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Summary

Today there is still much debate regarding the definition of a complex system and

complexity. We limit ourselves to two-state systems which jump randomly from

one state to another and thus give rise to a dichotomous stochastic process. Our

definition of a complex system is based on two properties: power-law statistics and

renewal. The former implies that the waiting time distribution for both states is an

inverse-power law with a finite exponent. The latter is a property whereby the time

of permanence in one state is completely independent from the time of permanence

in the other. If the system obeys power-law statistics with an exponent smaller than

2, then it is not ergodic. If, on the other hand, the exponent is greater than 2, but

smaller than 3, then and equilibrium condition exists, but the system can reside for

a very long period of time in an out-of-equilibrium condition. Recently, it has been

shown that the linear response of a complex system to a coherent perturbation van-

ishes in the long-time limit. This result, together with the hypothesis that complex

systems can be excited only by other complex systems, is the key motivation for

the work presented in this thesis. It is part of an ongoing search for a theory of

complexity matching, a theory showing that complex systems respond only if they

are excited by other complex systems and that otherwise the response is attenuated.

In the first part of the thesis we explore the possibility of coupling two Poisson

processes. Our approach is based on the experience obtained in the field of stochastic

resonance. We try to perturb a system that obeys ordinary Poisson statistics using

Poissonian signals with different rates. To this end, we adopt a simple model that

reproduces aperiodic stochastic resonance and we show that such a phenomenon is
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not present in the more general case in which the rate is not necessarily induced

by some kind of noise. Furthermore, we adopt the concept of events and use it

to study the interaction of Poisson systems. We discover that, when the system

produces events at a lower rate with respect to the perturbation, the events of the

perturbation become attractors of the system events and vice versa. We use the

term rate matching to identify the condition when the two rates of event production

are the same.

The second part of the thesis deals with signals produced by complex systems. In

order to present the full theory of complexity matching, a new fluctuation-dissipation

theorem must be introduced, but this goes beyond the scope of the work presented

here. However, the understanding of the non-ergodic nature of complex systems is

fundamental to the application of the new fluctuation dissipation theorem. There-

fore, here we study the power spectrum of complex signals and show that 1/f -noise

is produced by systems that lie on the border that separates ergodic systems from

non-ergodic ones. We do this by generalising the Wiener-Khinchin theorem and ex-

tending it to non-stationary non-ergodic processes. We distinguish between two dif-

ferent types of truncation effects: the physical truncation, where we use a truncated

waiting time distribution, and an observation-induced effect, which is a consequence

of finite acquisition times. It is the finite observation time that allows us to apply

the generalised Wiener-Khinchin theorem in the non-ergodic case. Our final results

show that the power spectrum is related to the frequency via an inverse power law

and that, in the non-ergodic condition, the power spectrum also depends on the

observation time.



CHAPTER 1

Introduction

We investigate systems that jump randomly between two well-defined states. The

rate at which the jumps occur may depend on the absolute time. We assume that

all the jumps are completely independent of one another so that each jump resets to

zero the systems memory. We call this property renewal. Such systems produce a

time series, ξ(t), of some physical property that fluctuates between two values. For

simplicity we shall assume that the two states are symmetric and that the sojourn

times in each state are governed by a waiting time distribution ψ(τ). The form of

such a distribution determines the nature of the system and the corresponding time

series. There are two forms in particular that interest us:

ψ(τ) = g exp(−gτ) (1.1)

and

ψ(τ) = (µ− 1)
T µ−1

(T + τ)µ
, (1.2)

where g, µ and T are constant parameters that characterise the distributions. The

first distribution is responsible for Poissonian processes and the parameter g deter-

mines the rate at which events occur [8]. The second distribution generates power-

law statistics. Any system with renewal and a waiting time distribution equal to
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the one in Eq. (1.2) will be considered complex. Our goal is to study the interaction

of these complex systems. We are searching for a matching condition under which

there is a maximal exchange of information between these systems. We call such a

condition complexity matching. Nevertheless, research is still in progress and there-

fore only some aspects shall be presented in this thesis. Before considering complex

systems, we studied the effects of coupling two Poisson systems. These systems are

stationary and therefore much easier to deal with. The results are shown in the first

part of the thesis. They have also been published recently in the journal ”Physics

Letters A” [9].

Chapter 2 is dedicated to the study of Poisson systems and their interaction.

We start by presenting the phenomenon of stochastic resonance whereby a two-state

system is perturbed by a sinusoidal signal. The important work done by McNamara

and Wiesenfeld [11] makes it possible to understand the essence of the phenomenon,

by essentially replacing the double-well system with a dichotomous Poisson process

ξ(t). We extend this idea by substituting the deterministic signal with a stochastic

one, Poissonian, to be precise. The stochastic nature of the perturbation, ξP (t),

forces us to use the Gibbs ensemble approach whereby many realisations of the

same process are used. Here we present our first important result, the rate matching

condition. We discover that, when the system produces events at a lower rate with

respect to the perturbation, the events of the perturbation become attractors of the

system events and vice versa.

In chapter 3 we analyse the power spectra of stochastic processes that obey

power-law statistics. The main theme of this, second, part of the thesis is the fact

that systems characterised by µ = 2 reside on the border that separates ergodic from

non-ergodic systems. We show that the power spectrum produced by such systems

has the form 1/f and that more generally, for 1 < µ < 3, the power spectrum is

given by

S(f) ∝ 1

f 3−µ
. (1.3)

We generalise the Wiener-Khinchin theorem and use it to calculate the power spectra

of finite non-ergodic processes. We consider this result important because there is a

lot of empirical evidence that shows that there is communication between 1/f noise

systems. For example, Mutch [2] proved that a ventilator tuned to the 1/f nature

of the breathing process is much more efficient than ordinary ventilators. There is
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experimental evidence that a 1/f noise system is more sensitive to 1/f noise than

to white noise: The brain is proven to be sensitive to 1/f noise much more than to

white noise [3]. The work of Buiatti et al. [5] proves that the brain, as well as music

and painting, is a source of 1/f noise, in accordance with [6]. The brain generates

1/f noise and so do the psycho-physiological processes under the brains control [7].

Finally, we show that in the non-ergodic case, the power spectrum depends also on

the duration, L, of the process. For a fixed frequency, f0, we have that

S(f0, L) ∝ 1

L2−µ
. (1.4)



CHAPTER 2

Rate Matching

2.1 Stochastic Resonance

The well-known phenomenon of stochastic resonance [12] rests on the apparently

non-intuitive notion that an increase in noise intensity improves the transition of a

signal. We are not going to discuss stochastic resonance in detail; we just want to

present the essentials that will be useful for studying the interaction of two Poisso-

nian systems.

Originally, the phenomenon was studied using systems composed of a particle

in a bistable double-well potential. We start by analysing such a system when it

is subjected to thermal noise and perturbed by a periodic signal. The equation of

motion is given by the Langevin equation

ẋ = v

v̇ = −γv − ∂V

∂x
+ ξ(t) + ε cos(ω0t)

(2.1)

Here ξ(t) denotes a Gaussian white noise with zero average and autocorrelation func-

tion 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′). For simplicity, we consider a symmetric potential,

V (x) (see Fig. (2.1)), and a particle with mass, m = 1. In the absence of periodic
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forcing, the noise causes the particle to jump randomly over the potential barrier

from one well into the other. We assume that the signal amplitude, ε, is small

enough so that in the absence of any noise, it is insufficient to force the particle over

the potential barrier.

For very large values of γ (overdamped approximation), v̇ = 0 and

ẋ = −1

γ

∂V

∂x
+
ξ(t)

γ
+ ε

cos(ω0t)

γ
. (2.2)

The position of the particle x(t) is considered to be the output of the system. In

the absence of modulation (ε = 0), x(t) fluctuates around its local stable states

(x = ±a) with a statistical variance proportional to the noise intensity γkBT . In

the overdamped approximation, the inter-well transition rate is given by the Kramers

rate [10, 22]

q =
ωaωm

2πγ
exp

(
− V0

kBT

)
(2.3)

where ω2
a = V ′′(a) is the squared angular frequency of the potential in the potential

minima at ±a, and ω2
m = |V ′′(0)| the squared angular frequency at the top of the

barrier, located in x = 0. We can now say that in the overdamped approximation,

γ � ωm. Originally, Kramers considered a Brownian particle caught in a potential

well. He calculated the escape rate of the particle over the potential barrier, and

used his result in the theory of the velocity of chemical reactions [10]. Because the

expression for the Kramers transition rate depends only on the potential barrier

height, V0, and the curvature of the potential at the maximum and minima, it is

not necessary that we know the exact form of the potential, V (x). The height of

the barrier has to be much greater than the mean (thermal) energy of the particle

otherwise it would diffuse more or less freely from one well to the other. Also,

if it were of comparable height, the time scales for equilibrium and escape would

not be clearly separated. The perturbative force ε cos(ω0t) modifies the double-well

potential producing

V eff (x, t) = V (x) + εx cos(ω0t). (2.4)
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In that case, the barrier height changes too,

∆V eff (t) = V0 + εa cos(ω0t) (2.5)

and the perturbed Kramers rate is given by

q±(t) =
ωaωm

2πγ
exp

{
−V0 ± εa cos(ω0t)

kBT

}
= q exp

(
∓ εa

kBT
cos(ω0t)

)
. (2.6)

The Kramers rate formula is derived under the assumption that the probability

Figure 2.1: This is an example of a typical double well potential. Depending on the amount of
kinetic energy possessed by the particle, it may be able to jump over the barrier, from one well to
the other.

density within a well is roughly at equilibrium, a Gaussian distribution centred

about the minimum. Thus, in order to use Eq.(2.6), the signal frequency must be

much slower than the characteristic rate for probability to equilibrate within a well.

This rate is the curvature of the well minimum and therefore the adiabatic limit is

valid only for ω0 � ωa. On assuming that the modulation amplitude is small, i.e.

εa� kBT , we can use the following expansion in the small parameter εa/(kBT ),

q± = q

(
1∓ εa

kBT
cos(ω0t) + . . .

)
' q (1∓ η cos(ω0t)) . (2.7)

Before we procede with the calculation of the expectation value of x(t), we introduce

the concept of events. It is not an essential part of stochastic resonance but will be

very useful in the next chapter.

Whenever the particle reaches the top of the potential barrier we shall say that an

event has occurred. Nevertheless, this does not mean that the system has changed

its state. When the particle reaches the top of the barrier it can either fall back to
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the bottom of the well from which it started or it can continue and jump into the

other well. We shall assume that these to scenarios have the same probability of

occurring. Since the particle has the same probability of falling back or continuing

into the other well, we can interpret the outcome as the result of a coin toss. If

the particle manages to jump into the other well after it has reached to top of the

barrier, we shall say that a collision has occurred. In other words, a collision causes

the system to change its state. Note that many events can occur before a single

collision. The particle may reach the top several times before it actually manages

to advance into the other well, and thus convert the final event into a collision. The

probability that a collision occurs after n events is given by (1/2)n+1. In this case,

the (n + 1)th event is converted into a collision. It is the same as saying that the

particle moves randomly in a single well, reaching the top n times before actually

making the jump into the other well at the (n + 1)th attempt. If we use the new

rate,

g = 2q, (2.8)

together with the coin-tossing procedure, then the correlation function of the cor-

responding process will be equal to the correlation function related to the Kramers

rate, q. The proof of this statement shall postponed until subsection 3.2.2.

In the presence of a moderate amount of random forcing and heavy damping,

the particle will spend most of its time at the bottom of the wells, near x = ±a,
making occasional transitions over the barrier. We have already mentioned that the

exact shape of the potential is not important for the study of the dynamics of the

system. Following McNamara and Wiesenfeld [11], we substitute the double-well

with an arbitrary two-state system and maintain the Kramers transition rate shown

in Eq. (2.3). We assume that the particle can occupy only two discrete states. For

example, we shall assume that the particle occasionally jumps from the position

x = a to x = −a and vice versa. In order to calculate the expectation value of x(t),

we can procede by using the following master equation (the system has two states

and hence the master equation proves to be an effective tool). P1 and P2 are the
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probabilities of finding the particle in the position x = a and x = −a respectively.

d

dt
P1 = −g+(t)

2
P1 +

g−(t)

2
P2

d

dt
P2 = −g−(t)

2
P2 +

g+(t)

2
P1.

(2.9)

The factor 1/2 present in the master equation reflects the fact that g is the rate

at which the particle reaches the top of the potential barrier and not the rate at

which it overcomes it. When it is at the top of the barrier, the particle may either

overcome it or it may return to its original position. Both cases are equally likely

and that is why we need the factor 1/2. In order to resolve the master equation we

introduce the variable

Π(t) = P1(t)− P2(t) (2.10)

and substitute it into (2.9). After some simplifications we obtain

Π̇(t) = −g+ + g−
2

Π(t) +
g− − g+

2
. (2.11)

Substituting (2.7) into (2.11)

Π̇(t) = −gΠ(t)− gη cos(ω0t). (2.12)

We can find the solution of the master equation by using exp(gt) as the integrating

factor in the first order differential equation. We get

Π(t) = −gη
∫ t

0

e−g(t−t′) cos(ω0t
′)dt′ + Π(0)e−gt. (2.13)

From the definition for the expectation value over a Gibbs ensemble, we have that

〈x(t)〉 = aΠ(t), (2.14)

and therefore

Π(0) =
〈x(0)〉
a

. (2.15)
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We shall assume that the system starts from equilibrium, in which case Π(0) = 0.

