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Riassunto 

La nanotecnologia è un campo in rapido sviluppo in quanto attrae 

investimenti significativi da parte di industrie e governi. I 

nanomateriali (NMs) usati sono tipicamente descritti come 

nanoparticelle (NPs) o nanotubi (NTs) con dimensioni che possono 

variare tra 1 e 100 nm. 

Le piccoli dimensioni sono una delle cause delle loro peculiari 

caratteristiche fisico–chimiche diverse da quelle degli altri materiali 

solidi, e i loro effetti sull’ambiente e sugli organismi viventi sono 

ancora sconosciuti. E’ quindi importante e necessario comprenderne 

la loro tossicità, il destino e gli effetti ambientali eventualmente 

provocati, in modo da creare un protocollo sotto controllo legislativo 

prima che vengano rilasciate in natura. Inoltre, la vasta gamma di 

nanomateriali esistente richiede la comprensione dei rischi che 

ciascun composto può comportare.  

Nella presente tesi, condotta presso i laboratori CEFAS (Weymouth, 

UK), sono stati scelti Cadmio (4 nm ± 1 nm) e Argento (13 nm ± 1 

nm) in forma di nanoparticelle in quanto ben nota la tossicità dei due 

elementi, e perché ultimamente utilizzati sotto forma di 

nanoparticelle in diverse applicazioni nel campo medico, nella cura 

dei tumori, nello sviluppo di strumentazioni, come pannelli 

fotovoltaici. 

Le nanoparticelle usate negli esperimenti di esposizione devono 

avere la capacità di entrare in soluzione facilmente, dunque nel 

presente studio, le nanoparticelle utilizzate sono state rivestite da 

thiol-terminated methyl polyethylene glycol in modo da inibire la 

formazione di agglomerati. Scopo dello studio è stata la valutazione 

di eventuali effetti tossici a livello del DNA negli emociti di mitilo 

(Mytilus edulis) e in coltura cellulare di trota arcobaleno (RTG), oltre 
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all’attività enzimatica della lattico deidrogenasi (LDH) e la 

proliferazione cellulare, solo per RTG. 

La linea cellulare utilizzata, sebbene non appartenente ad una 

specie marina, è da considerarsi, come tutte le linee cellulari in 

generale, un modello per l’analisi degli effetti genotossici in quanto 

essendo state geneticamente modificate per poter sopravvivere e 

moltiplicarsi in vivo, si diversificano dall’animale originale. 

Il Comet assay, noto anche come single cell gel electrophoresis 

(SCGE), è una tecnica microelettroforetica per la diretta 

visualizzazione del danno al DNA in singole cellule. Durante 

l’elettroforesi i frammenti di DNA aventi basso peso molecolare si 

muovono più rapidamente del DNA integro (testa della cometa). Le 

comete e quindi l’estensione del danno al DNA, vengono misurate 

con un sistema di analisi dell’immagine computerizzata, che 

consente di rilevare la percentuale di DNA presente nella coda e 

nella testa della cometa. 

Per lo studio degli effetti genotossici è stato utilizzato il Comet assay 

per entrambi gli organismi. Le colture cellulari di trota non sembrano 

subire effetti significativi dopo una esposizione di 24 e 48 ore alle 

nanoparticelle di argento e cadmio a cinque diverse concentrazioni 

(50; 10; 1; 0.1; 0.01 mg/L), così come non si palesano effetti 

statisticamente significativi sugli emociti di mitilo se non alla dose di 

10 mg/L, che, per il cadmio sembrano essere influenzati da effetti 

citotossici.  

Il test dell’LDH (detto anche test di citotossicità) è un saggio 

colorimetrico per la quantificazione della mortalità e della lisi 

cellulare, basato sulla misurazione dell’attività appunto della lattico 

deidrogenasi (LDH) rilasciata nel supernatante dal citosol di una 

cellula danneggiata. Nel test di proliferazione cellulare (XTT) le 
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cellule metabolicamente attive (vive) riducono il sale di tetrazonio a 

formazan; dalla misura allo spettrofotometro di quest’ultimo è quindi 

possible ricavare la crescita cellulare all’interno del nostro 

campione. 

 

Abstract 
Nanotechnology is a rapidly developing field, attracting significant 

investments from industry and governments. Nanomaterials (NMs) 

used in applications are tipically described as nanoparticles (NPs) or 

nanotubes (NTs).their small size causes physico-chemical 

properties that differ from those of other solid materials; hence their 

environmental effects are unknown. To ensure regulatory 

compliance with relevant legislative regimes it is necessary to 

understand the toxicity, the fate and environmental effects of 

nanoparticles prior to release into the environment. 

In this study, conduct in CEFAS laboratory (Weymouth, UK), 

cadmium NPs (4 nm ± 1 nm) and silver NPs (13 nm ± 1 nm) have 

been chosen as their toxicity is weel known in their solid forms, and 

because they are lately used as nanoparticles in several 

applications in medicine, in the development of new technologies 

and instruments as for example solar panels. 

NPs used in experiments must have consistent batch properties, for 

this reasons they have been capped with thiol-terminated methyl 

polyethylene glycol to reduce agglomerations. The aim of the 

present study was the valuation of genotoxic effect on Mytilus edulis 

and rainbow trout gonads cells (RTG-2) DNA, more the enzymatic 

activity of lactic dehydrogenase (LDH) and cellular proliferation only 

for RTG-2.  
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RTG-2, also if it’s not a marine species cell line, it has to be 

considered, as all cell lines in general, a model for detection of 

genotoxic effect as they have been genetically modify to let them 

survive and multiply in vivo, becoming diffeent from the original 

animal. 

Comet assay, known also as single cell gel electrophoresis (SCGE), 

is a microelctrophoretic technique for direct visualization of DNA 

damage in single cells. During electrophoresis DNA strands with low 

molecular weight move quiclier than comlite DNA (head of the 

comet). Comets, and then the extension of the DNA damage, are 

measured with an image computerizated system, which consent to 

register the DNA percentage present in the tail and in the head of 

the comet. For the carectirization of DNA damge, Comet assay has 

been used for both the organisms. 

RTG-2 seems to not suffer significant effects by silver NPs and 

cadmium NPs at five different doses (50; 10; 1; 0,1; 0,01 mg/L) after 

an exposure of 24 and 48 hours, while mussels don’t suffer any 

significant effect after an exposure at no one of the doses used (10; 

1; 0,1; 0,001 mg/L) after 4 hours. 

LDH test (known as Cytotoxicity test as well) is a colorimetric assay 

for the quantification of cellular mortality and lysis, based on the 

detection of the lactic dehydrogenase (LDH) released in the 

supernatant by the citosol of a damaged cell. In the cell proliferation 

test (XTT) metabolic active cells reduce tetrazolium salt in formazan, 

from the measure on the spectrophotometer of this reaction product 

is possible to obtain the cell population growth in our sample. 
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1_ Introduction 

Nanotechnology includes all those fields of science and engineering 

where phenomena take place in the nanometre scale, and are 

utilised in the design, characterisation, production and application of 

materials, structures, devices and systems. 

Many structures exist with nanometre dimensions in the natural 

world, including essential molecules within the human body, 

components of foods and many technologies have incidentally 

involved nanostructures for many years but, it has been possible to 

actively and intentionally modify molecules and structures within this 

size range only in the last decades. 

The various forms of nanotechnology have the potential to make 

such a very significant impact on society,  that it is considered to be 

the biggest engineering innovation since the Industrial Revolution. 

It can be generally assumed that the application of nanotechnology 

will be very beneficial to individuals and organisations. Many 

applications involve new materials with radically different properties 

and functions at the nanoscale. These include materials in the form 

of very thin films used in catalysis and electronics, two-dimensional 

nanotubes and nanowires for optical and magnetic systems, and as 

well nanoparticles used in cosmetics, pharmaceuticals and coating. 

The industrial fields most readily embracing nanotechnology are the 

information and communications sector, including many different 

facets of pharmaceuticals and drug delivery systems, diagnostics 

and medical technology, where the terms nanomedicine and 

bionanotechnology are already commonplace. Nanotechnology 

products may also offer novel challengies for the reduction of 

environmental pollution. 
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However, just as phenomena taking place at the nanoscale it may 

be quite different to those occurring at larger dimensions and may 

be exploitable for the benefit of mankind, so these newly identified 

processes and their products may exposed the same humans and 

the environment in general, to new health risks, possibly involving 

quite different mechanisms of interference with the physiology of 

human and wild. 

These possibilities may well be focussed on the fate, the dispersion 

and persistence of free nanoparticles generated in nanotechnology 

processes and either intentionally or unintentionally released into the 

environment. 

 

1.1_ Definitions 

There are several definitions of nanotechnology and the products of 

nanotechnology. Nanoparticles (NPs) are defined as materials that 

have at least one dimension in a range between 1 and 100 nm, from 

that the used term of nanoscale materials (Royal society 2004). 

It is within this range of size that materials can possess substantially 

different properties if compared to the same substances at larger 

sizes, both because of the substantially increased ratio of surface 

area to mass, and also because quantum effects begin to play a role 

at these dimensions, leading to significant changes in several types 

of physical property. 

 

- Nanoscale: having one or more dimensions of the order of 100 

nm or less. 

- Nanoscience: the study of phenomena and manipulation of 

materials at atomic, molecular and macromolecular scales, where 

properties differ significantly from those at larger scale. 
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- Nanotechnology: the design, characterisation, production and 

application of structures, devices and systems by controlling shape 

and size at the nanoscale. 

- Nanomaterial: material with one or more external dimensions, 

or an internal structure, which could exhibit novel characteristics 

when compared to the same material without nanoscale features. 

- Nanoparticle: particle with one or more dimensions at the 

nanoscale. 

- Nanocomposite: composite in which at least one of the phases 

has at least one dimension on the nanoscale. 

- Nanostructured: having a structure at the nanoscale. 

 

1.2_ Nanoscience and nanotechnology 

What we know about science at nanometre scale is derived from 

many disciplines, originating in the atomic and molecular concepts in 

chemistry and physics, and then has been incorporated into 

molecular life sciences, medicine and engineering. In materials 

sciences, nanocomposites with nanoscale dispersed phases and 

nanocrystalline materials in which the very fine grain size affords 

quite different mechanical properties to conventional microstructures 

are already in use. In surface science and surface engineering, 

nanotopographies offer substantially different properties related to 

adhesion, tribology, optics and electronic behaviour. 

Supramolecular chemistry and catalysis have led to novel surface 

and size dependent chemistry, such as enantioselective catalysis at 

surfaces. In biological sciences, fundamental understanding of 

molecular motors and molecular functional entities on the nanometre 

scale has been responsible for the advances in drug design and 

targeting. 

 9



Nanoscale functionalised entities and devices are in development 

for analytical and instrumental applications in biology and medicine, 

including tissue engineering and imaging. 

Electronic, electro-optic and optical devices are making biggest 

impact in the application areas. 

The transition from semiconductor (conventional and organic) 

technology to nanoscale devices has anticipated improved 

properties and resolution, e.g. fluorescence labelling, scanning 

probe microscopy and confocal microscopy. Data storage devices 

use nanotechnology to provide smaller, faster, and lower 

consumption systems. 

In medicine, the understanding and the knowledge of diseases on 

the nanometre scale is being derived, and drug delivery through 

functionalised nanostructures may result in improved 

pharmacokinetic and targeting properties. 

