
Università di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Tecnologie Informatiche

Tesi di Laurea

SMEPP-Light: A Secure Middleware for
Wireless Sensor Networks

Relatori: Controrelatore:

Prof. Stefano Chessa Prof.sa Laura Semini

Dott. Michele Albano

Candidato:

Claudio Francesco Vairo

Anno Accademico 2007/2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14695833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A papà, fiamma ormai spenta,

ma sempre accesa nel mio cuore.

Contents

1 Introduction 1

1.1 Wireless Sensor Networks . 2

1.1.1 Sensor Nodes . 4

1.1.2 Sensor Networks Issues 4

1.1.3 Applications . 6

1.2 Middleware for EP2P . 9

1.2.1 Embedded Peer-To-Peer Systems 9

1.2.2 SMEPP . 10

Group Characterization 11

Service Support . 12

Security . 12

1.2.3 Middleware for Sensor Networks 13

Existing Middlewares for WSNs 13

SMEPP Light . 15

2 Hardware and Software Target Platforms 16

2.1 Hardware Specification . 16

2.1.1 Communication System 17

2.1.2 Transducers . 18

2.1.3 Power . 19

2.2 Software . 20

2.2.1 TinyOS . 21

Component-Based Model 21

TinyOS Execution Model 22

2.2.2 nesC . 23

II

Split-phase operations 25

2.2.3 TOSSIM . 27

3 SMEPP Light Specification 32

3.1 Interface . 34

3.1.1 API . 34

3.2 Architecture . 53

3.2.1 Main Components . 54

Peer Identification Component 54

Group Management Component 54

Event Management Component 55

3.2.2 Support Components 56

Security Component 56

Network Component 56

Energy Efficiency Component 56

3.3 Protocols . 57

3.3.1 Creating and Discovering Groups 57

3.3.2 Joining a Group . 59

3.3.3 Subscribe and Receive Events 62

3.3.4 Unsubscribe Events and Leave Group 64

4 Energy Efficiency 67

4.1 The Energy Efficiency component 69

4.1.1 Interface . 70

4.2 Test and Simulation . 73

5 Conclusions and Future Works 76

List of Figures 78

Bibliography 79

III

Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a network composed by a large number

of tiny, low-power, inexpensive sensor nodes, densely deployed inside or in

proximity of an environment that must be monitored. WSNs use no prede-

termined infrastructure, and self organize into a (multi-hop) ad hoc network.

Sensor nodes cooperate to realize an highly distributed application, whose

goal usually consists in sensing environmental data and monitoring a variable

set of parameters.

These features make a WSN an useful and versatile instrument for sev-

eral applications, spanning many fields: in Ambient Assisting Living (AAL)

project, for example, WSNs are used to enhance the quality of life of people

by increasing their autonomy, self-confidence and mobility. In health insti-

tution, patients can be equipped with sensor nodes to monitor their physical

conditions and be assisted, even at a distance. WSNs can also be used to

detect forest fires or monitoring disaster areas.

On the other hand, the features that make WSNs so appealing, are the

main causes of their problems too. The resources and energy limitation,

the reduced computational power, the unreliability of the links, the dynamic

topology of these networks imply non trivial difficulties in designing and

developing applications.

One of the critical points to fully exploit WSNs potentialities is the pos-

sibility of abstracting these issues by means of a convenient middleware to

support the applications development and maintenance, filling the gap be-

1

tween the applications and the underlying layers. Using a middleware that

provides the right primitives, the application developer can focus on the ap-

plication business logic, not having to implement the layers that provide the

access to the hardware and the networking mechanisms.

The purpose of this thesis is to realize a middleware tailored on the WSNs,

that offers security services and efficient use of sensors’ energy. Security

services are used to restrict the access to the groups composing the network,

to authenticate peers when they join a group, to encrypt communications,

and to ensure the confidentiality and the integrity of messages.

Energy efficiency is necessary since the nodes of a WSN are often battery-

powered. We have included an Energy Efficiency module in SMEPP Light,

that is responsible of turning off the radio of the nodes, when communication

is not supposed to take place. We have observed that the use of the Energy

Efficiency module reduces the power consumption of a node of about an half.

The thesis is structured as follows: Chapter 1 introduces wireless sensor

networks by describing the features of sensor nodes composing them, and by

discussing the main issues of such networks and their typical applications.

Then we present the related works on to middlewares for embedded peer-to-

peer systems, with a remark on SMEPP (Secure Middleware for Embedded

Peer-to-Peer Systems) and on middlewares for wireless sensor networks.

The hardware platform and the software used for the thesis are shown in

Chapter 2. Chapter 3 presents the specifications for the development, with

regards to architecture, interface and protocols of SMEPP Light.

Chapter 4 is focused on the module responsible for the energy efficiency of

the nodes. This chapter also presents the results of the preliminary measures

on the Energy Efficiency of SMEPP Light.

The last chapter reports the conclusions and proposes future works per-

tinent to this thesis.

1.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a network composed by a large num-

ber of sensor nodes which self organize into a multi-hop ad hoc network [1].

Sensors are spread in the environment without any predetermined infrastruc-

2

ture and cooperate to realize an highly distributed application, whose goal

usually consists in sensing environmental data and monitoring a variable set

of parameters. Sensed data are collected by an external node (Sink). The

sink node, which could be either static or mobile, provides an interface of the

WSN to external networks and it is accessed by the external users to retrieve

the information gathered by the WSN. [2]. It is also the mean by which the

user can program or query the network: the user interacts directly with the

sink, that is responsible to forward the queries into the sensor network.

A typical WSN is shown in Figure 1.1

Figure 1.1: A Wireless Sensor Network.

The range of application of WSNs is wide [1] and ranges from e-health,

military, environmental and home applications. These features ensure a wide

range of applications for sensor networks. Some of the application areas are

health, military, environmental and home. In military, for example, the rapid

deployment and self-organization characteristics of WSN make them a very

useful instrument for intelligence, surveillance, reconnaissance and targeting

systems. In e-health, sensor nodes can be deployed to monitor and assist

patients. They can also be used to detect forest fires or monitoring disaster

areas.

3

1.1.1 Sensor Nodes

A wireless sensor node is a device characterized by small size, limited compu-

tational power, limited memory, that can sample the environment and that

can communicate with other sensor nodes by means of a low power wireless

transceiver [3].

A sensor node is composed by two main components: the first one (Fig-

ure 1.2) is a microsystem comprising a radio transmission system, a processor

and a small memory that enables the node to execute a preprocessing of the

acquired data, before sending them through the network up to the sink.

Figure 1.2: MicaZ Mote.

The second component (Figure 1.3) is a sensor board, equipped with one

or more sensing units (transducers) capable of sampling some environmental

data, such as light, temperature, magnetic field, sounds, etc...

1.1.2 Sensor Networks Issues

Wireless sensor networks are a special kind of ad hoc networks however,

traditional wireless ad hoc networks protocols and algorithms are not well

suited to the features and application requirements of sensor networks. Main

differences between WSN and ad hoc networks are [1]:

4

Figure 1.3: Sensor Board for MicaZ.

• The numbers of nodes in a sensor network can be significantly higher

than the nodes in an ad hoc network.

• Sensor nodes are densely deployed.

• Sensor nodes are limited in power, computational capacities and mem-

ory.

• Sensor nodes are prone to failure.

• The topology of a sensor network could not be predictable and may

change frequently.

• Sensor nodes mainly use a broadcast communication paradigm, whereas

most ad hoc networks are based on point-to-point communications.

• Sensor nodes may not have unique global ID.

For these reasons, many researchers are currently engaged in developing

schemes that fulfill these requirements.

Energy efficiency is one of the most important issue of WSNs, since they

often operate in unattended mode. Unnecessary energy consumption must

be avoided by careful hardware design as well as low level (i.e., operating

system and support middleware) and high level (i.e., application) software

programming. The transmission of a packet over the radio, for example, is

5

quite expensive in terms of energy consumption. Thus most of the research

effort is devoted to develop techniques aimed to reducing the power consump-

tion, such as routing protocols that reduce to the minimum the activities of

the sensors’ radio.

Recent commercial sensor devices provide a high level of flexibility allow-

ing programmers to selectively turn on/off the various hardware components,

including transducers, the ADC and the radio. While transducer activation

can potentially be handled locally to a node, radio operation requires coor-

dination among neighboring nodes to ensure a proper behavior of the whole

network.

Communication inside a WSN is based either on the broadcast paradigm

or on a multi-hop routing protocol. Because of the limited range of the radio

of a sensor node, only a few nodes communicate directly with the sink. All

the other nodes require the cooperation of intermediate nodes of the network

to reach the sink (Figure 1.4).

Figure 1.4: A cooperative multi-hop sensor network.

1.1.3 Applications

A diverse set of applications [3] for sensor networks encompassing different

fields have already emerged, and they include e-health, environment monitor-

6

ing, military, home automation, commercial installation, intrusion detection,

machine malfunction detection, intelligent toys and many others.

Environmental Applications

One of the most common environmental applications is the monitoring of

animal species and collection of data concerning their habits, population, or

position.

Sensors can be deployed to continuously report environmental data for

long periods of time. This is a very important improvement with respect to

previous operating conditions where human operators had to move to the

fields and take manual measurements periodically resulting in fewer data,

higher errors, higher costs and interference with life conditions of the observed

species.

Pollution detection systems can also benefit from sensor networks. Sen-

sors can monitor the current levels of polluting substances in towns, rivers,

etc..., to identify the source of anomalous situations if any. Similar detec-

tion systems can be employed to monitor rain and water levels and prevent

flooding, fires or other natural disasters [26].

Military Applications

The military can take advantage of sensor network technology too.

Sensor networks can be deployed behind enemy lines to observe move-

ments/presence of troops, collect geographical information on the deploy-

ment area, survey crucial area, detect the targets.

Other possible applications can be monitoring of allied forces (equipment,

ammunitions), detection of nuclear, biological and chemical attacks.

Health Applications

In the medical field sensor networks can be used to remotely and unobtru-

sively monitor physiological parameters such as heartbeat or blood pressure

of patients, and to report to the hospital when some parameters are altered

[16]. They can be also used to track the position of medicians and patients

inside the hospital, or to realize interfaces for the disabled.

7

Structure Applications

In structure monitoring applications, sensor networks are deployed on struc-

tures of different types including bridges, buildings but also aircrafts, rockets

or other equipments requiring continuous monitoring, to ensure reliability

and safety. Sensor networks can be used to detect and locate damages as

well as forecast remaining life, more effectively and economically with re-

spect to traditional monitoring systems.

Domestic Applications

The diffusion of home automation is increasingly gaining interest, and sen-

sors can be integrated into domotic applications for the comfort and security

of the residents. Some functions in home automation include: light and

climate control, control of doors and window shutters, security and surveil-

lance systems, control of multimedia entertainment systems, automatic plant

watering and pet feeding.

Furthermore, sensor nodes can be placed inside household appliances such

as microwave ovens, refrigerators, video recorders, etc... These devices can

interact between them and with external networks, enabling the user to re-

motely control the home appliances.

Wireless Sensor Networks in Automotive

In the automotive field, Vehicular Ad-Hoc Networks (VANETs) aim to im-

prove safety and comfort of passengers. These networks can embed WSNs to

provide security functionalities, such as collision warning, automatic payment

for parking lots and toll collection.

Moreover, a sensor network can be used to monitor the position of a

car, for example to track the vehicle in case of stealing (Car Tracking).

Furthermore it can be used to supervise the traffic on particularly busy roads.

8

1.2 Middleware for EP2P

1.2.1 Embedded Peer-To-Peer Systems

A Peer-to-Peer (P2P) network is a completely or partially decentralized net-

work in which nodes share distributed resources (data, computational power,

bandwith). It does not have the notion of clients nor servers, but only equal

peer nodes that simultaneously act as both clients and servers to the other

nodes on the network. The main property of P2P networks is that communi-

cations are not based on pre-existing infrastructures, but rather on dynamic

ad-hoc networks among peers. The terminals of these networks communi-

cate in a bidirectional and symmetric way with each other. If this type of

connection is not provided directly by the underlying physical network, a

virtual network (overlay network) is set up on top of the existing physical

network. In this sense, the term P2P can also be applied in a more generic

context to name the set of communication models that provide end-to-end

communication, independently of the application and the network protocols.

An Embedded Peer-to-Peer (EP2P) system [7] is a P2P system where

small, low-powered, low-cost embedded systems collaborate in the process-

ing and management of information using wireless channels. The use of P2P

paradigms in the design of the application layer for network embedded sys-

tems, is very desirable since make these networks very robust against devices

mobility, disconnections and failures. Furthermore P2P paradigms are eas-

ily adaptable and scalable, thus they are well suited to scenarios featuring

mobile devices continuously joining and leaving the network.

Networks of embedded systems range from low-end networks which typ-

ically include wireless sensors and actuators networks (WSNs), to high-end

networks such as Mobile Ad Hoc Networks (MANETs) where the devices are

more powerful and may comprise last generation mobile phones, PDAs or

laptops. These networks lack of a centralized control and each node acts as

router for the rest of the network. So some mechanism of cooperation and

network organization and management are needed, since devices mobility,

failures and disconnections may easily disrupt communication paths, thus

leading to the disruption of the whole network.

9

On the other hand these appealing features are the main reason of the

major drawbacks of the EP2Ps [2]. Such systems, in fact, present a high de-

gree of heterogeneity (applications may run on different devices, with quite

different network bandwidths and computing power) and autonomy (the ele-

ments connect into the system and get disconnected in an independent way,

causing frequent reorganizations of the system). These drawbacks manifest

themselves in terms of technological challenges such as decentralization, links

with transitory communications (connections and disconnections happen in

an unpredictable and frequent manner) and a constantly changing topology.

