brought to you by CORE

Tommaso Baldetti

PROGETTAZIONE DI UN DAC A 10 BIT IN TECNOLOGIA BCD8 PER DRIVER AD ALTA TENSIONE

Tesi di Laurea Specialistica

Università di Pisa

Settembre 2008

UNIVERSITÀ DI PISA Facoltà di Ingegneria

Corso di Laurea Specialistica in INGEGNERIA ELETTRONICA

Curriculum Microsistemi

Progettazione di un DAC a 10 bit in tecnologia BCD8 per driver ad alta tensione

Tesi di Tommaso Baldetti

Anno Accademico 2007-2008

Relatori:	Prof. Luca Fanucci	
	Ing. Francesco D'Ascoli	
	Ing. Emilio Volpi	
Candidato:	Tommaso Baldetti	

Indice

In	ntroduzione		ix	
1	ME	MS pe	er applicazioni ottiche	1
	1.1	Nascit	ta dei MEMS	1
	1.2	Bulk 1	micromachining	3
	1.3	Surfac	ce micromachining	4
	1.4	MOE	MS	5
	1.5	Micro	mirror scanner	6
	1.6	Digita	al micromirrors	8
	1.7	Scann	ing micromirrors	11
		1.7.1	Scanning micromirrors con attuazione elettrostatica	12
		1.7.2	Scanning micromirrors con attuazione	
			elettromagnetica	15
		1.7.3	Scanning micromirrors con attuazione termica	16
2	Cor	nvertit	ori Digitale-Analogico	18
	2.1	Breve	storia dei convertitori	18
	2.2	Possik	oili applicazioni	19
	2.3	Paran	netri caratteristici	21
		2.3.1	L'errore di quantizzazione	21
		2.3.2	Parametri statici	24
		2.3.3	Parametri dinamici	27
	2.4	Tipi d	li architetture	31
		2.4.1	Architetture basate su resistenze	31
		2.4.2	Architetture basate su capacità	38
		2.4.3	Architetture basate su generatori di corrente	39
	2.5	Tecno	logia BCD 8	46
3	Din	nensio	namento e implementazione circuitale	53

	3.1	Carat	teristiche del sistema	53
		3.1.1	Architettura scelta	55
	3.2	Dimer	nsionamento stringa resistiva	56
		3.2.1	Effetto di un gradiente lineare	56
		3.2.2	Effetto di errori casuali	58
		3.2.3	Implementazione dei modelli in MATLAB $\ensuremath{\mathbb{R}}$	59
		3.2.4	Valutazione di $\Delta R/R$ in funzione dei parametri geometrici e	
			di processo	67
		3.2.5	Valutazione dei parametri di una architettura segmentata . \ldots	70
	3.3	Valuta	azione impatto del leakage	72
		3.3.1	Problematiche inerenti la progettazione	74
	3.4	Implei	mentazione finale	83
		3.4.1	Struttura dei decoder	87
	3.5	Buffer	: schema circuitale e dimensionamento	91
		3.5.1	Specifiche di progetto	91
		3.5.2	Topologia iniziale	93
		3.5.3	Problemi dell'architettura	95
		3.5.4	Dimensionamento	97
4	\mathbf{Sim}	ulazio	ni e risultati	105
	4.1	Simula	azioni del buffer	105
		4.1.1	Analisi di stabilità	106
		4.1.2	Risposta in frequenza	113
		4.1.3	Resistenza di uscita	114
		4.1.4	Slewrate	116
		4.1.5	Power supply rejection ratio (PSRR)	119
		4.1.6	Simulazioni al variare dei parametri	120
		4.1.7	Simulazioni sul sistema completo	122
5	Lay	out		124
	5.1	Chanr	nel stop	124
	5.2	Diodi	Antenna	125
	5.3	Layou	t della stringa resistiva	125
	5.4	Layou	t dei decoder	128
Co	onclu	isioni		131