This means that before we apply the perturbation, the expectation value of the

output is zero for every t. The expectation value of x(t) is obtained by calculating

the integral in (2.13).∫ t

0

e−g(t−t′) cos(ω0t
′)dt′ = e−gt

∫ t

0

egt′ e
iω0t′ + e−iω0t′

2
dt′

=
e−gt

2

{
e(g+iω0)t − 1

g + iω0

+
e(g−iω0)t − 1

g − iω0

}
. (2.16)

Since the Poisson system needs time to adapt, we study the limit where t � 1/g

and consequently exp(−gt) → 0, the system . In that case,

Π(t) = −gη
2

[
eiω0t

g + iω0

+
e−iω0t

g − iω0

]
= − gη

2(g2 + ω2
0)

[(g − iω0)(cos(ω0t) + i sin(ω0t)) + (g + iω0)(cos(ω0t)− i sin(ω0t))]

= −gη 1

g2 + ω2
0

(g cos(ω0t) + ω0 sin(ω0t))

= − gη

g2 + ω2
0

[√
g2 + ω2

0 sinφ cos(ω0t) +
√
g2 + ω2

0 cosφ sin(ω0t)

]
= −gη 1√

g2 + ω2
0

cos(ω0t+ φ). (2.17)

In conclusion, when the system adapts itself to the perturbation,

〈x(t)〉 = −aC cos(ω0t− φ), (2.18)

where

C =
gη√
g2 + ω2

0

and tanφ =
g

ω0

. (2.19)

Note that when we switch off the perturbation (ε = 0) the expectation value is zero,

just as we mentioned earlier. Since (see Eq.(2.3))

g = 2q = 2
ωaωm

2πγ
exp

(
− V0

kBT

)
and η =

εa

kBT
, (2.20)
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we have that

C(T ) = 2A exp

(
− V0

kBT

)
· εa
kBT

·
[
4A2 exp

(
−2

V0

kBT

)
+ ω2

0

]− 1
2

, (2.21)

where A = ωaωm/(2πγ). The graph of Eq. (2.21) is displayed in Fig. (2.2). Notice

that the function has a maximum value. This maximum response of the system to

the external perturbation is know as stochastic resonance. Sometimes it is useful to

 0

 0.01
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Figure 2.2: This graph is a plot of Eq. (2.21) with ε = 0.1 and with V0, a, A, ω0 all equal to
unity. It shows that for a particular temperature, and consequently, for a certain amount of noise,
the intensity of the output signal is maximum.

define stochastic resonance in terms of the signal-to-noise ration (SNR). Following

Gammaitoni et al. [12], we present the following definition:

SNR =
2

SN(ω0)

[
lim

∆ω→0

∫ ω0+∆ω

ω0−∆ω

S(ω)dω

]
, (2.22)

where S(ω) is the power spectral density (power spectrum from now on) of x(t).

The periodic component of x(t) contributes to S(ω) with a series of delta spikes

centred at ω = (2n + 1)ω0 with n = 0,±1,±2, . . .. Therefore, SN(ω) is the total

power spectrum minus the delta spikes; it is the background power spectrum. For

small forcing amplitudes, aε � V0, the SN(ω) is not very different from the power
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spectrum of the unperturbed system. In that case

SN(ω) ≈ 2

∫ ∞

0

〈x
N
(t)x

N
(t+ τ)〉 cos(ωτ)dτ = 2a2

∫ ∞

0

e−gτ cos(ωτ)dτ

= 2a2 g

g2 + ω2
,

(2.23)

where x
N
(t) is the output produced in the absence of the periodic signal.

S(ω) =
π

2
a2C2[δ(ω − ω0) + δ(ω + ω0)] + SN(ω). (2.24)

The signal-to-noise ratio is given by (in first approximation),

SNR ≈ π

2

(
εa

kBT

)2

g = π

(
εa

kBT

)2

A exp

(
− V0

kBT

)
. (2.25)

Fig. (2.3) shows that the signal-to-noise ratio has a maximum similar to the one

seen in the case of the amplitude. However, note that the noise intensity at which

SNR assumes its maximum does not coincide with the value kBT that maximises

the response amplitude C.

2.2 Rate Matching

We have seen that stochastic resonance is the result of statistical synchronisation,

which takes place when the average waiting time, 1/g, between two interwell tran-

sitions is comparable with half the period of the periodic forcing. This yields the

time-scale matching condition for stochastic resonance,

1

g
=

1

2

2π

ω0

⇒ g =
ω0

π
. (2.26)

Stochastic resonance involves a Poisson system that is perturbed by a periodic sig-

nal. However, Eq. (2.6), and all the subsequent approximations, can be used even

when the forcing signal (perturbation) is not a deterministic function of time. We

are now going to adopt the approach introduced by McNamara and Wiesenfeld [11].

We consider a two-state system that jumps randomly from one state to the other,

without paying attention to the physical details, just the essential properties: Pois-
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Figure 2.3: This figure shows the plot of Eq. (2.25) with ε = 0.1 and V0, a, A all equal to unity.
There is also a maximum when we consider the signal-to-noise ratio. However, the value of T for
which the maximum occurs does not coincide with the temperature that produces the maximum
in Fig. (2.2).

son waiting time distribution and the hopping rate gS. Generalising even further,

we shall assume that gS is an arbitrary rate, not the noise-induced Kramers rate of

Eq. (2.3). As for the perturbation, we consider a dichotomous signal with random

fluctuations that obey Poisson statistics with rate gP . So, we have a situation where

a stochastic signal ξP (t) with rate gP is used to perturb a two-state system, which,

in the absence of the perturbation, jumps randomly form one state to the other at a

rate gS. For simplicity, we assume that the two states are |+〉 = +1 and |−〉 = −1.

Since we are not going to involve the Kramers rate, we have to generalise Eq. (2.6),

in which the perturbation intensity η depends on the thermal noise. From now on,

we are going to use ε as the perturbation intensity with the assumption that it is ar-

bitrary and dimensionless. Hence, the generalised interaction will mediated through

g±(t) = gS(1± εξP (t)). (2.27)

When the system is in state |+〉, the transition rate is g+(t) = gS(1 + εξP (t)) and

similarly for the state |−〉. The output, ξS(t), will also be a dichotomous function

of time. The perturbation, ξP (t), modifies only the rate gS of the system and not
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its two states so that the output, ξS(t) will still fluctuate between the two values

+1 and −1. The output can be calculated using the master equation in Eq. (2.9)

together with the rate in (2.27). By following the steps seen in the previous section,

we find that

Π(t) = gSε

∫ t

0

e−gS(t−t′)ξP (t′)dt′. (2.28)

It is obvious that if we use ξP (t), the mean response, Π(t) = 〈ξS(t)〉 is a stochastic

function of time. In order to make analytical predictions we have to move from

the single realisation of ξP (t) to the realisation of infinitely many ξP (t) that share

the same initial value. Thus, we assume that every realisation of the perturbation

satisfies the condition ξP (0) = 1. Otherwise, we would have 〈ξP (t)〉 = 0. Using Eq.

(2.28), we obtain the two-fold expectation value

〈Π(t)〉P = 〈〈ξS(t)〉S〉P = gSε

∫ t

0

e−gS(t−t′)〈ξP (t′)〉Pdt′. (2.29)

The condition ξP (0) = 1 shared by all realisations of ξP (t), yields

〈ξ(t′)〉P = exp(−gP t). (2.30)

By substituting (3.1) into (2.28) we have

〈〈ξS(t)〉S〉P = gSε

∫ t

0

e−gS(t−t′)e−gP t′dt′ (2.31)

and after some straightforward algebra

〈〈ξS(t)〉S〉P =
gSε

gS − gP

[exp(−gP t)− exp(−gSt)] . (2.32)

A particular case of the function 〈Π(t)〉P is shown in Fig. (2.4). The fact that

〈Π(t)〉P decays can mean two things: Either the single output means 〈ξS(t)〉S decay

themselves or they fluctuate in such a way that when we sum them up, the resultant

decays. We shall now show that the latter case is true. We take a closer look at Eq.

(2.32) and consider the two limits, gS � gP and gS � gP . In the first case we have

〈Π(t)〉P = ε
gS

gP

exp(−gSt), (2.33)
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Figure 2.4: This figure shows a plot of Eq. (2.32) with gS = 0.07, gP = 0.02 and ε = 0.1.

and in the second case

〈Π(t)〉P = ε exp(−gP t). (2.34)

Before proceeding, we have to remind ourselves that in the absence of perturbation

〈Π(t)〉P = 0. Therefore, the fact that 〈Π(t)〉P is different from zero implies that

the perturbation has some effect on the system, regardless of the limit considered.

By observing Eqs. (2.33) and (2.34) we can conclude that the perturbation is more

effective when gS � gP . It is enough to look at the coefficients; the factor εgS/gP

in Eq. (2.33) is much smaller than the coefficient ε in Eq. (2.34). Moreover, when

gS � gP , 〈Π(t)〉P decays exponentially with the factor gP , leading us to believe that

in this case the system is able to reproduce the signal fairly well. Similarly, it is

plausible that for gS � gP , the system is not able to reproduce the signal since the

decay factor is gS, therefore the output remains almost unchanged. We must not

forget that an ensemble of Poisson processes with rate g decays exponentially with a

factor g when we use the coin-tossing method. These deductions can be consolidated

by considering the crosscorrelation between the perturbation and the system.
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Following the authors of Ref. [45], we use the crosscorrelation function

C(t) ≡ 〈ξP (t)ξS(t)〉SP (2.35)

In order to get an analytical expression, we procede as before. We consider all the

cases where the experiment was done with the same ξP (t) and we make the average

on all the resulting ξS(t). Then we average over all the perturbation realisations.

Thus, we write

C(t) = 〈ξP (t)ξS(t)〉SP = 〈〈ξS(t)〉SξP (t)〉P . (2.36)

We can now use Eq. (2.28) and by substituting it into the crosscorrelation function

we get

C(t) = εgS

∫ t

0

exp(−gS(t− t′))〈ξP (t′)ξP (t)〉P dt′. (2.37)

By noting that

〈ξP (t′)ξP (t)〉P = exp(−gP (t− t′)), (2.38)

we obtain

C(t) = εgSe
−(gS+gP )t

∫ t

0

e(gS+gP )t′dt′ =
εgS

gS + gP

[
1− e−(gS+gP )t

]
. (2.39)

We consider the asymptotic limit of the crosscorrelation function so that

χ ≡ lim
t→∞

C(t) =
εgS

gS + gP

. (2.40)

From Eq. (2.40) we can conclude that the maximum correlation (χ = ε) occurs when

gS � gP . The correlation parameter, χ, increases monotonically from 0 to ε and

at gS = gP no deviation from this monotonic behaviour appears. With the help of

Eq. (2.40) we can conclude that the system reproduces the perturbation reasonably

well in the case where gS � gP and t→∞. In other words, 〈ξS(t)〉S ≈ εξP (t). On

the other hand, when gS � gP , the correlation is very poor or even absent. This

tells us that the system is not able to reproduce the perturbation ξP . Nevertheless,

the system does respond (very weakly, but it does respond) to a perturbation when
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gS is very small. The response is due to the short sojourn times produced by the

system. Such times are very rare because the rate is very low, however, they are

present. The fact that they are rare explains the weak response.

By deriving 〈Π(t)〉P and equating the result to zero we get

−gP exp(−gP t) + gS exp(−gSt) = 0. (2.41)

Therefore, the maximum occurs at

tM =
ln(gP )− ln(gS)

gP − gS

. (2.42)

Substituting (2.42) into (2.32) yields the maximum:

〈Π(tM)〉P =
gSε

gS − gP

[
exp

(
− ln(gP/gS)

gP − gS

gP

)
− exp

(
− ln(gP/gS)

gP − gS

gS

)]
=

gSε

gS − gP

[(
gP

gS

)− gP
gP−gS

−
(
gP

gS

)− gS
gP−gS

]
≡ gSε

gS − gP

[
A−gP − A−gS

]
,

(2.43)

where

A =

(
gP

gS

) 1
gP−gS

. (2.44)

If we fix the perturbation rate gP and vary the system rate, 〈Π(tM)〉P remains

a monotonous function of gS (see Fig. (2.5)). In conclusion, neither the cross-

correlation C(t) nor the maximum value of the output 〈Π(tM)〉P produces a reso-

nance effect. All calculations show that the amplitude and quality of the output

increase monotonically as we increase the system rate gS. In section 2.1 we consid-

ered the interaction between a Poisson system and a deterministic signal (cos(ω0t)).

We saw that for a particular rate of the system, the output intensity had a maxi-

mum. However, it should be noted that the maximum is obtained as a consequence

of the fact that the rate g is a non-linear function of kBT . In fact, if we substi-

tute the noise-induced Kramers rate with an arbitrary one and use a dimensionless
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Figure 2.5: This figure shows a plot of Eq. (2.43) with gP = 0.05 and ε = 0.1. It shows that
〈Π(tM )〉P tends to ε as gS increases.

perturbation intensity ε, we are left with the monotonous function in Eq. (2.19)

C(g) =
gε√
g2 + ω2

0

. (2.45)

Stochastic resonance is present only if the rate is controlled in a specific way by

some other physical quantity, such as the temperature.