 

1.3_ Physical and Chemical properties 

The principal parameters of nanoparticles are their shape, size and 

size distribution, and the morphological (e.g., crystallinity, porosity, 

and surface roughness) sub-structure of the substance, bulk 

chemistry of materials, solubility, surface area, state of dispersion, 

surface chemistry and other physical-chemical properties. 

Nanoparticles are present as an aerosol (mostly solid or liquid phase 

in air), a suspension (mostly solid in liquids) or an emulsion (two 

liquid phases). 

At some point between the Ångstrom level and the micrometre 

scale, the simple picture of a nanoparticles is a ball or drop. Both 

physical and chemical properties are derived from atomic and 

molecular origin in a complex way. For example the electronic and 
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optical properties and the chemical reactivity of small clusters are 

completely different from the better known property of each 

component in the bulk or at extended surfaces. 

In this range of dimensions, particle-particle interactions are either 

dominated by weak Van der Waals forces, stronger polar and 

electrostatic interactions or covalent interactions. Particle 

aggregation is determined by the interparticle interaction, depending 

on the viscosity and polarisability of the fluid. 

Particles can be de-agglomerated by applying shear (mixing, 

sonication, grinding, and turbulence), but unless the conditions are 

present for a stable dispersion the system will be prone to re-

agglomerate rapidly, like in toxicology studies, where particles may 

agglomerate rapidly when introduced into new environments such 

as a highly buffered (high ionic strength), or protein rich 

physiological/biological fluids. 

 

1.4_ Interactions Nanoparticles-Living Systems and Toxicity 

Nanoparticles may be of the same dimensions as some biological 

molecules such as proteins and nucleic acids. Many of these 

biomolecules consist of long macromolecular chains which are 

folded and shaped by cooperative and weak interaction between 

side groups, H-bridges and salt bridges. 

Functionalized nanoparticles, such as colloidal gold (Hayatt, 1989), 

may intrude into the complex folded structures (Cheng et al., 1999, 

Hainfield and Powell, 2000). Evidence for such interactions is seen 

from the experience with immunolabelling (Romano and Romano, 

1977) and related surface functionalisation techniques to target 

nanoparticles to biomolecules as markers for high resolution 

Transmission Electron Microscopy (TEM) and optical imaging 
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systems. Other nanoparticles systems include quantum dots (Chan 

and Nie, 1998) and magnetic nanoparticles (Josephson et al., 1999). 

All nanoparticles, on exposure to tissue and fluids of the body, will 

immediately absorbed onto their surface some of the 

macromolecules they encounter at their portal of entry. The specific 

features of this adsorption process will depend on the surface 

characteristics of the particles, including surface chemistry and 

surface energy, and may be modulated by intentional modification of 

functionalisation of the surfaces (Schellenberg et al., 2004). 

This is well demonstrated through the use of specific biomolecular 

linkers that are anchored on the surface of nanoparticles or within 

vescicles and liposomes (Nardin, 2000). In this way the affinity of a 

nanoparticle can be shaped to fit a particular protein, and thus target 

a specific biomolecular assembly on a membrane, or within a 

specific organelle or cell surface. 

The specificity of such surface layers is used for analytical purposes 

(Elghanian et al., 1997), for optical labelling of biomolecules in 

molecular libraries (Han et al., 2001) and for drug or gene delivery to 

cells (Hood et al., 2002). In agreement with bulk surface chemistry, 

metallic nanoparticles are of considerable chemical reactivity while 

ionic crystal nanoparticles have been observed to accumulate 

protein layers when exposed to the cytoplasm or in the lymphatic 

fluid. This protein layer is possibly involved in the interaction of the 

nanoparticle by the cellular system. 
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1.4.1_ Effects of size, shape, surface and bulk composition 

The interaction of nanoparticles with living systems is also affected 

by the characteristic dimensions. As seen above, NPs of few nm 

may be contained within biomolecules; an impossible situation for 

larger particles. 

In order to understand and categorized the mechanisms for 

nanoparticle toxicity we need information about the response of 

living being to the presence of nanoparticles with varying size, 

shape, surface and bulk composition, as well as the temporal fate of 

nanoparticles that are subject to translocation and degradation 

processes. Very little information about that is available right now, 

and this implies that there is an urgent need for toxicokinetic data for 

nanoparticles. 

In fact studies focused on the toxicity of nanoparticles have appared 

only recently and are still rare in literature; data concerning the 

behaviour and toxicity of particles mainly comes from studies on 

inhaled nanoparticles (reviewed by Oberdörster G., 1996, 

Oberdörster G et al., 2005, Donaldson and Stone, 2003, Borm, 

2002, Donaldson et al., 2001a, 2004; Dreher, 2004, Kreyling et al., 

2004). 

 

1.4.2_ Size 

Size should be the first parameter to be considered when 

characterizing nanoparticles for toxicity studies. Since many 

particles system are irregular in shape, particles size is expressed in 

terms of the equivalent spherical diameter which is defined as the 

diameter of a spherical particle possensing the same selected 

property of the (not necessarily spherical) nanoparticles measured 
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(equivalent spherical volume diameter is defined as the diameter of 

a sphere with the same volume as the particles measured). 

Likewise, the Stokes diameter is the diameter of a sphere of 

equivalent density that settles at the same rate as the measured 

one. 

For aerosols, the most commonly used size metric is the 

aerodynamic equivalent diameter, defined as the diameter of a unit 

density sphere having the same terminal settling speed as the 

particle in question, whatever its size, shape, and density. It is used 

in combination with inhalation models to predict where in the 

respiratory tract such particles may be deposited. 

Reduction in size to the nanoscale level results in an enormous 

increase of surface to volume ratio, so relatively more molecules of 

the chemical are present on the surface, thus enhancing the intrinsic 

toxicity (Donaldson et al., 2004). This may be one of the reasons 

why nanoparticles are generally more toxic than larger particles of 

the same insoluble material when compared on a mass dose base. 

In the studies of low toxicity particles, TiO2 induced a more severe 

lung inflammation and particle lymph node burden compared to 

BaSO4 dosed at mass burden in milligrams (Tran et al., 2000). 

Surface area was therefore a driver for inflammation for these 

materials; the differences in severity of the response disappeared 

when the dose was expressed as surface area. These examples 

emphasize the importance of particle size, and by implication, the 

amount of surface area presented to the biological system for 

particle toxicity. 

Anyway, it is difficult to draw firm conclusions regarding size effects 

from existing literature due to the fact that studies are performed 
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with different cell lines, tissues, animal models, different types of 

ultrafine particles, and methods of administration. 

 

1.4.3_ Chemical Composition 

The chemical composition and the toxicological properties of any 

chemical elements are of importance for the toxicity of the particles 

(Donaldson et al., 2004). In addition chemicals adsorbed on the 

surface may affect the reactivity of nanoparticles. 

Nanoparticles can have a very complex composition when they are 

in ambient air, and these components, organics or metals, can 

interact. 

Metallic iron was able to potentiate the effect of carbon black 

nanoparticles, resulting in enchanced reactivity, including oxidative 

stress (Wilson et al., 2002). It is also possible to see the opposite 

effects, a diminishing of cytotoxicity, as observed by Gupta and 

Gupta (2005) coating superparamagnetic iron oxide nanoparticles 

with pullulan in vitro cytoxicity. Also for dextran and albumin 

derivatised iron oxide nanoparticles a reduction was noted by Berry 

et al. (2003). 

 

1.4.4_ Shape 

Shape is also an important factor to considerate. Fibre provide a 

significant example, especially in relation to inhalation, where the 

physical parameters of thinness and length seem to determine 

respirability and inflammatory potential. In two recently published in 

vivo studies, single-wall carbon nanotubes (SWCNTs) were 

demonstrated to induce lung granulomas after intratracheal 

administration (Lam 2004, Warheit et al., 2004), indicating that these 

nanotubes cannot be classified as a new form of graphite on 
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material safety data sheets. On a dose per mass basis the 

nanotubes were more toxic than quartz particles, well known for 

their lung toxicity. 

 

1.5_ Toxicity (ecotoxicity) 

As pointed by Colvin (2003) on his discussion on the impact of 

engineered materials, there is a demonstrated lack of data on the 

exposure and effects of nanoparticles. In fact just few studies have 

been carried out with species normally used for ecotoxicological 

analysis. However, considering that a large number of the above 

cited human toxicology studies have examinated the uptake and 

effects of nanoparticles at cellular level, it can be hypothesized that 

these observations may also hold for other species. A work to 

support this hypothesis is needed. 

From the cellular point of view, different uptake mechanisms are 

considered to be relevant for NP. The relevance of these different 

pathways has been shown to depend on the physicochemical 

properties of the NP (e.g.; chemical composition, size/geometry, 

surface charge, coating/ligands, aggregation status), the exposed 

cell type (professional phagocytes versus other cell types), as well 

as on their microenvironment (e.g.; lung surfactant, opsonins). 

The importance of the physicochemical properties of NP in the toxic 

and functional effects in macrophages (phagocytosis, inflammatory 

mediator release, calcium release, cytoskeletal function) has been 

shown by various investigators (Renwick et al., 2004; Jia et al., 

2005). 

Contrasting uptake mechanisms of NP in professional phagocytes 

versus other cell types in relation to different behaviour in the cell 

membrane structures (e.g., receptors) are indicated by a number of 
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studies. For instance, the surface modification of superparamagnetic 

NP with polyethylene glycol or folic acid has been shown to enhance 

their uptake by cancer cells but not by macrophages (Zhang et al., 

2002). 

 

1.5.1_ Reactive oxygen species 

The generation of reactive oxygen species (ROS) upon exposure of 

cells to particulate matter is nowadays generally considered a major 

contributor to NP toxicity (Donaldson et al., 2001; Nel et al., 2006). 

Mechanistically, the enhancement of ROS generation by NP is 

envisaged to occur at several levels, including: (a) the chemical 

reactivity both of particles and of impurities found in particle 

preparations, and (b) the physical interaction of particles with cellular 

structures involved in the catalysis of biological reduction-oxidation 

(redox) processes. 

NPs induced ROS formation, if exceeding the cellular antioxidative  

machinery’s defensive capacity, may cause oxidative damage to 

biomolecules. Beyond that ROS are well known signalling 

modulators at concentrations well below those that cause 

detrimental oxidation. As a consequence, exposure of cells to NPs 

may affect, via ROS formation, cellular signalling cascades that 

control cellular proliferation, inflammatory processes and cell death. 

Molecule oxygen, present in biological fluids in high micromolar 

concetrations, is activated and turned into a ‘reactive oxygen 

species’ (ROS) by energy transfer reactions. While singlet oxygen 

(1O2), an electronically excited and non-radical form of molecular 

oxygen, is generated by energy transfer, a radical, superoxyde 

(O2·  .results from the simple reduction of oxygen ,(־
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   ̶ >  O2·O2 + e ־ ־

 

 

The monovalent reduction of molecular oxygen may be specifically 

enzymatically catalyzed (such as NADPH oxidases), or may occur 

as a by-product of enzymatic reactions, as a side reaction of 

electron transport along the mitochondrial respiratory chain, or may 

occur during redox cycling. 

Superoxide disproportionation (dismutation), occurring both 

spontaneously and as catalyzed by manganese- or zinc-dependent 

superoxide dismutases, yields hydrogen peroxide. 

 

 

 + 2 H+   ̶ > H2O2 + O22 O2· ־

 

Hydrogen peroxide may be fully reduced to water by peroxidases as 

glutathione peroxidases, heme peroxidases or a second molecule of 

H2O2 as electron donor, having like result another dismutation 

reaction. 

