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Abstract

Finite volume QCD close to the chiral limit cannot be described by chiral Perturbation

Theory using the usual p-expansion when the correlation length of pions becomes larger

than the size of the box. An alternative approach to this problem was proposed by Gasser

and Leutwyler in 1987, it is referred to as ε-expansion. In 1993 Shuryak and Verbaarschot

conjectured that the spectral properties of the leading order of this alternative expansion

were shared with a simpler theory called chiral Random Matrix Theory. In the following

years this equivalence was widely used.

In the first part of this work we prove this equivalence for any value of masses and for

both zero and non-zero chemical potential. In particular the equivalence of all the low energy

spectral properties imply the equivalence of the individual eigenvalue distributions, which

are particularly useful to determine low energy constants from Lattice QCD with chiral

fermions.

In the second part, working in ε-expansion with an accuracy up to the next to the leading

order, we determine the volume and mass dependence of scalar and pseudoscalar two-point

functions in Nf -flavour QCD, in the presence of an isospin chemical potential. Thanks to

the non-vanishing chemical potential these correlation functions show a dependence on both

chiral condensate and pion decay constant already at leading order.



The present thesis contains results published

by the author in [71, 88, 114].
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Chapter 1

Introduction

According to Quantum Chromodynamics (QCD) the interactions between quarks and

gluons are highly non-perturbative at energies below the breaking scale of chiral symmetry,

and, as a consequence, the description of the low-energy hadronic world in terms of partonic

degrees of freedom seems to be, after more than 30 years, still an unfeasible task. On the

other hand we know from experiments that the spectrum of the theory is rather simple at

low energies, containing only the octet of light pseudoscalar mesons, and that, at very low

energies, these pseudoscalar mesons interact weakly, both with each other and with nucleons.

This is the framework where Chiral Perturbation Theory (χPT) lives, an effective the-

ory where the fundamental degrees of freedom are pseudoscalar mesons and perturbative

computations can be performed.

The basic principle of χPT, as of any effective field theory, is that, in a given energy

range, only few degrees of freedom are relevant and need to be described by dynamical fields.

The remaining degrees of freedom of the more general theory can be integrated out, leading

to effects that are encoded in the coefficients of appropriate local operators.

Fortunately (or unfortunately, it depends) despite this theory being much simpler than

fundamental QCD, it has not yet been studied and solved in all its ingredients.

In the present work we will focus on χPT defined in a finite volume box, or to be even

more accurate to a particular regime of finite volume χPT where the correlation length of

the fundamental degrees of freedom (mesons) is the same size as (or even bigger than) the

dimensions of the box. This regime was first introduced by Gasser and Leutwyler [1, 2]

and is usually called ε-regime. The importance of this theory lies in the fact that since it

explicitely considers finite-size effects it allows a comparison with lattice calculations even

when finite size effects may not be disregarded, as an example when chiral transition is

approached. The values of quantities like the low energy constants can be extrapolated
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CHAPTER 1. INTRODUCTION

before chiral transition is reached, with a much smaller computational effort.

The main feature of this ε-regime is that, since the correlation length is at least the

same size as the box, the zero modes of the mesons cannot be treated perturbatively, and

consequently they have to be considered separately from non-zero modes (which can be still

treated perturbatively).

The collective zero modes are described by group elements of the broken flavour symme-

try (in standard χPT with Nf flavours this symmetry group is the unitary group U(Nf )) and

the functional integral has to be performed integrating with respect to the Haar measure.

An old result by Banks and Casher [3] was already suggesting the low energy spectral

properties of finite volume QCD may not depend on the dynamic of pions but only on the

collective modes (the Banks-Casher relation relates the chiral condensate to the spectral

density of the Dirac operator in zero: Σ ≡ |< ψψ >|= limV→∞
πρ(0)
V and there is no explicit

dependence on the pion decay constant Fπ), but the big impulse in the study of the zero-

modes was given by a paper by Leutwyler and Smilga [4] where it was shown that, for

small enough quark masses (m ¿ F 2
π

2L2Σ ), the low energy spectral properties (for energies

λ¿ F 2
π

2L2Σ ) of the finite volume χPT were only depending on the collective modes. Using this

property they first computed sum rules for the sums of inverse powers of the Dirac operator

eigenvalues. These sum rules are usually referred to as Leutwyler-Smilga sum-rules.

This is the origin of the interest in the spectral properties of the ε-regime of χPT.

In [5] Shuryak and Verbaarschot argued that since χPT, as an effective theory, is solely

based on the symmetries of QCD, and hence the low energy spectral properties depend on the

symmetries of the Dirac operator as well, if one starts out with a theory with the same global

symmetries as QCD but different dynamical input (or even no dynamical input) one should

arrive at exactly the same spectral properties. And this was exactly what they did: they

introduced a Random Matrix Theory (that is a static theory) miming the chiral structure

of the QCD Dirac operator (in the following we will call this theory Chiral Random Matrix

Theory, χRMT). The proof they gave that the partition functions (and hence the Leutwyler-

Smilga sum rules) were the same was a strong argument in favour of their equivalence

conjecture.

This conjecture was soon extended to QCD-like theories with real (QCD with quarks in

the adjoint representation of the colour group) or pseudo-real (2 colour QCD) Dirac operator

[6].

This conjecture was of great help in the studies of the spectral properties of the Dirac

operator, in fact computations in the χPT framework (that need integrations with respect

to the Haar measure over classical group manifolds or even over super-group1 manifolds)

are usually much more involved than the corresponding ones in χRMT. By matching the

1Super-groups, sometimes called graded-groups, are manifolds involving commuting and anticommuting

degrees of freedom, see appendix A.
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spectral properties of the Dirac operator (spectral density, spectral correlation functions

and individual eigenvalue distribution) measured on lattice simulations with the prediction

provided by RMT and χPT, one can extract the low energy constants Σ and Fπ. This

technique still needs some improvements (so far a proper way to deal with finite volume

effects is lacking), nevertheless it is considered interesting due to its remarkable speed; see

[7] for an overview of recent results.

The study of RMT and of χPT in the ε regime has been generalised in many directions:

theories with baryon chemical potential or isospin chemical potential were studied [8], or even

QCD with bosonic quarks or with both bosonic and fermionic quarks, and the conjectured

equivalence has always been considered true. In many cases computations were performed

in both frameworks, and every time results were in perfect agreement.

In this work we prove this 15-year old conjecture developing a systematic way to link

χRMT to χPT. This link holds for any number of bosonic and fermionic quarks and for

any kind of chemical potential; thanks to it we can write χPT in a case where its form

was previously unknown (the theory with a real chemical potential and both bosonic and

fermionic quarks) and we learn how to compute some integrals occurring in computing the

corrections in the ε-expansion. Another result that we achieve is the proof of the equivalence,

in the infinite volume limit, of two different χRMT describing QCD with real or imaginary

chemical potential (introduced respectively by Stephanov [8] and Osborn [9] for real chemical

potential).

The work is organised as follows: in the first chapter we provide all the necessary informa-

tions, what is chiral Perturbation Theory and what does it mean to consider its ε-expansion

(sect. 1.1), how to study a non-zero chemical potential through χPT, what is Chiral Ran-

dom Matrix Theory and how it can be used to describe the O(ε0) limit of QCD (sect. 1.3),

and how to generate the spectral properties through the resolvent method and partially-

quenched QCD (sect. 1.4). In chapter 2 we give the most important result in this paper,

that is the proof of the equivalence of the spectral properties in the two effective theories. In

chapter 3 the fundamental superbosonisation theory used in chapter 2 is introduced and an

original proof is provided. In chapter 4 we show, as a corollary to the result in chapter 2, the

equivalence of two different matrix models describing the same limit of QCD with chemical

potential. In chapter 5 we go beyond the χRMT O(ε0) approximation computing the finite

volume expectation values of current-current correlations (for both scalar and pseudoscalar,

neutral and charged currents) in the presence of a chemical potential up to including O(ε2)

terms.

In appendix A we briefly show the superanalysis concepts used in this work, in appendix

B we focus on the well-definiteness of the δ functions over supermanifolds used in chapter

3, and in appendices C and D some mathematical details on computations in the work are

provided.
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CHAPTER 1. INTRODUCTION

1.1 Chiral Perturbation Theory

1.1.1 The chiral Lagrangian

Chiral Perturbation Theory (χPT) is an effective quantum field theory describing the low

energy sector of QCD. In principle the reduction to a low energy effective theory should be

done integrating out all the higher energy modes in the fundamental theory, but nowadays

nobody knows how to perform this integration. χPT, as we know it now, is written down

starting from first principles and from working hypotheses compatible with experimental

data [10]. Essentially the starting points are that:

• the global chiral symmetry is spontaneously broken;

• the Goldstone bosons generated by this breakdown are the only massless particles

contained in the spectrum of asymptotic states and low energy dynamics is dominated

by poles due to the exchange of these particles;

• the vertices admit a Taylor series expansion in powers of the momenta;

• the mass term of the light quarks (which explicitely breaks the chiral symmetry) can

be treated as small perturbations around the chiral limit.

The conditions above can be considered true for energies below the scale Λχ of the mass

of the lightest “non-Goldstone” particles (physically ρ-mesons and nucleons, that is Λχ ' 1

GeV):

E ¿ Λχ. (1.1)

The problem of writing χPT starting from the hypotheses above and not from the funda-

mental theory is that the most general theory compatible with the symmetry transformation

of the Goldstone fields necessarily contains an infinite number of terms that cannot be de-

rived from QCD but need to be measured. Nevertheless only a finite number of operators

contribute at any given order in E/Λχ expansion [11]. The values of the coefficients (whose

number is infinite) have to be measured from experiments or from lattice data.

Formally the partition function in Euclidean space-time is:
∫

[dµ(U(x))] e−
R

V
dxL(U,∂U,∂2U,...,M) (1.2)

where
∫

[dµ(U(x))] stays for a quantum field integral of the field U(x) that belongs to the

broken symmetry group (usually U(Nf )) and lives in the space-time volume, dµ(·) is the

Haar measure over the broken group2. Without getting too much into details but referring

to existing reviews (see [11]) we say that additional external sources may be inserted: vector,

axial, scalar (like the masses) and pseudo-scalar.

2A way to write explicitely the Haar measure in a given parametrisation framework can be found in [4].
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1.1. CHIRAL PERTURBATION THEORY

In the following we will consider only the lowest non-vanishing order in the energy ex-

pansion (E/Λχ) of the Lagrangian:

L(U, ∂U, ∂2U, . . . ,M) → (1.3)

→ L(2)(U, ∂U,M) =
F 2

4
Tr

[
∂µU∂µU

†]− 1
2
ΣTr

[
MU +MU†

]

where M is the light quark mass matrix (Mii ¿ Λχ), and at this order in the momentum

expansion (p-expansion), F is exactly the pion decay constant and Σ is the chiral condensate

|< ψψ >|. The last two quantities are external input in this theory.

If considering all the vector (vµ), axial (aµ), scalar (s) and pseudo-scalar (s) external

sources the Lagrangian is [1]:

L(2)(U, ∂U, vµ, aµ, s, p) =
1
4
F 2Tr

[∇µU∇µU†
]− 1

2
ΣTr

[
s(U+U†)− ip(U−U†)] (1.4)

where

∇µU ≡ ∂µU − i(vµ + aµ)U + iU (vµ − aµ)

∇µU† ≡ ∂µU
† − i(vµ − aµ)U† + iU†(vµ + aµ). (1.5)

The name of the external sources come after their transformation properties under chiral

rotations, they are the same as the external sources coupling to the quark currents in QCD,

and, since χPT is a field theory over a representation of the chiral group, we conclude that

these quantities provide a representation in χPT of the corresponding QCD quantities. Eq.

(1.4) is a realisation of:

L(0)
QCD + ψγµ(vµ + aµγ5)ψ − ψ(s− ipγ5)ψ. (1.6)

As in QCD, the aim of this insertion is that once computed the partition function with

these sources one can obtain the (physical observable) quark-current correlation functions

through simple differentiations.

1.1.2 Finite volume χPT and the ε regime

The problem of a χPT on a discretized torus (that is a lattice with periodic boundary

conditions) was first considered in [2]. The authors saw that in the chiral limit M → 0 the

usual exponential representation of the meson fields

U(x) ≡ ei
√

2
F φ(x), (1.7)

where φ(x) belongs to the Lie algebra generated by the broken generators, becomes mean-

ingless as far as the chiral limit is approached. Expanding the action according to eq. (1.7)

5



CHAPTER 1. INTRODUCTION

we have:

L(2)(ei
√

2
F φ(x), ∂ei

√
2

F φ(x),M) = (1.8)

= −ΣTr [M ] +
1
2
Tr

[
∂νφ(x)∂νφ(x) +

2ΣM
F 2

φ2(x)
]

+O(φ4)

where we are considering the quartic and higher order terms in φ as (perturbative) in-

teractions of the free fields. We can see that when considering discretized momenta p =
2π
L (n1x̂1 + n2x̂2 + n3x̂3 + n4x̂4) the zero modes enter into the action only through the mass

term 2ΣM
F 2 φ2

0(x), and hence if this one vanishes too it completely disappears from the action

invalidating the standard perturbative method based on gaussian integral of the quadratic

free fields. This failure of the standard chiral expansion can be seen too by considering the

propagator [2, 12],

G(x) =
F 2

2ΣM V
+

1
V

∑

n6=0

1(
2π
L

)2 |n|2 + 2 ΣM
F 2

ei
2π
L n·x (1.9)

whose zero mode part explodes in the chiral limit. In order to have a representation valid

near the chiral limit we have to resum all the graphs involving an arbitrary number of zero

modes propagator. The standard p-expansion is no longer valid.

This breakdown has a deep physical reason: in the broken phase the mesonic correlation

length diverges and all around the space-time volume the fields have to be considered as

fluctuations over a non trivial vacuum alignment (the zero mode). It happens any time the

pion Compton wave length overcomes the typical length of the box:

1
Λχ

¿ L¿ 1
mπ

, (1.10)

where mπ is the pion mass given by
√

2ΣM
F . The way to avoid this problem is to consider

the zero mode of the pion field separately from the other modes, in a non perturbative way:

U(x) = U0 · Ũ(x) (1.11)

In this scheme the partition function, considering only the quadratic order in the chiral

expansion E/Λχ, is:

∫ [
dµ(Ũ(x))

]′
Exp

[
−

∫

V

dx
F 2

4
Tr

[
∂µŨ(x)∂µŨ†(x)

]]
(1.12)

×
∫
dµ(U0) Exp

[∫

V

dx
1
2
ΣTr

[
MU0Ũ(x) +MŨ†(x)U†0

]]

where in
[
dµ(Ũ(x))

]′
the prime means that the integration is over the non-zero modes. As

the Haar measure is invariant under multiplication the change of variables in eq. (1.11) does

not generate any Jacobian.
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1.1. CHIRAL PERTURBATION THEORY

In order to perform functional integrals like the one above through a perturbative com-

putation, Gasser and Leutwyler have introduced a new power counting: instead of the usual

counting rules where the expansion was performed in order of the energies or momenta p/Λχ
(p-expansion)

mπ

Λχ
=
√

2ΣM
F Λχ

∼ p

Λχ
∼ 1
LF

(1.13)

a different one, usually called ε-expansion, was chosen:

mπ

Λχ
∼ p2

Λ2
χ

∼ 1
L2F 2

∼ ε2 (1.14)

In this expansion the terms involving only collective modes are dominant (using p ∼ 1/L

one can check they are of order MΣV ∼ m2
πF

2V ∼ ε0) and all the other terms, including the

quartic or higher order terms in the fields L(4), are at least ε2-suppressed (in the observables

all the term O(ε) are identically zero due to
∫
dx ξ(x) = 0).

This systematic expansion allows to perform perturbative calculations, computing ex-

pectation values of the observable in the two separate ensembles of the zero modes and

propagating modes.

Most of the work employing this expansion has been devoted to computing quantities only

in the leading order of the ε-expansion O(ε0) (usually called ε-regime) or to the computation

of finite volume corrections to the low energy constant of χPT [2] at O(ε2), but in the last

few years computation of dynamic correction to static modes has attracted the attention

of many groups (see chapter 5): the possibility of investigating QCD near chiral limit by

simulations on a small lattice3 fulfilling the ε-regime conditions is appealing.

1.1.3 Chiral Perturbation Theory at O(ε0)

When considering the leading order in the ε-expansion of eq. (1.12), static and dynamical

contribution completely decouple, since the only couplings with the external sources are in

the static part the dynamical gaussian free field integration can be factorised and disregarded

in that equation:

Z(M) =
∫

SU(Nf )

dµ(U0) Exp
[
1
2
V Σ Tr

[
MU0 +MU†0

]]
(1.15)

where the integral is performed over the manifold of the broken symmetries, that is the

quotient group G/H where G is the whole symmetry group of the action and H is the

unbroken symmetry group. In QCD this manifold is

(SUR(Nf )× SUL(Nf )× U(1))/(SUV (Nf )× U(1)) = SUA(Nf )

3Close to chiral limit the compton length of pions diverges, and p-regime approach requires using lattices

with length bigger than this compton length. This requirement is absent in ε-regime.
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CHAPTER 1. INTRODUCTION

This expression is equivalent to the fundamental theory

Z(M, θ) =
∫ [

dGdψ dψ†
]

Exp
[
−

∫
dx

1
4g2

GµνGαβ − iθ
1
32
GαβGµν

+
Nf∑

f

ψf (−iD +mf )ψf
]

=
∫

[dG] e−SY M [G]+iθν

Nf∏

f

Det [−iD +mf ] (1.16)

=
∑

ν∈Z
Zν(M) eiνθ

where D is the (Hermitian) Dirac operator in the gauge field G and ν is the integer winding

number. According to the Atiyah-Singer index theorem ν is equal to the difference between

the number the right-handed eigenvalues and the number of left-handed ones, that is equal4

to the number of exact zero eigenvalues. Thanks to the axial symmetry the non-zero eigen-

values come in opposite pairs ±λn. The determinant in the equation above can be written

as:
Nf∏

f

Det [−iD +mf ] = (Detf [M ])ν
∏

λn>0

Detf [λn +M ] (1.17)

where M is the (real diagonal) quark mass matrix, the subscript f means that the determi-

nant is in the quark flavour space, the product is performed only over positive eigenvalues.

Z(M, θ) =
∫

[dG] e−SY M [G]+iθν (Detf [M ])ν
∏

λn>0

Detf
[
λ2
n +M ·M†]

=
∫

[dG] e−SY M [G]
(
Detf

[
M e

i 1
Nf

θ
])ν ∏

λn>0

Detf
[
λ2
n +M ·M†] .

From the equation above we can see that the partition function depends on the mass matrix

and the vacuum angle only through the product M eiθ/Nf , a change in the phase of the mass

matrix is equivalent to a change in θ [4].

Applying this result to eq. (1.15) we can make explicit the θ-dependence in the chiral

Lagrangian and hence obtain the partition function for a given topological charge performing

the fourier transform; the result is:

Zν(M) =
∫

U(Nf )

dµ(U0) Det [U0]
ν Exp

[
1
2
V Σ Tr

[
MU0 +MU†0

]]
(1.18)

The integral above is the archetype of the integrals of χPT in the ε-regime. In [4] it was

computed for degenerate masses and taking its derivatives it was used to obtain a constraint

4This sentence is true only if disregarding those configurations with left and right-handed eigenstates

whose eigenvalues are accidentally zero. These configurations may be disregarded since they give no contri-

butions to the integrals.
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1.1. CHIRAL PERTURBATION THEORY

for the low energy part of the Dirac spectra of QCD in a box fulfilling the ε-regime conditions.

E.g. if we consider degenerate masses and differentiate the partition function at fixed winding

number with respect to this mass we have:

∂mZν(m1Nf
) = ∂m

(
mNf ν

∫
[dG]ν e

−SY M [G]
∏

λn>0

(
λ2
n +m2

)Nf

)

= Nf ν
Zν
m

+ Nfm
Nf ν

∫
[dG]ν e

−SY M [G] (1.19)

×
∏

λn>0

(
λ2
n +m2

)Nf
∑

λn>0

2m
λ2
n +m2

The last term in the equation above gives, in the chiral limit an information about the

sum of the inverse square of the eigenvalues of the Dirac Operator:

mNf ν

∫
[dG]ν e

−SY M [G]
∏

λn>0

(
λ2
n +m2

)Nf
∑

λn>0

1
λ2
n +m2

→
〈 ∑

λn>0

1
λ2
n

〉

ν

. (1.20)

As a consequence from the knowledge of the explicit dependence of the partition function

from the quark masses this constraint follows on the eigenvalues distribution. If differenti-

ating twice or n-times one obtains constraints on the sum of the eigenvalues power minus

4 or minus 2n. These equations take the name of Leutwyler-Smilga sum rules. In [4] the

group integral was performed for ν = 0 obtaining for the first time one of these sum rules:
〈

1
V 2

∑

λn>0

1
λ2
n

〉

ν=0

=
Σ2

4Nf
. (1.21)

One could point out that asymptotically for large λ the density of eigenvalues grows like

V λ3 (see fig. 1.1), and hence some of these sums are diverging. There is an implicit cut-off

in this sum: both the description of QCD through χPT and the zero-order ε-expansion

approximation give constraints for the domain of validity of the sum-rules. The spectrum

of QCD and that one of χPT are supposed to be the same for energies smaller then the

scale of lightest non-goldstone particle Λχ. The description provided by the leading order in

the epsilon-expansion of χPT is valid only at energies that are not influenced by the pions’

dynamic, or equivalently, at energies whose pion compton wavelength fits in the box. In

formulas [13]:

E ¿ 1
Σ
F 2L2

. (1.22)

This quantity take the name of Thouless energy after its equivalent in mesoscopic systems

(it is indicated with a mc in the schematic spectrum in fig. 1.1). The same value of Thouless

energy was found in [14] starting from partially quenched χPT (see sect. 1.4.2) and in [15]

considering a diffusion process in a stochastic QCD-like theory.

We can conclude that the Leutwyler-Smilga sum rules have to be considered summing

only up to the smaller of these cut-offs.

9
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Figure 1.1: Schematic picture of the QCD Dirac spectrum. The quantity mc, called Thouless

energy, bounds the region described by the O(ε0) in the ε-regime. Picture taken from [16].

Integrals like eq. (1.18) are known in literature for non-degenerate masses both for zero

[17] and non-zero winding number [18]. The same approach was used on 2-colour QCD and

in QCD with quarks in the adjoint representation of the colour group [19].

It is important to note that only through the differentiation with respect to the masses

of equations like eq. (1.18) one cannot obtain the shape of the eigenvalues spectrum.

1.1.4 Chiral Perturbation Theory at O(ε2)

In the previous section we have seen what we can learn investigating only the leading order

in the ε-expansion (1.14) of eq. (1.12): such equations describe a theory where the only

fields are the mesons but in a regime where energies are too small to consider interactions

and distances are too small to allow propagations of particles. Under these hypotheses we

loose any information on the proper dynamic of QCD-χPT and what remain describes how

the vacuum depends on the external parameters (masses).

The introduction in the action of higher ε order terms allows to investigate dynamical

properties of the theory, like quark current correlation functions. The problem of dynam-

ical (O(ε2)) correction to the static (O(ε0)) quantities is considered through a systematic

approach in chapter 5. We briefly show in this introductory section some well known results.

The key point is that the perturbative expansion of the propagating pion field is per-

formed around the non-perturbative zero-mode [2, 12, 20]:

U(x) = U0 · Ũ(x) ≡ U0 · ei
√

2
F ξ(x) ' U0 ·

(
1 + i

√
2
F
ξ(x)− 1

F 2
ξ2(x) + . . .

