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Abstract

The nesC programming language is an extension to the C language designed
and developed specifically for TinyOS, an operating system for wireless sen-
sor networks. For that reason it tries to reflect TinyOS’s event driven and
component based architectural model by offering constructs and statements
that can be directly mapped to TinyOS components or primitives. Conse-
quently, the existing nesC compiler, which is actually more a translator then
a compiler, since the transformation to a low level language is done by the
underlying C compiler, is tailored for a use with TinyOS.

This work tries to decouple nesC from TinyOS with the design and re-
alization of a translator which has a double purpose. On the one hand it
translates nesC to C and on the other hand it substitutes TinyOS constructs
and primitives with Erika ones. Therefore, apart from being a language
translator, the resulting software of this work can be seen as an operating
system translator as well.

Erika is a wireless sensor network operating system that adds cutting
edge real time scheduling algorithms to an OSEK/VDX compliant kernel.
The OSEK/VDX standard guarantees to an operating system hardware, ap-
plication and network independence. To facilitate the porting of new and
existing applications to the Erika operating system the present language and
operating system translator has been realized from scratch with the help of
the JavaCC parser generator which generates appropriate Java classes from
a nesC language grammar specification.
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Chapter 1

Introduction

The aim of the present thesis is to realize an automized tool able to translate
applications written in the nesC language for the TinyOS operating system to
applications written in C for the Erika operating system. In the first instance
in this chapter the problem is introduced. After that, the context in which
the software can be used is described and then the innovations brought by
this thesis are analyzed. Finally, the structure of this document is presented.

1.1 Problem Definition

TinyOS is one of the most used operating systems for wireless sensor net-
works. Hence, there are a lot of applications available written for it using
the nesC programming language. Having a tool that automatically translates
them to the C language ready to be used with the Erika operating system, is
a great opportunity for both the operating system by increasing the number
of possible target users and for the programmer of the application who has
an easy way to transform it to a real time application. To achieve this goal
a so called translator needs to be realized. It is mostly quite the same tool
as a compiler, the main difference is in the output language. A translator,
also called language converter, transforms a high level programming language
to another high level programming language, whereas a compiler converts a
language to a low level programming language, such as assembly or machine
language, ready to be executed on a target microprocessor or microcontroller.
In this case the translation happens between the nesC and C programming
languages, both of them are high level languages not ready to be executed
on a target microprocessor.

The tool presented in this thesis is a little bit different, because it is
not only a language converter, but an operating system translator as well.

1



2 CHAPTER 1. INTRODUCTION

Accordingly, it has to integrate in one software tool the two different aspects
of translating a programming language and an operating system to another
one. In this context, translating the operating system to another one means
to realize an automatic substitution of the system calls of the first operating
system to the system calls of the second one. In this case, the two operating
systems in question are TinyOS and Erika.

Two main difficulties arise in doing the translation of one operating sys-
tem to another one. The first problem is caused by the lack of equivalent
system calls between the two operating systems. Another difficulty is that
the set of target boards and target microcontrollers are different in the two
operating systems. Consequently, there is sometimes also the need to trans-
late some target platform specific statements, like for example some asm
statements 1. Besides trying to identify those problems, this document at-
tempts to give suggestions on how to solve them and the realized software
represents a prototype of how the automized translation can be done.

1.2 State of the art

At the time of writing this document there are a few projects, besides the
classic nesC compiler [NES] developed for TinyOS that are trying to real-
ize a compiler for the nesC programming language. In this section a brief
description of this projects is given.

1.2.1 nesC TinyOS

This is the first nesC compiler, it was developed with the definition of the
nesC language. New versions with bugfixes and even new constructs are
released on a regular basis. The current newest version is nesC v1.3, released
on August, 6th 2008. The previous major version nesC v1.2 introduced a
lot of new constructs compared with the nesC v1.1 series. Particularly, the
whole TinyOS operating system was completely rewritten with nesC v1.2
leading to the release of TinyOS 2.

Because it is maintained by the inventors of the nesC language, this is
for sure the compiler that should be the reference for all other attempts of
writing a new nesC compiler from scratch.

1Assembly language statements integrated in a C program
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1.2.2 nesC Eclipse plug-ins

There are quite a few nesC plug-ins for Eclipse, like for example YETI 2
[YET], TinyDT [TDT] and TinyosIDE [TID], some of them working for
nesC v1.1 and others for nesC v1.2.

Actually, these are neither real translators nor real compilers, because
they are actually only parsing the source code for syntax highlighting and
other similar purposes leaving the code generation to the nesC compiler.

Another interesting project is Cadena [CAD] that implements a complete
high level modelling environment integrated into Eclipse that permits to
develop applications by drawing block diagrams. It permits to generate nesC
code from those diagrams and to import nesC code to produce such diagrams.
Therefore there is a nesC parser integrated, but it parses nesC code and
produces block diagrams as output and not C code.

So it can be seen that the aim of those project is different that the purpose
of the project described in this document.

1.2.3 MeshC

MeshC [MES] is an interrupted project that was aiming not only to produce
a nesC compiler that is independent from the operating system, but that
is out-and-out an extension to the nesC language defining in fact a new
language, which is backwards compatible with nesC v1.1.

1.2.4 nCUnit

nCUnit [NCU] is a unit testing framework for nesC. nCUnit uses a pre-
compiler that inserts calls to the test case functions, which are tagged with
the ”@test()” attribute. By modifying a constant in the compiled code, one of
the test functions is selected for each simulation run. In addition, by running
its own processor between the nesC and the avr-gcc compilers, it modifies the
declaration of functions that are monitored using the ”assertCalls” assertion.
The aim of this project is again different, since it consists in unit tests for
code that can be used to execute other code bodies outside the application
in question.

1.3 Innovations introduced by this thesis

Compared with the projects shown in section 1.2, the present project has
quite a different purpose. On the one side it tries to clone the behaviour
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of the original nesC-TinyOS compiler introduced in section 1.2.1 by imple-
menting a nesC parser and C code generator, on the other side it extends
this functionality by adding also an operating system translator to it. This
means that it is not enough to produce C code as output, but also to sub-
stitute some TinyOS specific functions with Erika specific ones. Using Erika
specific constructs means that, besides generating C code it is also needed to
produce OIL [OSE] code. Consequently, besides the normal use, this project
can serve also as a starting point for the development of new nesC compilers,
maybe for other operating systems, because the source code is quite com-
prehensible compared with the nesC-TinyOS source code, which is written
extending the gcc compiler collection [GNU].

1.4 Terminology

For a better understanding of this document some explanations about the
used terminology are necessary. The following list explains the meaning of
some terms that can lead to confusion.

Compiler, translator Compiler and translator are almost the same thing
and sometimes both terms are used for the same entity in this docu-
ment. Even in the literature the difference between them is not that
clear. The most accepted definition to distinguish them is that a com-
piler transforms a high level language to assembly or machine language
ready to be executed on a target CPU, whereas a translator converts a
high level language to another high level language. Nevertheless, there
can be found some Assembly translators that translates an assembly
language in another one and with the above definition they would nei-
ther be counted as translators nor as compilers, since they are trans-
lating a low level language to another low level language ready to be
executed on a target CPU 2.

nesC-Erika installation directory This is the absolute path to the nesC-
Erika software once installed on a system. Section 7.2.1 explains in
detail how to install the software.

nesC-TinyOS, original nesC compiler This is the classic nesC compiler
[NES] developed when the nesC language was introduced.

2The definition that I personally prefer is the following:
A compiler compiles a higher level language to a lower level one.
A translator translates a language to another one of the same level.
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nesC-Erika This is the translator developed during this project.

main C file This refers to the C file generated by the nesC-Erika transla-
tor that contains the main function and almost all the other function
definitions.

1.5 Thesis structure

The document introduces firstly the two operating systems on which the
work is based on, by trying to emphasize the differences between their orga-
nization. Consequently, chapter 2 begins with a description of the TinyOS
operating system by explaining the design philosophy, the available hardware
abstraction, the scheduler and the memory model. Similarly, chapter 3 de-
scribes the same aspects for the Erika operating system with a final section
(3.6), where some translations from nesC to OIL are shown. Chapter 4 tries
to outline the most important concepts in the nesC language and shows in
addition their translation to the C language. After that, chapter 5 sum-
marizes the main aspects of compiler design theory, introduces JavaCC, the
chosen parser generator and JJtree the chosen parse tree generator. After-
wards, chapter 6 describes in detail the various development phases of the
project by analyzing in the first instance the software requirements specifica-
tion, then the system level design, the software design, some implementation
details and finally the testing methodology. Chapter 7 describes a method for
the installation of the nesC-Erika software and shows an example usage on
an AVR target microcontroller. Chapter 8 compares the realized nesC-Erika
compiler with the original nesC-TinyOS compiler by reporting the different
memory sizes and line numbers of the generated files. Last but not least,
chapter 9 gives some suggestion and ideas on how to continue the work on
the software.
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Chapter 2

TinyOS

TinyOS is an event driven component based open source operating system
for wireless sensor networks. Since v1.x it is written using the nesC language,
which was specifically designed for it. The latest version of TinyOS is v2.x.
Many components has been written in a new way and are renamed passing
from 1.x to 2.x. In particular the 2.x version uses some constructs that
are available only in the newer nesC v1.2.x language, while the 1.x version
of TinyOS uses a pure nesC v1.1.x syntax. Since in literature normally
a description of TinyOS in conjunction with an explanation of the nesC
language is found, this chapter focuses more on the description of TinyOS as
an operating system itself trying to decouple it from the explanation of the
nesC language, which is explained in chapter 4.

2.1 Design

A TinyOS application can be represented by a graph of components and a
scheduler. The scheduling model consists of two levels: tasks and events. A
component consists of a frame 1 for storage purposes, tasks for making the
concurrency possible and events2 that can be divided in commands and han-
dlers. Figure 2.1 shows the components graph of the Blink demo application
as example.

1see section 2.4 for more details about the meaning of frame
2not to be confused with the nesC keyword.

7
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Figure 2.1: Blink component graph

2.2 Hardware Abstraction

Hardware abstractions in TinyOS 2.0 generally follow a three level abstrac-
tion hierarchy, called the HAA (Hardware Abstraction Architecture).

At the bottom of the HAA the HPL (Hardware Presentation Layer) can
be found. The HPL is a thin software layer on top of the raw hardware,
presenting hardware such as IO pins or registers as nesC interfaces. The
HPL generally has no state besides the hardware itself. This means that
it has no variables. HPL components usually have the prefix Hpl, followed
by the name of the chip. For example, if a chip is called CC1000, the HPL
components of the chip begin with HplCC1000.

The middle of the HAA is the HAL (Hardware Abstraction Layer). The
HAL builds on top of the HPL and provides higher-level abstractions that
are easier to use than the HPL, but still provide the full functionality of
the underlying hardware. The HAL components usually have a prefix of the
chip name. For example, the HAL components of the CC1000 begin with
CC1000.

The top of the HAA is the HIL (Hardware Independent Layer). The
HIL builds on top of the HAL and provides abstractions that are hardware
independent. This generalization means that the HIL usually does not pro-
vide all of the functionality that the HAL can. HIL components have no
naming prefix, as they represent abstractions that applications can use and
safely compile on multiple platforms. For example, the HIL component of the
CC1000 on the mica2 is ActiveMessageC, representing a full active message
communication layer. Some components may not have an implementation
on the HIL level and therefore their implementation on a lower level (HAL
or HPL) needs to be used.

The resulting architecture of an application written for TinyOS can be
seen in figure 2.2. In the picture the three hardware abstraction layers are
summarized in one stripe to simplify the representation.
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Figure 2.2: Simplified architecture of a TinyOS application

2.3 Scheduler

Both the TinyOS 1.x and the TinyOS 2.x scheduler have a non-preemptive
FIFO policy. However, tasks in 2.x operate slightly differently than in 1.x.
In TinyOS 1.x, there is a shared task queue for all tasks, and a component
can post a task multiple times. If the task queue is full, the post operation
fails. Experience with networking stacks showed this to be problematic, as
the task might signal completion of a split-phase operation (see 4.2.1): if
the post fails, the component above might block forever, waiting for the
completion event.