 

H2O2 + XH2   ̶ >  2 H2O + X 

H2O2 + 2 GSH   ̶ >  2 H2O + GSSG 

H2O2 + H2O2   ̶ >  2 H2O + O2
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Partial rather than full reduction of hydrogen peroxide may occur 

when redox active transition metal ions are present in their reduced 

forms (Men+), resulting in the production of hydroxyl radicals (Fenton 

reaction), most reactive oxidizing species and potent initiators of 

radical chain reactions with diverse biomolecules. 

 

 

H2O2 (=‘HO-OH’) + e HO < ̶  ־ OH (with Me n+  ̶ > Me(n+1)+ + e· + ־  (־

 

 

1.5.2_ Genotoxicity 

It is the capacity of a substance to modify the DNA structure of a 

living being. 

To maintain the integrity of the DNA molecule before initiating DNA 

replication, transcription and cell division, cells are provided with 

several efficient DNA repair mechanisms to prevent such potentially 

adverse effects (Lindahl, 1993). 

In this regard, it is nowadays known that DNA damage itself can 

trigger cell cycle arrest whereby the prolongation of G1 and G2 

phases provides additional DNA repair time prior to DNA synthesis 

and mitosis respectively (Zhou & Elledge, 2000). 

Damage to genomic DNA, both from endogenous and exogenous 

sources, may induce three major consequences: 

- induction and fixation of mutations; 

- induction of DNA cycle arrest; 

- activation of signal transduction pathways which 

promote apoptosis. 

Mutation can involve a single gene, a block of genes or even whole 

chromosomes. Mutations are considered to play a key role in 
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carcinogenesis (Ames 1979; Devereux et al. 1999) and in 

interference with various metabolic processes occurring into the 

cells such as DNA replication and DNA transcription which may 

result in cell death (Andreassen et al., 2006). 

Severe damage to the nuclear DNA is known to trigger the signal 

transduction pathways which promote cellular apoptosis 

(programmed cell death). 

As already outlined, induction of ROS is considered to represent a 

major mechanism whereby NP can elicit their toxic effect within the 

cells.  The ability of NP to cause damage to the nuclear DNA is 

indicated in several studies, and several of these show that ROS are 

involved herein via oxidative attack to DNA. Such oxidative DNA 

damage has also been seen in the DNA damaging effects of toxic 

particle in the micrometre size range such as quartz and asbestos, 

whereby DNA damage could be reduced or abrogated with radical 

scavengers and antioxidants (Xu et al., 1999; Shi et al., 1994; 

Schins, 2002). Oxidative DNA damage can lead to base pair 

mutations, deletions or insertions, all being commonly observed in 

mutated oncogenes and tumor suppressor genes (Wiseman & 

Halliwell, 1996). Well investigated oxidative lesions include 8-

hydroxyguanine (8-OHdG), which is considered to be predominantly 

caused by hydroxilradicals. 

The ROS do not need to interact directly with the DNA to cause 

deleterious genetic change. The mitotic spindle consisting of tubulin 

fibres can also be damaged leading to aneuploidy by oxidative 

deterioration as found following exposure to asbestos fibres (Barret 

et al., 1989; Osgood, 1994; Dopp et al., 1997). The most potent 

asbestos fibre; crocidolite, contains the biggest proportion of Fenton 

catalyst Iron, hence produces the most elevated rate of ROS 
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production and damage (Shukla et al., 2003; Poser et al., 2004). In 

addition to the possible effects on the mitotic apparatus, the 

cytoskeleton which consist of filaments and has extensive roles in 

cellular trafficking, cell motility and endocytosis has been shown to 

be inhibited by in vitro ultrafine TiO2 exposure in primary alveolar 

dog macrophages due to disruption of cytoplasmic calcium levels 

(Moller et al., 2002; Moller et al., 2005). 

 

1.6_ Biological effects of NPs 

The literature on the ecotoxicology of NPs is still emerging, however 

there have been several recent reviews on the ecotoxicity of 

manufactured NPs and NMs (Oberdörster et al. 2006; Crane and 

Hardy 2007; Moore 2006). Early studies have been observational, 

and they have tried to document toxic effects, and the 

concentrations of NPs that produce these effects in different groups 

of organisms. 

The literature on mammalian models has recently been reviewed in 

the context of the environment and routes of human exposure to 

manufactured NPs (Handy and Shaw, 2007). These mammalian 

reports have focused on respiratory toxicology and inflammation 

reactions upon NP exposure (Oberdörster et al., 1992; Burmudez et 

al., 2004; Lam et al., 2004). 

Hardy et al. (2008) pointed out that mammalian lung epithelium has 

some relevance to ecotoxicology because the lung is representative 

of a typical mucous epithelial tissue and is not fundamentally 

different in structure to other epithelia such as the gills or guts of 

aquatic organisms, or the body surface of earth worms. Fish gills are 

certainly sensitive to some manufactured NPs (TiO2 NPs, Federici et 
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al., 2007; single walled carbon nanotubes, SWCNT, Smith et al., 

2007). 

The effects of TiO2 NPs, for instance,which is used in sunscreens, 

showing an induced photo and non-photocatalytic production of 

reactive oxygen species (ROS) leading to oxidative deterioration of 

lipids, proteins and nucleic acids (Gurr et al., 2005; National-

Nanotechnology-Initiative, 2006) have been studied in rainbow trout 

(Oncorhynchus mykiss). 

There are many gaps in our knowledge on the ecotoxicology of NPs; 

most of the available acute toxicity data are on freshwater species, 

and mainly species used for regulatory toxicology (D. magna, 

Lovern and Klaper, 2006; fathead minnows, Pimephales promelas, 

Zhu et al., 2006). 

More studies are needed on marine and terrestrial invertebrate 

species, as well as other vertebrates including amphibians, reptiles 

and birds. Anyway most of these studies has been done in 

laboratory conditions, and toxicity in laboratory solutions may be 

somewhat different from that in real environmental samples. 

Development of methodologies to measure NPs in complex 

environmental matrices (soil, sediments, natural waters) will be an 

urgent and essential prerequisite to environmentally realistic studies 

of NP ecotoxicity. 

To date, ecotoxicological studies have not been performed to the 

level of detail that would enable a mechanistic analysis of 

absorption, distribution, metabolism and excretion. The first step in 

the biological uptake of any substance is the absorption of the 

material onto the exterior surface of the organism (Hardy and Eddy, 

2004), and the physical-chemistry aggregation or precipitation of 

NPs on the exterior surface of organisms. This notion is supported 
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by experimental observations (aggregation of SWCNT on the gill 

mucus of rainbow trout (Smith et al., 2007)).  The next step is the 

uptake cross the cell membrane and the mechanisms involved 

remain to be investigate. 

It seems unlikely that NPs could be moved across the cell 

membrane via ion transporters because the particles are much 

bigger than ions, and presumably would not fit the binding sites. 

Moore (2006) argued the case for endocytosis and pointed out that 

marine bivalves such as  Mytilus edulis might take up NPs using 

endocytosis, and demonstrated that polyester NPs were taken up 

into endosomes and lysosomes of mussels. 

This model of uptake may be especially relevant where aggregation 

of NPs on the surfaces of the organism occur. Moore (2006) also 

raised concerns about NPs acting delivery vehicles for other 

chemicals via endocytosis pathways. 

Particles can be identified in tissues using the electron microscope, 

but the sample preparation takes time, and there is always the risk 

of introducing aggregations artefacts during processing of the 

material. 

The target organs may also reflect the biology or life style of the 

organism. For example crustaceans are well known for their ability 

to sequester toxic metals into granules in the hepatopancreas and 

other tissues (Barka et al., 2007). 

As seen above, it is clear that the exposure to toxicans may induce 

a chain of events producing several damage on the DNA and on the 

metabolism of a living being. The identification and the quantification 

of such events can be used by researchers like markers of the 

fitness of an organism, of the environment, of a population studied; 

in a word, as biomarkers. 
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Overall, the ecotoxicology literature on NPs and NMs is at the 

beginning, but toxic effects have been identified in a range of fish 

and invertebrate that raise sufficient concern that NPs, in the 

environment could have adverse effects on wild life, if present at 

high enough levels. There are several significant knowledge gaps in 

the ecotoxicology; for example, information is generally lacking on 

bacteria, plants, and higher vertebrate species. The ecotoxicity of 

NPs requires a multi-disciplinary approach, and ecotoxicologists 

need to understand the main issue in particle chemistry in order to 

interpret ecotoxicological data correctly. 

These include the effects of particle size, shape and surface area, 

and the interactions of the particles with other material in the water 

or environmental matrix. Our knowledge of the interactions between 

NPs and abiotic factors is poor; thus there is still need for a detailed 

investigation on the effects of salinity, pH, water hardness, presence 

of colloid materials on NPs ecotoxicity. 

 

1.7_ Biomarkers 

The term biomarker was used for the first time at the end of 70’s to 

indicate environmental health damage due to an exposure to toxic 

substances. 

The idea to utilize biomarkers in ecotoxicology was introduced in the 

70’s by Bayne et al. (1976) and Payne (1977) in marine 

environment. 

The most recent definition of biomarker is “…that biochemical, 

cellular, physiologic or behaviour variation that can be measured in 

a tissue, in a biologic fluid or in an entire organism (and population), 

which gives the evidence of an exposure and/or the effect of one or 

more pollutant compounds (and/or radiations)” (Depledge, 1994). 
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By the use of biomarkers it is possible to diagnosticate through the 

study of early responses, the presence of eventual contaminants in 

environment, where the bioindicator organism lives. 

Thus through the use of biomarkers it is possible to detect the onset 

of environmental alterations that, if persisting, would lead to the 

impairment of populations dynamics and communities structure. In 

this respect, biomarkers also have prognostic values in addition to a 

diagnostic utility. 

It is possible to divide biomarkers in different categories on base of 

the information they can give us. The two biggest and more common 

categories are : general biomarkers and specific biomarkers. 

The first one is defined as “…all those molecular, cellular and 

physiological responses of an organism which can not be 

reconduced to a specific class of contaminants but that indicate the 

general stress state of the organism” (Peakall & Shugart, 1993); 

instead the second one as “all those molecular and biochemical 

responses happening in an organism  after exposure to a specific 

class of contaminants” (Peakall & Shugart, 1993). 

Biomarkers based on genotoxic effects are often included in 

ecotoxicological investigations either through laboratory exposure to 

ecologically relevant pollutants or in biomonitoring studies. 

Alterations of the genome can occur at different levels, including 

molecular damages and/or change in the structure or number of 

chromosome. 

In the present thesis three different biological responses were 

investigated at cellular level, namely: DNA strand breaks (by the 

Comet assay), cytotoxicity (by LDH cytotoxicity detection test) and 

cell proliferation (by a colorimetric assay based on the reduction of 

tetrazolium salt to formazan). 
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1.7.1_ Strand breaks (SB) 

The quantitative determination of strand breaks presence, on the 

single DNA strand and on the double one as well, is frequently used 

as biomarker to address the genotoxic effect of environmental 

contaminants. SB production is actually well correlated with 

mutagenic and/or carcinogenic characteristics of many 

environmental contaminants even different mechanism of action 

(Mitchelmore & Chipman, 1998). Breaks may be produced by 

several factors, which can act directly, like solar radiations and X 

ray, or indirectly, for instance after metabolic activation. 

Some substances, like H2O2, are able to induce DNA strand breaks 

in the blue mussel Mytilus edulis and in the trout Oncorhynchus 

mykiss. 