2.2.1 Single Realisation

Let us now move from the Gibbs ensemble perspective to the observation of a single

realisation of the perturbation-response process. We start by creating two different

realisations of a set of laminar regions (representing the time distance between two

consecutive events) that obey the Poisson distribution. Therefore each of the two

realisations is characterised by a single, constant parameter, namely, the rate of

events g. The realisation may possess different rates. One realisation is considered

to be the perturbation, P , with a rate gP and the other is considered to be the

system, S, with a rate gS. It has to be pointed out that the definition of an event

used here is the same as the one given in section 2.1. In other words, an event
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corresponds to the system reaching the barrier top. The experiment is realised as

follows: We perturb S using P and we repeat the process by changing either gS

or gP while the other rate is kept constant. We want to see whether there is some

kind of an effect when we set the matching condition gP = gS. In order to establish

which is the effect produced by rate matching, if any exists, we have to define a

marker, R, which will reveal it. The simplest marker is realised using what we call

the time difference method. We adopt the idea of the authors of Ref. [13], but

without the entropic method. Instead, we use a simplified version adapted for our

needs. The unperturbed system, S, is confronted with the perturbation and the

time differences, tn, are measured as shown in Fig. 2.6. We decide which of the two

realisations will be the reference one and apply the following rule: for each event of

the reference realisation we measure the time that it takes for the next event of the

other realisation to occur. Let us say that we are considering the nth event, Eref
n ,

of the reference realisation; then we have to start measuring the time from Eref
n

and wait until an event of the other realisation occurs; we consider only the first

neighbour. If no such event occurs before Eref
n+1 then the event Eref

n is disregarded.

The time interval measured in this way is the time difference that we are talking

about and we shall denote it by the symbol tn. All the time differences measured in

this way are summed up so that we have

L0 =
N∑

n=0

tn, (2.46)

where, N is the final event of the reference realisation and t0 is always zero because

both realisations are prepared in such a way that at time t = 0 they both have an

event. The next thing to do is to repeat the above procedure. This time we apply

the same procedure by switching on the interaction between S and P , namely by

assigning a non-vanishing value to ε in Eq. (2.27). In this case, we denote the time

differences tPn , n = 0, 1, . . . , N and we have

LP =
N∑

n=0

tPn . (2.47)
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Finally, we define the marker

R =
LP

L0

=

∑N
n=0 t

P
n∑N

n=0 tn
. (2.48)

Besides defining a ”good” marker, it is important to select an appropriate reference

realisation. We have done some investigations relative to this case and the results

obtained are shown in Fig. 2.7. In one case the perturbation is kept constant while

the system varies and in other case the system is kept constant.

t tt t1 2 3 4

Figure 2.6: In this figure two realisations are shown. The full line represents the reference
realisation. The intervals indicated by t1, t2, t3 and t4 are the time differences. Each dot
represents an event. The time intervals between two consecutive events are laminar regions
which are extracted from a Poisson distribution.

The result of Fig. 2.7 shows that there exists an influence of the P events on

the occurrence times of the S events. In the absence of this influence, we would

expect R = 1, the neutral condition. The condition R < 1 indicates that the time

of occurrence of S events is closer to that of the P events than in the absence of

coupling. This suggests that the P events attract the S events. The condition

R > 1 indicates the opposite repulsion effect. If we keep gS fixed and we increase

gP from values smaller to values larger than gS (broken line in Fig. 2.7), we see

the following: For gP < gS, R > 1 (repulsion condition). In the close proximity

of gS = gP , R gets the values of 1, in the course of an almost abrupt transition to

Rmin < 1, the attraction condition. The systems assumes this minimum value at

gS = gP , and it maintains it in the whole region gP > gS. Analogously, if we keep

gP fixed, and we decrease gS from values larger than gP to values smaller (full line

in Fig. 2.7), the parameter R moves from the condition R > 1, repulsion condition,

to the neutral condition R = 1, in the close proximity of gP = gS, where it assumes

the value Rmin, which is then maintained in the whole region gP < gS. A somewhat

simplified description of all this is as follows. The rate matching condition gS = gP

is the border between the regime where the S events are attracted by the P events,
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Figure 2.7: This figure shows the two cases that we examined: one in which gS is kept
constant (broken line) and the other where gP is kept constant (full line). The broken-line
curve reppresents the case where gS = 0.04 is kept constant and the perturbation is taken
as the reference realisation. The full-line curve reppresents the case where gP = 0.04 is
kept constant and the perturbation is taken as the reference realisation. In both cases the
value of the perturbation strength is ε = 0.5.

gS < gP , and the regime where the S events are repelled by the P events, gS > gP .



CHAPTER 3

Non-Poisson Systems

3.1 Background

In section 2.2 we dealt with a two-state system generating a stochastic processes

with renewal. The evolution of such a process was reppresented by a two-state time

series with events occurring at times ti and separated by time intervals randomly

selected from an exponential distribution. Each process was characterised by just

one parameter, namely, the rate g at which the system switched between the two

available states. We shall now consider a similar processes with the only difference

that the time intervals are selected from an inverse-power probability distribution

density. Such processes maintain the renewal property but are no longer Poissonian.

Our goal is to study the power spectrum of non-Poisson processes generated from a

waiting time distribution density of the form

ψ(τ) = (µ− 1)
T µ−1

(T + τ)µ
, (3.1)

where 1 < µ < ∞, keeping in mind that µ = 2 is a special case in such a class.

A theoretical study of such power spectra has already been done by the authors

of Refs. [14, 36]. However, they do not emphasise on the case where µ = 2. The

function in Eq.(3.1) is a normalised probability density function. A closer inspection
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shows that for µ > 2, the first moment is given by

〈τ〉 =

∫ ∞

0

τψ(τ ′)dτ ′ =
T

µ− 2
. (3.2)

On the other hand, when µ < 2, the function τψ(τ) is not integrable and hence

the average time interval does not exist. Stochastic processes with a waiting time

distribution of the form shown in Eq.(3.1) can be divide into two groups: those with

a finite first moment (µ > 2) and those with no definite time scale (µ < 2). The

former are ergodic whilst the latter are not. Furthermore, the process with µ > 2

are further divided into those with a finite second momentum, i.e. when µ > 3 and

those without one, i.e. when 2 < µ < 3. Right from the beginning we shall neglect

processes with µ > 3 since they all obey the central limit theorem and thus become

Gaussian in the asymptotic limit.

Our decision to study a non-ergodic dichotomous processes with an inverse-

power waiting time distribution was inspired by the results obtained in the study of

colloidal nanocrystals or quantum dots. Under the right circumstances, such systems

emit light intermittently, switching irregularly between bright and dark states [24].

Furthermore, the durations of these bright and dark periods follow an inverse-power

distribution of the form

ψ(τ) ∝ 1

τµ
, (3.3)

with µ < 2 [25, 26]. This unexpected behaviour has also been observed in the fluores-

cence of single organic molecules [27, 28, 29, 30]. We used the power-law in the form

shown in Eq.(3.1) purely out of practical reasons. The inclusion of the variable T ,

the time scale for which a power-law regime is reached, avoids problems at the origin

(τ = 0) when integrating. In the case of semiconductor nanocrystals the hypothesis

was made that the time of sojourn in a given state, either “on” or “off”, does not

have any correlation with the other sojourn times [31]. This property, referred to

as the renewal condition, has been confirmed by the careful statistical analysis of

real data made by the authors of Ref. [32]. The renewal and the inverse power law

condition with µ < 2 generate perennial aging [34] and consequently a conflict with

the ergodic assumption of statistical physics [35], thereby posing a challenge to the

adoption of the prescriptions of ordinary statistical physics. Ergodicity breakdown

has been recently observed also with the spectroscopy of single organic molecules
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[37]. In the case of fluorescence blinking in nanocrystal quantum dots, the authors

of Ref. [23, 38] found that these fluctuations have the spectral form of 1/f (flicker)

noise. The phenomenon of flicker noise has been known for 82 years [39]. It describes

the deviation of the noise spectral density from the flat condition, through the form

P (f) ∝ 1

fη
, (3.4)

where f is the frequency and η ranges from η = 0.5 to η = 1.5. The authors of Refs.

[23] and [38] found η = 1.3 and η = 1.1, respectively. In the literature of 1/f noise

no attention has been devoted so far to the fact that, although η < 1 is compatible

with the ergodic assumption, η > 1 [23, 38] may imply ergodicity breakdown, in

spite of the fact that η > 1 is frequently found in the literature. In addition to

η > 1 of Refs. [23, 38], see, for instance the flicker noise emerging from the scanning

tunnelling microscopy [40] with η ≈ 1.08.

The fact that the ergodic assumption is valid for η < 1 can be seen by adopting

a very simple model made up of a collection of infinitely many independent linear

oscillators [42]. The model shows that by assuming that the process in exam is

ergodic we end up with a power spectrum having η < 1. The equation of motion of

a single, one-dimensional harmonic oscillator with angular frequency ω is given by

x(t) = x(0) cos(ωt) +
v(0)

ω
sin(ωt), (3.5)

where x(0) is the initial speed and v(0) is the initial velocity. Alternatively, we can

write

x(t) = A cos(ωt− ϕ), (3.6)

where

A cos(ωt− ϕ) ≡ x(0) cos(ωt) +
v(0)

ω
sin(ωt), (3.7)

so that

A =

√
x2(0) +

v2(0)

ω2
and tanϕ =

v(0)

ωx(0)
. (3.8)
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Consider now a very large amount of identical oscillators, all with the same angular

frequency omega. A pair of initial conditions xi(0) and vi(0) is chosen randomly and

assigned to each oscillator of the system. If they are allowed to interact, the system

will reach an equilibrium state after some time if left on its own in the absence

of external forces. An example of a large number of one-dimensional interacting

oscillators is a very long chain of identical springs with identical masses attached

to them. Imagine now that we somehow ”freeze” the system together with all

the oscillators in it. We can randomly extract a single oscillator and determine

its displacement from the equilibrium position and the velocity it had just before

being frozen. We can consider these quantities as being the initial conditions of the

oscillator when we replace it and unfreeze the system. The probability, p(x, v)dxdv,

that the randomly selected (frozen) oscillator has displacement x± dx and velocity

v± dv is given by Boltzmann’s theory. We consider the selected oscillator to be the

system; all the others are part of the heat reservoir. In that case the probability

density function is given by

p(x, v) =
ωm

2πkBT
exp

[
− m

2kBT

(
v2 + ω2x2

)]
, (3.9)

where T is the temperature of the system. Therefore, we conclude that the initial

conditions of all the oscillators placed together form a distribution equal to (3.9).

In other words, the initial conditions of the oscillators are picked randomly from

the distribution in (3.9). Consequently, the phase ϕ, and amplitude A in Eq. (3.6)

are also random values. This random phase assumption is the key ingredient of

the approach to 1/f noise proposed by Voss and Clarke [33]. According to the

equipartition theorem, the mean energy of a single oscillator is given by〈
1

2
mv2 +

1

2
mω2x2

〉
=

1

2
2kBT = kBT. (3.10)

So far we have only considered oscillators with the same angular frequency, ω. Hence-

forth, we are going to explore a system composed of many oscillators with different

frequencies. We follow Weiss [42] and assume that the frequency distribution is

given by

cj = c(ωj) = ω
δ+1
2

i . (3.11)
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This is an attractive way of going beyond ordinary statistical mechanics, or, using

the terminology of Ref. [42], beyond the ohmic condition where δ = 1. As we shall

see bellow, it enables us to construct a stochastic process with a power spectrum

that obeys the inverse power law. We create a fluctuation ξ(t) by summing up the

coordinates xi(t) of infinitely many linear harmonic oscillators:

ξ(t) =
M∑

j=0

Nj+1∑
i=Nj

[
xi(0) cos(ωjt) +

vi(0)

ωj

sin(ωjt)

]
, (3.12)

where

Nj+1 −Nj = c(ωj) and c(ωj) � 1 ∀ j. (3.13)

We can also write Eq. (3.12) in the following form:

ξ(t) =
M∑

j=0

cj

[
x̃j(0) cos(ωjt) +

ṽj(0)

ωj

sin(ωjt)

]
, (3.14)

where

x̃j(0) =
1

Nj+1 −Nj

Nj+1∑
i=Nj

xi(0),

ṽj(0) =
1

Nj+1 −Nj

Nj+1∑
i=Nj

vi(0).

The correlation function of the stochastic process ξ(t) is given by

〈ξ(t)ξ(t′)〉 =
M∑

j=0

c2j

[
〈x̃2

j(0)〉 cos(ωjt) cos(ωjt
′) +

〈ṽ2
j (0)〉
ωj

sin(ωjt) sin(ωjt
′)

]
(3.15)

We have omitted the mixed terms because the velocities and displacements are

independent from one another and therefore

〈xj(0)vj(0)〉 = 〈xj(0)〉 · 〈vj(0)〉 = 0. (3.16)
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Since the oscillators are independent, we also have that

〈xj(0)xk(0)〉 = 0 and 〈vj(0)vk(0)〉 = 0 when j 6= k. (3.17)

Again, according to the equipartition theorem, we have that

〈v2
j 〉 = 〈x2

j〉ω2
j =

kBT

m
. (3.18)

Consequently

〈ξ(t)ξ(t′)〉 =
kBT

m

M∑
j=0

c2j
ω2

j

cos(ωj(t− t′)). (3.19)

By substituting (3.11) into (3.19), the normalised correlation function of ξ(t) be-

comes

Φξ(t, t
′) ≡ 〈ξ(t)ξ(t′)〉

〈ξ2(t)〉
=

∑M
j=0 ω

δ−1
j cos(ωj(t− t′))∑M

j=0 ω
δ−1
j

=

∑M
j=0 ω

δ−1
j cos(ωjτ)∑M
j=0 ω

δ−1
j

, (3.20)

where τ = t− t′. We have that

lim
τ→∞

Φξ(τ) ∝
1

tδ
for 0 < δ < 1, (3.21)

and

lim
τ→∞

Φξ(τ) ∝ −
1

tδ
for 1 < δ < 2. (3.22)

Furthermore, Φξ depends only on the time difference therefore it is a wide-sense

stationary process. Consequently, it is enough to calculate the Fourier transform of

Φξ in order to obtain the power spectrum, S(ω) (Wiener-Khinchin theorem).

