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INTRODUCTION i

Introduction

Black Holes are space time singularities whose properties in classical theories have
been studied for a long time. The interest on metric solutions has mainly grown with the
study of the deep connections of Supergravities with different versions of String Theories.

In fact, 4—dimensional N -extended ungauged Supergravities have two types of geome-
try, the space-time geometry and the moduli space geometry; the symmetries of the latter
are connected to those of the higher dimensional String theory. Taking into account at
the same time space-time and moduli space geometry can help clarifying the properties
of these connections.

Black holes are states of the graviton spin 2 field in Supergravity spectrum and, in the
case of non thermal radiation these states are stable, as happens for electromagnetically
charged (dyonic) black holes with zero temperature but finite entropy, a property called
extremality; these solutions can be thus treated as solitonic systems.

In the case of supersymmetric extremal black holes solutions, the critical points of
the central charge are connected to the critical points of the scalar fields in moduli space
through the extremization of the black hole potential

¢’
or
due to this property, even if the black hole has a scalar hair, its entropy does depend only

(7’):0 — dVBHZO

on asymptotical degrees of freedom, namely, for static solutions, electric and magnetic
charges determined by vector field strengths fluxes at spatial infinity.

An attractor behaviour was initially shown to occur for %-BPS extremal black holes
in N = 2, d = 4 ungauged Supergravity coupled to abelian vector multiplets, but it
also holds in the case of non — BPS extremal black holes and for both the solutions in
N > 2—extended Supergravities. In these generalizations, however, if the black holes
has a regular horizon geometry and is a large black hole, that is it has a non-vanishing
horizon area, flat directions in the Hessian matrix of the black hole potential may occur,
even in the BPS case. This is due to the non-compactness of the stabilizer of the orbits of
the scalar fields and is closely related to the decoupling of the hyperscalars of the N = 2
theory from the dynamics of the black hole configuration, and, as a consequence, the
moduli space of BPS attractors for N/ > 2 is a quaternionic manifold, spanned by the

hypermultiplets scalar degrees of freedom, as they appear in the supersymmetric reduction
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down to NV = 2. Even in the presence of vanishing eigenvalues of the Hessian matrix,
the attractor equations, following from the above extremum condition, cancel the moduli
dependence of the dynamical configuration at the black hole horizon.

The geometrical difference between N’ = 2 and A > 2 Supergravity is that the scalar
manifold of the latter has to be a coset space of the form G/H (G is the U-duality group
of the theory) while this is not necessarily required for the former. It is possible, however,
to build an N = 2 Supergravity with a symmetric scalar manifold, based on the quadratic
series of the complex Grassmannian manifolds SU(1,7n)/U(1) x SU(n), which represents
the minimal coupling of n vector multiplets in the bosonic sector.

Thus, static spherically symmetric systems in d = 4 space-time dimensions are con-
sidered, for which the dynamic is one dimensional and allows the determination of an
effective potential V' depending on electromagnetic charges and scalar (moduli) fields,
written in terms of dressed central (in case, also matter) charges, in N/ = 2 quadratic,
N = 3,5 extended Supergravity. All of these theories have a scalar manifold M cqar
which is a symmetric space and does not admit a d = 5 uplift.

The classical black hole entropy, as given by the Bekenstein-Hawking formula, in the
case of N' = 2 quadratic and N/ = 3 Supergravity both coupled to abelian vector multi-
plets in the fundamental representation of the U-duality group, is given by a quadratic
expression of electric and magnetic charges in the form of the absolute value of the U-
duality invariant of the scalar manifold

A

Spn = Vi ™VaH| ovpy=0 = T|Ta| . (0.1)
The N = 5 theory does not admit a quadratic invariant, since the vector fields are in the
three-fold antisymmetric 20 representation of the U-duality group, which is a symplectic
representation with a singlet 1, in the tensor product 20 x 20 [71]. Taking the tensor
product of the 35 x 35 representation, coming from the 20 x 20, one find the singlet 1g,
so the invariant is quartic as expressed in terms of electric and magnetic charges; the

entropy for this theory is given by
Spy = % = Vsa| ovpm=o = TV/|Z4] , (0.2)
but in this case this formula reduces to a perfect square of a quadratic expression, once it
is explicited as a function of the skew eigenvalues of the central charge matrix. The same

result is valid also for N' = 4 pure Supergravity.
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Due to these peculiarities it is possible, for these theories, to write an alternative
expression for the Bekenstein-Hawking Entropy in terms of the effective horizon radius
Ry, whose expression is a function of scalar charges and the geometrical radius of the
horizon, rg, following the procedures of the first order formalism. In fact, non-BPS
attractor flows of extremal black holes in d = 4 can be described in terms of a fake
superpotential W such that W(¢eo, 0, q) = 7H(ds0,D,q) that reduces the equations of
motions for the scalars to fisrt order ones, and enters in the espression of the effective
radius Rpy; the importance of this description is that the latter turns out to be, for the
above mentioned theories, a moduli independent quantity.

As a counterexample, N = 4, d = 4 Supergravity coupled to 1 vector multiplet admits
an uplift to A/ = 4 pure Supergravity in d = 5 dimensions, but has a quartic invariant
which cannot be written as a quadratic expression of the skew-eigenvalues of the central

charge matrix, and the effective radius description does not hold.

The fermionic sector does not enter in the determination of the black hole configura-
tion, but the supersymmetry transformation of gravitino is given in terms of the sections
that one needs to build the symplectic embedding of the Supergravity theory under con-

sideration.

In order to clarify the role of the symplectic structure at the basis of AM-extended
supergravities, the first Chapter of the thesis is dedicated to the problem of the coupling of
vector fields, invariant under duality rotations, to a theory of fermionic and bosonic fields,
through Gaillard-Zumino construction [62], further specializing to the bosonic sector of
extended supergravities.

Chapters 2 and 3 review the attractor behaviour, leading to the attractor equations,
and the first order formalism, in order to provide the theoretical framework where the
work of the chapters in the following will develop.

In Chapter 4, 5, and 6 black holes solutions for N' = 2 quadratic, N = 3 matter coupled
and N = 5 Supergravities are explicitly studied and discussed, with the determination of
the symplectic sections and the solution of the attractor equations; the black hole entropy
as a function of the electric and magnetic charges is computed; black holes parameters,

such as fake superpotential, scalar charges and effective radius are presented [69].
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The same results for N/ = 4 pure Supergravity, compared with the N' = 5 case, are
added in Chapter 7 which concludes with a discussion on the dualities among bosonic
sectors of different Supergravities, to explicitly show that bosonic interacting theories do

not have a unique supersymmetric extension. This part also refers to [69].



CHAPTER 1

Duality invariant theories of gravity,

vectors and fermion fields

1. The bosonic Supergravity Lagrangian

1.1. Duality invariance in Maxwell-Einstein theory. Maxwell theory of electro-
magnetism is a theory of an abelian gauge field A, (x). In the geometrical construction,
it is the connection of a U(1) gauge bundle over the 4-dimensional space-time manifold

with metric g,,; the action is

1 1 "
&mziaa/¢;%R—E&J’}, (1.1)

where ( is a constant depending on the normalization of charges, leading to the equations

of motion
O F" =0,
R, — %ng = —81GT),, ,
where

1 - 1
“F = SPMdat N de¥ = = Fpoda? A da” (1.2)

NS

is the hodge dual field strength of the vector field, satisfying Bianchi identities
O, F"™ =0 = O F =0, (1.3)

while the stress-energy tensor is
1

o 1
T = g |FuFs = 0" (14

This theory is manifestly duality invariant, in the sense that the set of equations (1.2) is

unaffected by the following transformations on the vector field strength

F'™ = (cosa + jsina)F* | aeR, (1.5)
1
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where the j “duality” operator is such that jF = *F', corresponding to the following
U(1) ~ SO(2) rotation of electromagnetic field

£ cos o sin « E
= . ) (1.6)
H —sina cos o H

The Lagrangian of the vector field is written in terms of invariant products of field
strenghts and dual field strengths, or explicitly

1
AT

which is an SO(2) invariant expression; there’s no need to require the metric to change

T=—(E*-H? , (1.7)

under duality transformations, for the Einstein equations are not affected. We now notice
that in this case the duality group is abelian; duality rotations, however, are not defined
as transformations on the vector fields, and the Lagrangian, in further generalization of

duality, won’t still be invariant.

1.2. Duality invariance in a theory of vector fields. We now want to describe
the generalization of duality invariance to the case of a theory of n interacting vector
fields, in addition to other fields x*, both fermionic and bosonic. The Lagrangian is the

functional
L= L(F"x' X0, (18)

where F'*, (a = 1,...,n) are vector field strengths

o, = 9,48 — 0, A (1.9)
and x!, = d,x". We define
~a 1 apo oL
G = S G =2 (1.10)

so that for a Lagrangian as in (1.8) the equations of motions for the vector fields can be

written as
8”GZ,, =0. (1.11)
Bianchi identities still hold in the form

9, F* ™ = 0 (1.12)
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The infinitesimal transformation that leave these equations and (1.11) invariants are the

Q-6 e

ox' =€),
%

5(8/1Xi) = ufi = auX] O

linear transformations

Y

where the quadratic blocks matrix is an arbitrary real 2n x 2n matrix, and the functions

¢'(x) do not contain fields derivatives.

1.3. Variation of the Lagrangian functional. We define the duality group the
one which acts linearly on the vectors of the field strengths and their duals, not affecting
the dynamical equations of the theory; their covariance, indeed, put constraints on the
possible duality transformations among the general linear ones. The generic variation of

the Lagrangian is, from (1.8),

oL 0

— J a
oy’ X“E)X

+ (FeAY + GCB“)ﬁ C, (1.14)

oL = [5 Z.
“w

if we require the covariance of the equations of motion under (1.13)

C =07, B =BT, A=-DT, (1.15)
which restrict the matrix (g i) to be an element of Sp(2n,R). We also find the
variation of the Lagrangian

6L = ;l(F(JF + GBG) . (1.16)

The energy momentum tensor of the vector fields is also invariant, though not necessarily

symmetric.

1.4. Construction of the Lagrangian. Under a generic variation of its variables,

we can write more simply 0L = ié(F@), so that we begin to write the functional as

1 _ -
L:ZFG—'—Emva
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where L;,, is written as a function of invariants of the duality group. But in the general
F

case where this group is Sp(2n, R) and the field strengths o transform as a vector in

the fundamental representation, the only possible invariant function of ' and G, apart

from generic fields x* in the theory, is of the form
. 1 S
Einv.(F> G, x', X:;,) = ZL(F[ - GH) + Einv.(xla XL) )

where L;,, is an invariant functional of the y’ fields only, so that it does not affect
the equations of motion and I, H form a vector in the fundamental representation. By

definition one has g—§ = %@, and this is actually a constraint on [ and H

G-1= (F+ﬁ)g—§. (1.17)

the operator j introduced in the previous section, giving a field strength 7}, satisfies

j T,uu = Tuu ;
G2 =1
We can write (1.17) as

. . OG
jG—I:(F+]H)a—F.

whose general solution is
JG =1 =—-K(X)(F+jH);
\
JjG =1—-K(x)(F+jH) .

Thus the effect of an infinitesimal duality transformation of Sp(2n, R), (1.13), is de-
termined by the tranformations on (F,G) and (H,I) the vectors of the fundamental

representation. We find
0K(x) = —jC — jKBK + DK — KA , (1.18)

which restricts the form of the Lagrangian to

1 1 1
L=~ FKF + 5 F(I = jKH) + iH(I = JKH) + Lin (X) - (1.19)
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1.5. Compact Duality Rotations. Suppose K(x) = 1, then §K = 0. From (1.18)
we find an other constraint on the coefficients of the transformation
B=-C=0B"
A=D=—-AT

)

so that now the duality group is restricted to U(n) € Sp(2n, R), the maximal compact
subgroup, and rotations as in (1.20) now become compact duality trasformations. This
appears more clearly if we use a complex basis in the fundamental representation, writing

the vectors as

Ft=F+iQ ,
F~=F—-iG,

which give (1.13) in the form
Ft T 0 Ft
4 = , (1.20)
F~ 071" F~

T=A—-iB=-T".

with

The two F'* and F'~ transform respectively under an n-dimensional U(n) representation
(which can be reducible in the case the actual duality group is a subgroup of U(n)) and
its conjugate. In this notation we notice how the structure is similar to that of fermions
fields of definite chirality: the two vector fields of opposite helicity transforms according
to a representation and its complex conjugate, as two fermions of opposite chirality do).

We can easily generalize this notation to the non compact case, using the “duality”

operator instead of the imaginary complex element ¢ in the definitions

Fr=F+jQ,
F=F—3G,

in this analogy ¢ — j, and the T-matrix is just

ReT+iImT — ReT x5 ImT.
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Finally, if we write a complex analog of the field strength F'* as jH. = (H & jI), the

Lagrangian (1.19) can be written as

L= —EFQ + %FH+ — é]ﬁ — émﬂ_ + Liny. () -
The field H_ has no dynamical meaning, since it does not appear in any of the couplings
of I and for that reason all the terms containing H_ must be invariants, we see, for
instance, that $H_H, actually is, and can be reabsorbed in L, (x). We are setting
H_ to zero, reducing (H, I) to the vector (H,—jH), that now has just one indipendent
component. In the case of compact duality rotations, then, one simply has to introduce
the tensor
H = %jHJr , (1.21)

in the same representation of F;, to get the correct Lagrangian transformation.

Consider the invariant bilinear F'/ — GH. Taking now H = jI, from (1.18) it follows
that I = (F + jG) and one can write then

1 1 1
5(FI ~GH) = 5(F — JG)(F + jG) = 5(F2 +G?)
which is manifestly invariant under the action of the unitary group U(n) on the vector

(F,G).

1.6. Non linear realizations. By now we are able to describe the theory of interact-
ing bosonic and fermionic fields with invariance under a compact subgroup of Sp(2n,R),
but we need to generalize the description to non compact duality groups. The solution
is to introduce in the theory scalar fields described by a nonlinear sigma model, taking
values in the quotient space of group G with respect to its maximal compact subgroup K,
being the semisimple group G the duality group.