Strand breaks can also be produced by the action of repair enzymes 

which cut the DNA. Therefore, it looks clear how SB quantity 

evaluation is a good way to address the genotoxic effect of several 

compounds, each one with the capacity to modify the DNA in a 

different way. 

A number of techniques for detecting DNA damage, as opposed to 

the biological effects (e.g., micronuclei, mutations, structural 

chromosomal aberrations) that results from DNA damage, have 

been used to identify substances with genotoxic activity. Until 

recently, the most frequently used methods involved either the 

detection of DNA repair synthesis (so-called unscheduled DNA 

synthesis or UDS) in individual cells, or the detection of DNA SSB 

(single stand breaks) of ALS (alkali-labile sites) in pooled cell 

populations using the alkaline elution assay. The UDS technique is 

based on the replication of DNA during the excision repair of certain 
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types of DNA lesions, as demonstrated by the incorporation of 

tritiated thymidine into the DNA repair sites. While providing 

information at the level of the individual cell, the technique is 

technically cumbersome, requires the use of radioactivity, and is 

limited in sensitivity. The alkaline elution assay ignores the critical 

importance of intercellular differences in DNA damage and requires 

relatively large numbers of cells. A more useful approach for 

assessing DNA damage is the single-cell gel (SCG) or “Comet 

assay”. The term “Comet is used to identify the individual cell DNA 

migration patterns produced by this assay (Fig. 1). 

 

 
Fig.1_ Typical migration pattern of a nucleus after electrophoresis in the Comet 

assay. 

  

Östling and Johanson (1984) were the first to develop a microgel 

electrophoresis technique for detecting DNA damage at the level of 

a single cell. In their technique, cells embedded in agarose were 

placed on a microscope slide, the cells were lysed by detergents 

and high salts, and DNA electrophoresis under neutral conditions. 

Cells with an increased frequency of DNA double strand breaks 

(DSB) displayed increased migration of DNA toward the anode. The 
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migrating DNA was stained with a fluorescent dye  (ethidium 

bromide) and measured using a fluorescence microscope. 

The neutral conditions used greatly limited the general utility of the 

assay. Subsequently, Sight et al. (1988) introduced a microgel 

technique involving electrophoresis under alkaline (pH > 13) 

conditions for detecting DNA damage in single cells. At this pH, 

increased DNA migration is associated with increased levels of frank 

SSB, SSB associated with incomplete excision repair sites, and 

ALS. Because almost all genotoxic agents more SSB than ALS and 

DSB, this version of the assay offered greatly increased sensitivity 

for identifying genotoxic agents (Tice et al., 1995). Since the 

introduction of the alkaline (pH > 13) Comet assay in 1988, the fields 

of applications and the number of investigators using this technique 

have increased almost exponentially. Compared with other 

genotoxicity assays, the advantages of the technique include: 

 

- Its demonstrated sensitivity for detecting low 

levels of DNA damage 

- The requirement of small numbers of 

cells/sample 

- Flexibility 

- Low cost 

- The ability to conduct studies using relatively 

short time period (a few days) 
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1.7.2_ LDH (Cytotoxicity Detection Test) 

This test is designated as a precise, fast and simple 

colorimetric alternative to quantitate cytotoxicity/cytolisis based on 

the measurement of LDH activity released from damaged cells. 

Thus, the Cytotoxicity Detection Test can be used in many 

different in vitro cell systems when damage to the plasma 

membrane occurs. 

Examples are: 

- Detection and quantification of cell mediated 

cytotoxicity induced by cytotoxic T-lymphocytes 

(CTL), natural killer (NK) cells, lymphokine 

activated killer (LAK) cells or monocytes 

- Determination of mediator-induced cytolisis 

- Measurement of antibody-dependent cellular 

cytotoxicity (ADCC) and complement-mediated 

cytolysis. 

- Determination of the cytotoxic potential of 

compounds in environmental and medical 

research and in the food, cosmetic and 

pharmaceutical industries 

- Determination of cell death in bioreactors 

 

Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme 

present in all the cells. It is rapidly released into the cell culture 

supernatant upon damage of the plasma membrane. 

The supernatant is cell-free collected and incubated with a reaction 

mixture. The LDH activity is determined in an enzymatic test: in the 

first step NAD+ is reduced to NADH/H+ by the LDH-catalyzed 

conversion of lactate to pyruvate. In the second step the catalyst 
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(diaphorase) transfers H/H+ from NADH/H+ to the tetrazolium salt 

INT which is reduced to formazan (Fig. 2). 

 

 
Fig. 2_ Enzymatic reaction occurring in the Cytotoxicity test (LDH) which reduce 

tetrazolium salt in formazan. 

 

1.7.3_ Cell Proliferation 

The determination of cellular proliferation, viability and activation are 

key areas in a wide variety of cell biological approaches. The need 

for sensitive, quantitative, reliable and automated methods led to the 

development of standard assay. Cellular proliferation and viability 

assays are of particular importance for routine applications 

The assay is based on the cleavage of the yellow tetrazolium salt 

XTT (sodium 3’-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-

methoxy-6-nitro) benzene sulfonic acid hydrate) to form an orange 

formazan dye by metabolic active cells. An increase in number of 

living cells results in an increase of overall activity of mitochondrial 

dehydrogenases (on which the cleavage of XTT depends) in the 

sample. Therefore, this conversion only occurs in viable cells. The 

formazan dye formed is soluble in aqueous solutions and is directly 

quantified using a scanning multi-well spectrophotometer. 
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Cells, grown in a 96 well tissue culture plate, are incubated with the 

yellow XTT solution for 4-24 hours. After this incubation period, 

orange formazan solution is formed.  

The assay is designed for the spectrophotometric quantification of 

cell growth and viability without the use of radioactive isotopes. 

It is used for the measurement of cell proliferation in response to 

growth factors, cytokines and nutrients. 

It is also used for the measurement of cytotoxicity, like the 

quantification of tumor necrosis factor or the assessment of cytotoxic 

or growth inhibiting agents such as inhibitory antibodies. 

In contrast to cell viability analysis, cell proliferation assessment is 

defined as the measurement of actively dividing cells in a sample. 

Quiescent non-growing healthy cells are not detected by cell 

proliferation assay. 

 

1.8_ Mytilus edulis 

 

 
Fig. 3_ Anatomy of blue mussel Mytilus edulis. 

 

The blue mussel is characterized by a bluish black shell, about 4 to 

5 cm in length, pointed wedge-shaped at one end. The shell has got 

two halves, both about alike in shape. After a blue mussel shell has 

been opened, the large closing muscle and four pairs of gills 
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become visible. The mussel foot is large and muscular. When the 

mussel is closed the foot is usually the only body part visible from 

outside. At the foot’s end there is the byssus gland producing a hard 

thread, that renders the mussel capable of attaching itself to the 

ground. The mussel can move by its byssus thread by cutting it off 

and building it again. It is even able to defend itself with byssus 

thread by tying predator snails with byssus threads down. 

Nutrition_ The blue mussel is a filtrator (Fig. 4). It whirls sea water 

into the pallial cavity by cilia, both to breathe, or to filter nutritive 

particles from the water current. Digestible particles are whirled 

further into the mouth opening, indigestive particles are coated in 

mucus and excreted. A medium size mussel pumps about one litre 

of sea water per hour. Particles are not only sorted out by filtration 

near the gills, they are also sorted before the mouth opening. 

Though, mussels can fall dry for a certain time. The particles 

excreted by a mussel are accumulated around its shell, so it is 

placed on an ever growing heap of silt. The amount of silt 

accumulated can become noticeably high especially around mussel 

beds. 

 
Fig. 4_ Alimentary strategy of blue mussel Mytilus edulis. 
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Reproduction_ Mussels have separate sexes. The female mussel 

spawns from May to October, depending on the water temperature, 

the current and other factors. Each 

spawn contains between 5 and 12 

million eggs (1b). Thus mussels are 

able to withstand decimation by 

predators through an increase in 

number. 

From the egg fertilized by a sperm cell (1a) the trochophora larva (3) 

develops. It possesses a terminal ciliar crest and an equatorial ciliar 

belt. After few days from the trochophora the veliger larva develops 

(4), recognizable by the sail-shaped cilia-bearing protrusions. After a 

total of four to six weeks the larvae reach about 0.25 mm size and 

change into juvenile mussels (5). 

After this metamorphosis they cling to filamentary structures, like for 

example cnidarian colonies (polyps) and sea worms. Some weeks 

later the young mussels grow until almost doubling their size and 

begin to drift again. The greater the mussels the less distance they 

are drifted. Only the largest mussels (6) settle on the tidal zone, the 

smaller ones settle in deeper regions as they would not survive in 

the tides.  After reaching their final size, mussels attach themselves 

to the ground with byssus threads. That substrate can be the sea 

floor, as well as other mussels. There seems to be a tendency of 

mussels to attach to each other in groups and to form mussel beds 

that way. This happens especially on soft ground, such as in the 

Wadden Sea, as blue mussels need to avoid sink into the ground 

not to suffocate. Other mussels living on silt have developed 

extended siphos, so they can live underground, but the blue mussel 

has not. Mussels also attach themselves to poles and rocks. 
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Distribution_ Common mussels are as common as their name 

indicates, they are cosmopolites. There are blue and black mussels 

belonging to the same species all over the American East coast as 

well as on all Western and Southern European coasts. There is 

even a species of black mussels in Japanese coastal waters. Black 

and blue mussels are inhabitants of the litoral zone, of the coastal 

region. They mostly live where they can remain submerged all time. 

This zone called sublitoral is where the largest part of blue mussels 

grow. However mussels continuously accumulating silt are in danger 

of rising themselves over the water surface. Though, during winter, a 

certain amount of silt is eroded again. Dangers for the mussel are 

represented by cold in winter, that may destroy whole mussel beds, 

especially during ice drift, and many coast-living animals that feed 

on the mussels, most of all the oystercatcher, but also other birds. 

Under water, mussels are threatened by starfish, crabs and eider 

ducks. Additionally the blue mussel belongs to the favourite prey of 

other molluscs, like sea snails, such as the whelk (Buccinum 

undatum), and other ones which eat mussels by trying to drill 

through the shell with their radula. Some of them try to outwit the 

mussel by waiting in front of it until it is forced to open its shell 

halves to breathe. Then they push their sipho into the gap and begin 

to eat the mussel, without it being able to defend itself. 

Ecological Importance_ By their depositing silt mussels lead to the 

development of a unique biotope around their colonies. Mussel 

colonies are often grown over by seaweed, for example the 

bladderless wrack, (Fucus mytili, compare Mytilus: the mussel). On 

mussel polyps, bryozoans and barnacles (Balanus) thrive. Some 

other molluscs feed on the organisms thriving on the mussel shell, 

such as periwinkles (Littorina), and the tiny ancient chitons. By 
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filtering large amounts of sea water mussels have got an especially 

high ecological importance - one blue mussel at a prevailing water 

temperature of 14 °C filters about 1.5 litres of sea water per hour. 

By filtering sea water mussels tend to accumulate harmful 

substances out of the sea water, like heavy metals in endangered 

areas. Different shellfish poisoning illnesses can occur after 

consumption of mussels that have accumulated algae poisons. That 

is also a sign for the increasing sea water pollution, as poisonous 

algae occur in increasing extent due to the growing eutrophization of 

sea water. Contamination by bacteria (e.g. salmonellae) is also not 

free of danger, as especially in coastal areas where mussels are 

eaten directly from the catch. 

1.9_ RTG-2 cell culture 

Cell culture is the process by which either prokaryotic or eukaryotic 

cells are grown under controlled conditions. In practice the term “cell 

culture” has come to refer to the culturing of cells derived from 

multicellular eukaryotes, especially animal cells. 