In addition, there is a major problem that any EP2P system must deal

with: security [4]. Traditional P2P systems have to face attacks on the rout-

ing protocols, attacks against the identity of the nodes, and threats against

the confidentiality, integrity and authentication of the information that is

circulating in the network. These problems in an EP2P context are more

troublesome, because the underlying architecture is much more vulnerable

than that of traditional P2P systems due to resource constraints (low battery,

low memory, low processing power,), lack of tamper-resistant packaging, and

the nature of open and public communication channels. Besides this high

level of vulnerability, common security techniques are not easily adaptable

to a P2P environment, since there are no centralized servers with security

databases that can provide security services such as authentication and au-

thorization.

1.2.2 SMEPP

A key aspect for the success of these systems is the possibility of abstracting

all the intrinsic problems of these kind of networks, by means of a convenient

middleware [2]. Without a middleware (including the tools and method-

ologies to support its use), the definition, creation and maintenance of an

application could be rather complex. The middleware should hide the com-

plexity of the underlying infrastructure while providing open interfaces to

third parties for application development. The development of such a mid-

dleware is challenging because of the disappearance of the client and server

paradigm, which is currently the base of the most used middleware (CORBA,

10

J2EE, .NET), and because of the necessity to face other critical requirements,

which have to be supported by these infrastructures (mobility, new security

problems, identification, discovery and localization protocols, new quality of

software criteria, etc).

Secure Middleware for Embedded Peer-To-Peer Systems (SMEPP) [8], is

a project whose goal is to realize a middleware that overcomes all the prob-

lems described in the previous section. It aims to hide the complexity of

the underlying architecture, and at the same time to be secure, generic and

highly customizable. With these properties, SMEPP aspires to be used in dif-

ferent application domains (from critical systems to consumer entertainment

or communication), and to work on different kinds of devices (from PDAs

and new generation mobile phones to embedded sensor actuator systems).

One of the objectives of SMEPP is to provide a high-level, service-oriented

model to program the interaction among peers, thus hiding low-level details

that concern the supporting infrastructure. The key-aspects of the SMEPP

service model are: the organization of interactin peers into groups, interaction

service offered by peers or by groups, big stress on security.

Group Characterization

The group is the basic abstraction of the middleware. A group is a set of

peers that share services or provide services to other peers. The basic group

functions are:

• creation and management of groups: a peer can create a group by itself,

establishing the security requirements for the group. A peer can also

search for existing groups and join them if it has the authorization to

do it. The middleware has to manage the set of peers belonging to a

group, by keeping track of new peers that join the group or existing

peers that leave the group.

• group security : security is bound to groups. A group must be able to

accept or reject a new peer in the group based on the security policies

and the credentials of the peer. The group creator is in charge of setting

the group security policy.

11

• Information broadcast : the middleware must support secure and or-

dered multicast of messages (events) at the group level.

• group search: The middleware must provide mechanisms to locate ser-

vices and other peers inside a group.

Service Support

The SMEPP middleware is based on services. Roughly, peers offer services

inside groups. A mechanism of service discovery is provided at the group

level. A peer must belong to a group in order to use the services offered by

the respective group. Service description has to be provided by means of

a specially designed language for SMEPP service descriptions (viz., service

contracts) that include information to allow the service discovery, adaptation,

use or composition with other services.

Security

Security in EP2P is one of the key aspects in the success of this type of

system. Traditional security infrastructures cannot easily be adapted to this

type of systems, since most of them are based on trustable servers that

provide authentication and authorization. On typical EP2P scenarios, this

type of services will not be available and the peers must provide their own

authentication.

SMEPP provides a scalable key infrastructure that permits a secure flow

of information through the entire network, maintaining a low number of keys

per node. This infrastructure offers the following services:

• automatic distribution and maintenance of the network keys, using

little time and resources.

• a group level security allowing peers of a group to cooperate in a con-

fidential way and fulfill tasks inside the group.

• secure network routing protocols to permit the nodes to communicate

with the entire network. These protocols manage the essential require-

12

ments of network protocols, such as connectivity, coverage, fault toler-

ance and scalability.

• cryptographic protocols (e.g. authentication, key-exchange) and se-

curity primitives (e.g. security key primitives). These services are

designed with respect to energy efficiency and take into account the

limited computational power of embedded devices.

1.2.3 Middleware for Sensor Networks

The main purpose of a middleware is to support the development, mainte-

nance, deployment and execution of applications, filling in the gap between

the application layer and the hardware, operating system and network stacks

layers. By using a middleware, the developers can focus on the business logic

of the application, not having to implement the underlying layers. In the case

of a WSN, this includes mechanisms for formulating complex high-level sens-

ing tasks, communicating this task to the WSN, coordinating sensor nodes

to split the task and distribute it to the individual nodes, performing data

fusion for merging the sensor readings into high-level results, and reporting

it. Moreover, appropriate abstractions and mechanisms for dealing with the

heterogeneity of sensor nodes should be provided [2].

Existing Middlewares for WSNs

A seminal proposal in WSN is the Directed Diffusion paradigm [13] in which

the WSN is controlled by a special sensor node (sink) that programs the

network, collects the data and offers an interface to the application. This

first effort has evolved into more advanced proposals combining database

technology with WSN such as [14], [15]. In these proposals the database to

be queried is the physical environment where the WSN is deployed. These

approaches (e.g. TinyDB [15]) abstract specific sensor features and offer to

the application an SQL-like query language through which it can program

the network and access the sensed data. All these proposals exploit a data

centric approach in the network organization. In fact all the communications

are for named data, that is, the queries describe the data to be fetched by the

13

WSN rather than the addresses of the nodes that should execute the query.

On the other hand, a different approach may be more suitable to particu-

lar application contexts, such as Smart Environments which have in general

rather different requirements. In particular the environment is generally in-

door, hence also the size of the WSN hardly scales up to hundreds of sensors,

and the network often has a small diameter, in some cases it may even be a

star (viz., all the nodes can communicate directly with the sink). Further-

more the WSN operates close to the user, hence it can be expected human

intervention at least for simple management operations such as battery or

sensors replacement. Finally part of the sensors, for example the sensors

forming body-area sensor networks, may dynamically join or leave the WSN.

Under these requirements the data centric paradigms play a minor role and

it becomes more important the ability of addressing individual nodes.

Recently appeared solutions adopt innovative models. TinyLime [9] in-

troduces the concept of tuple spaces. In this middleware, data is represented

by elementary data structures called tuples, and the memory is a multiset

of tuples, called a tuple space, that is shared among all the sensors. An-

other proposal, TCMote [10], is based on tuple channels. A tuple channel is

a FIFO structure that allows one-to-many and many-to-one communication

of data structures, represented by tuples. By using the tuple channels the

applications can decide which application components exchange data with

each other. In this way the communication overhead can be optimized.

An event-based approach, is employed by the Mires middleware [11]. This

middleware exploits a publish/subscribe paradigm, similar to the SMEPP

service paradigm, that let the applications specify interests in certain state

changes of the real world. Upon detecting a subscribed event, a sensor node

sends a so-called event notification towards interested applications.

A different approach to WSN middleware is given by the ZigBee standard

[3], [12]. At the network layer it has an inherently node centric behavior,

but it offers service-oriented mechanisms to the applications. The ZigBee

specification includes mechanisms for the energy management of the nodes,

which however are configurable at network creation and that can not be

adapted dynamically to the application.

14

SMEPP Light

Most of the approaches showed in the previous section do not address the

issues related to security. This aspect significantly differentiates our work,

since our approach inherits from SMEPP the security concepts related to

the use of groups, that can be used to build secure multicast and unicast

communications with a fine granularity.

SMEPP Light is the version of SMEPP tailored for WSNs, whose aim

is focused on monitoring/control applications. Because of hardware con-

straints of the sensors, a full implementation of SMEPP would face several

technical problems. For this reason SMEPP Light addresses a limited but

yet significant and coherent subset of SMEPP concepts and primitives. In

particular, differently from the full SMEPP specification, SMEPP Light does

not support services, on the other hand it provides the same network orga-

nization mechanisms and it relies on the SMEPP eventing mechanisms for

query dissemination and data collection. These mechanisms are implemented

internally according to the Directed Diffusion paradigm [13].

SMEPP Light provides security mechanisms to restrict the access to the

group, to authenticate peers, and to encrypt the communication and ensure

the confidentiality of the messages flowing through the network. This feature

is rather innovative, since existing middlewares does not provides security

mechanisms at all, or, if provided, they are not so flexible. ZigBee, for

example, provides security domains, but they can be applied only to the

whole network, or to single link between two nodes.

In addition, since sensor nodes are battery-powered, SMEPP Light also

offers energy efficiency mechanisms that dynamically adapt to the application

needs, in order to reduce the power consumption of the nodes.

15

Chapter 2

Hardware and Software Target

Platforms

2.1 Hardware Specification

The most commonly used platform for WSNs is the Crossbow Mote [17].

Motes belonging to this family of sensors, share a common core composed

by an 8-bit Atmel microcontroller with RISC architecture, clocked at 8MHz,

with an embedded 4KB RAM memory, an external 128KB flash memory, a

persistent memory of 512KB, a wireless communication subsystem and three

LEDs that can be used to show the operational status of the device.

The new IRIS mote brings some important improvements. It can count,

in fact, on a 8KB RAM memory that lets the programmer create bigger and

more powerful applications. IRIS mote improves the radio communication

system too, by mounting a ZigBee-compliant transceiver, that grants a larger

bitrate. In addition the radio range has been increased to an outdoor range

of up to 300 meters.

Table 2.1 shows the main differences between the sensors belonging to

the Crossbow Mote class.

Another platform for sensor nodes is the SPOT platform by Sun. The

Sun SPOT project [18] (Small Programmable Object Technology) is an ongo-

ing research project at Sun Labs. The SunSPOT devices are equipped with

a 32 bit ARM-7 processor, 256 KB RAM, 2MB flash ROM, and an IEEE

16

Mica2Dot Mica2 MicaZ IRIS

Microcontroller Atmel ATmega 128L Atmel ATmega 1281

Clock Frequency 4MHz 8MHz

RAM (KB) 4 4 4 8

ROM (KB) 128 128 128 128

Storage (KB) 512 512 512 512

Radio Chipcon CC1000 Chipcon CC2420 IEEE 802.15.4

Radio Frequency 433MHz 916MHz 2.4GHz 250Kbit/s

Max Range (m) 150 75-100 300

Power 3V Coin Cell 2x AA Batteries

User Interface 1 LED 3 LEDs

Table 2.1: Comparison for various sensor architectures.

802.15.4-compliant radio interface. SunSPOT is designed to support Java

programming. These devices can count on a small J2ME virtual machine

(”Squawk VM”) that supports running applications with less overhead. Sun

SPOT simplifies development by providing a single tool for programming,

configuring, managing and monitoring Sun SPOT devices. Sun SPOT devel-

opers can use industry standard Java development tools such as Netbeans or

Eclipse to program and debug their applications [2].

2.1.1 Communication System

Early projects about the communication system of a sensor node focused on

optical transmission, however the current sensor hardware are based on Radio

Frequency (RF) transmission. Optical communication is cheaper, easier to

construct and consume less power than RF, but it requires visibility and

directionality, which are requirements extremely hard to be met in a sensor

network. RF communication is less reliable, suffers of radio interferences

and wastes more power, but is more flexible and more suitable to the typical

environments of sensor networks.

17

Crossbow motes employ two kinds of radios. The older one (Chipcon

CC1000, embed on the Mica2 and Mica2Dot motes) works in a licence free

band (315/433/868/916 MHz) with a bitrate of about 25-50Kbps, and offers a

basic Carrier Sense Multiple Access (CSMA) Medium Access Control (MAC)

protocol. The newer one (Chipcon CC2420, embed on the MicaZ and IRIS

motes) is an IEEE 802.15.4-compliant transceiver operating at the frequency

of 2.4GHz with a bandwith of 250Kbps. The motes mounting this transceiver,

use an internal antenna that make the sensor nodes more manageable and

self-contained than the others, which have a long external antenna. However

the former radio type has a radio range of about 300 meters (outdoor), while

the 802.15.4-compliant transceiver radio range is limited to 125 meters.

2.1.2 Transducers

A sensor node comprises also one or more sensing units (transducers) to

sample the environment. A typical sensing unit is composed by two subunits:

a sampler and an analog-to-digital converter (ADC). The ADC converts the

analog signal produced by the sampler to a digital signal and then passes it

to the processor.

Two possible strategies can be adopted in the design of the sensing unit

subsystem. The most general and adopted approach, used by Crossbow,

consists in mounting the transducers on stand-alone sensor boards, that can

be attached to the main controller board of the node through an expansion

bus. In this way the design of the controller part can be separated from the

design of the transducers.

A typical Crossbow sensor board is equipped with light sensor, temperature

sensor, microphone, sounder, tone detector, 2 axis accelerometer and 2 axis

magnetometer devices. More economic sensor boards may mount a reduced

set of transducers, and more expensive ones may be equipped with a GPS

module for the localization of the sensor node.

The other approach consists in mounting the transducers directly on the

micro controller board. In the sensor nodes adopting this approach, the

transducers are soldered on the board, or can be mounted if needed, but the

available configurations and the expandability is affected [3]. On the other

18

hand, this approach may reduce production costs and make the sensor nodes

more robust than the stand-alone sensor boards which may detach from the

controller board in rough environments.

2.1.3 Power

An ideal sensor node would be very small, not replaceable and very cheap.

However, since the cost of a sensor is still not cheap, and sensors are mainly

used for research purposes, the batteries must have a long life and must be

replaceable. So most common sensor nodes are powered by standard AA

batteries, that have a reasonable life duration, and are extremely easy to be

found. Size is determined by the batteries, so currently sensors are a few

cubic centimeters in size.

An exception is represented by the Mica2Dot motes (Figure 2.1) from

Crossbow, that have been designed to be an alternative to the common sen-

sors, and to be used when the reduced dimension is a strict constrain. It is

powered by a coin cell battery, so its size is about a quarter dollar, but it is

more resource constrained than the larger sensor nodes.