The quotient space has sense once the Lagrangian is invariant under the gauge trans-

formations of the scalar fields

g(x) = g(@)[k(@)] ", (1.22)

The quotient defines a coset, a symmetric space. We suppose further that the rigid

transformation of the moduli

g(x) — gog(x) , (1.23)
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con gg € G, is an invariance of the Lagrangian. We then need to find the constraints
coming from these assumptions, in order to find its correct form.
We start studying the properties of the gauge group. Being @), the connection, its

transformation under (1.22) is

Q, =k Quk™", (1.24)

while the covariant derivative D, g = 0,9 — g(),, changes as

Dy — (D,g)[k(z)] " .

We notice that ¢~'D,g is invariant under the global transformation (1.23); under the

action of the gauge group, instead, it changes as
97 Dug — k(g7 Dug)k™ . (1.25)
If we write the Lagrangian as
1 _ 2
L= —3 Tr (g 1D#g) ,

we then have an invariant expression.

Working in this framework, any other bosonic field, including the gravitational one, is
left invariant by duality group, so that a theory including a non interacting gravitational
field is allowed.

The equations of motion that follow from the variation of (1.26) with respect to the

gauge fields @), are
oL = TT5QM(9_1au9 —Qu) =0; (1.26)

the trace on the elements of the duality group G is not degenerate and 0(),, belongs to the
Lie algebra of K, so that (1.26) implies that (¢7'9,9—@,) is in the ortogonal complement
of K, and the element g~'9,g is

90,9 = Qu+ Py, (1.27)
that is
P,=g'D,g . (1.28)
We can then write the Lagrangian in (1.26) in a more specific form
1
L=—3TeP; . (1.29)
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Varying this with respect to the scalar fields one finds
6L =Trdgg '0,(Dugg™") =0; (1.30)

since dg is arbitrary, dg ¢g~! runs on the whole Lie algebra Lie(G), and the equations of

motion for the scalar fields are

9u(Dugg™") =0,

I3
au(g Pﬂgg_l) =0. (1-31)
If we define for P, a covariant derivative
D,P, = 0,P, — [Py, Qu] (1.32)
the (1.31) reveals to be
D,P,=0. (1.33)

Consider now a rigid transformation as in (1.22),
g— gk, (1.34)

which is one specific kind of gauge transformation (for this reason the associated current

is identically zero). The rigid transformations
g—kg, (1.35)
where k € IC, are equivalent to
g — kgk™', (1.36)
and the related current, in the algebra of the group G is
J, = —gPMg_1 : (1.37)

if one restricts g to the subgroup K, the currents corresponding to the resulting transfor-

mations are just the correct currents of (1.35) and (1.36).
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1.7. Coupling to spinor fields. We now want to consider the coupling to spinor

fields that under the gauge transformation (1.22) vary as

(x) — k(@)v(z) ; (1.38)
if we introduce a covariant derivative defined as
D;W = a,ud) + Q;ﬂ/’ ) (139)
we can build an invariant Lagrangian, including for instance Dirac terms as
7 - — —
~ 507 (B, - Dy (1.40)
but also non derivatives couplings, such as
1y Pz (1.41)

where now P, and the spinor fields belong to a specific representation of . Since @,
and P, are functions of scalar fields and their derivatives, (1.40) and (1.41) give fermionic

terms contribution to the conserved current, namely,

J = —iyqy
Ty = Dryups (1.42)

where ¢ and p belong to the Lie algebra of K and its orthogonal complement, respectively,

and are defined by

o9 = (q+p)g . (1.43)

The group G being non-compact, in order not to introduce ghost fields in the theory,
we have to require that the fields we are coupling are invariant under transformations
(1.23). We notice that the connection @), can be taken, in a sort of Palatini formalism,
as an independent field, so that its equation of motion now receives contribution from the
fermionic sector.

Finally, we recall that one can restrict the description of the scalar fields to a particular

gauge. Indeed, an element g € G can always be rewritten, using gauge invariance, as
g/ = GP = gk‘_l ; (144)

where P € Lie(K)*, and the scalar fields are the elements P(x) parametrizing the coset
space G/K. This turns out to be important for a kind of N =2 and all N > 2-extended
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Supergravities, since their scalar manifold is an homogeneous space. Transformations
(1.23) are then

/

(909) = (goep) =P = goelkt (1.45)

P'(go, P) and k(goP) depending on the group structure.

What we have built, starting from the transformations
P — Pl(.gO:P) ) (146)

is a non linear realization of (1.23). Since we worked in a particular gauge, suitable
transformations of the fields ¢ and @, are needed in order to remain in the gauge (1.44).
Still, invariance under (1.23) is manifest, but, after the gauge fixing, we loose the a priori

invariance under (1.22).

2. d = 4 Supergravity bosonic sector

2.1. Duality rotations and covariance under the action of symplectic group.
The N-extended Supergravity theory in d = 4, has in the bosonic sector, apart from the
metric field, vector and scalar fields, the latter being the coordinates of a scalar manifold,
the manifold of duality transformations acting on the vector fields. The generic form of
this bosonic part of the action is the one we built in the above sections, that we can write

as

1
ReNper? FA FT
g €V A€ wt pe T

%g,,s(@)aﬂqfaws) . (1.47)

1
S = / V—g d'z (—5 R+ ImNyp Fjp, F©& #

More precisely, scalar fields are described by a o-model on the scalar manifold M.q0
whose real dimension is m = 2 - # complex scalar fields and are coupled to the vector
fields by the matrix

Nar = Nar(®) . (1.48)

N(®) is a symmetric matrix ny X ny, with ny number of vector fields, depending on
their representation of Gaillard Zumino Symplectic group. Different Supergravity theories
thus correspond to different scalar manifolds and number of vector multiplets, and, since
usually scalar fields belong to the same multiplets as vectors, the action of the vector

isometry group Mcqqr is deeply connected to their transformations. This results on the
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embedding of the isometry group in the duality group, whose explicit form relies on the
specific Supergravity theory we are considering. Once we have this correspondence, we
find the matrix N in its explicit form.

It is crucial, then, to study duality transformations in details, in the form of linear
action on the (abelian) vector field strengths and their dual forms. As seen before, these
transformations leave Bianchi Identities and equations of motions invariant, and generalize
electromagnetic duality. In what follows we will see the Gaillard Zumino construction at

work in the Supergravity framework.

2.2. Duality Rotations and symplectic covariance. We deal with a theory of
vectors and scalar fields which is invariant under the action of a duality group, in d = 4.
The gauge fields are ny abelian fields A/‘), whose dynamic is described by the field strengths
in the action (1.47). We can separately write the dual and anti-dual field strength

1
= 5(Fj:z'*F) ,
*FE = FiF* (1.49)

and rewrite the vector part of the action as

Loee =i [FTNF~ — FYINF] =
| N[N0\ [P
:—Z<F+T,F T)(() —N) (F_> . (1.50)

Following the Gaillard-Zumino construction we introduce the tensor Gﬁy defined as

10c
20F}

"Gy, = (1.51)

that, for the theory under examination, is

*Gaw = Im Ny F), + ReNys *F, (1.52)
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The equations of motion and Bianchi identities are

V#EL =0,
VPG =0,
Y
VAImF*A =0,
VmGy,, =0, (1.53)

where we also write Gy ., separating its self-dual and anti self-dual part
+ 1 -
G = §(G + G) s
*GF = FiGF (1.54)
whose relation on the field strength F' is given by

Gt =NF" |
G- =NF". (1.55)

The vector part of the Lagrangian, if written in terms of F' and G as in (1.51), takes the

compact form

Loee =i [FTG™ - FTTGT] =

= _Z'<F+T ’ F—T) <gj> ) (1.56)

Moreover, we introduce the ny + ny components vector

*F
V= ,
and we get equations of motion, from the variation of the vector fields, in the form
oV =0; (1.57)

duality transformations are then simply described by

V' =8V, (1.58)
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AB
e (1), o

is a priori a matrix in GL(2n,, R), and, since we always required duality invariance during

where

the construction, the equations of motion for the vector V' are still given by 9 V' = 0.

2.3. Transformation of the kinetic matrix required by duality invariance.
Since the vector fields in action (1.47) are coupled to scalars via the AN(®) matrix, a
duality transformation acting on V' would imply a corresponding transformation on the
scalar fields (coming from the action of a diffeomorphism of Megar), hence on N. An

homomorphism
e C®(Mseatar) — GL(2ny,R) (1.60)

that maps a given diffeomorphism on M., to a transformation in GL(2ny,R), allows
us to define the following transformations
V =V =5V
£ — o — P =((P) , (1.61)
N(®) — N'(£(2))
where S¢ = ¢ V. If one defines, then,

s-(47)- (16

the transformed Lagrangian for the bosonic sector in our Supergravity theory is
L =i[F"(A+ BN)"N'(A+ BN)F~ — F*T(A+ BN)"N'(A+ BN)F*] (1.63)

The transformed dual tensor G’ has to be consistent with its definition in (1.51), and this
requirement gives the constraint needed to restrict the transformation of the N matrix

to the form
N'(£(®)) = (C + DN(®))(A+ BN (¢))™" ; (1.64)

also knowing that N is a symmetric matrix, we can finally identify the duality rotation
matrix as being S € Sp(2ny, R), in perfect agreement with Gaillard Zumino construction.
In general a diffeomorphism in C°° (M .44,-) implies a transformation of the scalar part

in the Lagrangian (1.47). A duality rotation, then, does not correspond to an invariance
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of the action, unless we require S; matrices corresponding, in the sense of (1.61), to
isometries of the scalar manifold, unaffecting, by definition, the metric g,, and thus the
scalar part of the action. Eventually also the kinetic N matrix does not have to change.

In this case we look for a homomorphism that maps
te © Iso(Mseatar) — Sp(2nv, R) ; (1.65)
the relation (1.64) now becomes
N(£(®@)) = (C+ DN(®))(A+ BN ()" . (1.66)

One could also study the case in which duality transformations are a symmetry of the

Lagrangian. The vector kinetic term in the Lagrangian indeed transforms as
Im(F'~*G™) = Im [F~ "Gy + 2(CTB)}(F~*G5)+
+ (CTA)WF AP + (D"BMG G (1.67)
where the expression (1.56) and the definition (1.52) have been used. We see then that
B = C = 0 transformations are symmetries of the Lagrangian, and we notice that its
variation in the case B # 0,C = 0 is given by
(CTA)psFp, *FPH (1.68)
which is a topological term; finally, it is worth pointing out that among all the A" matrix

transformations (1.66), we also find the mapping

1
N—>—/T/.,

which provides the interchange of the strongly and weakly coupled sectors in the theory.

(1.69)



CHAPTER 2

The Black Hole Attractor Mechanism

1. Black Holes in Supergravity Spectrum

In the classical description of Einstein Maxwell theory, black holes can be considered
solitons of general relativity; such interpretation, however, breaks down in a quantum
interpretation, since a spontaneous particle creation would take place, by the gravitational
and electromagnetic fields, responsible of black hole instability. Thermal radiation is
not allowed in the case of zero-temperature black holes, for which only loss of angular
momentum or charge can be responsible for their instability, thus, non-rotating systems in
a theory whose elementary fields are not charged are stable. This is the case of Reissner-

Nordstrom Black Holes in extended ungauged supergravities.

2. Gravity and non linear sigma model

We restrict the attention to dynamics and fields equations for the bosonic sector of
Supergravity theories, that is to massless scalars and n vector fields coupled to gravity.
The scalars describe a non linear o-model over a manifold G/ H, the vector fields transform
accordingly to a certain representation of the global (ungauged) symmetry group G.

As we discussed before, we are interested in stationary solutions, that is to that systems
allowing for a time-like Killing vector field; these can be dimensionally reduced to a 3
dimensional theory. The resulting scalar fields are the scalars of the non linear o-model
in the higher dimensional theory, two scalar fields from the reduction of gravity, and
electric and magnetic potentials from each vector fields, a total of (2n + 2) scalars. The
two scalars from gravity alone would describe an SL(2)/SO(2) o-model, but we ask for a
larger symmetry of the enlarged set of scalars, so that they together describe a ¢ model
of G/H. To link the discussion to the case at hand, we require the original quotient space
G/H to be a non-compact coset space, and the coupling with vector fields to respect
Gaillard-Zumino construction, that is, if we fix a particular gauge for gravitino, the twist
potential scalar field does not enter in the final sigma model. Adding the vectors also has

15
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to lead to positive energy density Tpy. The resulting enlarged o-model refers to the same
symmetry group G but now H is a non compact form of the maximal compact subgroup,
say H', of G, thus G/H is a pseudo-Riemannian symmetric pace.

In N > 2 extended Supergravities a vector field is present as graviphoton in the gravi-
tational multiplet, and one or more vectors can be added as vector multiplets, depending
on the Supergravity theory under consideration. In these case, a non linear sigma model
arises as a consequence of the duality invariance of the theory. In the N = 2 theory,

instead, vectors and scalars are in the same multiplet.

2.1. Dimensional reduction to three dimensions. We derive the three dimen-
sional effective metric in the case of static spherically symmetric black holes, for a non
linear sigma model coupled to gravity. The equations of motion for the enlarged set of
scalar fields are geodesics.

