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”La teoria è quando si sa tutto e niente funziona. La pratica è quando tutto

funziona e nessuno sa il perché. Noi abbiamo messo insieme la teoria e la pratica:

non c’è niente che funzioni... e nessuno sa il perché!”

A. Einstein



Abstract

A technology called UWB (Ultra Wideband) has gained recent attention. Using

UWB, the scarce spectrum resource could be shared by several users. By spread-

ing the signal over a wide frequency range, the average power per Hertz will be

very low. The signal is very noise-like and is claimed to be able to co-exist with

existing systems and services. The FCC and ETSI are considering allowing UWB,

in already allocated bands, under its current regulation. Some parties have raised

objections that the aggregate effects of a large number of UWB devices may raise

the noise floor considerably. There may be a risk of interference with existing sys-

tems. One version of UWB, previously also called Impulse Radio, has the potential

of being implemented with CMOS technology. This could result in very inexpensive

transceiver chips. Due to the extreme bandwidth used, exceptional properties have

been claimed. UWB is also claimed to have good multipath resolution. These prop-

erties are very important for indoor geolocation.

This thesis is focused on one of the most interesting subjects of research for UWB

technology: the synchronization. A synchronization algorithm is proposed, claimed

able to solve the presence of Inter Frame Interference (IFI). After that, an algorithm

to detect the presence of the signal is proposed. Everything is done in a simple

way to keep the receiver complexity very low. The work was developed in the group

Circuits and Systems, faculty of Electrical Engineering, Mathematics and Computer

Science, at TU-Delft, since 16 of August till 15 February , under the supervision of

Prof. dr. ir. Alle Jan van der Veen and the collaboration of Yiyin Wang, PhD

student in the same group.
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Chapter 1

Introduction

1.1 UWB technology

Ultra-wideband is a radio technology. It can be used at very low energy levels for

short-range high-bandwidth communications by using a larger portion of the radio

spectrum. This method is using pulse coded information with sharp carrier pulses

at a bunch of center frequencies in logical connex. UWB has traditional applica-

tions in non cooperative radar imaging. Most recent applications target sensor data

collection, precision locating and tracking applications. Ultra Wideband was tra-

ditionally accepted as pulse radio, but the FCC and ITU-R now define UWB in

terms of a transmission from an antenna for which the emitted signal bandwidth

exceeds the lesser of 500 MHz or 20% of the center frequency. Thus, pulse-based

systems (wherein each transmitted pulse instantaneously occupies the UWB band-

width, or an aggregation of at least 500 MHz worth of narrow band carriers, for

example in orthogonal frequency division multiplexing (OFDM) fashion) can gain

access to the UWB spectrum under the rules [1] [2]. Pulse repetition rates may be

either low or very high. Pulse-based radars and imaging systems tend to use low

repetition rates, typically in the range of 1 to 100 megapulses per second. On the

other hand, communications systems favor high repetition rates, typically in the

range of 1 to 2 giga-pulses per second, thus enabling short range gigabit-per-second

communications systems. Each pulse in a pulse-based UWB system occupies the

entire UWB bandwidth, thus reaping the benefits of relative immunity to multipath

fading (but not to intersymbol interference), unlike carrier-based systems that are

subject to both deep fades and intersymbol interference. A February 14, 2002 Re-

port and Order by the FCC authorizes the unlicensed use of UWB in 3.1÷10.6 GHz.
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The FCC power spectral density emission limit for UWB emitters operating in the

UWB band is -41.3 dBm/MHz. This is the same limit that applies to unintentional

emitters in the UWB band, the so called Part 15 limit (figure 1). However, the emis-

Figure 1.1: Electromagnetical spectrum occupied by UWB signals

sion limit for UWB emitters can be significantly lower (as low as -75 dBm/MHz) in

other segments of the spectrum. Due to the extremely low emission levels currently

allowed by regulatory agencies, UWB systems tend to be short-range and indoors

applications. However, due to the short duration of the UWB pulses, it is easier to

engineer extremely high data rates, and data rate can be readily traded for range

by simply aggregating pulse energy per data bit using either simple integration or

by coding techniques. Conventional OFDM technology can also be used subject to

the minimum bandwidth requirement of the regulations. High data rate UWB can

enable wireless monitors, the efficient transfer of data from digital camcorders, wire-

less printing of digital pictures from a camera without the need for an intervening

personal computer, and the transfer of files among cell phone handsets and other

handheld devices like personal digital audio and video players.