)
(1.23)

where the field ξ has a vanishing zero-momenta
∫
dx ξ(x) = 0. The basic assumption in this

10



1.1. CHIRAL PERTURBATION THEORY

expansion is that the field ξ(x) is a quantity of order5 ε · F [2].

| ξ |
F

= O(ε) (1.24)

Considering the terms up to order O(ε2) in the Lagrangian, eq. (1.3) reduces to:

L(2)(U0, ξ, ∂ξ;M) =Tr

[
1
2
∂µξ(x)∂µξ(x)− 1

2
Σ

(
M U0 +M U†0

)]
(1.25)

+Tr
[

Σ
2F 2

(
M U0ξ

2(x) + ξ2(x)M U †0
)]

+ . . .

In the equation above we have omitted an irrelevant 4-term interaction in the ξ fields;

for details we refer to chapter 5.

In analogy with the standard p-expansion we consider masses as small quantities and

perform perturbative calculations. The partition function up to the second order in ε is6:

Z(M) =
∫
dµ(U0) eTr[

1
2V Σ(M U0+M U†0 )]

∫
[dξ(x)]U0

e−
R
dxTr[ 1

2∂µξ(x)∂µξ(x)]

×Exp
[
−

∫
dxTr

[
Σ

2F 2

(
M U0ξ

2(x) + ξ2(x)M U†0
)]]

(1.26)

'
∫
dµ(U0) eTr[

1
2V Σ(M U0+M U†0 )]

∫
[dξ(x)]U0

e−
R
dxTr[ 1

2∂µξ(x)∂µξ(x)]

×
(

1− Σ
2F 2

Tr

[(
M U0 + M U†0

) ∫
dx ξ2(x)

])

where [dξ(x)]U0
indicates a modified path integral over the field ξ. It differs from the standard

path integral measure referred to as [dξ(x)] in an additional Jacobian factor coming from

the change of variables U → U0 · Exp
[
i
√

2
F ξ

]
. The first non-vanishing correction is in order

ξ2 and is given by [20, 21]:

[dξ(x)]U0
= [dξ(x)]

(
1− Nf

3F 2

1
V

∫
dxTr

[
ξ2(x)

])
. (1.27)

This Jacobian generates a mass term that gives an ε2 correction to the ξ propagator that is

irrelevant to the quantities computed here.

It is important to note that the vacuum expectation value is taken respect to the en-

sembles defined by the zero order in ε-expansion. At O(ε0) order the integration over the

non-zero modes is not considered at all since it completely decouples from the zero-modes

and has no explicit dependences on the masses or other external sources.

Integration over the propagating fields ξ must be performed in a perturbative way, pro-

jecting ξ on the generator of the SU(Nf ) group

ξ(x) =
∑
a

ξa(x)T aij (1.28)

5This assumption is consistent with the observation that whenever two fields ξ(x) are contracted in the

computation of an expectation value a propagator ∆(x) is obtained, and |∆(x)/F 2| < |∆(0)/F 2| that is an

ε2 quantity.
6For simplicity of notations we consider only the case with zero topology.

11



CHAPTER 1. INTRODUCTION

that propagates according to a free propagator:

∆(x)(ab) ≡ 2 ∆(x)δab = 2 δab
1
V

∑

p 6=0

eipx

p2
. (1.29)

The quantity in eq. (1.26) can be computed using standard field theory methods:

=
∫
dµ(U0) eTr[

1
2V Σ(M U0+M U†0 )]

∫
[dξ(x)] e−

R
dx Tr[ 1

2∂µξ(x)∂µξ(x)]

×
(

1− Σ
2F 2

Tr

[(
M U0 + M U †0

)∫
dx ξa(x)T aξb(x)T b

])
(1.30)

=
∫
dµ(U0) eTr[

1
2V Σ(M U0+M U†0 )]

(
1− N2

f − 1
2N

ΣV
F 2

∆(0)Tr
[
M U0 + M U†0

])

'
∫
dµ(U0) eTr[

1
2V Σ(M U0+M U†0 )]Exp

[
−N

2
f − 1
2N

ΣV
F 2

∆(0)Tr
[
M U0 + M U †0

]]

where the generators are normalised according to:

Tr
[
T aT b

]
=

1
2
δab , (1.31)

[
T a, T b

]
= i fabcT

c .

This normalisation gives raise to the following useful relations:

∑

a,b

fabcfabd = N δc,d ,

∑

a 6=0

T aT a =
N2 − 1

2N
1N ,

∑

a 6=0

Tr [T aAT aB] = − 1
2N

Tr [AB] +
1
2
Tr [A]Tr [B] , (1.32)

∑

a 6=0

Tr [T aA]Tr [T aB] = − 1
2N

Tr [A]Tr [B] +
1
2
Tr [AB] .

The result in the last of eqs. (1.30) may be absorbed in the definition of the Σ:

Σ → Σeff = Σ− Σ
N2
f − 1
N

1
F 2

∆(0) . (1.33)

The value of the propagator ∆(0) can be computed in a dimensional regularisation

obtaining the result:

∆(0) = − β1√
V

+O(1/V ) (1.34)

and β1 is the shape coefficient [22]. This equation gives the finite volume correction to the

chiral condensate [2] (Σ is the value of
〈
ψψ

〉
for an infinite volume and Σeff is the one for

a finite volume). The consistency of the approximation is shown by the fact that according

12



1.2. NON-ZERO CHEMICAL POTENTIAL

to (1.14) ∆(0)/F 2 is a O(ε2) term. This useful result allows to obtain the chiral condensate

from a lattice computation before reaching the infinite volume limit.

In order to compute current correlation functions external sources may be added like in

eq. (1.4). We show here this procedure only in the simplest case, that is neutral scalar-scalar

currents. This insertion is equivalent to replace the quark-masses with

M →M + s(x) (1.35)

in the partition function. The scalar-scalar correlation function is given by:

〈S(x)S(0)〉 =
δ

δs(x)
δ

δs(0)
Z
ν,eff(M, s(x))|s(x)≡0 (1.36)

=
〈 〈
Tr

[
U0 · ei

√
2

F ξ(x) + e−i
√

2
F ξ(x) · U†0

]

× Tr
[
U0 · ei

√
2

F ξ(0) + e−i
√

2
F ξ(0) · U†0

] 〉
[ξ]

〉
U0,eff

=
〈 〈

(Tr
[
U0 + U†0

]
)2 − 2

F 2
Tr

[
ξ(x)(U0 − U†0 )

]
Tr

[
ξ(0)(U0 − U†0 )

]

− 1
F 2

Tr
[
(U0 + U†0 )(ξ2(x) + ξ(0))

] 〉
[ξ]

〉
U0,eff (1.37)

The integration has to be performed like the one in the previous case, the result of the field

theory integration is:

〈S(x)S(0)〉 =
〈
(Tr

[
U0 + U†0

]
)2 − 4

∆(x)
F 2

(
Tr

[
(U0 − U†0 )2

]
(1.38)

− 1
Nf

Tr
[
U0 − U†0

]2
)
− 4

N2
f − 1
Nf

V∆(0)
F 2

Tr
[
(U0 + U†0 )

] 〉
U0,eff

The last step is to perform the group integrals. This may be an involved task, specially if con-

sidering complicated extensions of this theory. The results are usually obtained or through

group integral identities [23] or explicit integration formulas using character expansion [24].

1.2 Non-zero chemical potential

The standard QCD approach fails when applied in high density systems like neutron stars,

supernova explosions or heavy ion collision, chemical potential term µψγ0ψ has to be inserted

in the Lagrangian. The study of QCD with non-zero chemical potential is a tremendous

challenge: the insertion of the chemical potential breaks the hermiticity of the Dirac operator

invalidating the fundamental tools provided by lattice Monte Carlo simulations.

Despite non-zero chemical potential QCD being so involved, its low energy sector may

be studied in a way which is not conceptually different from vacuum QCD: whenever chiral

symmetry is still spontaneously broken in the vacuum and the conditions expressed in sect.

1.1 are fulfilled one can write a low energy effective theory. The only additional problem is

how to include the chemical potential term.

13



CHAPTER 1. INTRODUCTION

The insertion of the chemical potential in the effective Lagrangian can be seen as an

insertion of an interaction with an external (imaginary) vector current, see eq. (1.6):

ψf iDψf → ψf iDψf + µfψfγ0ψf ≡ ψf iDψf + ψfB
(η)
f γηψf (1.39)

by taking B
(η)
f = δ0,ηµf a matrix in the flavour space, where {µf} is a set of (complex)

numbers, we are considering the possibility of studying both baryon chemical potential,

isospin chemical potential or even more general cases. In order to write the coupling with the

pion fields the idea [25] is to promote the global flavour symmetry to a local one, considering

the coupling with B as a gauge coupling leading to the invariant quantity iD + Bηγη. The

way to couple a gauge coupling for a matter field in the adjoint representation of the gauge

group is through a commutator:

∂ηΥ → ∇ηΥ ≡ ∂ηΥ +
[
Υ, B(η)

]
. (1.40)

It is important to point out that the symmetry that we are gauging is the (global, broken)

flavour symmetry and that quarks fall in the fundamental representation of this group, but

the mesons, that are the particles described by χPT, lie in the adjoint one.

The matrix B is a diagonal matrix whose entries are given by the chemical potential

values for any flavour, Bf,g = δf,gµf . For a baryon chemical potential it is proportional to

the identity, for an isospin chemical it will be by a series of plus or minus µI on the diagonal.

The result is that the chiral Lagrangian is [1, 11, 26]:

L(2) =
1
4
F 2Tr

[∇ηU∇ηU†
]− 1

2
ΣTr

[
MU +MU†

]
. (1.41)

Not surprisingly this equation is equivalent to eq. (1.4) computed for an external source

vector current vη = −iδ0,ηB, the i term is due to the fact that for real chemical potential

(µ ∈ R) the Lagrangian is no longer Hermitian.

As for vacuum QCD, we can study finite volume QCD with the systematic approach

provided by the ε-regime power counting. A scaling law for µ has to be considered together

with those in eq. (1.14) and the prescription is that the leading order (the static mode)

gives a contribution to the partition function of the same order as the static mass term:

µ2F 2V ∼ ε0 → µ

Λχ
∼ ε2. (1.42)

The O(ε0) part of the partition function given by eq. (1.41) is:

Zν =
∫

U(Nf )

dµ(U) Det [U ]ν Exp
[
1
2
ΣTr

[
MU +MU†

]− 1
2
V F 2Tr

[
BU B U †

]]
(1.43)

This partition function is based only on the symmetries of the microscopical Dirac operator

and is independent of the B matrix: with B = µ1Nf
we can describe real chemical potential,

14



1.3. RANDOM MATRIX THEORY

B = iµ1Nf
describes imaginary chemical potential and B = µσ3 × 1Nf/2 and B = iµσ3 ×

1Nf/2 are, respectively, for real and imaginary [27] isospin chemical potential.

It is worthwhile to spend here a few words explaining why one could be interested in

studying theories with a chemical potential matrix different from the real baryon chemical

potential. First of all, all these theories do not suffer from the sign problem and, as a

consequence, can be simulated using standard Montecarlo method [28] providing useful

checks. Obviously this reason is not sufficient to justify an interest, in fact, beyond it, there

are arguments saying that it is possible to obtain information on the behaviour of QCD at

real chemical potential from these chemical potential-like theories. The simplest one is to

perform an analytic continuation in the µ plane [29, 30]; this method had been tested on

2 colour QCD, that allows both imaginary and real chemical potential simulations, and a

good agreement between the two systems was shown [31].

The interest in the real isospin potential lies in the fact that though the fermion determi-

nant remains real and positive (and thus amenable to numerical simulations), the eigenvalues

of the single quarks acquire a non-vanishing imaginary part breaking the hermiticity of the

Dirac operator; this feature resembles the real chemical potential theory [32, 33, 34]. On

the contrary, it could seems strange but what makes the imaginary chemical potential QCD

an interesting theory is that it is not like the real chemical potential theory: imaginary

isospin does not alter the hermiticity of the Dirac operator itself, and, as a consequence, it

can be used as a parameter deforming the real Dirac operator spectra. As an example we

show picture 1.2 where the introduction of an imaginary isospin chemical potential alters

the spectral 2-points correlation function spreading the δ function contribution arising at

equal points; this approach has been recently used to give a direct measurement of the pion

decay constant Fπ from the spectrum [27, 35, 36, 37, 38, 39].

1.3 Random Matrix Theory

1.3.1 A brief introduction to RMT

Random Matrix Theory (RMT) is nothing but a powerful tool used to describe some specific

properties of complex or chaotic systems.

RMT describes ensembles of matrices with random numbers as matrix elements, in par-

ticular distributions and correlations of the eigenvalues of these matrices are usually com-

puted when their dimensions approach infinity. The set of the possible matrix ensembles is

rather small7 and the choice of the proper one is done simply checking the symmetries of

the system to be described. For many simple problems the description is possible through

the use of a single random matrix [44, 45], in some cases it may be useful to consider RMT

7They have been classified in [40, 41] in the Hermitian case and in [42, 43] for the non-Hermitian case.

15



CHAPTER 1. INTRODUCTION

0 1 2 3 4 5 6 7 8
ξ1

−0.15

−0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

ρ(
ξ 1, 4,

 iµ
is

o)

0 2 4 6 8
ξ1

−0.15

−0.05

0.05

0.15

0.25

0.35

ρ(
ξ 1, 4,

 iµ
is

o)

V = 8
4
  10000 configs

µisoFπV
1/2

 = 0.159

Figure 1.2: On the left hand side we show the two point correlation function ρ(ξ1, ξ2) with one

eigenvalue fixed at ξ2 = 4, for for zero (dashed) and non zero isospin potential (full). The δ-function

peak at ξ1 = ξ2 for µiso has not been shown. On the other side we show the two point correlation

function at fixed ξ2 = 4 measured on a 84 lattice. Pictures taken from [27].

with two or more random matrices [9, 46, 47]. The main value of these theories is that in

many cases they are integrable systems and in most of them the computation are relatively

easy, and, more importantly, have already been done analytically.

As said above RMT is a tool, and every tool has limitations: the strongest one (that from

some point of view is a value too) is that RMTs depend on really few external (physical)

parameters, in most cases it is just one (like in χRMT where the only input is the chiral

condensate Σ): they can be used only to describe either simple systems or systems in

particular regimes where all the relevant dependences are on few (one or two) physical

parameters.

Despite these strong limitations, RMT has been applied in many different fields: excited

states of heavy nuclei8, complex molecules, transport properties of mesoscopic systems,

two dimensional gravity, conformal field theory, growth problem, non-trivial zeros of the

Riemann ζ function and, obviously, QCD. An important conjecture9 providing criteria of

applicability of RMT was provided by Bohigas Giannoni and Schmidt [49]10: their claim is

that the spectra of systems whose classical analogues are ergodic chaotic systems show the

same fluctuation properties as the proper RMT. A good review on the history and on the

applications of RMT can be found in [45].

We will not get into the details of the classification of RMTs here, we will just cite the

8Originally, RMT was designed by Wigner to deal with the statistics of eigenvalues of complex manybody

quantum systems, having in mind the particular case of the scattering of neutrons with heavy nuclei. This

application of RMT may be seen as a formal implementation of Bohrs compound nucleus hypothesis.
9Altough a formal proof has not yet been provided remarkable progress in that direction has been made,

see [48].
10An earlier version of this conjecture was stated in [50].
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most important theories introduced by Wigner and Dyson: a) the first one introduced is the

ensemble of Hermitian matrices with real, complex and quaternion numbers, respectively

known as orthogonal ensemble (OE or, according to the Dyson classification, β = 1), unitary

ensemble (UE or β = 2) and symplectic ensemble (SE or β = 4); b) the second set introduced

is the one of unitary matrices with real, complex and quaternion numbers, known as circular

orthogonal ensemble (COE) and so on. In the present work we will not deal with any of these

classical ensemble, we will focus on an implementation of the unitary ensemble taking into

account the chiral structure (called chiral unitary ensemble, χUE) introduced by Shuryak

and Verbaarschot [5] to describe the properties of the Dirac operator of QCD. We mention

that χRMT may be defined for real and quaternion numbers [6, 19] giving rise to effective

theories describing 2-colour QCD (χOE) and QCD with quarks in the adjoint representation

(χSE).

Concerning the classification of RMTs we have focused the attention only on the matrix

sets without taking in account the weight function. The reason for this choice lies in the

fact that there is strong evidence, and in some cases there are proofs too (see [45]), of

the independence from the infinite matrix dimension limit on the particular choice of the

weight function (under some broad hypotheses). This property is usually referred to as

RMT universality and justifies the usual simple choice of the gaussian weight function.

The problem of RMT universality is currently being studied in mathematical literature,

see [51].

1.3.2 Chiral Random Matrix Theory

Chiral Random Matrix Theory (χRMT) was first introduced in [5] for QCD with 3 or more

colours and quarks in the fundamental representation (this model is usually referred to as

χUE). The theory was derived starting only from the symmetries of the Dirac operator and

from its topological structure. We will briefly summarise this procedure.

The starting point is the Dirac operator in the gauge field Aν :

iD ≡ iγνDν = iγν∂ν + γνAν . (1.44)

Its chiral symmetry {iD, γ5} = 0 implies that the eigenvalues will occur in pairs ±λ apart

from zero eigenvalues. The last relation forces the eigenfunctions of the Dirac operator φλ
to be related by the property φ−λ = γ5φλ. The number of zero eigenvalues is fixed by the

Atiyah-Singer index theorem and is equal to the winding number ν. Let us consider a finite

volume discretized theory, one can turn to a chiral basis ψL,k, ψR,k with γ5ψR,k = ψR,k and

γ5ψL,k = −ψL,k. Zero eigenvalues may be either right handed or left handed. In this chiral

basis expansion the massless action becomes:
∫
d4x ψ iDψ =

∑

k,l

(
χ∗R,k
χ∗L,k

)(
0 iDLR

iDRL 0

)(
χR,l

χL,l

)
(1.45)
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where χS,k are the coefficients of the expansion of the field ψ in the chiral basis ψ =∑
k χR,kψR,k + χL,kψL,k and the matrix elements are given by

DLR,kl =
∫
d4x ψ∗R,k DψL,l (1.46)

and from the anti-hermiticity11 of the euclidean Dirac operator DRL = D†LR. The functions

φ are the eigenfunctions of of the Dirac operator for a given configuration A, and only for

that configuration the matrix DLR is diagonal; for all the other configurations it will be a

rectangular matrix with a dimension exceeding the other of ν (due to the presence of ν zero

eigenvalues of the Dirac operator). Let us say we have N− left-handed eigenfunctions and

N+ = N− + ν right-handed ones.

The ones above are just algebraic manipulations, and the key observations have still to

be been done. We know from other approaches (χPT) that there are properties of QCD only

resulting from the chiral structure and from overall symmetries (like the Leutwyler-Smilga

sum rules, see sect. 1.1.3), disregarding the particular dynamics of the theory; starting

from this wisdom the main idea is that whenever we are only interested in these properties

we can substitute the Yang-Mills action, that is a weight-function for the matrix DLR,

with a simpler weight function with the same structure satisfying the same symmetries but

disregarding the microscopical QCD dynamic:

(
DLR,kl[Aµ], eSY M [Aµ]

)
→ (Tkl, w(T )) (1.47)

where T is a N+ × N−rectangular complex matrix12. The simplest choice possible for the

weight function is the one of a gaussian wight-function

w(T ) = Exp
[−σN Tr

[
T †T

]]
(1.48)

where the quantity σ is a dimensionless free parameter (the only parameter in the theory)

and the factor N = N+ +N− has been introduced due to a useful convention. The simple

gaussian choice for the wight function is supported by results assuring that, according to

reasonable hypotheses, the N → ∞ limit is independent of the particular choice of the

weight function [52, 53, 54].

The substitution above is expected to be valid only for investigating the energy spectrum

in given conditions, conditions which, we already know from different ways, ensure that the

spectrum can be studied by means of “universal” effective theories [5]: in our case it is valid

11The possible presence of anti-unitary symmetry may imply that the matrix DLR is a real or quaternion

matrix. If such a symmetry is absent the matrix is a complex one.
12If one considers the elements of T real number or quaternions one obtains chOE and chSE respec-

tively. These theories may be used to describe properties of QCD-like theories with additional anti-unitary

symmetries.
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only when considering the ε-regime. The resulting RMT is:

∫
dT e−σNTr[TT

†]
Nf∏

f=1

Det
[
mf1N+ iT

iT † mf1N−

]
. (1.49)

This model take the name of chGUE.

Naively speaking the argument above can be summarised saying: there are quantities,

like the Leutwyler-Smilga sum rules, that are functions of the lower part of the spectra,

which does not depend on the particular QCD dynamic but only on the symmetries hence

they are universal; since they are universal they can be described by any theory with the

same symmetries. This one may seem to the reader a rash conclusion, a conjecture rather

than an argument, and in fact it is a conjecture. When it was formulated in [5] it was

introduced together with an explicit computations showing that it was possible to obtain

the very same Leutwyler-Smilga sum rules as χPT starting from χRMT. This was a strong

argument in favour of the conjectured equivalence but was not at all explaining why QCD

should show some universality feature13.

A subtle argument in favour of the universality was proposed in [55] where it is shown that

under well accepted hypotheses (like the pion-pole dominance, the Gell-Mann-Oaks-Renner

relation or semiclassical arguments), if one considers the eigenvalues of the 4-dimensional

Dirac operator like the eigenvalues of a quantum Hamiltonian in a 4+1 dimensional theory

an ergodic dynamic in this additional (Schwinger) time it follows from the ε-regime range

energy of 4-dimensional QCD14. This result, together with the Bohigas-Giannoni-Schmidt

conjecture [49], gives an explanation too of the equivalence between χPT and χRMT: spectra

of classically ergodic chaotic systems may be described through “proper” random matrices.

The “proper” one for this particular case has to be chosen in order to verify the same

symmetries and topological structure as QCD and, hence, it is the one in eq. 1.49.

Here we will not show details that can be found in [55], its easier and impressive to show

some numerical results where comparison between the spectrum obtained by lattice QCD

simulations and the one predicted by RMT is made.

The picture in fig. 1.3, taken from [56], “provides direct evidence for the conjecture”

above. Simulations were in 2-colour quenched QCD using the staggered Dirac operator and

the comparison was done with χGSE15 predictions in [57].

Nowadays the fact that RMT may be used to describe the low energy spectra of QCD

in the ε-regime is widely accepted, no matter that a real proof showing how RMT descends

directly from QCD is still lacking. In this work we will not fill this gap (deriving low energy

13In the same paper the sum rules very verified for an instanton liquid model with the same symmetries.
14The same Schwinger time approach was used in [15] to derive pq-χPT starting from stochastic QCD-like

theory.
15Two colour QCD has an anti-unitary symmetry, its universality class may be χGSE or χGOE according

to the type of fermions are used [6].
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Figure 1.3: QCD spectrum (upper line) and first eigenvalue distribution (lower) from lattice sim-

ulations and RMT predictions at different gauge couplings β and lattice volume L4. Picture taken

from [56].

properties from microscopical QCD is really an ambitious task!), but we will prove the

existence of a mathematical link with the well accepted χPT.

1.3.3 An example: chGUE

In order to understand how RMT works it may be instructive to show an explicit com-

putation as an example; we compute here the spectral correlation function for the chGUE

with Nf dynamical fermions like in eq. (1.49). For simplicity we show the computation for

zero topological charge as it was shown for the first time in [58]. The starting point is that

any complex matrix T can be diagonalised according to T = V · Λ ·W , with V ∈ U(N),

W ∈ U(N)/U(1)N and Λ is a positive definite diagonal matrix with entries λ1, . . . , λN .