The 4-dimensional space time manifold > has metric g,g and the original action for

the non linear sigma model is
1 L wga 7iq 7
Sd) = \/gdx _ER(:U) + 59 aoz¢ aﬁ¢]Gij ’ (21)
b
from which we derive the equations of motion

Rop — 0a0'03¢ =0, (2.2)

D*0,p(z) =0 . (2.3)

We recall that solutions to (2.3) are harmonic maps from the (pseudo) Riemannian man-
ifold (X, ¢;;) to (G/H ,G;;) At this point we consider a theory admitting everywhere a

time-like Killing vector field, which is orthogonal to the reduced 3 dimensional space >3

which allows SO(3) symmetries, namely spherical symmetry. The metric thus decomposes

e?V 0
af — 5 2.4
Jap 0 —6_2Uhab ( )

and the metric on X3, hgp, can be parametrized in terms of a function f(r) so that

as

ds* = —e*Vdt?> + eV (dr®* + f(r)*(d6® + sin® 0d¢?)) |
= —eVdt® + eV hydatda® . (2.5)
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The effective Lagrangian for the reduced three dimensional system is
1
—R 57" @O ° G (2.6)

54 — 98T, and G® is now the metric of the enlarged scalar manifold, so that

where ¢ = 4
P

actually
¢a = (U’ Q_ﬁaa ¢A7 XA) . (27)

The metric, by gauge invariance of the theory, cannot depend on %" and ya, and as a
consequence electric and magnetic charges become constants of motion, precisely, from
(2.6),

Anx AX s
A AX
=G dr ’
. di®
an = GAE_;i_ : (2.8)

The equations of motion in this case are

7 k
L (f d¢)+r WO atiagy

dr dr dr
d’f dg’ dd)k
_ 1% _
RT’T’ - 2f er G (gb) dT dT bl
sin Ry = Rog = [ 2 < f—f — 1) =0. (2.9)
From the last one we find
fry? =(r—ry)?+¢, (2.10)

thus, if we define the harmonic function on (X3, h)

- _/ 2 (2.11)

dr

72 == (212

then being

we find that the first in (2.9) is

dr\? dr d d¢y do* 2
_(%> (f%d_¢)+ A (m») =0

(2.13)
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that is, the geodesic equation

d*¢(T) , de? dep*
T — =0 2.14
dr? #(®) dr dr (2.14)
The geodesic map ¢ satisfies the condition
do' dg? 9
](¢) dT dT c ( )
comparing with the general solution for f(r) in (2.10), we can set ¢ = —c?.

To write the metric in (2.5) using 7 coordinate we compute, from the definition (2.11)

2

22 ¢
(r=ro)" ¢ sinh2(c7')
\I%
2 _ 2
— 10 — )
(r —rg)* = ¢ coth(cr)
4
dr* = ———— 64 dr?
sinh*(cT)
2
9 c
- 2.16
f (T(T)) Sinh2(CT) ( )
so that we find
crdr? c?

ds? = —e2Udt? + eV (d6* + sin® de¢?) | . (2.17)

+
sinh*(cr)  sinh®(cr)
2.2. The vector sector. The coupling with the vector fields is given through the
embedding of the symmetry group in the symplectic group and it allows one to determine

the kinetic matrix for the vector term in the Lagrangian. As discussed in the previous

section, the bosonic action is given by
S = Sen + Sscalar + Sv =
= /\/—_g d*x (—% R+ %Grs(@)Du@’"D”(DS - i wg (LF*P — V*Faﬁ)) :
(2.18)

with gy = —ImMNyg, vax = —ReN,x are real symmetric matrices. To write the contri-

bution of Sy to Einstein equations we need to compute the energy-momentum tensor

T _ 2 [aW——gLv)_ aﬁ(ﬁm)}; 219

vV —3g ag;u/ a(a)\g/u/)
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since
*phel — % RN (2.20)
then
oy F) = LT 221
and
8;;;&5 = %g’“’*FAO‘B : (2.22)
We then have
%\/—_gT“” _ ——\/_g“VLV + \/— [——FAU,MAEFVEJ + ; le }U/F Avas *anﬁ} (2'23)
and finally
™ = iguuFﬁﬁszaﬁ FopasF 7 (2.24)
Scalard fields equations are then modified by
%Z;V = ——\/_ 5 (MZFO‘B - g—;*Faﬁ ) (2.25)
Let’s consider the dual field strength defined as in (1.52), that is
"Gaw = asFL, +vas*F, (2.26)

and the symplectic vector

= (2) 22

we can write (2.25) and (2.24) in a manifestly symplectic way introducing the matrix

-1 -1
M = (’“Lff‘ g ”“_1) , (2.28)
plvoop
so that (2.25) and (2.24) become
T = — 2?37/\/1@?2” (2.29)
and
oLv _ L~ gFA OMas gy (2.30)

5 8 s g ’
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For time-independent solutions that preserve spherical symmetry, the 4-dimensional
system reduces to a one-dimensional effective theory, described, with the assumption of the
metric as in (2.17) theory, by integrating over R; x S? and discarding constant integration
factors at (spatial) infinity. Due to the integration, only conserved electromagnetic charges
defined in (2.8) appear in the Lagrangian and in the equations of motion. The integrated
expression for the equations (2.29) and (2.30) can be written in terms of an effective black

hole potential

1
Vir = 5@ MaQ® | (231)
A
=", (2.32)
aa
is the vector of the charges
1
A A
= — F
p 47 S2 ’
_ G (2.33)
gn = A o A .

The resulting effective action is given by integrating over the remaining radial coordi-
nate S = [ drL the Lagrangian [4]

dU \ 2 de® dob
L (d_) G ATy 2 (2.34)

This holds quite general for any 4-dimensional gravity theory. The explicit form of the
effective potential actually select the theory under consideration. The dynamics is though
constrained, as discussed before, and in this coordinates the Hamiltonian constraint takes
the form

E ab? dr - 62UVBH =c? ) (2~35)

(dU>2 +G dg* d¢”

Black holes are solutions to the equations of motion derived from the lagrangian (2.34)

d?U

F = 2€2UVBH(¢>p7 Q)a (236)
T

DY 0V

D = G (2.37)
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and constrained by (2.35); ¢ = 25T [4] where S is the entropy and T the temperature
of the black hole. Extremal black holes have zero temperature and can now equivalently

be characterized by ¢ = 0.

2.3. Near horizon dynamics. The metric of the static spherically symmetric sys-

tem can be described with coordinates

5+ 5 (2.38)

ds? = —eVdt* + eV {d—TQ L } ,

where the horizon is located at negative infinity in terms of the coordinate 7. If it has a

finite area then the term e 2Y has to behave as

A
eV - (E) ™, as T — —00 . (2.39)

The scalar term in the Lagrangian remains finite near the horizon if
G”&ngb@ngb]vm” < 00, (240)

that is, in our coordinates,
dqbi dgbj U
e?Vrt <

i—— —— ) 2.41

Ydr dr o0 ( )
The near horizon behaviour is then given by
didg? dm 5,

G”%E<Z)T — X°, as T — —00 , (2.42)

that gives the condition, substituting in the constraint (2.35) in the extremal case ¢ = 0,

near the horizon,

A S 47TVBH(pa q, ng) ) (243)
and the metric is
A1 A dr? 1
2 o _ 2 Bl B R T . 44
ds ATth + <47r) {7_4 + TQdQQ] (2.44)

The AdSy x S? horizon geometry of the extremal black hole appears explicitly once the

metric is written in terms of the coordinate

1
w=logp, p=——, (2.45)
T
since the metric becomes

4 A A
ds* = —%edetQ + <E) dw? + (E) (d6* + sin® 0d¢?) . (2.46)
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The condition (2.42) becomes
4 in
Ydw dw A

the only allowed value of X? is then X? = 0, in order for the moduli dynamic to be regular

) — X2, as w — 00 ; (2.47)

. . a
at the horizon, since a non-zero constant value of %

a

dw

would give a linear dependence on w that would prevent regular moduli dynamics at the

= const. as w — 0o , (2.48)

horizon. The only possibility is then
do®
do

so that the constraint (2.35) in the extremal case now strictly requires

0, (2.49)

A
el Veu(p, 4, ou) - (2.50)

In the case of constant scalar fields the black hole is double-extremal, its area is still given
by Vpy, following immediately from (2.35), and it is equal to the area of an extremal

black hole with the same electric and magnetic charges

Aewtr(pa Q) - Adouble—eztr<p7 Q) - 477—‘/BH (p7 q, ¢<>0) . (251)

The behaviour of the scalars near the horizon, taking into account that % = 0, follows
from the equation of motion (2.37) for which
d2¢a 1 GVBH 4
H —
dr? 2 0po \At2) "’

(2.52)

whose solution, recalling that a linear dependence on 7 coordinates would give a singular

dilaton field at the horizon, is

a a 27 a‘/BH
O ~ QY + (Z) Do log7 . (2.53)
The regularity requirement now gives the following extremum condition on the potential
aVBH)
=0. 2.54
( a¢a hor ( )

In this picture the black hole is a solution corresponding to dynamical trajectories in the

moduli space M, from the asymptotic point ¢ to the critical point ¢;,. Double extremal
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black holes correspond to trivial trajectories, while scalars running between two different

critical points do not correspond to asymptotically flat solutions.






CHAPTER 3

First Order Formalism

The properties of black holes in Supergravity theories depend on the values ¢, of
the massless scalar fields parametrizing the different vacua of the theory. The entropy of
the black hole, S = %, however, in order to be consistent with the microstate counting
interpretation in string theory, has to be independent, in the extreme case, of the partic-
ular ground state being determined only by the conserved elecric and magnetic charges
(dyonic black hole).

1. Scalar charges and Black Hole asymptotic moduli dependence

The expansion of the scalar fields at spatial infinity

« e 1
" = ¢M+T+O(ﬁ) ; (3.1)

defines the scalar charges $¢ = ¥%(A, ga, p*, ¢% ). In the presence of scalar fields, the first

law of thermodynamics for a static dyonic black hole has to be replaced by

oM .
875a>d¢ , (3.2)

where the black hole temperature is 7" = =, and Y™, xa are electric and magnetic scalar

dM = TdA + ¢ dgy + xadp™ + (

potentials, respectively.
The potential V (¢, p, q) defines a symmetric tensor that satisfies the convexity condi-

tion
Vo =V Vi,V >0, (3.3)

on the scalar manifold M,. Moreover, if Vg, is strictly positive and the sclar charges
vanish, the scalar fields have to be frozen to ¢*(7) = ¢%.

The mass of the black hole, by comparison with the asymptotic Gravitational poten-

M = (2—?)7:0 (3.4)

25

tial, is given by
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and this substitution in the constraint (2.35) evaluated at spatial infinity (7 = 0) leads to

M? + Gap(9oo) 5" — V(¢oo, pr q) = 45°T* . (3.5)
The scond term on the left is the contribution
oM
= —Gup(ds)X? 3.6
(55 ) = ~Cnlern) (3.6

in expression (3.2). The right hand side is related to the black hole configuration described
by the metric (2.17) by

c=25T. (3.7)

Differentiating with respect to the moduli at infinity gives the dependence of the system

on the moduli space

M

oM vo o 1OV (OST
5.+ Cal0)SVS = 55 =2 (%&) . (3.8)

For extremal black holes, the attractor mechanism fixes the moduli at the horizon in terms

of electric and magnetic charges

¢H,emtr = ¢fzz(p7 Q) ) (39)

and the extreme point can be found, for a given charge configuration, as
aMex T
5 ! =0. (3.10)
¢ ¢:¢eactr

From (3.6), the above condition is equivalent to

Ea(¢fi:v;p7 Q) = 0 ) (311>
thus defining

and, as stated in the previous section, this identify double extremal black holes, with

constant moduli fields throughout the radial trajectory

¢(T) = ¢H,ewtr = Qboo , (313)

so that the horizon configuration is given by the asymptotic moduli ¢. A black hole

with frozen moduli reduces, in this treatment, to the Reissner-Ngrdstrom black hole, with
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both electric and magnetic charges. In particular, the entropy of the extremal black hole

is independent on ¢, being

A
S = Z = WVBH(¢fixapa Q) . (3-14)

The scalar charge is not conserved, the flux of the gradient vanishes at the horizon, and it
reveals that it resides entirely outside the horizon. Equivalently moduli at infinity or the
scalar charges have to be added to the mass M, the charges (¢, p) and, in the non static

case, to the angular momentum J to completely characterize the black hole solution.

2. First order fake Supergravity formalism for d = 4 Extremal Black Holes

In the context of d = 4 static, spherically symmetric, black holes, with asymptotically
flat dyonic eztremal (¢ = 0) configuration, For d = 4 supergravities a general formula for

a black hole effective potential holds,
1 — —
Vou = 52452 + ZiZ, (3.15)

where Zap = Zjap (A, B = 1,...,N) is the central charge matriz, and Z; (I = 1,...,n)
are the matter charges, where n € N is the number of matter multiplets coupled to the
gravity multiplet in the considered Supergravity theory. Equivalently, in the first order
formalism (see Eq. (23) of [39]):

Ve = W2 +4G7 (9W) IV = W2 + 4G (VW) VW, (3.16)

where W is the moduli-dependent so-called first order fake superpotential, and V denotes
the relevant covariant differential operator.
In fact, the secon order equations of motion (2.36) and (2.37) can be derived by a first

order system, by performing the Ansatz
U=e"W(p, ), (3.17)
where U = %. The extremal solution corresponds to
oW =20, (3.18)

in this case the fake superpotential loose the dependence on the radial coordinate.
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2.1. Extremal solutions. Differentiating equation (3.17) with respect to 7 gives the

equation of motion for the field U(7) and the identification of
Ve = W? + eV g2a,W . (3.19)
It follows from the constraint (2.35) that
U-U?= %éaq&bGab = 9, We | (3.20)
which, disregarding contributions that do not affect the entropy, is solved by
¢ = 2eV g oW | (3.21)

where the last equation is a first order type BPS-like condition. The effective potential

becomes, as stated above,
Vg = W? + 2G°0,Wo,W . (3.22)
Extremization of Vgy corresponds to
0.V = 20,WW(W6! 4+ 2G*V ,0.V) =0 , (3.23)

which means that in the first order formalism the attractor point for scalar fields at the
horizon of extremal black holes is directly related to the extrema of WW. From the first
order equations and the spatial asymptotic configuration, defined by the expansion
1 1
——eV 5 —— 4 Mapy + O(71) T—0", (3.24)
T T
assuming regularity conditions on functions of moduli, so that we can perform the radial
asymptotical (7 — 07) and near horizon (7 — —o0) limits. The covariant scalar charges

and the squared ADM mass [58] can be written as

Y, =2 h%l, VW =2 h%{ oW ; (3.25)
Mipy =Th = Tli%l_ [VBH — 4G (W) E;W} = Tlirgl_ 4% (3.26)

-1 . . . . .
where 7 = (ry — ). One can introduce then an effective horizon radius (in the extremal

case we are discussing Ry .o = R_ .—o = Rp), defined as

2 . . . . 2 .
RH = lim VBH = VBH|6VBH:07VBH7$O = lim W-*=

T——00 T——00

Aeff (p7 q) _ SBH (pa Q)
41 T ’

w? ‘awzo,w;éo -

(3.27)
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where (p, ¢) denotes the set of magnetic and electric BH charges, A.sf (simply named A in
the Introduction) is the effective area of the BH (i.e. the area of the surface pertaining to
Ry), Spy is the classical BH entropy, and the Bekenstein-Hawking entropy-area formula
has been used.