1.2 Synchronization in UWB

In any communication system, the receiver needs to know the timing information

of the received signal to accomplish demodulation. The subsystem of the receiver

which performs the task of estimating this timing information is known as the syn-

chronization stage. Synchronization is an especially difficult task in spread spectrum

systems which employ spreading codes to distribute the transmitted signal energy
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over a wide bandwidth. The receiver needs to be precisely synchronized to the

spreading code to be able to despread the received signal and proceed with demod-

ulation. Timing acquisition is a particularly acute problem faced by UWB systems

[3], as explained in the following. Short pulses and low duty cycle signaling employed

in UWB systems place stringent timing requirements at the receiver for demodu-

lation. The wide bandwidth results in a fine resolution of the timing uncertainty

region, thereby imposing a large search space for the acquisition system. More-

over, the transmitted pulse can be distorted through the antennas and the channel,

and hence the receiver may not have exact knowledge of the received pulse signal

waveform. Typical UWB channels can be as long as 200 ns [4] [5], and can be

characterized by dense multipath with thousands of components for some NLOS

scenarios. The transmit-reference (TR) scheme first proposed for UWB in [6] [7]

emerges as a realistic candidate that can effectively deal with these challenges. By

transmitting pulses in pairs (or doublets) in which both pulses are distorted by the

same channel, and using an autocorrelation receiver, the total energy of the chan-

nel is gathered to detect the signal without having to estimate individual channel

multipath components. The simple delay (at the transmitter), correlation and in-

tegration operations (at the receiver) ease the timing synchronization requirements

and reduce the transceiver’s complexity.

In this thesis a TR-UWB Communication System is considered. Transmitted Ref-

erence UWB uses ultra-short information bearing pulses and thus promises high

speed, high precision, resolved multipath and simpler receiver structures.

The same system was considered by Andreas Schranzhofer in his Master’s Thesis

[8] at TU Delft. He proposed to make synchronization by correlating the received

samples with the code sequence known at the receiver. It’s the traditional ”matched

filter”. The limitation in [8] is that it assumes there is no Inter Symbol Interference

(ISI) or Inter Frame Interference (IFI).

In [9] another acquisition scheme is proposed, in which, two sets of direct sequence

code sequence are used to facilitate coarse timing and fine aligning. In this case, no

IFI is assumed. A very complex algorithm is proposed in [10]. It proposes a blind

synchronization method for TR-UWB systems. The matrix decomposition brings

to a very high complexity. In the CAS group, a new algorithm is proposed, claimed

able to solve the presence of IFI, with a very low complexity. The thesis focuses on

the new proposed algorithm.
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Mathematical notation

v boldface uncapitalized characters denote vectors

M boldface capitalized characters denote matrices

ṽ, M̃ the operator˜means the FFT of the vector/matrix

x,A italic characters denote scalars or complex numbers

bxc denotes the first integer smaller than x

⊗ denotes the Kronecker product of two matrices

¯ denotes the Schur-Hadamard product of two matrices

? denotes the convolution product
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Chapter 2

Data Model

Figure 2.1: Autocorrelation receiver

This chapter presents the data model as described in [11]. Let’s start introducing

the model of a single frame, of duration Tf . Then we’ll extend the model to multiple

frames and multiple symbols.

2.1 Single frame

When a UWB pulse g(t) is transmitted, it usually undergoes a distortion due to

the UWB physical channel hp(t), supposed to be of finite length Th. The signal is

picked up by the antenna receiver, whose impulse response is a(t). Consequently

the expression of the received signal is:

h(t) = hp(t) ? g(t) ? a(t) (2.1)
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h(t) comprises the communication channel, the transmitted pulse and the antenna

response. Actually, it hasn’t been considered the bandpass filter present after the

antenna receiver, but a(t) could be seen also as the convolution between the antenna

response and the bandpass filter response. Anyway, from now on, we’ll consider h(t)

as the ”composite” channel response. In TR-UWB systems, the signal is transmitted

sending a pair of pulses per frame, called doublet. The first pulse of each doublet is

fixed, called reference pulse, whereas the second pulse, sent after D seconds from the

first, is the data pulse and its polarity s0 contains the information: s0 ∈ {−1, +1}.
The expression of the signal due to one transmitted frame, after the antenna receiver

and the bandpass filter is therefore:

y0(t) = h(t) + s0 · h(t−D)

In figure 2.1 the receiver structure (leaving out the bandpass filter) is shown. As

we can se, y0(t) undergoes a multiplication by a delayed version (by D seconds) of

itself. After that, the result is integrated and dumped. The sampling period is Tsam

and it usually is an oversampling, since P samples per frame are taken. P is called

”oversampling factor”: Tsam =
Tf

P
.