In TinyOS 2.x, every task has its own reserved slot in the task queue,
and a task can only be posted once. A post fails if and only if the task has
already been posted. If a component needs to post a task multiple times, it
can set an internal state variable so that when the task executes, it reposts
itself.

This slight change in semantics greatly simplifies a lot of component code.
Rather than test to see if a task is posted already before posting it, a compo-
nent can just post the task. Components do not have to try to recover from
failed posts and retry.

Figure 2.3 shows an example, where hardware interrupts are raising events.
Those events can preempt a task, if one is running and they can call some
commands. Commands might post tasks that means that they are putting
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tasks in the ready queue.

Figure 2.3: A scheduling example

Applications can also replace the scheduler, if they wish. This allows
programmers to try new scheduling policies, such as priority- or deadline-
based. It is important to maintain non-preemptiveness, however, or the
scheduler will break all nesC’s static concurrency analysis.

Finally it is to note that the scheduler puts the processor, but not the
peripherals to sleep, if the active task queue is empty.

2.4 Memory model

In TinyOS there is no difference between kernel and user space. In addition
it has a static memory allocation. This means that no heap is available
and therefore C’s malloc cannot be used. Moreover, TinyOS has no virtual
memory so a single linear physical address space is available for the allocation
of the memory assigned to each component. Every component has an own
frame of size 4K in a shared global stack. The frame is allocated to the
application at compile time. Global variables are available on a per-frame
basis. A frame has three parts: a stack that contains local variables declared
within a method, a global part for storing the global variables of a component
not declared in any method and a free part, if the frame is not full. Figure
2.4 gives an idea of this structure.
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Figure 2.4: A frame of a TinyOS component

2.5 Components

The whole TinyOS operating system is divided into components. Figure
2.5 shows an example application that is divided in components that have
different functionalities. The arrows that are pointing to the top direction
are presenting events schematically , while the arrows that are pointing to
the bottom are representing commands. The various components are grouped
into categories responsible for the implementation of different functionalities.

Components use and provide interfaces, commands and events 3. Compo-
nents can be viewed as finished state machines, in that command and event
handlers transition a component from one state to another. This leads to
low overhead and non-blocking state transitions.

There are different types of components that can be classified by the
abstraction layer to which they belong or by the functionality that they
implement.

• Hardware abstraction components for controlling i.e.:

– Leds

– Clock

– UART (Universal Asynchronous Receiver Transmitter)

• Synthetic hardware components able to:

3see chapter 4 for the corresponding nesC keywords
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Figure 2.5: Division of the components based on its functionality

– simulate hardware behavior

– enhance the state machine behaviour

• High-level software components, that:

– perform control, routing and all data transformations

2.5.1 Commands

Commands consist in non-blocking requests made generally to lower level
components. They provide the caller with feedback by returning status,
implementing that way a kind of callback. In addition commands may post
tasks or call other commands, but they are not permitted to signal events.

2.5.2 Events

Events signal upward to notify that an action has occurred. It is a non-
blocking signal. Lowest-level events are triggered by hardware interrupts,
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timer events, or counter events. Events can signal other events, post tasks
and even call commands.

2.5.3 Tasks

Tasks are responsible for doing the primary computation work. They are
atomic and cannot be preempted by other tasks. Only interrupt handlers,
like certain events, can interrupt tasks. A single stack that is assigned to
the current running task is available to store the needed informations. Tasks
are able to call commands, signal events, and schedule other tasks within a
component.
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Chapter 3

Erika

Erika Enterprise is a multi-processor, real-time operating system kernel,
which is available for several platforms ranging from Atmel’s AVR5 to the
dsPIC (R) DSC microcontrollers family.

Erika Enterprise offers the availability of real-time schedulers and resource
managers allowing a fully multithreaded environment, while guaranteeing
predictable real-time performance and retaining the programming model of
conventional single processor architectures.

The advanced features provided by Erika Enterprise are:

• Support for four conformance classes to match different application
requirements;

• Support for preemptive and non-preemptive multitasking;

• Support for fixed priority scheduling;

• Support for stack sharing techniques, and one-shot task model to reduce
the overall stack usage;

• Support for shared resources;

• Support for periodic activations using alarms;

• Support for centralized Error Handling;

• Support for hook functions before and after each context switch;

The Erika Enterprise kernel has been developed with the idea of providing
the minimal set of primitives which can be used to implement a multithread-
ing environment. The Erika Enterprise APIs are implemented as a reduced

15
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set of OSEK/VDX APIs, providing support for thread activation, mutual
exclusion, alarms, and counting semaphores.

The OSEK/VDX consortium provides the OIL language (OSEK Imple-
mentation Language) as a standard configuration language, which is used for
the static definition of the RTOS objects which are instantiated and used
by the application. Erika Enterprise fully supports the OIL language for the
configuration of real-time applications.

Erika Enterprise is natively supported by RT-Druid, a tool suite for the
automatic configuration and deployment of embedded applications which
enables to easily exploit multi processor architectures and achieve the desired
performance without modifying the application source code.

3.1 OSEK/VDX compliant design

OSEK/VDX is a joint project of the automotive industry that aims to the
definition of an industry standard for an open ended architecture for dis-
tributed control units in vehicles. The objective of the standard is to de-
scribe an environment which supports efficient utilization of resources for
automotive control unit application software. This standard can be viewed
as a set of API for real-time operating system (OSEK) integrated on a net-
work management system (VDX) that together describes the characteristics
of a distributed environment that can be used for developing automotive
applications.

The typical applications that have to be implemented have tight real-time
constraints and a high criticality, like for example, a power-train application.
Moreover, these applications have to be made in a huge number of units,
therefore there is a need to reduce the memory footprint to a minimum, en-
hancing as possible the OS performance. Figure 3.1 shows a development
cycle of an application. This cycle can change slightly on the different imple-
mentations of the operating system, in Erika for example there is no OSEK
builder, so the OIL file is edited by hands. In Erika the system generator’s
work is done by RT-Druid.

Here are the main characteristics of an OSEK/VDX compliant operating
system:

• Scalability

The operating system is intended for use on a wide range of control
units. To support a wide range of systems the standard defines four
conformance classes that tightly specifies the main features of an OS.
Note that memory protection is not supported at all.
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Figure 3.1: Example development process for applications

• Portability of software

The standard specifies an ISO/ANSI-C interface between the applica-
tion and the operating system that is identical in all the implementa-
tions of the OS. The aim of this interface is to give the ability to transfer
an application software from one electronic control unit (ECU) to an-
other ECU without bigger changes inside the application.

• Configurability

Another prerequisite needed to adapt the OS to a wide range of hard-
ware is a high degree of modularity and configurability. This config-
urability is reflected by the toolchain proposed by the OSEK standard,
where some configuration tools help the designer in tuning the system
services and the system footprint. Moreover, a language called OIL
(OSEK Implementation Language) is proposed to help the definition
of a standardized configuration information.

• Statically allocated OS.

All the OS objects and features are statically allocated. This fact allow
to simplify all the OS: the number of application tasks, resources and
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services requested are defined at compile time. Note that this approach
ease the implementation of an OS capable of running on ROM, and
furthermore it is completely different from a dynamic approach followed
in other OS standards like for example POSIX.

• Support for time triggered architectures

The OSEK Standard provides the specification of OSEKTime OS, a
time triggered OS that can be fully integrated in the OSEK/VDX
framework.

After this brief introduction regarding the OSEK/VDX standard the fol-
lowing sections explain the organization of the Erika operating system.

3.2 Architecture

Erika has a three level architecture as depicted in figure 3.2 At the top
the application layer can be found consisting in the code written by the
programmer.

In the middle the kernel layer is located, which consists in a set of modules
that are responsible for the task and real time management. The offered
functions can be divided in:

• Queue handling

• Scheduling

• Application programming interface (API)

At the bottom of the hierarchy, the HAL (hardware abstraction layer) is
present, which is further divided in the following components:

• MCU layer (microcontroller unit layer)

• CPU layer (central processing unit layer)

• Board layer
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Figure 3.2: Architecture of the Erika OS

3.3 Scheduler

Two types of schedulers are included in the kernel: fixed priority (FP) and
earliest deadline first(EDF).

Fixed priority scheduling, allows users to set fixed priorities on a each
task of the application. In the default configuration, the highest priority
task always gets the CPU as soon as it is runnable, even if other system
tasks are in execution in that moment. In this case the task that is being
executed is preempted and the task with the highest priority is executed.

Earliest deadline first scheduling in contrast is a dynamic scheduling al-
gorithm. It places tasks in a priority queue. Whenever a scheduling event
occurs (task finishes, new task released, etc.), the queue will be searched for
the process closest to its deadline. This process will then be the next one to
be executed.

3.4 Memory model

Two different memory model paradigms are available in Erika for the orga-
nization of an application.

With the first one, called HAL monostack and represented in figure 3.3,
tasks and services routines are sharing the same stack.

With the second one, called HAL multistack and shown in figure 3.4, each
task and each service routine has its on reserved stack.
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Figure 3.3: HAL monostack

Figure 3.4: HAL multistack

3.5 RT-Druid

RT-Druid is an open and extensible environment, based on XML and open
standards (Java) allowing generation of portable OSEK C code from OIL
definitions to create applications that run in real-time in a variety of envi-
ronments, including ARM7, PPC, ST10 and the Altera Nios II Softcore.

Generated code can run on any OSEK-compliant system, but the RT-
Druid framework is optimized for running in conjunction with the Erika
Enterprise kernel. Because of its generic framework, RT-Druid gives an ex-
tensible modeling and analysis platform for modeling any hardware and soft-
ware, providing compatibility with most of the model-based methodologies
for functional design.

Giving an OIL configuration file as input, the RT-Druid tool creates a
directory which contains the generated files presented schematically in figure
3.5.

The first file that is created is the makefile. The makefile is used to
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Figure 3.5: RT-Druid file generation from an OIL file

compile the application source code. The makefile structure may depend on
the final target architecture.

The other generated files are:

• eecfg.h

This file contains the declarations of all the RTOS symbols (tasks,
resources, alarms, events, and so on) that are visible from the given
CPU. The objects visible from a CPU are the objects allocated on
it, plus the objects on other CPUs that may be referred by the code
running on the CPU itself.

• eecfg.c

This file contains the configuration data structures of the Erika Enter-
prise kernel, providing information on the OIL file local objects options.

• cpu.mk

This file contains the rules used to compile the source code allocated
to the CPU.

• subdir.mk

This file contains the list of the files that must be compiled and linked
in order to generate the executable to be run on the CPU. The files
depend on the partitioning configuration defined in the OIL file.
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3.6 nesC to OIL translations

Some nesC constructs need a translation in OIL rather then in C to per-
mit a better integration with Erika and its philosophy. In particular at the
time of writing this document two nesC constructs are translated into OIL
constructs: the task keyword and the Timer.fired event that is signaled by a
timer interrupt. Its translation is described below.

3.6.1 task

A nesC declaration like

task void task A (){

//some i n s t r u c t i o n s

}
leads to the generation of entries in three files. The generated entry in

the main C file can be seen in section 4.2.2.
The

TASK task A ( ) ;

entry is generated in the handler.c file.
Finally, the entry

TASK A{
PRIORITY = 1 ;
ACTIVATION = 4 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;

is generated in the OIL configuration file of the application. The various
options are for now statically inserted like above. In the future it may be
possible to change the values, but for doing so some extensions to the nesC
language are needed.

3.6.2 Timer.fired

Each use of this TinyOS system call results in three generated entries one
in the main C file, one in the handler.c file and the final one in the OIL
configuration file.