The measure transforms according to

dT = dµ(U) dµ(W )
∏

i

dλi
∏

k<l

(λ2
k − λ2

l )
2

∏

k

λk. (1.50)

The measures over the unitary matrices dµ(U), dµ(W ) are Haar measures and the integra-

tion gives a trivial contribution since these angular degrees of freedom decouple from the

rest of integral.

The N-eigenvalue distribution, also called joint probability density function (jpdf) is given

by:

ρN (λ1, . . . , λN ) =
∏

k<l

(λ2
k − λ2

l )
2

N∏

k=1


λk

Nf∏

f

(m2
f + λ2

k)


 Exp

[
−2σN

N∑

k=1

λ2
k

]
. (1.51)
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The spectral density function (or any k-point correlation function) can be obtained in-

tegrating the jpdf over the remaining N − 1 (N − k) eigenvalues. The technical tool used

to solve this integration is provided by the orthogonal polynomials [44]: one defines a scalar

product in a function space, in this case:

< f, g >=
∫
dλ2

Nf∏

f

(λ2 +m2
f )e

−2σNλ2
f(λ) g(λ). (1.52)

Orthogonal polynomials are obtained performing Gram-Schmidt orthogonalisation to the

monomials λ2j , j ∈ N. The term
∏
k<l(λ

2
k − λ2

l ) is written as a Vandermonde determinant

and this determinant is expanded using the Cramer’s rule, but instead of writing λ2j
k one can

consider any monic Pj(λ2
k). All the terms involving integrated variables can be integrated

using the orthogonalisation relation < Pk, Ps >= rk δk,s. The result is a sum of Pk · Pk.
This sum can be performed through the Christoffel-Darboux formula. For mf = 0 the

polynomials are known16, they can be written in terms of Laguerre polynomials Lba and the

result for the spectral density function is:

ρ1(λ) =
2σN N !

(N +Nf − 1)!
(2σNλ2)Nf+1/2Exp

[−2σNλ2
]

(1.53)

×
(
L
Nf

N−1(2σNλ
2)LNf +1

N−1 (2σNλ2)− L
Nf

N (2σNλ2)LNf+1
N−2 (2σNλ2)

)

Rather than in the quantity above, we are interested in its microscopic limit ρs, that

is N → ∞ limit keeping x = 2Nλ constant. The reason for this interest lies in the fact

that this limit is not sensitive to the particular choice of the weight function (restricted to

a broad class of function) [52, 53, 54] and, obviously, is the one that is believed to describe

QCD spectrum. The quantity to be kept fixed, σN λ, strongly reminds the quantity ΣV λ

in the Leutwyler-Smilga sum rule (1.21), where σ plays the role of the chiral condensate Σ

and the number of eigenvalues N is related to the volume V . The microscopic limit of (1.53)

can be obtained using the limit:

lim
N→∞

1
Nα

LαN

( y

N

)
= y−α/2Jα(2

√
y) (1.54)

where J is a Bessel function of the first kind. The result is

ρs(x) = σx
(
J2
Nf

(√
2σx

)
− JNf+1

(√
2σx

)
JNf +1

(√
2σx

))
. (1.55)

The same result was obtained later in [60] starting from χPT and was confirmed through

lattice simulations in [61]. The explicit result for the k-point correlation function can be

found in [52].

The mf 6= 0 explicit solution can be read off from [54, 59]. Looking at eq. (1.51), and

considering that z2 +m2
f = (z+ imf )(z− imf ), one can see that any flavour can be treated

16They are also known for mf 6= 0, see [54, 59].
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as an additional imaginary eigenvalue (modulo some easy to calculate mass-dependent pref-

actor). After this remark we see that the microscopic limit has to be considered scaling the

quark masses keeping m · N fixed. The analogous of this condition in χPT is that we are

considering only quantities depending on the masses scaling like ε0, see sect. 1.1.3.

1.3.4 Non Hermitian chiral RMT

RMTs may be used to describe non Hermitian theories too. We consider here only the case

relevant to the purposes of this work, that is the chiral case used to describe low energy

properties of QCD with a chemical potential (see [62] for a review). The latter is a theory

whose Dirac operator is no more Hermitian, and it can be approached with the very same

idea used in the Hermitian cases; an equivalent of the “heuristic” substitution of eq. (1.47)

may be provided:
((

0 iDLR[A] + µ

iDRL[A] + µ 0

)
, eSY M [A]

)
→ (DRMT , w(DRMT )) (1.56)

where this time DRMT is a non-Hermitian matrix.

Two different matrix structures have been introduced for DRMT , the first by Stephanov

[8] which consists of adding a Hermitian constant term (miming the chemical potential) to

the standard anti-Hermitian random matrix part (Dirac operator), in formulas:
(

0 iDLR[A] + µ

iDRL[A] + µ 0

)
→

(
0 i T + µ

i T † + µ 0

)
. (1.57)

The other model was introduced by Osborn [9] and consists of two independent random

matrix parts, one Hermitian and one anti-Hermitian:
(

0 iDLR[A] + µ

iDRL[A] + µ 0

)
→

(
0 i T + µW

iT † + µW † 0

)
. (1.58)

In both models the quantity µ is a dimensionless parameter (< 1) playing the role of the

chemical potential. The usual choice for the random matrix weight function is the gaussian

one.

Despite the fact that Osborn’s model is a two matrix model and that doubling the number

of variables may seem to be increasing the complexity of calculations this is not always the

case, there are quantities, like the spectral density function [9], whose computation in this

framework is much easier than in the other one [63]. On the other side Stephanov’s model is

more efficient in other computations (like the study of QCD phase diagrams, e.g. see [64]).

Every time computations (or simulations) have been performed in the two models they were

in agreement in the thermodynamic limit ([65, 9, 63, 66]). These two models are completely

equivalent and in chapter 4 we will give a mathematical proof of it.
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The partition functions for the two models are (N+ ≥ N−)

Z =
∫
dT e−σNTr[TT

†]
Nf∏

f=1

Det
[

mf1N+ iT + µ1N−
iT † + µ1N− mf1N−

]
(1.59)

(the off diagonal parts are N+×N− matrices, and the identity matrix 1N− has to be intended

like the biggest identity matrix fitting in this rectangular) for Stephanov’s model and

Z =
∫
dT dW e−σNTr[TT

†+WW †]
Nf∏

f=1

Det
[

mf1N+ iT + µW

iT † + µW † mf1N−

]
(1.60)

for Osborn’s one.

We briefly mention the way used by Osborn to solve his model, it is not different con-

ceptually from the one sketched in sect. 1.3.3 for the Hermitian model. The starting point

is to note that the blocks of the Dirac operator can be simultaneously “triangularised”17

iT + µW = U(X +R)V

iT † + µW † = V †(X +R)U† (1.61)

and that the upper triangular parts V and R are irrelevant both to the Jacobian of this

triangularisation and to the argument of the integration. As a consequence it is possible

to express the integrals in terms of the (diagonal) elements of X and Y , or even better,

just of the complex (diagonal) elements of X · Y . Once obtained for the N -eigenvalues

distribution an analogous of eq. (1.51) in order to obtain the k-point function one integrates

the remaining N−k complex variables through the complex-orthogonal polynomials method

[67, 68, 69]. Conceptually it is not different from the real one already encountered in the

previous section, the only difference lies in the fact that the integration defining the scalar

product is over the whole complex plane. An explicit solution can be written in terms

of Laguerre polynomials for finite N and its N -infinite limit in terms of Bessel functions.

Showing a picture of the typical density function is more clarifying than writing the explicit

expression (for that we refer to [9, 62]), see fig. 1.4.

In the previous section we have pointed that the N → ∞ limit can be written only

when the mass changes with N like N−1. An analogous of this scaling property exists for

the “chemical potential” too: N · µ2 has to be kept fixed. This is usually called weak non-

hermiticity limit, in order to distinguish it from the strong one where µ2 stays finite (see

[70] for an overview on the topic). The weak non-hermiticity limit is the RMT equivalent

of the power counting (1.42) in χPT.

The quenched spectrum predicted by this model18 has been checked with the one ob-

tained from lattice simulations [72, 73] showing a good agreement between the data (see fig.
17The block are not square matrices due to the topological charge.
18Strictly speaking the model was not this one, it was an older eigenvalues-model introduced by Akemann

[68] having the same m · N → 0 as Osborn’s one. This model was not introduced starting from a matrix

model.
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Figure 1.4: The quenched spectral density for non-zero chemical potential for zero topological

charge. Picture taken from [62].

1.5).

What we have shown up to this point is the non-Hermitian chUE, but exactly like UE and

chUE, non-Hermitian chiral RMT (sometimes referred to as χR2MT) has a orthogonal and

symplectic partner too, whether one considers random matrices with real or quaternionic

entries. These two models are particularly interesting since they describe QCD-like theories

that can be simulated on the lattice. In [74] the predictions for the symplectic ensemble

[69, 71] have been successfully compared with the lattice data coming from 2-colour QCD

with staggered fermions at non-zero chemical potential.

1.3.5 Isospin chemical potential RMT

As in QCD the chemical potential matrix may be chosen not proportional to the identity. In

general we can define the Dirac operator for a quark with mass mf and chemical potential

µf , it is given by [75]:

iDf +mf ≡
(

mf1N+ iA+ µfB

iA† + µfB
† mf1N−

)
, (1.62)

the partition function is:

Zpq =

〈 nf∏

f

Det [iDf +mf ]

〉
(1.63)

=
∫
dAdB e−σNTr[AA

†+BB†]
nf∏

f

Det
[

mf1N+ iA+ µfB

iA† + µfB
† mf1N−

]
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Figure 1.5: Density of small Dirac eigenvalues of a 64 lattice at non-zero chemical potential, cut

along the real axis (left) and parallel to the imaginary axis at the first maximum (right). The

histogram represents lattice data, and the solid curve is theoretical prediction. Picture taken from

[72].

where A and B are complex N+ ×N− random matrices with Gaussian weights, and, as in

eq. (1.49) the measures dA and dB are the flat measure in the independent entries of the

matrices.

This model was introduced and solved for isospin chemical potential19 for real case in [66]

(it follows as a particular case of [9]) and imaginary20 one in [75]. These models are defined

following Osborn’s prescription [9]: the chemical potential term is a coupling between two

random matrices; this is just an apparent complication indeed this introduction makes the

model simpler: for two different chemical potentials one can go to an eigenvalue basis and

use bi-orthogonal polynomials.

The properties making these two isospin theories interesting have been already sum-

marised in section 1.2, an example of the results obtained is the Fπ-depending deformation

of the two point correlation function in fig 1.2.

The issue of universality is more subtle here because the matrices A and B will couple

after changing variables. We refer to [75] for a more detailed discussion.

1.4 Partially quenched QCD and superanalysis

We will introduce here an important instrument for deriving the properties of the spectrum

of an operator: the resolvent method. This is a general method that can be applied both

to QCD and to RMT, though in the latter case it is inconvenient compared to the simpler

orthogonal polynomial method. It leads to the introduction of a QCD-like theory with
19The chemical potential values are coupled in +µ and −µ.
20In this case the solution given holds for N1 quark with chemical potential iµ1 and N2 with iµ2.

25



CHAPTER 1. INTRODUCTION

fermionic and bosonic quarks called partially quenched QCD (pq-QCD). In order to deal

with complex (bosonic) and Grassmannian (fermionic) variables we introduce super-analysis

(see [76, 77] or appendix A).

1.4.1 The resolvent method - Hermitian case

We start with a simple but clarifying example to explain the idea of resolvent method.

Consider a real number λ0 and a compact surface Ω in the complex plane whose contour is

denoted by ∂Ω. Whenever λ0 ∈/ ∂Ω we have that:

∮

∂Ω

dz
1

z − λ0
= χΩ[λ] ≡

{
1 if λ0 ∈ Ω

0 if λ0 ∈/ Ω
(1.64)

Similarly given a set of λi ∈ R:
∮

∂Ω

dz
∑

i

1
z − λi

=
∑

i

χΩ[λi]. (1.65)

The poles of the integrand on the l.h.s. lie along the real line, the path of integration may

be deformed in two pieces, one above and one below the real line.

lim
ε→0

∫

Ω∩R
dz

∑

i

(
1

z − iε− λi
− 1
z + iε− λi

)
=

∑

i

χΩ[λi]. (1.66)

The equation above explains the main idea of the resolvent method: on the l.h.s. we have

a line integration, on the r.h.s. we have a function that counts the eigenvalues inside Ω.

Unfortunately this naive equation cannot be implemented giving rise the spectral density

function: in order to do that one should perform the average of functional in eq. (1.64) ac-

cording to the statistics of ensemble, but that functional is not defined over all the dominium

of the integration of the eigenvalues21.

A proper approach to the resolvent method can be found in [78]; we define the spectral

density function of an operator whose eigenvalues λi are distributed according to a given

ensemble like

ρ1(z) ≡ 〈
∑

i

δ(z − λi)〉 (1.67)

and the (1-point) resolvent:

G1(z) ≡ 〈
∑

j

1
z − λj

〉=
∫

R
dλ ρ1(λ)

1
z − λ

(1.68)

the latter is defined only outside the support of spectral density ρ1. The equation above can

be inverted [78]:

ρ1(λ) =
1

2πi
lim
ε→0

[G1(λ− iε)−G1(λ+ iε)] . (1.69)

21Eq. (1.64) is valid only for λ0 ∈/ ∂Ω.
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The same formula can be used to invert the integrals for the k-point correlation functions:

once defined the k-point density correlation ρk and the k-point resolvent Gk:

ρk(z1, . . . , zk) ≡ 〈
∏

k

(∑

i

δ(zk − λi)

)
〉

Gk(z1, . . . , zk) ≡ 〈
k∏

j=1

∑

λ∈e.v.

1
zj − λ

〉 =
∫ k∏

j=1

dλj
1

zj − λj
ρk(λ1, . . . , λk) (1.70)

we obtain the k-point density correlations by computing the discontinuities with respect to

all arguments (see e.g. [79]):

ρk(η1, . . . , ηk) =
1

(2πi)k
lim
ε→0+

∑

{σ},σj=±1




k∏

j=1

σj


 Gk (η1 − iσ1ε, . . . , ηk − iσkε) . (1.71)

The k-point correlation function can be obtained from the k-point density function by re-

moving the singularity arising whenever two or more arguments are coinciding [45].

We have seen how to generate the spectral properties from the resolvents, but how to

compute the resolvents? The idea is that since the λs are eigenvalues of an operator D we

can write: ∑

j

1
z − λj

=
∂

∂z′

∏
j (z′ − λj)∏
i (z − λi)

∣∣z′=z =
∂

∂z′
Det [z′ −D]
Det [z −D]

∣∣z′=z (1.72)

and substitute this equation in the definitions (1.68) and (1.70). The problem has now

turned to computing the expectation value of a ratio of determinants; if for RMT this is a

technical problem, for χPT (that is for QCD) this is equivalent to considering a different

theory with both fermionic and bosonic quarks.

1.4.2 Partially quenched χPT

The starting point is a gaussian integral: given a complex number α with Re[α] > 0 it holds

that: ∫

C
dCz e

−α zz∗ =
π√
α
. (1.73)

It is well known that it can be generalised to an integral over Cnb of
∫

Cnb

dnb

C z Exp
[−z† ·A · z] =

πnb

√
Det [A]

(1.74)

where A is a matrix whose Hermitian part is positively defined.

Let us consider the Grassmannian counterpart of the gaussian integral (for conventions

and notations on Grassmann variables and superanalysis see app. A):
∫
dθ∗ dθ e−α θ

∗θ =
∫
dθ∗ dθ (1− α θ∗θ) =

α

π
(1.75)
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it can be generalised to Grassmann vectors too
∫
dnf θ dnf θ Exp

[−θ† ·A · θ] =
1
πnb

Det [A] (1.76)

Complex integration is used to describe bosonic fields and Grassmann integration is used

for fermionic fields, eq. (1.16) comes from the integration of the fermionic fields through eq.

(1.76).

If we want to compute the k-point spectral function of the anti-Hermitian Dirac operator

iD in QCD through the resolvent method, according to eqs. (1.71,1.72) we have to compute

the ratio:

Zpq ≡
〈

k∏

i

Det [z′i − iD]
Det [zi − iD]

〉

QCD

=

〈
k∏

i

Det [z′i − iD]
Det [zi − iD]

Nf∏

j

Det [mi − iD]

〉

YM

(1.77)

where the first expectation value is in QCD (gauge + fermions) and the second one is in the

Yang Mills theory (only gauge). From this equation we can see that the quantity that we

have to compute is the partition function of a QCD-like theory with Nf + k ≡ nf fermions

and k ≡ nb bosons; this theory is usually called partially quenched QCD (pq-QCD). Its

name comes after the fact that it was used for the first time in lattice QCD [80] to simulate

a theory with both dynamical and valence quarks. The k additional couples of bosonic and

fermionic quarks are sometime referred to as valence quark (if zi = z′i the loop diagrams

involving these quark cancel due to supersymmetry) and the physical ones are called sea

quarks.

The next step is to find a χPT-like theory able to describe the low energy sector of

pq-QCD. The right answer was given in [60], and it claims that the partition function, at

fixed topology ν, is given by:

Zν [M] =
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν Exp
[
−1

2
V Σ Str

[MU +MU−1
]]
. (1.78)

In the formula above U and M are supermatrices (see app. A) written according the

boson-fermion convention, Sdet [·] and Str [·] are the superdeterminant and the supertraces

(sometime also referred to as graded-determinant and graded-trace). MatrixM is a diagonal

matrix whose entries are given by m1, . . . ,mNf
, z′1, . . . , z

′
k in the fermion-fermion sector

and z1, . . . , zk in the boson-boson one. Matrix U belongs to the maximal Riemannian

submanifold for the symmetric superspace Gl(nb|nf ), in formulas Ĝl(nb|nf ), and Gl(nb|nf )
is the the manifold of (nb|nf ) × (nb|nf ) matrices with a non-vanishing superdeterminant.

The measure dµS(U) is the Haar measure (invariant with respect to the matrix product)

over this supermanifold.

A proper mathematical definition of Ĝl(nb|nf ) can be found in [81].

Ĝl(nb|nf ) is a supermanifold (that is a “manifold” whose degrees of freedom are described

by commuting and anticommuting numbers) whose base manifold (that is the manifold
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described by the complex number part of the commuting entries in the matrix representation)

is Gl(Nb)/U(nb) ⊕ U(nf ). As an example, a matrix representation of the elements of this

group can be provided by: (
U 0

0 V

)
· Exp

[
0 Ω

Ξ 0

]
(1.79)

where U ∈ Gl(nb)/U(nb), V ∈ U(nf ) and Ω and Ξ are nb × nf matrix whose entries are

Grassmann variables, or, using the same notation, another representation may be:
(
U Ω

Ξ V

)
. (1.80)

Before [60] Lie superunitary group U(nb|nf ) was commonly used as the chiral group in

pq-QCD instead of Ĝl(nb|nf ), it is worth to explain why this choice has been dropped.

To begin with the Haar measure integrated over the whole group vanishes [76]:
∫

U(nb|nf )

dµS(U) = 0 (1.81)

and it implies that we could obtain a vanishing partition function; its geometry is non-

Riemannian (it has a metric tensor with positive and negative eigenvalues) and this implies

that a possible kinetic term Str [∂αΦ∂αΦ] would be not bounded from below.

There is a third reason to choose Ĝl(nb|nf ) instead of U(nb|nf ) which relies on the

microscopical theory we want to describe. When considering the (nb|nf ) = (nb|0) case we

should recover the purely bosonic χPT. The integration manifold consistent with U(nb|0)

is U(nb), but it is not consistent with the symmetries of bosonic QCD: let us investigate its

integration manifold studying the simple nb = 1 case [82]. We write the inverse power of

the Dirac operator determinant through a complex number gaussian integration:

Det
[
m iD
iD† m

]
=

1
π2

∫
dCφ1 dCφ2 Exp

[(
φ∗1
φ∗2

)(
m iD
iD† m

)(
φ1

φ2

)]
(1.82)

The equation above (and hence the theory with bosonic quarks itself) is valid only when

the integral on the r.h.s. is convergent:

(
0 iD
iD† 0

)
is anti-Hermitian and hence has only

imaginary eigenvalues, as a result the convergence of the integral (that is the positivity of

the matrix) exclusively relies on m that, consequently, is required to have positive real part.

The most general flavour symmetry group acting on this action is Gl(2). We can

parametrise this manifold with:

U = eH · V (1.83)

with H = H† Hermitian and V unitary. The invariance of the action with m = 0 implies

H =

(
s

−s

)
, with s ∈ R, and V = 1 · eiθ. (1.84)
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H may be seen as a representation of Gl(1)/U(1) ∼ R. The eH symmetry is explicitely

broken by the mass m 6= 0 and the V symmetry is not; hence we can consider Gl(1)/U(1)

as the broken axial symmetry and U(1) as the conserved vectorial current. This argument

can be generalised to nb bosonic quarks, leading to Gl(nb)/U(nb) and U(nb) as the broken

and the conserved symmetry.

This result is in contrast with the purely bosonic case of U(nb|0), and hence the choice

U(nb|nf ) is not admissible.

1.4.3 The resolvent method - non Hermitian case

In section 1.4.1 we have explained how to generate the spectral properties from resolvents

provided that the eigenvalues lie on a line22. If the spectrum is spread on C (or on a

non-trivial 2-dimensional subset of it) we have to use a different method to generate the δ

functions:
1
π
∂z∗

1
z

= δC(z). (1.85)

For the sake of simplicity let us consider the spectral density. It can be written:

ρ1(z) =

〈∑

j

δC(z − λj)

〉
=

1
π

〈∑

j

∂z∗
1

z − λj

〉
=

1
π
∂z∗ G1(z) (1.86)

where we have defined the complex resolvent exactly as in the Hermitian case in eq. (1.68).

Generalisation to k-point spectral density is straightforward:

ρk(z1, . . . , zk) =
1
πk

∂z∗1 · · · ∂z∗k Gk(z1, . . . , zk). (1.87)

The idea to generate resolvents starting from ratios of determinants is the same as in

the Hermitian case (eq. (1.72)), however a regularisation is needed due to convergence

requirement.

1.4.4 Partially quenched χPT for non-Hermitian QCD

Let us consider the partially quenched partition function in eq. (1.77) for a non-Hermitian

theory, iD → iD + µγ0: 〈∏nf

k Det [mk − iD − µγ0]∏nb

j Det [mj − iD − µγ0]

〉

YM

(1.88)

In contrast with the Hermitian case this quantity cannot be directly derived from a theory

involving fermionic and bosonic quarks. According to what is said in appendix A writing

an inverse determinant in terms of a bosonic integral is possible only if the matrix has a
22This is an essential requirement to transform a contour integration in an integration over R. The

integration over R is subsequently “inverted” giving the spectral properties, or on a formal level we have

that the resolvent can be defined only outside the spectrum.
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positive definite Hermitian part. This requirement has been fulfilled in sect. 1.4.2 imposing

Re(mb) > 0. For non-Hermitian operators this requirement is fulfilled through an Hermiti-

sation procedure [83, 84] and a new particle content of the theory comes out [85, 63, 86].

Let us consider the simplest example, nb = 1, nf = 0 [86]. The same sign problem

that invalidates the importance sampling method in lattice simulations adds here a term

depending on the chemical potential to the Hermitian part of the Dirac operator, it is:

DH =

(
m µ

µ m

)
(1.89)

which has a negative eigenvalue whenever m < µ. The problem may be circumvented by

an Hermitisation procedure [83, 84]; for any bosonic quark with parameters (m,µ) we have

to add an additional couple of bosonic and fermionic conjugated quarks with parameters

(−m∗,−µ):

1
Det [m− iD − µγ0]

=
Det [m∗

j + iD − µγ0

]

Det [m∗
j + iD − µγ0

]Det [m− iD − µγ0]
(1.90)

= lim
ε→0+

Det [m∗
j + iD − µγ0

]

Det
[

ε1 m− iD − µγ0

−m∗
j − iD + µγ0 ε1

] .