Φ̂ξ(ω) = S(ω) = A−1

∫ ∞

−∞

∑
j

ωδ−1
j cos(ωjτ)e

iωτdτ = A−1
∑

j

ωδ−1
j

∫ ∞

−∞
cos(ωjτ)e

iωτdτ,

(3.23)
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where A =
∑

j ω
δ−1
j is a constant. Now,

F [cos(ωjτ)] =
1

2
F

[
eiωjτ + e−iωjτ

]
=

1

2
[2πδ(ω + ωj) + 2πδ(ω − ωj)] . (3.24)

Before we precede with the evaluation of (3.23) we have to make a few assumptions.

If we consider a reasonably large range of angular frequencies, ωj, we can approxi-

mate the sum in (3.23) with an integral. Furthermore, there must be a lower and

upper limit, so we write:

jM∑
j=0

−→
∫ ωM

ω0

dω̃, (3.25)

where ωM � ω0 and ω0 > 0. In that case

S(ω) = A−1π

∫ ωM

ω0

ω̃δ−1 [δ(ω + ω̃) + δ(ω − ω̃)] dω̃. (3.26)

Since the integration is performed over a positive set of values, the first term under

the integral vanishes. Therefore,

S(ω) ∝ 1

ωη
, ω ∈ [ω0, ωM], (3.27)

where η = 1 − δ. The case δ > 1 does not yield 1/f noise so it is of no interest.

Therefore, we only consider the case 0 < δ < 1 which corresponds to 0 < η < 1.

Note that δ = 1 corresponds to white noise. In conclusion, the random phase model

used by Voss and Clarke is adequate in explaining the 1/f behaviour of noise only

in the case where η < 1. The adoption of a random phase resulted in a stationary

correlation function. In the next section, we are going to study non-ergodic systems

and in section 3.3 we will present a model that is compatible with both cases, η < 1

and η > 2. We shall see that the case η > 1 corresponds to the non-ergodic condition.

3.2 Theoretical Preliminaries

3.2.1 Non-Poisson Process

In the previous section, two important experimental results were mentioned: The

fact that blinking quantum dots produce a time series that displays power-law statis-
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tics with µ < 2 and a power spectrum of the form 1/fη. Having these results in

mind, we procede to uncover the entire picture by finding a relationship between µ

and η.

We start by writing down the procedure for creating a single realisation or time

series, ξ(t), of a stochastic process that displays power-law statistics. Since we are

considering only two-state systems, the time series will fluctuate between two values

that are, in one way or another, related to the states of the system. The first thing to

do is determine the length, L of the realisation. The next step is to identify the times

at which the events of the stochastic process occur. We have already introduced the

concept of events and collisions in section 2.1. In the case of blinking quantum dots

there is no physical equivalent for events. Nevertheless, we shall use this concept

because it is the only way we can directly link the waiting time distribution ψ(τ) to

the autocorrelation function of the stochastic process [44]. What we actually see in

the time series are the collisions and not the events. A collision is when there is a

change of state, i.e. when the crystal either starts emitting light or ceases to do so.

We always assume that an event occurs at time t = 0 and by doing so, we create

what we call a prepared system. So, every time we start a realisation with an event,

we intend that the system has been prepared. Having placed the first event at time

t = 0, we randomly select a time interval τ1 from the distribution in Eq.(3.1) and

place an event at time t = τ1. We shall refer to the selected time intervals also as

laminar regions. We then select another time interval, τ2, randomly from ψ(τ) and

place the second event at time t = τ1 + τ2. We continue in this way until we reach

the end of the realisation, i.e. when t = L. Clearly, the final event will very rarely

fall on the point t = L so the interval between the last event and t = L will not be

equivalent to a time interval selected randomly from ψ(τ). The fact that we select

a time interval (or laminar region), τ , randomly from a probability density function

such as ψ(τ) creates renewal in the process. Renewal simply means that the time

intervals are randomly selected from a distribution. The reason why we insist on

using renewal events will be explained in subsection 3.2.2. As we have mentioned

earlier, the stochastic process under study, ξ(t), is related to a two-state system.

We call the two states |+〉 and |−〉 and we assign the value +1 or −1 to ξ(t) when

the system is in the state |+〉 or |−〉 respectively. The final step is to assign one

of the two possible values of ξ(t) to each laminar region of the realisation. We do

this by tossing a fair coin so that the values 1 and −1 are obtained with the same

probability. For example, if we want to know what value to assign to the function
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ξ(t) in the interval between the first and second event, we simply have to toss a

coin; if we get heads, we assign the value 1, if we get tails, we assign the value −1.

In this way, we construct the collisions of the process. A collision coincides with an

event that separates two neighbouring laminar regions with different values. Note

that two or more consecutive laminar regions may share the same value. In the

end, we obtain a time series characterised by the parameter µ from the waiting time

distribution ψ(τ) in Eq.(3.1).

In the Poisson case, each stochastic process, and therefore system, was charac-

terised by the rate, g, of event production. The difference between the ξ(t) presented

in this section and the ξ(t) used in chapter 2 is that the laminar regions in the former

case are extracted from

ψ(τ) = (µ− 1)
T µ−1

(T + τ)µ
1 < µ < 3, (3.28)

whilst the laminar regions in the later case are extracted from

ψ(τ) = g exp(−gτ). (3.29)

3.2.2 Aging

As we have already mentioned, the absence of a characteristic time scale in systems

with µ < 2 makes them non-ergodic, or following Bouchaud, weakly non-ergodic (see

[35]). In the case of weak non-ergodicity, the system does visit all of its phase space

but the fraction of time of occupation of a given volume in phase space is not equal

to the fraction of phase space volume occupied by it. The specific systems that we

are treating can only occupy one of two states at a time. Weakly non-ergodic means

that globally, considering the total duration of the process, the system will spend

more time in one state than it will in the other. If L is the total duration of the

stochastic process, we would have

lim
L→∞

∫ L

0

ξ(t)dt 6= 0. (3.30)

We have seen in section 3.1 that systems with µ > 2 have a characteristic time scale.

Their mean sojourn time is given by the first moment of the waiting time distribution

ψ(τ) (see Eq. (3.2)). Therefore, we can find an intermediate time interval such that
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the time average and the ensemble average coincide. The fact is that all processes

with renewal, governed by the inverse-power law in Eq.(3.1), undergo perennial aging

(aging from now on). Processes with µ > 2 become stationary and when they are

infinitely aged. So, what is aging? Let us consider an ensemble of the realisations

of ξ(t), created in subsection 3.2.1 with the help of the waiting time distribution

in Eq. (3.1). We shall assume that the realisations are infinitely long and, more

importantly, that they are prepared at the origin, t = 0. At the moment, we shall

not give importance to whether the first laminar regions are positive or negative.

What is important is that there is an event at t = 0. If we set out to create a

histogram using only the lengths of the first laminar regions of the realisations in

the ensemble, it si obvious that we will end up with the waiting time distribution

in (3.1),

ψ(τ) = (µ− 1)
T µ−1

(T + τ)µ
. (3.31)

After all, it is the waiting time distribution that we used to create each realisation.

We shall refer to (3.31) as the infinitely young waiting time distribution. Now, we

select a single realisation from the ensemble and move from the origin to an arbitrary

position, t = ta. It is possible that at t = ta there is an event. It is not important

in which laminar region we find ourselves in or whether it is positive or negative.

What is important is the absolute time, t = ta. We move continuously from the

position t = ta until we reach an event, say at some point t = t∗. We shall indicate

with τres the distance between ta and t∗, i.e. τres = t∗ − ta. Of course, if at time

t = ta there is an event, then τres = 0. We calculate the residual time, τres, present

in each realisation of the ensemble. Note that ta is the same for each realisation.

It is t∗ that changes. If we plot a histogram with the residual times, we do not get

the waiting time distribution in (3.31). What we get is a waiting time distribution

of age ta and we shall indicate it with ψta . The continuous change of the waiting

time distribution from the time of preparation is an effect of aging. The analytical

expression for the aged function is

ψta(τres) =
∞∑

n=0

∫ ta

0

ψn(t′)ψ(t∗− t′)dt′ =
∞∑

n=0

∫ ta

0

ψn(t′)ψ(ta + τres− t′)dt′, (3.32)
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where ψn(t′) is the probability that the nth event occurs in the time interval [t′, t′ +

dt′]. The function ψta(t) is the probability of observing an event in the time interval

[t, t + dt] under the condition that the observation starts at t = ta. When we start

observing at t = ta we cannot know how many events had occurred. Since we are

considering an ensemble, we have to include all the possibilities, from the case where

no events occurred, to the case where infinite events occurred before t = ta. This

explains the presence of a sum in Eq. (3.32). The product ψn(t′)ψ(t∗ − t′) is the

probability density that n events occurred before we started the observation and

that that the first event after t = ta occurs at t = t∗. Although it is easy to explain

Eq. (3.32) qualitatively, it is difficult to find an analytical expression if we substitute

a waiting time distribution of the form shown in (3.31). The difficulty lies in finding

an analytical expression for the event rate

P (t) =
∞∑

n=0

ψn(t), (3.33)

where

ψn(t) =

∫ t

0

ψn−1(τ)ψ(t− τ)dτ. (3.34)

Note that,

ψ1(t) = ψ(t) and ψ0(t) = δ(t). (3.35)

According to the authors of Ref. [18], a good approximation is to assume that P (t)

is constant when considering systems with a µ close to 2. They show that in the

asymptotic limit t→∞,

P (t) =
1

Γ(2− µ)Γ(µ− 1)

1

T µ−1

1

t2−µ
, for 1 < µ < 2, (3.36)

and

P (t) =
µ− 2

T

[
1 +

T µ−2

(3− µ)

1

tµ−2

]
for 2 < µ < 3. (3.37)

We shall not provide a proof for the above statements since it is only a matter

of mathematics. Details can be found in Ref. [19]. The infinitely young waiting
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distribution that is used to create all the sequences in the ensemble is given by Eq.

(3.31). We start from t = 0 and we let the ensemble evolve in time. After an amount

of time ta, the waiting time distribution becomes

ψta(τ) =

∫ ta

0

P (t)ψ(ta + τ − t)dt. (3.38)

We assume that P (t) is constant, thus

ψta(τ) =
1

A(ta)

∫ ta

0

ψ(ta + τ − t)dt =
1

A(ta)

∫ ta

0

ψ(y + τ)dy, (3.39)

where A(ta) is the normalisation constant to be determined and y = ta − t. The

normalisation is given by

A(ta) =

∫ ∞

0

ψ(t, ta)dt =

∫ ∞

0

dt

∫ ta

0

ψ(t+ y)dy =

∫ ta

0

∫ ∞

0

ψ(t+ y)dt

=

∫ ta

0

dy

∫ ∞

y

ψ(t′)dt′ =

∫ ta

0

(
T

T + y

)µ−1

dy

=
T µ−1

2− µ

[
(T + ta)

2−µ − T 2−µ
]
.

The aged waiting time distribution is therefore

ψta(τ) = (2− µ)
(τ + T )1−µ − (τ + T + ta)

1−µ

(T + ta)2−µ − T 2−µ
. (3.40)

In the ergodic case (2 < µ < 3), we see that for ta → ∞, the distribution ψta(τ)

approaches a limiting value:

lim
ta→∞

ψta(τ) ≡ ψ∞(τ) = (µ− 2)
T µ−2

(T + τ)µ−1
. (3.41)

For 2 < µ < 3, the process evolves towards a stationary condition, where the

survival probability is given by (3.41). For 1 < µ < 2, there is no limiting function,

so the process does not tend to a stationary condition; the limit cannot be applied.