Therefore a piece of code like
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event r e s u l t t Timer . f i r e d ( )
{

//some i n s t r u c t i o n s
}

leads to the following translation in the main C file.

r e s u l t t T i m e r f i r e d ( )
{

//some i n s t r u c t i o n s
}

Furthermore, it leads to the following translation in the OIL configuration
file.

HANDLER = HANDLER T1 OVERFLW {
FUNCTION = ” i r q f t y p e 1 ” ;
TYPE = 2 ;

} ;

The irq f type1 routine is executed, when an overflow occurs on timer 1.
Finally, the irq f type1 routine needs to be defined and therefore the

following entry in the handler.c file is generated.

void i r q f t y p e 1 ( void ) {
Bl inkTaskM Timer f i red ( ) ;

}

BlinkTaskM Timer fired() is a function that is defined in the TinyOS
application that is going to be translated. Normally, it calls another function
that is the actual interrupt handler.
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Chapter 4

The nesC language and its C
translation

In this chapter an overview of the nesC language is given. In particular it
focuses on how to translate the various nesC constructs into the C language.
Since there is no code generation support for nesC v1.2.x constructs, only
nesC v1.1.x constructs are described.

For a more theoretical and formal nesC language reference [GLCB03] and
[GLCB05] can be seen. For a practical introduction on how to code in nesC
[Lev06] is very useful.

Firstly, it is to note that the nesC language can be divided into two main
entities: components and interfaces. A component is either a module or a
configuration, whereas an interface is some kind of bidirectional entity that
makes it possible to connect a component with another one.

4.1 Component specification

A component’s specification is the set of interfaces that it provides and uses.
Each provided or used interface has a name and an interface type. The inter-
face type matches the name of the interface used in its definition. Component
specifications can also contain bare commands and events. These are not con-
tained in any interface. In addition typedefs and tagged type declarations,
like enums, can be included in a component’s specification as well.

Three specific nesC keywords are used to specify the component’s speci-
fication, provides, uses and as. The last of these can be omitted. The typical
syntax for writing a component specification is as follows.

uses interface-type asopt instance-name

25
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or

provides interface-type asopt instance-nameopt,

where interface-type is the name used in the interface definition and
instance-name is an arbitrary identifier.

provides The provides keyword is used to declare the provided interfaces
or bare commands. If it declares an interface, all commands that are
present in that interface need to be defined, otherwise a compile-time
error is thrown. Events contained in the provided interface can be
signaled.

uses The uses keyword is used to declare the used interfaces or bare events.
If it declares an interface, all events that are present in that interface
need to be defined, otherwise a compile-timer error is thrown. Com-
mands contained in the used interface can be called.

as The as keyword is used to rename the interfaces used in the component,
allowing for example, to declare the same interface as used and as
provided in the same component. If the as keyword is omitted, the
interface-type and the instance-name are the same, and these are the
same as the name used in the interface definition.

For instance, the following is a valid component specification.

// F i l e A. nc

module A {
uses interface X;

}

implementation {
. . .

}

//End o f f i l e A. nc

// F i l e B. nc
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module B {
provides interface X as Y;

}

implementation {
. . .

}

//End o f F i l e B. nc

// F i l e X. nc

interface X {
command int c ( ) ;
event int e ( ) ;
. . .

}

//End o f f i l e X. nc

Since the module A is using the interface X, it has to implement the event
e(), otherwise a compile time error occurs. Same thing for B regarding the
command c() contained in interface X.

// F i l e A. nc
. . .

implementation {
event int X. e ( ) {

. . .
return 1 ;

}
}

//End o f f i l e A

// F i l e B. nc
. . .

implementation {
command int Y. c ( ){

. . .
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return 1 ;
}

}

//End o f f i l e B

It is to note that B uses Y.c() as identifier for the command, because
in the component specification the interface was “renamed” using the as
keyword.

4.2 Modules and Interfaces

Modules embody the program logic of an application in terms of function
and task definitions, exactly the same way as contained in a C file. In con-
trast interfaces contain the declarations of functions that can be defined by
modules. Interfaces can either be used or provided by modules (4.1), giving
that way some kind of constraints on how modules can define functions, on
how they can be wired together (4.3) and allowing so for example to define
the concept of split phase operations as described in 4.2.1.

In addition in this section all nesC v1.1.x specific constructs and key-
words, that can be found in modules and interfaces are explained. For C
ones it is referred to [KR78] and for nesC v1.2 ones [GLCB05] can be seen.

4.2.1 Split phase operations

An important concept in the TinyOS operating system and consequently
in the nesC language are split phase operations. A split phase operation
is a some kind of “third way” of handling operations, besides synchroneous
or asynchronous operations. It emulates very well the hardware behaviour,
which is seldom blocking. Split phase means that completion of a request
is a callback. An important characteristic of split-phase interfaces is that
they are bidirectional: there is a downcall to start the operation, and an
upcall that signifies the operation is complete. For example, to acquire a
sensor reading with an analog-to-digital converter (ADC), the software writes
to a few configuration registers to start a sample. When the ADC sample
completes, the hardware issues an interrupt, and the software reads the value
out of a data register. In nesC, downcalls are generally commands, while
upcalls are events. An interface specifies both sides of this relationship.
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4.2.2 nesC Keywords and their translation

In this section the various nesC v1.1 keywords are described with its transla-
tion in the C language. There are some nesC keywords that have a meaning
only for the nesC compiler and therefore they don’t have a C translation.

async The async storage class specifier must be added on commands and
events, which can safely be executed by interrupt handlers, but this
does not necessary mean that the defined function must be an interrupt
handler.

For example the following is a valid use.

interface Leds {
async command r e s u l t t redOn ( ) ;
async command r e s u l t t redOf f ( ) ;

}

In this case the commands redOn() and redOff() can be used in an
interrupt handlers, for example a timer interrupt handler.

post The post keyword followed by a task, puts the task in the ready state
and at some point the scheduler can decide to execute it.

For example, the code

. . .
post TaskA ;
. . .

is translated in nesC-Erika by,

PostTask (TaskA ) ;

The PostTask function is defined in the ee tinyos.c file located in the
header subdirectory of the Erika installation directory 1. It is to note
that the function, which is shown below, is not an Erika primitive.

int PostTask ( void (∗ task ) ( ) ) {
ActivateTask ( task ) ;
return 1 ;

}

1see sections 1.4 and 7.2.1 for the meaning of nesC-Erika installation directory.
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This function was introduced because the nesC-Erika primitive Acti-
vateTask at the time of writing this document doesn’t return any value,
whereas the correspondent nesC-TinyOS primitive returns one of two
possible values and can therefore be used for example as a condition in
an if statement.

call The call keyword followed by a command is used to make a command
call. Basically, this is exactly the same as a C function call, a command
being nothing else than a particular kind of function. Nevertheless this
keyword was introduced to allow the signaling of an error, if instead an
event is called. An example usage of this keyword can be seen below.

. . .
ca l l aCommand ( ) ;
. . .

There is no translation in the C language for it, since this keyword has
a meaning only for the nesC compiler.

task The task storage class specifier is added to a function definition to
inform the compiler that the following is a task definition and not a
simple function.

A typical use of this keyword is shown below.

. . .
task void aTask ( ) {

//some i n s t r u c t i o n s
}
. . .

The correspondent nesC-Erika translation is listed below.

. . .
TASK aTask ( ){

//some i n s t r u c t i o n s
}
. . .

TASK is a macro defined in the Erika kernel.

signal The signal keyword followed by an event is used to make an event
call. Basically, this is exactly the same as a C function call, an event
being nothing else than a particular kind of function. Nevertheless this
keyword was introduced to allow the signaling of an error, if instead a
command is signaled.
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. . .
signal anEvent ( ) ;
. . .

There is no translation in the C language for it, since signal has a
meaning for the nesC compiler only.

atomic The atomic keyword guarantees that the statement is executed with-
out being interrupted by another computation occurred simultaneously.
The simplest way to do this is by disabling the interrupts.

A sample usage of this keyword can be the following.

void f ( ) {
bool a v a i l a b l e ;
atomic {

a v a i l a b l e = ! busy ;
busy = TRUE;

}
i f ( a v a i l a b l e )

do something ;
atomic busy = FALSE;

}

To note is that it can be used either in conjunction with curly brackets
or without. In any case the translation looks like in the following.

void f ( ) {
bool a v a i l a b l e ;

EE hal disableIRQ ( ) ;
{

a v a i l a b l e = ! busy ;
busy = TRUE;

}
EE hal enableIRQ ( ) ;

i f ( a v a i l a b l e )
do something ;

EE hal disableIRQ ( ) ;
{

busy = FALSE;
}
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EE hal enableIRQ ( ) ;
}

EE hal disableIRQ and EE hal enableIRQ are two architecture inde-
pendent Erika primitives used to disabling and enabling the interrupts
respectively.

command The command storage class specifier indicates that the function
is part of a component’s specification, either directly as a bare com-
mand, or within one of the component’s interfaces. If a command or his
interface is provided by a module, the module has to define it. The in-
stance parameters of a command are distinct from its regular function
parameters.

Below a declaration of a bare command outside an interface is shown.

module A {
provides command void h ( ) ;

}
. . .

In addition the command keyword can be used in an interface declara-
tion.

interface Z {
command void i ( ) ;

}

Finally, the command keyword is used when the function is actually
been defined.

. . .
implementation {

command void j ( ) {
//some s ta tements

}
}

The translation to C takes place by simply omitting the keyword, like
below.

. . .
void j ( ) ;
. . .



4.2. MODULES AND INTERFACES 33

event The event storage class specifier indicates that the function is part of
a component’s specification, either directly as a bare event, or within
one of the component’s interfaces. If an event’s interface is used by
a module, the module has to define it. Contrary, a module has to
implement a bare event, if it is provided by a module. The instance
parameters of an event are distinct from its regular function parameters.

Below a declaration of a bare command outside an interface is shown.

module A {
provides event void h ( ) ;

}
. . .

In this case A must implement the event h. If h would have been
an event declared inside an interface and A had been provided this
interface, then A doesn’t have to implement h, but the component
connected to A has to do it instead.

As command, the event keyword can be used in an interface declaration.

interface Z {
event void i ( ) ;

}

Finally, the event keyword is used when the function is actually been
defined.

. . .
implementation {

event void j ( ) {
//some s ta tements

}
}

default A module can specify a default implementation for a used command
or event. A compile-time error occurs if a default implementation is
supplied for a provided command or event. Default implementations
are executed when the command or event is not connected to any com-
mand or event implementation. A default command or event is defined
by prefixing a command or event implementation with the default dec-
laration specifier, as it can be seen below.
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. . .
implementation {

. . .
default command void c ( ) {

//some s ta tements
}
. . .

}

Since this has only a sense for the nesC compiler, there is no translation
for the C language.

nx struct and nx union External structures and unions are declared like
C structures and unions, but using the nx struct and nx union key-
words. An external structure can only contain external types as ele-
ments. Currently, external structures and unions cannot contain bit-
fields.

These two keywords are translated into C by defining them simply as
preprocessor macros as shown below.

#d e f i n e nx struct struct
#d e f i n e nx union union

norace A mechanism that is detecting data races is implemented in nesC,
but it is possible that data races that cannot occur in practice, e.g., if all
accesses are protected by guards on some other variable, are reported.
To avoid redundant messages in this case, the programmer can annotate
a variable υ with the norace storage class specifier to eliminate all data
race warnings for υ. The norace keyword should be used with caution.
Since there is no data race detection mechanism in the C language, this
keyword is not translated into C.

4.3 Configurations and Wiring

While the modules’ implementation consists in allocating state and imple-
menting executable logic, the configurations’ implementation consists in the
declaration of component elements, declarations, and connections.

A component element specifies the components that are use to build the
configuration, a declaration can declare a typedef or tagged type (other C
declarations are compile-time errors, like in 4.1) and a connection specifies a
wiring statement.
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Wiring in nesC means to connect one component to another one, allowing
so one module to call functions defined in another one. One such statement
can connect two different sets of specification elements:

• The configuration’s specification elements specified in the configura-
tion’s component specification part (see 4.1). These are called external
specification elements.