Total derivative with respect to the radial parameter for the potential W gives

% = 2G" 9, WOWeY >0 , (3.28)

revealing VW as a monotonic function.

Due to the symmetric nature of the scalar manifold in the Supergravity theories under
consideration, R% can be expressed in terms of a suitable power of the invariant of the
relevant representation of the U-duality group G, determining the symplectic embedding
of the vector field strengths. In d = 4 Spy is homogeneous of degree two in (p,q), and

only two possibilities arise:

Ry =T (p,9)l, or Ry = V/|Za(p, q)l, (3.29)

where Z5 and Z, respectively denote U-invariants quadratic and quartic in BH charges.

Total derivative with respect to the radial parameter for the potential W gives
aw
——(®.p,0) = 2G"9WI,We" > 0, (3.30)
-

revealing that ¥ is a monotonic function (a c-function for extremal black holes).
In the extremal case ¢ = 0 the monotonicity of VW implies following inequality

MEXDM (Zooyzompa Q) = lim [VBH — 4GZ§ (aZW) 53)/\} —

T—0~

= lim W2 = 7"%{ (zooazooap7 Q)

T—0~
> Rjy (p.q) = lim W?= lim Vg, (3.31)

T——00

where the radius ry of the BH event horizon was introduced, so that the relevant relation

becomes
73 (Z00s Zoos 2, @) = Ry (9,4) ) V (2005 o) € Moo, (3.32)

holding in the whole asymptotical scalar manifold M.
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2.2. Effective radius in the N-extended studied Supergravity theories. In
the minimally matter coupled N' = 2, d = 4 Supergravity, as well as in N = 3, pure
N =4 and N = 5, d = 4 supergravity, it is possible to specialize further the inequality

(3.32).
The formula for the entropy of the extremal black holes in these cases is
A — P2
Spr = 1 =TT VBH\WBH:O =Ry (]9, Q) =
. ) T/ | Z4|
= 7 15 (P00, 2, 1) — 3Gt (Po0) T (90,0, 1) & (Po0: 0, 0) | = § oF (3.33)

2
| Ly
where 7y is the radius of the unique (event) horizon of the extremal BH, ¥* denotes the
set of scalar charges asymptotically associated to the scalar field ¢* and defined in (3.25),
and G is the covariant metric tensor of the scalar manifold. The crucial feature of the
considered theories, expressed by Eq. (3.35) is thendisappearance of the dependence on
the asymptotical moduli (ze, Zoo) in the combination of quantities separately depending

on moduli, as
2 i
Ty — GEXt (3.34)

as it can be seen from the second line of (3.33), which is a moduli-independent combination
of moduli-dependent quantities, thus revealing the moduli independent nature of the ef-
fective radius for these theories. N = 2 quadratic, N' = 3 and N = 4-pure Supergravities

have complex scalar manifold, and the effective radius is

S .q B 7
Ry (p,q) = % = 1% (200, Foer P, @) — GBS =

70~
clearly yielding the inequality (3.32) by the presence of non-vanishing scalar charges and
the positive definiteness of G ;.

Equation (3.35) is nothing but a many-moduli generalization of the formula holding
(also in the non-extremal case) for the (axion-)dilaton BH [54] in the Maxwell-axion-
dilaton supergravity (see e.g. [54, ?], and also [46]), in [46] Eq. (3.35) was proved to
hold in the extremal case for the whole sequence of N = 2, d = 4 supergravity minimally

coupled to Abelian vector multiplets [52], in terms of the invariant Z, of the U-duality
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group G = SU (1,n), which is quadratic in charges:

R (p,q) = 13 (200, Zoos @) — 4 lim G (BW) W = [T, (p, q)] - (3.36)

0
These results will be reported in Subsections 6.1 and 6.2.

By exploiting thefirst order formalism for d = 4 extremal BHs, it can be proved that
the same happens for A/ = 3 matter coupled Supergravity, as intuitively expected by the
strict similarity with the minimally coupled N' = 2 theory, N' =5 [51] and pure N =4
Supergravities [50], with |Z,| replaced by +/|Z4].

While A/ = 5 theory cannot be coupled to matter, in the case N = 4 matter coupling
is allowed, but (3.35) holds only in A = 4 pure supergravity.






CHAPTER 4

N = 2 Supergravity black holes

We explicit the black hole attractor equations for Supergravity theories in which the
black hole entropy is given by an invariant of the scalar manifold that can be written
as a quadratic expression as function of the electric and magnetic charges or the skew-
eigenvalues of the central charge function, once the scalar fields satisfy the attractor
condition. The first theory we consider is the AV = 2 supergravity theory with symmetric
scalar manifold given by the projective space CP(n).

Since in N = 1,2 Supergravity scalar fields are not part of the gravity multiplet, they
can be introduced coupling the theory to additional multiplets, such as chiral multiplets,
in the case N/ = 1, and vector multiplets or hypermultiplets in the case N = 2.

In NV = 1 supergravity the kinetic term for the scalars is
e 'L =G(Z", 720,200,277 g (4.1)

where (G; 7 is the metric of the scalar manifold that is necessarily a Kahler manifold, that

is there exists a scalar holomorphic “Kéhler potential” from which the metric is derived
Grj= 818jg(ZI, ZI) . (4.2)

In N = 2 Supergravity, apart from the scalar fields in the hypermultiplet, which span
a quaternionic manifold, the scalar manifold of the vector multiplet has again a Kahler

structure, but of the special kind. That is we can define homogeneous coordinates
A Sk (4.3)
and the scalar Kahler potential

G(¢*, ¢°) = log o' Kij(¢*, ")
Kl'j<¢a, an> = i@zﬁjF(XZ) -+ h.c. s
33

(4.4)
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where F(XT) is a omogeneous holomorphic function of degree 2, so that the holomorphic

sections are simply
X' =1,2Y...,2"),
F' = 0;F(X) . (4.5)

The geometry in this case is restricted in the sense that, being F(X) = (X%)?2f(Z), the
manifold is determined once we choose the holomorphic function f(Z), instead of having

an arbitrary real function G(Z, Z). In fact, from (4.4), the curvature tensor satisfies
Rijki = GG+ GGy — Oikméjlmem , (4.6)
where Cjjj is a completely symmetric covariantly holomorphic tensor
DiCjiy =0, (4.7)

defining the covariant derivative of the holomorphic sections V' over the symplectic bundle.
We do not deal with hypermultiplets. The reason is that the fermionic gravitino,
gaugino and hyperino fields respectively trasform, under supersymmetry variations with

chiral and antichiral parameters €4 and ¢ as [68]

0P ay = Dyea+ eape®T, 0",
ONA = iehy,0,2" + ePegFloym
6, = ieape UBPAICL50,4" .

The hyperinos, then, transform indipendently of the vector fields, whereas the gaugino’s
transformations depend on the vector fields. This means that the hyperscalars do not
contribute to the dynamics of the other fields, in particular the flow of the scalars z°
is indipendent of them, and the attractor behaviour of the black hole horizon as well.
Moreover, the hyperinos transformation does not put constraints on their asymptotic

configurations.

1. N=2 Supersymmetric Black Holes with Symmetric scalar manifolds

We study N = 2 Supergravity coupled to n vector fields. Their kinetic term is defined
by the geometry of the scalar manifold having the scalar fields as coordinate maps which
is
SU(1,n)

M= SUn) x UQ1)

(4.8)
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This manifold is the quotient space of a non-compact group with respect to its maximal
compact subgroup, it is then a symmetric space. The n + 1 vector field strengths and
their duals sit in the fundamental n + 1 representation of the U-duality group' SU(1,n)
embedded, as discussed in Chapter 1, in the symplectic group Sp(2n + 2, R)

1.1. The scalar manifold is a Kdhler manifold. In the case of SU(1,n)/SU(n) x U(1),
the Kéhler structure is defined by the prepotential

l

F(X) = -

(X2 - X?) . (4.9)

Due to the projective geometry of the scalar manifold M, = CP", we can deal with

special coordinates

. X
=15, (4.10)

and write the fields X* = (1,2%, ..., 2"), and the prepotential

F(X) = —% (1 _ Z(g’)?) | (4.11)

%

The holomorphic sections are

(XY Fy) = e X2(f4 hy)
O(XA Fy) =0, (4.12)

and their dependence on special coordinates is given by

e iZ) (4.13)

2. Attractor equations

The black hole potential at the attractor point is given by one of the quadratic invari-

ants of the scalar manifold [48],
Veg = 5L =|Z]” + |D;Z| (4.14)

IThroughout the analysis the semiclassical limit of large, then continuous electric and magnetic

charges is considered.
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where D is the covariant derivative the condition for the horizon to be an attractor point

coincides with the requirement that it is a critical point Vzg, namely that
OVl =0, (4.15)

which gives a constraint on the central charge and its covariant derivatives, since, from
(4.14), we have

OV = 0i(|2)* + |D: Z|*) =
= 0,(22) + 0;(G" Dy ZD;Z) =
= ZD;Z + G"Dy(D,ZD;Z) =
— ZD;Z + G*(D;D,ZDy) + G D, ZD;D; Z . (4.16)

The special geometry of the scalar manifold gives the equations, which hold for a sym-

plectic section V,
D;DLV = iCijxG** DV |
D;DiV = GV ,
D,Z =0, (4.17)
where Cj;i, is a completely symmetric tensor depending on the Kahler space of the theory
we are studying. In particular, for the series of spaces of the form SU(1,n)/SU(n)x U(1),

Cijk = 0. The central charges are linear functions of (X A F)) so that we can apply the

above equations, obtaining
D;D.Z =0,
D;Z =0, (4.18)
giving
OVen = ZD;Z + GMD,Z2G;7Z =
=27D,7 . (4.19)
The extremum condition is satisfied whenever at the horizon
e D;Z=0, Z+#0, BPS;
e D;Z#0, Z=0, non-BPS;
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which refer to a supersymmetric and non-supersymmetric black hole solution, respectively.

3. BPS Black hole

In this case, attractor equations allow us to write electric and magnetic charges |,
defined by the integral of field strengths fluxes on a sphere at infinity, as functions of Z

and holomorphic sections as
{pA = ief2(ZXA — ZXN)
qr = 1e52(ZFy — ZF)) .
Summing the two equations we get
Xy — pFy = ie®PZ(X Py — XAF®) | (4.20)

in which coordinates z* and z' and the central charge function Z take values at the
horizon. This equation, following directly by the attactor equation, allow us to write the
stabilization equations for the scalar fields. We can indeed write the different components

explicitely and we find
go+ip° =2 5?7
g —i2p’ = — K272+ 7
2o+ ipt = X2 Z(7 + ) |
Zg; —ip') = —2eK2 7|72 (4.21)

so that the fields at the horizon are given, as functions of electric and magnetic charges,
by

2= —qq;irgo . (4.22)
Also, the central charge is
1 _ .
7 =5 P+ ip”) (4.23)

which is consistent with the definition [59]

7 = BP(X2qn — Fap?) . (4.24)
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The Kéahler potential is defined as
e =i(X Fy — X Fy) =
=2(1-) P, (4.25)

yielding the metric constraint 1 — |z|*> > 0, and if we substitute this expression in (4.23 ),
we find

. /2
o (@407 — (2 + 1)\
7 = (qo + ip° ! . 4.26
One can also write
/2
. Q2—|—P2 >1
Z=(q+ip") | —4—— . 4.27
w0+ ) (3 (4.27
where we defined
Q* = g gs
P? = pryasp® (4.28)

and 7,y is the metric of SO(1,n), nax = diag(1l, —1...,—1). To explicit the symmetry of

the scalar manifold we define complex charges as

A= (pA) : (4.29)
qa

0

S050 _ izi\1/2
Z = (qo + ip°) <_2(q§ = 2)) : (4.30)

Black hole entropy at the attractor points is given by the modulus of the second quadratic

so that the central charge becomes

invariant of the symmetric space,

S=|bLl= HZ|2 - |DiZ|2 ) (4.31)
where |D;Z|? = G"D;Z D,Z; in the BPS case, D;Z = 0, and we have then
SNn=2_Symm-_Bps = |Z|* = %(q@ +p°% — (¢F +p"?)) =
= 1(ZOZO — 27" . (4.32)

2
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We can show that the attractor point corresponds, in the BPS case, to a minimum of the

potential. In fact, from (4.19), the Hessian metric for the black hole potential is

Ve = 2D;Z2D;Z +2ZD;D;Z

Z;=0

= 27ZD.D;Z , (4.33)

Z;=0

and, from (4.18), we get
VBsz‘ = 2Gji|Z|2 ) (4-34)

since the metric is positive defined, this matrix has no null-eigenvalues, which means that
there are no “flat directions” for the scalar fields, and the residual moduli space in the
BPS solution to the quadratic series of N = 2 Supergravity is empty. We notice that,
from the definition of the black hole potential in (4.14), this result depends only on the

special geometry equations, that is, on the Kahler nature of the scalar manifold.

4. Non-BPS solution
Non supersymmetric solution is given by D;Z # 0, together with the condition

qo +ip° + >, (g — ip') 2

7 =0=
SN E ey

> (g — i)z = —(qo+ip") , (4.35)

%

we therefore have one condition leaving n — 1 undetermined moduli at the horizon. By

its definition the central charge is

Z = (XA — Fapt) (4.36)
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so that

D;Z = ef2(D; XY [ qn — DiFy ,pt) =
el (g —iph) + O,K Z =

1 , )
= — [¢" —ip' + 0. K (qo + ip° + (q, — ipH)2H)] =
N lq" —ip (g0 + ip° + (q — ip")2")]
1 " Z’ .0 ! - }
= i — P + 5 (T +2(q—1 =
1

V2 (1=, #i7i)%/?