Apart from the ε term the matrix in the denominator in the last equation is anti-

Hermitian. The introduction of this additional ε term ensures the positivity of the matrix

and hence it can be written in terms of a converging bosonic integral. The generalisation to

any number nb of bosonic uncoupled quarks is straightforward: (Nb|0) → (Nb +N∗
b |N∗

b ).

We can conclude that a partially quenched partition function can be derived from QCD

with a real chemical potential only when bosonic quarks appear in conjugate couples.

This Hermitisation may seem just a mathematical trick, but this is not the case, the

need of writing inverse ratios of determinants in terms of converging integrals is a feature

of the underlying theory, and to write the underlying theory it is necessary to derive χPT

Lagrangian.

It is remarkable that whereas Hermitisation is needed for the computations in QCD this

is not the case in RMT where there is no need of writing inverse determinants in terms of

convergent integrals and their expectation values are properly defined for complex spectra

too [87, 66, 86].

The partition function for QCD with a couple of conjugated bosonic quarks was derived in

[63] both starting from the symmetries of the theory and starting from a supposed equivalent
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RMT:

Z(nb=1+1∗) =lim
ε→0

∫

Q∈GL(2), Q=Q†

dQ

Det [Q2]
θ(Q) (1.91)

Exp
[
−V Σ

2
Tr

[
MT (Q+ I ·Q−1 · I)]− V F

2

2
Tr

[
B ·Q ·B ·Q−1

]]

where

M =

(
ε −iz

−iz∗ ε

)
, I =

(
0 −i
i 0

)
, B =

(
µ

−µ

)
(1.92)

and the symbol θ(Q) is a step function that is 1 whenever Q is positive definite and 0

otherwise.

One of the original results of the present work is the form of the partition function

involving an unequal number of fermions and bosons (already published in [88]), it will be

presented in sect. 2.3.

An additional remark may be made on the well definiteness of the limit ε→ 0. This limit

may diverge [63]. Despite we have not solved this problem, in section 2.3.1 we will consider

this problem a bit more in detail, explaining why this divergence arises in some cases (an

additional invariance under a non-compact subgroup when computing the integral directly

in the limit ε = 0) and why we think it should not be present in other cases.
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Chapter 2

The RMT-χPT equivalence

The N →∞ limit of χRMT and O(ε0) order of χPT are two effective theories describing

the same properties as QCD, and, as already hinted in sect. 1.3.2, though a proof is still

lacking, nowadays their equivalence is a widely accepted fact. In this chapter we will show

that all the spectral properties of χRMT and χPT are indeed equivalent.

The proof is based on the fact that spectral properties may be derived through resolvents

starting from the partially quenched partition functions, see sect. 1.4, and hence the equiv-

alence of the spectral properties follows from the equivalence of these partially quenched

partition functions. The way to show that pq-χPT and pq-χRMT have the same partition

functions recalls the method provided in [5] for the standard (purely fermionic) χPT and

χRMT. This work is not just a blind reproduction for a mixed bosonic-fermionic theory of

the calculation done for the fermionic case: the introduction of bosons, and hence the need of

superanalysis formalism, invalidates the standard approach to Hubbard-Stratonovich1 trans-

formation that was used in the old proof. We have substituted this transformation (together

with a subsequent saddle point approximation) with a new superbosonisation theorem. The

proof of the latter is provided in chapter 3.

The proof can be schematically summarised in the following scheme:

Zpq in χ RMT = Zpq in εχ PT

⇓
ρk(· · · ) in χRMT = ρk(· · · ) in εχ PT

where the equivalence between the partially quenched partition functions follows from su-

peranalysis computation and it is heredited by the spectral correlation functions thanks to

the resolvent method.

1As an example see [90].
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As already said the equivalence of these theories is already widely accepted: they both

descend, through symmetry arguments, from QCD, and, more importantly, any time a

quantity has been computed in both frameworks the results were the same. We recall here

(up to our knowledge) these partial results. The partition functions with only fermions were

shown to agree for zero [5] and non-zero µ [63, 65, 89, 62]. The equivalence for partition

functions with only bosons at µ = 0 follows from [90]. The generating functional of the

(Nf + 1|1) supergroup integral leading to the spectral density was computed in [14, 60]

including Nf massless fermions and checked with the already known result from RMT.

This work was extended to include the quenched two-point density in [91], all for µ = 0.

Furthermore, the quenched density at real µ 6= 0 was computed from both εχPT [92] and

χRMT [9] and found to be in agreement. For imaginary isospin µ 6= 0 the equivalence

was established up to the two-point function in [27, 35, 36, 75]. It was pointed out [93]

in principle how to compute the distributions of the k-th individual eigenvalue from εχPT,

using all k-point density correlation functions, in order to reproduce previous χRMT results

[94, 95]. The same strategy can be applied for non-zero µ [96, 97].

It is important to note that proving the equivalence of all the k-point correlation function

is not just a mathematical exercise secondary to the equivalence of the spectral density: there

are quantities, like the Dirac operator individual eigenvalue distribution, whose measurement

on lattice became particularly popular during the last years and whose knowledge cannot

be derived either from the spectral density alone or from any finite set of k-point correlation

functions.

2.1 Zero chemical potential

We will start from the simplest case: the Hermitian χRMT corresponding to QCD with

zero chemical potential. In principle this theory could be seen as a particular case of the

imaginary µ case studied in sect. 2.2 by setting µ = 0. Though computations are not too

much involved not even in the imaginary chemical potential case, formulas may seem too

odd, we have hence preferred to present the easiest computation as a separate case.

We will prove that, up to an irrelevant constant, the integrals describing the partially

quenched (k|Nf + k) partition functions in χRMT and χPT coincide. According to what is

said in sect. 1.4.1 from this partition function we can generate the resolvents for all spectral

correlation functions, and hence all spectral correlation functions themselves. So by proving

the equivalence of the partially quenched partition function, without computing the spectra

themselves by taking the discontinuities, it follows that all the k-point correlation functions

are equal, and, hence all spectral properties agree; it holds in particular for the individual

eigenvalues distribution functions. In order to actually compute any given correlation func-

tion we may thus choose either theory, and within that theory we may even use any other
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equivalent method that is simpler.

According to what was explained in sect. 1.4 if we want to generate the k-point spectral

correlations of the Dirac operator we have to consider a partially quenched theory with

nf = Nf + k fermions and nb = k bosons. We start from the partially quenched version of

the chGUE in eq. (1.49):

Zpq=

〈∏nf

f Det [Df +mf ]∏nb

b Det [Db +mb]

〉
=

∫
dA e−σNTr[A

†A]

∏nf

f Det
[
mf1N+ iA

iA† mf1N−

]

∏nb

b Det
[
mb1N+ iA

iA† mb1N−

] (2.1)

where A is a complex N+ × N− random matrix. It describes a fixed topological sector of

QCD with a topological charge ν = N+ −N−, where ν will be kept fixed while considering

the N+ + N− ≡ N → ∞ limit. We have indicated the flat measure in the independent

entries of complex matrix A as dA.

Since we are interested in finding the spectrum and the k-point correlation functions using

the resolvent method [98, 14, 60, 79], according to what was said in sect. 1.4, we consider

the more general theory with nf fermionic quarks and nb bosonic ones and compute its

partition function.

As already said in sect. 1.4.2 for convergence reasons we have to require Re(mb) > 0∀ b
and as a consequence we can generate the resolvents only in the upper half-plane. The result

for Re(mb) < 0 can be easily recovered from eq. (2.1)2.

At this point we follow the common procedure [45] (see appendix A) of writing the

determinants in the numerator in terms of Gaussian fermionic integrals, and the ones in the

denominator in terms of bosonic integrals; we introduce two sets of N+ and N− complex-

supervectors3 in (nb|nf ). We remember that we are using the boson-fermion convention for

ordering elements in supervectors. We write these vectors in a matrix form ψg,α, φg,β , ψ
∗
g,α

and φ∗g,β where Latin indices run over the (nb|nf ) superflavours and Greek indices run over

the N+ (or N−) eigenvalues,

Zpq=
∫
dAd(ψ,ψ∗, φ, φ∗) e−σNTr[A

†A] (2.2)

× Exp


−

∑

g∈(nb|nf )

(
ψ∗g,α
φ∗g,β

) (
mg1α,α′ iAα,β′

iA†β,α′ mg1β,β′

)(
ψg,α′

φg,β′

)
 .

Here d(ψ,ψ∗, φ, φ∗) is a shorthand notation for the product of the flat measures of the in-

dependent entries of the supervectors4. The integral above depends on the random matrices
2In the literature a diagonal matrix S with elements si = ±1 is often introduced to be able to work in

the whole complex plane at once. For the sake of simplicity we have omitted such a notation.
3The anticommuting number part of supervectors and its conjugate are independent Grassmann variables.
4That is a dCψgα term for any complex bosonic degree and dψgα dψ

∗
gα

for any couple of fermionic ones.

35



CHAPTER 2. THE RMT-χPT EQUIVALENCE

only in a Gaussian way:

Exp
[−σN Aα,βA

∗
α,β − iAα,β

(
ψ∗gαφg,β

)− iA∗α,β
(
φ∗g,βψgα

)]
. (2.3)

We can thus perform the Gaussian matrix integration by completing the squares:

Zpq ∝
∫
d(ψ,ψ∗, φ, φ∗) Exp


−Str


mg ·

∑
α

ψg,α ⊗ ψ†g,α +mg ·
∑

β

φg,β ⊗ φ†g,β







× Exp


− 1

σN
Str


∑

β

φg,β ⊗ φ†h,β ·
∑
α

ψh,α ⊗ ψ†g,α





 . (2.4)

In the following we introduce the matrix notation Mgh = N · δghmg, anticipating the

correct scaling later in the large-N limit to obtainN -independent quantities in the thermody-

namic limit [4]. This expression is a Gaussian integral in any of the two sets of supervectors.

We can easily perform one of the two supervector Gaussian integrations (φ, φ†) obtaining a

superdeterminant as a result (app. A):

Zpq ∝
∫
d(ψ,ψ∗) Exp

[
−Str

[
mg ·

∑
α

ψg,α ⊗ ψ†g,α

]]
(2.5)

× Sdet
[

1
N
Mgh +

1
σN

(∑
α

ψg,α ⊗ ψ†h,α

)]−N−
.

The equation above depends on the supervectors only through the sum of outer products.

We can now apply the superbosonisation theorem to be proven in chapter 3:

1
N+

N+∑
α=1

ψg,α ⊗ ψ†h,α → Ugh ∈ Ĝl(nb|nf ) (2.6)

where Ĝl(nb|nf ) is the maximal Riemannian submanifold of the linear group in the (nb|nf )
superspace [81]; we will use here the matrix representation given in 1.80; in this representa-

tion the Haar measure, indicated as dµS(a), can be expressed in terms of usual integrations

through (see eq. (3.19)):

∫

Ĝl(nb|nf )

dµS

(
H1 Θ†

Θ H2

)
=

∫

H1=H
†
1

dH1 θ(H1)
∫

U(nf )

dµ(H2) Det [H2]
nf

×
∫
dΘ dΘ† Sdet

[
H1 Θ†

Θ H2

]nf−nb

. (2.7)

Here, dH1 is the flat measure on the Hermitian matrices H1, θ(H1) is the product of the

step function in the eigenvalues (θ(H1) > 0 ⇐⇒ H1 is positive definite), dµ is the Haar
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measure on the unitary matrices H2 and dΘdΘ† is the flat Grassmannian integration in the

independent entries of the boson-fermion block5. Other parametrisations of Ĝl(nb|nf ) have

been provided for some specific values of (nb|nf ) [60, 91, 99].

The result is (N+ = ν +N−):

Zpq ∝
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]N+ e
−Str

h
N+
N MU

i
Sdet

[
σ
M

N+
+ U

]−N−

=
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν e−Str
h

N+
N MU

i
Sdet

[
1 + σ

1
N+

M · U−1

]−N−
. (2.8)

All the equations above hold for finite N . As a last step we can perform the N →∞ limit.

Here we send the masses mh to zero while keeping Mgh fixed. Therefore the N →∞ merely

leads to an expansion of the superdeterminant (app. A), without the need to perform any

further approximation:

lim
N→∞

Zpq =
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν eStr[−
1
2MU−σM ·U−1]

∝
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν e−
√

σ
2 Str[M ·U+M ·U−1] . (2.9)

This equation is equivalent to the partially-quenched partition function in eq. (1.78) or, e.g.,

in [60], after matching parameters

m
(RMT )
i N

√
σ

2
= m

(χPT )
i

ΣV
2

. (2.10)

We denote by V the volume in χPT and by Σ the chiral condensate6, the first low energy

constant in χPT. Applying the resolvent method to both eq. (2.1) in the limit N →∞, and

eq. (2.9) while keeping eq. (2.10) finite, we obtain the claimed εχPT-χRMT equivalence at

µ = 0 of all k-point correlation functions in the microscopic limit.

2.2 Imaginary chemical potential

The simplest generalisation of the arguments above is obtained by adding imaginary chemical

potentials. As already pointed in sect. 1.3.5 this is a Hermitian theory too and, hence, the

resolvent method described in sect. 1.4.1 may be applied as well. The only difference with

the former section lies in a different random matrix Dirac operator, eq. (1.62), containing

one more random matrix.

Our starting point is the partially quenched version of the RMT partition function in

eq. 1.63:

5The Grassmann variables Θα,b and Θ†b,α are independent real Grassmann variables.
6The chiral condensate Σ has to be considered in the limit V →∞.
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Zpq =

〈∏nf

f Det [Df +mf ]∏nb

b Det [Db +mb]

〉
(2.11)

=
∫
dAdB e−σNTr[AA

†+BB†]

∏nf

f Det
[

mf1N+ iA+ iµfB

iA† + iµfB
† mf1N−

]

∏nb

b Det
[

mb1N+ iA+ iµbB

iA† + iµfB
† mb1N−

] .

where mf and µf are generic masses and chemical potentials of fermionic quarks, and mb

are µf are those of bosonic ones. For convergence reasons we take mb > 0∀ b. Despite

solutions are known only for isospin chemical potential, that is having only two different

chemical potentials, in the present work we do not need to explicit integrate the matrices,

and hence the equivalence is proved for any kind of imaginary chemical potential set.

Here A and B are complex N+ ×N− random matrices with Gaussian weights. Through

the resolvent method this partition function generates the nb-point correlation function for

the theory with Nf = nf − nb dynamical quarks.

In principle one could also use as a starting point Stephanov’s partition function [8] with

only one random matrix and the (imaginary) µ-term proportional to unity. We will show in

chapter 4 that they are equivalent, and hence we can use the one here allowing less involved

computations.

From this point on, most of the steps are equivalent to the ones performed in the previous

section: we introduce two sets of N+ and N− complex-supervectors in (nb|nf ) to write the

ratio of determinants as a Gaussian integral

Zpq =
∫
dAdB d(ψ,ψ∗, φ, φ∗) Exp

[−σN (
Tr

[
A†A

]
+ Tr

[
B†B

])]
(2.12)

× Exp


−

nb∑
g=−nf

(
ψ∗g,α
φ∗g,β

)(
mg1α,α′ (iA+ iµgB)α,β′(

iA† + iµgB
†)
β,α′ mg1β,β′

)(
ψg,α′

φg,β′

)
 .

We reduce all the dependence on random matrices in terms of Gaussian functions:

Exp
[−σN Aα,βA

∗
α,β − iAα,β

(
ψ∗gαφg,β

)− iA∗α,β
(
φ∗g,βψgα

)]
(2.13)

× Exp
[−σN Bα,βB

∗
α,β − iµgBα,β

(
ψ∗gαφg,β

)− iµgB
∗
α,β

(
φ∗g,βψgα

)]
.
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Next we can perform the Gaussian integration completing the squares:

Zpq ∝
∫
d(ψ,ψ∗, φ, φ∗) Exp


−Str


mg ·

∑
α

ψg,α ⊗ ψ†g,α+mg ·
∑

β

φg,β ⊗ φ†g,β







× Exp


− 1

σN
Str


∑

β

φg,β ⊗ φ†h,β ·
∑
α

ψh,α ⊗ ψ†g,α







× Exp


− 1

σN
Str


µg ·

∑

β

φg,β ⊗ φ†h,β · µh ·
∑
α

ψh,α ⊗ ψ†g,α





 . (2.14)

Here we introduce again the matrix notation Mgh ≡ N δghmg, as well as B(µ)
gh =

√
N
2 δgh µg,

anticipating also the proper scaling of µ with N below. This expression is a Gaussian integral

in any of the two sets of supervectors. As before we explicitly integrate one set of supervectors

and express the remaining outer product in terms of an integration over Ĝl(nb|nf ). The

result is:

Zpq ∝
∫
d(ψ,ψ∗)Exp

[
−Str

[
1
N
M ·

∑
α

ψα ⊗ ψ†α

]]
(2.15)

× Sdet
[

1
N
M +

1
σN

∑
α

ψα ⊗ ψ†α +
2

σN2
B(µ) ·

∑
α

ψα ⊗ ψ†α ·B(µ)

]−N−
.

We can use again the theorem of chapter 3 obtaining:

Zpq ∝
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν e−Str
h

N+
N MU

i
(2.16)

× Sdet
[
1 + σ

1
N+

M · U−1 +
2
N
B(µ)UB(µ)U−1

]−N−
.

This result is again exact for any finite N . If we now take the large-N limit while keeping

M and B(µ) fixed7 we obtain finally:

lim
N→∞

Zpq =
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν e−
√

σ
2 Str[M ·U+M ·U−1]−Str[B(µ)UB(µ)U−1] (2.17)

where the only approximation we have used is the expansion of the superdeterminant.

This expression is equivalent to the εχPT effective partition [27, 35, 36], where in order

to match we use the following relations [89, 62]

m
(RMT )
i N

√
σ

2
=m(QCD)

i

ΣV
2

,

µ
(RMT )
i

√
N =µ(χPT )

Di
F
√
V .

(2.18)

7In the theory with real chemical potential in the next section this limit is called weak non-hermiticity

limit [70, 100]. While we inherit the same scaling here our operators are always Hermitian.
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Here µD is a dimensional constant, instead of the µ used above that is dimensionless. The

additional parameter F is the pion decay constant, the second low energy constant in the

leading order chiral Lagrangian. Thus we have established the εχPT-χRMT equivalence for

all k-point correlation functions with imaginary chemical potential.

2.3 Real chemical potential

As before the starting point is the partially quenched version of the partition function of

χRMT, for this case it is the one in eq. (1.60).

As explained in sect. 1.4.4 the presence of bosonic quarks requires the Hermitisation of

the boson-boson part of Dirac operator [85]. Despite it is not a necessary step to solve the

RMT [87, 86], it will be a necessary regularisation for the computation below.

Zpq =

〈∏nv

i Det [Di + zi]∏nv

i Det [Di + z̃i]

Nf∏

f

Det [Df +mf ]

〉
(2.19)

=

〈∏nv

i Det [Di + zi]Det [Di + z̃i]
∗

∏nv

i Det [Di + z̃i]Det [Di + z̃i]
∗

Nf∏

f

Det [Df +mf ]

〉

= lim
ε→0

〈 ∏nv

i Det [Di + zi]Det [Di + z̃i]
∗

∏nv

i Det
[
(Di + z̃i)(D

†
i + z̃∗i ) + ε2

]
Nf∏

f

Det [Df +mf ]

〉
.

The first line is the proper definition of the resolvent, the second, that is obtained from the

first by a trivial step, is the Hermitised version, the last line is the regularised integral.

In the second line the additional valence quarks are in conjugate pairs (nb + n∗b |nv +

n∗v + Nf ) (the replacement z̃i → zi in the numerator is irrelevant). It will be sufficient to

consider the conjugate fermionic quarks as independent quarks with mass −m∗ and chemical

potential −µ; concerning the bosonic conjugate quarks, as already seen in sect. 1.4.4, there

is a deep reason that forces us to treat them simultaneously.

We mention in passing that a purely bosonic theory with bosons coming in conjugated

pairs (nb + n∗b , 0) occurs when applying the replica trick or Toda lattice equation [8, 66, 63,

86].

In the following we will prove the equivalence of the partition functions of εχPT and

χRMT at non zero chemical potential with nf fermionic quarks with given masses and

baryon chemical potential (mf , µf ), and nb couples of conjugated bosonic quarks, with

parameters (mb, µb) and (−m∗
b ,−µb). The partially quenched theory with Nf physical

quarks, nv couples of conjugated fermionic quarks and nv couples of bosonic quarks will

result as a special case. The equivalence of the spectra follows applying the resolvent method

in both theories.
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We will again use the the two-matrix model as was introduced by Osborn [9], but the

same calculation can be done also for the Stephanov model, see chapter 4.

The equivalent of the QCD Dirac operator for a quark with mass mf and chemical

potential µf is given by:

Df +mf ≡
(

mf1N+ iA+ µfB

iA† + µfB
† mf1N−

)
. (2.20)

where A and B are complex N+ ×N− random matrices.

The partition function equivalent to partially quenched QCD with quarks occurring in

conjugated pairs is:

Zpq =
∫
dA dB w(A) w(B)

nf∏

f

Det
[

mf1N+ iA+ µfB

iA† + µfB
† mf1N−

]
(2.21)

×
(
nb∏

b

Det
[

mb1N+ iA+ µbB

iA† + µbB
† mb1N−

]
Det

[
−m∗

b1N+ iA− µbB

iA† − µbB
† −m∗

b1N−

])−1

,

with a Gaussian weight function

w(X) = Exp
[−σ N Tr

[
X†X

]]
. (2.22)

In order to write the inverse determinants as bosonic Gaussian integrals we perform the

same regularisation as in eq. (1.90), obtaining an anti-Hermitian matrix apart from an ε

times the identity. The regularised denominator is:

Det
[(

mb1N+ iA+ µbB

iA† + µbB
† mb1N−

)
·
(
−m∗

b1N+ iA− µbB

iA† − µbB
† −m∗

b1N−

)
− ε21N++N−

]
=

=(−)N+−N−Det







ε1N+ 0 mb1N+ iA+ µbB

0 ε1N− iA† + µbB
† mb1N−

−m∗
b1N+ iA− µbB ε1N+ 0

iA† − µbB
† −m∗

b1N− 0 ε1N−







=(−)N+−N−Det







ε+ m−m∗
2 iA m+m∗

2 µB

iA† ε+ m−m∗
2 µB† m+m∗

2

−m+m∗
2 −µB ε− m−m∗

2 −iA
−µB† −m+m∗

2 −iA† ε− m−m∗
2







(2.23)

We introduce two sets of N+ and N− complex supervectors in (2nb|nf ) to write the ratio
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of determinants as a Gaussian integral

Zpq =
∫
dA dB d(ψ,ψ∗, φ, φ∗)Exp

[−σN (
Tr

[
A†A

]
+ Tr

[
B†B

])]
(2.24)

×Exp


−

nf∑

f

(
ψ∗f,α
φ∗f,β

) (
mf1α,α′ (iA+ µfB)α,β′(

iA† + µfB
†)
β,α′ mf1β,β′

)(
ψf,α′

φf,β′

)


×Exp



−
nb∑

b




ψ∗2b−1,α

φ∗2b−1,β

ψ∗2b,α
φ∗2b,β







ε+mb−m∗b
2 iAαβ′

mb+m
∗
b

2 µbBαβ′

iA†βα′ ε+mb−m∗b
2 µbB

†
βα′

mb+m
∗
b

2

−mb+m
∗
b

2 −µbBαβ′ ε−mb−m∗b
2 −iAαβ′

−µ∗bB†βα′ −mb+m
∗
b

2 −iA†βα′ ε−mb−m∗b
2







ψ2b−1,α′

φ2b−1,β′

ψ2b,α′

φ2b,β′







As before we have reduced all the dependence on random matrices in terms of Gaussian

functions:

Exp


−σN Aα,βA

∗
α,β− iAα,β


∑

f

ψ∗f,αφf,β+
∑

b

(
ψ∗2b−1,αφ2b−1,β−ψ∗2b,αφ2b,β

)



−iA∗α,β


∑

f

φ∗f,βψf,α +
∑

b

(
φ∗2b−1,βψ2b−1,α − φ∗2b,βψ2b,α

)




 (2.25)

×Exp


−σN Bα,βB

∗
α,β−Bα,β


∑

f

µfψ
∗
f,αφf,β+

∑

b

µb
(
ψ∗2b−1,αφ2b,β−ψ∗2b,αφ2b−1,β

)



−B∗α,β


∑

f

µfφ
∗
f,βψf,α +

∑

b

µb
(−φ∗2b,βψ2b−1,α + φ∗2b−1,βψ2b,α

)




 ,

and we can perform the Gaussian integration completing the squares:

Exp


− 1

σN

∑

α,β

ψ∗g,αΓAglφl,βφ
∗
m,βΓ

A
m,nψn,α+

2
σN2

∑

α,β

ψ∗g,αΓBglφl,βφ
∗
m,βΓ

B
m,nψn,α




= Exp


− 1

σN
Str


ΓA

∑
α

(
φα ⊗ φ†α

)
ΓA

∑

β

(
ψβ ⊗ ψ†β

)
− (2.26)

− 2
N

ΓB
∑
α

(
φα ⊗ φ†α

)
ΓB

∑

β

(
ψβ ⊗ ψ†β

)




 .