• The specification elements specified in the configuration’s implemen-
tation part before the wiring. These are called internal specification
elements.

There are three wiring statements in nesC:

• endpoint1 = endpoint2: Any connection involving an external speci-
fication element. These effectively makes two specification elements
equivalent. Let S1 be the specification element of endpoint1 and S2

that of endpoint2. One of the following two conditions must hold or a
compile-time error occurs:

– S1 is internal, S2 is external (or vice-versa) and S1 and S2 are both
provided or both used,

– S1 and S2 are both external and one is provided and the other used.
This type of connection is also called “Pass Through Wiring”.

• endpoint1 → endpoint2 (link wires): A connection between two internal
specification elements. Link wires always connect a used specification
element specified by endpoint1 to a provided one specified by endpoint2.
If these two conditions do not hold a compile-time error occurs.

• endpoint1 ← endpoint2 is equivalent to endpoint1 → endpoint2.

To conclude this section some wiring examples are presented.

configuration A {

}
implementation {

components M, O;
M.X −> O.X;

}
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In this case, X is an interface defined somewhere. M and O are two
modules, where M provides interface X and O uses it. This means that M
has to implement the commands contained in X and O has to implement X’s
events.

Another wiring example, where the = connection operator is used, is
shown below.

// F i l e A. nc
configuration A {

}
implementation {

components M, N;
M.X −> N.X;

}
//End o f f i l e A. nc

// F i l e N. nc
configuration N {

provides interface X;
}
implementation {

components O;
X = O.X;

}
//End o f F i l e N. nc

The = connection operator causes N.X to be renamed in O.X
The third example shows a passthroug wiring, where two external speci-

fication elements are connected with the = operator.

// F i l e A. nc
configuration A {

}
implementation {

components M, N, O;
M.X −> N. Z ;
N.W−> O.X;

}
//End o f f i l e A. nc
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// F i l e N. nc
configuration N {

provides interface X as Z ;
uses interface X as W;

}
implementation {

Z = W;
}
//End o f F i l e N. nc

Surprisingly, all three wiring statements have exactly the same C transla-
tion that consists basically in a so called intermediate function for each event
and command contained in X, as it can be seen below.

//an implementat ion l i k e the
// f o l l o w i n g f o r each
// event conta ined in X

O.X. e ( ) {
M.X. e ( ) ;

}

//an implementat ion l i k e the
// f o l l o w i n g f o r each
//command conta ined in X

M.X. c ( ) {
O.X. c ( ) ;

}

4.3.1 Implicit Wiring

Typically a wiring statement consists in wiring a used interface used in a
module to a provided interface provided in an other module with the following
syntax.

X.A −> Y.B,

where A and B are two instance-names of the same interface-type, let it
be for example type Z, where interface of type Z is used in module X and
provided in module Y. The instance-name has not necessary to be the same.
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It is possible to use a statement called implicit wiring or implicit connec-
tion by omitting the interface in one of the two sides of the connection, for
example in the right side, obtaining the following syntax,

X.A −> Y,

if exactly one specification element B is found in Y such that

X.A −> Y.B,

forms a valid connection. Again, this means that the two instance-names
A and B must be of the same interface-type Z and in addition there cannot
be more than one used or provided interface of type Z in module Y.

4.3.2 Parameterized Wiring

Sometimes, a component wants to provide many instances of an interface. To
simplify this purpose parameterized interfaces were introduced. An interface
declaration without instance-parameters (e.g., interface X as Y) declares a
single interface to this component. A declaration with instance-parameters
(e.g., interface A[uint8 t id]) declares a parameterized interface, correspond-
ing to multiple interfaces to this component, one for each distinct tuple of
parameter values. In the same way interface A as S[uint8 t id1, uint8 t id2]
declares 256 * 256 interfaces of type A. The types of the parameters must be
integral types, enums are not allowed at this time.

An example of how to use a parameterized interface is shown below.

module A {
provides interface X[ int id , char d ] ;

}
implementation {

command int X. c [ int id , char d ] ( ) {
//some s ta tements

}
}

X is a normal interface 2 with commands and events declared in it. Each
command is defined like in the example with the same parameters in square
brackets as in the specification element part of the component. This leads to
the following C translation.

2Parameterized interfaces should not be confused with typed interfaces, which are a
nesC v1.2 construct and completely different.
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int X. c ( u i n t 8 t id , unsigned char d) {
//some s ta tements

}

As it can be seen, the parameters become simple function parameters in
the C language.
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Chapter 5

General compiler design

Translators take an input language and apply transformation rules in order
to generate corresponding output in another language. Compiler differ from
translator only in the output language they generate. While translator gen-
erally output some kind of high-level language, compiler output assembly
language or straight machine code 1.

The construction of a compiler can be divided in three different
phases 2: front end, middle end and back end. The middle-end phase is not
used anymore nowadays. A typical compiler architecture is shown in figure
5.1.

This chapter describes these phases and introduces a tool, JavaCC, used
for the construction of some parts of the translator.

5.1 Front end

The front end takes an input and analyzes the source code to build an internal
representation of the program, called the intermediate representation. It also
manages the symbol table, if it is present, a data structure mapping each
symbol in the source code to associated information such as location, type
and scope.

This is done over several phases, which includes the following:

1. Line reconstruction

Languages which allow arbitrary spaces within identifiers require a
phase before parsing, which converts the input character sequence to a

1see also section 1.4 for a detailed compiler and translator definition
2There are also one-pass compiler that have only one phase, but are not described here
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Figure 5.1: A typical compiler architecture

canonical form ready for the parser. This phase is not necessary in the
present project, because nesC doesn’t allow such keywords.

2. Lexical analysis

This phase breaks the source code text into small pieces called tokens.
Each token is a single atomic unit of the language, for instance a key-
word, identifier or symbol name. The token syntax is typically a regular
language, so a finite state automaton constructed from a regular ex-
pression can be used to recognize it. This phase is also called lexing
or scanning, and the software doing lexical analysis is called a lexical
analyzer, lexer or scanner.

3. Preprocessing
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Some languages, like C, require a preprocessing phase which supports
macro substitution and conditional compilation. Typically, the prepro-
cessing phase occurs before syntactic or semantic analysis.

4. Syntax analysis

This phase involves parsing the token sequence to identify the syntactic
structure of the program. This phase typically builds a parse tree,
which replaces the linear sequence of tokens with a tree structure built
according to the rules of a formal grammar which define the language’s
syntax. The parse tree is often analyzed, augmented, and transformed
by later phases in the compiler.

5. Semantic analysis

During this phase the compiler adds semantic information to the parse
tree and builds the symbol table. This phase performs semantic checks
such as type checking (checking for type errors), or object binding (as-
sociating variable and function references with their definitions), or
definite assignment (requiring all local variables to be initialized before
use), rejecting incorrect programs or issuing warnings. Semantic anal-
ysis usually requires a complete parse tree, meaning that this phase
logically follows the parsing phase, and logically precedes the code gen-
eration phase, though it is often possible to fold multiple phases into
one pass over the code in a compiler implementation.

5.2 Back end

The back end takes the intermediate representation and generates the final
output of the translator or compiler. This is also done over several phases.

1. Analysis

This phase consists in the gathering of program information from the
intermediate representation derived from the input. Typical analyses
are data flow analysis to build use-define chains, dependence analysis,
alias analysis, pointer analysis and escape analysis. Accurate analysis
is the basis for any compiler optimization. The call graph and control
flow graph are usually also built during the analysis phase.

2. Optimization
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The intermediate language representation is transformed into function-
ally equivalent but faster or smaller 3 forms. Popular optimizations are
inline expansion, dead code elimination, constant propagation, loop
transformation, register allocation or even automatic parallelization.
To speed up the development process this phase is not used in the
present project and can maybe added in a later version of the transla-
tor.

3. Code generation

The transformed intermediate language is translated into the output
language.

5.3 JavaCC - a parser generator

To realize the front end of the parser apart from the semantic analysis, the
JavaCC ([JCCa]) parser generator has been used in the present project, which
creates a top down parser (recursive descending) 4.

In JavaCC the lexical specification in form of regular expressions and the
grammar rules, called also grammar productions, are written down in the
same file. Another important feature of JavaCC is the use of EBNF (Ex-
tended Backus Naur Form), which enriches the BNF (Backus Naur Form)
with regular expressions. JavaCC produces LL(1) 5 parsers by default, but is
not limited to k=1 so k>1 is possible at any choice position. This functional-
ity is achieved with syntactic and semantic lookahead 6. A JavaCC-generated
parser can thus be LL(k) at the points where it is needed allowing so to parse
all LL class of grammars.

Once all the grammar rules and lexical specification are written in a jj
file, this file can be compiled by JavaCC and the Java classes that implement
the compiler are generated as it can be seen in figure 5.2

5.4 JJtree - a parse tree generator

In the present project JJtree is used for building the parse tree in conjunction
with the visitor design pattern. In this case the grammar written in a jjt file
is used by JJtree to generate a jj file containing the grammar with generated

3in the sense that they need less memory
4see [ASU86] for the meanings of recursive descending and top down vs bottom up

parser
5see [ASU86] for more details
6see [JCCa] for a complete description of the lookahead construct
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Figure 5.2: File generation process of JavaCC

semantic actions for building the parse tree. In addition the visitor interface
is generated allowing the separation of the structure and algorithm classes.

The implementation of the compiler resides only in the visitor classes.
Therefore the semantic classes are compact and only contain the required
visitor code and the compiler is not spread over dozens of semantic classes.
Each semantic class is implemented by a Java class, which represents a node
of the parse tree. Consequently, JJtree creates a class hierarchy which im-
plements the Node interface. Part of the class hierarchy generated by JJtree
for the present project can be seen in figure 5.3, where two classes, AST-
Expression and ASTNesCFile, are represented. If a new node needs to be
represented in the parse tree the corresponding Java class is automatically
derived from SimpleNode.

Different types of concrete visitors can be implemented from the generated
visitor interface, like for example a visitor responsible for the code generation.
This is a flexible solution, because the actual semantics are done in separate
visitor files, what gives a clear and scalable design.

JJTree generates semantic classes for all non terminals in a given gram-
mar, which automatically get instantiated within the semantic actions. The
following options written in the jjt file generate a parse tree in conjunction
with the visitor pattern.

opt ions {
MULTI = true ;
VISITOR = true ;

}



46 CHAPTER 5. GENERAL COMPILER DESIGN

Figure 5.3: Class hierarchy representing the parse tree



Chapter 6

Architecture

6.1 Introduction

6.2 Software Requirements specification

6.2.1 Users of the software

In the following the type of users that are most likely going to use the software
is listed.

1. Porter

Programmer that wants to port an existing TinyOS application to the
Erika operating system.

2. Coder

Programmer that codes a nesC application for the Erika operating sys-
tem from scratch.

3. Maintainer

Programmer that extends the nesC-Erika source code and fixes possible
bugs.

4. Installer

User that installs the nesC-Erika software on a PC.

5. Tester

User that tests the correctness of the nesC-Erika software.

47
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6.2.2 Use cases

In this section a brief summary of the use cases is presented.

1. Porter

The Porter compiles an existing TinyOS application for Erika by sim-
ply doing copy paste of the existing code. The porter should be able
to do some manual changes on the generated files to optimize the ap-
plication. He should get a final executable ready to be copied on the
target platform.

2. Coder

The coder should be able to code a new application for the Erika op-
erating system using the nesC language. He should obtain a final exe-
cutable for his desired target platform ready to be copied on the target
platform.

3. Maintainer

The maintainer needs documented source code to understand the code
that has been previously written. It is advisable that the maintainer
finds comments in the source code and that he writes comment in
the new source code that it is been produced. The maintainer should
be able to log software changes that he is going to do and to view
previously changes done in the source code.

4. Installer

The installer should be able to install nesC-Erika on a PC by simply
executing an installation script. Installation instructions and software
requirements should be available for the installation.