The historical development and methods of cell culture are closely 

interrelated to those of tissue culture and organ culture. Animal cell 

culture became a routine laboratory technique in the 1950s, but the 

concept of maintaining live cell lines separated from their original 

tissue source was discovered in the 19th century. 

Isolation of cells_ Cells can be isolated from tissue for ex vivo 

culture in several ways. Cells can be easily purified from blood, 

however only the white cells are capable of growth in culture. 

Mononuclear cells can be released from soft tissues by enzymes 

such as collagenase, trypsin or pronase, which break down the 

extracellualr matrix. Alternatively, pieces of tissue can be placed in 
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growth media, and the cells that grow out are available for culture. 

This method is known as explant culture. 

Cells that are cultured directly from a subject are known as primary 

cells. With the exception of some derived from tumours, most 

primary cell cultures have limited lifespan. After a certain of 

population doublings cells undergo the process of senescence and 

stop dividing, while generally retaining viability. 

An established or immortalised cell line has required the ability to 

proliferate indefinitely either through random mutation or deliberate 

modification, such as artificial expression of telomerase gene. 

There are numerous well established cell lines representative of 

particular cell types. 

Maintaining cells in culture_ Cells are grown and maintained with an 

appropriate temperature and gas mixture in a cell incubator. Culture 

conditions vary widely for each cell type, and variation of conditions 

for a particular cell type can result in different phenotypes being 

expressed. 

Aside from temperature and gas mixture, the most commonly varied 

factor in culture system is the growth medium. Recipes for growth 

media can vary in pH, glucose concentration, growth factors, and 

the presence of other nutrient components. The growth factors used 

to supplement media are often derived from animal blood, such as 

calf serum. These blood-derived ingredients pose the potential for 

contamination of derived pharmaceutical products with viruses and 

prions. Current practice is to minimize or eliminate the use of these 

ingredients where possible. 

Some cells naturally live without attaching to a surface, such as cells 

that exist in the bloodstream. Others require a surface, such a s 

most cells derived from solid tissues. Cell grown unattached to a 
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surface are referred to as suspension cultures. Other adherent 

cultures cells can be grown on tissue culture plastic, which may be 

coated with extracellular matrix components (e.g. collagen of 

fibronectin) to increase adhesion properties and provide other 

signals needed for growth. 

Manipulation of cultured cells_ As cells generally continue to divide 

in culture, they grow until to fill the available area or volume. This 

can generate several issue: 

1. Nutrient depletion in the growth media 

2. Accumulation of apoptotic/necrotic (dead) cells 

3. Cell-to-cell contact can stimulate cell cycle arrest, 

causing cells to stop dividing known as contact 

inhibition 

4. Cell-to-cell contact can stimulate promiscuous and 

unwanted cellular differentiation 

These issues may be dealt with using tissue culture methods that 

rely on sterile technique. These methods aim to avoid contamination 

with bacteria or yeast that will compete with mammalian and cell 

death. Manipulations are typically carried out in a biosafety hood or 

laminar flow cabinet to exclude contaminating micro-organisms. 

Media changes_ The purpose of media changes is to replenish 

nutrients and avoid the build up of potentially harmful metabolic 

byproducts and dead cells, in the case of adherent cultures, the 

media can be removed directly by aspiration and replaced (with 

suspension cultures, cells can be separated from media by 

centrifugation and resuspended in fresh media). 

Passaging cells_ Passaging or splitting cells involves transferring a 

small number of cells into a new vessel. Cells can be cultured for a 

longer time if they are split regularly, as it avoids the senescence 
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associated with prolonged high cell density. Suspension cultures are 

easily passaged with a small amount of culture containing a few 

cells diluted in a larger volume of fresh media, while for adherent 

cultures, cells first need to be detached; this was historically done 

with a mixture of trypsin-EDTA, however other enzymes mixes are 

now available for this purpose. 
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2_ Aim of study 

The aim of the present study was the evaluation of the potential 

genotoxic effects induced by nanoparticles on a marine sentinel 

species and cultured fish cells.  

In particular, a cell culture from gonads of the teleost fish rainbow 

trout (Oncorhynchus mykiss) and haemocytes of blue mussel 

(Mytilus edulis) have been exposed to Ag2S nanoparticles and CdS 

nanoparticles at different concentrations. As nanoparticles have the 

tendency to clump each other we used a capping agent (thiol-

terminated methyl polyethylene glycol) normally used in this kind of 

studies. 

DNA integrity was evaluated by the Single Cell Gel Electrophoresis 

(Comet Assay). Moreover, citotoxicity (by the use of LDH 

Cytotoxicity test) and Cell proliferation (by XTT assay) were also 

investigated to have a more exhaustive picture of nanoparticles 

toxicity. 
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3_ Materials and Methods 

 

3.2_ The nanoparticles 
CdS (4 ± 1 nm) and Ag2S (13 ± 7 nm) NPs were sonicated and 

capped with an agent to reduce aggregation (thiol-terminated methyl 

plyrthylene glycol, Capping Agent). 

Before exposure they were diluted in five different concentrations in 

L.15 10%FBS (50 mg/l, 10 mg/l, 1 mg/l, 0,1 mg/l, 0,01 mg/l) to test 

the toxicity in RTG-2. 

 

3.3_ The exposure 
Mussels, collected on Weymouth coast, were bled from the adductor 

mussel of 10 animals for experiment with a siring. 

During every experiment the haemolymph was collected in 

Eppendorf tubes (two tubes for each dose) and exposed to four 

different concentrations of each substance for 4 hours at 15°C. For 

the mussels NPs and Capping Agent were diluted in HBBS to have 

a concentration of 100 mg/l (77 µl of CdS in 1 ml of HBBS, 111 µl of 

Ag2S in 1 ml of HBBS, 10 µl of Cap. Agent in 1 ml of HBBS). Lately, 

for the exposure, 100 µl of each substance in 900 µl of haemolymph 

were used in order to have 10 mg/l, 1 mg/l, 0,1 mg/l, 0,01 mg/l. 

For the mussels we run two experiments, divided into two replicas, 

for each concentration. 

We used RTG-2 cells derived from gonads of rainbow trout 

Oncorhynchus mykiss generally used in toxicology studies. Cells 

were maintained at optimal growth conditions for the particular cell 

line in 75-cm2 flasks under 5% CO2 at 22°C, in Leibovitz medium 

(L.15) 10% FBS without antibiotics. Cells were passaged when the 

monolayer reached approximately 80-90% confluence. For 
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experimentation, cells were washed twice with Dulbecco’s PBS, 

trypsinazed (500-700 µl of trypsin for each flask), counted with 

Tripan Blue in a counter slide, and diluted to reach the wanted 

concentration (1 X 105/ml) in L.15 10% FBS upon nominated. 

Reached the concentration useful for the experiment cells were 

transferred into 6-well plates (2 ml of volume for well) for Comet 

Assay and in 96-wells plates for Cytotoxicity test and Cell 

Proliferation test (200 µl for well). After plating, cells were allowed to 

attach for 24 hours before transfection. 

For RTG-2, cells were transferred from 75 cm2 flasks, after 

trypsinisation, into 6-well plates with L.15 medium (10%FBS) at 1 x 

10-5 cells/ml (2 ml for each well) and seeded for 24 hours prior to 

test exposure at 22°C. After 24 hours, cells were washed twice with 

PBS and exposed to five different concentrations (50; 10; 1; 0,1; 

0,01 mg/L) for each substance (CdS NPs, Ag2S NPs and Capping 

Agent) for 24 and 48 hours in L.15 (1% FBS) at 15°C. After the 

exposure cells were washed twice with PBS and trypsinased 

(around 500 µl of 0,25% trypsine in PBS). To stop the trypsine 

activity 1000 µl of L15 10% FBS were used. 1 ml of supernatant was 

collected in Eppendorf tubes marked with the corresponding 

concentration. Also in this case we run two definitive experiments 

divided into two replicas for the Comet assay, the LDH test and Cell 

proliferation both after 24 hours and 48 hours. 

 

3.4_ Comet assay (single cell gel electrophoresis) 

Eppendorf tubes were spin down at 3000 rpm for 2 minutes. Taked 

off the supernatant, pellets were resuspended  in 170 µl of LMP (low 

melting point agarose) 0.5%. 
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Two drops of 85µl, were placed on each 1% NMP (normal melting 

point agarose) agarose-coated slides. A coverslip was placed on top 

of each gel and the slides chilled to allow coverslip removal. After 

few minutes at 4°C, the slides without coverslip were placed in 

chilled lysing solution (2,5 M NaCl, 100 mM EDTA, 10 mM Tris-

base, 8g NaOH and 1 litre DH2O; 1% Triton X-100 and 9% DMSO 

added prior to use) for 1 hour and immersed in electrophoresis 

buffer (300 mM NaOH, 1 mM EDTA in 1 litre DH2O; pH 13) for 20 

minutes at 4°C. electrophoresis lasted 20 minutes (25 V and 300 

mA) before slides were washed in neutralisation buffer (0.4 M Tris 

pH 7,5). 

Air-dried slides were stained with ethidium bromide (2 µg/ml in 

DH2O) and scored using Comet Assay IV. We have scored 50 cells 

for each half slide (every half slide is one replica of the experiment). 

 

3.5_ LDH 
The  Cytotoxicity detection kit (Roche applied science) Cat. Nr. 11 644 793 001 

was used for the detection of the cytotoxic effect of NPs. 

100 microliters of L.15 media from each well from the 96-well plates 

after the exposure of 24 and 48 h was taken and split into 96-wells 

plates (100 µl for well). To this volume, 100 µl of reagent were 

added and the plate was incubated for 30 min in room temperature, 

protected from light. 

The reaction mixture for 100/200 µl wells was obtained by mixing 

0,25 ml catalyst (bottle 1) with 11,25 ml Dye solution (bottle 2). Both 

solutions have been kept in +4/+8°C. 

The absorbance was measured at 490 or 492 nm by a Wallac 1420 

VICTOR2™ plate reader spectrophotometer. 
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Controls consisted in: 

- Cell free control. Only 100 µl of L.15 

- Minimum leakage control. 100 µl of cells in L.15 

1% FBS 

- Maximum leakage (positive) control. 100 µl of 

cells in L.15 1% FBS with 1% of Triton X 

 

 

3.6_ Cell Proliferation 

Cells were plated in a sterile 96 well-tissue culture plate (1 X 105 

cells for well) in 200 µl L.15 medium. 

Before the exposure growth medium was removed and cells were 

washed twice with PBS. 

To each well 200 µl of free serum L.15 were added, with different 

concentration of NPs and Cap Agent. Plates were lately incubated 

for 24 and 48 h. After the exposure 100 µl of medium were taken off 

from each well and 100 µl XTT labeling mixture were added and 

plates were incubates for 4 hours before the measuring of the 

absorbance at 450 - 500 nm by a Wallac 1420 VICTOR2™ plate 

reader spectrophotometer. The XTT labeling mixture was obtained 

by mixing 5 ml of XTT labeling reagent + 0,1 ml electron coupling 

reagent, immediately before use. 
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4_ Results and discussion 

Pilot experiments have been done with the purpose to test several 

doses of NPs to find the right ones to be used in this study. The 

main problem working with nanoparticles is their tendency to clamp 

each others. In order to reduce NPs aggregation, sonication and 

capping agents are usually employed; however these procedures 

are not able to completely prevent NPs aggregation. 