The expression of the signal at the multiplier’s output is

x0(t) = y0(t)y0(t−D)

= [h(t) + s0h(t−D)][h(t−D) + s0h(t− 2D)]

= [h(t)h(t−D) + h(t−D)h(t− 2D)] + s0[h
2(t−D) + h(t)h(t− 2D)]

Let’s define the channel autocorrelation function as

R(τ, n) =

∫ nTsam

(n−1)Tsam

h(t)h(t− τ)dt.

After the integration and the oversampling, we have the samples:
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x0[n] = [R(0, n− D

Tsam

) + R(2D,n)]s + [R(D, n) + R(D,n− D

Tsam

)] (2.2)

In equation (2.2) R(0, n− D
Tsam

) contains the energy of the channel, in the time in-

terval [(n− 1)Tsam, nTsam]. Let’s consider a certain correlation length τ0: as shown

in [11], when τ0 < D we can neglect the other terms of equation (2.2). Usually τ0

is very small, often smaller than the delay D. Therefore we can ignore the terms

R(τ, . . .) with τε{D, 2D}. For the sample x0[n + 1] the time interval involved is

[nTsam, (n + 1)Tsam]: we can look at the oversampling process as a segmentation of

the channel in ”sub-channels”, because Tsam < Tf < Th. For each segment we have

a channel autocorrelation function and a dominant term R(0, . . .) that contains the

energy of the sub-channel. Since Th is the length of the physical channel, we’ll have

Ph segments, where Ph = b Th
Tsam

c. From now on, Ph samples will describe the original

composite channel response:

h[n] =

∫ nTsam

(n−1)Tsam

h2(t)dt n = 1, . . . , Ph (2.3)

So, we can Define a TR-UWB ”channel” vector:

h = [h[1], . . . , h[Ph]]
T (2.4)

We can stack the discrete samples in a vector x0, obtaining:

x0 = h · s0 + noise (2.5)

This model is a simple approximation for single frame. It reduces the complexity,

even for the receiver algorithms and was shown that the approximation doesn’t

produce any considerable loss in the BER performance. It is due to the statistical

properties of the UWB channels and to the nature of the UWB signal.

Using this model, it is simple now to derive data models for multiple frames.
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2.2 Multiple frames

Let’s consider now the transmission of Nf consecutive frames, each one with dura-

tion Tf and for each one the preceding data model is valid. Now, the data pulse

of each doublet carries the information of a symbol: a data bit sj modulates the

polarity of the second pulse of the frame number j. We can now also introduce

the presence of inter-frame interference (IFI), since the duration of each frame Tf is

shorter than the channel length Th.

We use a single delay for all the frames, that is D seconds, so that the receiver

structure is the same as in figure 2.2. We have now new cross terms in the result of

the integration and dumping, because there are more than one frame. They still are

terms of the autocorrelation functions of the channel segments and they also can be

ignored since the correlation length in these cross-terms are much longer than Tf .

What we cannot ignore is the new matched terms that spread over some next frames,

due to the fact that Th > Tf . These other matched terms produce IFI. Let’s define

a channel matrix H to model the multiple frames case:

x = Hs + noise (2.6)

where x contains all the received samples, s is the unknown data vector

s = [s1, . . . , sNf
]T

The channel matrix H has the structure shown in figure 2.2. The first thing to

notice is the presence of shifted version of h defined in (2.4). Then, let’s notice also

the effect of IFI, looking at how many rows in H have more than one entry different

by zero.

2.3 Effect of timing synchronization

In UWB communication systems, as already said, the pulses have very short du-

ration. It makes the synchronization have stringent requirements. To solve the

problem we work in the digital domain, elaborating the samples received. So, the

analog part of the receiver can be kept data-independent.

Let’s suppose to receive the data packet (consisting of multiple frames) with an off-

set G at the beginning, which means, in other words, that we are not synchronized.
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Figure 2.2: Data model for multiple frames

The expression of the offset is:

G = G′Tsam + g

where G′ is an integer and g respects the condition: 0 < g < Tsam. We can incor-

porate the integer G′ in the data model putting G′ rows at the top of the channel

matrix H with all elements equal to zero. However we still have to include the offset

fraction g and we can do it redefining the channel vector h as follows:

h[n] =

∫ nTsam

(n−1)Tsam

h2(t− g)dt, n = 1, . . . , Ph

Actually, we didn’t any assumptions on the unknown channel vector h, so, the model

(2.6) is still valid. In the chapter 3, we’ll explain the algorithm to estimate the delay

G′. Now we continue considering G′ = 0.
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2.4 Multiple frames, Multiple symbols - Single

User case

Let’s go now to extend the preceding models to the multiple frames and multi-

ple symbols case. Let’s suppose to transmit a packet of Ns data symbols s =

[s1, . . . , sNs ]
T , where each symbol siε{−1, +1} is composed of Nf frames, whose du-

ration is still Tf . In each frame, the pulses are separated by D seconds. Let’s suppose

then cijε{−1, +1}, j = 1, . . . , Nf to be the known user code of the frame number

j in the symbol number i. It means that the code can varie from frame to frame

and from symbol to symbol. The structure of the receiver is still shown in figure 2.1

and the structure of the transmitted pulse sequence is shown in figure 2.3.