Nevertheless, Eq. (3.40) is valid in the non-ergodic case (1 < µ < 2) if we always

consider finite values of ta. In the limit for which ta → 0, and 2 < µ < 3, we obtain
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the infinitely young distribution, ψ(τ):

ψta(τ) = (µ− 2)

1

(τ + T )µ−1
− 1

(τ + T )µ−1

1

(1 + ta/(τ + T ))µ−1

1

T µ−2
− 1

T µ−2

1

(1 + ta/T )µ−2

' (µ− 2)

1

(τ + T )µ−1
− 1

(τ + T )µ−1

(
1− (µ− 1)

ta
(τ + T )

)
1

T µ−2
− 1

T µ−2

(
1− ta

T
(µ− 2)

)
= (µ− 1)

T µ−1

(τ + T )µ
. (3.42)

Similarly, when 1 < µ < 2, we have for ta → 0,

ψta(τ) ' (2− µ)

1

(τ + T )µ−1
− 1

(τ + T )µ−1

(
1− (µ− 1)

ta
(τ + T )

)
T 2−µ(1 + (2− µ)ta/T )− T 2−µ

= (µ− 1)
T µ−1

(τ + T )µ
. (3.43)

Another important aspect of aging is the so-called rejuvenation effect. We con-

sider Eq. (3.40) without considering the limit for which ta →∞. Instead, we insist

on the fact that the waiting time distribution is of the finite age ta. We shall now

study the two conditions: τ � ta and τ � ta. We shall first consider the case where

µ > 2. When τ � ta, we rewrite Eq. (3.40) in the following form:

ψta(τ) = (2− µ)

[
1

(τ + T )µ−1
− 1

(τ + T + ta)µ−1

] [
1

(T + ta)µ−2
− 1

T µ−2

]−1

= (µ− 2)

[
1

(τ + T )µ−1
− 1

tµ−1
a ((τ + T )/ta + 1)µ−1

]
1

T µ−2
− 1

tµ−2
a

1

(1 + T/ta)µ−2

' (µ− 2)
1/(τ + T )µ−1

1/T µ−2

= (µ− 2)
T µ−2

(τ + T )µ−1
(3.44)

This result coincides with Eq. (3.41), even though we have kept ta finite. Observing

only short sojourn times with respect to the age of the system makes it look much
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older than it is. Under the other condition, τ � ta, therefore

ψta(τ) = (µ− 2)

1

(τ + T )µ−1
− 1

(τ + T )µ−1

1

(1 + ta/(τ + T ))µ−1

1

T µ−2
− 1

(T + ta)µ−2

' (µ− 2)

1

(τ + T )µ−1
− 1

(τ + T )µ−1

(
1− (µ− 1)

ta
(τ + T )

)
1/T µ−2

=
(µ− 2)ta

T
(µ− 1)

T µ−1

(τ + T )µ
. (3.45)

This time, ψta(τ) is proportional to the infinitely young distribution, ψ(τ). This

effect is called rejuvenation. The condition τ � ta produces the opposite effect with

respect to the condition τ � ta. Notice how the power index changes from µ − 1

(infinitely aged condition) to µ (infinitely young condition). Aging implies that ta is

so large so as to make it impossible for us to observe sojourn times with a duration

longer than ta. In that case we are confined to τ � ta. This is when we observe aging.

If ta <∞, both τ � ta and τ � ta are possible. The latter condition corresponds to

rejuvenation. The former case corresponds to the infinitely aged state. If ta = ∞,

only the infinitely aged condition is possible. For µ < 2, the results are very similar;

the numerators in (3.44) and (3.45) remain the same. When τ � ta, then

ψta(τ) ' (2− µ)
1/(τ + T )µ−1

(T + ta)2−µ − T 2−µ
' (2− µ)

t2−µ
a

1

(τ + T )µ−1
∼ 1

τµ−1
. (3.46)

On the other hand, when τ � ta,

ψta(τ) ' (2− µ)(µ− 1)
ta/(τ + T )µ

(T + ta)2−µ − T 2−µ

' (2− µ)
tµ−1
a

T µ−1

(µ− 1)T µ−1

(τ + T )µ

= (2− µ)
tµ−1
a

T µ−1
ψ(τ)

∝ ψ(τ). (3.47)

We have very often stressed that the events used to create the realisations ξ(t),

must obey renewal. The reason for this is because a system, without the renewal

property is not compatible with the aging theory presented above. Such systems
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usually do not even experience aging, but when they do, the effect is only partial. For

example, a stochastic process that is modulated by a deterministic prescription does

not obey renewal. The authors of Ref. [20] found that under certain conditions, such

systems experience aging, but only partially. This explains why we are interested in

processes with renewal; they experience the aging process completely.

We now want to show that a process that is characterised by Poisson-statistics

does not experience aging. We use the dichotomous realisations ξ(t) introduced in

section 2.2. In that case, we have that the waiting time distribution is given by

ψ(τ) = g exp(−gτ), (3.48)

where g is the rate of the events in the Poisson process. All we have to do is

substitute (3.48) into Eq. (3.32). Before we continue, we have to calculate P (t).

The simplest method is to use the Laplace-transform of ψn(t) (we use the tilde to

indicate the Laplace transform):

ψ̃n(u) = ψ̃n−1(u)ψ̃1(u) =
[
ψ̃(u)

]n

=

(
g

g + u

)n

. (3.49)

Anti-transforming, we obtain

ψn(t) = (gt)n−1 ge−gt

(n− 1)!
. (3.50)

We can now calculate the aged waiting time distribution in the Poisson case:

ψta(t) = ψ(t) +
∞∑

n=1

∫ ta

0

ψn(t′)ψ(t− t′)dt′

= g exp(−gt) + g2

∞∑
n=1

∫ ta

0

(gt′)n−1

(n− 1)!
exp(−gt′) exp(−g(t− t′))dt′

= g exp(−gt) + g2 exp(−gt)
∫ ta

0

∞∑
n′=0

(gt′)n′

n′!
dt′

= g exp(−gt) + g2 exp(−gt)
∫ ta

0

exp(gt′)dt′

= g exp[−g(t− ta)]. (3.51)
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In the Poisson case

ψta(τres) = ψta(t) = ψ(t− ta) = ψ(τres). (3.52)

The waiting time distribution remains the same. Aging has been studied extensively

in the literature. See, for example, Refs. [16, 17, 21] for more details. We have

introduced the concept of aging because we shall need it shortly, when we investigate

the autocorrelation functions of non-ergodic processes. What we have said so far

regarding aging should be enough for such a task.

-1
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 1

 0  50  100  150  200  250  300  350  400

ξ(
t)

t

Figure 3.1: A typical time series or realisation. The function ξ(t) fluctuates between the two
values +1 and −1.

3.2.3 Autocorrelation

By definition, the autocorrelation function of a stochastic process ξ(t) is

Φξ(τ ; t) = 〈ξ(t)ξ(t+ τ)〉, (3.53)

where 〈. . .〉 denotes an ensemble average. This definition is applicable to both,

stationary and non-Stationary-stationary processes. If the process is stationary,

then Φξ is independent of the time t. An ensemble average means that we have to

use an infinite number of realisations of the stochastic process ξ(t).

Let us consider a Gibbs ensemble of prepared sequences, ξ(t), with an arbitrary

µ. All the sequences are prepared so that at t = 0 there is an event and all of them

begin with a positive laminar region, i.e. ξ(t) = +1 for 0 ≤ t ≤ τ1. By definition,

the Gibbs average of ξ(t) is given by

〈ξ(t)〉 = lim
N→∞

1

N

N∑
n=1

ξn(t), (3.54)
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where ξn(t) is the nth realisation of the ensemble. By construction, we have that

〈ξ(0)〉 = 1. We now argue that the function 〈ξ(t)〉 will decay in the same way in

which its corresponding survival probability decays. In other words

〈ξ(t)〉 = Ψ(t) =

∫ ∞

t

ψ(t′)dt′. (3.55)

A more rigorous demonstration can be found in Ref. [17]. A sequence chosen ran-

domly from the ensemble will have the first laminar region positive. Let us imagine

that its second laminar region is also positive and that the first laminar region is of

length τ1 and the second τ2. Since there is an infinite number of realisations, there

are surely others whose first two laminar regions are also of length τ1 and τ2. More-

over, we are using the coin tossing method to decide the value of ξ in every laminar

region apart from the first. Therefore half of the second laminar regions of length τ2

will be positive and half will be negative. When we sum up these realisations, the

second laminar regions will cancel each other out. This argument can be applied to

all the other sequences. If we sum all the realisations present in the ensemble and

normalise, we end up with the ensemble average of ξ(t). It is obvious that 〈ξ(t)〉
is a decaying function of time, after all, the first laminar region is always positive.

What is less obvious is that 〈ξ(t)〉 decays as the survival probability, Ψ(τ),

Ψ(τ) =

∫ ∞

τ

ψ(t)dt. (3.56)

This is because all the first laminar regions survive after the summation and the

second laminar regions cancel each other out. The surviving laminar regions are

distributed according to the waiting time distribution and therefore add up to form

the survival probability function. We can now use Eq. (3.53) to calculate the

autocorrelation function for t = 0. We have

Φξ(τ ; t = 0) = 〈ξ(0)ξ(τ)〉. (3.57)

But, we know that at t = 0, the realisation is always positive, therefore

Φξ(τ ; 0) = 〈ξ(τ)〉 = Ψ(τ). (3.58)

Note that the method we used to derive the autocorrelation function rests on the
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assumption that the events in ξ(t) are generated with the renewal property.

Stochastic processes with µ < 2 are always non-stationary and therefore their

correlation functions change with time. The correlation function changes due to the

aging process [17]. We can use an argument similar to the one above and calculate

the correlation function at any time t = ta. We prepare the ensemble in such a way

that at t = 0 half of the realisations are positive and half are negative. This produces

a vanishing mean at the origin, 〈ξ(t = 0)〉 = 0. Nevertheless, at t = 0, the ensemble

is non-stationary and it is not . Then, we let the ensemble evolve up to time t = ta.

At this time we select all the sequences characterised by ξ(ta) = 1. The sum over

all these realisations corresponds to a macroscopic out-of-equilibrium fluctuation

whose value is M , with M ≈ N/2 and N is the total number of realisations. In

this case, 〈ξ(ta)〉 = 1 and the Gibbs average regresses slowly to zero. We again

evoke the property of the coin-tossing procedure and the fact that the ensemble was

prepared at t = 0 in order to determine the autocorrelation function. The fact that

we prepared the ensemble implies that the residues τres = t∗ − ta are distributed

according to the aged waiting time distribution ψta(τres). The fact that we used the

coin-tossing method implies that the laminar regions that start at t = t∗ will vanish

during the summation process. Consequently, if we move the origin to t = ta and

forget about what happend before this time, we can conclude that

〈ξ(t)〉 = Ψta(t) =

∫ ∞

t

ψta(t
′)dt′. (3.59)

By construction, ξ(ta) = 1, therefore we can easily determine the autocorrelation

function. In fact,

Φξ(τ ; ta) = 〈ξ(ta)ξ(ta + τ)〉 = 〈ξ(ta + τ)〉 = 〈ξ(τ)〉 = Ψta(τ). (3.60)

According to the results obtained above, a process with µ > 2 that is stationary will

have the correlation function,

Φ(τ) = Ψ∞(τ). (3.61)

This is because a prepared sequence, having µ > 2, becomes stationary only after

it has evolved for an infinite time. In that case, ta = ∞ and the autocorrelation

function is equal to the infinitely aged survival probability. In a way, Ψ∞(τ) is
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the limiting autocorrelation function. At t = 0, Φξ(τ) = Ψ(τ). As time passes the

autocorrelation evolves and tends towards the limit Ψ∞(τ). When µ < 2, the process

never approaches a stationary condition, so the autocorrelation keeps on changing,

without approaching a limiting function. In conclusion, we have found shown that

the use of the coin-tossing procedure generates an autocorrelation function that is

related to the waiting time distribution through Eqs. (3.59) and (3.60). This is

the reason why in section 2.1 (see Eq. (2.8)) we decided to use the rate g = 2q

instead of just the Kramers rate, q. If we apply the results of this section, then the

autocorrelation function of a Poisson process with a rate g, using the coin-tossing

procedure, is given by

Φξ(τ) = Ψ(τ) =

∫ ∞

τ

g exp(−gτ) = exp(−gτ). (3.62)

On the other hand, the autocorrelation function of a Poisson process with the

Kramers rate q, without the coin-tossing procedure, is given by

Cξ(τ) = exp(−2qτ). (3.63)

Since the two methods have to produce the same realisation ξ(t), then comparing

Cξ(τ) with Ψξ(τ) we conclude that g = 2q. We now give a proof for the statement

in Eq. (3.63). A Poisson process is characterised by a waiting time distribution of

the form

ψ(τ) = q exp(−qτ). (3.64)

The rate of events is given by P (t) in Eq. (3.33), whose Laplace transform is

P̃ (u) =

∫ ∞

0

exp(−ut)P (t)dt =
∞∑

n=0

ψ̃n(u) =
∞∑

n=0

(
ψ̃(u)

)n

=
1

1− ψ̃(u)
. (3.65)

Since

ψ̃(u) = q

∫ ∞

0

exp(−ut) exp(−qt)dt =
q + u

q
, (3.66)
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we have that the anti-transform of P̃ (u) gives

P (t) = 2δ(t) + q. (3.67)

Therefore in the Poisson case, the rate is constant apart from the singularity in

zero. If we consider a two-state system with a waiting time distribution given by

Eq. (3.64), then the rate at which the system switches between states is q. Let us

assume that the two states are |+〉 and |−〉. As the system evolves in time, it will

produce an output signal ξ(t) which is related to the state occupied by the system

at time t. When the system is in the state |+〉 the output signal ξ(t) will have the

value +1 and when it is in |−〉, ξ will have the value −1. The evolution of such a

process can be described by the master equation,

d

dt
P|+〉(t) = −qP|+〉(t) + qP|−〉(t)

d

dt
P|−〉(t) = −qP|−〉(t) + qP|+〉(t),

(3.68)

where P|±〉 is the probability of finding the system in the state |±〉. We introduce

the variable

〈ξ(t)〉 = Π(t) = P|+〉(t)− P|−〉(t).