To validate our experiments we used MMS (methyl 

methanesulphonate) as positive control for the Comet assay. MMS 

is a potent DNA alkylating agent able to induce DNA damage clearly 

visible with fluorescence microscope, after electrophoresis. Triton X 

1% was used as positive control in the cytotoxicity test, being able to 

induce an 100%  cellular mortality through the destruction of cell 

membranes.  

Experimental results showed that Ag2S and CdS NPs have a toxic 

effect on mussel haemocytes and RTG2 cell cultures. 

 

Mussel haemocytes 

Four hours exposure to all the compounds used resulted to be 

significantly effective at the top dose of 10 mg/L, while any evidence 

of a significant effect at the other doses was found (Figs. 5; 6; 7). 

 

 

 44



M. edulis - Ag

0

5

10

15

20

Con

Con
+H

BSS
0.0

1
0.1 1 10

MMS

dose [mg/L]

ta
il 

D
N

A
 %

 

*

*

Fig. 5_ DNA migration after 4-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for Mytilus Comet Ag 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 18,27 < 0,0001 
B: colt 5,39 0,0309 
 
Multiple range test for Mytilus Ag 
 

Dose Mean Homogeneous Groups 
0,01 1,8875 X 
Con 2,96    XX 

Con+HBSS 3,8825     XX 
0,1 4,66     XX 
1 6,75        X 

10 13,0475             X 
MMS 18,3425                  X 
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Fig. 6_ DNA migration after 4-hour exposure to CdS NPs and MMS as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for Mytilus Comet Cd 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 27,49 < 0,0001 
B: colt 1,88 0,1855 
 
Multiple range test for Mytilus Cd 
 

Dose Mean Homogeneous Groups 
0,01 3,0975 X 
0,1 3,7325 X 

Con+HBSS 4,2025    XX 
Con 4,3425    XX 

1 6,765       X 
10 11,6025            X 

MMS 17,0425                 X 
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Fig. 7_ DNA migration after 4-hour exposure to Capping agent (thiol-terminated methyl 
polyethylene glycol) and MMS as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for Mytilus Comet Cap 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 27,12 < 0,0001 
B: colt 0,10 0,7571 
 
Multiple range test for Mytilus Cap 
 

Dose Mean Homogeneous Groups 
0,1 2,275 X 

Con+HBSS 4,2025    XX 
Con 4,3425     XX 
0,01 4,94875        XXX 

1 5,99           XX 
10 7,505              X 

MMS 17,0425                   X 
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The lack of toxicity at low concentrations might be related to the 

short exposure period to the substances, likely not sufficient for NPs 

to induce a significant damage. Similar findings were reported by 

Vevers et al. (2007) after exposure of fish cell cultures to TiO2, CdS 

and Ag2S nanoparticles for 4 hours; no significant toxic effect was 

detected on DNA if not combined with UV radiation. 

Unfortunately, it has not been possible to use an exposure period 

longer than four hours for the low capacity of mussel haemocytes to 

survive at once they were taken off from the animal. 
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Fish cell culture 

Cell cultures are very profitable for experiments that need long 

exposure. After an exposure of 24 hours, Ag2S nanoparticles 

induced a significant genotoxic effect only at the top dose of 50 mg/l 

in L.15 medium, while at the other concentrations they did not show 

any significant effects on DNA (Fig. 8). 
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Fig. 8_ DNA migration after 24-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 

 
Analysis of Variance for RTG-2 Comet Ag 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 98,89 < 0,0001 
B: colt 2,78 0,1110 
 
Multiple range test for RTG-2 Comet Ag 24h 
 

Dose Mean Homogeneous Groups 
0,1 1,9325 X 
0,01 2,9625 X 
Con 3,58 X 

1 5,615 X 
10 5,7225 X 
50 12,06      X 

MMS 38,635           X 
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 We found the same feature after 48 hours exposure with a 

significant DNA damage only in cell culture treated with 50 mg/L 

(Fig. 9). 

RTG-2 Ag 48h 

0

10

20

30

40

50

60

Con 0.01 0.1 1 10 50 MMS

dose [mg/L]

ta
il 

D
N
A
 %

 

*

*

Fig. 9_ DNA migration after 48-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Ag 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 199,31 < 0,0001 
B: colt 0,30 0,5880 
 

Multiple range test for RTG-2 Comet Ag 48h 
 

Dose Mean Homogeneous Groups 
 0,01 3,5275 X  
Con 4,6675   XX 
0,1 5,78    XX 
1 6,8575     XX 
10 8,18        X 
50 12,2775             X 

MMS 52,03                  X 
 

Instead, using CdS nanoparticles, we have registered a significant 

genotoxicity at all the concentrations tested after 24 hours exposure, 

with the highest effect observed at 1 mg/L. After 48 hours of 

exposure only the 10 mg/L dose produced a statistically significant 

effect on DNA migration, as shown in Figs. 10/11. 
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Fig. 10_ DNA migration after 24-hour exposure to CdS NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Cd 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 49,51 < 0,0001 
B: colt O,02 0,8926 
 
Multiple range test for RTG-2 Comet Cd 24h 
 

Dose Mean Homogeneous Groups 
 Con 2,82  X  
50 10,6975     X 

0,01 12,12        XX 
10 12,165         XX 
0,1 16,9925              XX 
1 20,9125                 X 

MMS 46,2875                      X 
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Fig. 11_ DNA migration after 48-hour exposure to CdS NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
 
Analysis of Variance for RTG-2 Comet Cd 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose  122,46 < 0,0001 
B: colt 0,46 0,5072 
 
Multiple range test for RTG-2 Comet Cd 48h 
 

Dose Mean Homogeneous Groups 
 Con 3,945  X  
0,01 6,9575 X 
50 8,2475    XX 
1 8,8275    XX 

0,1 9,445     XX  
10 13,8275       X 

MMS 65,775            X 
 

The dose-effect relationship displayed by CdS NPs after 24 h 

exposure suggests a higher bioavailability of nanoparticles in the 

0.01 – 1 mg/l range of doses, in comparison with the highest 

concentrations (10 and 50 mg/l). The lowering of the observed 

effects at higher concentrations is likely related to the clumping of 

NPs, which prevent penetration through cell membranes. Such a 

phenomenon (NPs aggregation) was well visible under the optic 
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microscope in sample exposed to 50 mg/L. After 48 hours exposure 

10 mg/L was the only dose inducing a significant DNA damage on 

RTG-2 cells. DNA repair events can be responsible for leading back 

the DNA damage induced by 0.01-1 mg/l CdS NPs to control levels.  

Differently to what we have seen with mussels, capping agent did 

not induce any significant effect on RTG-2 DNA both after 24 hours 

and 48 hours exposure (Fig. 12; 13). 
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Fig. 12_ DNA migration after 24-hour exposure to Capping agent (thiol-terminated 
methyl polyethylene glycol) and MMS as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 78,19 < 0,0001 
B: colt 0,77 0,3914 
 
Multiple range test for RTG-2 Comet Cap 24h 
 

Dose Mean Homogeneous Groups 
10 1,5975 X 
1 1,65 X 

Con 2,355 X 
0,1 2,36 X 
50 5,095 X 

0,01 5,2725 X 
MMS 52,3       X 
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Fig. 13_ DNA migration after 48-hour exposure to Capping Agent (thiol-terminated 
methyl polyethylene glycol) and MMS as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 50,77 < 0,0001 
B: colt 2,29 0,1461 
 
Multiple range test for RTG-2 Comet Cap 48h 
 

Dose Mean Homogeneous Groups 
1 1,1675 X 
10 1,4425 X 
50 1,565 X 

0,01 1,92 X 
Con 1,9975 X 
0,1 2,7775 X 

MMS 59,72      X 
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Results obtained from cytotoxicity test showed that the exposure of 

trout cells to Ag2S NPs induced a significant toxicity only at the top 

dose of 50 mg/L after 24 hours (Fig. 14). 

After an exposure of 48 hours, we also registered a significant toxic 

effect on cells at 10 mg/L and 1 mg/L doses (Fig. 15). Anyway, Ag2S 

NPs caused only a slight decrease in cell viability, never reaching 

percentage of cytotoxicity close to 100% (Fig. 16; 17). 

Cadmium nanoparticles resulted to be more toxic after 24 hours 

exposure in comparison with what we have seen with Ag2S (Fig. 18) 

displaying significant effects at all the doses investigated. Instead, 

after 48 hours exposure, only three doses: 1, 10 and 50 mg/l 

exhibited significant cytotoxicity. Cadmium NPs induced a 100% 

cytotoxicity at 10 mg/L and 50 mg/L, with levels of LDH higher than 

Triton X 1%, used as positive control. 

In spite of the lack of genotoxicity associated with the capping agent 

in RTG2 cell line, a remarkable effect on cytotoxicity was observed. 

As shown in Fig. 22 - 25 the Capping agent was cytotoxic at 1 mg/L, 

10 mg/L and 50 mg/L after 24 and 48 hours exposure. In both, 

experiments the peak of LDH leakage was observed at 10 and 50 

mg/L doses, corresoponding to a cell mortality of about 100%. 
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Fig.14_ LDH levels after 24-hour exposure to Ag2S NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Ag 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 568,03 < 0,0001 
B: colt 1,03 0,321 
 
Multiple range test for RTG-2 LDH Ag 24h 
 

Dose Mean Homogeneous Groups 
0,1 0,16 X 

0,01 0,16 X 
1 0,1725 X 

MMS 0,175 X 
10 0,18 X 

Con 0,185 X 
 50  0,35     X 

 Triton X 1%  1,42          X 
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Fig. 15_ LDH levels after 48-hour exposure to Ag2S NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Ag 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 878,68 < 0,0001 
B: colt 1,06 0,313 
 
 
Multiple range test for RTG-2 LDH Ag 48h 
 

Dose Mean Homogeneous Groups 
MMS 0,175 X 
0,01 0,2   XX 
0,1 0,21   XX 
Con 0,22      X 
10 0,2675           X 
1 0,3025           X 
50 0,435                X 

Triton X 1% 1,4575                    X 
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Fig. 16_ Cytotoxicity (%) after 24-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 17_ Cytotoxicity (%) after 48-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 18_ LDH levels after 24-hour exposure to CdS NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
 
Analysis of Variance for RTG-2 LDH Cd 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 2962,81 < 0,0001 
B: colt 1,47 0,238 
 
 
Multiple range test for RTG-2 LDH Cd 24h 
 

Dose Mean Homogeneous Groups 
MMS 0,175 X 
Con 0,185   XX 
0,01 0,24         XX 
0,1 0,2475            X 
1 0,2625             X 

Triton X 1% 1,42                 X 
10 1,4675                  X 
50 3,3025                       X 
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Fig. 19_ LDH levels after 48-hour exposure to CdS NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Cd 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 5953,88 < 0,0001 
B: colt 0,02 0,903 
 
Multiple range test for RTG-2 LDH Cd 48h 
 

Dose Mean Homogeneous Groups 
MMS 0,175 X 
Con 0,22     X 
0,01 0,24        XX 
0,1 0,255        XX 
1 0,2625          X 

Triton X 1% 1,4575               X 
10 1,4675                X 
50 3,3025                    X 
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Fig. 20_ Cytotoxicity (%) after 24-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 21_ Cytotoxicity (%) after 48-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 22_ LDH levels after 24-hour exposure to Capping agent (thiol-terminated methyl 
polyethylene glycol) and Triton X 1% as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 2376,35 < 0,0001 
B: colt 1,65 0,211 
 
Multiple range test for RTG-2 LDH Cap 24h 
 

Dose Mean Homogeneous Groups 
MMS 0,175 X 
Con 0,185 X 
0,01 0,1875 X 
0,1 0,195 X 
1 0,235 X 
10 1,3425     X 

Triton X 1% 1,42          X 
50 3,2725               X 

 
 

 

 

 
 
 
 
 

 62



RTG-2 LDH Cap ag 48h

0

0.5

1

1.5

2

2.5

3

3.5

Con 0.01 0.1 1 10 50 MMS Triton
X 1%

dose [mg/L]

ab
so

rb
an

ce

 

*

* *

Fig. 23_ LDH levels using a 48-hour exposure to Capping agent (thiol-terminated 
methyl polyethylene glycol) and Triton X 1% as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 6070,41 < 0,0001 
B: colt 0,55 0,465 
 
Multiple range test for RTG-2 LDH Cap 24h 
 

Dose Mean Homogeneous Groups 
MMS 0,175 X 
Con 0,22      X 
0,01 0,24       X 
0,1 0,2475       X 
1 0,26        X 

Triton X 1% 1,4575            X 
10 1,4675            X 
50 3,3025                X 
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Fig. 24_ Cytotoxicity (%) induced using a 24-hour exposure to Capping agent (thiol-
terminated methyl polyethylene glycol) and Triton X 1% as positive control. 
* indicate statistically significant (p<0.05) increase over the controls.  Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 25_ Cytotoxicity (%) after 48-hour exposure to Capping agent (thiol-terminated 
methyl polyethylene glycol) and Triton X 1% as positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Cell proliferative effect of NPs was also investigated.  