Figure 2.1: Mica2Dot Mote.

Currently researchers are investigating other possible power sources, such

as solar cells, but there are some reservations about the effective uses of these

19

alternatives. Solar cells, for example, would not produce much energy in

indoor environments, or under the coverage of tree foliage like in woods or

forests.

2.2 Software

Software platforms for WSNs range from minimal operating systems con-

structed on C-like programming languages such as TinyOS and Contiki, to

virtual machines such as Squawk, used in Sun SPOT sensors.

Contiki [20] is a lightweight operating system, which supports the dy-

namic loading and replacement of individual programs and services. It is built

around an event-driven kernel but provides an optional preemptive multi-

threading mechanism that can be applied to individual processes. Contiki is

written in C and it has been ported to several micro-controller architectures.

Contiki includes some mechanism to reduce power consumption, and the to-

tal size of compiled code fits in 4KB RAM. It can load and unload individual

applications or services at run-time. Contiki programs use native code and

can therefore be used for all types of programs, including low level device

drivers without loss of execution efficiency.

Squawk virtual machine [19] is a fully Java compliant and Connected

Limited Device Configuration (CLDC) 1.1-compatible (viz., the Java ME

platform) adopted for the SUNSpot sensor devices. The main goals of the

Squawk VM are portability, ease of debugging, and maintainability. Squawk

architecture is composed by a compact bytecode instruction set and small

bytecode for the core classes, statically linked (35% - 45% shorter than equiv-

alent J2ME class files). Once closed, a suite can not be modified anymore,

and this results in a significantly reduced start up time when running an

application from a suite (as opposed to a dynamically loaded set of classes).

Squawk virtual machine supports the concurrent execution of more than

one application, but each application is completely isolated from the others.

However, given the immutability of suites, different applications can share

common suites. This can significantly reduce the memory footprint of each

application, that is particularly important in the embedded device space [2].

20

2.2.1 TinyOS

TinyOS [21] is a lightweight open-source operating system, developed by

the Berkeley University. It is written in nesC (a C-like language with some

extensions to support the development of mote applications) and it is the de-

facto standard operating system for WSNs. TinyOS is a component-based

and event-driven operating system, and it is highly modular and configurable.

It has no kernel and it does not allow dynamic memory allocation. TinyOS

allows the user to interact with the network by means of a pc connected to

the sink and some Java tools, in order to collect data from the network, send

commands to the nodes, and monitor network traffic.

Component-Based Model

A typical TinyOS application consists of a set of components, both provided

by the OS and written by the programmer, assembled (viz., wired) together

to form an executable. A component is composed by two parts, one for its

specification, with the list of its interfaces, and another one for its imple-

mentation. Components interacts by means of bidirectional interfaces. A

component uses or provides interfaces. The provided interfaces represent

the functionalities that the components implements and offers to its users.

The used interfaces represent the functionalities that the component needs

to use to perform its job.

An interface may contain commands and events. Commands are the func-

tions implemented by the component providing that interface, while events

are notifications signalled by the components providing the interface. Events

may notify an asynchronous event (e.g. the receipt of a message) or the end-

ing of a split-phase operation (see Split-Phase Operations section).

A component providing an interface has to implement all the commands

specified in the interface. A component using an interface has to implement

all the events declared in the interface (viz., implements the handle to be

executed at the signalling of related event). A single component may use or

provide multiple interfaces and multiple instances of the same interface.

Figure 2.2 shows the component-based model in TinyOS.

21

<<component >> MyAppl

event void AMSend.sendDone(error_t result) {}

<<component >> AMSender

command void AMSend.send(message_t msg, uint16_t dest) {}

<<interface >> AMSend

command void AMSend.send(message_t msg, uint16_t dest);

event void AMSend.sendDone(error_t result);

<<uses>>

<<provides>>

Figure 2.2: Component-based model in TinyOS.

TinyOS Execution Model

TinyOS does not support multi-threading, but it relies on a task mechanism

to perform long computations. The standard nesC code is synchronous, it

runs in a single execution contest without preemption, that is the CPU is

kept busy until the completion of synchronous code. This simple mechanism

enables the scheduler to reduce RAM consumption, but can affect the system

responsiveness, since long-running pieces of code increase the response time

to events.

To obviate this problem, TinyOS uses tasks. A task is an execution

context that runs in ”background”, to completion, without being preempted

by other tasks but it can be preempted by interrupt service routines (viz.,

events signalled by the underlying levels such as the receipt of a message).

Thus the system can respond to hardware events while continuing its current

operations, simulating a sort of parallelism.

A task can be posted by a command, an event or by another task. When

posted, a task is inserted in a task queue, processed in FIFO order. As

22

already explained, tasks are used for long-running computation, however a

task should not run for a long period anyway because, once scheduled, a

task runs to completion before the next task can start (nevertheless it can be

preempted by hardware interrupts whose handlers will eventually put new

tasks in the task queue). If a series of long operations are needed, more

separate tasks should be posted, one for each operation.

Because they are the root of a call graph, tasks can safely both call

commands and signal events. Commands, on the other hand, do not signal

events to avoid creating recursive loops across component boundaries (e.g., if

command X in component 1 signals event Y in component 2, which itself calls

command X in component 1). Events, finally, can post tasks, call commands,

and signal other events. [21].

Since tasks and hardware event handlers may be preempted by a different

asynchronous code, nesC programs are susceptible to race conditions. Races

are avoided either by accessing shared data exclusively within tasks, or by

having all accesses within atomic statements. The nesC compiler reports

potential data races to the programmer at compile-time.

2.2.2 nesC

nesC is the most used programming language for WSNs. It has a C-like

syntax and exposes a programming model that incorporates event-driven ex-

ecution, a flexible concurrency model, and component-oriented application

design. Its main goal is to allow the developer to build components that

can be easily composed into complete, concurrent applications and perform

extensive checking at compile-time. There is no dynamic memory allocation

and the call-graph is fully known at compile-time. These restrictions make

the program analysis (for safety) and optimization (for performance) sig-

nificantly simple and accurate. nesC’s component model and parameterized

interfaces eliminate many needs for dynamic memory allocation and dynamic

dispatch of methods [2].

There are two types of components in nesC: modules and configurations.

Modules provide the implementations of one or more interfaces. Configura-

tions are used to assemble other components together, connecting interfaces

23

used by components to interfaces provided by others. Every nesC application

is described by a top-level configuration that wires together the components

inside.

Interfaces are bidirectional and specify two sets of functions, commands

and events. Commands have to be implemented by the provider of the inter-

face and can be invoked (call) by the user of the interface. The events have

to be implemented by the user of the interface and are signalled (signal) by

the provider of the interface (see Figure 2.3).

<<component >> MyAppl

call command AMSend.send(msg, dest);

event void AMSend.sendDone(error_t result) {}

<<component >> AMSender

<<command>> AMSend.send()

msg: message_t

dest: uint16_t

command void AMSend.send(message_t msg, uint16_t dest) {}

signal event AMSend.sendDone(result);

<<event>> AMSend.sendDone()

result: error_t

uses AMSend

provides AMSend

command invocation

event
signalling

Figure 2.3: Component-usage model in TinyOS.

Concurrency model of nesC is based on tasks and interrupt handlers.

Tasks run to completion, and may be preempted only by hardware interrupts,

continuing their computation after the interrupts have been handled (this

usually results in a new task in the task queue). nesC compiler detects

potential race conditions at compile-time.

24

Split-phase operations

Some TinyOS operations, such as sending a radio message, or read a value

from a transducer, takes too much time even if executed in a task, since they

would block the execution of tasks until the completion of the operation,

keeping the CPU inactive uselessly. nesC provides a split-phase mechanism

that TinyOS adopts to perform blocking operations.

In such a paradigm, long-running operations are split into two separate

phases of execution: invocation and completion. When a program calls a

split-phase operation, the call returns immediately and other subsequent in-

structions can be executed, while the execution of the split-phase operation

continues in ”background” (e.g. the radio component sends a packet over the

radio channel). When finished, a callback is invoked to notify the completion

of the split-phase operation.

Here is a simple example of the difference between the two ways to implement

the sending of a message with an increment of a counter when the operation

ends:

Blocking mode:

if (send() == SUCCESS) {

sendCount++;

}

Split-phase mode:

// start phase

send();

//completion phase

void sendDone(error_t err) {

if (err == SUCCESS) {

sendCount++;

}

}

25

In the blocking mode the execution is blocked until the sending of the

message is completed. On the other hand, in split-phase mode, the control

returns just after the calling of send() command, and other actions can be

performed while the message is being sent. Eventually, the event sendDone()

is signalled by the radio component and the counter is incremented by the

handle of the event.

Split-phase code is more verbose and complex than sequential code, but

it has several advantages:

• split-phase calls do not fill up stack memory while they are in execution.

• split-phase operations keep the system responsive: it never happens

that an application needs to take an action but all of its threads are

tied up in blocking calls.

• it tends to reduce the stack utilization, as creating large variables on

the stack is rarely necessary.

Split-phase interfaces enable a TinyOS component to easily start several

operations at once and have them executed in parallel. Also, split-phase

operations can save memory. This is because when a program calls a blocking

operation, all of the state it has stored on the call stack (e.g., variables

declared in functions) has to be saved. Since determining the exact size of

the stack is difficult, operating systems often choose a very conservative and

therefore large size. Of course, if there is data that has to be kept across the

call, split-phase operations still need to save it.

Another example of split-phase utilization is the waiting. In sequential

programming, blocking operations (such as I/O readings) have an implicit

call to a wait() function, that blocks the execution until the operation is

completed. TinyOS provides a timer mechanism that enables the execution

to be continued while performing blocking operations.

In the following example op1() is a blocking function:

Blocking mode:

26

op1();

wait(); //blocked

op2();

Split-phase mode:

op1();

call Timer.startOneShot(500);

... //other operations can be performed

event void Timer.fired() {

op2();

}

In split-phase mode, during the waiting for the timer to be fired, other

operations can be performed.

2.2.3 TOSSIM

TOSSIM [22] is a discrete event simulator for TinyOS applications. It works

by replacing real components with simulated implementations of them. TOSSIM

can simulate hundreds of nodes simultaneously, but it has the limitation that

each simulated node runs the same program. Its main purpose is to faithfully

simulate, as much as possible, the TinyOS applications, not the real world.

Thus, some functionalities, such as the power consumption, are not featured.

On the other hand, TOSSIM simulates the following functionalities:

• timers : the component providing the Timer<Milli> interface (viz., the

component that implementsthe timer system in TinyOS), is replaced

by a simulation implementations of millisecond timers.

• communication: a packet-level simulation replaces the packet-level com-

munication component, that is acomponent providing the interface to

access and manipulate the packets (e.g. fill the message fields, get or

set the destination, etc.).

27

• radio: the low-level radio chip component is replaced by a precise sim-

ulation of the code execution.

TOSSIM works by pulling an event from the event queue, and executing

it. The event queue is sorted by time, and contains events representing

hardware interrupts, high-level system events (e.g. packet reception), and

tasks.

TOSSIM is a library, so the programmer has to write programs to con-

figure the simulation and run it. TOSSIM supports two programming in-

terfaces: Python and C++. Python allows the user to dynamically interact

with the simulation, thus acting as a debugger. C++ interface is supported

since the interpreter may result a performance bottleneck, especially for large

simulations.

A TOSSIM object has several functions to get information about the

simulation like the id of the current node, the current time, or an object

representing the radio model.

To enable the nodes of a simulation to communicate with each other, the

user has to specify a network topology. TOSSIM is structured in a way that

the user can easily change the underlying radio simulation. Its default radio

model is signal-strength based and needs the user to specify network topology

with the propagation strength of each link and the RF noise and interference

each node ears. These information have to be specified by the user in files

that are parsed by the TOSSIM library to build the radio model. An entry

of the topology file is composed by the source node ID, the destination node

ID and the gain, in dBm, of that link.

Here is an example of topology file:

1 2 -34.0

2 1 -38.0

2 3 -33.0

3 2 -33.0

3 4 -35.0

4 3 -40.0

28

Figure 2.4 shows the network topology derived from the configuration file

above.

1
-34.0

-38.0
2

-33.0

-33.0
3 4

-35.0

-40.0

Figure 2.4: Graphic representation of the network topology .

In this case we are simulating symmetrical links (viz., with the same gain

value in the two directions of the link) on a multi-hop chain network, in

which a node can communicate only with its predecessor and its successor.

There are two ways to configure and perform a TOSSIM simulation: inter-

act directly with it by a command prompt, or by means of a python configu-

ration file. The former implies that the user has to configure the environment

(import libraries, create the radio model, add the channels, start the nodes)

at each simulation and that he has to call repetitively the runNextEvent()

function to execute the simulation. The latter enables the user to perform

the simulation just by executing a python file.

An example of a configuration file for TOSSIM is the following:

from TOSSIM import *

import sys

t = Tossim([])

r = t.radio()

f = open("topology.txt", "r")

...

r.add(int(s[0]), int(s[1]), float(s[2]))

First the needed libraries are imported. Then a TOSSIM object and a radio

object are created and the topology model is built adding to the radio object

29

the gain value of each link specified in topology file. The first two field are

integer since they are the identifiers of the nodes, while the third field is a

float since it is the gain value if the link.

f2 = open("log.txt", "w")

t.addChannel("Boot", sys.stdout);

t.addChannel("SmeppLightP", sys.stdout);

t.addChannel("Security", sys.stdout);

t.addChannel("Boot", f2);

t.addChannel("SmeppLightP", f2);

t.addChannel("Security", f2);

Each debug statement in a TinyOS application is put on a channel (in this

case three channels are used, Boot, SmeppLightP and Security, to differ

the various kinds of debug statements). In order to have these statements

printed on the screen, it is needed to link each channel of the application to

the standard output. In this configuration, channels are linked to a log file

too.

t.getNode(i).createNoiseModel()

This line creates the noise model and added it to the TOSSIM object (t) of

each node (i) in the simulation.

t.getNode(1).bootAtTime(10000000000); //1 sec

t.getNode(2).bootAtTime(10000000000); //1 sec

t.getNode(3).bootAtTime(20000000000); //2 sec

t.getNode(4).bootAtTime(40000000000); //4 sec

for i in range(0, 6000):

t.runNextEvent()

30

The simulation starts for each node at the time specified as parameter to the

bootAtTime() function, and then executes 6000 events.