Here we have introduced the (2nb|nf )× (2nb|nf ) supermatrices

ΓA =




1 0

0 −1

}
× nb 0

0 1nf


 , ΓB =

√
N

2




0 µb

−µb 0

}
× nb 0

0 µf} × nf


 , (2.27)
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and the mass matrix:

M = N



ε+ mb−m∗b

2
mb+m

∗
b

2

−mb+m
∗
b

2 ε− mb−m∗b
2

}
× nb 0

0 mf} × nf


 , (2.28)

anticipating their N -dependence below. We can rewrite the partition function (2.24):

Zpq=
∫
d (ψ,ψ∗, φ, φ∗) Exp


−Str


 1
N
M ·

∑

β

ψβ ⊗ ψ†β




 Exp

[
−Str

[∑
α

φα ⊗ φ†α·

·

 1
N
M +

1
σN

ΓA
∑

β

ψβ ⊗ ψ†βΓ
A − 2

σN2
ΓB

∑

β

ψβ ⊗ ψ†βΓ
B








 . (2.29)

From this point on the procedure is the same as before: we integrate explicitly the sets of

supervectors φ, φ∗ and use the superbosonisation theorem

Zpq =
∫
d (ψ,ψ∗) Exp


−Str


 1
N
M ·

∑

β

ψβ ⊗ ψ†β





 (2.30)

× Sdet

 1
N
M +

1
σN

ΓA
∑

β

ψβ ⊗ ψ†βΓ
A − 2

σN2
ΓB

∑

β

ψβ ⊗ ψ†βΓ
B



−N−

∝
∫

Ĝl(2nb|nf )

dµS(U) Sdet [U ]N+ Exp
[
−Str

[
N+

N
M · U

]]

× Sdet
[

1
N
M +

N+

σN
ΓA · U · ΓA − 2N+

σN2
ΓB · U · ΓB

]−N−
.

This result is valid for finite-N . Once performing the N →∞ weak non-hermiticity limit

[70, 100], keeping M fixed as well as ΓB , the following result is obtained

lim
N→∞

Zpq =
∫

Ĝl(2nb|nf )

dµS(U) Sdet [U ]ν Exp
[
Str

[
−

√
σ

2
M

(
U + ΓA ·U−1 ·ΓA)

+

+ ΓAΓBUΓBΓAU−1
]]
. (2.31)

Rotating all the matrices under the superunitary transformation X → T † ·X · T with

T =




i/
√

2 1/
√

2

−i/√2 1/
√

2

}
× nb 0

0 1nf


 , (2.32)

we obtain the new result for Hermitised εχPT with real µ 6= 0, generalising previous results

in the literature [63, 86]:

Zpq=
∫

Ĝl(2nb|nf )

dµS(U) Sdet [U ]ν Exp
[
Str

[
−

√
σ

2
M̂

(
U + I ·U−1 ·I) +B

(µ)
+ UB

(µ)
− U−1

]]
, (2.33)
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where

M̂ ≡ T † ·M · T =




εN −imbN

−im∗
bN εN

}
× nb 0

0 mfN} × nf


 ,

B
(µ)
+ ≡

√
N

2
T † · ΓA · ΓB · T =



−µb 0

0 µb

}
× nb 0

0 µf} × nf


 ,

B
(µ)
− ≡

√
N

2
T † · ΓB · ΓA · T =



µb 0

0 −µb

}
× nb 0

0 µf} × nf


 ,

I ≡ T † · ΓA · T =




0 −i
i 0

}
× nb 0

0 1nf


 . (2.34)

It is expressed in term of Σ, F and chemical potential using eq. (2.18). For details on the

Haar measure dµS(U) we refer to the next chapter.

The expression above is a generalisation of εχPT with one pair of bosons [63, 86], and of

εχPT with Nf fermions [82]. The signature of the boson-boson block in the metric I slightly

differs from [63] because of a different (anti-)Hermitisation used here. It is important to note

that the two mass terms have different signs if considering bosonic or fermionic quarks, see

eqs. (102) and (131) of [63], respectively.

The particular cases of eq. (2.33) already known in literature [63, 86, 82] have been

derived starting from the symmetries of the microscopic theory under vector and axial

transformations too, and we suppose that the same arguments can be applied to the general

case. The existence of two different matrices B(µ)
± is due to the fact that the covariant

derivative has a different behaviour on bosonic and fermionic quarks in εχPT as explained

in [86].

2.3.1 * Divergences in ε in the one boson non-Hermitian theory

We have marked this section by a * since in this section we are not going to show any

conclusive result but just introducing a still open question (and our proposal to solve it)

related to the previous section. The analogous problem of the definition of supersymmetric

partition function in non-Hermitian Gaussian Random Matrix model (introduced in [100])

was recently considered in detail in [101].

χPT partition function (2.33) in the (1 + 1∗|0) case, that is a couple of conjugated

bosonic quarks, was explicitely computed in [63] and it was seen the its ε → 0 limit is a
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diverging quantity. This is not really a problem since physical quantities are always related

to logarithmic derivatives of the partition function, and hence this multiplying divergent

quantity cancels out. Problems seem to arise when considering the (1 + 1∗|1∗) case: on one

side we have that since Gl(2)/U(2) ⊂ Ĝl(2|1) we expect to have the same divergence, but

on the other side χRMT computation may be performed explicitely through the Cauchy

transform of the orthogonal polynomial [102, 87] and the result of the ε→ 0, N →∞ is a

finite quantity [86]. We show here a possible way to approach the problem: in the (1+1∗|0)

case it works properly, but we have not yet been able to implement it to the (1+1∗|1∗) case.

The partition function for the two coupled conjugated bosons in presence of chemical

potential is:
∫

Gl(2)/U(2)

dµ(U)Det [U ]ν Exp
[
Tr

[
−

√
σ

2
Mε ·

(
U + I ·U−1 ·I) +B+ ·U ·B− ·U−1

]]
(2.35)

where (for simplicity we are dropping some useless indices and the dependence on N):

Mε =

(
ε −im

−im∗ ε

)
≡ ε12 +M , (2.36)

I =

(
0 −i
i 0

)
,

B+ = −B− = B ≡
(
µ 0

0 −µ

)
.

We parametrise the elements of Gl(2)/U(2) through

U =

(
u11 u12

u21 u22

)
= X · Ũ ·X ≡ X ·

(
u u12

u21 u

)
·X =

(
ux2 u12

u21 ux−2

)
(2.37)

where

X =

(
x 0

0 x−1

)
x ∈ R+ , (2.38)

and the measure is

dµ(U) = dU
1

Det [U ]2
= 4 dx

1
x
du du12 du21

u

Det
[
Ũ

]2 (2.39)

The Lagrangian, apart from the term involving ε, is invariant under the symmetry U →
X−1 · U ·X−1. We can hence factorise the integration:

Z(1+1∗) =
∫
du du12 du21

u

Det
[
Ũ

]2 e−Linv(Ũ) (2.40)

×
∫

R+
dx

1
x

Exp
[
−ε

√
σ

2
Tr

[
X2 · (Ũ + I · Ũ−1 · I)

]]
.
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The second term can be integrated explicitely

∫

R+
dx

1
x

Exp


−ε

√
σ

2
u


1 +

1

Det
[
Ũ

]



(
x2 +

1
x2

)


= K0


ε
√

2σu


1 +

1

Det
[
Ũ

]




 , (2.41)

its leading order in ε → 0 limit is − ln ε and is independent of the value of Ũ . Our idea is

that instead of considering the ε-regularised theory integrating over Gl(2)/U(2) and sending

ε → 0 at the end recovering the additional R+ invariance in the result, we could directly

put ε = 0 and integrate using Gl(2)/(U(2)⊗ R+) as integration manifold.

Let us turn now to the (1 + 1∗|1∗) case. The factorisation

U =



x

x−1

1


 Ũ



x

x−1

1


 (2.42)

is possible for the Ĝl(2|1) ensemble too, and as before the only ε-dependent term is an

overall integration over x:

∫

R+
dx

1
x

Exp

[
−ε

√
σ

2
Tr

[(
x2

x−2

)
· (Ũbb + I · (Ũ−1)bb · I)

]]

where the subscript bb means that we are just taking the boson-boson part of Ũ and of Ũ−1.

For the last term we have

(Ũ−1)bb = (Ũbb)−1 + nilpotents (2.43)

Without showing all the computations we just say that the result of the integrations is

K0(εΥ) + ε n1K1(εΥ) + ε2 n2K2(εΥ) (2.44)

where for simplicity we have introduced Υ = ε
√

2σu
(

1 + 1

Det[Ũbb]

)
, and n1, n2 are known

nilpotent terms. When considering the ε→ 0 limit only the first term has a diverging limit:

→ −(ln ε+ ln Υ + γEM ) +
n1

Υ
+
n2

Υ2
. (2.45)

The first part does not depend on any of the grassmann variables. Supposing there exists a

parametrisation of the grassmann variables such that the Lagrangian has no explicit depen-

dence on one integration variables, that is there is an additional invariance of the Lagrangian

under a grassmann integration variable, this together with the property of grassmann inte-

gration
∫
dθ = 0, should be sufficient to conclude that the divergent part disappears from
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the result. A good candidate for such an invariance under a grassmann integration may be:

Ũ → I ·A · I · Ũ ·A−1 (2.46)

where A is the supermatrix:

A =




1 0 0

0 1− αβ
2 α

0 β 1 + αβ
2


 . (2.47)

It can be easily seen that, apart from the ε-dependent part, the lagrangian is invariant

under the transformation (2.46).

Unfortunately we have not yet been able achieve the desired result: to factorise this

U(1|1)/U(1)2 group from the Haar measure (2.7) on Ĝl(2|1)/R+ seems to be a highly non-

trivial task, the Z grading of the manifold changes and consequently an Efetov-Wegner term

(see sect. A.2) arises.
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Chapter 3

Superbosonisation theorem

The aim of this section is to find a way to express integrals of functions of outer products

of supervectors in terms of integrals over a smaller space. In formulas we are going to study

∫
d(ψ,ψ∗) f

(∑

k

ψk ⊗ ψ†k

)
, (3.1)

where ψk, ψ
†
k are complex vectors of nb bosons and nf fermions, d(ψ,ψ∗) is a shorthand

notation for
∏N
k dψk dψ

∗
k and f is a function defined over (nb|nf ) supermatrices.

The main idea is to embed
∑
k ψk⊗ψ†k in some manifold where we can define a δ-function

and where computations are feasible. At a merely symbolic level we have:

∫
d(ψ,ψ∗) f

(∑

k

ψk ⊗ ψ†k

)
=

∫

M
da f(a)

∫
d(ψ,ψ∗) δM

(
a−

∑

k

ψk ⊗ ψ†k

)
. (3.2)

In order to give a meaning to the equation above we have to specify which manifold M we

use and which measure we use on it (the δ-function depends on it). The use of a δ-function

requires f to be continuous with respect to the metric chosen.

A good choice is to take as M in eq. (3.2) the manifold of super-Hermitian matrices.

Doubt was been expressed in [103] about the possibility of defining a δ-function (or more

precisely δ-distribution) to be used with outer products of supervectors. In appendix B

we show that, using the definition of δ-distributions over commuting and anticommuting

numbers known in literature [77], such a δ-distribution is defined in a meaningfully mathe-

matical way. The δ-function can be written using an extension of the usual Fourier-transform

representation of the δ-function on Hermitian matrices (see appendix B).

A crucial ingredient in this proof will be the possibility to flip the order of integration.

Changing the order between commuting and anti-commuting variables is not a problem, but

problems can arise when considering the case of two commuting variables. In order to see
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where these problems come from, and how to avoid them, let us consider a simple example,

the one of a single commuting number vector of length 1:
∫

C
d2z f(z · z∗) =

∫

C
d2z

∫

R
dx f(x) δ(x− zz∗)

=
∫

R
dx f(x)

∫

C
d2z δ(x− zz∗) (3.3)

=
∫

R
dx f(x)

∫

C
d2z

∫

R
dy eiy(x−zz

∗) .

The first change of variable is always allowed when considering converging integrals. At

this point we need to flip the order of integration of y and z, z∗, and this is an illicit step

since the integrals are not converging. This problem may be avoided considering a real

quantity η > 0
∫

C
d2z f(zz∗) =

∫

C
d2z f(zz∗)e(η−η)zz

∗

=
∫

R
dx f(x)eηx

∫

C
d2z

∫

R

dy

2π
eiy(x−zz

∗)e−ηzz
∗

=
∫

R
dx f(x)eηx

∫

R

dy

2π
eiyx

∫

C
d2ze−(η+iy)zz∗

=
∫

R
dx f(x)eηx

∫

R

dy

2π
eiyx

(−i)π
y − iη

=
∫

R
dx f(x)eηx e−ηxπ θ(x) = π

∫ ∞

0

dx f(x) . (3.4)

and all the steps are mathematically rigorous any time we can apply a δ-distribution as a

functional to the function f(x)eηx. The symbol θ(x) indicates the step function.

This easy example is conceptually not too different from the proof of the following the-

orem.

Theorem. (Superbosonisation) Let f be a function defined on the (nb|nf ) supermatrices,

then the following identity holds

∫ N∏

k

dψkdψ
∗
k f

(∑

k

ψk ⊗ ψ†k

)
∝

∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]N f(U) , (3.5)

whenever the integral on the l.h.s. is well defined. The first integration is performed over N

complex supervectors in (nb|nf ) and dµS(U) denotes the Haar measure over Ĝl(nb|nf ).

The idea of expressing integrals of a function of an outer product
∑
k ψk ⊗ ψ†k in terms

of an integral of the same function over a simpler space has been widely used in physics: it

was derived for the first time in [104] for outer products of Grassmannian vectors appear-

ing in exponential function (the term “bosonisation” comes from this kind of application),
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subsequently in [90] for commuting number vectors and in [105, 106, 107, 108, 109] for super-

vectors. This (super)bosonisation may be seen as an application of the Riesz Representation

Theorem1. However, up to our knowledge, a graded version of the last theorem is lacking.

By coincidence the superbosonisation theorem has been independently developed at the

very same time2 of an analogous theorem on superbosonisation by Littelmann, Sommers and

Zirnbauer3 [111]. Anyway the proof they give is different from ours, theirs is an algebraic

proof based on invariant theory over supervectors, ours uses analysis instruments. The

main difference is that we base our proof on the existence of a δ-function fulfilling eq. (3.2),

and that collaboration develops a powerful apparatus in order not to use such an equation

[111]. For this reason we have chosen to show in appendix B all the details concerning the

mathematical rigorousness of our definition.

Proof: As already hinted above we write the l.h.s. of eq. (3.5) introducing an additional

integration over super-Hermitian matrices:
∫
d(ψ,ψ∗) f

(∑

k

ψk ⊗ ψ†k

)
=

=
∫

H=H†
dH f(H) eηStr[H]

∫
d(ψ,ψ∗) δ

(∑

k

ψk ⊗ ψ†k −H

)
e−η

P
k ψ

†
k·ψk

∝
∫

H=H†
dH f(H) eηStr[H]

∫
d(ψ,ψ∗) e−η

P
k ψ

†
k·ψk

∫

F=F †
dF eiF(H−P

k ψk⊗ψ†k)

=
∫

H=H†
dH f(H) eηStr[H]

∫

F=F †
dF eiFH Sdet [η + iF ]−N (3.6)

where d(ψ,ψ∗) ≡ ∏N
k dψkdψ

∗
k and dψkdψ

∗
k =

∏nb

b d2
Cψk,b

∏nf

f dψk,fdψ
∗
k,f . We denote by

ψ† = ψ∗T , and ψ ⊗ ψ† is the outer product and ψ† · ψ the scalar product in (nb|nf ). The

measure dH is the flat measure in the independent entries of the super-Hermitian matrix.

From now on let us focus on the second integral. This quantity reminds of a quantity

already computed in [109], unfortunately the explicit expression in terms of eigenvalues

provided in that paper seems to be not fitting in the purposes of the present theorem:

when diagonalising the super-Hermitian integration variable H Efetov-Wegner terms arise

in the measure, and their value in the general case has never been computed explicitely in

literature. In the following we will never change the Z-gradings of the integration manifold,

consequently no boundary terms will arise (see app. A or [112]).

Writing F and H in terms of blocks, dF = dF1 dF2 dΦ dΦ†

F =

(
F1 Φ†

Φ F2

)
, H =

(
H1 Θ†

Θ H2

)
, (3.7)

1This theorem ensures that any bounded linear functional of functions over a locally compact Hausdorff

space may be computed as an integral of that function over that space using a proper measure [110].
2This result was already presented by the author in “QCD in extreme conditions”, Frascati 6-8 August

2007.
3Part of these results are explained in [103] too.
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we obtain:

I ≡
∫

F=F †
dF eiFH Sdet [F − iη]−N (3.8)

=
∫
dF1 dF2 dΦ dΦ†

(
Det [F2 − iη − Φ(F1 − iη)−1Φ†

]

Det [F1 − iη]

)N

× Exp
[
iT r

[
F1H1 + Φ†Θ

]− iT r
[
H2F2 + ΦΘ†

]]
.

As a first step we note that if we diagonalise the matrix F1 and make an analytic

continuation in the eigenvalues we see that the only poles in the expression above are the ones

where at least one eigenvalue of F1 is iη. Considering the integration over the eigenvalues

as a complex contour integral and closing the integral in the upper semicircle (or lower one,

depending on the signature of the matrix H1
4) we have non vanishing contributions only if

every path of the eigenvalues winds the pole in iη. We can consider this integral as a contour

integral around iη whenever θ(H1) > 0, otherwise it is zero. Since there are no poles apart

from the ones in iη we can fix the contour integral as we prefer. We choose the modulus of

the eigenvalues as equal to 1, hence we have that the matrix F1 − iη may be analytically

continued obtaining a unitary matrix.

I = θ(H1)e−ηTr[H1]

∮

U(nb)

dF1

∫
dF2 dΦ dΦ†

(
Det [F2 − iη − ΦF−1

1 Φ†
]

Det [F1]

)N

× Exp
[
i
[
F1H1 + Φ†Θ

]− i
[
H2F2 + ΦΘ†

]]
. (3.9)

The notation
∮
U(nb)

dF1 stands for an integral over the manifold U(nb) considering as a

measure the analytic continuation of the flat measure of Hermitian matrices. It is related

to the Haar measure dµ integration by:

∮

U(nb)

dF1 ≡
∫

U(nb)

dµ(F1) Det [F1]
nb . (3.10)

The relation between these two integrals is the same as between the two integrals below

describing a circuitation around zero, with z = eiθ:

∫ 2π

0

dθ =
∮

|z|=1

dz
1
z
6=

∮

|z|=1

dz. (3.11)

4The matrices H1 and H2 are complex number Hermitian matrices.
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Eq. (3.10) can be derived diagonalising the matrix F1 = U · f · U† where fj = eiθj :

∮

U(nb)

dF1 ≡
∏

i

∮
dfi∆2({f})

∫
dµ(U)

=
∏

i

∮
dfi
fi
Det [f] ∆({f})∆ ({f−1})Det [f]nb−1

∫
dµ(U)

=
∏

i

∫ 2π

0

dθi
∣∣∆({eiθ})∣∣2Det [f]nb

∫
dµ(U)

≡
∫

U(nb)

dµ(F1) Det [F1]
nb . (3.12)

We consider now that

∫

A=A†
dA Det [A]N e−iTr[AH2] =

∫

A=A†
dA Det [A− iη]N e−iTr[(A−iη)H2]

=
∫

A=A†
dA Det [A− iη − Φ†F−1

1 Φ
]N

e−iTr[(A−iη−ΦF−1
1 Φ†)H2] . (3.13)

The first equality comes from the analyticity of the integrand in the diagonal entries of

the matrix and the second comes from the analogue of the contour invariance in superanalysis

[77], applied to the real and imaginary parts of the Hermitian matrix entries. Applying this

equivalence we obtain for eq. (3.9)

I=θ(H1)eηTr[H2]−ηTr[H1]

∮

U(nb)

dF1

∫
dF2 dΦ dΦ†

(Det [F2]
Det [F1]

)N
(3.14)

× Exp
[
iT r

[
F1H1 + Φ†Θ

]− iT r
[
H2F2 + ΦΘ†

]− iT r
[
H2ΦF−1

1 Φ†
]]

The subsequent step is to perform the dΦ dΦ† integration, using

Tr
[
Φ†Θ

]− Tr
[
ΦΘ† +H2ΦF−1

1 Φ†
]

= (3.15)

= −Tr [
ΘΦ† + ΦΘ† +H2ΦF−1

1 Φ†
]

= −Tr [
ΘF1F

−1
1 Φ† +H2ΦΘ†H−1

2 +H2ΦF−1
1 Φ†

]

= −Tr [
(ΘF1 +H2Φ) · (F−1

1 Φ† + Θ†H−1
2

)−ΘF1Θ†H−1
2

]
.

We can transform the fermionic variables of integration Φ → Φ̃ ≡ H2Φ + ΘF1 and

Φ† → Φ̃† ≡ F−1
1 Φ† + Θ†H−1

2 and thus perform the Gaussian integration,

∫
dΦ dΦ† Exp

[−iT r [
H2ΦF−1

1 Φ†
]
+ iT r

[
ΘF1Θ†H−1

2

]]

=
Det [H2]

nb

Det [F1]
nf

eiTr[ΘF1Θ
†H−1

2 ]
∫
dΦ̃ dΦ̃†e−iTr[Φ̃Φ̃†], (3.16)
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where the last integration is just a constant. Getting back to eq. (3.14) we have:

I ∝ θ(H1) Det [H2]
nb e−ηStr[H]

∮

U(nb)

dF1

∫
dF2

Det [F2]
N

Det [F1]
N+nf

× eiTr[F1H1]−iTr[H2F2]+iTr[ΘF1Θ
†H−1

2 ] (3.17)

= θ(H1) Det [H2]
nb e−ηStr[H]

∫

F2=F
†
2

dF2 Det [F2]
N
e−iTr[H2F2]

×
∮

U(nb)

dF1
1

Det [F1]
N+nf

ei[F1(H1−Θ†H−1
2 Θ)].