A statistically significant positive effect on cell population was 

observed at at 0.01 mg/L, 10 mg/L and 50 mg/L of silver 

nanoparticles after 24 hours exposure and at the highest one after 

48 hours. Cadmium NPs induced significant increases of cell 

proliferation at all the concentrations used after 48 hours, no 

significant responses were registered after 24 hours. Capping agent 

induced cell proliferation at 10 mg/L and 50 mg/L after 24 hours and 

at the three highest doses after 48 hours. 
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Fig. 26_ Cell proliferation after 24-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. * indicates a statistically significant decrease respect to control (p< 
0.05). Mean percentage of cell proliferation is shown with the upper and lower quartiles 
as error bars. 
 
Analysis of Variance for RTG-2 Cell prol Ag 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 18,57 < 0,0001 
B: colt  0,00 0,955  
 
Multiple range test for RTG-2 Cell prol Ag 24h 
 

Dose Mean Homogeneous Groups 
Con 0,98 X 

1 1,145   XX 
0,1 1,235    XX 
10 1,375      X 

0,01 1,405      X 
50 2,1075          X 
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Fig. 27_ Cell proliferation after 48-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. * indicates a statistically significant decrease respect to control (p< 
0.05). Mean percentage of cell proliferation is shown with the upper and lower quartiles 
as error bars. 
 
 
Analysis of Variance for RTG-2 Cell prol Ag 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 23,02 < 0,0001 
B: colt  1,50 0,238  
 
Multiple range test for RTG-2 Cell prol Ag 48h 
 

Dose Mean Homogeneous Groups 
Con 1,33 X 
10 1,42 X 
1 1,435 X 

0,01 1,475 X 
0,1 1,4925 X 
50 2,53     X 
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Fig. 28_ Cell proliferation after 24-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p< 0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 

Analysis of Variance for RTG-2 Cell prol Cd 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 1,50 0,242 
B: colt  1,20 0,289  
 

Multiple range test for RTG-2 Cell prol Cd 24h 
 

Dose Mean Homogeneous Groups 
0,01 1,0825 X 
0,1 1,155   XX 
1 1,1675   XX 
10 1,1875   XX 

Con 1,23   XX 
50 1,3275      X 
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Fig. 29_ Cell proliferation after 48-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p< 0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 

Analysis of Variance for RTG-2 Cell prol Cd 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 15,36 < 0,0001 
B: colt  0,20 0,660  
 

Multiple range test for RTG-2 Cell prol Cd 48h 
 

Dose Mean Homogeneous Groups 
Con 1,255 X 

1 1,505     X 
0,01 1,535     X 
10 1,5725       XX 
0,1 1,6575            XX 
50 1,72               X 
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Fig. 30_ Cell proliferation after 24-hour exposure to Capping agent (thiol-terminated 
methyl polyethylene glycol) and Triton X 1% as positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 
Analysis of Variance for RTG-2 Cell prol Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 60,31 < 0,0001 
B: colt  0,82 0,378  
 
Multiple range test for RTG-2 Cell prol Cap 24h 
 

Dose Mean Homogeneous Groups 
Con 1,125 X 
0,01 1,145 X 
0,1 1,1525 X 
1 1,1675 X 
10 1,525     X 
50 2,2525         X 
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Fig. 31_ Cell proliferation after 48-hour exposure to Capping agent (thiol-terminated 
methyl polyethylene glycol) and Triton X 1% as positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 
Analysis of Variance for RTG-2 Cell prol Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 59,92 <0,0001 
B: colt  1,95 0,180  
 
Multiple range test for RTG-2 Cell prol Cap 48h 
 

Dose Mean Homogeneous Groups 
Con 1,4175 X 
0,1 1,5575    XX 
0,01 1,5575    XX 

1 1,6125       X 
10 1,85           X 
50 2,6375               X 

 
 

Looking at the genotoxic (in mussels) and cytotoxic properties of 

Capping agent it seemed proper to subtract genotoxicity and 

cytotoxicity values of Capping agent from ones induced by NPs. 

After the subtraction both silver and cadmium nanoparticles lost their 

genotoxic effects in mussels at all the concentrations used (see Fig. 

32; 33). 
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Fig. 32_ DNA migration after 4-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
 
Analysis of Variance for Mytilus Comet Ag - Cap 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 21,34 < 0,0001 
B: colt 4,47 0,0472 
 
Multiple range test for Mytilus Ag -Cap 
 

Dose Mean Homogeneous Groups 
0,01 0,0 X 

Con+HBSS 0,5725 X 
1 1,505    XX 

0,1 2,385    XX 
Con 2,96    XX 
10 5,5425       X 

MMS 18,3425            X 
 
 

 71



Mitilo Cd 4h

0
5

10
15
20

Con

Con
+H

BSS
0.0

1 0.1 1 10
MMS

dose [mg/L]

ta
il 

D
N

A
 %

 

*

*

Fig. 33_ DNA migration after 4-hour exposure to CdS NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for Mytilus Comet Cd - Cap 
Source  F-Ratio p-Value 
MAIN EFFECTS   
A: dose 39,34 < 0,0001 
B: colt 1,10 0,3075 
 
Multiple range test for Mytilus Cd -Cap 
 

Dose Mean Homogeneous Groups 
Con+HBSS 0,0 X 

0,01 0,0 X 
0,1 1,545    XX 
1 2,35      XXX 

10 4,0975         XX 
Con 4,3425           X 
MMS 17,0425                X 

 
 
Comet data from RTG-2 showed some significant changes; 

genotoxic effects induced by silver nanoparticles on trout DNA were 

erased after 24 hours at any concentration, while only 50 mg/L was 

found to be effective after 48 hours (Fig. 34; 35). 
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Fig. 34_ DNA migration after 24-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Ag-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 103,43 < 0,0001 
B: colt 0,97 0,3354 
 
Multiple range test for RTG-2 Comet Ag-Cap 24h 
 

Dose Mean Homogeneous Groups 
0,1 0,0 X 
0,01 0,095    XX 
Con 3,58      XXX 

1 3,965          XX 
10 4,125             X 
50 6,965             X 

MMS 38,635                  X 
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Fig. 35_ DNA migration after 48-hour exposure to Ag2S NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Ag-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 209,53 < 0,0001 
B: colt 0,16 0,6925 
 
Multiple range test for RTG-2 Comet Ag-Cap 48h 
 

Dose Mean Homogeneous Groups 
0,01 1,6075 X 
0,1 3,0025    XX 
Con 4,6675      XXX 

1 5,69          XX 
10 6,7375             X 
50 10,7125                 X 

MMS 52,0375                      X 
 
 
 
 
On the contrary, cadmium nanoparticles hold their significant toxicity 

at the majority of the concentrations (0,1 mg/L, 1 mg/l and 10 mg/L) 

after 24 hours of exposure, while they maintained their genotoxicity 

at 10 mg/L after 48 hours. 
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Fig. 36_ DNA migration after 24-hour exposure to CdS NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Cd-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 44,48 < 0,0001 
B: colt 0,81 0,3797 
 
Multiple range test for RTG-2 Comet Cd-Cap 24h 
 

Dose Mean Homogeneous Groups 
Con 2,82 X 
50 5,6025    XX 

0,01 6,8475     XX 
10 10,5675          XX 
0,1 14,6325               XX 
1 19,2625                  X 

MMS 46,2875                      X 
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Fig. 37_ DNA migration after 48-hour exposure to CdS NPs and MMS as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. 100 cells scored 
per replicate treatment (N = 4). Mean percentage of tail DNA is shown with the upper 
and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 Comet Cd-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 137,04 < 0,0001 
B: colt 0,32 0,5761 
 
Multiple range test for RTG-2 Comet Cd-Cap 48h 
 

Dose Mean Homogeneous Groups 
Con 3,945 X 
0,01 5,0375 X 
0,1 6,6675 X 
50 6,6825 X 
1 7,66    XX 

10 12,385      X 
MMS 65,595           X 

 
 

As we can see in the Figs above the dose-effect relationship 

induced by cadmium nanoparticles after 24 hours exposure was 

confirmed, as well as the DNA repair events observed at 48 hours 

exposure. 

In the LDH test significant changes are observable after subtracting 

Capping agent values: no significant effect induced by silver and 
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cadmium nanoparticles were obtained after both 24 hours and after 

48 hours exposure. 
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Fig. 38_ LDH levels after 24-hour exposure to Ag2S NPs and Triton X 1% as positive 
control. * indicate statistically significant (p<0.05) increase over the controls. Mean 
percentage of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Ag-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 826,52 < 0,0001 
B: colt 0,85 0,3669 
 
Multiple range test for RTG-2 LDH Ag-Cap 24h 
 

Dose Mean Homogeneous Groups 
10 0,0 X 

0,01 0,0 X 
0,1 0,0 X 

MMS 0,0 X 
50 0,0 X 
1 0,0 X 

Con 0,185      X 
Trion X 1% 1,42          X 
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Fig. 39_ LDH levels after 48-hour exposure to Ag2S NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Ag-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 2984,71 < 0,0001 
B: colt 0,91 0,3512 
 
Multiple range test for RTG-2 LDH Ag-Cap 48h 
 

Dose Mean Homogeneous Groups 
10 0,0 X 
0,1 0,0 X 

0,01 0,0 X 
50 0,0 X 

MMS 0,005 X 
1 0,0425      X 

Con 0,22           X 
Triton X 1% 1,4575                X 
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Fig. 40_ Cytotoxicity  (%) induced after 24-hour exposure to Ag2S NPs and Triton X 
1% as positive control. 
* indicate statistically significant (p<0.05) increase over the controls.  Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 41_ Cytotoxicity  % after 48-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 42_ LDH levels after 24-hour exposure to CdS NPs and Triton X 1% as positive 
control. 
* indicate statistically significant (p<0.05) increase over the controls.   Mean percentage 
of LDH is shown with the upper and lower quartiles as error bars. 
 