5. Tester

NesC source codes samples, which tests some specific language con-
structions should be available for a testing of new added nesC-Erika
source code. In addition TinyOS demo applications should be avail-
able to make final validation tests.
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6.2.3 Requirements definition

Based on the different use cases the following user requirements are defined.

1. Translation of a nesC-TinyOS application to a C application for Erika.

2. Extension of the nesC language to support Erika specific constructs.

3. Logging of software changes

4. Testing the correctness of existing and future source code.

6.2.4 System requirements specification

In this section functional and non functional system requirements are speci-
fied. Functional system requirements are those requirements that the system
has to offer to satisfy the needs of the different types of users. Non functional
are those requirements that the system has to meet to work correctly.

Functional system requirements specification

1. Translation of a nesC-TinyOS application to a C application for Erika.

1.1 The user should be able to specify the source files as command
line input.

1.2 A C file needs to be generated.

1.2.1 The C file must be compilable by the target compiler, which
generates the final executable.

1.3 An OIL file needs to be generated.

1.3.1 The OIL file must be compilable by RT-Druid, an Erika spe-
cific tool.

1.4 The output files should be generated in a human readable way to
permit manual manipulation.

1.5 Any programming error should be reported in a human readable
way.

1.5.1 The line number of the error should be signaled

1.5.2 The column number of the error should be signaled.

2. Extension of the nesC language to support Erika specific constructs.

2.1 A nesC API for Erika should be offered to permit coding of Erika
applications in the nesC programming language.
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2.2 For supporting Erika features that are not available in TinyOS
additional nesC keywords and constructs are needed.

3. Logging of software changes

3.1 Old versions of the software must remain available.

3.2 Changes in the software must be tracked.

4. Testing the correctness of existing and future source code.

4.1 The written source code should be tested against existing TinyOS
applications.

4.2 To permit a faster development process a set of simple and short
applications is needed to test specific language constructions.

4.2.1 The set should be increased with each new added language
construct.

Non functional requirements specification

1. Translation of a nesC-TinyOS application to a C application for Erika.

1.1 The system should offer a tool, which takes nesC source files as
input and generates as output a C file, an OIL file and a final
executable.

1.2 The system should be able to parse nesC code. If some errors in
the source code are detected the compilation process stops and
the errors are reported.

2. Extension of the nesC language to support Erika specific constructs.

2.1 The nesC API for Erika should contain Erika primitives.

2.2 The names chosen for the nesC components should reflect the ex-
isting TinyOS nomenclature to permit the translation of existing
nesC-TinyOS applications.

2.3 Erika has some features that are not present in the TinyOS oper-
ating system. The system has to offer a mechanism for supporting
those features.

3. Logging of software changes

3.1 The system has to offer a mechanism, where old versions of the
software are automatically backed up, after a new version is stored.
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3.2 The system has to offer a mechanism, which makes it possible to
log software changes.

4. Testing the correctness of existing and future source code.

4.1 The system should contain a set of TinyOS demo application for
testing the correctness of each component.

4.2 The system should contain a set of nesC construct specific appli-
cations to test the correctness of the system.

4.2.1 A new application with the desired new nesC extension should
be added before the actual extension of the source code.

6.3 System Design

To simplify the realization of the system, the project is split as first instance in
different activities. Further one each activity is split in different components
and tasks.

6.3.1 Activities

From the system requirements it is possible to divide the whole project in
the following activities.

• Realization of a nesC to C translator.

• Realization of a nesC library for Erika.

• Installation of a version control and backup mechanism.

• Preparing of the testing software.

• Selecting of a cross compiler for target platforms.

The rudimental Gantt chart shown in figure 6.1 shows the temporal re-
lationships beteween the different activities.

Some of the activities require the writing of source code, whereas other
activities simply require to find some existing tools that can be used for the
system realization. In the following subsections a detailed description of the
tasks needed to complete each activity will be given.
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Figure 6.1: Gantt chart of the different activities

6.3.2 Realization of a nesC to C translator

This activity is the core activity of the whole project. Its main purpose is to
realize a translator able to compile nesC code to C code. In the early stages
of the project it should also be able to translate TinyOS specific macros and
function calls to Erika macros and function calls, because at this time a nesC
library for Erika is not available. This can be done by specifying some header
files in which appropriate defines will be written.

The translator itself can be divided in the following components.

1. A front end 1 that has the purpose to gather command line options and

1Not to confuse with the compiling design phase explained in chapter 5



6.3. SYSTEM DESIGN 53

to specify directories in which it is possible to find header files.

2. The parser that is able to parse both nesC and C code.

3. The Error checker, which has the responsibility to check if there are
semantic errors in the source code, which are not handled by the parser.

4. The C code generator that is responsible for generating the C files with
the appropriate code.

5. The OIL code generator, which generates the OIL file.

The following diagram gives an overview of the whole translation process.

Figure 6.2: Translation process

In the following subsections a detailed description of each translator’s
component is given.
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The front end

This component should be able to gather command line options, to take the
input files and pass them to the right components and to search for specified
header files in the filesystem. In addition it should also be able to call all the
different software tools of which the compiler is composed. The command line
options are analyzed and an underlying component (i.e. the cross-compiler)
that is able to handle the option is searched, if the front end itself doesn’t
recognize the option. To implement it, the front end of the existing nesC-
TinyOS compiler can be used as base. Instead of calling the nesC-TinyOS
compiler it should be adapted to call first the nesC-Erika compiler and then
the right cross compiler for the target platform. The system design of the
front end can be seen in figure 6.3.

The parser

The parser parses nesC source files and outputs a syntax tree. It must be able
to recognize both the nesC and C grammar, because nesC source files contain
pure C code as well. The ANSI C grammar is not enough, because some gcc
extensions are used. Therefore the parser has to be able to recognize gcc
specific constructs too. To realize the parser, it has been decided to use the
JavaCC [JCCa] parser generator, which generates appropriate Java source
code that implements a parser given a BNF grammar. This means that the
parser is platform independent as long as a Java Virtual machine is available
for the platform on which the parser should be installed. Additionally also
JJTree, a tool included in the JavaCC package, is used for building the syntax
tree. Once the grammar of the language is given as input the generated parser
is automatically able to handle syntactic errors.

The most difficult part of the parser writing task is to cope with C’s
typedefs and C’s preprocessor statements. Because the C grammar is not a
context free grammar, the typedefs need to be stored in a table to allow a
correct parsing of C statements. To handle the C’s preprocessor statements
three solutions will be discussed in the following, but the choice of which
solution to use will be left to the implementation phase.

A first solution could consist in preprocessing the source files with an
external tool, like the gcc preprocessor. This leads to the clear advantage
of saving development time. In this case every time a new file needs to be
parsed, it is first preprocessed and the preprocessed output is then given as
input to the nesC-Erika compiler.

Another solution could be to code a C preprocessor and to integrate
it directly in the parser, but this is not an easy task, because C’s formal
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Figure 6.3: Front end system design

preprocessor grammar is not suitable for mechanical parsing. If this solution
would be used, then it is also needed to decide weather to construct a formal
grammar that is suitable to be given as input to a parser generator or to
code a preprocessor without the help of a parser generator.

The last solution is to skip all C preprocessor statements and to leave
them as they are in the generated C file. The generated C file is then anyway
preprocessed by the cross compiler, so preprocessing statements are finally
expanded. This is of course the simplest solution, but it’s drawback is that
header files wouldn’t be parsed and so some information (i.e. typedef state-
ments) are lost. To avoid this it is possible to parse only the ”#include”
statements and to ignore all the remaining statements. Also in this case
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the problem of symbols defined by the ”#define” statement remains. If this
statement is not parsed there is no chance to store those symbols and this
makes it impossible to parse C files that use symbols defined by the ”#de-
fine” statement correctly. So this solution would require a workaround in the
implementation phase to solve the problem.

As said before, if the source files respect the nesC syntax, the parser finally
creates a syntax tree, which can then be used by other compiler components
for other tasks. The system level design of the nesC parser is illustrated in
figure 6.4.

Figure 6.4: Parser system design
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The Error checker

The purpose of the error checker is to handle those errors that are not handled
by the parser. This includes all non syntactic errors, i.e. semantic ones. To
speed up the realization process in the early stages of the project this task is
done by the existing nesC-TinyOS compiler as specified better in section 6.4.
This permits to concentrate on other implementation tasks and to obtain a
first working compiler version in a shorter time.

Nevertheless some characteristics are given in this section to build an
error checker in the future. It is important that the error checker is able to
recognize all the nesC semantic errors, whereas it is not mandatory that it
is able to recognize C semantic errors, because those are handled in a later
stage by the target cross compiler. The error checker will consist basically of
three components: a tool to fill the data structures where the information of a
nesC program are stored, an another one that has to check if the informations
stored are consistent with the semantic of the nesC programming language
and additionally it has to store any errors found in the source that is going
to be compiled. The last component is responsible for reporting the errors
to the programmer.

The first component consists of ”table like” data structures, where the
relevant nesC data is stored. If the error checker is for example written in
the Java language ArrayLists, Vectors or HashTables can be used for the
implementation of those data structures . The second component traverses
the syntax tree and checks if the informations found there are consistent with
the informations stored by the first component. The last component prints
the errors stored by the previous component to the programmer. The system
level design in figure 6.5 summarizes the functionality of the error checker.

The C code generator

The C code generator has the duty to generate C code by visiting the syntax
tree that was generated by the parser. Figure 6.6 shows the principles of this
process at the system level.

One of the main problems by the construction of a C code generator is
that once something has been written on the output files it cannot be changed
anymore. This is for a language as nesC a problem, because the C trans-
lation of some nesC statements found in a file depend on some statements
that can be found in another files. It is possible that this fact is repeated
recursively for an undefined number of times and in addition it is not known
the order with which those files are going to be compiled. Therefore it is
for those statements necessary that the C code generator is able to access
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Figure 6.5: Error checker system design

a data structure, where the relevant informations are stored in advance. In
the following the most important informations that need to be stored in an
intermediate representation are listed.

• All connections present in all configuration files.

• A list containing all used components.

• A list containing all provided components.

This data structures must be constructed before the actual code genera-
tion phase, but after the parsing phase. Some data structures build during
the error check phase can be reused for that purpose.
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Figure 6.6: C code generator system design

The OIL code generator

The OIL code generator’s job consists in generating an OIL file by visiting
the syntax tree generated after the parsing phase. Again, some intermediate
data structure, which contain informations like the list of tasks or the list of
interrupt handlers, are useful to support this duty. The system level design
of the OIL code generator is shown in figure 6.7. If a TinyOS program is
being translated some decisions in the generation are straightforward, i.e. the
scheduler choice, because in TinyOS only one scheduler is available unlike in
Erika, where more schedulers are available. If a new program for Erika should
be coded from scratch using the nesC language and if it is wanted to set some
OIL options from the nesC language level a mapping from nesC to OIL is
necessary. This is beyond the aim of this project and not described here
further.

6.3.3 Realization of a nesC library for Erika

A nesC library for Erika is needed to have a fully working nesC-Erika envi-
ronment. To permit a proper translation of existing TinyOS applications the
components contained in the Erika library should have the same file names
as the existing TinyOS components. The library should hide all the C code
of the Erika operating system behind nesC components allowing the pro-
grammer to code in nesC language only. This would also allow an automatic
translation of TinyOS system call to Erika system calls.

Because this task requires a long development time, to speed up the
development process in the beginning a set of header files is instead used.
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Figure 6.7: OIL code generator system design

The header files have the purpose to map TinyOS specific C code, like system
calls, to Erika code. This files are included always as ”include” statements
at the beginning of the generated main C file. This set of header files is used
as temporary substitution of a real nesC-Erika library.

6.3.4 Version control

An automatised version control system is needed to backup the changes done
in the source code and to meet the requirements of maintainability (see non
functional requirements 3.1 and 3.2). As version control system it has been
chosen RCS [RCSa], because it is the most suitable for single user utilization
and the one that requires the smallest configuration effort. In any case it is
quite simple to substitute it with the CVS version control system, if at some
point more people should work on this project.