Figure 2.3: Pulse sequence structure

The expression of the signal after the antenna receiver and the pass-band filter,

without noise, is:

y(t) =
Ns∑
i=1

Nf∑
j=1

[h(t−((i−1)Nf +j−1)Tf )+sicijh(t−((i−1)Nf +j−1)Tf−D)] (2.7)

where ci = [ci1, . . . , ciNf
]T is the code vector for the i−th symbol si. Then we have

the multiplication x(t) = y(t)y(t−D), the integration and dumping with oversam-

pling factor P = Tf/Tsam. As said in the section 2.1, The unmatched terms and

the cross-terms can be neglected. The data model in (2.6) can be easily extended

to include the code cij.

We still stack the samples x[n] =
∫ nTsam

(n−1)Tsam
x(t)dt, n = 1, . . . , (NsNf − 1)P +

Th/Tsam into a column vector x, whose expression is now (see fig. 2.4)
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x = Hdiag{c1, . . . , cNs}s + noise (2.8)

where, H still have the same structure shown in fig. 2.2, and the ’diag’ operator

puts the vectors c1, . . . , cNs into a block diagonal matrix. We can also rewrite the

Figure 2.4: The data model for the single user case with no offset

data model in (3.1) as,

x = C(INs ⊗ h)s + noise (2.9)

where ⊗ denotes the Kronecker product and C is the code matrix of size

((NfNs − 1)Tf + Th)/Tsam × (ThNs)/Tsam

The structure of x is shown in figure 2.4, where we can see also the structure of the

matrix C.

As we said at the end of section 2.3, in the following chapter, the data model will

be modified to introduce the the offset and illustrate the algorithm to solve the

synchronization.
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Chapter 3

The synchronization algorithm

A synchronization algorithm is proposed in this chapter. It was developed by Yiyin

Wang, PhD student in the group of Circuits and Systems at TU-Delft. The main ad-

vantage of this algorithm is to solve the IFI problem in the synchronization through

the code sequence deconvolution done in frequency domain. The traditional code

match filter can’t handle IFI. It requires the frame length to be long enough to let

the channel die out before the next frame is transmitted. The proposed algorithm

has lower complexity than the code match filter. The novel algorithm facilitates

higher data rate communication and reduces the acquisition time. Yiyin Wang is

now improving the algorithm as we can see in [12].

3.1 Data model

The scenario here is to solve the synchronization problem for single user with single

delay. The received Ns symbols at the antenna output without noise can be mod-

eled as in equation (2.7). The proposed training sequence has the following property:

sk = sk+1 = sk+2 = . . . = sk+Ns

As already said, the duration of the channel Th is much longer than the frame time

Tf . This assumption introduces Inter Frame Interference. To avoid Inter Symbol

Interference we insert a guard interval between two following symbols. The guard

interval is equal to Th−Tf . The integration and the oversampling (remember figure

2.1 produces the samples x[n]:

13



x[n] =

∫ nTsam

(n−1)Tsam

y(t)y(t−D), n = 1, . . . , NsLs (3.1)

where Ls = NfP + Ph − P is the symbol length in terms of number of samples (see

figure 3.1).

Figure 3.1: Samples per symbol period

x[n] is stacked into a column vector as described in the chapter 2:

x = C(I ⊗ h)s = Hdiag{c1, . . . , cNs}s (3.2)

Here C is slightly different from C in chapter 2, there is no overlap between symbols

in C, due to the guard interval inserted. See figure 3.2:

Figure 3.2: The data model

h is still the channel energy vector defined in (2.3). s is the symbol vector, whereas

14



H in the equation (3.2) is a NsLs × NsNf matrix composed by the h vector. c1,

c2, . . ., cNs are the code vectors of each symbol. Nevertheless, as we said, we have

the same code vector for each symbol, so we can call every code vector as c, whose

entries are c1, c2, . . . , cNf
. In this case the matrix C in figure 3.2 contains replicas of

the code matrix C, whose structure is shown in figure 3.3

Figure 3.3: Code matrix C

3.1.1 Asynchronous single user model

Without loss of generality, the unknown timing offset τa is in one symbol range,

τa ∈ [0, Nf ∗ Tf + Th − Tf ) (3.3)