Another way to specify the duration of a simulation is to set directly its

time duration:

time = t.time()

while (time + 1200000000000 > t.time()): #120 sec

t.runNextEvent()

This simulation runs for 120 seconds.

As seen, TOSSIM provides run-time configurable debugging output, al-

lowing the user to test its applications in a monitored and repeatable envi-

ronment.

31

Chapter 3

SMEPP Light Specification

SMEPP Light [5] is a simplified version of the SMEPP [8] middleware, tai-

lored for sensor networks. It aims to be as much as possible compliant with

the SMEPP specifications, however because of the resource limitations of the

sensors, some features are not provided in SMEPP Light. In particular, this

version of SMEPP does not use services for the cooperation of the peers.

The main feature of SMEPP Light is that peers organize themselves in

groups, in order to access the functionalities provided in the group. For

a WSN this usually means managing data acquired from the environment

they are in. The existence of different groups enables the definition of dif-

ferent security and communication domains involving only peers owning the

credentials needed to be into the group.

Peers in a SMEPP Light group adopt a publish/subscribe mechanism for

their interactions. A peer can perform a subscribe for a certain event in a

group. Then, if there is at least one peer providing that event in the group,

the subscriber starts to receive automatically the requested events.

A group can be closed or open, private or public. In a closed group, a

key, that must be known a priori by the peers, is needed to access the group

and the communications are encrypted with a session key, that is established

during the join phase.

SMEPP Light provides a two-level security based on symmetric cryptog-

raphy: network-level security and group-level security. Two keys are used

at network level. The first key is used for packets’ confidentiality (viz., to

32

encrypt the data). The second one is used to compute a MAC (Message Au-

thentication Code) field to be attached to the packets to grant the integrity

of the message. A message is discarded if it has not the right MAC-field.

These keys are set at compile time, but can be changed at run time.

Network-level security provides a first level of security. If the user wishes

a stronger security, he should rely on group security, that is based on a session

key (that can be refreshed) used to encrypt communications inside the group.

Group-level security exploits three keys, namely the masterKey, the sessionKey

and the sessionMAC. The masterKey is used to restrict the access to the

closed groups, so that a peer can join a closed group only if it owns the right

key. The sessionKey and sessionMAC keys, are transmitted (encrypted with

the masterKey) to the peers when they join the group, and are used to enforce

data confidentiality and data integrity in all the communications within the

group. These keys are initially known tothe peer that creates thegroup, and

they are set either at compile time, or at run time. However the masterKey

must be known in advance by all the peers that want to join the group. Since

a peer can belong to several groups, the group identifier field is sent in clear

text in every message, so that the peer receiving the message can know which

key to use to check the integrity of the message and decrypt it.

An important requirement of SMEPP is that each peer must be described

by an XML document. In SMEPP Light a peer description consists in the list

of the transducers it is equipped with, and consequently in the list of events

it can raise. Therefore the peer description is compressed into a bitmask

(each bit representing a kind of event), that the nodes can easily store and

exchange.

For energy management purposes, each group defines its own duty cycle

that drives the radio activity of the peers (a duty cycle imposes to each node

a period of activity, followed by a period of inactivity in which the node

is practically turned off). Hereafter we call management duty cycles the

duty cycles used for the group management (i.e. for join, leave and subscribe

operations), and user duty cycles that are duty cycles related to the handling

of the subscriptions (send an event related to a subscription to the subscriber,

or unsubscribe of events).

Every node in a group operates the management functions according to

33

its management duty cycle (e.g., it responds to messages only when it is

active). Moreover, each subscription has its own rate (e.g., the sink can

request the light value every 30 seconds), and this results in a different duty

cycle for each subscription to be handled. The middleware uses an energy

efficiency module for duty cycle management. It records every duty cycle

the node is involved in (both management duty cycles and user duty cycles)

and manages the radio activity of the node by turning on or off the radio

whenever necessary. This energy management policy is rather different from

analogous common policies. In the case of ZigBee, for example, the duty

cycle is defined in advance by the network coordinator and routers (normally

according to the expected behavior of the application), and it is common to

all the network.

3.1 Interface

SMEPP Light provides primitives for peer initialization, group management,

and event transmission. Table 3.1 shows the main primitives of the middle-

ware. The user can configure the middleware by means of two functions,

namely getParam() and setParam(), used respectively to retrieve and to

change the status of certain properties of the middleware. Note that, to

avoid confusion, hereafter, we call signals the TinyOS events, to distinguish

them from the SMEPP Light events (that are the events raised by the node

in response to a subscribe request).

3.1.1 API

This section presents the SMEPP Light primitives. In particular it discusses

their functionalities, the data structures used, and the communications in-

volved, if any.

newPeer

command uint16 t smepp newPeer(credentials networkKey, credentials

networkMAC, int8 t *error)

34

Peer Identification

command uint16 t smepp newPeer(networkKey, networkMAC, *error)

Group Management

command error t smepp createGroup(*groupDescription)

command error t smepp getGroups(groupDescription)

signal void getGroups result(groupId[])

command error t smepp getGroupDescription(*groupDescription)

command void smepp joinGroup(groupId, masterKey)

signal void peerJoined(*peerDescription)

signal void joinGroup result(groupId, *subsList, result)

command peerDescr[] smepp getPeers(groupId)

command error t smepp leaveGroup(groupId)

signal void peerLeft(peerId, groupId)

Event Management

command error t smepp subscribe(eventName, groupId, rate?, expTime?)

signal void subscribed(eventName, groupId, rate, expTime, offset)

command error t smepp unsubscribe(eventName?, groupId)

signal void unsubscribed(eventName, groupId)

command error t smepp event(groupId, eventName, value)

command error t smepp receive(eventName, frequency)

signal void receive result(sender, groupId, eventName, value)

Middleware Configuration

command error t smepp setParam(key, *value)

command void* smepp getParam(key)

Table 3.1: Interface of SMEPP Light.

35

SMEPP Light applications call the newPeer() primitive to become peers.

This call is used to initialize the components used by the node (e.g. radio

component, energy efficiency module, etc). It is only a local call and does

not result in any communication.

This primitive takes in input the network keys to validate the peer against

the middleware, and returns the peer identifier. This identifier is unique

within the network, and correspond to the sensor identifier used by TinyOS

and assigned to the node at compile time. In case of failure an error code is

reported by the error parameter.

Modifications to the environment : it initializes the components and mod-

ules used by the node and the peers[] list. It is a list containing the peer

descriptors of all the peers of a group. A peer descriptor is a data structure

containing the identifier of the peer and a bitmask describing the transducers

the node is equipped with:

struct peerDescr {

unit16_t peerId;

uint8_t capabilities;

}

The application has to set the capabilities field, using the setParam()

primitive, before invoking the newPeer() primitive.

Communications : no communication involved.

createGroup

command error t smepp createGroup(groupDescr *groupDescription)

SMEPP groups are logical associations of peers. Roughly, peers create

groups and offer events (typically information sensed by the environment

they are in). Then, other peers join existing groups in order to subscribe

to one or more events offered in the group. Peers call the createGroup()

primitive to start new peer groups.

36

The groupDescription parameter specifies the properties of the group

to be created. It is a data-structure containing the name, the identifier, the

key (viz., the masterKey) used to restrict the access to the group, and a

bitmask (8 bits) specifying the security policies, in terms of closeness and

privacy, of the group.

struct groupDescr {

uint16_t groupId;

char groupName[DIM_GROUP_NAME];

uint8_t securityInfo;

credentials masterKey;

}

A group can be closed or open, private or public according to the value of

securityInfo field:

• if its first bit is 1, it implies that the group is closed : cryptography has

to be used to communicate inside the group. Only authorized peers

can join closed groups, and the masterKey field specifies the key to be

used to encrypt the join request. Not encrypted requests, or requests

encrypted with the wrong key, to join a closed group will be discarded

by the middleware (viz., the middleware will return an error to the

application issuing the request to join the group). Otherwise the group

is open: the communication is performed in clear text and the group

can be joined with a clear text request.

• if its second bit is 1, it implies that the group is private: it is visible by

getGroups() only by encrypting the getGroupsMsg message with the

correct masterKey (viz., the middleware will return only the groupId

of the groups whose masterKey parameter matches the key used to en-

crypt the request, see getGroups() primitive). Otherwise it is public

and it can be found by getGroups() with a clear text query.

This second feature has not security purposes, because it would be hard

hiding the existence of a private group from an attacker. It is imple-

mented only to avoid the middleware returning not joinable groups.

37

It is important to note that open group implies public group: if the user

specifies, in the groupDescription parameter, a group both open and pri-

vate the middleware will return FAIL.

Table 3.2 summarizes the possible cases and the key needed by the prim-

itives.

masterKey sessionKey

open-public Not used Not used

public-closed joinGroup() Every communication within the group

private-closed
getGroups()

Every communication within the group
joinGroup()

Table 3.2: Key usage for each group type.

In SMEPP Light credentials is a data-structure containing a 128-bit

key.

struct credentials {

uint8_t key[16];

}

When the createGroup() invocation is successful, groupId field of groupDescription

data-structure is initialized with the identifier of the group that has been cre-

ated. The application has to allocate the group descriptor to be passed to

the createGroup() primitive and has to initialize groupName, securityInfo

and masterKey fields.

Modifications to the environment : it updates myGroups[] list. It is an array

of groupDescr containing the group descriptors of the groups the peer be-

longs to.

Communications : no communication involved.

38

getGroups

command error t smepp getGroups(groupDescr groupDescription)

getGroups() is used to retrieve the identifiers of existing groups. How-

ever, differently from SMEPP, getGroups() is a split-phase call, so it does

not return directly a list of groupId, but it simply sends the request to the

network. The middleware will eventually notify the groupIds received by

raising the getGroups result() signal to the application.

The middleware waits for the replies to the getGroups() call, for a default

time interval (settable by setParam()). To this purpose, it keeps a timer set

to this value that is started when the getGroups() request is performed.

When this timer expires the middleware raises the getGroups result() sig-

nal to the application. This signal contains an array with the groupIds

received.

The groupDescription parameter is used as a search filter (e.g., to re-

trieve private or public groups, or groups having a certain name). If the

user requests private groups, he has to initialize the masterKey field of

groupDescription. In this case the message is sent encrypted with this

key. Otherwise the message is sent in clear text and the middleware will

return public groups.

If the user requests private groups and does not specify the masterKey,

or if he requests groups both open and private, the middleware returns FAIL.

Modifications to the environment : this command updates the following lists

at every reception of a groupMsg with a new groupId:

• groups[]: is an array containing the group descriptors of the groups

received.

• groupDutyCycle[]: is an array containing the management duty cycles

of the groups received.

• firstSeen[]: is used to store the identifiers of the first peer that has

replied to getGroups() request, for every different groupId received.

39

The middleware will send to this peer the joining request for this group

(see joinGroup).

Communications : a getGroupsMsg is sent in local broadcast (peers receiving

this message do not broadcast it further). This message can be encrypted

with the masterKey according to groupDescription parameter (viz., it is

encrypted if the user has requested private groups). Peers that are neighbors

to the caller (viz., peers who are in the radio range of the caller), and that

meet the search criteria, reply with a groupMsg (encrypted if the group is pri-

vate), sent in unicast to the caller. This message contains the description of

the group (identifier, name and security info) and its management duty cycle.

The data structures related to these messages are the following:

struct getGroupsMsg {

uint8_t type;

uint16_t gNameHash;

uint16_t peerId;

uint8_t securityInfo;

}

struct groupMsg {

uint8_t type;

uint16_t peerId;

groupDescr groupDescription;

dutyCycle groupDutyCycle;

}

struct dutyCycle {

uint16_t length;

uint16_t interarrive;

}

The type field is used to recognize the kind of the message (e.g., if the message

is a getGroupsMsg or a groupMsg), and it is enclosed in every message.

40

gNameHash is a simple hash of the group name, used to identify the group.

In this way it is possible to send fewer bytes, than transmitting the whole

group name. peerId is the identifier of the sender. securityInfo denotes

the kind of group that has been requested.

As in the other primitives, the masterKey field in groupDescription

data-structure is never sent in any message.

groupDutyCycle specifies the activity/inactivity period of the group. It

is a data-structure containing the length of the activity window of the node,

and its period (viz. the time interval between two successive turning on):

getGroups result

signal void getGroups result(uint16 t groupId[])

The middleware raises this signal to the application when the timer re-

lated to the getGroups() call expires. The groupId[] parameter contains

the identifiers of the received groups (viz., the different identifiers of the

groups which replied to the getGroups() call).

Modifications to the environment : none.

getGroupDescription

command error t smepp getGroupDescription(groupDescr *groupDescription)

Peers call getGroupDescription() to retrieve the information charac-

terizing a group, that is, its name and the security properities of the group.

This information is already stored in the middleware, so it does not result in

any communication.

The application has to allocate a group descriptor to be passed to the

getGroupDescription() primitive and has to initialize the groupId field to

notify to the middleware which is the group whose description is requested.

41

Modifications to the environment : none.

Communications : no communication involved.

joinGroup

command void smepp joinGroup(uint16 t groupId, credentials masterKey)

Peers use the joinGroup() primitive to become members of groups. The

groupId specifies the group to join, while the masterKey serves to validate

the peer, that is, to check whether the peer is allowed to join the group, if it

is a closed one.