In the non-BPS case the central charge is null at the horizon, and we find for D;Z|,,. the

(q; —ip")(1 — Z 22" 4+ 2(qo + ip°) 2" + 2(q1 — ipl)zli(%.w)

i

expression
it
DZher = 1q_ D SEITR (4.38)
but this time the zi|hm are not stabilized The black hole entropy in this case is
SN=2non—BpPs = |I2| = HZ|2 - ’DiZH =
= -D;ZD,G" |
where G% is the inverse metric given in (A.11)
G7 = (1—z?) (67— 2'27) , (4.39)
and we find
SN=2.non-BPS = _%<Qi —ip")(qz+ip’) (67 — 2'7) =
= —%(qf +p'? = 2 (g — ip') — F(q; +ip))) (4.40)
and, by the attractor condition Z = 0 and (4.35), it can be written as
SN=2non-BPS = %(q(z) +p7% - (%2 +Piz)) =
_ %(2050 iz (4.41)

where complex charges are defined by (4.29).
We have checked the important result that the entropy of the black hole does not
depend on the nature (BPS or non-BPS) of the solution, but only on the asymptotic
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(initial) configuration of electric and magnetic charges. We notice that in the BPS case
I, > 0, while here I, < 0. Electric and magnetic charges thus select the nature of the

solution, depending on the sign of their combination

12> = |D:iZ)? = S (@6 + 0" — (¢ + 1)) , (4.42)

N | —

which is invariant in the moduli space.

5. Invariant expressions

Black hole entropy, as well as black hole potential, are invariant expressions of the

charges, and can be written as

Vi = —5QMN)Q

S = ZQMF)Q (143

where A is the matrix in the vector fields kinetic term, and F = Fry = O\0sF(X).
We find, if the prepotential is (A.2), that

ImF 0
M(f)=< 0 (Imf)1> : (4.44)

where ImF = Idy @ nas, Nas = diag,(—1,1,....,1) and we compute the multiplications
to find

—_

Spr = =(P*naxp” + @an*Fes) =

= % <q§ +p"2 =) (4] +pi2)) : (4.45)

%

[\]

which is determined only by the charges configuration at infinity.
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6. Black Hole Parameters in N = 2 minimally coupled Supergravity

6.1. Black Hole Parameters for %—BPS Flow. The first order fake superpoten-
tials for 3 — BPS and non-BPS (Z = 0) attractor flows, are [39]

a0+ ip” + (g = ip") 7] [qo — o ) E;] - 4.46
- 20— 2P 0w

Wion—pps(z=0 = G? (DiZ) D;Z = a3 =

(g = i) (1= 12P) + (0 + %) + (= )27 -
(g + i) (1= |2 + (g0 — D)2 + (gu +ip")Z"2'] . (4.47)
Thus, by using the explicit expressions of W%, and the differential relations of special

Kéhler geometry of My —s [59], exploiting the first order (fake supergravity) formalism

the expressions of the ADM mass, covariant scalar charges and effective horizon radius
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for the 3-BPS attractor flow can be explicitly written as® [46]:
T%I,Bps (Zooazooap7 Q) = MiDM,BPS (Zooazoovpa Q) = W?BPS (200720071)7 (Z) =

= lim |Z)* (z(7),Z(7),p,q) =

7—0"

[qo +ip° + (¢ —ip') 2%] [QO — ip® + (g; +ip?) EZO]
= ; (4.48)
2 (1 = |20 /?)

Z:i,BPS (Zooazooapa Q) = 2 lim (aiWBPS> (Z (7—) 72 (7—) D, Q> =

T—0~

1 _
— hm ZD1Z Z\T 73 T),Dp, —
MADM,BPS (Zoojoo,p, q) 0 ( )( ( ) ( ) p C])

_ 1 \/qo—ip°+(qg-+ipj)5io_
V2 (1= |z )2V 0+ 00 + (0 — ") 25

: [(Qi — i) (1 — |200]”) + (g0 + )7, + (g0 — ip") 2070 | (4.49)

[ Wips (2(7),Z(7) ,p.a) +

Riipps = lm | —4GY (2 (1) 2 (7)) (0Wsps) (2 (7) 2 (1) .0 @) | =

(0;Weps) (2 (7),Z(1),p,q)

SBH,BPS (p, Q)
EE—

=15(p,q) = VBu,prs = (4.50)

2All the considered functions f (2,Z,p,q) admit the limit
(f (2.2,p.))o = lim f(2(7),2(7),p,0) = [ (200,00, :0)

and are assumed f (z,Z,p,q) to be smooth enough to split the asymptotical limit of a product into the

product of the asymptotical limits of the factors.
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Eq. (4.50) proves Eq. (3.36) for the 3-BPS attractor flow of the N' = 2, d = 4
supergravity minimally coupled to n = ny Abelian vector multiplets.
Notice that in the extremality regime (¢ = 0) the effective horizon radius Ry, and thus

Apg and the Bekenstein-Hawking entropy Spg are independent on the particular vacuum
or ground state of the considered theory, i.e. on (zl z ), but rather they depend only

[ oklage o}

on the electric and magnetic charges g, and p”, which are conserved due to the overall
i ) is of crucial importance for

[ ok Bage o}

(U(1))"*! gauge-invariance. The independence on (z
the consistency of the microscopic state counting interpretation of Sy, as well as for the

overall consistency of the macroscopic thermodynamic picture of the BH. However, it is

I~
00 oo

the extremal case, as yielded by Eq. (4.48) for the considered 1-BPS attractor flow.

worth recalling that the ADM mass M pys generally does depend on <z ) also in

6.2. Black Hole Parameters for Non-BPS (Z = 0) Flow. Once again from
the explicit expressions of W2 oo in (4.47), using the differential relations of special
Kahler geometry of M= mcn and exploiting the first order formalism the expressions
of the ADM mass, covariant scalar charges and effective horizon radius for the non-BPS
Z = 0 attractor flow [46]:

T?{,non—BPS (20072007})7 Q) = MiDM,non—BPS (ZOO?EOO?p’ Q) = WTQZOn—BPS (200’2007])’ Q) -
= lim |G7(D;Z)D;Z| (2(1),Z(7),p.q) =
T—0~

that explicitly becomes

. 1 G i =]
T?{,non—BPS (20072007p7 Q) - 5 (1 ‘ ‘2)2 <5J — Zoozéo> .
(@ = )1 = o) + (a0 + i")Z + (0 — i9)20u7he] -
(g +ip") (1= Jz0]?) + (g0 — %) 22 + (gn +ip™)Zn 20 ] -
(4.51)
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The scalar charges are

Ei,nonfBPS (20072007])7 Q) =2 h%{ (aiWnonfBPS) (Z (T) 75 (T) » Dy Q) =
1

= lim (ZD;Z) (z(1),Z(7).p,q) =
MADM,non—BPS (Zooazompv Q) T_’O_( )( ( ) ( ) b Q)

_ 1t 1
V21— |2]?)
[ —Zp + qj+zp7)zj }
(=)0 = L)+ (0 + 8%V + (o — ™))
[ (67 — 227D ). 717
(g —ip™) (1 — |200]?) + (g0 + D)2 + (g5 — ip*) 257 ] -
- [(gp +p7) (1 = |200]?) + (g0 — p°)22 + (qu + ip”)Z% 28] |
(4.52)

_WgzonfBPS (Z (T) 72 (T) » Dy q) +

R non-pps = Hm | —4G¥ (2 (1), 2 (7)) (0Waon-prs) (2 (1) 2 (1) ,p,q) - | =

T—0~

|- (0Whon—sps) (2 (1) ,Z (1) ,p,q)

SBH,nonfBPS (P7 CZ)
- .

= _IZ (p7 Q) = VBH,non—BPS = (453)

Eq. (4.53) proves Eq. (3.36) for the non-BPS Z = 0 attractor flow of the the N' =
2, d = 4 supergravity minimally coupled to n = ny Abelian vector multiplets. The
considerations made at the end of Subsect. 6.1 hold also for the considered attractor flow.

It is worth noticing out that Eqs. (4.50) and (4.53) are consistent, because, as pointed
out above, the (3-)BPS- and non-BPS (Z = 0)- supporting BH charge configurations in
the considered theory are respectively defined by the quadratic constraints Zs (p,q) > 0
and Z, (p, q) < 0.
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As yielded by Egs. (4.49) and (4.52) for both non-degenerate attractor flows of the

considered theory it holds the following relation among scalar charges and ADM mass:

1 2
Y= lim D; (|Z]7). 4.54
MADM T—0~ (| ’ ) ( )



CHAPTER 5

N = 3 Supergravity black holes

1. Embedding of the noncompact group in the symplectic group

The scalar manifold for the non linear o-model of the scalar fields in N = 3 Super-
gravity is [53]
SU(3,n)
SU(3) x SU(n) x U(1) "’

whose coordinates are the 3n complex scalar fields. The isometry group SU(3,n) is the

(5.1)

duality group of the (n + 3) vector fields and is a subgroup of the symplectic group
Sp(2(3+4+ n),R) [62]. Given
0 |B
H = , 5.2
() 52

the generic element parametrizing the coset space is

V1+ XXT X ‘
bl VI+FXTX )

let us consider the embedding of the isometry group SU(3,n) into the symplectic group

L =exp(H) = ( (5.3)

SU(3,n) — Sp(2(3+n),R) ,

9= L(z) — S(g) = S(L(2)) (5.4)
the matrix S is given by the block matrix
bo P
S(g) = , 5.5
(9) ( " ¢E§> (5.5)

which is an element S € SU(3,n) C Sp(2(3 + n),R), so that the sub-blocks ¢y and ¢,
satisfy the relations

dhdo — oo =1,

ohd1 — bl = 0. (5.6)

47
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48
In the Gaillard Zumino construction the vector fields kinetic Lagrangian is
El:):ch = FA;U/ Z,LWNAE + FA;W E,uuNAE (57)
where the kinetic matrix My is symmetric and is defined as
Nas = (65 + 61) 7 (3h — o) - (5.8)

The embedding is defined once we write the matrix S as a functions of X, we have

V1+ XXT 0 0 X
o 0 V1+ XTX* X7 0 (59)
0 X+ V1+ X*XT 0 ’ '
X7 0 0 V1+ XTX

that is

VI+ XXT
do = (14 ¢f¢1)"/? = ( ! +o \/1+OW> . (5.10)

The matrix My, can be written in terms of symplectic sections as

Mz = (hf " ax , (5.11)
where the explicit dependence of f and h on the sublocks of S(X) is given by
= 7(% +¢1)
—i
h = 7( —¢1) (5.12)

and in terms of the coordinates of the coset space

(o L (viIEXXT X B (5.15)
IR N) Xt VIEXTx+) '
= (fﬁB?fT]A)>

—i [ V1+XXT —X*
b= =5 ( Xt m) - (5.14)

= (haahyg) -
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If we write the equations (5.6) in terms of symplectic sections we find

i(ffh — h'f) = 1,
h'f —hf’ =0. (5.15)

1.1. Central charges and matter charges. Charges are defined as the integral

over a sphere at infinity of the dressed graviphoton and matter field strengths, so that we

ZAB:_/ TAB:_/TAB:
52 Sy

have

= fAsan — haasp™ | (5.16)
Z,:—/ TI:—/ T =,
S2 S
= flaa — harp™ . (5.17)

Using the explicit expression for the symplectic sections given in (5.13) and (5.15), we
find for the charges Z = (Zap , Z;) (C =1,..,3and [,i=1,...,n)

1 c . *\ 1 )
Zap = E { 1+ XXT(AB)(QC + ZPC) + (X )(AB)(Qi —p )] ) (5.18)
1 . i . 4
Z=— [(X*)?(qc —ip®) + 1+ XTX*, (g +ip )] : (5.19)

1.2. Attractor equations and Vpy critical points. We impose to the black hole

potential
1 B s
Vi = §ZABZAB + Z1Z", (5.20)

an extremum condition, in order to get a regular dynamic for the scalar fields at the

horizon, therefore

1 - -, 1 - —7
dVa|her = §(DZAB)ZAB +(DZ)Z" + 5ZABDZAB +7Z;DZ" =0
(5.21)
Depending on the geometry of the scalar manifold, one can write the expression of the

covariant derivatives in terms of the embedded vielbien P, defined in a suitable central /-

matter indices decomposition. For N = 3 its only non-zero components are Plz, so that
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the above equation becomes
dVaplhor = PipZ*PZ; +cc. =0 . (5.22)

It admits the two solutions

o Zup#0,Z; =0,
Vit |hor = 31 Zal%,
BPS solution

o Zup=0,2r #0,
Vi lhor = |Z1]7,
non-BPS solution.

1.3. Fake superpotentials. Once the charges have been written in (5.18) and (5.19),

one finds that the superpotentials take the following form

e %) (VITXXT) T i) (6]
[( 1+XXT> (ap +ip”) + X’ (g5 p])}

[(1+ XXN)*B (g4 — ip*)(gp + ip”®)+

N | —

(V14 XXTX)A (g +ip') (qa + ip?) +
+HXTV1+ X X1 P (g4 — ip®)(g; — ip?) +
HXTX)H (g + ip) (g — ip*)]

(5.23)
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-1
W?LonfBPS(,ZAB:o) = Z[Z = p2 =

2

: {(XT)C(qc —ip%)+ (V14 X7X) (s +Z'pi)} _

[(XXT)P(gc +ip”) (qp — ip”)+
+(V1+ XX XN (g — iph) (g0 — ip©) +
HX V1 +XTX)P(gp + ipP) (@ + ip') +
H(1+ XTX) (g — i) (g +ip")]

DO | —

-2 {(QD +ip”) XY + (@ — ') (W) l} :

51

(5.24)

Notice that, since all the contractions of SU(3) and SU(n) indices of electric and magnetic

BH charges are uniquely defined with respect to the row or columns of the matrix X, every

transposition index has been suppressed in Egs. (5.23) and (5.24).

By introducing the complexified graviphoton and matter BH charges respectively as

follows:
Qc = qc + ip©;
Qi = q; +1ip’,
Egs. (5.23) and (5.24) can be rewritten as follows:
1 — .
Wips = B [(1 + XXNAPQ Q5 + (V1+ XXTX) YQiQa+

+(XTV1+ XXV 7050, + (XTX)"Q,Q1]

Wgon—BPS - ; |:<XXT ABQAQB V 1 +XTX XT ZAQ QA+
FXV1T+ XTX)PQ5Q; + (14 X'X)Q,Q1]

2. Black Hole entropy

The isometry group SU(3,n) only has the quadratic invariant

1 _ .
I, = 5(ZABZAB) —(Z2;2")?