We can also write τa = naTsam +Tr, where na ∈ {0, 1, . . . , Nf ∗P +(Th−Tf )/Tf ∗P}
and 0 ≤ Tr < Tsam is the tracking error. As said in section 2.3, the tracking error Tr

can be absorbed in the unknown channel vector. So, in terms of samples, equation

(3.3) becomes:

τ ∈ {0, 1, . . . , Ls − 1} (3.4)

Let’s notice that this assumption means that, stacking the first Ls received samples

into a column vector, at least one of them belongs to the transmitted symbol: if

τ = 0 , all the Ls samples are related to one symbol. If τ = Ls − 1 , only the last

sample is the first sample of the symbol. In fact, one symbol will spread over two

15



adjacent symbol periods. Stacking 2Ls data samples into a column vector to model

a single symbol, we would obtain:




x[k]
...

x[k + 2Ls − 1]


 = Cτhsk =




0τ

C

0r




2Ls×Ph

hsk (3.5)

Cτ is made up of three blocks. C is the known user code matrix, already shown

in figure 3.3. 0τ is τ rows of 0. 0r is Ls − τ rows of 0. sk is the kth symbol. But

if we stack the samples into column vectors of Ls elements each one, we need two

columns to describe one symbol:




x[k] x[k + Ls]
...

...

x[k + Ls− 1] x[k + 2Ls − 1]


 = CsτHS =

= [C
′′
τ C

′
τ ]

[
h 0

0 h

][
0 sk

sk 0

]
(3.6)

where Csτ is a Ls × 2Ph matrix. It’s made up of two blocks. The first Ph columns

constitute the matrix C
′′
τ and the last Ph columns form the matrix C

′
τ . In the matrix

C
′′
τ the first τ rows are the last τ rows of the matrix C. The other elements are all

0’s. In the matrix C
′
τ the last Ls− τ rows are the first Ls− τ rows of the matrix C

and the other elements are 0’s. See figure 3.4.

Now, remembering that the training sequence is composed of symbols all equal, we

stack the received samples in a Ls×Ns matrix X, extending the model in the equa-

tion (3.6) to the multi-symbol case:

16



Figure 3.4: Code matrix Csτ

X =




x[k] x[k + Ls] . . . x[k + (Ns − 1)Ls]
...

...
...

...

x[k + Ls − 1] x[k + 2Ls − 1] . . . x[k + NsLs − 1]




= CsτHS

=
[

C
′′
τ C

′
τ

] [
h 0

0 h

][
sk sk+1 sk+2 . . . sk+Ns−1

sk+1 sk+2 sk+3 . . . sk+Ns

]

Let’s remember that the symbols in the training sequence are equal to 1 (and notice

that the training sequence is composed by Ns + 1 symbols, but the synchronization

algorithm is applied on Ns symbol periods). In this case:

X =
[

C
′′
τ C

′
τ

] [
h 0

0 h

] [
1 1 1 . . . 1

1 1 1 . . . 1

]

2×Ns

=
[

C
′′
τ C

′
τ

] [
h 0

0 h

] [
1

1

]
1T

17



Where 1T is a row vector composed by Ns 1’s

X =
[

C
′′
τh C

′
τh

] [
1

1

]
1T

= [Cτ ] h1T (3.7)

Cτ is a circular shift of τ rows of the matrix C0: figure 3.5

Figure 3.5: Code matrix Cτ

3.2 Synchronization algorithm

We can utilize the shift invariance property that a delay in time domain corresponds

to a phase shift in frequency domain for the cyclic block Cτ : Let’s define C̃τ = FCτ

and C̃0 = FC0, where the operator F is the FFT operation (it’s a Ls × Ls FFT

matrix). So, C̃τ is the DFT of Cτ whereas C̃0 is the DFT of C0. Let’s notice that

the matrix C0 is the matrix C

we can now write
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C̃τ = C̃0 ¯ [φτ , . . . , φτ ] (3.8)

where φτ = [1, e−
j2πτ
Ls , . . . , (e−

j2πτ
Ls )Ls−1]T .