A peer calling joinGroup() (say N) sends the request directly to the

firstSeen[i] (say P), where i is the groupId group’s position into the

array groups[]. N specifies also its own capabilities.

Communications inside closed groups are encrypted with a group key

(viz., the couple sessionKey-sessionMAC). If N joins a closed group, it needs

to know these keys, so P will reply with a groupKeyMsg and a groupMACMsg

to transmit the keys to N. If the group is an open one, these two messages

are not sent.

For management purposes, P will send to N the list of the members of

the group (viz., their identifiers and their capabilities). Moreover P will send

also the list of the currently active subscriptions of the group. In this way N

can set P as its parent for all the subscriptions and it can participate to all

the ongoing group activities.

When a node joins a group, it inherits the management duty cycle of the

group, and the user duty cycle of all the subscriptions already present into

the group. P will send also time information (viz., the offset between the

current time and the next fire of the management duty cycle of the group)

to let N be synchronized with the joined group.

The receipt of these messages results in raising the joinGroup result()

signal to the caller’s application.

Furthermore, P forwards the message received in group broadcast to no-

tify the joining of N to all the members of the group. The receipt of this

42

message results in raising peerJoined() to the application of each node of

the group.

Modifications to the environment : none.

Communications : a joinGroupMsg is sent directly to the peer of the group

to be joined (viz., firstSeen[i]). As consequence, the node that receives

this message, will send the following messages to the caller: a groupKeyMsg

and a groupMACMsg (if it is a closed group), a peersMsg, and, if needed, one

or more peerListContMsg (if peer list does not fit in the peersMsg), and

zero or more subscriptionsMsg, according to the size of subscription list.

All these messages are answered with an ackMsg by the joining peer.

Furthermore the node already belonging to the group, that handles the

join protocol, sends also a notifyJoinMsg in group broadcast, to notify that

a new peer joined the group. If the group to be joined is a closed one, the

first two messages are encrypted with the masterKey key, and the other ones

are encrypted with the sessionKey-sessionMAC key.

The data structures for these messages are the following:

struct joinGroupMsg {

uint8_t type;

uint16_t groupId;

uint8_t capabilities;

}

struct ackMsg {

uint8_t type;

uint16_t groupId;

uint8_t ackType : 4;

uint8_t ackedPkt : 4;

}

struct groupKeyMsg {

uint8_t type;

43

uint16_t groupId;

credentials sessionKey;

}

struct groupMACMsg {

uint8_t type;

uint16_t groupId;

credentials sessionMAC;

}

struct peersMsg {

uint8_t type;

uint16_t groupId;

int16_t offset;

uint8_t nextPeerListPkts : 4;

uint8_t count : 4;

uint8_t nextSubsListPkts;

peerDescr peerList[PEERS_FIRST_MSG];

}

struct peerListContMsg {

uint8_t type;

uint16_t groupId;

uint8_t seqNum : 4;

uint8_t count : 4;

peerDescr peerList[PEERS_FOLLOW_MSG];

}

struct subscriptionsMsg {

uint8_t type;

uint16_t groupId;

uint8_t seqNum : 4;

uint8_t count : 4;

subsList_entry subsList[SUBSCRIPTIONS_PER_MSG];

44

int16_t nextON[SUBSCRIPTIONS_PER_MSG];

}

struct notifyJoinMsg {

uint8_t type;

uint16_t groupId;

uint16_t peerId;

uint8_t capabilities;

uint16_t parent;

}

Each node is equipped with a set of transducers and can ”sense” some

information from the environment it is in (e.g., the light, the tempera-

ture). However each node can be equipped differently from the other ones:

capabilities is a bitmask specifying the transducers available on the node

and so the data it can ”sense” (viz., the events it can offer).

ackMsg contains two 4-bits fields, denoting the sequence number of the

packet acknowledged, and the type of acknowledgement, because the same

type of message is sent for every acknowledgement.

peersMsg contains two fields, namely nextPeerListPkts and nextSubsListPkts,

denoting how many packets will be sent respectively for the list of peers, and

the for list of subscriptions. The offset field serves to set the user duty

cycle of the node to be synchronized with the rest of the group. The count

field denotes how many entries of the array included in the message are valid.

If other packets are needed to complete the transmission of peer list,

peerListContMsg is used. It contains lesser information than a peersMsg,

so it can include more entries of the peer list.

An entry of subsList[] array in subscriptionsMsg is a data-structure

subscription (see command smepp subscribe()), except that the fields

groupId and parent are not sent. This message contains also the information

to synchronize each user duty cycle (viz., field nextON) that is the offset (in

milliseconds) between the current time and the next fire of that subscription.

45

peerJoined

signal void peerJoined(peerDescr *peerDescription)

The middleware notifies the joining of a peer to the application of all the

members of the group by means of this signal.

peerDescription contains also the capabilities of the joined peer.

Modifications to the environment : each node updates its peers[] list.

joinGroup result

signal void joinGroup result(uint16 t groupId, subscription *subsList,

error t result)

The middleware raises this signal to the application, as consequence of a

joinGroup() call. Two outcomes are possible:

• all the messages described in joinGroup() primitive are received. In

this case result is SUCCESS, groupId is the identifier of the group

joined and *subsList is a pointer to the list of subscriptions running

into the joined group.

• not all the previous messages are received after a time interval set by

the middleware, that is the joining is failed (e.g., wrong credentials

used in joinGroup() call). In this case result is FAIL, groupId and

*subsList are null.

Modifications to the environment : in the first case, myGroups[], subscriptions[]

and peers[] lists are updated.

getPeers

command *peerDescr smepp getPeers(uint16 t groupId)

The application uses this primitive to retrieve the list of the peers in the

groupId group. getPeers() returns the pointer to the peers[] list stored

46

in the middleware.

Modifications to the environment : none.

Communications : no communication involved.

leaveGroup

command error t smepp leaveGroup(uint16 t groupId)

Peers use the leaveGroup() primitive to exit a SMEPP group identified

by groupId.

The middleware will notify the leaving to the peers of the group by means

of the peerLeft() signal. This primitive deletes from subscriptions[] list

all the subscriptions the peer performed into the group that is being left.

Modifications to the environment : it updates myGroups[], peers[] and

subscriptions[] lists on the caller.

Communications : a leaveGroupMsg, encrypted with the sessionKey-sessionMAC

key, is sent in group broadcast.

The data structure for this message is the following:

struct leaveGroupMsg {

uint8_t type;

uint16_t groupId;

uint16_t peerId;

}

peerLeft

signal void peerLeft(uint16 t peerId, uint16 t groupId)

47

The middleware raises this signal to notify to the application of each

member of the groupId group that the peerId peer does not belong to the

group anymore.

Modifications to the environment : peers[] and subscriptions[] lists of

each members of the groupId group are updated.

smepp subscribe

command error t smepp subscribe(uint8 t eventName, uint16 t groupId,

uint16 t rate?, uint16 t expTime?)

Peers invoke the subscribe() primitive to register themselves as event

listeners (viz., subscribers) of the eventName events raised in the groupId

group. When a peer detects an event matching one of the active subscrip-

tions, it sends the value related to that event back to the peer (or the peers)

that subscribed it.

Subscriptions do not last forever, they have a default expiration time, con-

figurable by setParam(). If the caller needs a different expiration time for

a particular subscription, he can use expTime parameter that represents the

duration of the subscription expressed in seconds (max 65536 sec). Moreover

each subscription has a rate (if not specified it is the default rate, config-

urable by setParam() too), that defines the sampling rate of the monitoring

task associated to the event requested, which also implies the maximum rate

at which the events can be sent back to the subscriber.

Each subscription results in the creation of a routing tree spanning on all

the peers of the group and rooted in the caller. This tree is used to route the

events to the subscriber. After the expiration time, the subscription (and

consequently the associated routing tree) expires and the subscriber should

issue again another subscribe() if it is still interested. Peers offering the

event will send the information required by calling the command event().

Once subscribe() has been called, the caller has to invoke the receive()

command to accept the events (see below). As consequence, the middleware

raises to the caller’s application the receive result() signal at the receipt

48

of an eventMsg.

Modifications to the environment : each node keeps a list (subscriptions[])

that contains information about the trees it belongs to.

An entry of this list is:

struct subscription {

uint16_t parent;

uint16_t subscriberId;

uint16_t groupId;

uint8_t eventName;

uint16_t exp;

uint16_t rate;

}

Communications : a subscribeMsg, encrypted with the sessionKey-sessionMAC

key, is sent in group broadcast to create a tree rooted in the subscriber.

The data structure for this message is the following:

struct subscribeMsg {

uint8_t type;

uint16_t groupId;

uint16_t subscriberId;

uint8_t eventName;

uint16_t exp;

uint16_t rate;

}

subscribed

signal void subscribed(uint8 t eventName, uint16 t groupId, uint16 t

rate, uint16 t expTime, int16 t offset)

49

The middleware raises this signal to the application of each member of the

group, at the receipt of a subscribeMsg. This signal notifies a subscription

for the eventName event, that will last for expTime seconds, and states that

the subscriber needs data (viz., the target node has to call the event()

primitive) every rate seconds.

offset parameter serves to synchronize the application with the energy

efficiency module, that has to keep the radio on while the application calls

the command event().

Modifications to the environment : subscriptions[] list of each node is

updated.

smepp unsubscribe

command error t smepp unsubscribe(uint8 t eventName?, uint16 t groupId)

unsubscribe() is the dual of subscribe(), it cancels a previous sub-

scription. In this case, the caller is not notified of the eventName events

raised inside the groupId group anymore. Omitting the eventName param-

eter, unsubscribes the caller from all events raised in that group.

Receipt of this message results in raising the unsubscribed() signal to

the application of each peer of the group.

Modifications to the environment : caller updates its subscriptions[] list.

Communications : an unsubscribeMsg, encrypted with the sessionKey-sessionMAC

key, is sent in group broadcast to notify the unsubscription to the peers.

The data structure for this message is the following:

struct unsubscribeMsg {

uin8_t type;

uint16_t subscriberId;

uint16_t groupId;

uint8_t eventName;

50

}

unsubscribed

signal void unsubscribed(uint8 t eventName, uint16 t groupId)

The middleware raises this signal when an unsubscribeMsg is received.

It notifies to the application of each member of the group, that the subscrip-

tion for the eventName event is not active anymore.

Modifications to the environment : subscriptions[] list of each node is

updated.

smepp event

command error t smepp event(uint16 t groupId, uint8 t eventName, int32 t

value)

The application calls this primitive when the rate timer of the eventName

event expires. value parameter is the payload of the message, that is the

current value related to the event requested.

Modifications to the environment : none.

Communications : an eventMsg, encrypted with the sessionKey-sessionMAC

key, is sent through the tree up to the subscriber.

The data structure for this message is the following:

struct eventMsg {

uint8_t type;

uint16_t groupId;

uint16_t sender;

uint8_t eventName;

int32_t value;

51

}

receive

command error t smepp receive(uint8 t eventName, uint8 t frequency)

In order to receive the eventName events, the application has to call

the receive() primitive. As consequence, the middleware raises one or

more receive result() signals, according to the frequency parameter, that

specifies how many events the application wishes to receive.

The possible values of the frequency filed are ONE SHOT (the default value)

or FOREVER. If the user sets the frequency parameter to ONE SHOT, the mid-

dleware discards all the subsequent events received, until a new invocation

of the receive() command is executed.

Modifications to the environment : none.

Communications : no communication involved.

receive result

signal void receive result(uint16 t sender, uint16 t groupId, uint8 t

eventName, int32 t value)

When the event reaches the subscriber, the middleware provides the event

to the application layer by raising the receive result() signal, that pro-

vides the value associated with the event along with the eventName, the

identifier of the peer that detected the event (sender), and the identifier of

the group where the event was detected (groupId).

Modifications to the environment : none.

52

setParam

command error t smepp setParam(uint8 t key, void* value)

This command is used to set a parameter of the middleware. key is the

parameter to be set and value is the new value to be assigned to it.

Some of the parameters that can be set at the current stage of development

of the project, are:

• default expTime time of subscribe().

• default rate of subscribe().

• default timer of getGroups().

• capabilities field of the peer descriptor of the node (viz., the list of

transducers available on the node).

• groupDutyCycle: the management duty cycle of the group.

• group sessionKey:

• group sessionMAC:

getParam

command void* smepp getParam(uint8 t key)

This command is used to retrieve the value of key parameter from the

middleware. Available parameters are the same of the setParam() primitive.

3.2 Architecture

SMEPP Light is composed by three main components, namely the Peer Iden-

tification, Group Management and Event Management, that implement the

SMEPP Light primitives, and three components that provide support to

security, networking, and energy efficiency. The interaction between these

components is shown in figure 3.1.

53

Security

Peer
Identification

Application

Group
Management

Event
Management

Network Energy
Efficiency

TinyOS/MAC 802.15.4

Figure 3.1: Components in the SMEPP Light architecture.

3.2.1 Main Components

Peer Identification Component

The Peer Identification component stores the list of the peers of each group

the node belongs to (peers[]) and maps to the peer initialization primitives.

It interacts with the Security component to set the network keys.

Group Management Component

The Group Management component manages the topology of the groups

and maps to the group management primitives. It stores the following data

structures:

• lists related to the groups the node belongs to: group descriptors

(myGroups[]) and management duty cycles (myGroupDutyCycle[]).

54

• lists related to the groups received by the getGroups() primitive for

the discovery of the groups: group descriptors (groups[]), identifiers

of the first peer replying to getGroups() for each groupId received

(firstSeen[]), and management duty cycles (groupDutyCycleReceived[]).

• an array of pointers to the management duty cycles stored into the

channel table[] of the Energy Efficiency module, used for the radio

management (EEDutyEntryId[], see below).