Elenco degli acronimi	134
A Script Matlab	137
Bibliografia	146

Elenco delle figure

1.1	Chip DLP della Texas Instruments.	8
1.2	Struttura del micromirror di un DLP $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	9
1.3	Schema di un'applicazione dei DLP per proiettori consumer [1]	10
1.4	Esempio di switch ottico $n \times n$	11
1.5	Array di microspecchi a scansione	12
1.6	Immagine al SEM di un attuatore comb drive	13
1.7	Particolare di un Vertical Comb Drive	14
1.8	Micromirror con attuazione elettromagnetica	15
1.9	Microspecchio a scansione con attuazione elettrotermica	17
1.10	Microspecchio a scansione con attuazione elettrotermica (2)	17
2.1	Sistema per la regolazione della portata dell'acquedotto pubblico	19
2.2	Schema a blocchi del processo di quantizzazione	21
2.3	Caratteristica ingresso-uscita di un quantizzatore	21
2.4	Rappresentazione dell'errore di quantizzazione	22
2.5	Funzione densità di probabilità (ddp) dell'errore di quantizzazione	22
2.6	Caratteristica DAC ideale e non monotonico	25
2.7	Caratteristica ingresso-uscita di un DAC affetto da gain error e offset	26
2.8	Rappresentazione grafica della misura dell'INL	27
2.9	Spurious free dynamic range	29
2.10	Risposta al gradino	30
2.11	Stringa resistiva per un DAC a 3 bit	32
2.12	Switch connessi ad albero	33
2.13	Convertitore a stringa resistiva ripiegata	34
2.14	INL stringa ripiegata	34
2.15	Stringa resistiva segmentata	36
2.16	R-2R <i>ladder</i> in voltage mode	37
2.17	R-2R <i>ladder</i> in current mode	37
2.18	Partitori capacitivi.	39

2.19	DAC a partitore capacitivo a scala a n bit	39
2.20	modello di una cella di un DAC $current\ steering\ .\ .\ .\ .\ .\ .$	40
2.21	Semplice strategia di accensione dei generatori di corrente. \ldots .	41
2.22	Disposizione baricentrica delle celle	42
2.23	Bias multipli e random walk	43
2.24	Schema di convertitore in corrente segmentato	45
2.25	Microfotografia di un driver per trasformatore piezoelettrico \ldots .	49
2.26	Confronto fra Recessed LOCOS e STI	50
2.27	Layout di un driver per schermi LCD	51
3.1	Schema a blocchi del sistema di proiezione	53
3.2	Schema del comb drive utilizzato per l'attuazione del micro-specchio.	54
3.3	Schema a blocchi del DAC	56
3.4	Stringa resistiva con gradiente lineare di drogaggio	57
3.5	Tipico layout di un resistore integrato.	58
3.6	Schema di funzionamento degli script	61
3.7	DNL $(W = 5\mu m e W = 1\mu m)$	63
3.8	DNL $(W = 5\mu m e W = 2\mu m)$	63
3.9	DNL $(W = 5\mu m e W = 3\mu m)$	64
3.10	DNL $(W = 5\mu m e W = 4\mu m)$	64
3.11	INL $(L = 5\mu \text{m e } W = 1\mu \text{m})$	65
3.12	INL $(L = 5\mu \text{m e } W = 3\mu \text{m})$	65
3.13	INL $(L = 5\mu \text{m e } W = 3\mu \text{m})$	65
3.14	INL $(W = 5\mu m e W = 4\mu m)$	66
3.15	Grafico di $\Delta R/R$ in funzione di W con parametro L	67
3.16	Grafico di $\Delta R/R$ in funzione di L con parametro W	68
3.17	Grafico di L in funzione di W con parametro $\Delta R/R$	68
3.18	Grafico di W in funzione di L con parametro $\Delta R/R$	69
3.19	Grafico di $\Delta R/R$ in funzione dell'area del resistore $\ldots \ldots \ldots$	69
3.20	Simulazione della DNL con segmentazione 4/8 $\dots \dots \dots \dots \dots$	71
3.21	Simulazione della DNL con segmentazione 4/8 $\dots \dots \dots \dots \dots$	71
3.22	Schema semplificato di un MOS con evidenziate le correnti di leakage	74
3.23	Misure su un DAC con da problemi di leakage ad alte temperature	76
3.24	Parte della stringa, con i collegamenti di bulk degli n MOS $\ .$	76
3.25	Simulazioni su stringa ridotta con n MOS e pMOS $\ .$	77
3.26	Simulazione con pass-gate e configurazione standard dei collegamenti.	78

