positive symbols from the encoder, the error’s norm at each sampling time, kτ , is
bounded by the quantization error

Ek = Ed(Ω0)

(
Λ

N1/n

)k−k0

,

where k0τ is the last sampling time we get a zero from the encoder, Ω0 is the
possible set of unknown real parameters, µ, for which we know the trial parameter
set, ν, suffices to contain the system, and Λ = eL(Ω0)τ

We thus can define an empirical probability of getting zero from the encoder at
time kτ , valid for Ek−1 < log(Λ)∆µ/(Λ− 1), as

P0(kτ) = 1− 2Λ− 1

Λ

ΛEk−1

Ek−1 + log(Λ)∆µ
, Ek−1 = Ed(Ω0)

(
Λ

N1/n

)k−1−k0

We now want to compute the mean value of positive symbols, after a zero,
before the next zero, and as a function of ∆µ.

124



There will be a ”deterministic” number of positive symbols, needed to let the
quantization error be smaller than log(Λ)

(Λ−1)
∆µ, as after a zero it is reset to Ed(Ω0) >

log(Λ)∆µ/(Λ− 1). This number is given by the smaller k(∆µ) for which

N1/nd(Ω0)

(
Λ

N1/n

)k
<

log(Λ)

(Λ− 1)
∆µ

Then, the probability of getting h additional positive symbols is given by

P̃ (h) = (1− P0((k0 + k + 1)τ)(1− P0((k0 + k + 2)τ) . . . (1− P0((k0 + k + h)τ)

and its mean value, < h >=< h(∆µ) > (∆µ), by

< h >=
∑
i

iP̃ (i).

Finally we can compute the upper bound of the typical error done by the encoder

ẽ(∆µ) as the mean value of N1/nd(Ω0)
(

Λ
N1/n

)l
for l ∈ ℵ, l ∈ [0, k + h′). Note that

both k(∆µ)+ < h(∆µ) > (∆µ) = h(∆µ) and 1
ẽ(∆µ)

are monotonically increasing
with ∆µ.
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