This component interacts with all the support components: it sets the

group session keys, it sends and receives data from the Network component

when most of the primitives are executed, and it interacts with the Energy

Efficiency component to set the information for the management of the peers

duty cycle.

Event Management Component

The Event Management component maps to the event management primi-

tives and it is in charge of subscription and event management. It provides

commands to subscribe or unsubscribe to a certain event, generate events

and set the reception mode for a certain event.

It stores the following data structures:

• the list of the subscriptions the node is involved with (subs[]).

• the list of pointers to the user duty cycles stored into the channel table[]

of the Energy Efficiency module (EESubsEntryId[]).

• the receipt-mode for every type of event subscribed (rec mode[]), as

set by the application by means of the receive() call.

This component interacts with the Network component to access the wire-

less medium and to set up the routing trees associated with subscriptions.

It also interacts with the Energy Efficiency component to configure the user

duty cycle of the peer according to the subscriptions generated or received.

55

3.2.2 Support Components

Security Component

The Security component manages the keys for all the security issues re-

lated to the network and to the group layers, and provides commands to

encrypt/decrypt messages. It keeps the network keys set by the Peer Iden-

tification component, the group master key set by the Group Management

component, and the group session keys received from the Network component

during the join protocol.

At the current stage of development, session keys used for the group com-

munication are fixed and can not be changed at run time. So a ill-intentioned

user, hearing the communications, could extract the key by analyzing several

messages all encrypted with the same key. Future versions of SMEPP Light

will manage the protocols for the dynamic refresh of session keys.

The integration of the cryptography component is currently under develop-

ment.

Network Component

The Network component implements the communication between peers. It

relies on the TinyOS network/MAC component (CC2420ActiveMessageC),

that simply allows to address a single node, or to broadcast the message to

all the network. SMEPP Light Network component provides further mecha-

nisms of communication:

• a group broadcast protocol, used to implement the subscribe and the

management of the routing trees associated to the subscriptions.

• a one-hop broadcast protocol, used to implement the group discovery

and the join mechanisms. In this way the resulting groups are guaran-

teed to be connected, that is desirable for routing reasons. reasons.

Energy Efficiency Component

The Energy Efficiency component manages the duty cycles of the peer. In

particular it manages the on/off periods of the radio interface according to the

56

user duty cycles associated to the subscribe messages received or generated

by the peer. It stores a list (channel table[]) containing the duty cycles

the node is involved with. An entry of this table comprises mainly by the

length of the activity window, its period, and its expiration time.

It should be observed that the management of the radio is transparent to

the other components, so it is possible that the application calls a command

that involves the transmission of a message, when the radio is turned off. In

this case the message is buffered, with all the related information (destina-

tion, length, and type of the message), and when the radio becomes active,

all the messages stored in the buffer are sent.

Further details on this module are reported in Chapter 4.

3.3 Protocols

3.3.1 Creating and Discovering Groups

Figure 3.2, shows the protocols used to create new groups and discover ex-

isting groups. Initially, every node has to invoke the newPeer() primitive in

order to authenticate itself against the network and to obtain a peer identi-

fier.

In the illustrated scenario we considered two nodes, A and B. Node B

creates a group by calling the createGroup() command. The group cre-

ation does not involve communications since it consists in setting a few data

structures in SMEPP Light (myGroups[] list, that is the array containing

the group descriptors of the groups the node belongs to) and in setting the

master and session keys in B’s Security component, hence the middleware

can immediately return the result of the operation.

The application layer of Node A performs the search for existing groups

by invoking the getGroups() command. This command sends to all the A’s

neighbors (in local broadcast) a message requesting the group descriptors of

existing groups. Local broadcast is implemented simply by not forwarding,

on the receiving nodes, the message received. getGroups() takes in input a

group descriptor that is used by the middleware like a search filter (e.g., only

closed groups). In case of private groups, this message is encrypted with the

57

g
e

tG
ro

u
p

s
_

re
su

lt
(

g
ro

u
p

Id
[]

)

n
e

w
P

e
e

r(
n

e
tK

e
y
,
n

e
tM

A
C

,
*

e
rr

o
r

)

n
e

w
P

e
e

r(
n

e
tK

e
y
,
n

e
tM

A
C

,
*

e
rr

o
r

)

re
s
u

lt

c
re

a
te

G
ro

u
p

(*
g

D
e

s
c
r

)

p
e

e
rI

d

re
s
u

lt

g
e

tG
ro

u
p

D
e

sc
r(

*g
D

e
sc

r)

se
n

d
(

b
ro

a
d

ca
s
t

,
g

e
tG

ro
u

p
M

sg
)

re

c
e

iv
e

(g
ro

u
p

M
s
g

)

p
e

e
rI

d
 S

M
E

P
P

 L
ig

ht

P
ee

r/
G

ro
up

 M
an

ag
em

en
t

S
M

E
P

P
 L

ig
ht

P

ee
r/

G
ro

u
p

 M
an

ag
em

en
t

N
od

e
A

A
pp

li
ca

ti
o

n
N

et
w

o
rk

/
M

A
C

 8
02

.1
5.

4

se
n

d
(b

ra
o

d
ca

st
,

g
e

tG
ro

u
p

M
sg

)

•
p

e
e

rI
d

•
g

ro
u

p
N

a
m

e
H

a
s
h

•
se

c
u

ri
ty

In
fo

g
e

tG
ro

u
p

s
(

g
D

e
sc

r
)

se
n

d
(n

o
d

e
 A

,
g

ro
u

p
M

sg
)

•
p

e
e

rI
d

•
g

D
e

sc
r

•
g

ro
u

p
D

u
ty

C
ic

le

N
o

d
e

B

N
et

w
o

rk
/

M
A

C
 8

02
.1

5.
4

A
p

p
li

ca
ti

o
n

re

c
e

iv
e

(g
e

tG
ro

u
p

M
s
g

)

s
e

n
d

(
n

o
d

e
 A

,
g

ro
u

p
M

s
g

)

m
o

di
fi

es
 g

D
e
sc

r
 s

tr
uc

t

m
o

di
fi

es
 g

D
e
sc

r
 s

tr
u

ct

ti
m

er
 o

f
g
e

tG
ro

u
p

s
 c

al
l

ex
pi

re
s

up
da

te
s

g
ro

u
p
s

,
g

ro
u

p
D

u
ty

C
yc

le
 a

nd

fir
st

S
e
e

n
 l

is
ts

F
ig

u
re

3
.2

:
G

ro
u
p

C
re

at
io

n
an

d
G

ro
u
p

D
is

co
ve

ry
P

ro
to

co
ls

.

58

master key, contained in the group descriptor that is passed as parameter.

At Node B, SMEPP Light replies to this request (without involving the

application layer) by sending to A the description of all the groups known to

Node B (in this case only one).

At Node A SMEPP Light stores all the received descriptor, and the man-

agement duty cycles (groups[] and groupDutyCycle[] lists), and the iden-

tifier of the peer, that first replied to the getGroups() request for each

different groupId received (firstSeen[]).

After a timeout the middleware notifies to the application layer the list of

identifiers of detected groups. The application at Node A can access the de-

scription of each group by means of the getGroupDescription() primitive,

that takes a groupId as parameter, and returns the corresponding group de-

scriptor. Then, according to its necessities, the application can choose the

group to join.

3.3.2 Joining a Group

A peer needs to perform a lengthy message exchange to enter into a group,

as shown in figure 3.3. This protocol starts when the application layer of

Node A invokes the joinGroup() primitive, passing the target groupId as

parameter and, in case of a closed group, the masterKey. Then, a join

message, containing also the capabilities of node A, is sent in unicast to Node

B. In case of a closed group, this message is encrypted with the masterKey.

This message is notified to SMEPP Light middleware in Node B, that, in

turn, decides whether to accept the request of A or not. At the current stage

of development, a peer can handle one join request at a time, so if node B

is involved in a join protocol already, it will discard A’s join messages. In

case of a closed group, an authentication protocol is performed, in addition

to that showed in figure 3.3. It consists in a double authentication (peer-to-

network and network-to-peer), based on messages encrypted with symmetric

128-bit keys.

If the request is accepted, SMEPP Light in Node B sends to A a set of

messages containing the session keys (other two 128-bit keys, used for the

cryptography into the group), the list of peers belonging to the group, and

59

N
od

e
A

A
pp

li
ca

ti
o

n
N

et
w

o
rk

/
M

A
C

 8
0

2.
15

.4

S
M

E
P

P
 L

ig
ht

G

ro
up

 M
an

ag
em

en
t

N
o

d
e

B

N
et

w
o

rk
/

M
A

C
 8

0
2.

1
5

.4

S
M

E
P

P
 L

ig
ht

G

ro
u

p
M

an
ag

em
en

t
A

p
p

li
ca

ti
o

n

jo
in

G
ro

u
p

(g
ro

u
p

Id
,

m
a

st
e

rK
e

y
)

 s
e

n
d

(
n

o
d

e
 B

,
jo

in
G

ro
u

p
M

sg
)

se
n

d
(n

o
d

e
 B

,
jo

in
G

ro
u

p
M

s
g

)

•
ca

p
a

b
ili

ti
e

s

•
g

ro
u

p
Id

re

c
e

iv
e

(j
o

in
G

ro
u

p
M

sg
)

s
e

n
d

(n
o

d
e

 A
,

g
ro

u
p

K
e

y
M

s
g

)

se
n

d
(n

o
d

e
 A

,
g

ro
u

p
K

e
y
M

sg
)

•
g

ro
u

p
Id

•
se

s
si

o
n

K
e

y
re

c
e

iv
e

(g
ro

u
p

K
e

y
M

sg
)

st
or

es
 t

he
 s

es
si

on
 k

ey
s

re
ce

iv
ed

 i
nt

o
th

e
se

cu
ri

ty

m
od

ul
e

th
es

e
m

es
sa

g
es

 a
re

 s
en

t
on

ly
 i

f
it

 i
s

a
 c

lo
se

d
gr

o
up

s
e

n
d

(n
o

d
e

 A
,

g
ro

u
p

M
A

C
M

s
g

)

se
n

d
(n

o
d

e
 A

,
g

ro
u

p
M

A
C

M
sg

)

•
g

ro
u

p
Id

•

se
s
si

o
n

M
A

C

re
c
e

iv
e

(g
ro

u
p

M
A

C
M

s
g

)

se
n

d
(n

o
d

e
 A

,
p

e
e

rs
M

sg
)

•
g

ro
u

p
Id

•
o

ff
se

t

•
p

e
e

rL
is

t[
]

•

re
c
e

iv
e

(
p

e
e

rs
M

sg
)

jo
in

G
ro

u
p

_
re

su
lt
(g

ro
u

p
Id

,
*s

u
b

sc
ri
p

tio
n

 l
is

t,
 r

e
su

lt)

s
e

n
d

(n
o

d
e

 A
,

s
u

b
s
c
ri
p

ti
o

n
s

M
s
g

)

se
n

d
(n

o
d

e
 A

,
su

b
sc

ri
p

ti
o

n
sM

sg
)

•
g

ro
u

p
Id

•
su

b
sL

is
t[

]
•

n
e

x
tO

N
[]

re
c
e

iv
e

(
su

b
sc

ri
p

ti
o

n
s

s
M

sg
)

s
e

n
d

(b
ro

a
d

,
n

o
ti
fy

Jo
in

M
s
g

)

T
h

is
 m

es
sa

ge
 i

s
se

n
t

in
 g

ro
up

b

ro
a

dc
a

st
 t

o
no

ti
fy

 t
h

e
jo

in
in

g
o

f
th

e
n

od
e

A
 t

o
al

l
m

em
be

rs
 o

f
th

e
gr

o
up

se
n

d
(b

ro
a

d
ca

st
,

n
o

ti
fy

J
o

in
M

s
g

)

•
g

ro
u

p
Id

•
p

e
e

rI
d

•
ca

p
a

b
ili

ti
e

s

•
p

a
re

n
t

up
da

te
s

p
e

e
rs

 l
is

t

bo
th

 a
pp

li
ca

ti
on

 a
nd

 m
id

dl
ew

ar
e

up
da

te
 s

u
b
sc

ri
p

tio
n

s
 l

is
t

s
e

n
d

(n
o

d
e

 A
,

p
e

e
rs

M
s
g

)

F
ig

u
re

3
.3

:
J
oi

n
G

ro
u
p

P
ro

to
co

l.

60

the list of subscriptions that are currently active into the group. In case

of a closed group, packets transmitting the session keys are encrypted with

the masterKey, while the other ones (and the packets for all the subsequent

communications within the group) are encrypted with the session keys. In

this version of SMEPP Light, the session keys are not updated, but a protocol

to refresh these keys is planned, and it will be provided in future versions of

SMEPP Light.

Because of the use of an Energy Efficiency module, that turns off the radio

when it is not expected to be used, nodes need to keep the radio active at

the same time to communicate. Thus both peersMsg and subscriptionsMsg

contain fields (offset, related to the management duty cycle, for the former,

and nextON, one for each subscription, for the latter) that are used by the

Energy Efficiency module to set properly the entries in the duty cycles’ table

(channel table[]), so that all the nodes of the group are synchronized.

Peers and subscriptions lists transmission, may result in sending more

than one packet per list. All of the packets involved in the join protocol are

supposed to be acknowledged by node A.

All these messages are used by SMEPP Light in Node A to update its

internal data structures (peers[] and subscriptions[] lists in the middle-

ware, and channel table[] in the Energy Efficiency module), and once this

phase is completed, SMEPP Light raises a joinGroup result() signal to

the application layer of the joining node to notify that the join protocol is

completed. This signal contains a pointer to the subscription list received,

to enable node A to raise previously subscribed events.

In case of failure (viz., not all expected messages are received within

a timeout), the middleware notifies the negative result of the operation to

the application, by raising the joinGroup result() signal, passing FAIL as

result parameter.

In the meantime, when SMEPP Light in Node B receives the acknowl-

edgement to the last packet transmitted, it sends to all the other peers in

the group, a message notifying that Node A joined the group.