(5.27)

(5.28)

(5.29)
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and in this case, as for N = 2, the entropy at the attractor point is the modulus of Is,
1 _ _
Sp = \§ZABZAB — 7Z; 7. (5.30)

Using (5.27) and (5.28), the entropy is then given by

1
Spi = 5 | D@ +p7%) = D (@ +p"*)| =

c 1

1 _ _

= §‘QAQA — QiQs| (5.31)
for, since the matrix X X is hermitian,
(XXNPQcQp = (Qc, Qo) xxt =

= <QC:QC>XXT = (XXT)CDQ(,*QD , (5.32)

and we have used the identity, which holds for any matrix A,

ATV/14 AAT = /1 + ATA AT (5.33)

whose hermitian conjugate is

V1+ AAT A = A1+ ATA (5.34)

We notice that the entropy in (5.31) generalizes as expected the entropy of the black hole
we found for N = 2 supergravity, where the scalar manifold was SU(1,n)/SU(1) x SU(n),
but now residual flat directions for the scalar fields appear both in the BPS and in the

non-BPS solution.

3. BPS N = 3 solution

In the BPS case Z; = 0 so that the black hole potential is
1
Ve = §|ZAB|2 = Spu (5.35)

Imposing Z; = 0, we have n equations that will allow us to stabilize % of the complex

scalar fields. From equation (5.19), we have

XNz = -1+ XTX 2. (5.36)
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Inserting this relation and its hermitian conjugate in (5.27), using also (5.33) and (5.34)
we find

ZapZ"% = (1+ XX PQoQp + (XV1+ XTX)P'Q:Qp +
+(V1+ XTX XN Qe + (XTX)'QiQ; =
= QcQ“ + (XXNPQcQp — (XXNPCQpQc +
—(1+ X'X)"QiQ; + (X'X)"'QiQ; =
=) QcQc—>_ QiQ: . (5.37)
C :
The entropy in the BPS case is

1 _
SBH = EZABZAB -

> (@ +p7%) = + 97
e .

Z QcQc — Z Qz@z] : (5.38)
L C )

The condition Z; = 0 is a set of n complex equations that does not fix all the 3n complex

DN —

N | =

scalar fields, the residual 2n flat directions defining the moduli space

SU(2,n)
SU(2) x SU(n) x U(1)

(5.39)

4. Non-BPS Solution

We get three constraints on the scalar fields from the extremum condition Z g = 0

potential in the non BPS case. Explicitly we have

VIEXXT (ge+ i) = —(XT)i(g — ip) (5.40)
VI XX Qo = —(X1Y0; . (5.41)

The black hole potential at the horizon is

Veu = 212" = Sy - (5.42)
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From the expression (5.28), analogously to what done in the BPS case, we compute

21Z* = (XXNPQcQp + (XTV1+ XX CQQc +
+(V1+ XXTX)PQpQi + (1 4+ XTX)"QiQ; =
= (XXNPQuQp — (1+ XXNPQuQp +
—(XTX)"QQi + (1 + X'X)"QiQ; =
Y00 Y el (.09
A C

The entropy is given again, as expected, by the formula

Spy = Z; 71 =

= —% > QcQc—> Qi - (5.44)
C i

In this case we have 3 equations that stabilize only % the scalar fields, so that the moduli

space for the non-BPS solution is

SU(3,n—1)
SUB) x SU(n—1)xU(1)’

(5.45)

which has dim¢ = 3(n — 1).

5. Black Hole Parameters for %-BPS Flow

By using the Maurer-Cartan Egs. of N = 3, d = 4 supergravity (see e.g. [65, 63, 64]),
one finds [39]

—I=AB
1 PIAB zZ A 1 —I-=AB
02, = 0, = : = — Pl 77, 5.46
1 WBPS 2\/5 , 70[) 431 IAB, ( )
CD

where Prap = P; AB’Z-dz" is the holomorphic Vielbein of My—3,. Here, V denotes the
U (1)-Kéhler and Hyr—3,-covariant differential operator. In the first order formalism the

relevant parameters ADM mass,covariant scalar charges and effective horizon radius for
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the %—BPS attractor flow are computed to be

T?{,Bps (zooazoovpv Q) = ME&DM,BPS (Zomzoo;pa C]) = W%ps (20072007])7 Q) =

= 1 lim (ZABZAB> (2(7),2(7),p,q) =

T—0~

55

(14 X X120 ,Q5 + (V1 + Xoo Xho Xoo) MQiQa+

HXI VT + X XLV PQQ; + (XL Xo0)F1Q,Q

E7L,BPS' (Zooazooap7 q) = 2 lim (aiWBPS) (Z (7_) 72 (7_) , D, q) =

T—0"
1 PIAB iZIZAB 1 1 —I—=AB
G | ~3 = PrapiZ Z
—CD
VZenZ " ] ! >0
1 ( —I—=AB
_ PiapiZ' 7 ) :
2M apm,Brs (Zoo, Zoos P, Q) rap 00

- (0Wsps) (2(7),Z(7) ,p,q)

S s \P;q
=15 (p,q) = Vu,pps = %(),

where

Xoo = lim X (7).

T—0"

The subscript “co” indicates the point at radial infinity 27_.

(5.47)

(5.49)

(5.50)
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Eq. (5.49) proves Eq. (3.36) for the $-BPS attractor flow of the considered N = 3,

d = 4 supergravity. Such a result was obtained by using Eq. (5.46) and computing that

AGY (0 Wpps) 0:Wpps = 4G (8;2,) 052, =

—I
— =77 =p* (5.51)
270p7

where the relation
Gi;PIAB,iFJEFJ =017 (04apdBr — 0ar0BE) (5.52)

was exploited.

The considerations made at the end of Subsect. 6.1 hold also for the considered
attractor flow.

As pointed out above, the same also holds for (%—BPS attractor flow of) N =2, d =4
supergravity minimally coupled to Abelian vector multiplets (see Eq. (150) of [46]), in
which the (unique) invariant of the U-duality group SU (1,n) is quadratic in BH electric
and magnetic charges. Such a similarity is ultimately due to the fact that SU (m,n) is
endowed with a pseudo-Hermitian quadratic form built out of the fundamental m + n

and antifundamental m + n representations.

6. Black Hole Parameters for Non-BPS (Z,5 = 0) Flow

By using the Maurer-Cartan Egs. of N' = 3, d = 4 supergravity (see e.g. [65, 63, 64]),
one gets [39]

—I=AB —I=AB

1 PrapiZ Z PragiZ Z

0ip = O;Whon—Bps = 1 145, = IAB’4 . (5.53)
7,7’ P
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The relevant non-BPS flow parameters are

2 = _ 2 = _ 2 = —
T"Hnon—BPS (ZOO7 Zoos P, q) - MADM,nonfBPS (Zooa Zoo; P Q) - WnonfBPS (2007 R0y Ps Q) -

— lim (Z,ZI> (2(7),2(1),p q) =

T—0~

(XooXI)APQuQp + (V1 + XL Xoo X1)1Q,Q 4+

2 , _ ;
F(Xoo V14 XX 00)P7QpQ; + (1 + XIX)FQ,Q
(5.54)
Z7L,non—BPS (Zoo>zoo>pa Q) =2 hrél_ (aiwnon—BPS) (Z (7—) 72 (T) » Py Q) =
| P27 1 [PasiZ2' 2]
7,7 2 p oo
1 —I—=AB
- PiapiZ'Z ) :
2M Ap M non—BPS (Zoos Zoos Ps ) ( 1ap 00
(5.55)
-WgonfBPS (Z (T) 72 (T) » Dy Q) =+ |
R%{,non—BPS = Tli%l_ _4Gﬁ (Z <T> 72 (7—)> <8Z'Wn0n*BPS) (Z (T) 72 (T) » Py Q) ’ =
L~ (gjwmm—BPS) (Z <T> ' Z (T> ' Ds q) .
S non— )
= —15(p,q) = VBrnon-Bps = Biinon—5PS (P Q)- (5.56)

™

Eq. (5.49) proves Eq. (3.36) for the non-BPS (Z4p = 0) attractor flow of the considered
N =3, d = 4 supergravity. Such a result was obtained by using Eq. (5.53) and computing
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that

4G7j (8iWnon—BPS) 5j)/vnon—BPS - 4G23 (alp) EEP -

—AB —I
1 VARASE YAV AR
= —0rx (040D — d4D0BC) —J -
4 Z1Z
1 —
- §ZABZAB = Z{. (5:57)

The considerations made at the end of Subsect. 6.1 hold also for the considered
attractor flow.

It is worth noticing out that Eqgs. (5.49) and (5.56) are consistent, because, as pointed
out above, the (3-BPS)- and non-BPS (Z4p = 0)- supporting BH charge configurations
in the considered theory are respectively defined by the quadratic constraints Zs (p, q) > 0
and Z, (p,q) < 0.

As yielded by Eqgs. (5.48) and (5.55) for both non-degenerate attractor flows of the
considered theory it holds the following relation among scalar charges and ADM mass:

lim Prap.Z Z'". (5.58)

Ei -
ZMADM T—0"

7. Black Hole Entropy in Minimally Coupled N =2 and N = 3 Supergravity

It is here worth remarking that the classical Bekenstein-Hawking [49] d = 4 BH
entropy Sy for minimally coupled N' = 2 and N = 3 supergravity is given by the

following SU (m, n)-invariant expression:

S%H = % |+ 1], (5.59)
where ¢ = ™ qags; and p? = naxp™p”, 7™ = Moy being the Lorentzian metric with
signature (m,n). As said above, N’ = 2 is obtained by putting m = 1, whereas N’ = 3 is
given by m = 3. Thus, in Eq. (5.59) the positive signature pertains to the graviphoton
charges, while the negative signature corresponds to the charges given by the fluxes of the
vector field strengths from the matter multiplets.

The supersymmetry-preserving features of the attractor solution depend on the sign
of ¢ + p*. The limit case ¢*> + p*> = 0 corresponds to the so-called small BHs (which
however, in the case N’ = 3, do not enjoy an enhancement of supersymmetry, contrarily

to what usually happens in NV > 4, d = 4 supergravities; see e.g. the treatment in [48]).
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By setting n = 0 in N' = 3, d = 4 supergravity (with resulting U-duality U (3) which,
due to the absence of scalars, coincides with the N' = 3 R-symmetry U (3) [66]), one gets
i _ @+ @+ )+ () + ()] (5.60)
which is nothing but the sum of the entropies of three extremal (and thus BPS; see e.g.
the discussion in [46]) Reissner-Nordstrom BHs, without any interference terms. Such
a result can be simply understood by recalling that the generalization of the Maxwell
electric-magnetic duality U (1) to the case of n Abelian gauge fields is U (n) [62], and
that the expression in the right-hand side of Eq. (5.60) is the unique possible U (3)-
invariant combination of charges.

Moreover, it is here worth noticing that NV = 3, d = 4 supergravity is the only
N > 2 supergravity in which the gravity multiplet does not contain any scalar field at
all, analogously to what happens in the case A' = 2. Thus, in minimally coupled N' = 2!
and N = 3, d = 4 supergravity the pure supergravity theory, obtained by setting n = 0,
is scalarless, with the U-duality coinciding with the R-symmetry [66].

This does not happen for all other NV > 2 theories. For instance, the N' =4, d = 4
gravity multiplet does contain one complex scalar field (usually named axion-dilaton)
and six Abelian vectors; thus, the pure N' = 4 theory, obtained by setting n = 0, is not
scalarless. By further truncating four vectors out (i.e. by performing a (U (1))° — (U (1))*
gauge truncation) and analyzing the bosonic field content, one gets the bosonic sector of
N = 2, d = 4 supergravity minimally coupled to one vector multiplet, the so-called

axion-dilaton supergravity.

et us notice also that N = 2 minimally coupled theory is the only (symmetric) N =2, d = 4
supergravity which yields the pure N' = 2 supergravity simply by setting n = 0.






CHAPTER 6

N=5 Supergravity black holes

The 10 vector field strengths and their duals, as well as their asymptotical fluxes,
sit in the three-fold antisymmetric irreducible representation 20 of the U-duality group
G = SU (1,5) (or equivalently of the compact form SU (6).), andnot in itsfundamental
representation 6.

Zap = Ziap, A, B = 1,2,3,4,5 = N is the central charge matrix. By means of a
suitable transformation of the R-symmetry Hy—5 = U (5), Zap can be skew-diagonalized

writing the matrix in its normal form
Zlé

ZAB - ZQE s (61)

where 2, 25 € Ra’ are the N = 5 skew-eigenvalues, which can be ordered as 2, > 2,

without any loss of generality, and can be expressed as

2 = L\ h+ 2L - I L= 22 + 22,

= (6.2)
= L/ - oL - T L= 2!+ 2},
where
1 —AB
I = §ZABZ ; (6.3)
1 — —
I = 5ZABZBCZCDZDA, (6.4)

are the two unique (moduli-dependent) H,r—5 invariants.