Substituting into (3.68), yields

Π̇(t) = −2qΠ(t). (3.69)

Integrating, we get

Π(t) = Π(0) exp(−2qt). (3.70)

If consider an ensemble of systems, and place all of them in the state |+〉 at t = 0,

then P (0) = 1 and the mean value becomes

〈ξ(t)〉 = exp(−2qt). (3.71)

Since the rate is constant, we have a stationary process and the autocorrelation
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function is given by

Cξ(t) ≡ 〈ξ(t+ τ)ξ(t)〉 = 〈ξ(τ)〉 = exp(−2qτ). (3.72)

3.2.4 Power Spectrum of a Stationary Process

In the previous subsection we saw that processes with µ > 2 are stationary if they

are not prepared. The advantage of dealing with stationary processes is that we can

apply the Wiener-Khinchin theorem in order to obtain the power spectrum. To do

so, we first have to find the corresponding autocorrelation function. In the previous

subsection we used a Gibbs ensemble of realisations and found that the correlation

function of an infinitely long realisation with µ > 2 is equal to its infinitely aged

survival probability function (see for example Ref. [17] for details). In other words,

if ψ(τ) is the waiting time distribution, then the correlation function is

Φξ(τ) = Ψ∞(τ) ≡
∫ ∞

τ

ψ(t)dt. (3.73)

We are going to show that the same result can be obtained by using only one

realisation of ξ(t). Let us assume that we are given a single realisation of ξ(t),

infinite in length. Then, by definition, the correlation function is

Φξ(τ) ≡ lim
L→∞

1

L

∫ L−τ

0

ξ(t)ξ(t+ τ)dt. (3.74)

Eq. (3.74) obtained by moving a window of length τ along the entire realisation

ξ(t). If we adopt the coin-tossing method described earlier we can use the following

expression (see Ref. [15]):

Φξ(τ) =
1

〈τ〉

∫ ∞

τ

dτ ′
(τ ′ − τ)

τ ′
τ ′ψ(τ ′), (3.75)

where ψ(t) is the waiting time distribution density used to create the process ξ(t)

and 〈τ〉 is the mean laminar region. We still use the method whereby a window of

length τ is moved along the entire realisation. Since the realisation was prepared

by the coin-tossing procedure, the only situations that contribute to the correlation

function are those in which the window falls entirely within a laminar region. In

that case the contribution is always positive, no matter what sign was attributed
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to the laminar region. If the window has its two ends in different laminar regions,

then it will either give a positive contribution or a negative one. Since the process

is stationary, for every positive contribution to the correlation function, there will

be a negative one, thereby providing a vanishing average contribution.

In order to explain Eq. (3.75) let us assume that we have a realisation of length

L, with N laminar regions, both N and L being very large numbers. The realisation

will on average accommodate Nψ(τ ′)dτ ′ laminar regions that have a length between

τ ′ and τ ′ + dτ ′. The same laminar regions will therefore occupy a time space equal

to τ ′ ·Nψ(τ ′)dτ ′ which is only a fraction of the total time L, the length of the entire

realisation. So, the fraction of the realisation occupied by laminar regions of length

τ ′ is given by

N

L
τ ′ψ(τ ′)dτ ′. (3.76)

However, (3.76) is also the probability that the starting point of the window falls into

a laminar region of length τ ′. If we take the limit for which L → ∞, consequently

N →∞ and we have that N/L→ 1/〈τ〉. The term (τ ′−τ)/τ ′ is just the probability

that the other end of the window remains in the same laminar region.

We procede by simplifying (3.75),

Φξ(τ) =
1

〈τ〉

∫ ∞

τ

dτ ′(τ ′ − τ)ψ(τ ′)

=
1

〈τ〉

[∫ ∞

0

dτ ′(τ ′ − τ)ψ(τ ′)−
∫ τ

0

dτ ′(τ ′ − τ)ψ(τ ′)

]
=

1

〈τ〉

[
〈τ〉 − τ −

∫ τ

0

dτ ′(τ ′ − τ)ψ(τ ′)

]
= 1− τ

〈τ〉
− 1

〈τ〉

∫ τ

0

dτ ′(τ ′ − τ)ψ(τ ′).

(3.77)

When we derive both sides of Eq. (3.77), we get

Φ′
ξ(τ) = − 1

〈τ〉
+

1

〈τ〉

∫ τ

0

dτ ′ψ(τ ′). (3.78)
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Deriving a second time produces

Φ′′
ξ (τ) =

1

〈τ〉
ψ(τ). (3.79)

The infinitely aged case of the waiting time distribution ψ(τ) is given by [16]

ψ∞(τ) =
1

〈τ〉

∫ ∞

τ

ψ(t′)dt′, (3.80)

where

〈τ〉 =

∫ ∞

0

τψ(τ)dτ. (3.81)

Furthermore, the survival probability that corresponds to ψ∞(τ) is

Ψ∞(τ) =

∫ ∞

τ

ψ∞(t′)dt′ =

∫ ∞

τ

dt′
1

〈τ〉

∫ ∞

t′
ψ(t′′)dt′′. (3.82)

From Eq. (3.79) we see that ψ(τ) = 〈τ〉Φ′′
ξ . By substituting this value into the

above equation, we see that [17]

Ψ∞(τ) = Φξ(τ). (3.83)

For µ > 2 we have that the survival probability of the infinitely aged waiting time

distribution is equal to the correlation function (see Eq.(3.41)):

Φ
(∞)
ξ =

∫ ∞

τ

ψ∞(t)dt = (µ− 2)

∫ ∞

τ

T µ−2

(t+ T )µ−1
dt =

(
T

T + τ

)µ−2

. (3.84)

At this point we can use the Wiener-Khinchin theorem together with the correla-

tion function in Eq. (3.84) in order to calculate the power spectrum of a stationary

process with µ > 2. Accordingly, we have

S(ω) = 2

∫ ∞

0

(
T

T + τ

)µ−2

cos(ωτ)dτ = 2T µ−2

∫ ∞

0

(T + τ)2−µ cos(ωτ)dτ. (3.85)

Using the substitution x = T + τ ,

S(ω) = 2T µ−2

∫ ∞

T

x2−µ cos[ω(x− T )]dx. (3.86)
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Another substitution, y = ωx gives

S(ω) = 2T µ−2

∫ ∞

ωT

( y
ω

)2−µ

cos(y − ωT )
dy

ω

=
2T µ−2

ω3−µ

[
cos(ωT )

∫ ∞

ωT

y2−µ cos(y)dy + sin(ωT )

∫ ∞

ωT

y2−µ sin(y)dy

]
(3.87)

Since we are interested in very low frequencies, we assume that ωT � 1. Conse-

quently cos(ωT ) ≈ 1 and sin(ωT ) ≈ ωT and

S(ω) =
2T µ−2

ω3−µ

[∫ ∞

ωT

y2−µ cos(y)dy + ωT

∫ ∞

ωT

y2−µ sin(y)dy

]
. (3.88)

For frequencies below 1/T , it is the first term that dominates and hence the second

term can be neglected. We compare the frequencies to 1/T because the value of T

corresponds to the time it takes for the process to enter the regime of power-law

statistics. Times the are shorter than T do not obey the 1/τµ power-law. This is

why we are only interested in frequencies below ω = 1/T . Finally, we have

S(ω) =
2T µ−2

ω3−µ
A(µ, ω) ∼ 1

ω3−µ
∝ 1

f 3−µ
, (3.89)

where

A(µ, ω) =

∫ ∞

ωT

y2−µ cos(y)dy (3.90)

is a very slow function of ω. As expected, Eq.(3.89) is in accordance with the

experimental result shown in Eq.(3.4); it is enough to link the two equations using

the equality η = 3 − µ, where µ & 2. Alternatively, if we neglect T , then (3.85)

becomes

S(ω) = 2

∫ ∞

0

τ 2−µ cos(ωτ)dτ. (3.91)

Neglecting T means that the process immediately acquires power-law statistics. For

2 < µ < 3, the integral in (3.91) can be solved without introducing any truncations in

order to avoid problems at the origin. In fact the standard Fourier cosine transform
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tables (see [43]) show that

2

∫ ∞

0

τ 2−µ cos(ωτ)dτ =
π

Γ(µ− 2)
sec

[π
2
(µ− 2)

]
ωµ−3, (3.92)

for ω > 0 and 2 < µ < 3. In the next section we shall investigate the power-spectra

of non-stationary processes.

3.3 Power-Spectrum of Non-Poisson Systems

Our main purpose in this section is to study the properties of power-spectra pro-

duced by the non-Poisson two-state systems introduced previously. Each system,

therefore, produces a finite dichotomous time series ξ(t), characterised by the pa-

rameter µ (1 < µ < 3). The choice of using a finite time series brings us closer to the

real experimental conditions, allowing us to compare our numerical results with ex-

perimental results obtained by other authors. The power spectra of the non-ergodic

case (1 < µ < 2) have already been studied by Zumofen and Klafter [14]. However,

they considered a truncated waiting time distribution. This means that the distance

between two consecutive events in the time series cannot be greater then some pre-

determined maximum value, Tmax. Truncating the waiting time distribution renders

it integrable and consequently introduces a well defined time scale, or first moment.

In such cases, ergodicity is maintained and the aging process is altered. The waiting

time distribution tends to a limiting function just like in the ergodic case, where

µ > 2. Under such conditions, they were able to develop a theory for µ < 2 by using

the arguments that we presented in subsection 3.2.4. We, on the other hand consider

the entire waiting time distribution (Tmax = ∞) and use a generalised form of the

Wiener-Khinchin theorem, compatible with the ergodicity breaking condition. Such

a generalisation has been attempted by Margolin and Barkai [36]. These authors

proposed a generalisation of the Wiener-Khinchin theorem that does not require

the adoption of averages over the Gibbs ensemble. We provide a slightly different

theoretical approach, placing our results in the context of 1/f -noise. The ideal 1/f

condition is a singularity corresponding to µ = 2, the boarder between ergodicity

(µ > 2) and non-ergodicity (µ < 2). Furthermore, we use autocorrelation functions

obtained by adopting a Gibbs ensemble, subsection 3.2.3. We shall first present

the numerical results and then, in a separate subsection, interpret them using the

theoretical tools discussed in section 3.2.
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We define the power spectrum, S(ω), of the time series in the usual way (see

[14]) but without considering the limit L→∞:

S(ω) =
1

L
ξ̂(ω)ξ̂∗(ω) =

1

L
|ξ̂(ω)|2, (3.93)

where L is the duration of the time series and ξ̂(ω) is the Fourier-transform of ξ(t);

to be precise,

ξ̂(ω) = F [ξ(t)] ≡
∫ ∞

−∞
ξ(t)eiωtdt. (3.94)

Since we are dealing with stochastic processes, the events observed in the time series

occur randomly and therefore it is not possible to calculate the Fourier-transform of

ξ(t) analytically. At some point we have to make use of the computer. Fortunately,

ξ(t) has a very simple form, so the integral in Eq.(3.94) can be broken down into

sums:

ξ̂(ω) =
N∑

n=0

∫ tn+1

tn

ξ(t)eiωtdt, (3.95)

where tn is the time of occurrence of the nth event and ξ(t) alternates between 1 and

−1. Each integral in the sum is very easy to solve explicitly. The general case is

I[a, b] =

∫ b

a

eiωtdt = − i

ω

[
eiωb − eiωa

]
= − i

ω
[cos(ωb) + i sin(ωb)− cos(ωa)− i sin(ωa)]

=
1

ω
[−i cos(ωb) + sin(ωb) + i cos(ωa)− sin(ωa)]

=
1

ω
[sin(ωb)− sin(ωa) + i{cos(ωa)− cos(ωb)}]

=
− sin(ωa) + sin(ωb)

ω
+ i

cos(ωa)− cos(ωb)

ω
,

where a and b are two random numbers and a < b. Eq.(3.95) can be rewritten in

the form:

ξ̂(ω) =
N∑

n=0

(±)nI[tn, tn+1], (3.96)
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where (±)n is the value of ξ(t) in the time interval [tn, tn+1]. The time series is

dichotomous and we assume that ξ(t) can either be +1 or −1. Consequently, (±)n is

a random variable whose outcome can be either +1 or −1, with the same probability.

This is true for every n apart from n = 0. We prepare the realisation so that

(±)0 = 1 always. Given that the time series is of length L, the explicit expression

for the Fourier-transform of ξ(t) is

ξ̂(ω) =
1

ω

N−1∑
n=0

(±)n [− sin(ωtn) + sin(ωtn+1)] +
(±)N

ω
[− sin(ωtN) + sin(ωL)]

+i
1

ω

N−1∑
n=0

(±)n [cos(ωtn)− cos(ωtn+1)]+i
(±)N

ω
[cos(ωtN)− cos(ωL)] .