61

3.3.3 Subscribe and Receive Events

The subscribe protocol is initiated by any peer in a group that wants to

receive a given type of events generated by other peers in the same group.

Figure 3.4 shows a scenario where Node A subscribes for events that are

generated by a Node B.

To this purpose Node A invokes the subscribe() command, specifying as

parameter the identifier of the group in which the subscribe will be executed,

the event requested, the rate at which the subscriber needs the data, and the

duration of the subscription. As consequence the middleware broadcasts the

subscribe request to all the peers in the group.

Nodes receiving this message set a tree, covering the whole group, used to

route the events back to the subscriber, that is the root of the tree. Further-

more, the middleware notifies this request to the application layer of each

node by means of the subscribed() signal. This signal contains the event

name for which the subscription holds, with its rate and expiration time,

hence it is responsibility of the application to start any relevant monitoring

task to detect the events matching the subscrption. This monitoring task

should be activated at the sampling rate contained in the subscribe message.

In the case shown in figure 3.4, Node B is the only peer which can provide

the event requested. Therefore, when the timer related to the event fires, the

application of Node B has to produce a value for the event fired. Sampling

an event consist in calling the read() command of the component providing

the interface related to that event (e.g., call SensorMts300C.read() that

is the component providing the interface for the light transducer), that con-

verts the analog signal read from the transducer, to a digital value notified

to the application layer by means of the readDone() signal, raised by the

transducer’s component. When receiving this signal, the application has to

call the event() primitive to send the value read to the subscriber.

Node A, on the other hand, has to call the receive() command in or-

der to retrieve the received value. The middleware, in fact, does not sig-

nal any received event until the application invokes this command. The

receive() primitive takes two parameters in input, the event name of the

requested event, and the number of values the application is prepared to re-

62

N
o
d

e
A

A
pp

li
ca

ti
o

n
N

et
w

o
rk

/
M

A
C

 8
02

.1
5.

4
S

M
E

P
P

 L
ig

ht

E
ve

nt
 M

an
ag

em
en

t

su
b

sc
ri

b
e

(e
v
e

n
tN

a
m

e
,

g
ro

u
p

d
Id

,
ra

te
,

e
x
p

)
se

n
d

(
b

ro
a

d
ca

s
t

,
su

b
sc

ri
b

e
M

sg
)

s
e

n
d

(b
ro

a
d

ca
st

,
s
u

b
sc

ri
b

e
M

s
g

)

•
g

ro
u

p
Id

•
su

b
sc

ri
b

e
rI

d

•
e

ve
n

tN
a

m
e

•
e

xp
ir
a

ti
o

n

•
ra

te

 r
e

c
e

iv
e

(s
u

b
s
c
ri

b
e

M
s
g

)

b
ot

h
a

pp
li

ca
ti

on
 a

nd
 m

id
dl

ew
a

re

u
pd

at
e

su
b
sc

ri
p

tio
n

s
 l

is
t

 s
u

b
s
c
ri
b

e
d

(e
v
e

n
tN

a
m

e
,

g
ro

u
p

Id
,

e
x
p

ir
a

ti
o

n
,

ra
te

)

ev
er

y
ra

te
 t

im
e

ap
pl

ic
at

io
n

ha
s

to
 s

en
d

d
at

a
to

 t
he

 s
ub

sc
ri

be
r

 e
v
e

n
t(

g
ro

u
p

Id
,

 e
v
e

n
tN

a
m

e
,

v
a

lu
e

)
s
e

n
d

(p
a

re
n

t,
 e

v
e

n
tM

sg
)

s
e

n
d

(p
a

re
n

t,
 e

v
e

n
tM

sg
)

•
g

ro
u

p
Id

•
se

n
d

e
r

•
e

ve
n

tN
a

m
e

•
va

lu
e

re
c
e

iv
e

(e
ve

n
tM

s
g

)

re
c
e

iv
e

_
re

su
lt(

se
n

d
e

r,

g
ro

u
p

Id
,

e
ve

n
tN

a
m

e
,

v
a

lu
e

)

s
e

n
d

(p
a

re
n

t,
 e

v
e

n
tM

sg
)

s
e

n
d

(p
a

re
n

t,
 e

v
e

n
tM

sg
)

•
g

ro
u

p
Id

•
se

n
d

e
r

•
e

ve
n

tN
a

m
e

•
va

lu
e

re
c
e

iv
e

(e
ve

n
tM

s
g

)

re
c
e

iv
e

_
re

su
lt(

se
n

d
e

r,

g
ro

u
p

Id
,

e
ve

n
tN

a
m

e
,

v
a

lu
e

)

ra
te

 f

ir
ed

ra
te

 f

ir
ed

 e

v
e

n
t(

g
ro

u
p

Id
,

 e
v
e

n
tN

a
m

e
,

v
a

lu
e

)

re
c
e

iv
e

(e
ve

n
tN

a
m

e
,

fr
e

q
u

e
n

cy
)

N
o

d
e

B

N
et

w
o

rk
/

M
A

C
 8

0
2.

1
5.

4
S

M
E

P
P

 L
ig

ht

E
ve

nt
 M

an
ag

em
en

t
A

p
p

li
ca

ti
o

n

F
ig

u
re

3
.4

:
S
u
b
sc

ri
b

e
an

d
R

ec
ei

ve
E

ve
n
ts

P
ro

to
co

ls
.

63

ceive (frequency parameter). This can be ONE SHOT or FOREVER. The former

means that only one value is to be received, so the middleware will signal

only one event value and will discard all possibly subsequent values received.

The latter means that the middleware has to signal to the application every

value it receives. In the first case, in order to retrieve other values for an

event, the application has to call the receive() command again.

The middleware notifies the event received by means of the receive result()

signal, passing as parameters the identifier of the peer providing the event

and the value received. This protocol goes on until the subscription expires

or Node A cancels it using the unsubscribe() command.

3.3.4 Unsubscribe Events and Leave Group

Figure 3.5 shows the protocols used to retrieve the list of the peers of a group,

to leave a group, and to unsubscribe events. The list of peers is obtained

by calling the getPeers() command, with the identifier of the group as

parameter. This is a local call, since it returns the list of the peers stored

in the middleware of the same node, and therefore does not involve any

communication.

To leave a group, the application has to invoke the leaveGroup() prim-

itive, passing the identifier of the group to be left as parameter. As conse-

quence, the middleware deletes all the subscriptions related to that group

from the subscriptions[] list. This action could break communication

paths if node A (the peer that is leaving) is in between a peer (say X) pro-

viding an event, and a subscriber (say Y) requesting it. However Y could

receive values related to that event from other peers providing it. This is why,

subscriptions have an expiration time, that is used to enforce subscription

refreshing.

Moreover, when a node leaves a group, the middleware on the Node A

updates myGroups[] and peers[] lists, by removing the entries related to

the group left. Eventually SMEPP Light sends the notify of leaving in group

broadcast. The middleware on the nodes receiving this message notifies the

leaving to the application layer, by raising the peerLeft() signal, with the

identifier of the peer that left and the group identifier as parameters.

64

N
od

e
A

A
p

p
li

ca
ti

o
n

N
et

w
o

rk
/

M
A

C
 8

02
.1

5.
4

S
M

E
P

P
 L

ig
ht

G

ro
up

/E
ve

nt
 M

an
ag

em
en

t

N
o

d
e

B

N
et

w
o

rk
/

M
A

C
 8

02
.1

5.
4

S

M
E

P
P

 L
ig

ht

G
ro

up
/E

ve
nt

 M
an

ag
em

en
t

A
pp

li
ca

ti
o

n

g
e

tP
e

e
rs

(g
ro

u
p

d
Id

)

p
e

e
r

s
[]

le
a

v
e

G
ro

u
p

(g
ro

u
p

d
Id

)

se
n

d
(b

ro
a

d
,

le
a

v
e

G
ro

u
p

M
sg

)

se
n

d
(b

ro
a

d
,

le
a

ve
G

ro
u

p
M

s
g

)

•
p

e
e

rI
d

•
g

ro
u

p
Id

 r

e
c
e

iv
e

(l
e

a
v
e

G
ro

u
p

M
s
g

)

 p
e

e
rL

e
ft

(
p

e
e

rI
d

,
g

ro
u

p
Id

)

up
da

te
s

su
b
sc

ri
p

tio
n

s

an
d

p
e
e

rs

li

st
s

up
da

te
s

su
b
sc

ri
p

tio
n

s

an
d

p
e
e

rs
 l

is
ts

up
da

te
s

m
yG

ro
u

p
s

, p
e
e

rs

an
d

su
b

sc
ri
p
tio

n
s

 l
is

ts

u
n

s
u

b
s
cr

ib
e

(e
ve

n
tN

a
m

e
,

g
ro

u
p

d
Id

)
se

n
d

(b
ro

a
d

,
u

n
s
u

b
s
cr

ib
e

M
sg

)

se
n

d
(b

ro
a

d
,

u
n

s
u

b
s
cr

ib
e

M
sg

)

•
su

b
sc

ri
b

e
rI

d

•
g

ro
u

p
Id

•
e

ve
n

tN
a

m
e

 r
e

c
e

iv
e

(
u

n
s
u

b
s
c
ri

b
e

M
sg

)

 u
n

s
u

b
s
c
ri

b
e

d
e

d
(e

v
e

n
tN

a
m

e
 ,

g

ro
u

p
Id

)

up
da

te
s

su
b
sc

ri
p

tio
n

s
 l

is
t

up
da

te
s

su
b
sc

ri
p

tio
n

s

 l
is

t

up
da

te
s

su
b

sc
ri
p

tio
n

s

li
st

s

F
ig

u
re

3
.5

:
G

et
P

ee
rs

L
is

t,
L

ea
ve

a
G

ro
u
p

an
d

U
n
su

b
sc

ri
b

e
E

ve
n
ts

P
ro

to
co

ls
.

65

Unsubscribing an event requires that the event had been previously sub-

scribed. In this case, calling the unsubscribe() primitive, specifying the

event to be unsubscribed and the group identifier where the event is running,

results in updating the subscriptions[] list in the caller, and in sending

an unsubscribe message in group broadcast. The SMEPP Light middleware

of the nodes receiving this message, updates its subscriptions[] list by re-

moving the entry related to that subscription, and raises the unsubscribed()

signal to the application layer, passing the group identifier and the received

event type as parameters.

66

Chapter 4

Energy Efficiency

The energy management is a crucial issue in WSNs, since they often operate

in unattended mode. Sensor nodes composing a WSN are battery powered,

and usually they can not be replaced. Thus, adopting techniques to reduce

the energy consumption, and save the sensor energy, is very desirable.

SMEPP Light includes an Energy Efficiency module that is responsible of

turning off the radio when the node does not expect to send or receive data.

The Energy Efficiency module manages the radio by means of user duty

cycles, that are the duty cycles determined by the subscribe messages, and

one management duty cycle per group that enables the sensors in the group

to exchange control messages (in particular join and subscribe messages).

Each of these duty cycles defines periodic intervals when the radio should be

turned on by all the sensors, and, in consequence, periodic intervals in which

the radio can be kept inactive.

The Energy Efficiency module keeps the information related to all these

duty cycles and determine whether the sensor can turn the radio off, by

calculating the union of the activity windows produced by the duty cycles.

Figure 4.1 shows an example of how this module works, by showing the

status of the radio of a node belonging to a group having two active sub-

scriptions (subs1 and subs2). The three lines on the top show the activity

windows of the radio for the user duty cycles corresponding to the two sub-

scriptions and for the management duty cycle. The line on the bottom shows

the overall radio activity (portions of this line not marked by a colored bold

67

line, mean radio turned off). In this example subs1 has a duration of 2 sec-

onds, and a period of 9 seconds. subs2 has a duration of 2 seconds and a

period of 15 seconds. Finally, the management duty cycle has a duration of

5 seconds, and a period of 20 seconds.

subs2

subs1

group
duty cycle

time line
and radio
status 0 5 10 20 40 30

too near => radio kept on

50 60

Figure 4.1: Energy Efficiency module functioning.

The Energy Efficiency module calculates the union of all the duty cy-

cles, and decides when the radio should be turned off and on, according to

two additional parameters that provide some flexibility to the system. One

parameter (tolerance) specifies the minimum distance (in milliseconds) be-

tween the end of a window of radio activity and the start of the next one: if

two windows are too close the radio is kept on until the second window ends

(as happens in figure at second 17 and at second 29). The logic behind this

behavior is that turning the radio on and off consumes additional energy, so

two commutations of the radio waste more energy than keeping the radio on.

The other parameter (radioDelay) expresses the time used to delay the

radio commutations to compensate the delays introduced by the transmission

of the packets through a multi-hop network. In a multi-hop network, all the

nodes have activity windows synchronized to begin on the same instant, and

of the same duration. Routing a packet from a node to another requires some

68

time. The duration of such windows is set in a way that enable a message

to traverse the longest path in the network and reach the destination before

the ending of the window. However it can happen that, due to the delays

introduced by the intermediate nodes (to store, to handle and to forward

the message) duration time of the window could not suffice, and the message

could not reach the destination. So each activity window is turned off a

little after the expected ending time, to enable the message to reach the

destination anyway.

As a side-effect of using inactivity periods to save energy, when a sensor

executes the getGroups() primitive, it needs to keep sending request mes-

sages (polling) until one of these messages is sent during a period of activity of

a group. However during the getGroups protocol the sensor receives enough

information to synchronize with the other sensors of the group, so the next

communications can happen according to the management duty cycle of the

group. To make this approach effective, the sensors need to be synchronized,

for this reason synchronization information is periodically exchanged among

the peers in the group.