6.3.5 Testing software

Two different types of compiler tests are done, the first one consists in testing
the compiler’s behaviour only on a software basis. This type of tests, given
an application that compiles with the original nesC-TinyOS compiler checks,
if the application compiles with the nesC-Erika compiler as well. Similarly,
if the nesC-TinyOS compiler gives an error, also the nesC-Erika compiler
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should give an error, or at least it should stop the compiling process. The
other type of tests is a hardware based type of tests and consists in testing
an existing TinyOS application compiled by the nesC-Erika compiler on a
real hardware platform. The design of the software based tests are described
in section 6.6 and since the hardware tests are some kind of final validation
tests, they are described towards the end of the document in chapter 8.

6.3.6 Selecting a cross compiler for target platforms

This is the final activity that needs to be done for the realization of the
project. For every microcontroller on which nesc-Erika software should be
executed a different compiler is needed. For that reason the gcc compiler
collection is the best choice, because at the time of writing this paper all
microcontrollers that are supported by Erika are also supported by gcc.

6.4 Software design

In this section the design of the software that is going to be realized is de-
scribed with the help of data flow diagrams. For timing issues some simplifi-
cations are done in comparison with the plannings made during the system
design phase. In particular on the error checker and on the nesC library some
major simplifications are done to assure a faster development time.

Figure 6.8 gives an overview of the whole compilation process. As it can
be seen there, a nesC application is compiled by first checking if there are
some errors with the help of the nesC-TinyOS compiler. If there are some,
the compilation process stops, otherwise an XML file is generated, which
is the input in addition to the nesC application to nesC-Erika. NesC-Erika
generates then some C files and an OIL file that are finally compiled to an
executable by the RT-Druid tool.

6.4.1 nesC to C translator design

The design of this software component is described as the sum of the design
of the software submodules, as explained in section 6.3.1. The simplification
changes done on some modules like the error checker and the nesC-Erika
library have an effect on some other software modules as well.

Design of the Front end

The front end is made of one software modules. It consists in a shell script
that calls first the original nesC compiler. This is done to obtain an optimal
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Figure 6.8: Compilation process

error checking and an intermediate data structure, where usefull information
are stored as explained in later sections. After that the modified original
nesC Perl front end is called. This component will then call the actual nesC-
Erika compiler, which does the rest of the work. Figure 6.9 shows the front
end’s software design.

Parser design

The Parser is obtained by inserting the nesC 1.1 grammar rules found in
[GLCB03] as well as the nesC 1.2 grammar rules found in [GLCB05]. The
reason for inserting both set of rules is that otherwise applications written
with the 1.1 syntax, like all TinyOS 1.x applications, are not compilable, if
only the 1.2 set of rules is inserted. Of course if only the 1.1 set of rules is
inserted, applications using the 1.2 syntax, like all TinyOS 2.x applications
cannot be parsed.



6.4. SOFTWARE DESIGN 63

Figure 6.9: Front end software design

After an application is successfully parsed the parser generates a syntax
tree. For that reason the JavaCC preprocessor, JJTree, for automatic build-
ing of a syntax tree is used. Therefore the grammar rules are inserted in a
.jjt file. After the JJTree preprocessor is run on it a jj file will be generated.

Finally the actual parser generator JavaCC is run and some Java classes
are generated, along with all the classes that form the syntax tree. Below
the classes that are not part of the syntax tree are listed.

The syntax tree consists in a class for every node of the tree that is derived
from a BaseNode class, which implements the Node interface as depicted in
diagram 5.3.

A node of the syntax tree represents a grammar rule. Not for all grammar
rules it is necessary to have a node in the syntax tree. For example the
CallKind grammar rule needs one and the AdditiveExpression grammar rule
does not. The decision if a grammar rule needs or doesn’t need a node in
the syntax tree is left from case to case to the implementation phase and it



64 CHAPTER 6. ARCHITECTURE

depends on the fact if a transformation is needed to be done or if it is enough
just to leave the token as it is in the output file. For example a ”+” sign
has the same translation in nesC code as well as in C code and therefore the
AdditiveExpression rule does not need a node in the syntax tree. Instead,
the CallKind rule has a semantic in the nesC language only and therefore a
node is necessary to make some changes on it.

Error checker

To speed up the development process in the first compiler versions the er-
ror checker’s work will be done by the existing nesC-TinyOS compiler. As
explained in 6.4.1 and shown in figure 6.9 the original nesC-TinyOS com-
piler is called by the front end. If an error is detected the whole compilation
process stops and the errors are reported. If no errors are found the actual
nesC-Erika compiler is executed and the compilation process continues.

C code generator

Also for these software module some simplifications are required to permit a
first compiler release in a reasonable time. The necessary intermediate data
structures as explained in section 6.3.2 are generated by the original nesC-
TinyOS compiler in form of an XML file. After that this file is processed by a
SAX parser, which creates some Java helper object that contain information
required to generate correctly the C output files. In later compiler versions
instead of parsing the XML file it is possible to gather those informations
in other ways from the input files. In any case it is really useful to use
the XML file in the beginning, because this makes it possible to construct a
consistent class hierarchy to contain the information needed to generate the C
output. Otherwise it would not be easy to guess, which information should
be stored, which not and in which way. The C code generator’s software
design is summarized in figure 6.10.

OIL code generator

The purpose of this component is to generate an OIL file and two C files. In
one of the two C files the interrupt handlers to be used in Erika are defined, in
the other one the threads of which the application is composed are declared.
The ideal way to implement this component would it be to divide it in two
software modules. The first one should store all the tasks and interrupt
handlers found in the source files in a data structure, the second one should
generate on the base of this informations correctly the OIL file. Again, to
speed up the development process, in the beginning only one component is
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Figure 6.10: C code generator software design

implemented that will do the work of collecting all the tasks and interrupt
handlers as well as the work of generating the actual OIL code. Figure 6.11
summarizes the OIL code generator’s design.

6.4.2 Realization of a nesC library for Erika

As described in section 6.3.3 in the early compiler versions a set of header
files is used instead of a real nesC library for Erika. The header files should
translate TinyOS system calls to Erika system calls with the use of #define
statements. Because some system calls available for TinyOS don’t have a
correspondent Erika system call, those system calls are translated like in the
following sample.

In addition to these header file another header files are needed, where
TinyOS types are defined, like for example the bool type.
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Figure 6.11: OIL code generator software design

6.5 Implementation details

Of the software modules identified in section 6.4 the following will be imple-
mented during this project.

• Front end

• Parser

• Symbol Table

• XML parsers

• C code generator

• nesC entity objects

• OIL code generator

In the following sections implementation details and in particular class
diagrams of those software modules that are implemented by a class hierarchy
are shown.
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6.5.1 The front end

As explained in the software design phase this module consists in a Perl script.
The base for this Perl script is taken from the original nesC-TinyOS package,
which is called ncc. The same name has been kept also for the correspondent
nesC-Erika script which can be found in the nesC-Erika installation directory.

6.5.2 The parser

The parser consists mainly of a jjt files which contains the lexer and parser
rules. This jjt file is run through the jjt preprocessor, which then generates
the jj file with the annotations for the generation of the parse tree. This file
is then run through the actual JavaCC compiler, which then generates the
Java code consisting in a set of classes that implement the parser.

The jjt file can be divided in two different parts. One consists in the
definition of the tokens in terms of regular expressions that are used by the
lexer. Some examples of token definitions are listed below.

An other part consists in the grammar rules written using the EBNF (Ex-
tended Backus-Naur Form) syntax. This grammar rules, also called EBNF
production rules can contain semantic actions consisting in pure Java code
written in it that are executed when a production is recognized. Again, some
examples are shown below.

6.5.3 The C and OIL code generators

The C CodeGeneratorVisitor as well as the OIL code generator classes are
derived from the UnparseVisitor class, which is a class that implements things
that all code generators have in common, like for example methods to print
tokens to an output file. This class, on the other hand is derived from the
FirstVisitor class, which implements the nesc compilerVisitor interface. This
class hierarchy is shown in figure 6.12.

6.5.4 The symbol table

This software module is implemented by a class hierarchy consisting in the
Scope class responsible for taking track of scope changes in the source code,
a Symbol class that maps lexemes to a HashTable for faster computation and
the SymbolTable itself that memorizes relevant symbols found in the source
code. This hierarchy is shown in figure 6.13.

The SymbolTable is constructed by the SymbolTableVisitor class, which
is part of the hierarchy shown in figure 6.12.
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Figure 6.12: The visitors class hierarchy

6.5.5 XML parsers

This software module consists in a set of SAX parsers that are gathering
some kind of informations that are available in the symbols.xml file generated
by the nesC-TinyOS compiler. For each type of information that needs to
be stored a handler is derived from the FirstHandler class, which on the
other hand implements the standard ContentHandler SAX interface. All the
objects created by parsing the symbols.xml file are stored in the XMLpicker
class.

6.5.6 The nesC entity Objects

This set of objects are implemented using a class hierarchy. All concrete
objects are derived from the abstract class NESCentity. This objects contain
informations like interface instances available in the nesC application. To
explain the relationships of the classes one can imagine that for example
a NESCinterfaceInstance is composed of several NESCfunctions and each
NESCfunction can have zero or more NESCparameters. The class diagram
is shown in figure 6.15.



6.6. PREPARING OF THE TESTING SOFTWARE 69

Figure 6.13: Symbol table class diagram

Figure 6.14: The SAX handler hierarchy

6.6 Preparing of the testing software

Two separate sets of nesC applications are needed to test the correctness
of the translator. The A set contains existing TinyOS demo applications,
whereas the B set contains shorter code to test specific nesC language con-
structions. Another characteristic of the applications contained in the B set
is that they are unrelated to the TinyOS environment and therefore they can
be used to test the exactness of this compiler’s aspect. The nesC components
written to implement the Erika library (see section 6.3.3) could be used in
the B set as well, because they form nesC testing code that is unrelated to
the TinyOS environment, although they may be not so short, but exactly for
this reason they can be useful to do final validating tests for the use of the



70 CHAPTER 6. ARCHITECTURE

Figure 6.15: The NESCentity class hierarchy

compiler in a non TinyOS environment.
The applications contained in the two sets are listed below with a brief

description of each application contained in the B set. For the A set the
description is not reported, because it can be found in the directory tree of
every TinyOS installation.

Set A:

• Blink

• BlinkTask

• CntToLeds

• CntToLedsAndRfm

• CntToRfm

• GenericBase

• GlowLeds

• GlowRadio

• Oscilloscope

• OscilloscopeRF
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• RfmToLeds

• SecureTOSBase

• Sense

• SenseTask

• SenseToLeds

• SenseToRfm

• TestTinySec

Set B:

• AttributeTest

This application is used to test the compiler’s behaviour on nesC and
gcc attributes.

• ComponentTest

This application is used to see how the compiler works if the components
nesC keyword is used.

• ConnectionTest

This application is used to see the comportment of the compiler when
connections are present in the sources.

• Default test

This application is used to check the compiler’s demeanour, if default
nesC commands or events are present in the source code and only one
component uses them.

• Default test switch

This application is used to check the compiler’s behaviour, if default
nesC commands or events are present and different components use
different implementations of those commands or events.

• EqualOperator first case

This application is used to check the compiler’s comportment, if the
equal operator is used in a connection that connects an internal com-
ponent with an external one.
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• EqualOperator first case complicated

This application is used to check the compiler’s comportment, if the
equal operator is used in a connection that connects an internal com-
ponent with an external one and the components are renamed by the
as nesC keyword.

• EqualOperator second case

This application is used to check the compiler’s comportment, if the
equal operator is used in a connection that connects two external com-
ponents.

• EqualOperator second case complicated

This application is used to check the compiler’s comportment, if the
equal operator is used in a connection that connects two external com-
ponents and the components are renamed by the as nesC keyword.