(3.97)

We use a computer to generate the random time intervals (laminar regions), τn+1 =

tn+1 − tn, of ξ(t). Each laminar region is extracted randomly from the waiting time

distribution

ψ(τ) = (µ− 1)
T µ−1

(T + τ)µ
. (3.98)

Note that

tn = τ1 + τ2 + . . .+ τn = tn−1 + τn, (3.99)

where t0 = 0. The computer therefore generates the random time intervals and

uses (3.99) to calculate the sum in Eq. (3.97). ξ(t) is a real function and it is not

symmetric, therefore its Fourier-transform will be a complex number,

ξ̂(ω) = α̂(ω) + iβ̂(ω). (3.100)

The final step is for the computer to determine the value of

S(ω) =
1

L
|ξ̂(ω)|2 =

1

L

[
α̂2(ω) + β̂2(ω)

]
. (3.101)
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3.3.1 Numerical Results

Fig.(3.2) is our first important numerical result. It shows that the power spectrum

does indeed obey the inverse-power law expressed in Eq.(3.4) for a range of values

of µ close to 2. It confirms the numerical and theoretical results of Margolin and

Barkai [35], although, they considered only the case where 1 < µ < 2. As we have

said earlier, the value of T in the waiting time distribution (Eq.(3.1)) gives us an

indication of how long it takes for the system to enter into the regime of power-law

statistics. We are therefore interested only in time scales larger than T . This is

the reason why we shall study the power spectra for ω � 1/T . Following Pelton et

al. [23], we compare the power spectrum of an ensemble of realisations to that of a

single realisation. Fig.(3.3) shows that the inverse-power law is maintained even at

the level of a single realisation, thus confirming the experimental results obtained

by the authors of [23]. The adoption of an ensemble merely reduces the noise and

this can be seen in Fig.(3.5) where 1000 realisations were employed. Figs. (3.4)

and (3.5) show the effect that the length of the realisation has on systems with

µ > 2 and µ < 2 respectively. In both cases, we are dealing with non-stationary

systems with the difference that those with µ > 2 become stationary as L → ∞
whilst those with µ < 2 always remain non-stationary. When µ > 2 the power

spectrum does not depend significantly on the length of the realisation even though

the process is non-stationary for small values of L. On the other hand, when µ < 2,

there is a strict dependence on the realisation length; the power spectrum decreases

in intensity as the length is increased. The exact dependence on L is shown in

Fig.(3.8). Introducing a cutoff in the waiting time distribution, ψ(τ), so that time

intervals greater than some upper limit Tmax are never present in the realisation

produces notable effects on the power spectrum. First of all, a plateau is created

for frequencies under 1/Tmax and this can be seen in Fig.(3.6). Secondly, the power

spectrum becomes independent of L when the realisation is greater than Tmax; see

Figs. (3.7) and (3.8). Zumofen and Klafter studied the power spectra of systems

characterised by a truncated waiting time distribution in their 1993 paper, [14]. We,

on the other hand, are going to present an argument that explains the behaviour of

power spectra of systems with Tmax = ∞.

For completeness, we calculated the power spectrum also for large values of ω.

By large values, we intend ω > 1/T . Fig. (3.9) shows the power spectrum for a very

large range of frequencies. We can see that there is a change in regime somewhere
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Figure 3.2: COMPARISON OF POWER SPECTRA OF SYSTEMS WITH DIFFERENT µ.
Each curve was obtained by using an ensemble of 100 realisations of length L = 106 time units.
The curves reppresent the power-spectra of processes with µ = 2.3 (dotted curve), µ = 2.0 (dashed
curve) and µ = 1.7 (full curve). The straight lines are the corresponding fits: 1.15ω−0.7, 0.23ω−1,
0.0155ω−1.3.

around ω = 1/T . The curve that fits the power spectrum for large frequencies is a

function of the form

S(ω) ∼ 1

ω2
, ω >

1

T
. (3.102)

Note that in the figure we see a line and not a curve as the best fit since the scale is

logarithmic. We shall not discuss this result in detail since it is not related to power-

law statistics. We limit ourselves by saying that in the time region t < T , the waiting

times τ have the same probability of occurring. The waiting time distribution in

(3.31) is practically constant for t� T . Thanks to the coin-tossing prescription for

the sign selection, the fluctuation ξ(t) in this time region is virtually equivalent to

the velocity fluctuations of the Langevin equation dv/dt = −γv(t) + f(t), with f(t)

denoting white noise and γ ≈ 1/T , thereby yielding [33], 1/ω2.

3.3.2 Interpretation of the Numerical Results

In order to reproduce the numerical results theoretically, we have to consider reali-

sations with a finite length, L. Nevertheless, before we do so, we shall first develop a

theoretical treatment for infinite realisations. In subsection 3.2.4 we calculated the
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Figure 3.3: SINGLE REALIZATION. We used µ = 1.5 < 2 for the two curves. The upper curve
reppresents the power spectrum of a single realisation of length L = 1× 107 units. Increasing the
length of the realisation to L = 1×109 units makes the entire power spectrum drop to lower values.
This is shown by the lower curve. The function that fits the upper curve is 0.00057ω−1.5 and the
one that fits the lower curve is 1.5 × 10−5ω−1.5. This figure shows that the power spectrum of a
single realisation is the same as the power spectrum of an ensemble of realisations.
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Figure 3.4: POWER-SPECTRUM - µ > 2. We used µ = 2.2 for all three curves in this figure.
To each curve there corresponds a different realisation length L. Each curve was obtained by using
an ensemble of 100 realisations. The full curve corresponds to an ensemble of realisations of length
L = 104 units. The other two correspond to lengths L = 105 units and L = 106 units. The
straight line is the function ω−0.8. The power-spectrum does not depend on the length, L, of the
realisations.
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Figure 3.5: POWER-SPECTRUM - µ < 2. We used µ = 1.5 for all five curves in this figure
- we are dealing with a non-stationary condition. To each curve there corresponds a different
realisation length L. Each curve was obtained by using an ensemble of 1000 realisations. The
topmost curve was realised using a realisation of length 106 units. The one immediately below
corresponds to L = 107 units. As we move further below, the lengths of the realisations used were
108, 109 and 1010 units. The straight lines are functions of the form Kω−1.5, where K is a constant
factor that dipends on the length, L of the sequence used (see Fig. 3.8). From top to bottom,
K = 1.7× 10−3, 5.3× 10−4, 1.6× 10−4, 5× 10−5, 1.1× 10−5.
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Figure 3.6: EFFECT OF TRUNCATING THE WAITING TIME DISTRIBUTION. We used
µ = 1.7 for this figure and an ensemble of 100 realisations for the curves. The waiting time
distribution ψ(τ) was truncated at τ = 104. In that case Tmax = 104. The figure shows the power
spectrum before and after truncation. The curve with the plateau corresponds to the truncated
waiting time distribution. The straight line in the middle is 0.011ω−1.3. Both curves were obtained
using realizations of length L = 106.
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Figure 3.7: EFFECT OF TRUNCATING THE WAITING TIME DISTRIBUTION AND
CHANGING L. Each curve in this figure is a result of averaging over 100 realizations. We
used µ = 1.5 < 2 for all the curves in these two figures. Figure on the left: we can see the effect
of truncating the waiting time distribution ψ(t). The topmost curve is the one created using the
shortest realization length, L. As the length is increased, the curves drop. From top to bottom,
the length of the realisations used is L = 104, 105, 106, 107, 108 units. We can see that they cease
to do so after a certain limit (in fig. 3.8 this limiting value can be measured). Unlike in fig. 3.6,
here we do not see a plateau because ψ(τ) was truncated at τ = 107 � 1/10−4. Figure on the
right: it shows the result that is obtained under the same conditions as those used in the figure
on the left, but without truncating the waiting time distribution.

 100

 1000

 10000

 1e+06  1e+07  1e+08

〈S
(ω

0 )
〉

L

 100

 1000

 10000

 1e+06  1e+07  1e+08

〈S
(ω

0 )
〉

L

Figure 3.8: AMPLITUDE AS A FUNCTION OF REALIZATION LENGTH AT A CONSTANT
FREQUENCY. Both figures: We used 1000 realisations. We fixed the angular frequency at
ω0 = 10−4 and calculated the corresponding amplitude 〈S(ω0 = 10−4)〉 for different realisation
lengths L. The dashed curve is the result obtained when the waiting time distribution, ψ(τ)
is truncated at τ = 107. We see that after about L = 107 units, the power spectrum stops
dropping as the realisation length increases. The full curve is the result obtained in the absence
of truncation. Figure on the left: µ = 1.5. The straight dashed line is a fit and corresponds to
1.58× 106L−0.5. Figure on the right: µ = 1.7. The straight dashed line is a fit and corresponds
to 1.565× 105L−0.3.
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Figure 3.9: AVERAGE POWER SPECTRUM. We used µ = 1.7 and 100 realizations of length
L = 107 units. The figure shows the two regimes. Figure on the left: We used T = 1. The
thick line is the numerical result. For ω < 1, 〈S(ω)〉 ∝ 1/ω3−η and for ω > 1, 〈S(ω)〉 ∝ 1/ω2. The
two finer lines that fit the numerical data are 0.015/ω1.3 for ω < 1 and 0.01/ω2 for ω > 1. The
transition frequency is approximately equal to 1. Figure on the right: Same as the figure on
the left the only difference being that T = 10. It shows that the transition frequency has moved
to a lower value, approximately ω = 1/10 = 1/T . The two finer lines that fit the numerical data
are 0.03/ω1.3 for ω < 1 and 0.005/ω2 for ω > 1.

power spectrum of an infinitely long realisation, ξ(t), with µ > 2. For a stochastic

process with µ < 2, a different approach is necessary, one that is compatible with

non-ergodicity. Using a Gibbs ensemble of realisations proves to be very effective.

In subsection 3.2.3, with the help of a Gibbs ensemble, we showed that there exists

a time-dependent correlation function even for non-ergodic systems. We are now

going to develop this idea further.

Let us first study the case where µ > 2. We consider an ensemble of realisations

that are infinitely long. We prepare the ensemble so that each realisation starts with

an event. We make sure that half of the them start with a positive laminar region

and half with a negative laminar region, so that 〈ξ(0)〉 = 0. In order to obtain the

stationary condition we let the ensemble evolve for a very long time. After having

done so, we select all the sequences characterised by ξ(∞) = 1. In that way, we

place the entire ensemble out of equilibrium from a stationary condition and we can

calculate the autocorrelation function just like in subsection 3.2.3. The ensemble is

expected to regress to the vanishing value from this macroscopic out-of-equilibrium

situation as the corresponding correlation function of ξ(t). From Eq. (3.61) we see

that the correlation function is equal to the infinitely aged survival probability. The
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Fourier transform of ξ(t) is given by setting N →∞ in Eq. (3.97),

ξ̂(ω) =
1

ω
sin(ωt1) +

i

ω
[1− cos(ωt1)] +R(t2, t3, . . .). (3.103)

Due to the random choice of the sign, we have that 〈(±)n〉 = 0 for every n that is

different from zero. Consequently, 〈R(t2, t3, . . .)〉 = 0 and

〈ξ̂(ω)〉 =
1

ω

∫ ∞

0

sin(ωτ)ψ∞(τ)dτ +
i

ω

∫ ∞

0

[1− cos(ωτ)]ψ∞(τ)dτ. (3.104)

Taking the real part of 〈ξ̂(ω)〉 yields,

<〈ξ̂(ω)〉 =
1

ω

∫ ∞

0

sin(ωτ)ψ∞(τ)dτ = − 1

ω

∫ ∞

0

sin(ωτ)
d

dt
Ψ∞(τ)dτ, (3.105)

where we have used the general property,

Ψ(τ) = − d

dt
ψ(τ). (3.106)

Integrating by parts gives

<〈ξ̂(ω)〉 =
1

ω
[− sin(ωτ)Ψ∞(τ)]∞0 +

∫ ∞

0

cos(ωτ)Ψ∞(τ)dτ

=

∫ ∞

0

cos(ωτ)Ψ∞(τ)dτ.

(3.107)

Using Eq. (3.83) and the Wiener-Khinchin theorem, we can conclude that

〈S(ω)〉 = <〈ξ̂(ω)〉 =

∫ ∞

0

cos(ωτ)Ψ∞(τ)dτ =

∫ ∞

0

cos(ωτ)Φξ(τ)dτ. (3.108)

We placed S(ω) under the Gibbs average operator, 〈. . .〉 because the correlation

function Φξ(τ) was obtained using an ensemble. On the other hand, in Eq. (3.83),

the time average was used. Now, we want to extend this result to the general case

that includes non-ergodic systems. We procede in the same way as above. We

consider a Gibbs ensemble of prepared realisations, so that at t = 0, half of them

are in the positive state (|+〉) and the other half in the negative state (|−〉). We let

the ensemble evolve for a finite amount of time, upto t = ta <∞. At this time, we
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select all the sequences characterised by ξ(ta) = 1. For simplicity, we set ta as the

new origin of time. The sum of all these realisations corresponds to a macroscopic

out-of-equilibrium fluctuation. In subsection 3.2.3 we saw that an ensemble created

in such a way will decay to the vanishing value as the corresponding autocorrelation

function of the fluctuation ξ(t) (Eq. (3.60)). Even in this case, Eq. (3.103) is valid,

and the Gibbs mean becomes

〈ξ̂(ω)〉 =
1

ω

∫ ∞

0

sin(ωτ)ψta(τ)dτ +
i

ω

∫ ∞

0

[1− cos(ωτ)]ψta(τ)dτ, (3.109)

where ψta(τ) is the distribution density of the time distance between the time we

start observing and the first event occurrence. We saw that in the stationary case,

taking the real part of 〈ξ̂(ω)〉 conducted us to the Wiener-Khinchin theorem (Eq.

(3.108)). In the general case, we have that

〈S(ω)〉 = <〈ξ̂(ω)〉 =
1

ω

∫ ∞

0

sin(ωτ)ψta(τ)dτ =

∫ ∞

0

cos(ωτ)Ψta(τ)dτ. (3.110)

This is a generalisation of the Wiener-Khinchin theorem in the case of infinitely

long realisations, macroscopically perturbed at t = ta. If we consider a process with

2 < µ < ∞, its power spectrum can be calculated using Eq. (3.110) when ta < ∞.