 
Analysis of Variance for RTG-2 LDH Cd-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 408,38 < 0,0001 
B: colt 0,27 0,6087 
 
Multiple range test for RTG-2 LDH Cd-Cap 24h 
 

Dose Mean Homogeneous Groups 
MMS 0,0 X 

1 0,0275 X 
50 0,0325 X 
0,1 0,0525 X 
0,01 0,0526 X 
10 0,125      X 

Con 0,185      X 
Triton X 1% 1,42           X 
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Fig. 43_ LDH levels after 48-hour exposure to CdS NPs and Triton X 1% as positive 
control. * indicate statistically significant (p<0.05) increase over the controls.   Mean 
percentage of LDH is shown with the upper and lower quartiles as error bars. 
 
Analysis of Variance for RTG-2 LDH Cd-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 2506,94 < 0,0001 
B: colt 2,45 0,1308 
 
Multiple range test for RTG-2 LDH Cd-Cap 48h 
 

Dose Mean Homogeneous Groups 
10 0,0 X 

MMS 0,0 X 
0,01 0,0 X 

1 0,0025 X 
0,1 0,0075 X 
50 0,0175 X 

Con 0,22      X 
Triton X 1% 1,4575           X 
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Fig. 44_ Cytotoxicity  % after 24-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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Fig. 45_ Cytotoxicity  % after 48-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicate statistically significant (p<0.05) increase over the controls. Mean percentage 
of Cytotoxicity is shown with the upper and lower quartiles as error bars. 
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After we subtracted the effects of Capping agent, values from the 

Cell proliferation assay show to correspond to what we have seen in 

the LDH test and in what there is in literature; in fact now high doses 

of nanoparticles correspond to a significant decrease of cell 

population.  
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Fig. 46_ Cell proliferation after 24-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 
Analysis of Variance for RTG-2 Cell prol Ag-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 19,42 < 0,0001 
B: colt 0,28 0,6034 
 
Multiple range test for RTG-2 Cell prol Ag-Cap 24h 
 

Dose Mean Homogeneous Groups 
50 0,0 X 
10 0,0 X 
1 0,0325 X 

0,1 0,0975    XX 
0,01 0,3075       X 
Con 0,98           X 
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Fig. 47_ Cell proliferation after 48-hour exposure to Ag2S NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 
Analysis of Variance for RTG-2 Cell prol Ag-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 1707,14 < 0,0001 
B: colt 0,02 0,8776 
 
Multiple range test for RTG-2 Cell prol Ag-Cap 48h 
 

Dose Mean Homogeneous Groups 
10 0,0 X 
50 0,0 X 

0,01 0,0 X 
1 0,0 X 

0,1 0,05      X 
Con 1,33           X 
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Fig. 48_ Cell proliferation after 24-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 

Analysis of Variance for RTG-2 Cell prol Cd-Cap 24h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 524,07 < 0,0001 
B: colt 3,66 0,0728 
 
Multiple range test for RTG-2 Cell prol Cd-Cap 24h 
 

Dose Mean Homogeneous Groups 
10 0,0 X 
50 0,0 X 

0,01 0,0275    XX 
0,1 0,075       X 
1 0,0775        X 

Con 1,23            X 
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Fig. 49_ Cell proliferation after 48-hour exposure to CdS NPs and Triton X 1% as 
positive control. 
* indicates a statistically significant decrease respect to control (p<0.05). Mean 
percentage of cell proliferation is shown with the upper and lower quartiles as error 
bars. 
 
Analysis of Variance for RTG-2 Cell prol Cd-Cap 48h 
Source  F-Ratio p-Value 
MAIN EFFECTS     
A: dose 169,98 < 0,0001 
B: colt 1,82 0,1948 
 
Multiple range test for RTG-2 Cell prol Ag-Cap 48h 
 

Dose Mean Homogeneous Groups 
50 0,0 X 
10 0,0 X 

0,01 0,005 X 
1 0,025 X 

0,1 0,1075 X 
Con 1,255     X 
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Our results are in line with other studies on the biological effects of 

nanoparticles. Reeves et al. (2007), for istance, affirms that TiCO2 

nanoparticles induce a genotoxic effect on DNA of goldfish skin cells 

(GFSk-S1) at all the concentrations used. In that study it was 

suggested that 8-hydroxyguanine (8-OH-G) was probably the most 

likely product of TiO2-induced oxidative stress. 

This product is important because is both relatively easily formed 

and is mutagenic and carcinogenic. Similar results were also found 

recet studies on mammalian cells; these researches confirmed the 

genotoxic  potential of TiO2 nanoparticles at concentrations similar to 

those studied by Reevers et al (2007). Gurr et al. observed 

increased levels of oxidative DNA damage when BEAS-2B cells, a 

human bronchial epithelial cell line, were treated with 10 µg/ml 

anatase (10 nm) TiO2 particles for 1 hour. Vevers et al. (2007) 

instead found TiO2 to be non effective as genotoxicant, at least in 

the absence of UV-illumination on RTG-2 cells after an exposure of 

4 hours. They observed a reduction in lysosomal integrity at the 

highest dose (50 mg/L) after 24 hours of exposure but this was not 

correlated to any detectable DNA damage. Moreover they reported 

that even if NPs are not passing into the cytoplasm to cause 

oxidative damage, there is still a potential to reduce cell functionality 

due to lipid peroxidation products that permeate throughout the cell 

causing a cascade of oxidative deterioration promoted by the 

presence of transition metal ions, which can substain the Haber-

Weiss and Fenton reactions (main sources of the very reactive 

hydroxil radical). As silver and cadmium nanoparticles have similar 

properties to TiO2 it possible that the same process occurs when 

cells are expose to these two nanoparticles. Unfortunately, literature 

about silver and cadmium NPs is very limited, as nanotechnology is 
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a new field and the thier potential as emerging pollutant is still 

scarcely investigated 

Cadmium is well known to be mutagenic, teratogenic and 

carcinogenic. In earlier studies with cultured mammalian cells, 

cadmium has been shown to induce lipid peroxidation, DNA single-

strand breaks and chromosomal aberrations in its bulk form. Both 

the interaction with DNA repair processes and the induction of 

oxidative DNA damage may account for cadmium genotoxicity. 

Many studies have highlighted the potential role of active oxygen 

species and free radicals as mediators in the induction of 

genotoxicity by cadmium. The fact that reactive oxygen species 

induce apoptosis (programmed cell death) suggest that oxidative 

stress may be also involved in cadmium-induced apoptosis (Risso-

de Faveri C., 2001) 

Concerns with silver toxicity are commonly limited to invertebrates 

and plants, because silver is a relatively rare element and not very 

toxic to humans or other vertebrates. Although found in trace levels 

in human tissues, it has no known physiologic function (ATSDR, 

1990) and its presence in tissues is considered to be a contaminant 

(RAIS, 2005). Exceptionally high levels of silver in humans (> 1 g 

body burden) cause argyria, “a gray or blue-gray, permanent 

discoloration of the skin and mucous membranes that is not a toxic 

effect per se, but is considered cosmetically disfiguring” (RAIS, 

2005). Silver has also been reported to cause mild allergic reactions 

from dermal exposures, respiratory tract irritation, impaired night 

vision, and abdominal pain from chronic inhalation. In contrast, silver 

is highly toxic to micro-organisms and invertebrates. More than three 

decades ago, Bryan (1971) ranked it second only to mercury in its 

toxicity to marine invertebrates. Later, the same Author ranked Ag 
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as one of the three most toxic elements (the others being copper 

and mercury) to marine invertebrates in estuarine and marine waters 

(Bryan, 1984). The relatively high toxicity of silver was subsequently 

corroborated by Eisler (1996), who reported that ionic silver (Ag+) “is 

one of the most toxic metals known to aquatic organism in 

laboratory testing”, and more recently by Ratte (1999), who stated 

that ionic silver “is one of the most toxic forms of a heavy metal, 

surpassed only by mercury and thus has been assigned to the 

highest toxicity class, togheter with cadmium, chromium (VI), copper 

and mercury.” (Flegal A.R., 2007). 

This thesis is a pilot work to collect first informations for the 

evaluation of the potential risk of NPs in acqautic organisms. The 

use of RTG-2 cells and M. edulis haemocytes enables a degree of 

extrapolation to in vivo exposures in living organisms, although care 

is needed. For example, the concentration of NPs found to be 

innocuous after 48 hours in this study would be lethal in an aquatic 

14-days exposure in trout (Oncorhynchus mykiss), primarly due to 

oxidative gill damage (Vevers et al., 2007). 

A chronic in vivo exposure experiment where more environmental 

realistic concentrations of NPs are used and bioaccumulation 

measured after longer period would be very useful (Vevers et al., 

2007). A lower concentration of NPs would limit the potential to 

agglomerate and would therefore increase the chance of passage 

into cytoplasm, as it has been seen in this study. It would be 

advantageous to analyze the phagocytotic capacity of cells using 

fluorescent albumin coated beads and time lapse fluorescent 

microscopy. This would provide information of intracellular transport. 

Results shown in this study with silver and cadmium NPs indicate 

that extremely high exposure doses are required to generate 
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genotoxic and cytotoxic effects in vitro, on the contrary of what is 

known about cadmium and silver in their bulk forms. 

Future investigations may focus on other subtle cellular changes 

with more environmentally relevant levels of NPs. As the growth of 

nanotechnologies broadens to include novel materials and uses, the 

risk of toxicological potential in the aquatic environment needs to be 

fully characterized before an asbestos-type episode arises 

(Donaldson et al., 2004). 
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5_ Conclusions 

 

- Silver nanoparticles were found to induce a genotoxic effect in 

mussel haemocytes after 4 hours exposure only at the dose of 10 

mg/l , while no effect was detected in trout cell cultures after 24 

hours exposure while an increase of DNA damage was detected 

after treating cells with the highest dose of 50 mg/l after 48 hours. 

Neither LDH test, nor the cytotoxicity test revealed any cytotoxic 

effect both at 24 and at 48 hours . 

 

- Cadmium nanoparticles were found to induce a genotoxic effect in 

mussel haemocytes after 4 hours exposure only at the dose of 10 

mg/l as well. A dose-effect relationship was found after exposing 

RTG-2 cells for 24hours, while DNA repair events are likely 

responsible for the lack of DNA damage observable after 48 hours, 

except for the dose of 10 mg/l. 

Also in this case neither LDH test, nor the cytotoxicity test revealed 

any cytotoxic effect both at 24 and at 48 hours. 

 

- The Capping agent, used in order to avoid the aggregation of 

nanoparticles, was found to possess a weak cell proliferation 

capacity at the highest doses. For this reason, after the subtraction 

of the effects of Capping agent, values from the Cell proliferation 

assay showed that high doses of silver and cadmium nanoparticles 

corresponded to a decrease of cell population.  

 

Taken together, the results obtained underline the profitability of fish 

cell cultures to evaluate the possible toxicity induced by 

nanoparticles, as vehicle of environmental toxicants.  
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Future perspectives concern the use of a wider spectrum of NPs 

and a deeper evaluation of Cadmium NPs genotoxicity, also 

including oxidative stress parameters and DNA repair inhibitors to 

better investigate their mechanism of action. 

 

The choice of an agent able to prevent the NPs aggregation also 

appears to be crucial. In the present work the thiol-terminated 

methyl polyethylene glycol showed to possess a genotoxic effect in 

mussel cells and a cell proliferation capacity in RTG-2 cells. Thus, 

further investigation needs to be done to select an ideal Capping 

agent able to solve the problem of NPs aggregation but lacking of 

any toxic aqctivity, in order to obtain a better interpretation of results. 
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