Since each column Cτ is just one sample shift of the previous column, we can rewrite

the formulation (3.8) as

C̃τ = c̃011
T ¯ [φτ φτ+1 . . . φτ+Ph−1] (3.9)

where 1 is a Ph length vector with all entries equal to 1 and c01 is the first col-

umn of the code matrix C0, so that c̃01 is the first column of C̃0. Let’s define

X̃i, i = 0, . . . , Ls − 1 the elements of c̃01 . They are the components of the FFT of

c01 :

X̃i =

Nf−1∑
m=0

cme−j2π mPi
Ls (3.10)

because, the column c01 is:

c01 =
[
c0 0 0 c1 0 0 c2 0 . . . cNf−1 0 . . . 0 0

]T

Ls

where, between two adjacent chips there are (P − 1) 0’s. Let C̃inv = [diag(c̃01)]
−1:

C̃inv =




1
X̃0

0 0 . . . 0

0 1
X̃1

0 0
...

0 0 1
X̃2

0
...

...
...

...
. . .

...

0 0 0 0 1
X̃Ls−1




Ls×Ls

We can estimate the offset τ by the following way:

C̃invC̃τ = [φτ φτ+1 . . . φτ+Ph−1] (3.11)

And then, applying the IFFT operation (F−1):
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F−1C̃invC̃τ = F−1[φτ φτ+1 . . . φτ+Ph−1]

=




0τ

IPh

0r




Ls×Ph

(3.12)

0τ is a τ × Ph matrix, with null elements. IPh
is a Ph × Ph identity matrix. 0r is a

r×Ph matrix with null elements. This means that τ is equal to the number of rows

of the matrix 0τ . (If τ +Ph is bigger than Ls then the structure is a bit different: in

the matrix resulting by the equation (3.12), the first τ + Ph − Ls rows are the last

τ + Ph−Ls rows of IPh
and the last Ls− τ rows are the first Ls− τ rows of IPh

. In

the middle there is the matrix 0τ ). We can understand the result of equation (3.12)

rewriting it as:

F−1C̃invC̃τ =

= F−1




1
X̃0

0 0 . . . 0

0 1
X̃1

0 0
...

0 0 1
X̃2

0
...

...
...

...
. . .

...

0 0 0 0 1
X̃Ls−1







X̃0

X̃1

X̃2

...

X̃Ls−1



¯ [φτ φτ+1 . . . φτ+Ph−1] =

= F−1




1

1

1
...

1



¯ [φτ φτ+1 . . . φτ+Ph−1] =

= F−1[φτ φτ+1 . . . φτ+Ph−1] =

=




0τ

IPh

0r




Ls×Ph
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Let’s now apply the operation described till now to the data matrix, built with the

collected samples, as in the equation (3.7):

F−1C̃invFX = F−1C̃invFCτh1T (3.13)

= F−1C̃invC̃τh1T

=




0τ

IPh

0r


 h1T

=




0τ

h

0r


1T (3.14)

(Again, if τ + Ph > Ls the matrix in equation (3.14) is a bit different:




h
′′

0τ

h
′


1T

where h
′′

is the last Ph − (Ls − τ) elements of vector h and h
′
is the first Ls − τ

elements of h).

Define the vector y = F−1C̃invFX1:

y =




0τ

Nsh

0r


 (3.15)

we get the estimation of the offset:

τ̂ = argmaxτ (
1

Ns

Lw∑
n=1

y[τ + n]) , τ = 0, 1, . . . , Ls − 1 (3.16)

It means that, starting from the first row of y we set a window of length Lw and
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we sum all the elements in that window.The selection of Lw depends on the channel

energy profile and the SNR: it should be a length which can include the part with

the highest channel energy to noise ratio.
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Chapter 4

The modified algorithm

The algorithm described in the chapter 3 was developed by Yiyin Wang, Geert Leus

and Alle-Jan van der Veen. Some aspects are being improved. In this chapter

we describe one problem in the algorithm and a simple practical way to solve it,

modifying slightly the matrix C̃inv.

4.1 Noise analysis

Let’s start analyzing the noise. In the equation (3.13) we didn’t consider the noise.

Now, let’s suppose that at the antenna RX we receive the signal convolved with the

channel plus White Gaussian Noise. After the first part of the receiver, the analog

part, we go to integrate and dump obtaining signal plus noise samples. As we have

already said, we stack the received data in the matrix X, but now we define also

the noise samples matrix N :




n[k] n[k + Ls] . . . n[k + (Ns − 1)Ls]
...

...
...

...

n[k + Ls − 1] n[k + 2Ls − 1] . . . n[k + NsLs − 1]




Ls×Ns

These samples are Independent Gaussian Variables, with the same mean value 0 and

the same variance σ2. This assumption has been demonstrated in [13] by Hoctor

and Tomlinson. The noise matrix will undergo the same operations undergone by

the matrix X. First of all the FFT operation, obtaining the matrix Ñ :

23



Ñ =




ñk[0] ñk+Ls [0] . . . ñk+(Ns−1)Ls [0]
...