61
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1. Symplectic sections

In N = 5 Supergravity no matter coupling is allowed, so we only deal with central

charges. The scalar manifold of the theory is

SU,5) g(é’f) , (6.5)
From the Lagrangian of N = 5 supergravity [51] we read
poe = —éV(zst’fl — 8O Fy FT +hee. (6.6)
and, accordingly to the Gaillard Zumino construction, (read eq. (36) from [48])
pee = —i Ny FTVF M 4 e =
==y iMj,le;,jjw Mo 1 he. (6.7)
so we can identify the kinetic matrix N¥* with
NI — (S — %&'kaﬂ) : (6.8)
The matrix S satisfies the relation
(67 — SUHYSMmn — 517 (6.9)
where, for a suitable choice of the scalar fields,
Stk — —%eijklaqﬁa : (6.10)
We then find
S =1 t@)z‘@?ﬁ - %Eijkla% = 20w P67) (6.11)
where the last term is normalized as
ol gy — i(é,@qﬁj@ 4 perm...) (6.12)
so that we can write the kinetic matrix as
Nijm = %W (%(1 +(00)*)05; — %eiﬂ““qﬁa — 26, [kgbl]gbj]) , (6.13)

where « is a factor to be determined by the relations satisfied by f and h as symplectic

sections.
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Since we can write the supersymmetry transformation for the vector field as [67]
SAT = 2f TP 4, + 2fpabite? (6.14)

we compare this formula with the one from [51]

SA = (S — g (O AP (e yuxase + 2V2eats) (6.15)
where
Kl L ij €2 (i
Gy = e_l(sk]l - 26—15[k¢]]¢11 ;
(€)= (exdl) + 2620600y ) (6.16)
and
1
2 _
TR
1
€y = W(l — 61) . (617)

We simply get, then

ij ij €1 i;ABm
f]AB - (615153 -+ éEJAB d)m + 262(5[[:4¢B]¢J]> y (618)
The symplectic section h is
(h)ijap = Nigmn(£)™" 45 (6.19)

and explicitely

o 1 i L ik
hijap = = ()2 (5(1 + (04)*) 05, — ¢ Mg, — 25[¢[k¢l]¢j}> :

e
* <€151]ZlB + EleklABm¢m —|— 2625[[?¢B] ¢l]> =
€1 oij € ] m
~a (515 s — o + 206" ) (6.20)

We now check our results and fix the numerical factor in front of A/, by writing

explicitely the identities

(f'h — h'f) = —il , (6.21)
fTh —h7f =0 . (6.22)
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We begin with the second which is easly computed, once we recall that

1 .. y
ZEZ]ABaEl]CDb¢a¢b = (¢:)*64D — 20141c¢D)08B) »

0 0600 "6y = %(@)25[“%%03} : (6.23)
since
(F'h)E5 = (WTh)Ep =
=a (%523 - %EijABmem + 625[[;%3}%}) :
. (eldich + %eijCquﬁm + 2625[[Z.C¢D]¢j]> =

2
€
=« <515ég(1 — ¢2) + 204100 m OB + ea(¢i)aAC pPlpP 4

2¢1e0 Re {55&’1 6 }) , (6.24)

We write now
fTh = fijABhijCD =

€ m i
=« (61533 + éeijABmgb + 2625[[,4@5]]?153}) :
€1 ¢ij €1 ijCDa C
(G080 — TP u + e 67 0) =
_ 6% AB 6% m [C D]
=« 5501) + ZEABCDme + 61625[A¢ ¢p+

2 2
—LeABCDeg, — LA 4 e35l0 6P om +

4 2
+ e1e30(10 0m + 310200 om)| (6.25)
and since |@|%e; = 1 — €1, and €2 + ejeq + ey = 0,
£ hijop = @ [%5615 + %effm(GABCDmfbm)] : (6.26)
By an analogous calculation we see that
hTf = (hijC’D)TfijAB =
=a* Bééf; + %e%[m(eABCD“gf)a)} , (6.27)

so that, if we take o = —i, identity (6.21) is satisfied.
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2. Central charges

! We build central charges by their definition in terms of electric and magnetic ones,

in the same representation of Z,p, as
Zap = fipti; — hijasp” | (6.29)
and from (6.18) and (6.20), using complex electromagnetic charges, we find

e L
ZAB = (elqAB + éGABZ]quQbm - 2€2¢[ACJB]N¢N> : (6.30)

The U-duality invariant for N = 5 theory is

In—s = 4Tr(A%) — (Tr A)?* | (6.31)
where
TrA= Zsz24 (6.32)
Tr(A)? = ZpZP° ZopZP4 (6.33)
and we notice that TrA = —2V,p5. The first order fake superpotential, corresponding to

the non degenerate attractor flow, the %—BPS one, is

1 — — _ 1 _ 2
§ZABZAB n \/ ZapZ°C 2o 7P — 7 (ZABZAB)

[Il + /21 — [12} =z (6.34)

3. Attractor Equations

W(2 = —

i-)BPS

N | — N —

The black hole potential, in absence of matter charges, is

1 _
Ve = 3 ZapZ*B (6.35)

IWe rescale the section f by a factor %, and the A matrix at the same time by a factor of 2. The

definition of h section and the identity (6.21) are left unchanged, but we avoid with this redefinition an
unsuitable rescaling of magnetic charges, once we have to deal with complex charges, such as

1 .
P = §(QAB +ip"P) . (6.28)
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and the minimum condition becomes
1 _ 1 _
0=dVpy = 5DZABZAB + 5ZABDZAB : (6.36)

The Maurer-Cartan equations for the symplectic sections define the covariant derivative

of the charges as

DZp = %ZABPABCD =
= %ZABGABCDEPE ; (6.37)
so that (6.36) becomes
dVey = 0= eapcppZ*PZP PP + e*PPP 7,5 Zcp Py (6.38)

and we find the two equations
ABPEZ 5 Zep =0,
eapcppZ?BZ¢P =0 . (6.39)
We explicite the first one, using the expression for the central charge written in (6.30), as
0= (ABCPEy, 7 —
= AAPPEAS O 1 (A, ) 0+ 86 a0) 6 +
116620, g AGAE — deepeABCDEGAB 4CDigy. |
—86162(¢lQquCD¢C)¢E - 166162’¢‘2¢lqil@iE . (640)

The criticality conditions (6.39) and (6.40) are satisfied for a unique class of critical

points, identifying the (3-)BPS solution
Z,=0, 2, > 0. (6.41)

It is worth counting here the degrees of freedom related to egs. (6.39) and (6.39), or
equivalently to the unique 3-BPS solution given by (6.41). Equations (6.39) and (6.39) are
10 real equations, but actually only 6 real among them are independent. Thus a moduli
space of %—BPS attractors, spanned by the 2 complex scalars unstabilized by (6.41) does
[45] exist. This counting of flat directions of Vg at its 2-BPS critical points are given in
terms of N' = 2 hyperscalars’ degrees of freedom in the N' =5 — N = 2 supersymmetry

reduction.
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4. Black Hole Parameters for %-BPS Flow

By using the Maurer-Cartan Eqs. of N' =5, d = 4 supergravity (see e.g. [65, 63, 64]),
one gets [39]

0,21 = 0Wpgps =

P, /1 —AB —BC —pa 1
A =Zagl  — Al ZigZ  Zopld 0 — —
\/5\/ 5 4AB \/ AB cD 1

_ 2
(2457"")" = Pi2a,

(6.42)

where P = Pjaz4, Papep = Papep.idz' = eapcprp PP being the holomorphic Vielbein of
M —s. Here, V denotes the U (1)-Kéhler and Hp—5-covariant differential operator.

Thus, by using the explicit expressions of W3 given by Eq. (6.34), using the Maurer-
Cartan Egs. of N' =5, d = 4 supergravity (see e.g. [65, 63, 64]), following the treatment
of the first order formalism, one respectively obtains the following expressions of the
(square) ADM mass, covariant scalar charges and (square) effective horizon radius for
the %—BPS attractor flow:

T?{,Bps (Zooazooap7 Q) = ME&DM,BPS (Zoovzooapv Q) = W?Bps (Zwazooapv Q) =

1 1 — _ — 1 _ 2
= = lim =22+ \/ ZapZ C 207" — 2 (ZABZAB> —
2 7—0— 2 4
- 212}007
(6.43)
Zz',BPS (Zooazooap7 Q) =2 h%l_ (aiWBPS) (Z (T) 72(7—) » Dy Q) =
. 1 —AB —BC —_pa 1 —AB\ 2
= V2 lim | Py\|52asZ"" =\ 257" ZepZ™" - 5 (ZABZ )
T—0~
=2(P;Zs)
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R%{,BPS = Whips (200s Zoo, D, @) +

_4Glj (Zooazoo) (8iWBPS) (Zooazooapa C]) (ngBPS) (Zoo’zoo’p’ q) -

— _ _ 2
- \/ ZapZ"C ZopZ”" — 1 (ZABZAB> - (6.45)

— 22} 1228 — (23 + 23)° =

=2} - 2§ =\/Li(p.q) > 0.
Eq. (6.45) proves Eq. (3.36) for the :-BPS attractor flow of the considered N = 5,
d = 4 supergravity. Such a result was obtained by using Eq. (6.42) and computing that

4G (9;Wgps) ngBPS = 4G (0,2,) 5321 =

- _ _ _ _ _ 2
=GP P |1 24577 — \/ ZapZ  ZepZ™t = (ZABZAB> -
i (6.46)
o o o o 2
— L \1z,,7" - \/ ZapZ" Zepz”t — 1 (ZABZAB> =z,
where the relation
AGTP;P5 =1 (6.47)

was used.

It is worth noticing out that Eq. (6.45) is consistent, because, as pointed out above,
the %-BPS-supporting BH charge configurations in the considered theory is defined by the
quartic constraints Z, (p,q) > 0.
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The case of N = 4 Supergravity and Dualities

1. N=4 Pure Supergravity

The special Kahler scalar manifold is

Grnetpwe  SU(L1) x SU(4)  SU(L1)
=4,pure — : = - ) d = 27 1
My=taure = = T x SU () o) 0 dme (7.1)

spanned by the complex scalar

s=a+ie *, a,¢ €R, (7.2)

where a and ¢ are usually named azion and dilaton, respectively. The invariant of the

scalar manifold is a quartic expression in terms of electric and magnetic charges
I =4pP’¢ - (p-9)?°] . (7.3)

It is worth noticing that when the symplectic index are A, ¥ = 1, 2, the theory corresponds
to the truncation (U (1))® — (U (1)) of the gauge group, and Z, is a perfect square that,
if expressed as a function of the skew-eigenvalues of the central charge function of the

truncated Supergravity, it reduces to
T = (%) = (%)) (7.4)

thus reproducing the quadratic invariant Z, of the minimally coupled N = 2, d = 4
sequence. Also in this case it is possible to apply the first order formalism.

From the symplectic structure [63, 64, 48] the symplectic sections are
fﬁB = ewéﬁB, hA\AB = 5€¢5A\AB = (ae“ﬁ + ieﬂp) 5A|AB, (7.5)
and the kinetic vector matrix is
NAE = (hf_l)AZ = S(SAE. (76)
We can then write the central charge matrix

Zap = [Apar — hajapp™ = €?0%5qn — 5€26p1a8p" = —€* (spap — qaB) (7.7)
69
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and, from (6.2)-(6.4), the invariants are

1 —
I, = —ZABZAB = 212 + 222 =

2
= (62%2 + 6_2‘9) P2+ e2%¢® — 2ae*p - ¢ (7.8)
1 _ _
I = §ZABZBCZCDZDA oy .
1 _ _
= 564“’ (SPAB - QAB) (SPBC - C]BC> (SPCD - C]CD) (SPDA - QDA) ) (7.9)

where p2 = (0’ + ..+ (0, =@+ ...+ ¢& and p- ¢ = paa.

Only }L-BPS attractor flow is non-degenerate (i.e. corresponding to large black holes
[48]), and the corresponding first order fake superpotential is identical to the one of the
%—BPS attractor flow in N’ = 5, d = 4 supergravity [39], given by (6.34), which in the

considered framework can be further elaborated as follows:

1
Wé_)gps =5 {11 +1/2L — 112} =Zl=

(spaB — qaB) (EPAB — C]AB) +

2¢

e

e 4(spap — qa) (5p°¢ — ¢%) (spcp — acp) (5p74 — ¢P4) +

_|_
|\ = [(span — aap) (50" — ¢*)] ]
(7.10)
In the case of matter coupled AN/ = 4 Supergravity the scalar manifold is real
Gn— SU (1,1 SO (6
Moy = M= (L,1) (6,m) , dimg = 6n + 2. (7.11)

T Hyo,  U(1) S0@6) xS0 m)
The quartic Ga—s-invariant Z, of N' = 4, d = 4 supergravity is the following unique

(moduli-independent) G—s-invariant combination of I, Iy and I3 [65]:

L=B-LI;=0—|L°=
= (22— Z)"+ (0 +18) —2(2 + 23) (R + ) + (7.12)

+42,2, [p} + p3cos (20)] — [pi + pi + 2pip3cos (20)].
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7, This last expression is a non-trivial perfect square of a function of degree 2 of Z;, Z,,

p1, p2 and @ only in the pure supergravity theory (obtained by setting n = 0), i.e. only

in the case p; = p2 = 0. In such a limit, equation (7.12) consistently reduces to (7.14).
This can be explicitly read, as an exemple, computing the invariant in the case n =1

(which uplifts to pure N'= 4, d = 5 supergravity) which acquires the following form:
Ti = (21 — 2,) (zl + 2+ \/§p1> <21 + 2 \/épl) , (7.13)
which is not to a perfect square of Z;, Z, and p;.
2. Peculiarity of Pure N =4 and N =5 Supergravity

The expression of R% in the extremal case ¢ = 0 given by (3.35) has been shown to

hold in d = 4 for
e minimally coupled N = 2 theory:;

o N =3;
e N =5,
o N =4 pure.

The crucial difference among this theories is that, whereas the U-invariant of minimally
coupled N = 2 and N = 3 supergravity is quadratic, the U-invariant of N' = 5 and pure
N = 4 theories is quartic in the black hole charges.

Moreover, the form of their Attractor Equations are structurally identical to the ones
of the minimally coupled N' = 2 and N/ = 3, and actually also to the very structure
of Wipg. As already pointed out, the invariant Zy (p,q) of Gay—s and Ga—apure 1S a
perfect square of a quadratic expression when written in terms of the moduli-dependent

skew-eigenvalues Z; and 2,

Iy (p.q) = ZABZBCZCDEDA - 111 (ZABZAB>2 =Tr (A%) — i (Tr (A)* = (27 - 222)2 1,

(7.14)

but such a result does not generally hold for all other N' > 2, d = 4 supergravities with
quartic U-invariant ( i.e. for N' = 4 matter coupled and N' = 6,8 theories, as well as
for ' = 2 supergravity whose scalar manifold does not belong to the aforementioned
sequence of complex Grassmannians).

This allows one to state that the relation (in the extremal case ¢ = 0) between the

square effective horizon radius R?% and the square BH event horizon radius r% for the
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non-degenerate attractor flows of such supergravities, if any, is structurally different from
the one given by Eq. (3.35). Of course, in such theories one can still compute the quantity
72 (200, Zoos D5 q) —GiEZiij (in case, within a real parametrization of the scalar fields), but,
also in the extremal case, it will be moduli-dependent, thus not determining R% (p, q).

In the non-extremal case (i.e. ¢ # 0) the expression generalizing Eq. (3.35) is

— SBH,C 0 Zooazooapaq —
Ra_ (Zooazooap7 Q) = z ( T ) = R?&- (ZooszO’p7 Q) =

can be only guessed, but at present cannot be rigorously proved. Indeed, for non extremal
black holes a first order formalism is currently unavailable, so there is no way to compute

the scalar charges beside the direct integration of the equations of motion of the scalars.