However, this synchronization does not avoid that application invokes

a command that comprises a radio transmission when the radio is turned

off, since the management performed by the Energy Efficiency module is

completely transparent to the application layer. To obviate to this problem,

the Energy Efficiency module provides a command to retrieve the status of

the radio. Thus, SMEPP Light checks whether it is possible to start the

transmission, before sending any message. In case the radio is inactive, the

middleware stores the pending messages, and sends them when the radio

becomes active (the Energy Efficiency module will raise the proper signal).

4.1 The Energy Efficiency component

EnergyEfficiencyP.nc is the component that implements the Energy Effi-

ciency module. It stores a list (channel table[]) containing the duty cycles

the node is involved with, that are management and user duty cycles.

An entry of this table is composed by the following fields:

69

• duration: length of the activity window (viz., the time the radio has

to be kept on).

• interarrive: period of the activity window (viz., the time between

two successive activity windows).

• expiry: expiration time of the duty cycle. The management duty cy-

cles never expire, so the corresponding entries are deleted from channel table[]

only when the peer leaves the group. users ’ duty cycles entries, on the

other hand, are deleted when the time denoted by this field has passed,

or when the application calls the unsubscribe() primitive.

• nextON: next instant of time in which the radio has to be turned on.

• nextOFF: next instant of time in which the radio has to be turned off.

The component handles two timers (timer radioON and timer radioOFF),

one used to determine the next turning on, and the other one used to de-

termine the next turning off. At initialization phase the radio is active, and

neither of the two timer is set. When the first entry in the channel table[]

is added, the timer radioOFF is started to fire at the nextOFF time of the en-

try added. When this timer fires (in general every time the timer radioOFF

fires), the component updates the channel table[] by updating the nextON

and nextOFF fields of every entry according to the current time (after the

update all of these fields are bigger than the current time). Then the entry

with the minimum nextON is selected and it is checked whether this time is

distant enough from the current time, to avoid two consecutive commuta-

tions that are too close. If the difference between the selected nextON time

and the current time is bigger than the tolerance parameter, then the radio

is turned off, and the two timer are set according to the nextON and nextOFF

values of the selected entry. Otherwise, the radio is kept on, and only the

timer nextOFF is updated.

4.1.1 Interface

The EnergyEfficiencyP.nc component provides an interface to handle the

entries of the channel table[] (viz., adding and removing entries), to set

70

the tolerance and the radioDelay parameters’ values, and to retrieve the

value of some variables stored in the module:

set

command uint8 t set(uint32 t length, uint32 t interarrive, uint32 t

expiry, int16 t offset)

When a new duty cycle is needed (either because the peer joined a new

group, or because it received or performed a new subscription), application

invokes the set() primitive to add a new entry in the channel table[].

The command returns the handler to the entry, i.e. the position into the

table where the entry has been added.

The offset parameter is the time to the next turning on of the added

duty cycles. It is used to set the nextON field in channel table to ensure

the synchronization among the peers.

reset

command void reset(uint8 t id)

This command deletes the entry in the channel table[] corresponding to

the handler id. This can happen when the application invokes the unsubscribe()

primitive, or when a peer leaves a group.

setTolerance

command void setTolerance(uint32 t newTolerance)

The application can modify the minimum distance between two subsequent

radio commutations, according to the energy consumption values of the sen-

sor nodes currently used in the network.

71

setRadioDelay

command void setRadioDelay(uint32 t newRadioDelay)

This command is used to change the value of the radioDelay parameter,

that is the delay to add at the end of the activity window to turn off of the

radio. This parameter is used to enable a node to receive a message that is

traveling through the network, compensating the delays introduced by the

storing and forwarding of the message through a multi-hop network. If the

network is small, this parameter can be set to a low value, since the diame-

ter of the network is short, and the latency for a message travelling all the

network is not big. A small value of this parameter results in a lesser power

consumption.

getRadioState

command bool getRadioState()

The middleware uses this command to check whether the radio is active,

before sending a message. If the radio is turned off, the middleware buffers

the message, and it will send it after the next radioOn() signal.

getNextON

command int getNextON(uint8 t pos)

This command returns the nextON field of the selected entry. It is used dur-

ing the join protocol, by the peer handling the join request, to retrieve the

time of the next turning on both for the management and user duty cycles.

Sending these information to the joining peer, enables it to be synchronized

with the other peers of the group.

getRadioOff

command uint32 t getRadioOff()

72

The join protocol comprises a long messages exchange. To successfully com-

plete this protocol, it is needed that all the expected messages are received

by the joining peer. Therefore the peer handling the join request, calls this

command to retrieve the time of the next turning off, to know if the radio

will remain active for a time sufficient to send all the messages.

posticipate

command void posticipate(uint16 t offset)

At the beginning of the join protocol, the peer handling the join request,

checks if the radio is going to be turned off before the completion of the

protocol. In this case, the middleware invokes this command to posticipate

the turning off of the radio for a time sufficient to complete the join protocol.

Finally, two signals are provided by the interface: radioOn() and radioOff(),

that notify respectively the turning on and off of the radio to the middleware.

4.2 Test and Simulation

The performance of the energy efficiency mechanism was evaluated by mea-

suring the periods of radio activity of a sensor. First we performed several

simulations on the TOSSIM simulator, and then we replicated some of these

tests on a real sensor network. In the experiments we used 4 MicaZ motes

[17] (mote1, mote2, mote3, mote4) connected in a line to form a multi-hop

network, i.e. mote1 is connected to mote2, mote2 to mote3 and mote3 to

mote4. Mote1 is the node that creates the group and produces the subscrip-

tions and mote4 is the only mote that raises events. We measured the radio

activity on mote2, that is on the path of all the messages directed to the

event subscriber (mote1).

We repeated five sets of experiments with a number of subscriptions rang-

ing from 0 to 4. Each experiment was repeated 10 times and ran for 180 sec-

onds. The length of the activity window of each subscription was 2 seconds,

that is a time large enough to permit the events to reach the subscriber,

73

while each rate was set randomly in a range from 7 seconds, to 25 seconds.

In all cases, the management duty cycle is fixed with a rate of 20 seconds

and a duration of 5 seconds.

For each experiment we measured the average period of time of the radio’s

state of sensor mote2. The transceiver of MicaZ has four different states, each

with its value of power consumption:

• down (radio off): 0,02 mA.

• idle (radio on, but not used): 0,426 mA.

• receive (radio on, used for the receipt of a message): 18,8 mA.

• send (radio on, used in sending a message): up to 17,4 mA.

From these data we computed the average energy consumption of sensor

mote2 (expressed in mA-hr) in all the set of experiments, as shown in Figure

4.2. For a comparison the figure reports the energy consumption estimated

with the TOSSIM simulator and the energy consumption in the case where

the energy efficiency module is disabled (viz., radio always active). The

figure shows that the energy efficiency strategy enables significant energy

saving, and that the energy consumed grows sublinearly with the number of

subscribes.

74

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 subs 1 subs 2 subs 3 subs 4 subs

Number of subscribes

C
o

n
s
u

m
p

ti
o

n
 (

m
A

)

Simulator

Experiment

Alw ays on

Figure 4.2: Energy consumption (in mA-hr).

75

Chapter 5

Conclusions and Future Works

The purpose of the thesis was the realization of SMEPP Light, a middleware

for wireless sensor networks, that supports the development of applications,

by hiding the complexity of the underlying infrastructure, and by providing

security services and energy saving mechanisms.

We described the main requirements that are at the base of the SMEPP

Light design, namely the sensors’ organization in terms of groups, the security

model also based on groups, the query injection and data collection based on

a subscribe/event model, and the energy efficiency strategy.

At the current state of development, the security module is under de-

velopment (since the primitive security mechanisms are under development

by other parties of the SMEPP project), but the component-based design of

SMEPP Light grants an easy integration of fully-working security modules.

We performed several simulations with TOSSIM to prove both the cor-

rectness and the efficiency of SMEPP Light, and we confirmed the simulation

results by means of tests executed on the MicaZ and IRIS motes. We per-

formed some preliminary measurement on the performance of the energy

efficiency strategy, showing that SMEPP Light can significantly contribute

to energy savings.

Future works include the extension of SMEPP Light to a service oriented

interaction model, in order to make the middleware more flexible and more

compliant with the SMEPP specification.

Concerning the security, the cryptography component needs to be tested,

76

and a mechanism for the dynamic refresh of the session keys can be added to

strengthen the robustness of the group-level security. In addition, a session

key at the network level could be introduced, even though this would make

the middleware more complex, but it would give to the network-level security

the same robustness of the group-level security.

77

Acknowledgements

Grazie

78

List of Figures

1.1 A Wireless Sensor Network. 3

1.2 MicaZ Mote. 4

1.3 Sensor Board for MicaZ. 5

1.4 A cooperative multi-hop sensor network. 6

2.1 Mica2Dot Mote. 19

2.2 Component-based model in TinyOS. 22

2.3 Component-usage model in TinyOS. 24

2.4 Graphic representation of the network topology 29

3.1 Components in the SMEPP Light architecture. 54

3.2 Group Creation and Group Discovery Protocols. 58

3.3 Join Group Protocol. 60

3.4 Subscribe and Receive Events Protocols. 63

3.5 Get Peers List, Leave a Group and Unsubscribe Events Pro-

tocols. 65

4.1 Energy Efficiency module functioning. 68

4.2 Energy consumption (in mA-hr). 75

79

Bibliography

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Capirci. ”Wireless

sensor networks: a survey”. Computer Networks, N. 38, 2002, pp. 393-

442.

[2] Antonio Brogi, Stefano Chessa, Angel Dianes, Manuel Diaz, Raz-

van Popescu, Bartolomé Rubio. ”Service and Interaction Models for

Networked Embedded Peer to Peer Systems: A Survey”. (SMEPP),

http://www.smepp.org

[3] Paolo Baronti, Prashant Pillai, Vince Chook, Stefano Chessa, Alberto

Gotta, Y. Fun Hu. ”Wireless Sensor Networks: a Survey on the State of

the Art and the 802.15.4 and ZigBee Standards”. In: Computer Com-

munications, 30 (7), 26 May 2007, pp. 1655-1695.

[4] Michele Albano, Antonio Brogi, Razvan Popescu, Manuel Dı́az, José A.

Dianes. ”Towards Secure Middleware for Embedded Peer-to-Peer Sys-

tems: Objectives & Requirements”. Ubicomp 2007, Innsbruck, Austria,

16 Settembre 2007.

[5] Claudio Vairo, Michele Albano, Stefano Chessa. ”A Secure Middleware

for Wireless Sensor Networks”. Middleware for Mobile Embedded Peer-

to-Peer Systems, First International Workshop, 21 - 25 July 2008, Trin-

ity College, Dublin, Ireland.

[6] Claudio Vairo. ”Realizzazione e Sperimentazione di Protocolli di Rete in

Reti di Sensori”. Bechelor Degree Thesis, 2005, University of Pisa.

[7] P. Costa, G. Coulson, C. Mascolo, G. Pietro, S. Zachariadis, ”The

RUNES Middleware: A Reconfigurable Component-based Approach to

80

Networked Embedded Systems”. Third IEEE International Conference

on Mobile Ad-hoc and Sensor Systems (MASS 06), 9 - 12 October 2006,

Vancouver, Canada.

[8] EU FP6 Strep project ”Secure Middleware for Embedded Peer-to-Peer

Systems” (SMEPP), http://www.smepp.org

[9] C. Giani et. Al. ”Data collection in Sensor Networks: the TinyLime

Middleware”. J. of Pervasive and Mobile Computing, 4(1), pp. 449469

[10] M. Dı́az et. Al. ”A Coordination Middleware for Wireless Sensor Net-

works”. IEEE SENET 05, Montreal, Aug 05, pp. 377382.

[11] E. Soutoet. et Al. ”A Message-Oriented Middleware for Sensor Net-

works”. MPAC 04, Toronto, Oct. 04, pp. 127134,

[12] ZigBee Specifications 2006, http://www.ZigBee.org

[13] C. Intanagonwiwat, R. Govindan, D. Estrin. ”Directed Diffusion: A

Scalable and Robust Communication Paradigm for Sensor Networks”.

MobiCom 2000, Boston, pp. 5667

[14] Giuseppe Amato, Paolo Baronti, Stefano Chessa. ”MaD-WiSe: Pro-

gramming and Accessing Data in a Wireless Sensor Networks”. IEEE

Eurocon, Belgrado, Serbia-Montenegro, November 2005.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong. ”Tinydb: an

acquisitional query processing system for sensor networks”. ACM Trans.

Database Syst., 30(1):122-173, 2005

[16] Giuseppe Amato, Stefano Chessa, Fabrizio Conforti, Alberto Macerata,

Carlo Marchesi. ”Health Care Monitoring of Mobile Patients”, ERCIM

News No. 60, January 2005.

[17] Crossbow motes. http://www.xbow.com/Products/wproductsoverview.aspx

[18] SunSPOTWorld. www.sunspotworld.com

[19] Sun Squawk http://research.sun.com/projects/squawk/

81

[20] Contiki http://www.sics.se/contiki/

[21] TinyOS, NesC, Tossim documentation. http://www.tinyos.net/tinyos-

2.x/doc/

[22] Philip Levis and Nelson Lee. ”TOSSIM: A Simulator for TinyOS Net-

works”. pal@cs.berkeley.edu September 17, 2003.

[23] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,

David Culler. ”The nesC Language: A Holistic Approach to Networked

Embedded Systems”. http://nescc.sourceforge.net

[24] David Gay, Philip Levis, David Culler, Eric Brewer. ”nesC 1.1 Language

Reference Manual”. May 2003.

[25] Al Kelley, Ira Pohl. ”C Didattica e Programmazione”. Addison-Wesley,

1996. cap. 9, pp. 345-365.

[26] David C. Steere, Antonio Baptista, Dylan McNamee, Calton Pu,

Jonathan Walpole. ”Research Challenges in Environmental Observation

and Forecasting Systems”. (MobiCom 2000), pp. 292-299, Boston, MA,

USA August 2000.

82