...
...

...

ñk[Ls − 1] ñk+Ls [Ls − 1] . . . ñk+(Ns−1)Ls [Ls − 1]




Ls×Ns

where

ñk[i] =
Ls−1∑
n=0

nk+ne
−j2π ni

Ls , i = 0, 1, . . . , 2Ls − 1 (4.1)

The sum of indipendent Gaussian Variables is still a Gaussian Variable. Its mean

value is the sum of all mean values, so it’s 0. Let’s calculate the variance:

σ2
ñk[i] = E{(ñk[i]) · (ñk[i])

∗}

= E{(
Ls−1∑
n=0

nk+ne
−j2π ni

Ls ) · (
Ls−1∑

l=0

nk+le
−j2π li

Ls )∗}

= E{
Ls−1∑
n=0

Ls−1∑

l=0

nk+nn∗k+le
−j2π ni

Ls ej2π li
Ls }

=
Ls−1∑
n=0

Ls−1∑

l=0

E{nk+nn∗k+l}e−j2π ni
Ls ej2π li

Ls

We know that the variables are independent, so E{nk+nn∗k+l} 6= 0 only for l = n:

σ2
ñk[i] =

Ls−1∑
n=0

E{|nk+n|2} =
Ls−1∑
n=0

σ2 = Lsσ
2 (4.2)

So, each element of Ñ is a Gaussian variable with mean value 0 and variance Lsσ
2.

The second step is the multiplication with C̃inv:
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Ñ
′

= C̃invÑ = (4.3)

=




1
X̃0

0 0 . . . 0

0 1
X̃1

0 0
...

0 0 1
X̃2

0
...

...
...

...
. . .

...

0 0 0 0 1
X̃Ls−1







ñk[0] ñk+Ls [0] . . . ñk+(Ns−1)Ls [0]
...

...
...

...

ñk[Ls − 1] ñk+Ls [Ls − 1] . . . ñk+(Ns−1)Ls [Ls − 1]




=




ñk[0]

X̃0

ñk+Ls [0]

X̃0
. . .

ñk+(Ns−1)Ls [0]

X̃0
...

...
...

...
ñk[Ls−1]

X̃Ls−1

ñk+Ls [Ls−1]

X̃Ls−1
. . .

ñk+(Ns−1)Ls [Ls−1]

X̃Ls−1




Ls×Ns

And finally we apply the IFFT to this matrix, obtaining the matrix that we call N
′
:

N
′

= F−1Ñ
′
= F−1C̃invÑ

=




n′k n′k+Ls
. . . n′k+(Ns−1)Ls

n′k+1 n′k+Ls+1 . . .
...

...
...

...
...

n′k+Ls−1 n′k+2Ls−1 . . . n′k+NsLs−1




Ls×Ns

where, for the first column entries we have:

n′k+m =
1

Ls

Ls−1∑
i=0

ñk[i]e
j2π mi

Ls ,m = 0, 1, . . . , Ls − 1

It’s the same for the other columns: for example for the second column we have to

write:

n′k+Ls+m =
1

Ls

Ls−1∑
i=0

ñk+Ls [i]e
j2π mi

Ls ,m = 0, 1, . . . , Ls − 1

Now, imagine to apply the IFFT to the matrix Ñ . We would obtain again the
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matrix N , which has independent Gaussian variables as elements. In fact, we apply

the IFFT to the matrix Ñ
′
= C̃invÑ , but the matrix C̃inv is a deterministic quan-

tity: it means that the elements in the matrix N
′

are still independent Gaussian

variables. They still have the same mean value equal to 0. But now the variance

of each element is different from the others. So, let’s calculate the variance of each

element of the matrix N
′
:

σ2
n′k+m

= E[(n′k+m) · (n′k+m)∗] (4.4)

= E[
1

(Ls)2
(
Ls−1∑
i=0

ñk[i]

X̃i

ej2π im
Ls )(

Ls−1∑
t=0

ñ∗k[t]

X̃∗
t

e−j2π tm
Ls )]

= E[
1

(Ls)2
(
Ls−1∑
i=0

∑Ls−1
n=0 nk+ne

−j2π ni
Ls

X̃i

ej2π im
Ls ) ·

·(
Ls−1∑
t=0

∑Ls−1
l=0 n∗k+le

+j2π lt
Ls

X̃∗
t

e−j2π tm
Ls )]