3.27	Effetto dell'aumento dell'area sulle correnti di perdita	79
3.28	Simulazione con pass-transistor nMOS	79
3.29	Non-linearità integrale (INL) calcolata dalla precedente simulazione,	
	nella configurazione di Figura (3.28).	80
3.30	Simulazione con pass-transistor nMOS raggruppati	81
3.31	Confronto tra caratteristica ideale e simulata con pass-gate	81
3.32	Non-linearità integrale (INL) calcolata dalla precedente simulazione,	
	nella configurazione di Figura (3.31). \ldots \ldots \ldots \ldots \ldots	82
3.33	Layout della cella base di un resistore	83
3.34	Schema di un blocco base di resistori	84
3.35	DNL $(W = 4\mu \text{m e } W = 3\mu \text{m})$	86
3.36	INL $(W = 4\mu \text{m e } W = 3\mu \text{m})$	86
3.37	Schematizzazione della stringa e dei due decoder necessari per l'indi-	
	rizzamento (in grigio).	87
3.38	Decoder updown	88
3.39	Decoder dec 18 per l'indirizzamento dei decoder dec 321	89
3.40	Decoder dec321 per l'indirizzamento delle colonne	89
3.41	Struttura definitiva della stringa resistiva e dei decoder necessari per	
	l'indirizzamento.	89
3.42	Decoder decout per l'indirizzamento delle righe.	90
3.43	Stadio d'ingresso della prima topologia	94
3.44	Rami ripiegati e specchio cascode	96
3.45	Prima topologia dell'amplificatore.	96
3.46	Blocchi che forniscono le grandezze di riferimento al buffer	98
3.47	Stadio di uscita	98
3.48	Specchio cascode di polarizzazione	100
3.49	Circuito equivalente di piccolo segnale dell'amplificatore	102
3.50	Schematico completo dell'amplificatore operazionale progettato. $\ .\ .$	104
4.1	schema elettrico utilizzato per la valutazione del βA	106
4.2	Andamento del PGB in funzione di $V_{\rm s}$.	108
4.3	Andamento del guadagno in continua in funzione di $V_{\rm s}$	109
4.4	Andamento del margine di guadagno in funzione di $V_{\rm s}$	109
4.5	Andamento del margine di fase in funzione di $V_{\rm s}$	110
4.6	Andamento della frequenza di polo in funzione di $V_{\rm s}$	110
4.7	Grafico di modulo e fase del βA con $V_{\rm s} = 100 {\rm mV}$	111

Grafico di modulo e fase del βA con $V_{\rm s}=600{\rm mV}.$
Schema elettrico utilizzato per la valutazione della risposta in frequenza. 113 $$
Funzione di trasferimento del buffer
Andamento in frequenza della resistenza d'uscita in anello aperto . $% = 1.012$. 115
Andamento in frequenza della resistenza d'uscita con montaggio a
buffer
Risposta transitoria ad un gradino di ampiezza 1.8 V. \ldots
Risposta transitoria ad un gradino di ampiezza 1.024 V . \ldots . 117
Transitorio con un'onda rettangolare in ingresso
Schema elettrico utilizzato per la valutazione del PSRR
Andamento del PSRR con $V_{\rm s} = 100 {\rm mV}$
Caratteristica ingresso-uscita del sistema completo. \ldots
INL calcolata sulla caratteristica di Figura (4.18)
Resistori di polisilicio in serie, con contatti sui punti di incontro 125
Schema del layout di alcuni resistori
Disposizione dei resistori dummy rispetto alla stringa $\ .\ .\ .\ .\ .\ .$ 127
Schema della disposizione della stringa resistiva $\hfill \ldots \hfill 128$
Layout della struttura finale del DAC
Particolare della stringa resistiva, con alcune pass-gate e resistori dummy 130
Layout di uno degli otto blocchi dec_321 \hdots

Elenco delle tabelle

1.1	Principali proprietà del silicio a confronto con altri materiali 2
1.2	Risoluzioni attualmente disponibili
2.1	Principali parametri nelle tecnologie BCD
3.1	Specifiche di progetto per il buffer
3.2	Dimensionamento dei dispositivi
3.3	Dimensionamento dei componenti per la compensazione 103
4.1	Parametri riguardanti la stabilità dell'amplificatore
4.2	Resistenza di uscita per varie frequenze di interesse
4.3	Valori del PSRR in continua per varie tensioni $V_{\rm s}.$
4.4	Parametri al variare dei quali è stato caratterizzato il buffer 120
4.5	Valori minimi e massimi delle correnti e tensioni del ramo ripiegato. . 121
4.6	Valori delle grandezze associate al βA registrati nei corner minimi e
	massimi
4.7	Valori minimi e massimi del PSRR
4.8	Valori minimi e massimi della R _{out}