Let us consider again the whole eq. (3.6). We can now perform the integration in F1

and F2, using the integrals in appendix C:
∫
d(ψ,ψ∗) f

(∑

k

ψk ⊗ ψ†k

)
∝

∝
∫

H1=H
†
1

dH1 θ(H1)
∫

H2=H
†
2

dH2 Det [H2]
nb

∫
dΘ dΘ† f(H)

×
∫

F2=F
†
2

dF2 Det [F2]
N
e−iTr[H2F2]

∮

U(nb)

dF1
ei[F1(H1−Θ†H−1

2 Θ)]

Det [F1]
N+nf

∝
∫

H1=H
†
1

dH1 θ(H1)
∫

H2=H
†
2

dH2 Det [H2]
nb

∫
dΘ dΘ† f(H)

×
∫

F2=F
†
2

dF2 Det [F2]
N
e−iTr[H2F2] Det [H1 −Θ†H−1

2 Θ
]N+nf−nb

∝
∫

H1=H
†
1

dH1 θ(H1)
∮

U(nf )

dH2

∫
dΘ dΘ†

Det [H1 −Θ†H−1
2 Θ

]N+nf−nb

Det [H2]
N+nf−nb

f(H)

=
∫

H1=H
†
1

dH1 θ(H1)
∮

U(nf )

dH2

∫
dΘ dΘ† Sdet

[
H1 Θ†

Θ H2

]N+nf−nb

f(H) . (3.18)

The last step missing is to find a relation between the measure used in the equation

above and the Haar measure. This relation is:

∫

H1=H
†
1

dH1 θ(H1)
∮

U(nf )

dH2

∫
dΘ dΘ† Sdet

[
H1 Θ†

Θ H2

]nf−nb

=
∫

H1=H
†
1

dH1 θ(H1)
∫

U(nf )

dµ(H2) Det [H2]
nf

∫
dΘ dΘ† Sdet

[
H1 Θ†

Θ H2

]nf−nb

=
∫

Ĝl(nb|nf )

dµS

(
H1 Θ†

Θ H2

)
. (3.19)

It is proved in the following. The manifolds we are integrating are the same, in fact

the H1 = H†
1 > 0 is equivalent to the boson-boson [113] base manifold of Ĝl(nb|nf ) that is

Gl(nb)/U(nb) [81, 60]. The analytic continuation of the eigenvalues of H2 = H†
2 making a

circuitation around zero is equivalent to the fermion-fermion part U(nf ) [81].
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We have now to consider the integration measures in eq. (3.19). The point is that the

measure on the l.h.s. is the Haar measure of super-Hermitian matrices (a group closed under

addition) computed on the analytically continued manifold. It is induced by the flat metric:

Str [dU · dU ] , (3.20)

but the Haar measure on the r.h.s. is the analytical continuation of the Haar measure on

super-Unitary matrices [81, 113, 60] (a group closed under multiplication), induced by the

metric [60]:

Str
[
dU · dU−1

]
= Str

[
U−1dU · U−1dU

]
. (3.21)

In order to find a relation between these two matrices one has to compute the Berezinean

of the transformation [77, 81]:

B = Sdetij,mn
[
(U−1 dU)ij
dUmn

]
. (3.22)

Since this is not a change of variables (the differentials dU are the same) and hence no

Z-gradings are changed, no boundary (Efetov-Wegner) terms arise in the superintegration.

We write this Berezinean matrix in the block structure (Latin indices stay for bosons and

Greek for fermions):

U−1 dU

dU
=




bb/bb bb/ff bb/fb bb/bf

ff/bb ff/ff ff/fb ff/bf

fb/bb fb/ff fb/fb fb/bf

bf/bb bf/ff bf/fb bf/bf




(3.23)

=




U−1
ab ⊗ 1nb

0 U−1
aβ ⊗ 1nb

0

0 U−1
αβ ⊗ 1nf

0 U−1
αb ⊗ 1nf

U−1
αb ⊗ 1nb

0 U−1
αβ ⊗ 1nb

0

0 U−1
aβ ⊗ 1nf

0 U−1
ab ⊗ 1nf




.

Computing the superdeterminant of the matrix above we obtain

B = Sdetij,mn
[
(U−1 dU)ij
dUmn

]
= Sdet [U ]nf−nb . (3.24)

As a consequence we have:

dµS

(
H1 Θ†

Θ H2

)
= dH1 dH2 dΘ dΘ† Sdet

[
H1 Θ†

Θ H2

]nf−nb

, (3.25)

that is eq. (3.19). Together with eq. (3.18) we obtain the proof of our theorem eq. (3.5).
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Chapter 4

The Stephanov-Osborn RMT

equivalence

As already introduced in sect. 1.3.4 there are two different RMTs describing low energy

QCD in presence of a chemical potential, the one matrix model introduced by Stephanov [8]

adding a constant matrix to the off-diagonal part of the the Dirac operator, see eq. (1.59):

Z =
∫
dT e−σNTr[TT

†]
Nf∏

f=1

Det
[

mf1N+ iT + µ1N−
iT † + µ1N− mf1N−

]
, (4.1)

and the two matrix model introduced by Osborn [9] adding a random matrix in the same

class as the Dirac operator but with opposite hermiticity property1, see eq. (1.60):

Z =
∫
dT dW e−σNTr[TT

†+WW †]
Nf∏

f=1

Det
[

mf1N+ iT + µW

iT † + µW † mf1N−

]
. (4.2)

Both models have been used for computation, see sect. 1.3.4, but there was only proof for

the fermionic partition function and the spectral density function linking them. As already

anticipated, thanks to the instruments developed above, in this short chapter we are able to

provide this proof as a corollary to the one in chap. 2.

Both eq. (4.2) and eq. (4.1) may be used for imaginary chemical potential as well, see

[75] for the solution of the second one. The proof provided here holds for both real and

imaginary chemical potential.

The idea of the proof is to perform the same computation as in sections 2.2 and 2.3

but starting from Stephanov’s RMT in eq. 1.59. We will find that this theory too can be
1In general one can even consider the chemical potential µf depending on the the flavour index f . In

particular this allows to study isospin chemical potential theories.
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mapped, in the N → ∞ limit, to χPT, the equivalence of all the spectral properties of the

two models, in that limit, follows as a consequence.

We start from the partially quenched RMT partition function in the case of imaginary

chemical potential. The Stephanov’s version reads

Z =
∫
dT e−σNTr[TT

†]

∏nf

f=1Det
[

mf1N+ iT + iµf1N−
iT † + iµf1N− mf1N−

]

∏nb

b=1Det
[

mb1N+ iT + iµb1N−
iT † + iµb1N− mb1N−

] (4.3)

=
∫
dT d(ψ,ψ∗, φ, φ∗) Exp

[−σNTr [
TT †

]]

× Exp


−

nb∑
g=−nf

(
ψ∗g,α
φ∗g,β

)(
mg1α,α′ (iT + iµg1)α,β′(

iT † + iµg1
)
β,α′ mg1β,β′

)(
ψg,α′

φg,β′

)


=
∫
d(ψ,ψ∗, φ, φ∗) Exp


− 1

σN
Str


∑

β

φg,β ⊗ φ†h,β ·
∑
α

ψh,α ⊗ ψ†g,α







× Exp
[
−iµgψ†g,αδα,βφg,β − iµgφ

†
g,βδβ,αψg,α −mgψ

†
g · ψg −mgφ

†
g · φg

]

As before we have written the ratio of determinants in term of a gaussian superintegration

and performed explicitely the integration of the random matrix.

The difference with the computations of the previous chapter is the presence of the

terms2 φ†g,βδβ,αψg,α and their conjugated. We define the non-Hermitian positive definite

and invertible supermatrix

Chg =
1
σN

∑
α

ψh,α ⊗ ψ†g,α +mgδh,g (4.4)

and rewrite
∫
d(ψ,ψ∗, φ, φ∗) Exp

[−mgψ
†
g · ψg

]

× Exp


−

∑

β

(
φ†h,βChgφg,β + iµgψ

†
g,βφg,β + iµgφ

†
g,βψg,β

)



=
∫
d(ψ,ψ∗, φ, φ∗) Exp


−

∑

β

ψ†j,βµjC
−1
jk µkψk,β −mgψ

†
g · ψg




× Exp
[
−

(
φ†h,β + iψj,βµjC

−1
jh

)
Chg

(
φg,β + iC−1

gk µkψkβ

)]

=
∫
d(ψ,ψ∗) Sdet [C]−N− Exp


−

∑

β

ψ†j,βµjC
−1
jk µkψk,β −mgψ

†
g · ψg


 (4.5)

2The domain of the indices are : α = 1, . . . , N+ and β = 1, . . . , N−.
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where we have used that whenever the bosonic integral is convergent it holds:

∫
d(ξ, ξ†) e−(ξ†+χ†1)M(ξ+χ2) = Sdet [M ]−1

. (4.6)

Thanks to this property we get rid of the term linear in both ψ and φ. At this point we can

follow the already used approach, using the superbosonisation theorem 1
N+

∑N+
α ψα⊗ψ†α →

U ∈ Ĝl(nb|nf ) and performing the N → ∞ limit. We define as before a mass matrix

Mgh = N δghmg and a chemical potential matrix B(µ)
gh =

√
N
2 µgδgh.

∫
d(ψ,ψ∗) Sdet [C]−N− Exp


−Str



(

2
N
B(µ)C−1B(µ)+

1
N
M

)
·
∑

β

ψβ ⊗ ψ†β







=
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]N+ Sdet
[

1
2σ
U +

1
N
M

]−N−

× Exp

[
−Str

[
B(µ)

(
1
2σ
U +

1
N
M

)−1

B(µ)U +
1
2
M · U

]]
(4.7)

→
∫

Ĝl(nb|nf )

dµS(U) Sdet [U ]ν Exp
[
−Str

[
2σ B(µ)U−1B(µ)U+

1
2
M ·U+σM ·U−1

]]
.

Modulo an irrelevant redefinition of the matrix B(µ) → 1√
2
B(µ) and a rescaling of the

integration variable U , the expression above is exactly the same as the one in eq. (2.17)

obtained starting from Osborn’s model. Since that is true for any set of masses and imaginary

chemical potential the spectral properties of the two theories are coinciding.

The proof for the real chemical potential case is similar to the one above, the only

difference lies in the hermitisation process.
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Z =
∫
dT Exp

[−σNTr [
TT †

]] nf∏

f=1

Det
[

mf1N+ iT + µf1N−
iT † + µf1N− mf1N−

]

×
(
nb∏

b=1

Det
[

mb1N+ iT+µb1N−
iT †+µb1N− mb1N−

]
Det

[
−m∗

b1N+ iT−µb1N−
iT †−µb1N− −m∗

b1N−

])−1

=lim
ε→0

∫
dT Exp

[−σNTr [
TT †

]] nf∏

f=1

Det
[

mf1N+ iT + µf1N−
iT † + µf1N− mf1N−

]

×




nb∏

b=1

Det




ε+ mb−m∗b
2 iT

mb+m
∗
b

2 µb

iT † ε+ mb−m∗b
2 µb

mb+m
∗
b

2

−mb+m
∗
b

2 −µb ε− mb−m∗b
2 −iT

−µb −mb+m
∗
b

2 −iT † ε− mb−m∗b
2







−1

=lim
ε→0

∫
dT d(ψ,ψ∗, φ, φ∗) e−Str[

1
N M ·(P

α ψα⊗ψ†α
P

β φβ⊗φ†β)] e−σNTr[TT
†]

×Exp

[
−iTαβ

∑
g1,g2

ΓAg1,g2ψ
∗
g1αφg2,β − iT ∗αβ

∑
g1,g2

ΓAg1,g2φ
∗
g2,βψg1α

]
(4.8)

×Exp

[
−i

√
2
N
δαβ

∑
g1,g2

ΓBg1,g2ψ
∗
g1αφg2,β − i

√
2
N
δαβ

∑
g1,g2

ΓBg1,g2φ
∗
g2,βψg1α

]

where the (2nb|nf )× (2nb|nf ) supermatrices ΓA and ΓB are defined in eq. (2.27). We inte-

grate explicitely the random matrix T and we integrate the φ set of supervectors completing

the squares as before but defining the C matrix in a slightly different way:

Chg =
1
σN

ΓA ·
∑
α

ψh,α ⊗ ψ†g,α · ΓA +mgδh,g (4.9)

This matrix too fulfils the positivity requirements as before.

At this point we can use the superbosonisation to get rid of the remaining supervector

integration performing the same limit as before and using the same matrix manipulation as

in sect. 2.3 we obtain:

Zpq=
∫

Ĝl(2nb|nf )

dµS(U) Sdet [U ]ν Exp
[
Str

[
−
√
σ

2
M̂

(
U+I ·U−1·I)+2B(µ)

+ UB
(µ)
− U−1

]]
, (4.10)

that, modulo a factor 2, is the same equation obtained starting from Osborn’s model in eq.

(2.33). Since the equivalence in the N →∞ limit has been proved for any set of masses and

chemical potential the equivalence of the spectral properties follows as a consequence.
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Chapter 5

Finite volume correlation of

currents

In the present chapter we will compute some current-current correlation in (small) finite

volume QCD in the presence of chemical potential. With the term “small” volume we mean

that the system may be considered in the ε-regime.

If on one side this chapter may be considered as a self standing work (the problem may

be posed and solved in some cases without using any RMT result) on the other side it

can be seen as a application of χRMT description of the zero-mode of χPT. This practical

application may help to consider the chapters above in a broader context.

The results in this chapter can be also found in [114].

As shown in the introduction the main interest in computing the zero-mode integrals

in χPT lies in the possibility of computing observables in a finite volume, theory taking

into account the finite volume effect. It was used to compute the finite volume correction

to the chiral condensate [2], current-current correlators1 [20], charged correlators and the

topological susceptibility [12]. Ten years after the first works on finite volume corrections a

new interest in the subject arose, the computations of finite volume corrections in quenched

theories increased the possibility of testing the predictions with lattice simulations. Correc-

tions to the chiral condensate [115], scalar and pseudo-scalar current correlator [23, 116, 117]

(in the last one computations are performed in partially quenched theories), vector and ax-

ial correlator [118] were computed. These relations have been used to extract low energy

constant from small lattice without reaching the chiral limit [116, 119, 120, 121].

In [122] the effective pion decay constant F appearing in finite volume partition function

in partially quenched theory has been computed using a theory with an imaginary chemical
1In this paper these quantities are computed summing over all the topologies.
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potential; however their result lacks a term that we first give here for the unquenched case

in eq. (5.16).

The original results for the meson correlators computed in this chapter show an inter-

esting dependence on F already at the leading order O(ε0): it can be used as an alternative

way to measure this LEC on lattice.

5.1 The O(ε2) improved χPT

When computing expectation values at a given order j in the ε-expansion, two integrals have

to be performed: the exact zero-mode integration and the field-theoretical dynamic-mode

integration. In general these two integrations do not factorise, but a simplification in this

sense may be obtained introducing a O(εj)-improved effective theory at given order j.

We consider the action S[s, vα;U0, ξ, ∂ξ] given by the Lagrangian in eq. (1.4) in presence

of non-vanishing scalar (mass) and vector (imaginary chemical potential) external sources.

We split this action in three different terms, the first one depending only on the zero modes

U0, the second one only on the dynamical modes ξ(x) and the third part containing all the

interactions between U0 and ξ(x):

S[s, vα;U0, ξ, ∂ξ] = S0[s, vα;U0] + S ′[ξ, ∂ξ] + S ′0[s, vα;U0, ξ, ∂ξ] . (5.1)

Since the term S ′[ξ, ∂ξ] has to be invariant under U(N) global rotations2 it cannot have

any coupling to the external sources.

In this section there is no need to explicitate these terms (we refer to the next one),

we need only to point out some general properties: the external sources give rise to terms

suppressed in the ε-power counting (apart from the terms in S0, see eq. (1.43)) and the

theory with s = 0, vα = 0 is invariant under global U(N) transformation, that is the U0

integration is trivial.

In general we have to compute the expectation value of an observable Q:

〈Q[U0, ξ]〉QCD =

=
∫
dµ(U0)

∫
[dξ(x)]′ e−S0[s,vα;U0]−S′[ξ,∂ξ]−S′0[s,vα;U0,ξ,∂ξ] J [ξ]Q[U0, ξ, ]∫

dµ(U0)
∫

[dξ(x)]′ e−S0[s,vα;U0]−S′[ξ,∂ξ]−S′0[s,vα;U0,ξ,∂ξ]J [ξ]

≡
∫
dµ(U0) e−S0[s,vα;U0] Zξ[s, vα;U0]× 〈Q[U0, ξ]〉ξ∫

dµ(U0)e−S0[s,vα;U0] Zξ[s, vα;U0]
(5.2)

≡ 〈Zξ[s, vα;U0]× 〈Q[U0, ξ]〉ξ〉U0

〈Zξ[s, vα;U0]〉U0

where the factor J [ξ] is the Jacobian (1.27) coming from the exponential map of the non-zero

modes [20, 21] and the measure [dξ(x)]′ is a path integration over the non-zero modes. In
2U(N) global rotations interfere only with U0.
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order to perform the field theoretical integration, we have introduced the partition function

Zξ and the expectation value over the dynamical degrees of freedom in the presence of a

vacuum alignment U0:

Zξ[s, vα;U0] ≡
∫

[dξ(x)]′ e−S
′[ξ,∂ξ]−S′0[s,vα;U0,ξ,∂ξ]J [ξ] , (5.3)

〈Q[ξ]〉ξ,s,vα
≡ 1
Zξ[s, vα;U0]

∫
[dξ(x)]′ e−S

′[ξ,∂ξ]−S′0[s,vα;U0,ξ,∂ξ]J [ξ] Q[ξ] ,

and we have analogously defined the expectation value over the U0 integration with respect

to the action S0[s, vα;U0]:

〈P[U0]〉U0 =
∫
dµ(U0) e−S0[s,vα;U0] P[U0]∫
dµ(U0) e−S0[s,vα;U0]

. (5.4)

At this point we have to find a way to compute the expectation values in the last line

of eq. (5.2); in order to proceed we have to write the dependence of Zξ[s, vα;U0] on the

zero-mode variable U0 explicitely.

Since U0 appears in the action S ′0 only in terms involving the external sources and since

those quantities are small quantities in the ε-bookkeeping, the partition function can be

computed through a perturbative expansion in the external sources3 up to the given order

εj . Scalar sources (masses) are of order ε2 and vectors sources (imaginary chemical potential)

of order ε. These derivatives can be computed through field theoretical methods:

1
Zξ[0, 0;U0]

∂js∂
k
vα
Zξ[s, vα;U0] =

=
1

Zξ[0, 0;U0]

∫
[dξ(x)]′ J [ξ] e−S

′[ξ,∂ξ]∂js∂
k
vα
e−S

′
0[s,vα;U0,ξ,∂ξ]

=
〈
∂js∂

k
vα
e−S

′
0[s,vα;U0,ξ,∂ξ]

〉
ξ,s=0,vα=0

(5.5)

The expression above is an expectation value of an observable in the ensemble of the fields

ξ described by the action4 S′[ξ, ∂ξ]. The derivatives have to be considered decomposing the

sources in a U(N) basis.

We will see in the next section that the result of this computation at the second order

in ε can be re-exponentiated and absorbed in the action leading to the definition of an ε2

improved effective action, with new volume dependent effective low energy constants.

5.2 The effective Lagrangian in the presence of imagi-

nary chemical potential

Considering what said in the previous section, we can now compute the quantity Zξ[s, vα;U0]

in a theory with quark masses (equivalent to scalar sources) and imaginary chemical potential
3For vanishing external sources the integration is trivial and Zξ[0, 0;U0] is just a constant.
4Plus the Jacobian J [ξ], if necessary.

63



CHAPTER 5. FINITE VOLUME CORRELATION OF CURRENTS

(real vector source). In this section we will work with general mass matrix, the real chemical

potential case may be recovered by analytic continuation.

We read the Lagrangian from eq. (1.4):

L(s, vα;U, ∂U) =
1
4
F 2Tr

[∇µU∇µU†
]− 1

2
ΣTr

[
s(U + U†)

]
(5.6)

where ∇µΥ ≡ ∂µΥ − i [vµ,Υ]. We substitute the ε-expansion parametrisation U(x) =

U0 · Exp
[
i
√

2
F ξ(x)

]
and expand the Lagrangian up to the second order in ε; splitting the

result in three pieces we have
∫ L[U0, ξ, ∂ξ] = S0[U0] + S ′[ξ, ∂ξ] + S ′0[U0, ξ, ∂ξ], where the

first term contains only dependences on U0, the second depends only on ξ and the last one

has all the interactions between the two ensemble. At this order the Jacobian J [ξ] can be

exponentiated giving a O(ε2) mass term to the dynamic field ξ:

S0[U0]=−
∫
d4x

F 2

4
Tr

[
[vα(x), U†0 ][vα(x), U0]

]
−

∫
d4x

Σ
2
Tr

[
s(x)(U0 + U†0 )

]

= −F
2

4
V Tr

[
[B,U †0 ][B,U0]

]
− ΣV

2
Tr

[
M(U0 + U†0 )

]
(5.7)

S ′[ξ, ∂ξ]= +
1
2

∫
d4xTr [∂aξ(x)∂aξ(x)] +

Nf
3F 2

1
V

∫
dxTr

[
ξ2(x)

]

+
1

12F 2

∫
d4xTr [[∂αξ(x), ξ(x)][∂αξ(x), ξ(x)]] (5.8)

S ′0[U0, ξ, ∂ξ]=
i

2

∫
d4xTr

[
(vα + U†0vαU0)[∂αξ(x), ξ(x)]

]

− 1√
2F

∫
d4xTr

[
ξ(x)∂αξ(x) ξ(x)(U

†
0vαU0 − vα)

]

−1
2

∫
d4xTr

[
U†0vαU0 [ξ(x), [vα, ξ(x)]]

]

+
Σ

2F 2

∫
d4xTr

[
s (U0ξ(x)2 + ξ(x)2U†0 )

]
(5.9)

According to the power counting in eqs. (1.14,1.42), the S0 contains only O(ε0) terms by

construction, S ′ is a massless propagator term plus ε2 suppressed mass correction and 4-

term interaction (suppressed with respect to the propagator). The first term of S ′0 is O(ε)

and the three others are O(ε2).

As explained above we compute the ε2 expansion of the partition function in eq. (5.3).

The O(ε) term is given by the insertion of a single field ξ: this kind of integral vanishes

identically due to
∫
dx ξ(x) = 0 and, consequently, no O(ε) contribution may arise in the

partition function. Substituting the mass matrix M and the chemical potential matrix B
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in the external sources s(x) = M, vα(x) = B δα,0 we have:

Zξ[M, B;U0] =

= Zξ[0, 0;U0] +

+
∫
dxM δ

δs(x)
Zξ[M, 0;U0] +

1
2

∫
dx dy B

δ

δv0(x)
B

δ

δv0(y)
Zξ[0, vα;U0]

= Zξ[0, 0;U0] + Zξ[0, 0;U0]× (5.10)

× 〈
∫
dxM δ

δs(x)

(
− Σ

2F 2

∫
d4zTr

[
s(z) (U0ξ(z)2 + ξ(z)2U†0 )

])
〉ξ,0,0

+
1
2
Zξ[0, 0;U0] 〈

∫
dx dy B

δ

δv0(x)
B

δ

δv0(y)
×

×
(

1
2

∫
d4zTr

[
U†0vα(z)U0 [ξ(z), [vα(z), ξ(z)]]

])
〉ξ,0,0

+
1
2
Zξ[0, 0;U0] 〈

∫
dx dy B

δ

δv0(x)
B

δ

δv0(y)
×

×1
2

(
− i

2

∫
d4xTr

[
(vα + U†0vαU0)[∂αξ(x), ξ(x)]

])2

〉ξ,0,0

the first and the second term are tadpole diagrams already considered in [2, 20, 115, 117]

and [122]. The new term in the last line is the correction to the vector-current propagator

coming from the O(ε) vector-pion-pion interaction in the first line of eq. (5.9). This term is

of the same order as the others and cannot be disregarded.