• FanOut

This application is used to check the compiler’s behaviour, if a compo-
nent is connected to more than one other component.

• Global variable function arg

This application is used to check the compiler’s demeanour, if a nesC
file contains global variable or function declarations. In this case the
resulting C file has to prefix each global function or variable name with
the file name.

• Parameterized used interfaces

This application is used to check the compiler’s comportment, if a nesC
component uses parameterized interfaces.

• Tasks

This application is used to check the compiler’s behaviour, if a nesC
component uses tasks.

• Cfunctions

This application is used to check the compiler’s demeanour, if a nesC
file contains non global pure C functions or variables that are neither
commands nor events.
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• First parameters

This application is used to check the compiler’s comportment, if nesC
commands or events contain parameters of fundamental types.

• Complex parameters

This application is used to check the compiler’s behaviour, if nesC
commands or events contain parameters of directly derived types like
for example arrays or pointers.

• Implicit with equal first case

This application is used to check the compiler’s behaviour, if nesC com-
ponents are involved in implicit connections, where the equal operator
is used in a connection that connects an internal component with an
external one.

• Implicit with equal second case

This application is used to check the compiler’s behaviour, if nesC com-
ponents are involved in implicit connections, where the equal operator
is used in a connection that connects two internal components.
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Chapter 7

Installation and Using

In this chapter a description of how to install the nesC-Erika software is
given and a sample usage will be shown to test, if the environment has
been installed correctly. First the required software is listed. After that,
the needed installation steps are explained. Finally a sample application is
compiled.

7.1 Software Requirements

Theoretically it is possible to install the nesC-Erika software both on a UNIX
and Windows environment, but here only the installation on Windows XP
will be described, because at the time of writing this work, only the bat
version of the rtdruid launcher file was available.The rtdruid launcher.bat file
is responsible of compiling the OIL file to a C file and to generate a makefile
that can be executed after that.

For that reason the software requirements are the following.

• Windows XP professional

• Java JRE 1.6 or higher

• Cygwin 1

• Erika Enterprise for AVR

• TinyOS 1.15

• TinyOS 2.0.1

1must be under C:\cygwin, very important!! In later versions this may change
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• nesC 1.2

• nesC-Erika

7.2 Installation

This section supposes that the installation steps required to install Win-
dows, the Java JRE and Cygwin are well known or at least that they can be
read on other sources. For installing the Erika enterprise operating system
it will be referred to the Evidence homepage [EVI], while for the instal-
lation of TinyOS 1.x, TinyOS 2.x and nesC 1.2 the following homepage is
useful (http://www.tinyos.net/tinyos-2.x/doc/html/upgrade-tinyos.
html#tinyos2). It describes very well how to have both a TinyOS 1.x direc-
tory tree in conjunction with a TinyOS 2.x tree. An important thing to note
is that, as written in section 7.1, the cygwin environment must be installed
in C:\cygwin otherwise the things don’t work. Maybe this will change in
further versions.

In the next section detailed instructions for the installation of nesc-Erika
are given.

7.2.1 Installation of nesC-Erika

To install nesc-Erika the first thing to do is to download either the zip or
tar.gz package available on the homepage. Next, the archive should be ex-
tracted in a directory. After that the software should be ready to be used.
In the following a step by step guide of a method to install the nesC-Erika
tar.gz package under Windows using the Cygwin environment is given. It is
supposed that the package is called nesc erika-0 01-beta.tar.gz.

1. The package nesc erika-0 01-beta.tar.gz is downloaded in a directory.
In the following it is supposed that this directory is called
/cygdrive/g/home/finrod/workspace/backups/release.

2. A Cygwin shell should be opened like in screenshot 7.1.

3. The /cygdrive/g/home/finrod/workspace/backups/release directory, where
the package was downloaded, should be entered as shown in screenshot
7.2.

4. The command

tar xzf nesc erika-0 01-beta.tar.gz

should be used to extract the archive as shown in screenshot 7.3.
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Figure 7.1: Cygwin shell

5. If the package was correctly installed, a subdirectory called nesc erika
should have been created and the directory structure of this directory
should look like in screenshot 7.4. In section 7.3 this directory is called
the nesC-Erika installation directory.

In the following section a sample application is compiled to show how
the translator is working.

7.3 Using - Sample compilation on an AVR

target

To test if the environment has been installed correctly a sample application
contained in the nesc erika/Demo directory can be compiled. It is supposed
that the target board is Atmel’s [ATM] STK500 in conjunction with Atmel’s
[ATM] STK501 board and the Atmega 128L microcontroller on it. In the
following part of the section it is supposed to compile the BlinkTask appli-
cation situated in the nesc erika/Demo/BlinkTask directory. To do so it is
simply necessary to follow the successive steps. It is supposed that the steps
shown in section 7.2.1 have been followed before.

1. The Makefile in the nesc erika/Demo/BlinkTask directory, should be
opened in an editor as shown in screenshot 7.5
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Figure 7.2: Entering the directory of the downloaded package

2. The RTDRUID variable should be edited to contain the exact abso-
lute path to the rtdruid launcher.bat file. Normally the file is located
in the bin subdirectory of the Erika installation directory. In sam-
ple screenshot 7.5 the absolute path to the rtdruid launcher.bat file is
/cygdrive/c/Programmi/EvidenceAVR/bin/rtdruid launcher.bat.

3. After having correctly edited the Makefile the nesC-Erika installation
directory should be entered again as shown in screenshot 7.6.

4. The compilation command should be entered. To do so, the command

./ncc <top configuration file name> 2

is used. The top configuration file name consists in the “main” nesC
file name and normally it corresponds to the name of the directory,
where the configuration files are contained with nc extension.

In the current example the command

./ncc BlinkTask

should be executed to compile the application as shown in screenshot
7.8.

2Actually, this works only with the applications contained in the Demo directory. For
now this is only a prototype of the compiler, so this is done to show a faster demonstration.
To change this behaviour the $APP DIR variable contained in the ncc Perl script shown
in screenshot 7.7 and contained in the nesC Erika installation directory can be edited.
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Figure 7.3: Extracting the archive

5. If everything compiled fine the message shown in screenshot 7.9 should
be seen.

6. The important output files generated by the translator can be found
in the Demo/BlinkTask/ directory as shown in screenshot 7.10 and are
summarized below.

• BlinkTask.nc.c

contains the main and other function definitions.

• handler.c

contains the interrupt handler routines.

• function declarations.h

contains the function declarations of all functions present in the
application.

• preproc container.h

contains commands for the C preprocessor.

• threads.h

contains the declarations of the task used in the application.

• conf.oil

contains the OIL configuration of the application.

The other files that are generated can be ignored and in future versions
they will not be visible anymore.
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Figure 7.4: The nesC-Erika installation directory tree

7. The nesc erika/Demo/BlinkTask/Debug directory contains the file gen-
erated by the rtdruid launcher.bat script. In particular a file called
avr.hex can be found there as shown in screenshot 7.11. This is the
final executable file of the application. This file is only suitable to be
installed on the Atmega 128L microcontroller.

8. This file can be copied on the target board using the user’s favorite
programmer. The sample uisp script.sh is a script that contains an
example command to copy the avr.hex file on the target board using
the UISP [UIS] software.

9. An example usage of the sample uisp script.sh script is shown in screen-
shot 7.12. It takes an argument that consists in the path to the avr.hex
file. In this case it is Demo/BlinkTask/Debug/avr.hex.

10. If desired, the Demo/BlinkTask directory can be entered again to delete
all generated files using the

make clean

command.
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Figure 7.5: The application Makefile

Figure 7.6: Entering the nesC-Erika installation directory
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Figure 7.7: The ncc Perl script

Figure 7.8: Compiling the sample application
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Figure 7.9: Message after successful compilation

Figure 7.10: Files generated by the translator
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Figure 7.11: The avr.hex file located in the
nesc erika/Demo/BlinkTask/Debug directory.

Figure 7.12: Using the script sample uisp script.sh



Chapter 8

Experiments

In this chapter experiments on a real hardware platform are reported. The
first section gives an overview of the hardware used for the test, like the de-
velopment board and microcontroller used. The second section will describe
the testing applications chosen, the third section describes the selected In-
System Programmer, the forth the used cross compiler, whereas the fifth
and final section describes the results obtained. In the results there will be
also a comparison between the files generated by the nesC-TinyOS compiler
and the files generated by the nesC-Erika compiler that are needed to obtain
the final executable in terms of number of code lines and size. The final
executables itself will be compared as well in this way.

8.1 Target Hardware

To test the software, Atmel’s ATmega128 AVR [ATM] microcontroller on the
STK500 and STK501 development board, has been chosen as target hardware
platform.

8.1.1 STK500 development board

The Atmel AVR STK500 is a starter kit and development system for Atmel’s
AVR Flash microcontrollers. The system comprises of a single board module
which features IC 1 sockets for all the popular dual-in-line AVR devices. It
makes it possible to in-system program (ISP) AVR devices on the STK500
and also to use the board to ISP a device on a separate Target System. The
STK500 can be used as an evaluation board by connecting up the various

1Integrated circuit
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on-board peripherals including LED’s, push buttons and Serial Dataflash.
The features are summarized in the following list.

Figure 8.1: The STK500 board

• Dual-in-line (DIL) Sockets to accommodate 8, 20, 28 and 40 pin AVR
microcontrollers

• Supports Serial In-System Programming (ISP) of AVR microcontrollers
on the STK500 Board

• Supports In-System Programming of AVR microcontrollers in an Ex-
ternal Target System

• Supports Parallel and Serial High-voltage programming of AVR micro-
controllers on the STK500 Board

• 8 x Push buttons

• 8 x LED’s for general use

• All AVR I/O ports accessible through pin header connectors

• Expansion connectors for plug-in modules (e.g. STK501)

• Prototyping area
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• On-board 2 Megabit Serial Dataflash for non-volatile data storage

• Flexible clocking, voltage and reset system

• RS-232 Interface to PC for Programming and Configuration

• Second RS-232 port for user application

• External power supply required (9V - 12V DC)

• AT89(L)S - 8051, AT90S AVR, ATmega AVR, ATtiny AVR FLASH
microcontroller Family support

8.1.2 STK501 development board

The STK501 board is a top module designed to add ATmega103, ATmega64
and ATmega128 support to the STK500 development board from Atmel Cor-
poration [ATM]. With this board the STK500 is extended to support all
current AVR devices in a single development environment. In addition to
adding support for new devices, it also adds new support for peripherals
previously not supported by the STK500. An additional RS-232 port and
External SRAM interface is among the new features. Devices with Dual
UART or XRAM interface can all take advantage of the new resources on
the STK501 board.

In the following list the features of this board are summarized.

• STK500 Compatible

• AVR Studio Compatible

• Supports ATmega103, ATmega64 and ATmega128

• Zero Insertion Force Socket for TQFP packages

• TQFP Footprint for Emulator Adapters

• Supports all added features in ATmega128

• JTAG connector for On-Chip Emulation using JTAG ICE (ATmega128)

• Additional RS-232C port

• Adds XRAM support to the STK500 board. (usable for all devices
with XRAM interface)

• On board 32kHz clock oscillator for easy RTC implementations
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Figure 8.2: The STK501 board on top of the STK500

8.1.3 ATmega128 AVR microcontroller

In general the AVR family of Atmel’s microcontroller is a modified Har-
vard architecture machine with program and data stored in separate physical
memory systems that appear in different address spaces but having the abil-
ity to read data items from program memory using special instructions. The
ATmega128 AVR in particular, is a microcontroller able to run at 16MHz.

The main characteristics of this microcontroller are summed up below.