If we let ta →∞, we recover the ordinary Wiener-Khinchin theorem, Eq. (3.108).

The fact is that the numerical results were obtained using finite sequences. More-

over, they show that for µ < 2 the power spectrum depends on the length of the

sequence used (Figs. 3.5 and 3.8). If we go back to subsection 3.2.4 we can see that

the correlation function of an infinite sequence is equal to the infinitely aged survival

probability function, Ψ∞(τ). Since we had only one sequence, we used the method

of moving a window throughout the entire sequence. When the sequences are finite,

we have to take into consideration the effects of rejuvenation, discussed in subsection

3.2.2. Let us therefore assume that in the case of limited sequences, the correlation

function to be used in Eq. (3.110) is ΨL(τ). In other words, we assume that the

age of the survival probability to be used is equal to the length of the sequence.

Another assumption that we are going to make is that τ � L. Since the sequence is

limited, we cannot expect time intervals that are greater than L. Therefore we will

definitely have τ < L. The reason for considering τ � L is due to the rejuvenation

effect. The longer time intervals encountered by the mobile window will contribute
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to the younger waiting time distributions because of this effect. Furthermore, since

ψ(τ) ∼ 1

τµ
(3.111)

and

ψL(τ) ∼ 1

τµ−1
, (3.112)

the younger waiting time distributions decay much faster than the older waiting time

distributions and are thus surpressed. In conclusion, only the smaller time intervals

will contribute to the resultant autocorrelation function. The greatest contribution

to the autocorrelation function is offered by the oldest survival probability function.

In contrast, when the sequence is infinite and µ > 2, then only the infinitely aged

survival probability function contributes to the autocorrelation funcition. This is

because all the laminar regions in the sequence are much smaller than the sequence

itself, which is infinite.

By substituting ta = L in Eq. (3.40), we obtain

ψL(τ) = (2− µ)
(τ + T )1−µ − (τ + T + L)1−µ

(T + L)2−µ − T 2−µ
. (3.113)

For τ � L and 1 < µ < 2, the equation above reduces to

ψL(τ) = (2− µ)
(τ + T )1−µ

(T + L)2−µ − T 2−µ
∝ 1

L2−µ

1

(τ + T )µ−1
. (3.114)

Notice the coefficient 1/L2−µ, it is equal to the fit that we used in Fig. (3.8). The

function in Eq. (3.114) is already normalised. The corresponding autocorrelation

function is

Φξ(τ) = ΨL(τ) =
(T + L)2−µ − (T + τ)2−µ

(T + L)2−µ − T 2−µ
. (3.115)

This correlation function is equal to the one obtained by Verberk et al. (Eq. (4),

[46]). The approximation used causes the aged autocorrelation function in Eq.

(3.114) to vanish at τ = L. In the case of a set of Gibbs systems prepared at t = 0,

with the out-of-equilibrium condition generated at t = ta, the correlation function

cannot vanish at τ = ta and values of τ larger than ta are permitted. This requires
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the adoption of infinitely extended sequences. In the case of sequences of finite size

L, vanishing of the correlation function at τ = L is a compelling consequence of L

being finite.

For an analytical treatment of the power spectrum it is convenient to use the

waiting time distribution ψL(τ), rather than the aging correlation function ΨL(τ).

We note that ψL(τ) at τ = L undergoes an abrupt jump to 0, so as to fit Eq. (3.114).

Thus, Eq. (3.110) has to be expressed as

〈S(ω)〉 =
1

ω

∫ L

0

sin(ωτ)ψL(τ)dτ. (3.116)

By substituting (3.114) into the equation above yields

〈S(ω)〉 =
(2− µ)

ω[(T + L)2−µ − T 2−µ]

∫ L

0

sin(ωτ)(τ + T )1−µdτ. (3.117)

Since T is usually very small, much smaller than L, we have

〈S(ω)〉 =
(2− µ)

ωL2−µ

∫ L

0

sin(ωτ)τ 1−µdτ. (3.118)

Using the substitution y = ωτ , we have

〈S(ω)〉 =
(2− µ)

ωL2−µ

∫ ωL

0

sin(y)
( y
ω

)1−µ dy

ω

=
(2− µ)

ω3−µL2−µ

∫ ωL

0

sin(y)y1−µdy

≡ A(ω,L)(2− µ)
1

L2−µ

1

ω3−µ

∝ 1

L2−µ

1

f 3−µ
, (3.119)

where A(ω,L) is a slowly changing function of ω. This formula accounts very well

for the numerical results in subsection 3.3.1. In fact, we can see that

η = 3− µ, (3.120)

and that the power spectrum is proportional to 1/L2−µ. These are two important

results of the numerical simulations and the thesis itself. We can now also explain

why the curves in Fig. (3.8) (the one on the left) accumulate. As we mentioned at
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the beginning of this section, the effect of truncating a waiting time distribution is

the creation of a well-defined first moment, even in the case where µ < 2. When

the length of the sequence becomes much greater than the mean time, aging stops

due to the rejuvenation effect. The waiting time distribution, in a sense, becomes

infinitely old prematurely and its age is no longer determined by the length of the

sequence.

In order to calculate the power spectrum for 2 < µ < 3, we have to start from

Eq. (3.113):

ψL(τ) = (2−µ)

[
1

(τ + T )µ−1
− 1

(τ + T + L)µ−1

] [
1

(T + L)µ−2
− 1

T µ−2

]−1

. (3.121)

If we assume that τ � L, then

ψL = (µ− 2)
T µ−2

(τ + T )µ−1
≡ ψ∞(τ). (3.122)

In this case, there is no need to go further. The resulting power spectrum is identical

to the one obtained using an infinite sequence, Eq. (3.89) or (3.92). The power

spectrum does not depend on the length of the realisation when µ > 2, in perfect

agreement with the results shown in Fig. (3.4).



CHAPTER 4

Conclusion

We saw in the first part of the thesis that a Poisson system responds to a periodic

forcing, giving rise to stochastic resonance. However, the adoption of the term

resonance does not seem to be quite proper. This is because the resonance effect is

obtained only if the rate of the system involved depends non-linearly on some other

physical quantity, such as the temperature. This turned out to be a problem when we

tried to extend the theory underlying stochastic resonance to the interaction of two

Poisson systems. In general, such systems are characterised by the rates gS and gP ,

which themselves do not depend on other physical quantities. The only conclusion

that we can make from our results is that the quality with which the perturbing

signal is reproduced by the system depends on how much faster gS is with respect

to gP . We discovered that this dependence is monotonous, the ideal case being

when gS → ∞. Therefore, if we use the Gibbs ensemble perspective to study the

interaction of Poisson systems, whose rates are not related to other properties, we

will not see a resonance. Nevertheless, when we used single realisations, we were

able to find the rate matching condition. We found that the condition gS = gP

is the boarder between the regime where the system events are attracted by the

perturbation events, gS < gP , and the regime where the system events are repelled

by the perturbation events gS > gP .

The main result of the second part is that the ideal 1/f condition is a singularity
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corresponding to µ = 2. This is the border between the ergodic (µ > 2) and non-

ergodic (µ < 2) [35] condition. In other words, system with a power spectrum that

is exactly of the form 1/f , lie on the border between the ergodic and non-ergodic

condition. The accurate evaluation of η, see Eq. (3.120), is expected to be a reliable

criterion to establish which condition applies. It is worth noting that Eq. (3.40)

applies to both cases, when µ is slightly larger as well as slightly smaller than 2.

Furthermore, we generalised the Wiener-Khinchin theorem by substituting the

ordinary correlation function with a survival property of age L, where L is the length

of the sequence studied. This has the effect of rendering the intensity of the power

spectrum proportional to 1/L2−µ. The same waiting time distribution of age L is

used as the memory kernel in the generalised fluctuation-dissipation (FDT) theorem

introduced by the authors of Ref. [47]. Essentially, the memory kernel in Eq. (2.28),

relative to the Poisson case,

χ(t, t′) = gS exp [−gs(t− t′)] =
d

dt′
exp [−gs(t− t′)] =

d

dt′
Φξ(t− t′) (4.1)

has to be replaced with

χ(t, t′) = ψ(t, t′) = − d

dt
Ψ(t, t′) = − d

dt
Φξ(t, t

′) (4.2)

when we study the interaction between two complex systems (1 < µ < 2). Hence,

complexity matching and the power spectrum of non-ergodic systems are linked via

the aged waiting time distribution. Eq. (4.1) expresses the standard FDT theorem

whilst Eq. (4.2) expresses the generalised one. Note that in the non-equilibrium

condition, Eq. (4.2), the derivative with respect to t is not equal to deriving with

respect to t′ and multiplying by −1. The form of χ(t, t′) depends also on the absolute

time distance from the time origin, where the preparation is done. The new FDT

holds true even if the stationary condition is not realised. When µ < 2, the process

is always non-stationary and the generalisation of the Wiener-Khinchin theorem is

done using the waiting time distribution density ψ(t, t′) that plays the role of a linear

response function in the new FDT. If the system is prepared at t = 0, then ψ(t, t′)

is the waiting time distribution of age t′.

In their article, Barbi et al. [1], extended stochastic resonance to the non-Poisson

case and showed that the stochastic resonance dies out when the aging condition

applies. In other words, they replaced the stationary waiting time distribution,
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g exp(−gτ), in Eq. (2.13) with an aged waiting time distribution characterised by

µ < 2. They used the same sinusoidal perturbation, cos(ωt) with intensity ε. What

they found was that the condition µ < 2 annihilated the response coherence in the

long time limit:

Π(t) ≈ ε
cos

(
π
2
µ+ ωt

)
Γ(µ− 1)(ωt)2−µ

. (4.3)

This observation motivated us to reconsider the problem, but with a different pertur-

bation. Instead of using a deterministic signal such as cos(ωt), we considered using

another complex system as the perturbation. The idea is that a complex system

will respond only to another complex system, giving rise to complexity matching.

In chapter 2 of the thesis we presented the results obtained from our study of the

interaction of two Poisson systems. That was the first step towards a theory o

complexity matching. At the moment progress is being made in the study of the

interaction of complex systems.

The age dependent Wiener-Khinchin theorem of this article, see Eq. (3.116),

yields a small dependence of the spectrum on L also in the case µ > 2, in good

agreement again with the numerical results. This is a consequence of the temporary

aging of the condition 2 < µ < 3 [18] which fades away with increasing L until it

recovers the ordinary ergodic prediction of L independence.

It is plausible that Tmax < ∞ (truncated waiting time distribution) in all the

physical processes generating intermittent fluorescence [48, 49], thereby generating

the condition of interrupted aging [49] that ensures the validity of the traditional

version of Wiener-Khinchin theorem. However, our results are expected to bring

useful indications also in this case, insofar as the dependence of the spectral intensity

on L that should be experimentally assessed for L < Tmax, can be used to confirm

the physical truncation of the waiting time distribution ψ(τ) at τ = Tmax. For this

reason the theoretical work of presented in this thesis might help the progress of the

experimental and theoretical research work in the field on intermittent fluorescence.



APPENDIX A

Wiener-Khinchin Theorem

We consider a stationary stochastic process whose corresponding time-series is given

by the function ξ(t). We assume that the time-series is finite of length L. In that

case we have

ξ(t;L) =

{
ξ(t) −L/2 ≤ t ≤ L/2

0 otherwise.
(A.1)

whose Fourier-transform is given by

ξ̂(ω;L) = F [ξ(t;L)] =

∫ ∞

−∞
ξ(t;L)eiωt =

∫ L

−L

ξ(t)eiωt. (A.2)

The power-spectrum of ξ(t) is defined as

S(ω) = lim
L→∞

1

L
ξ̂∗(ω;L)ξ̂(ω;L) (A.3)

Substituting (A.2) into (A.3) we have,

S(ω) = lim
L→∞

1

L

∫ ∞

−∞
dt2

∫ ∞

−∞
dt1ξ(t2;L)ξ(t1;L)eiω(t2−t1). (A.4)
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Using the substitution τ = t2 − t1 where t1 is used as a parameter,

S(ω) =

∫ ∞

−∞
dτeiωτ lim

L→∞

1

L

∫ ∞

−∞
dt1ξ(t1 + τ ;L)ξ(t1;L)

=

∫ ∞

−∞
dτeiωτξ(t1 + τ)ξ(t1), (A.5)

where the overline denotes the time average,

ξ(t1 + τ)ξ(t1) ≡ lim
L→∞

1

L

∫ ∞

−∞
dt1ξ(t1 + τ ;L)ξ(t1;L). (A.6)

If we assume that the process is stationary, the stochastic properties will not change

as we shift along the time series. Therefore, we expect that the time average

ξ(t1 + τ)ξ(t1) should be equal to the statistical average 〈ξ(t1 + τ)ξ(t1)〉 in which

we average the product ξ(t1 + τ)ξ(t1) at a given point t = t1 over an infinite number

of realisations of the time series ξ(t). Hence, for a stationary process, we expect

that the correlation function has the following property:

Φξ(τ) ≡ 〈ξ(t1 + τ)ξ(t1)〉 = ξ(t1 + τ)ξ(t1). (A.7)

By substituting (A.7) into (A.5) we get

S(ω) =

∫ ∞

−∞
dτeiωτΦξ(τ). (A.8)

In other words, we can say that for stationary processes, the power-spectrum is

the Fourier-transform of the autocorrelation function. Eq.(A.7) is known as the

Wiener-Khinchin theorem.
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