The derivatives have to be intended expanding the sources in a complete basis of the

N × N matrices; as an example we can choose the generators of the U(N) Lie algebra:

M δ
δs(x) f(s(x)) =

∑
aMa

δ
δsa(x) f (

∑
a sa(x)Ta).

We can now perform the integration using the propagator in eq. (1.29). The O(ε2) mass

term and the 4-pions interaction can be disregarded at this order in ε. For the first term of

eq. (5.10) we have:

〈∫
dxM δ

δs(x)

(
− Σ

2F 2

∫
d4zTr

[
s(z) (U0ξ(z)2 + ξ(z)2U†0 )

])〉

ξ,0,0

= − Σ
2F 2

〈∫
dx

(
Tr

[
M (U0 ξ

2(x) + ξ2(x)U†0 )
])〉

ξ,0,0

= − Σ
2F 2

2∆(0)V
∑

a 6=0

Tr
[
M (U0 Ta Ta + Ta Ta U

†
0 )

]

= −ΣV
2

1
F 2

∆(0)
N2 − 1
N

Tr
[
M (U0 + U†0 )

]
(5.11)
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Analogously we have for the second term (using the completeness relations in eq. (1.32)):

1
2

〈∫
dx 2Tr

[
U†0BU0 [ξ(x), [B, ξ(x)]]

]〉

ξ,0,0

=
1
2

2∆(0)V
∑

a 6=0

Tr
[
U†0BU0 [Ta, [B, Ta]]

]

= −N ∆(0)V Tr
[
U†0BU0B

]
+ ∆(0)V Tr [B]2 (5.12)

The Tr [B]2 term, as being independent of U0, gives an irrelevant contribution to eq. (5.2)

and can be disregarded. The last term of (5.10) gives:

−1
8
〈
∫
dx dy Tr

[
(B + U†0BU0) [∂0ξ(x), ξ(x)]

]

× Tr
[
(B + U†0BU0) [∂0ξ(y), ξ(y)]

]
〉ξ,0,0

=
1
2
V

∑

a,b,c,d

Tr
[
(B + U†0BU0)[T a, T b]

]
Tr

[
(B + U†0BU0)[T c, T d]

]

×
∫
dx

(
δacδbd∆(x) ∂2

0∆(x) + δadδbc∂0∆(x) ∂0∆(x)
)

= V
∑

a,b

Tr
[
(B + U†0BU0)[T a, T b]

]
Tr

[
(B + U†0BU0)[T a, T b]

]

×
∫
dx∆(x) ∂2

0∆(x)

= −NV
∑
a

Tr
[
(B + U†0BU0)T a

]
Tr

[
(B + U†0BU0)T a

] ∫
dx∆(x) ∂2

0∆(x)

= −NV
(
Tr

[
B2 +BU†0BU0

]
− 2
N
Tr [B]2

) ∫
dx∆(x) ∂2

0∆(x) (5.13)

As before the terms proportional to Tr
[
B2

]
and to Tr [B]2 can be disregarded. At this

point we can collect all the results leading to:

Zξ[M, B, U0]
Zξ[0, 0, U0]

= 1− ΣV
2

1
F 2

∆(0)
N2 − 1
N

Tr
[
M (U0 + U†0 )

]
(5.14)

−N V Tr
[
U†0BU0B

] (
∆(0) +

∫
dx∆(x) ∂2

0∆(x)
)

and introducing the quantities Feff and Σeff

Σeff ≡ Σ
(

1− 1
F 2

N2 − 1
N

∆(0)
)

(5.15)

Feff ≡ F

(
1− N

F 2

(
∆(0) +

∫
dx∆(x)∂2

x0
∆(x)

))
(5.16)

we can exponentiate the result obtaining:

Zξ[M, B;U0]
Zξ[0, 0;U0]

=Exp

[
V

Σeff−Σ
2

Tr
[
M(U0 + U†0 )

]
+ V

F 2
eff−F 2

2
Tr

[
U†0BU0B

]]
. (5.17)
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Multiplying this result times the weight function e−S0[U0] we obtain an ε2 improved

effective static action, given by the same action as eq. (5.7) computed with the effective

constants (5.15) and (5.16):

Exp [−S0,eff [M, B;U0]] ≡ Exp [−S0[M, B;U0]]
Zξ[M, B;U0]
Zξ[0, 0;U0]

. (5.18)

The expectation value in U0 with respect to this weight function e−S0,eff will be denoted

by 〈·〉e. Once introduced the effective static partition function we can conclude that, at the

second order in ε, the expression in eq. (5.2) can be written as:

〈Q[U0, ξ]〉QCD =
〈
〈Q[U0, ξ]〉ξ,s,vα

〉
e

=
〈
〈Q[U0, ξ]〉ξ,0,0

〉
e

(5.19)

and in the equation above we have used

〈P[ξ]〉ξ,s,vα = 〈P[ξ, ∂ξ]〉ξ,0,0 +O(ε3) . (5.20)

The value of ∆(0) appearing in eqs. (5.15) and (5.16) has been already given in eq.

(1.34), the one of
∫
dx∆(x)∂2

x0
∆(x) may be computed in an analogous way [20]:

∫
dx∆(x)∂2

x0
∆(x) = − 1

2
√
V

(
β1 − T 2

√
V
k00

)
(5.21)

where T is the time extent of the box in which the system is enclosed and k00 is a numerical

constant depending on the geometry of the box.

It is worthful to remark that in general the term
∫
dx∆(x)∂2

x0
∆(x) may be of the same

order as ∆(0). We can explicitate its value in the case of a hypercubic lattice:

∫
dx∆(x)∂2

x0
∆(x) =

1
4

∫
dx∆(x)

4∑
α

∂2
xα

∆(x) (5.22)

=
1
4

∫
dx∆(x)

(
1
V
− δ(x)

)
= −1

4
∆(0)

where we have used the properties of the propagator ∆(x):

4∑
α

∂2
α∆(x) = −δ(x) +

1
V

∫

V

dx∆(x) = 0. (5.23)

5.3 Current-current expectation values

At this point we compute the expectation value of observables within a O(ε2) accuracy.

The observables in which we are interested are current-current correlators for scalar and

pseudo-scalar (neutral and charged) currents; these are given, according to the eq. (1.4), by

the operators:
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S(x) =
Σ
2

(U(x) + U†(x)) (5.24)

Sa(x) =
Σ
2
Ta (U(x) + U†(x))

P (x) = i
Σ
2

(U(x)− U†(x))

Pa(x) = i
Σ
2
Ta (U(x)− U†(x))

The way to perform these integrations is through the formula (5.19): to substitute the

expansion U(x) = U0 ·
(
1− i

√
2
F ξ(x)− 1

F 2 ξ
2(x)

)
as the argument of the expectation value

(as an example 〈S(x)S(0)〉QCD) and to perform the expectation value of the dynamical

fields according to the action S ′ (at this order only direct propagators and tadpoles5 give

contributions). The result is an x-dependent linear combination of expectation values of U0-

dependent observables to be computed in the U0 ensemble with respect to the ε2-improved

S0,eff action.

The result of the ξ integration for the neutral correlators is:

〈S0(x)S0(0)〉QCD =
Σ2
eff

4
〈Tr

[
U0 + U†0

]2

〉e (5.25)

− Σ2

2F 2

(
〈Tr

[
(U0 − U†0 )2

]
〉e − 1

Nf
〈Tr

[
U0 − U†0

]2

〉e
)

∆(x).

〈P0(x)P0(0)〉QCD = −Σ2
eff

4
〈Tr

[
U0 − U†0

]2

〉e (5.26)

+
Σ2

2F 2

(
〈Tr

[
(U0 + U†0 )2

]
〉e − 1

Nf
〈Tr

[
U0 + U†0

]2

〉e
)

∆(x).

In [23] the U(N) invariance of the action with degenerate masses was ensuring 〈Sa(x)Sb(0)〉QCD ∝
δab, here the presence of the chemical potential explicitely break this invariance invalidating

the argument. In this case we are able, however, to compute the quantity
∑
a 〈Sa(x)Sa(0)〉QCD,

5It is worthful to note that tadpole diagrams have to be considered since the the S′ action has not been

improved.
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the results are:

∑
a

〈Sa(x)Sa(0)〉QCD =
Σ2
eff

8

(
〈Tr

[
(U0 + U†0 )2

]
〉e − 1

Nf
〈Tr

[
U0 + U†0

]2

〉e
)

+ ∆(x)
Σ2

4F 2

(
−1

2
〈Tr

[
U0 + U†0

]2

〉e − 1
2N2

f

(N2
f + 2)〈Tr

[
U0 − U†0

]2

〉e

+2N2
f +

2
Nf

〈Tr
[
(U0 − U†0 )2

]
〉U0

)
. (5.27)

∑
a

〈Pa(x)Pa(0)〉QCD = −Σ2
eff

8

(
〈Tr

[
(U0 − U†0 )2

]
〉e − 1

Nf
〈Tr

[
U0 − U†0

]2

〉e
)

− ∆(x)
Σ2

4F 2

(
−1

2
〈Tr

[
U0 − U†0

]2

〉e − 1
2N2

f

(N2
f + 2)〈Tr

[
U0 + U†0

]2

〉e

−2N2
f +

2
Nf

〈Tr
[
(U0 + U†0 )2

]
〉e

)
(5.28)

These formulas are the same as in [23], with the difference that the integrations over

U0 are performed with respect to a different (F -dependent) weight function. Not all the

quantities appearing in the formulas above are independent; using a set of identities derived

in section 5.3.1 we can reduce their number:

〈Tr
[
U0 − U†0

]
〉e =− 2N ν

mΣV
(5.29)

〈Tr
[
U0 − U†0

]2

〉e =− 2
mΣV

〈Tr
[
U0 + U†0

]
〉e +

4N2ν2

m2Σ2V 2

〈Tr
[
(U0 − U†0 )2

]
〉e =− 2N

mΣV
〈Tr

[
U0 + U†0

]
〉e +

4N V F 2

(mΣV )2
〈Tr

[
BU0BU

†
0

]
〉e

+
2(V F 2)2

(mΣV )2
(
〈Tr

[
(BU0BU

†
0 )2

]
〉e − 〈Tr

[
B2U0B

2U†0
]
〉e

)

+
4N ν2

(mΣV )2
− 4V F 2

(mΣV )2
Tr [B]2

Up to this point we have worked with a general chemical potential matrix B, however

we have found an explicit solution to the equations above only for B2 ∝ 1. This condition

is equivalent to:

B = µ TB ≡ µ

(
1N+

−1N−

)
. (5.30)

Being B interacting with the fields only through commutators [ · , B], all the equations are

invariant under B → B+ µ̃1: any case with N+ quarks with chemical potential µ+ and N−
with µ− can be reconducted to eq. (5.30).
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The remaining four quantities can be obtained by differentiating a generating function

Zgen(Γ1, γ2, γ3) =
∫

U(N)

dµ(U) Exp
[ 1

2
Tr

[
Γ1(U + U†)

]
+ (5.31)

+ γ2 Tr
[
TBUTBU

†] + γ3 Tr
[
(TBUTBU†)2

] ]

where Γ1 is a diagonal matrix. This generalisation of χPT partition function was computed

in [82] for the case N+ = N− and Γ1 = m ·1N++N− . In appendix D we provide the result of

the generalisation of this computation for TB =

(
1N+

−1N−

)
and general diagonal mass

matrix.

By differentiating we obtain:

〈Tr
[
U0 + U†0

]
〉e = 2

1
Zgen

∂

∂ γ1
Zgen(γ1 1, γ2, γ3) ≡ 2N

Σν(γ1,
√

2γ2)
Σ

〈Tr
[
U0 + U†0

]2

〉e = 4
1

Zgen
∂2

∂ γ2
1

Zgen(γ1 1, γ2, γ3)

= 4N
∂

∂γ1

Σν(γ1,
√

2γ2)
Σ

+ 4N2 Σν(γ1,
√

2γ2)2

Σ2

〈Tr
[
B U0BU

†
0

]
〉e = µ2 1

Zgen
∂

∂ γ2
Zgen(γ1 1, γ2, γ3) ≡ µ2Yν

〈Tr
[
(BU0B U

†
0 )2

]
〉e = µ4 1

Zgen
∂

∂ γ3
Zgen(γ1 1, γ2, γ3) ≡ µ4Xν

All these quantities have to be computed differentiating at the values

γ1 = m
ΣeffV

2
, γ2 = µ2

V F 2
eff

2
, γ3 = 0. (5.32)

We have introduced the quantity Σν since this is the standard notation for the mass de-

pendent chiral condensate at fixed topology. The explicit value of Zgen can be found in

appendix D. Recollecting all the previous relations we can write explicitely the correlation

of neutral currents up to O(ε2):

〈S0(x)S0(0)〉QCD =
Σ2
effNf

Σ
∂Σν(η, α)

∂η
+ Σ2

effN
2
f

Σν(η, α)2

Σ2
(5.33)

+∆(x)
[

2Σ
ηF 2

(N2
f − 1)Σν(η, α)

−2α2Σ2

η2F 2

(
NfYν(η, α)− Tr [TB ]2 +

α2

2
(Xν(η, α)−Nf )

)]

〈P0(x)P0(0)〉QCD =
NfΣ2

eff

ηΣ
Σν(η, α)− ν2N2

f

η2
Σ2
eff + ∆(x)

[
−2Σ
F 2

∂

∂η
Σν(η, α)

−2Nf
F 2

Σν(η, α)2 − 2N2
fΣ

ηF 2
Σν(η, α) +

Σ2N2
f

F 2
+

2ν2Σ2N2
f

η2F 2

+
2α2Σ2

η2F 2

(
NfYν(η, α)− Tr [TB ]2 +

α2

2
(Xν(η, α)−Nf )

)]
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Where we have defined

η ≡ mV Σeff , α2 = µ2 V F 2
eff (5.34)

Analogous equations may also be written for the charged scalar currents

∑
a

〈Sa(x)Sa(0)〉QCD = (5.35)

=
Σ2
eff

2

[
− ∂

∂η

Σν(η, α)
Σ

−Nf
Σν(η, α)2

Σ2
− N2

f

η

Σν(η, α)
Σ

+
ν2Nf
η2

+Nf

+
α2

η2

(
NfYν(η, α)− Tr [ΓB ]2 +

α2

2
(Xν(η, α)−Nf )

)]

+∆(x)
Σ2

2F 2

[
−Nf ∂

∂η

Σν(η,α)
Σ

−N2
f

Σν(η,α)2

Σ2
−(N2

f−2)
ν2

η2
+

2−3N2
f

Nfη

Σν(η,α)
Σ

+N2
f +

4α2

Nfη2

(
NfYν(η, α)− Tr [ΓB ]2 +

α2

2
(Xν(η, α)−Nf )

)]
,

and for the pseudo scalars

∑
a

〈Pa(x)Pa(0)〉QCD = (5.36)

=
Σ2
eff

2

[
N2
f − 1
η

Σν(η,α)
Σ

−α
2

η2

(
NfYν(η,α)−Tr [ΓB ]2+

α2

2
(Xν(η,α)−Nf )

)]

+∆(x)
Σ2

2F 2

[
N2
f + 2
Nf

( ∂

∂η

Σν(η, α)
Σ

+Nf
Σν(η, α)2

Σ2

)
+ 3

Nf
η

Σν(η, α)
Σ

+(N2
f − 4)

(
ν2

η2
+ 1

)

− 4α2

Nfη2

(
NfYν(η, α)− Tr [ΓB ]2 +

α2

2
(Xν(η, α)−Nf )

)]

In order to give some ready-to-use quantities for the numerical evaluation of the quantities

above we provide the explicit values for the simple two flavour case N+ = N− = 1:

Σ(N=2)
ν

Σ
=

1
Zν(η)

∫ 1

0

dλλ e
1
2α

2(4λ2−2)Iν(λ η)
(ν
η
Iν(λ η) + λIν+1(λ η)

)

Y(N=2)
ν =

2
Zν(η)

∫ 1

0

dλλ
1
2
(4λ2 − 2) e

1
2α

2(4λ2−2)Iν(λ η)2 (5.37)

X (N=2)
ν =

1
Zν(η)

∫ 1

0

dλλ
(
16(λ4 − λ2) + 2

)
e

1
2α

2(4λ2−2)Iν(λ η)2 .

where Zν is the static partition defined in eq. (1.43) computed with the effective LECs:

Zν(η) =
∫ 1

0

dλλ e
1
2α

2(4λ2−2)Iν(λ η)2 . (5.38)

71



CHAPTER 5. FINITE VOLUME CORRELATION OF CURRENTS

5.3.1 Integral identities in the presence of chemical potential

The way to obtain the identities in eq. (5.29) is the same as in [23]; we define a left-handed

derivative on U(Nf ):

∇a ≡ i (T a U)ij
∂

∂Uij
(5.39)

(where T a is a generator of the U(Nf ) group) and thanks to the left invariance of the Haar

measure we are able to obtain the equation:

0 = 〈−i∇aG(U)〉 =
1
Z

∫

U(Nf )

dµ(U) (−i)∇a
(
G(U)Det [U ]ν e−S[U ]

)
(5.40)

=
〈
−i∇aG+GTr

[
ta

(
ν +

V Σ
2

(UM −MU†) +
V F 2

2
[UBU†, B]

)]〉
.

Since in this section we are explicitely dealing only with group integrals over U(N), there is

no ambiguity and we can drop the indeces 0 and e in U0 and 〈·〉e.
In the case of degenerate masses M = m1N , using the completeness relations (1.32) and

the formula above, we can derive a set of equations expressing
〈
Tr

[
U − U†

]〉
,
〈
Tr

[
U − U†

]2〉

and
〈
Tr

[
(U ± U†)2

]〉
in terms of

〈
Tr

[
U + U†

]p〉 and
〈
Tr

[
(UB U †B)p

]〉
, for p = 1, 2:

0 =
√

2N
〈∇01

〉
= N ν +m

ΣV
2
Tr

[
U0 − U†0

]

0 =
√

2N
〈∇0Tr

[
U−U†]〉 = Tr

[
U+U†

]
+N ν Tr

[
U−U†] +m

ΣV
2
Tr

[
U−U†]2

0 =
∑
a

〈−i∇aTr [
T a(U − U†)

]〉
=
N

2
〈
Tr

[
U + U†

]〉
+
ν

2
〈
Tr

[
U − U†

]〉

+m
ΣV
4

〈
Tr

[
(U − U†)2

]〉
+
V F 2

4
〈
Tr

[
[UB U†, B](U − U†)

]〉

0 =
∑
a

〈−i∇aTr [
T a[UBU†, B]

]〉
= N

〈
Tr

[
UBU†B

]〉−
〈
Tr [B]2

〉
+ (5.41)

+m
V Σ
4

〈
Tr

[
[UBU†, B](U−U†)]〉 +

V F 2

2
〈
Tr

[
(UBU†B)2

]− Tr
[
B2UB2U†

]〉
.

The equations above are true for generic B, however we have not found any way to

compute 〈Tr [
B2UB2U†

]〉 but requiring B2 ∝ 1N++N− .
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Chapter 6

Conclusions

In the present work we have obtained two new independent results:

• the equivalence of all the k-point spectral correlation functions of χRMT and χPT in

the ε-regime;

• the current-current correlation function for scalar and pseudo-scalar, charged and un-

charged currents in finite volume QCD in presence of a non-zero chemical potential.

The equivalence of the spectral properties of χRMT and χPT was conjectured for a

long time [5] and particular quantities were computed in both frameworks but a general

proof was lacking. It is worth to say that, in particular, the equivalence of the individual

Dirac eigenvalue spectral densities follows from the equivalence of all the spectral correlation

functions; their measurament on the lattice is a remarkably simple procedure.

The equivalence has been proved for non-degenerate masses and for both zero and non-

zero general chemical potential (real and imaginary), see chap. 2. As a corollary we have

proved the equivalence of two different Matrix Models that are both commonly believed to

describe the low energy spectrum of QCD with non-zero chemical potential, see chap. 4.

This equivalence may be considered as a sign of a possible universality of non-Hermitian

χUE.

An essential ingredient for the proof of the equivalence is the superbosonisation theorem

that we have developed independently and at the very same time of a different group [111].

Our simple and original proof is in chap. 3. We mention the explicit parametrisation of the

Haar measure over the supermanifold Ĝl(nb|nf ) that we provide in eq. (3.19).

As already pointed out in [123] we think superbosonisation may be an important method

to study universality of the spectral correlation functions in RMT, that is the independence

of the result on the particular choice of the weight function. The footpath should not be
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different from the one followed in [109]: to write ratios of characteristic polynomials in terms

of Gaussian superintegrals, to integrate the random matrix formally in order to obtain the

Fourier transformation of the weight function and thanks the key observation

Tr




(∑
α

ψα,i ⊗ ψ†α,j

)k

 = Str




(∑

i

ψα,i ⊗ ψ†β,i

)k

 (6.1)

to express everything in terms of
∑
i ψα,i⊗ψβ,i; at this point invoking the superbosonisation

theorem it should be possible to see explicitely how the generating functions dependend on

N and on the coefficients of the weight function. The procedure is quite general and may

be applied to different matrix ensembles; this is a project on which we are working at the

present.

A more technical open question for which we are trying to find an answer is expressed

in sect. 2.3.1: we would like to show how to get rid of the divergences coming from the

integration of the boson-boson sector in the bosonic non-Hermitian χPT, possibly finding a

new manifold where to perform the integration without any regularisation.

The computation of scalar-scalar (pseudoscalar-pseudoscalar) correlation function in

chap. 5 provides a way to measure Fπ as an extension of an existing proposal. It is well

known that the pion decay constant may be computed by measuring the vector-vector (or

axial-axial) correlation current or that it can be measured by studying the alteration of low

energy spectral properties for imaginary chemical potential, see fig. 1.2. The vector-vector

correlator for vanishing chemical potential does not appear at the leading order in the ε-

expansion, on the contrary the scalar-scalar correlator shows a dependence on Fπ already

at O(ε0); this result can be used to improve the quality of the fits for Fπ provided by the

measurement of the spectral properties.

The computation of current-current correlators in presence chemical potential could be

extended including the vector and axial current.
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Appendix A

Superanalysis

In this appendix we briefly recall the main superanalysis concept used in this work. We

will follow mainly [112, 77, 124]

A.1 Basic definitions

We consider N anticommuting variables ξi, i = 1, . . . , N :

ξiξj = −ξjξi (A.1)

A consequence of the anticommutation relations is that ξ2i = 0 ∀ i, and that for any set of

coefficients ai: (
N∑

i

aiξi

)N+1

= 0 (A.2)

Due to this nilpotency property, we have that N anticommuting numbers generate a 2N

dimensional algebra (usually denoted ΛN ). The elements of this algebra (or of its N → ∞
limit) are called supernumber. Every supernumber z can be expressed in the form

z = zB + zS (A.3)

where zB is a complex number and is called base and zS is called soul. The latter can be

written in terms of the generators of the algebra:

zS =
∑
n

1
n!
ca1,...,anξ

ai · · · ξan . (A.4)

For any finite N the soul is nilpotent (A.2). Supernumbers can be splitted into commuting

(c-number) and anticommuting (a-number) part. The expansion of a commuting number
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contains only products of even numbers of ξi. The anticommuting part contains only prod-

ucts of odd numbers of ξi.