• 128-Kbyte self-programming Flash Program Memory

• 4-Kbyte SRAM

• 4-Kbyte EEPROM

• 8 Channel 10-bit A/D-converter

• JTAG interface for on-chip-debug

• Up to 16 MIPS throughput at 16 MHz

• 2.7 - 5.5 Volt operation.
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8.2 In-System Programmer

The selected in-system programmer to copy the final executable on the target
platform is the UISP - AVR In-system Programmer [UIS] 2. It can be run on
UNIX systems as well as on Windows platforms using the cygwin environ-
ment. UISP allows to program the microcontroller through the parallel or
serial port of the computer. It is possible to use the many wirings available.
The most important options are listed below.

• -dprog=avr910|pavr|stk500

avr910
Standard Atmel Serial Programmer/Atmel Low Cost Programmer

pavr
http://www.avr1.org/pavr/pavr.html

stk500
Atmel STK500

• -dpart=part

This option sets the target abbreviated name or number. For some
programmers, if -dpart is not given, the list of programmer’s supported
devices is shown. For auto-select -dpart=auto can be given, but it does
not work with all programmers, so it is recommended to always specify
a target device explicitly.

• -dserial=device name

In a Unix environment the serial interface as /dev/ttyS* can be set
(default /dev/avr). If the software is run on Windows under cygwin
than the interface is set as /dev/com*.

• –upload

The ”input file” specified after the if option is uploaded to the AVR
memory.

• if=filename

The input file for the –upload and –verify functions in Motorola S-
records (S1 or S2) or 16 bit Intel format.

• –erase

Erase device

2acronym that stands for ”micro In System Programmer”, the u symbolizes a greek µ
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• –verify

The ”input file” processed after the –upload option is verified.

8.3 Cross compiler

The selected cross compiler is the WinAVR [WAV] compiler, because it is
the most suitable to be run from a Windows environment. It consists in a
suite of executable, open source software development tools for the Atmel
AVR series of RISC microprocessors. It includes the GNU GCC compiler for
C and C++.

8.4 nesC-TinyOS vs nesC-Erika

In this section a comparison between the nesC-TinyOS and nesC-Erika com-
piler is shown. The tests are done on demo applications available in the
Demo directory of the nesC-Erika installation directory 3. This applications
are also available in the TinyOS directory. For each tested application four
tables are reported.

The first one counts the code lines and the memory size of the files gen-
erated by nesC-Erika. NesC-Erika generates more then one intermediate C
file and therefore the code lines and memory size are counted separately for
each single file. In the last row of the tabel the memory usage of the final
executable is shown.

The second table shows the memory usage and number of code lines
of the files generated by nesC-TinyOS. NesC-TinyOS generates only one
intermediate C file and it is normally called <application name>.c. In the
case of Blink for example this file is called Blink.c. In the last row the memory
usage of the final executable generated by nesC-TinyOS is shown.

The third table shows a comparison between the intermediate files gen-
erated by nesC-TinyOS and nesC-Erika. The memory usage and number of
code lines of the nesC-TinyOS intermediate file are compared against the
memory usage and number of code lines of all intermediate files generated by
nesC-Erika together. This time the columns represent the files and the rows
represent the resources used, in terms of memory usage and number of code
lines. In this table there are also two final columns showing respectively the
absolute and relative 4 differences.

3see section 1.4 for the meaning of nesC-Erika installation directory.
4The relative difference is calculated with the formula

dr = |x− y|/max(|x|, |y|) and expressed in percentage.
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The forth table compares the memory usage of the executable generated
by nesC-TinyOS against the one generated by nesC-Erika.

Blink

It is a basic application that starts a 1Hz timer and toggles the red LED
every time it fires.

The four tables (8.1, 8.2, 8.3 and 8.4) compare the different results ob-
tained by using the nesC-TinyOS and nesC-Erika compiler for Blink.

Memory Code lines
usage

Blink.nc.c 29 KiloByte 1621
function declarations.h 6 KiloByte 133

preproc container.h 40 Byte 2
handler.c 95 Byte 5
threads.h 100 Byte 3
conf.oil 1,8 KiloByte 78

nesC-Erika executable 11 KiloByte -

Table 8.1: Files generated by nesC-Erika for Blink

Memory Code lines
usage

nesC-TinyOS

intermediate file
44 KiloByte 2006

nesC-TinyOS

executable
14 KiloByte -

Table 8.2: Files generated by nesC-TinyOS for Blink

BlinkTask

BlinkTask is a basic application that toggles the leds on the mote on every
clock interrupt. The difference between Blink and BlinkTask is how the
Clock.fire() event is handled. BlinkTask offloads processing to a task which
controls the LEDs. Blink controls the LEDs directly in the event handler
thereby not returning from the event until the LEDs have been toggled. The
clock interrupt is scheduled to occur every second. The initialization of the
clock can be seen in the Blink initialization function, StdControl.start().
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nesC-TinyOS nesC-Erika absolute relative
intermediate file intermediate files difference difference

Memory

usage
44 KiloByte 37,035 KiloByte 6,965 KiloByte 15,83%

Code

lines
2006 1842 164 8,18%

Table 8.3: nesC-TinyOS vs. nesC-Erika intermediate files for Blink

nesC-TinyOS nesC-Erika absolute relative
executable executable difference difference

Memory

usage
14 KiloByte 11 KiloByte 3 KiloByte 21,43%

Table 8.4: nesC-TinyOS vs. nesC-Erika executables for Blink

The four tables (8.5, 8.6, 8.7 and 8.8) compare the different results ob-
tained by using the nesC-TinyOS and nesC-Erika compiler for BlinkTask.

Memory Code lines
usage

BlinkTask.nc.c 29 KiloByte 1633
function declarations.h 6 KiloByte 133

preproc container.h 40 Byte 2
handler.c 99 Byte 5
threads.h 131 Byte 4
conf.oil 1,9 KiloByte 85

nesC-Erika executable 12 KiloByte -

Table 8.5: Files generated by nesC-Erika for BlinkTask

CntToLeds

CntToLeds maintains a counter on a 4Hz timer and displays the lowest three
bits of the counter value. The red LED is the least significant of the bits,
while the yellow is the most significant. The four tables (8.9, 8.10, 8.11 and
8.12) compare the different results obtained by using the nesC-TinyOS and
nesC-Erika compiler for CntToLeds.
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Memory Code lines
usage

nesC-TinyOS

intermediate file
44 KiloByte 2013

nesC-TinyOS

executable
14 KiloByte -

Table 8.6: Files generated by nesC-TinyOS for BlinkTask

nesC-TinyOS nesC-Erika absolute relative
intermediate file intermediate files difference difference

Memory

usage
44 KiloByte 37.17 KiloByte 6,83 KiloByte 15,52%

Code

lines
2013 1862 151 7,50%

Table 8.7: nesC-TinyOS vs. nesC-Erika intermediate files for BlinkTask

GlowLeds

This application increments or decrements the Leds intensity based on the
value of a state variable every time the timer fires.

The four tables (8.13, 8.14, 8.15 and 8.16) compare the different results
obtained by using the nesC-TinyOS and nesC-Erika compiler for GlowLeds.
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nesC-TinyOS nesC-Erika absolute relative
executable executable difference difference

Memory

usage
14 KiloByte 12 KiloByte 2 KiloByte 14,29%

Table 8.8: nesC-TinyOS vs. nesC-Erika executables for BlinkTask

Memory Code lines
usage

CntToLeds.nc.c 30 KiloByte 1701
function declarations.h 6.4 KiloByte 140

preproc container.h 40 Byte 2
handler.c 96 Byte 5
threads.h 131 Byte 4
conf.oil 1.9 KiloByte 85

nesC-Erika executable 12 KiloByte -

Table 8.9: Files generated by nesC-Erika for CntToLeds

Memory Code lines
usage

nesC-TinyOS

intermediate file
50 KiloByte 2337

nesC-TinyOS

executable
16 KiloByte -

Table 8.10: Files generated by nesC-TinyOS for CntToLeds

nesC-TinyOS nesC-Erika absolute relative
intermediate file intermediate files difference difference

Memory

usage
50 KiloByte 38.567 KiloByte 11,433 KiloByte 22,87%

Code

lines
2337 1937 400 17,12%

Table 8.11: nesC-TinyOS vs. nesC-Erika intermediate files for CntToLeds
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nesC-TinyOS nesC-Erika absolute relative
executable executable difference difference

Memory

usage
16 KiloByte 12 KiloByte 4 KiloByte 25%

Table 8.12: nesC-TinyOS vs. nesC-Erika executables for CntToLeds

Memory Code lines
usage

GlowLeds.nc.c 33 KiloByte 1767
function declarations.h 6,4 KiloByte 139

preproc container.h 40 Byte 2
handler.c 98 Byte 5
threads.h 132 Byte 4
conf.oil 1,9 KiloByte 85

nesC-Erika executable 13 KiloByte -

Table 8.13: Files generated by nesC-Erika for GlowLeds

Memory Code lines
usage

nesC-TinyOS

intermediate file
50 KiloByte 2162

nesC-TinyOS

executable
16 KiloByte -

Table 8.14: Files generated by nesC-TinyOS for GlowLeds

nesC-TinyOS nesC-Erika absolute relative
intermediate file intermediate files difference difference

Memory

usage
50 KiloByte 41.57 KiloByte 8,43 KiloByte 16,86%

Code

lines
2162 2002 160 7,4%

Table 8.15: nesC-TinyOS vs. nesC-Erika intermediate files for GlowLeds
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nesC-TinyOS nesC-Erika absolute relative
executable executable difference difference

Memory

usage
16 KiloByte 13 KiloByte 3 KiloByte 18,75%

Table 8.16: nesC-TinyOS vs. nesC-Erika executables for GlowLeds



Chapter 9

Future work

In the present chapter some suggestions on which kind of work is still needed
on the compiler are given.

9.1 Erika nesC library

As said in other chapters a nesC-Erika library would be needed to obtain
a ideally working nesC-TinyOS to nesC-Erika translator. One of the main
objectives of the thesis was to construct a tool that can automatically trans-
late a nesC-TinyOS application to a nesC-Erika one. This is without such a
library difficult to realize. As described earlier this library can be substituted
by a set of C header files. In any case a set of Erika system calls that are
equivalent to TinyOS system calls are needed, otherwise every single appli-
cation that is going to be translated can contain a system call that is not
substituted and so the whole application is not independent from TinyOS.

9.2 Going away from nesC-TinyOS

In the future it is important to try to build a translator that is able to
work without the help of nesC-TinyOS. This means that an error checker
capable of catching all kind of errors is needed. In addition a C preprocessor
directly integrated in the compiler would be very useful for that purpose.
This would allow to avoid having to parse the XML file for collecting all
the types defined by typedef. Finally, the objects containing important cross
component information involved in the code generation process should be
generated not by parsing the XML file, but by parsing the source file and
the parse tree.
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9.3 TinyOS 2 support

For now the translator supports only applications that are written for the
TinyOS 1.x operating system that uses the nesC 1.1.x language specification.
Applications written for TinyOS 2.x, which uses the newer nesC 1.2.x lan-
guage can be parsed, but no code is generated for those applications yet. Be-
tween nesC 1.1.x and 1.2.x there are many new language constructs available.
Those new constructs should be supported by the code generators available
for nesC-Erika to make it possible to compile TinyOS 2.x applications.

A summary of the most important changes between nesC 1.1.x and 1.2.x
can be found in the following lines.

• Generic interfaces defined by the generic interface keywords.

• Generic components defined by the generic module or generic configu-
ration keywords.

• Generic interfaces or generic components are instantiated by the new
keyword.

• An interface definition can now have arguments.

• Binary components: programs can now use components defined in bi-
nary form.

• External types: types with a platform-independent representation and
no alignment representation can now be defined in nesC.

• Attributes: declarations may be decorated with attributes. The use of
attribute for nesC-specific features is deprecated 1.

• The includes keyword is deprecated and components can be preceded by
arbitrary C declarations and macros. Particularly, instead of includes
the standard C #include keyword is used.

• The return keyword can be used within atomic statements. Hereby the
atomic statement is automatically terminated by the return keyword.

1used only for gcc attributes anymore, instead constructs of the form
@identifier(initializer-list) are used for nesC v1.2.
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