3. N > 2 Supergravities with the same Bosonic Sector and “Dualities”

Consider the following relations among 4 dimensional Supergravities.

I)
e N = 2 (matter coupled) magic supergravity based on the degree 3 complex
Jordan algebra JE;
e N = 6 supergravity.

S0*(12)
SUG)xU(1)"

It is a rank-3 homogeneous symmetric special Kahler space. In both theories the 16 vector

The scalar manifold of both such theories (which can be uplifted to d = 5) is

field strengths and their duals, as well as their asymptotical fluxes, sit in the left-handed
spinor representation 32 of the U-duality group SO* (12), which is symplectic and contains
the symmetric singlet 1, in the tensor product 32 x 32. The vector fields representation
is thus irreducible with respect to both SO* (12) and Sp (32, R).
IT)
e N = 2 supergravity minimally coupled to n = ny = 3 Abelian vector multiplets;
e N = 3 supergravity coupled to m = 1 matter multiplet.
These two theories are matter coupled and have a quadratic U-invariant, but are not

SU(1,3)
) SUB)xU(1)’

symmetric special Kahler space. The 4 vector field strengths and their duals, as well as

upliftable d = 5 dimensions. They share the same scalar manifold a rank-1

their asymptotical fluxes, sit in thefundamental 4 representation of the U-duality group



3. N > 2 SUPERGRAVITIES WITH THE SAME BOSONIC SECTOR AND “DUALITIES”

Orbit | N =2 minimally coupled, ny =3 N=3 m=1
OlfBPSU Onon—BPS,ZAB:07
SSUU(E?)?) no mod. space, no mod. space,
Ton=2>0 Ton=3 <0
Onon—BPS,ZzOy OéfBPSH
SU(1,3) ) _ sU@12)
S0(1) mod. space = EUOROL mod. space = EUORUOL
Ton—2 <0 Zon=3 >0

TABLE 1. N-dependent BPS-interpretations of the classes of non-

degenerate orbits of the symmetric special Kahler manifold
SU(1,3)
SUB)xU(1)

SU (3,1) which is reducible with respect to SU (3,1), but irreducible with respect to
Sp (8, R).

The fermionic sector contains 8 fields (because of the supersymmetry invariance of the
theory, it is the same number of bosonic fields) for both these theories, but the spin/field

content is different, explicitly

N =2 minimally coupled, ny =3: [1(2),2(2),1(1)],3[1(1),2(3),1c(0)];

N=3 m=1:
(7.16)

It then follows that one can switch between the two theories by transforming 1 gravitino
in 1 gaugino. The relation among the various classes of non-degenerate extremal BH
attractors is given in Table 1.

When switching between N' = 2 and N = 3, the flip in sign of the quadratic U-
invariant Z, = ¢> + p? can be understood by recalling that ¢> = n*¥qagy, and p? =
naspp®, with n** = nuy = diag (1, —1,—1,—1) in the case N' = 2, and n** =y =
diag (1,1,1,—1) in the case N' = 3 (recall Eq. (5.59)). The positive signature pertains
to the graviphoton charges, while the negative signature corresponds to the charges given

by the asymptotical fluxes of the vector field strengths from the matter multiplets. As
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Orbit N=2 ny=7 N=4 n=2
OéfBPSW Onon—BPS,ZAB:07
% no mod. space, no mod. space,
Tyn=2>0 Zyn=4>0
Onon—BPS,ZzO; OifBPSH
SU(1,1)xSO(2,6) _50(2,4) _ 50(2,4)
50(2)xS0(2,4) mod. space = g5 b0 mod. space = g5 som
Zypn—2 >0 Typn=4>0
OnonfBPS,Z;ém OnonfBPS,ZAB#Oa
SU(1,1)xSO(2,6) o 50(1,5) o SO(1,5)
SO T)x50(15) mod. space = SO (1,1) x SoG) mod. space = SO (1,1) x SO0
Tyn=2 <0 Tap=4 <0

TABLE 2. N-dependent BPS-interpretations of the classes of non-
degenerate orbits of the reducible symmetric special Kahler man-
ifold Sg((i’)l) X Safg(f;g(ﬁ). The structure of the “duality” is analogous to
the one pertaining to the manifold % (see point I above, as well as

Table 9 of [28])

yielded by Table 1, the supersymmetry-preserving features of the attractor solutions de-

pend on the sign of Z,.

I11)

e N = 2 supergravity coupled to ny, = n + 1 = 7 Abelian vector multiplets, with
(1,1) S0(2,6) .
0 50(2)x50(6)’
e N = 4 supergravity coupled to n,, = 2 Abelian vector multiplets (matter multi-

scalar manifold sg

plets).

The scalar manifold is the same for the two theories
SU(1,1) " SO (2,6)
U (1) SO (2) x SO (6)

(7.17)

and is an homogeneous symmetric reducible special Kahler space, with rank 3. In both

theories the 8 vector field strengths and their duals, as well as their asymptotical fluxes,
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are in the (spinor/doublet)-vector representation (2, 8) of the U-duality group SU (1, 1) x
SO(2,6), which is symplectic and contains the antisymmetric singlet 1, in the tensor
product (2,8) x (2,8). It is thus irreducible with respect to both SU (1,1) x SO(2,6)
and Sp (16, R).

Due to the isomorphism so (6,2) ~ so0* (8), the “dual” supersymmetric interpretation
d SU(1,1) S0(2,6)
U) 50(2)x50(6)

, as a “subduality” of the “duality” discussed in I.

of the scalar manifol can be considered, disregarding the axion-

SU(1,1)
U(1)

Once again we notice that, even if the number of fermion fields is the same, 16 bosons

dilaton sector

and 16 fermions, the theories have different relevant spin/field contents:

N =2 “cubic”, ny =7: [1(2),2(2),1(1)],7[1(1),2(3),1c (0)] ;

N=4n,=2: [1(2),4(2),6(1),4(2),1(0)],2[1(1),4(3).3¢(0)].

From this it follows that one can switch between such two theories by transforming 2
gravitinos in 2 gauginos. The correspondences among the various classes of non-degenerate
extremal BH attractors of these two theories is given in Table 2.

Such a “duality” is pretty similar to the one considered above at point I; that the sign
of the quartic U-invariant is unchanged by the “duality” relation, and, in this sense, it
differs from the “duality” between N = 2 minimally coupled, ny =3 and N =3, m =1

considered at point II.

All these cases present evidences that interacting bosonic field theories have a unique
supersymmetric extension. The sharing of the same bosonic backgrounds with differ-
ent supersymmetric completions implies the “dual” interpretation with respect to the
supersymmetry-preserving properties of non-degenerate extremal BH attractor solutions
(see Table 1 and Table 2).

4. Conclusions

Black holes in Supergravity have an extremely rich structure and give an interplay
between space-time singularities of Einstein solutions and the solitonic, particle-like struc-

ture of these configuration, such as mass, spin and charge.



76 7. THE CASE OF N =4 SUPERGRAVITY AND DUALITIES

The bosonic action of Supergravity has been studied and its specific form determined
by the embedding of the U-duality group in the symplectic group. Extremal black holes
in these theories satisfy an attractor condition, fixing the solution in terms of asymptot-
ical electric and magnetic charges, and erasing any dependence on the scalar hair. The
general property of extremization of the central charge in the moduli space has been ex-
plicited in the case of N' = 2 quadratic, N' = 3 matter coupled and N/ = 5 ungauged
Supergravities; all these theories cannot be extended to d = 5 space-time dimensions. For
the same theories, and for N' = 4 Supergravity, the extremal black hole parameters of
the non degenerate attractor flows have been formulated in terms of the first order (fake
Supergravity) formalism and the resulting effective radius has revealed to be, in these
cases, moduli independent.

The Supergravity theories considered are the only ones admitting a quadratic invariant
or a quartic invariant that reduces to a perfect square of a quadratic expression, if written
in terms of the skew eigenvalues of the central charge matrix, so that this property has
revealed to be crucial for the definition of an effective radius, whose dependence on the

scalar fields would eventually cancel.



APPENDIX A

N = 2 explicit calculations

1. Some formulas following from definitions, with the explicit dependence on

scalar fields (not at the attractor point)

In the case of
SU(1,n)/SU(n) x U(1) , (A.1)
the Kéahler structure of the scalar manifold is entirely defined by the prepotential
zwx)z—écxw—uvxg; (A.2)
the holomorphic sections are then

(XA F) = e "2(f4 )

and their explicit dependence in terms of scalar fields is
XA =1, .., 2",

Fy = OAF = (—i,iz",...,i2") . (A.4)

Kahler potential is defined as

=201-) |, (A.5)
while the central charge is

7 — €K/2<XAQA . FAPA)

1 1
g = - 0_'0+l U | ] A6
21—ZMWM ip” +2(¢' —ip')] (A.6)

7
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We have
1
2 = — AT
@K@‘K = 251 s
i
oK = ——— |
1—|zf?
= ) A8
N Nk .
The metric for the Kahler space is given by
i zid
Gi; = 0,0;K = . . A9
OO ST T 9
To find the inverse matrix we write the general form
G7 = A§" + B2'# (A.10)
and we find
G = (1—|z%) (69 — 2'%") . (A.11)

2. Explicit check of the quadratic invariant |Z|? — |D;Z|* in N=2 quadratic

series supergravity
We want to compute
I, = |Z|* — |D;Z)* =
= |Z|> - D:ZD;ZG" (A.12)
to this aim we define
a = (g +ip" + 2 (q—ip") = (¢ +ip’ + B) = (a+5)
c=aa=p"* +q , (A.13)
so that we can write the identities
ad = (g +p"* +7) = (c+7),
y=aB+ab+pp,
aB+aB=~v+p33. (A.14)



2. EXPLICIT CHECK OF THE QUADRATIC INVARIANT |Z|*>~|D;Z|* IN N=2 QUADRATIC SERIES SUPERGRAVITY

We then have

= (0707
17 = ——— A.15
20— ) ° A1)
and
202G = o it (et 4+ g — i
DiZD;2GY = 5 g — ip +1_|Z|2(qo+zp +2' (g — ")) -
- 2 0 .
' QJ+ZP7+1_—’Z‘2(QO—2P + 2 (@ +wp))| -
. [57] _ 272]'] :
(A.16)
with the notations above
o1 2, af  |zPaB
DiZD-ZGYT = - 2 4 l2y _
% 7 G ) [;<QI _'_p ) ﬁﬁ+1—|2|2 1—|Z|2 +
af __ |xap
TP TR
ad ER
L—]zP2  (1-lzP2]
= LIS+ 9 - 85+ af+ap+aa | -
=5 q +p aff +af + ad— oE|
L
R R . (A7)
- 92 q p Y aal _ |Z|2 .
L
The invariant, from (A.15) and (A.16), using (A.13) and (A.14), becomes
T
L =5 laa—y=3 (g +p?)]| =
L I
T
=5 (@ +p") =D (g +p")] (A.18)
L ]

where, as expected, the moduli dependence has vanished.






APPENDIX B
SU(5,1) invariant.

We wrote in (6.31) the U-duality invariant, which is actually the invariant of the com-
pact group SU(6), of which SU(5, 1) is a non-compact form, in terms of the central charge
matrices. Since it is indipendent on the moduli fields, and since in the parametrization we
are considering the origin of coordinates, ¢ = 0, is the invariant point under the action of
the whole isotropy group SU(5) (see [51], eq. (2.17)), we can find its explicit dependence

on electromagnetic charges simply computing Zap(¢' = 0). From (6.30) we have

Zap(¢' =0) =¢"" | (B.1)
so that, from (6.31), (6.32) and (6.33), with gap = (¢*P)*, we find
Iy = 4qapq”“qepq”* — (a5 ¢*7)* . (B.2)

We recall that electromagnetic charges are in the same SU(5) 3-fold antisymmetric rep-
resentation as the vector fields, for which the embedding in SU(5,1) is given by

1 aocae!
— Lty (B.3)

so that the invariant (B.5) can be rewritten in terms of gapc in the SU(5, 1) representa-

tabc

tion. We are going to show that it is

[ 1 ABCA/B/C/// A//BIICNA///B///C/
= —¢ €

Y

To this aim, we explicite the entries of “6” among other indices and we count for each

QABCQA’B/C’ qA//B//C// qA///B///C/// . (B4)

term, writing then

1 1A s1ralll 1 AN R Y
I [9 OPCABCT OB 4o poqurmcrGeprncn qam pmen

Tl

el 1 AN R
G- 2APCOBCT SBCTATETC 1 podenr o qonrcnqam pmem -

! ! 1" 1 " " !
3 . 2 GABCA B 6€6B crATBTC QABC%B’C’QA”B”C” C_IA’”B”’ﬁ .

el a>Uralll Uirel
4 APOOB T ATBICIOBTC g\ peqonicrqan pren qopm o -

ABcA/Blﬁ A//B/lc//A///Blllﬁ
€ € qABCQA/BIGqAHB//CNqA///B///6] s (B5)

81
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thus, recalling that geap = gap and qapc = s€apcppq”?, we can write (B.5) in terms
of two-indices charges and, performing the sum on the antisimmetric tensors contracted

indices we find

1
=5l (qa8¢°“9cpd®* + (qapg™?)?)

n
+16 (2454° 9cpg”* — (qapa™?)?) +
+16 (280" 4epd”* — (qa8q™?)?) +
+16 qap9" qcpg”* +

+4(qapq™’)?] =

= 4qa9"q9cpq”" — (qa8¢™*")* . (B.6)

Iy

1. Black Hole entropy

The only solution to equations (6.38) for a black hole with non-zero area is the BPS
one which corresponds, in terms of the central charge matrix skew-eigenvalues, to Zs = 0,

Zy1 > 0, and the black hole potential at the attractor point is
Ve = |21 = V|1 , (B.7)
so that the black hole entropy is again indipendent on the moduli fields and is

Spr < /14 q4845%qcpgPA — (qapg?B)?| . (B.8)

We notice that the invariant turns out to be the square of a function of Z;, Z,, namely

L= [(%)? = (2)7" . (B.9)
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