A complex conjugation may be defined for super-numbers. Its behaviour on the generator

of the algebras can be summarised in:

(ξi)∗ = ξ∗i

(ξ∗i )
∗ = −ξi (A.5)

(ξiξj)∗ = ξ∗i ξ
∗
j

The complex conjugation is not uniquely defined, these rules are the most commonly used

and determine the so-called second kind conjugation. An alternative definition is considering

a + instead of the − in the second line, and it is called first kind conjugation. It is important

to note that ξi and ξ∗i are independent quantities:

ξiξ
∗
i = −ξ∗i ξi 6= 0 (A.6)

The set of commuting numbers invariant under conjugation is called Rc, analogously the set

of real anticommuting numbers is Ra.
Starting from analytic functions we can define superanalytic functions through its Taylor

series:

f(u) = f(uB + uS) ≡
∑
n=0

f (n)(uB)unS . (A.7)

As a consequence we have that u−1 may be defined whenever uB 6= 0.

From now on we will consider only commuting and anticommuting numbers separately.

Supernumbers may be organised in vectors and matrices as well. A (nb|nf ) supervector v

is defined as a set of commuting numbers zi followed by one of anti-commuting numbers ζi
(this ordering convention is called boson-fermion convention):

v =




z1
...

znb

ζ1
...

ζnf




. (A.8)

Analogously a (nb|nf )× (nb|nf ) supermatrix

M =

(
A Λ

Ξ B

)
(A.9)
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is defined with A and B being respectively nb×nb and nf×nf commuting number matrices,

and Λ and Ξ being nb × nf and nf × nb anticommuting number matrices. The base of a

matrix is defined by taking the complex number parts of its elements: MB ≡
(
AB 0

0 BB

)
.

The transpose of a supermatrix is:

MT =

(
AT −ΞT

ΛT BT

)
(A.10)

and the inverse is defined as usually solving M−1 ·M = 1. A supermatrix may be inverted

iff its base may be inverted.

The supertrace of a matrix is defined as:

Str [M ] = Tr [A]− Tr [B] . (A.11)

This definition follows from the requirement of the cyclic property Str [M ·N ] = Str [N ·M ].

Analogously to the standard case the superdeterminant may be defined integrating the equa-

tion δ lnSdet [M ] = Str
[
M−1δM

]
with the initial condition Sdet

[
1nb

0

0 1nf

]
= 1. The

result can be expressed in terms of the matrix block: whenever Det [B] 6= 0 (or equivalently

Det [A] 6= 0)

Sdet [M ] =
Det [A− Λ ·B−1 · Ξ]

Det [B]
=

(
Det [B − Ξ ·A−1 · Λ]

Det [A]

)−1

. (A.12)

A.2 Integrations

A function f(ξ) of a single anticommuting variable ξ may always be written (A.7) as f(ξ) =

a+ b ξ. By linearity the integral over an anticommuting variable is uniquely determined by

the prescription:
∫
dξ ≡ 0

∫
ξ dξ ≡ Z (A.13)

where Z is a conventional constant. We define Z = 1. A delta function for this integration

may be easily written, δ(ξ) = ξ
∫
f(ξ) δ(ξ) dξ =

∫
(a+ b ξ) ξ dξ = a = f(0) (A.14)

In analogy with the integration over R, where a δ(x) function may be written using the

exponential notation δ(x) = 1
2π

∫
ei p xdp, we have:

δ(ξ) = ξ = i

∫
ei φ ξdφ = i

∫
(1 + i φ ξ) dφ = ξ (A.15)
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The measure dξ transforms under a linear transformation ξ = b ·ζ according to dξ = 1
bdζ.

The extension of this integration to higher numbers of variables is straightforward, for a set

ξ = (ξ1, . . . , ξnf
), dξ ≡ ∏nf

i=1 dξi. The multidimensional measure transforms under a linear

transformation ξ = B · ζ according to:

dξ = Det [B]−1
dζ. (A.16)

A line integration may be defined on paths in Rc. Let x(xB) = xB + xS(xB) be a path

on R whose soul is unambiguously determined by its body, and xB ∈ [aB , bB ], and let f a

superanalytic function, we have [77]:
∫ b

a

f(x) dx =
∑
n=0

1
n!

∫ bB

aB

f (n)(xB)xnS (1 + x′S(xB)) dxB = · · · = F (b)− F (A) (A.17)

where F (xB) is a primitive function of f(xB) = ∂xB
F (xB). The integration of a function

over a path in R depends only on its endpoints. The integration
∫
Rc

is defined as an

integration over any path whose endpoints x tend to infinity, x(xB → ±∞) = ±∞.

The δ-function over Rc is defined through superanalytic continuation:

δ(x) = δ(xB + xS) =
∞∑
n=0

δ(n)(xB)
xnS
n!

(A.18)

The transformation of the integration measure under transformations involving commut-

ing and anti-commuting degrees of freedom at the same time is not a trivial generalisation

of the Jacobian law. For the transformation
(
x

ξ

)
→

(
z(x, ξ)

ζ(x, ξ)

)
(A.19)

we define the Berezinean:

Ber
[
∂(z, ζ)
∂(x, ξ)

]
= Sdet

[
∂z
∂x

∂z
∂ξ

∂ζ
∂x

∂ζ
∂ξ

]
. (A.20)

The measure transforms according to:

dx dξ → dz dζ = dx dξ Ber
[
∂(z, ζ)
∂(x, ξ)

]
+ dx dξ D (A.21)

where the additional term D is a differential nilpotent operator. This term gives rise to an

anomalous term usually referred to as Efetov-Wegner term. A comprehensive explanation

may be found in [112]; the nilpotent property of the Grassmannian coordinates induces a

Z-gradings of the set of functions: f(x, ξ) has degree 0 if ∂ξaf = 0 for all a, it has degree

n if ∂ξb
f has degree n − 1 for all b. The anomalous term arises whenever we consider

transformations changing the Z-gradings. An important property of the anomalous term

is that when computed on a analytic function it gives an exact form, and hence whenever
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the commuting number integration is done over a manifold with periodic boundaries (as

in the integration over U(n)), or is performed on functions decreasing sufficiently fast at

the boundaries, the Efetov-Wegner effect is vanishing. The anomalous term cannot be

disregarded if computed on non-analytic functions. A way to compute this term has been

provided in [112], however this procedure is very difficult and it has never be implemented

but in a very few cases [112, 125, 126].

Once pointed out that the Efetov-Wegner term depends on the alterations of the Z-

gradings, the fact that anomalous terms computed on superanalytic functions reduce to

boundary terms may be seen as a consequence of the supercontour invariance in (A.17): the

term coming from the addition of a nilpotent part to a commuting integration variable (that

is changing the Z-grading) is just a boundary term.

A particularly useful superintegral is the Gaussian one. Choosing complex variables zi,

and anticommuting (independent) variables ζα, ζ∗α, we define the vectors:

v =

(
z

ζ

)
, v∗ =

(
z∗

ζ∗

)
. (A.22)

Let M be a supermatrix as in (A.9), we define the Gaussian superintegral:

I(M) =
∫
dv dv∗ Exp

[−v† ·M · v] . (A.23)

Supposing Det [A] 6= 0 we can reduce M to a block diagonal form

M =

(
A Λ

Ξ B

)
=

(
1nb

0

Ξ ·A−1 1nf

)
·
(
A 0

0 B − Ξ ·A−1 · Λ

)
·
(

1nb
A−1 · Λ

0 1nb

)
(A.24)

and defining1

v =

(
1nb

A−1 · Λ
0 1nb

)
· v, v∗ =

(
1nb

0

Ξ ·A−1 1nf

)T

· v∗ (A.25)

we factorise the commuting and the anticommuting integrations:

I(M) =
∫
dv dv∗ Exp

[
−v† ·

(
A 0

0 B − Ξ ·A−1 · Λ

)
· v

]
. (A.26)

The integration over the anticommuting part gives (no convergence requirements have to be

fulfilled):

Det [B − Ξ ·A−1 · Λ]
. (A.27)

1These two definitions seem to be not self-consistent since they give independent results for z and z∗.
This is not a trouble, the definitions differs only in the souls of these two quantities, and according to (A.17)

these are irrelevant to the purpose of the integration.
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For the integration of the commuting variables we have to require A to be positive definite2.

If this is the case it gives:

πnb Det [A]−1
. (A.28)

As a result we have:

I(M) = πnb Det [A]−1
.Det [B − Ξ ·A−1 · Λ]

= πnb Sdet [M ]−1 (A.29)

A different choice in the constant Z in the definition (A.13) could lead to I(M) = Sdet [M ]−1.

A.3 Supermanifolds

In this section we give a naive introduction to supermanifold, a good mathematical-physics

one can be found in [81].

Let us consider the set of invertible supermatrices (Sdet [M 6= 0]); it is an easy exercise to

see that this set has a group structure (with respect to the matrix product) and it provides

a representation of the superlinear group Gl(nb|nf ). Analogously the invertible matrices

fulfilling M† ·M = 1nb+nf
are a representation of the superunitary group U(nb|nf ).

We write M through an exponential map M = Exp [m] = Exp

[
a λ

ξ b

]
, and consider the

distance induced by the left-right-invariant form

Str
[
dM · d(M−1)

]
= −Str [dm · dm] (A.30)

= −Tr [da · da]− Tr [dλ · dξ] + Tr [dξ · dλ] + Tr [db · db]

For M ∈ U(nb|nf ) we have m = −m† and hence we read off from the formula above

that the metric form Str
[
dM · d(M−1)

]
has not a positive-definite c-number part. In this

sense U(nb|nf ) is not a Riemannian superspace.

Obviously Gl(nb|nf ) is not Riemannian either; we take the maximal Riemannian sub-

manifold of the last manifold by reducing the number of generators of the base manifold

(that is daB and dbB) in order to give a definite metric Tr [da · da] − Tr [db · db]. This

result can be achieved in two ways, by taking da anti-Hermitian and db Hermitian or the

opposite. In the present work we have taken the generators in the boson-boson sector to

be Hermitian (generating a non-compact Mb = Gl(nb)/U(nb) manifold) and the ones in

the fermion-fermion to be anti-Hermitian (generating a compact Mf = U(nf ) manifold).

The form in eq. (A.30) forces the base of the maximal Riemannian submanifold to have

a compact/non-compact structure. The generators obtained posing this (anti-) hermiticity

condition on the base generators of Gl(nb|nf ) cannot be closed to give rise to a Lie algebra.

The maximal Riemannian submanifold ofGl(nb|nf ) is the pair Ĝl(nb|nf ) ≡ (Gl(nb|nf ),Mb ×Mf ),

its elements are the elements of Gl(nb|nf ) whose base manifold belongs to Mb ×Mf . The
2This condition can be weakened requiring the positivity only for the Hermitian part of A.
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requirement on the base manifold ensures the positivity of the measure in the complex vari-

able integrations. As the integration of the fermionic degrees of freedom is a differentiation,

we do not need additional requirements to ensure a well-definiteness of this integral. The

Ĝl(nb|nf ) supermanifold, exactly as U(nb|nf ), is parametrised by n2
b +n2

f real variables and

by 2nb × nf grassmann variables.
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Appendix B

Defining δ-functions on

super-Hermitian matrices

The question answered here is whether or not one can define a δ-distribution such that

f

(∑

k

ψk ⊗ ψ†k

)
=

∫
dM f(M)δ

(
M −

∑

k

ψk ⊗ ψ†k

)
. (B.1)

In order to clarify the idea we take the same simple but nontrivial example as in [103],

where the problem was raised, that is k = 1, (nb|nf ) = (0|2). The outer product ψk ⊗ ψ†k
is a 2 × 2 matrix, its terms are only nilpotent commuting numbers ψi · ψ∗j for i, j = 1, 2.

We can consider this matrix as belonging to a superanalytic continuation of a manifold of

real dimension 4 (at least). We could take as a such manifold U(2), Gl(2)/U(2), Hermitian

matrices or real matrices. Despite in the rest of the work we have used Hermitian matrices,

for this simple example we will use the one with the simplest notation, real matrices:

a ≡
(
a11 a12

a21 a22

)
≡ ψ ⊗ ψ† =

(
ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

)
. (B.2)

Once considering the outer product of vectors as an element of a commuting number

manifold, the well definiteness of the δ-distribution is inherited from the one of the base

manifold by superanalyticity in the real parameters of the manifold. In formulas:

f(a) ≡ f(a11, a12, a21, a22) =
∫
dmδ(m− a) f(m11,m12,m21,m22) , (B.3)

where the integration manifold is the base manifold (real matrices)
∫
dm ≡ ∫∞

−∞
∏2
i,j=1 dmij ,

and the δ distribution is the one of the base manifold too, δ(m− a) ≡ ∏2
i,j=1 δ(mij − aij).

The last thing to be verified is that the superanalytic continuation of the δ-distribution

is properly defined: its well-behaving definition can be found in literature [77]. Given a
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quantity x = xB + xS , where the first part is the body of the number, and the second is

the nilpotent part. Given also a function with a sufficient number of derivatives in xB such

that f(xB + xS) =
∑∞
n=0 f

(n)(xB)x
n
S

n! is properly defined, we have:

∫ +∞

−∞
dy δ(y − xB − xS) f(y) ≡

≡
∫ +∞

−∞
dy

∞∑
n=0

δ(n)(y − xB)
(−xS)n

n!
f(y) (B.4)

=
∞∑
n=0

(xS)n

n!

∫ +∞

−∞
dy δ(y − xB) f (n)(xB) = f(xB + xS) .

Completing the discussion on the example above we can write explicitly δ(m− a):

δ(m− a) = δ(m)−
2∑

i,j=1

ψiψ
∗
j ∂mijδ(m) + ψ1ψ

∗
1ψ2ψ

∗
2(∂m11∂m22 + ∂m12∂m21)δ(m) (B.5)

where m is a real number 2× 2 matrix.

The generalisation for what is done above to eq. (B.1) is straightforward: one considers

the outer product as an element belonging to the superanalytic continuation of a manifold.

The manifold we choose is the one of super-Hermitian matrices: the boson-boson and the

fermion-fermion block are Hermitian matrices, and the δ is defined as the superanalytic

continuation of the product of δ over the real and imaginary parts of the independent

elements of the matrices; boson-fermion and fermion-boson blocks are made of independent

Grassmann integration variables and δ can be represented as, eq. (A.15):

δ(θ − θ̃) ∝ (θ − θ̃) ∝
∫
dξ eiξ(θ−θ̃). (B.6)

As an exponential representation of δ is allowed for both commuting and anticommuting

variables, such a representation of δ-function on super-Hermitian matrices is allowed too:

f(a) =
∫

M=M†
dM f(M) δ(M − a) (B.7)

∝
∫

M=M†
dM f(M)

∫

F=F †
dF eiStr[F (M−a)]

where dM and dF stand for the flat measure over the independent entries of super-Hermitian

matrices:

dM ≡
nb∏

i=1

nf∏
α=1

dMi,α dMα,i

nb∏

i=1

dMi,i

∏

i>j

dReMi,j dImMi,j

×
nf∏
α=1

dMα,α

∏

α,β

dReMα,β dImMα,β . (B.8)
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The integrals in eq. (3.17)

C.1 Boson-boson block

Let us start from
∮

U(nb)

dF1
1

Det [F1]
N+nf

Exp
[
iT r

[
F1H̃

]]
=

=
∫

U(nb)

dµ(F1) Det [F1]
−N−nf+nb Exp

[
iT r

[
F1H̃

]]
(C.1)

= Det
[
H̃

]N+nf−nb
∫

U(nb)

dµ(F1) Det
[
F1H̃

]−N−nf +nb

Exp
[
iT r

[
F1H̃

]]
,

where for simplicity of notation we use H̃ = H1 − ΘH−1
2 Θ†. The integral in the last line

can be performed using the character expansion. This is a particular case of a more general

integral computed in [24]; the result is:

∑
r

α
(0)
r

dr
α

(N+nf−nb)
r χr(0) (C.2)

where the sum is over the irreducible representations of Gl(nb). The quantity χr(0) is zero

for all representations apart from the trivial one. The result is just a constant1.

∮

U(nb)

dF1
1

Det [F1]
N+nf

eiTr[F1H̃] ∝ Det
[
H̃

]N+nf−nb

. (C.3)

This result, together with the argument of analytic continuation of Hermitian matrices,

gives an alternative way for computing the Ingham-Siegel integral as was done in [90].

1In order to compute the exact value one has just to substitute the relation α
(ν)
r = detij

h
1

nj−ν+i−j

i
,

where r = (n1, . . . , nb) are the labels of the representation.
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C.2 Fermion-fermion block

The fermion-fermion block integral has already been computed by Guhr [109]. The result

is: ∫

F2=F
†
2

dF2Det [F2]
N Exp [−iT r [F2H2]] ∝

∏

j

δ(N+nf−1)(hj) . (C.4)

Here we do not have any problem with possible Efetov-Wegner terms arising from these

diagonalisation: both F2 and H2 are complex Hermitian matrices and no Z-grading will be

changed during diagonalisation [112].

If we integrate this functional with a given function analytic in the matrix entries, using

the Cauchy integral formula we obtain:
∫
dµ(U)

∏

j

∫
dhj ∆({h})2 g(UhU†)

∏

j

δ(N+nf−1)(hj)

∝
∫
dµ(U)

∮ ∏

j

dhj
1

h
N+nf

j

∆({h})2 g(UhU†)

=
∮

U(Nf )

dH2
1

Det [H2]
N+nf

g(H2) . (C.5)
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Appendix D

The generalised partition

function in eq. (5.31)

In this appendix we compute the following generalised partition function eq. (5.31)

Zgen({η}) ≡
∫

U(Nf )

dµ(U0) det[U0]ν Exp
[
1
2
Tr

[
M(U0 + U†0 )

]

+
∑
p

apTr
[
(U0ΓBU

†
0ΓB)p

]]
, (D.1)

where M = diag(ηf1=1, · · · , ηN1 , ηf2=1, · · · , ηN2) contains the rescaled masses which may

now be different and TB plays the role of the chemical potential matrix (5.30):

TB =

(
1N1 0

0 −1N2

)
.

Without loss of generality we choose N2 ≥ N1 in Nf = N1 + N2. The volume V and

higher order coupling constants are all absorbed into the coefficients ap, where the sum can

take finitely or infinitely many terms. We only require that the integrals converge.

The result for this generalised partition function was given in [82] for degenerate masses

and N1 = N2. Our generalisation follows closely [65]. Because we differentiate the gener-

alised partition function with respect to the couplings ap in order to generate expectation

values, we have to keep track of all constants that depend on the ap. The unitary matrix
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U0 can be parametrised as follows [63, 65]

U0 =

(
v1 0

0 v2

)(
u1 0

0 u2

)
Λ

(
v†1 0

0 v†2

)
,

Λ ≡




λ̂

√
1N1 − λ̂2 0√

1N1 − λ̂2 −λ̂ 0

0 0 −1N2−N1


 . (D.2)

Here we denote by λ̂ the matrix λ̂ ≡ diag(λ1, . . . , λN1) containing the real numbers λk ∈
[0, 1] for k = 1, . . . , N1. The unitary submatrices are u1, v1 ∈ U(N1), u2 ∈ U(N2) and

v2 ∈ Ũ(N2) ≡ U(N2)/(U(1)N1 × U(N2 −N1)). The matrix Λ is Hermitian and we observe

that

Tr
[
(U0ΓBU

†
0ΓB)p

]
= Tr [(ΛΓBΛΓB)p] , (D.3)

so all unitary degrees of freedom drop out. From

(ΛΓB)2 =




2λ̂2 − 1N1 −2λ̂
√

1N1 − λ̂2 0

2λ̂
√

1N1 − λ̂2 2λ̂2 − 1N1 0

0 0 1N2−N1


 , (D.4)

we obtain

Tr
[
(U0ΓBU

†
0ΓB)p

]
= Tr




 2λ̂2 − 1N1 −2λ̂

√
1N1 − λ̂2

2λ̂
√

1N1 − λ̂2 2λ̂2 − 1N1



p
− Tr [1N2−N1 ] . (D.5)

The 2N1 eigenvalues can be written in diagonal matrix form as

X± ≡ 2λ̂2 − 1N1 ± i 2λ̂
√

1N1 − λ̂2 . (D.6)

We thus arrive at

Tr
[
(U0ΓBU

†
0ΓB)p

]
+ (N2 −N1) = Tr

[
Xp

+ +Xp
−

]
(D.7)

=
N1∑

i=1

2
[ p
2 ]∑

q=0

(
p

2q

)(
2λ2

i − 1
)p−2q(

− 4λ2
i (1− λ2

i )
)q

=
N1∑

i=1

2T2p(λi) .

The real polynomial T2p(λi) of degree 2p we obtain are the Chebyshev polynomials of the

first kind1.

Coming back to the integral eq. (D.1) we can now go to an eigenvalue basis using the

parametrisation eq. (D.2). The Jacobian computed in [63] gets cancelled up to a product

over λi, after integrating out all unitary degrees of freedom factorising into U(N1) and U(N2)

group integrals. Because of the decoupling of the sum over p from the unitary degrees of
1 In [82] the polynomial was given in the form cos(2p cos−1(λ)).
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freedom in eq. (D.7) the calculation is identical to the one presented in [65] section 3., to

where we refer the reader for details.

Collecting all the results we obtain the following expression for Nf flavours

Zgen({η}) =
const.

∆N1({ηf1})∆N2({ηf2}) × (D.8)

× Det




Zgen(ηf1=1, ηf2=1) · · · Zgen(ηf1=1, ηN2)

· · · · · · · · ·
Zgen(ηN1 , ηf2=1) · · · Zgen(ηN1 , ηN2)

Iν(ηf2=1) · · · Iν(ηN2)

ηN2−N1−1
f2=1 I

(N2−N1−1)
ν (ηf2=1) · · · ηN2−N1−1

N2
I
(N2−N1−1)
ν (ηN2)



,

where ∆N1({ηf1} =
∏N1
j>i(η

2
j−η2

i ) is the Vandermonde determinant within each flavour. The

generalised Nf = 2 flavour partition function Zgen(η1, η2) that is used inside the determinant

above is given by

Zgen(η1, η2) ≡
∫ 1

0

dλλExp

[∑
p

ap

(
2T2p(λ)− (N2 −N1)

)]
Iν(λη1)Iν(λη2) . (D.9)

With I(k)
ν (ηf1) we denote the k-th derivative of the I-Bessel function. The I-Bessel function

itself in fact is a one-flavour partition function, Zν = Iν(η) which is independent of the ap.

The constant in front in eq. (D.8) only contains numbers, from the the Taylor expansion

of the unitary group integrals leading to the derivatives of the Bessel functions. Eq. (D.8)

is the main new result of this appendix, the solution of the generalised partition function

given by the group integral (D.1). It generalises the previous result [82] to nondegenerate

masses and Tr [ΓB ] 6= 0.

As an example for p = 1 we get

2 T2(λ) = 4λ2 − 2 , (D.10)

which gives back the standard partition function eq. (5.38) for a1 = 1
2α

2 (and mass η). It

is explicitly given in eq. (5.38), up to a constant prefactor. For p = 2 we get for the second

polynomial

2 T4(λ) = 16(λ4 − λ2) + 2 , (D.11)

leading to the generalised partition function with a1 = γ2 and a2 = γ3, that is needed in eq.

(5.31).
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