=
1

(Ls)2

Ls−1∑
i=0

Ls−1∑
t=0

∑Ls−1
n=0

∑Ls−1
l=0 E[nk+nn∗k+l]e

−j2π ni−lt
Ls

X̃iX̃∗
t

ej2π
m(i−t)

Ls

=
1

(Ls)2

Ls−1∑
i=0

Ls−1∑
t=0

∑Ls−1
n=0 E[|nk+n|2]e−j2π

n(i−t)
Ls

X̃iX̃∗
t

ej2π
m(i−t)

Ls

=
1

(Ls)2

Ls−1∑
i=0

Ls−1∑
t=0

∑Ls−1
n=0 σ2e−j2π

n(i−t)
Ls

X̃iX̃∗
t

ej2π
m(i−t)

Ls

=
σ2

(Ls)2

Ls−1∑
n=0

(
Ls−1∑
i=0

1

X̃i

e+j2π
(m−n)i

Ls

Ls−1∑
t=0

1

X̃∗
t

e−j2π
(m−n)t

Ls )

=
σ2

(Ls)2

Ls−1∑
n=0

[(
Ls−1∑
i=0

1

X̃i

e+j2π
(m−n)i

Ls )(
Ls−1∑
t=0

1

X̃t

e+j2π
(m−n)t

Ls )∗]

=
σ2

(Ls)2

Ls−1∑
n=0

|
Ls−1∑
i=0

1

X̃i

e+j2π
(m−n)i

Ls |2 ≤ σ2

Ls

Ls−1∑
i=0

1

|X̃i|2
(4.5)
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As we can see, the variance changes elements by elements and also the value is

different for different code sequences. We can only say that in the matrix N ′ the

mth element of each column has the same variance as the mth element of each other

column. Looking at equation (4.5), we realize that the most important result is

that now we know that the variance could increase as the inverse of the norm of the

components X̃i becomes larger. We would like to have components X̃i with norm

high enough to avoid that the variance of the noise becomes too high.

4.2 Error probability and MSE

In order to understand the advantage to have components X̃i with high norm, we

must analyze how the variance of the noise influences the estimation of the offset τ .

Remembering the formula (2.16), now we introduce also the noise. So, the vector y

now contains also noise. In fact, define:

Z = X + N

we apply all the operations described before to the matrix Z:

F−1C̃invFZ = F−1C̃invF(X + N)

= F−1C̃invFX + F−1C̃invFN

=




0τ

IPh

0r


 h1T + N ′

Let’s define

v(τ) =
1

Ns

Tw∑
n=1

y[τ + n] , τ = 0, . . . , Ls − 1

and
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v = [v(0) v(1) . . . v(Ls − 1)]

remembering the formula (3.16) and supposing that the offset is equal to τ0, we have

the correct estimation when v(τ0) is the maximum element of the vector v. We must

calculate the statistics of v(τ0).

v(τ0) =
Lw∑
n=1

(
h[n− 1] +

1

Ns

Ns−1∑
i=0

n′k+τ0+(n−1)+iLs

)
(4.6)

v(τ0) is the sum of a deterministic variable
∑Lw

n=1 h[n − 1] plus the sum of LsNs

independent gaussian variables with zero mean value and different variances. So,

v(τ0) is still a gaussian variable with mean value equal to
∑Lw

n=1 h[n−1] and variance

equal to the sum of the variances of the LsNs noise elements, divided by N2
s . When

τ differs from τ0, the reasoning is exactly the same, but the mean value is smaller

and the variance is different, because, as shown in section 2.1, the elements of matrix

N ′ have in general different variances. We can write:

v(τ0) ∈ N (µτ0 , σ
2
τ0

)

v(τ) ∈ N (µτ , σ
2
τ ) , τ = 0, 1, . . . , Ls − 1 τ 6= τ0

where we know only that µτ0 is bigger than µτ , for τ 6= τ0. The estimation of the

offset is correct when

v(τ0) > v(τ), τ = 0, 1, . . . , Ls − 1 τ 6= τ0 (4.7)

So, the probability of correct estimation is equal to (1− Pr{error}):
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1− Pr{error} = 1− (Pr{v(0) > v(τ0)}+ . . . + Pr{v(Ls − 1) > v(τ0)})

= 1− (Pr{v(0)− v(τ0) > 0}+ . . . + Pr{v(Ls − 1)− v(τ0) > 0})

= 1− (Q


 µτ0 − µ0

1
Ns

√
σ2

τ0
+ σ2

0


 + . . . + Q


 µτ0 − µLs−1

1
Ns

√
σ2

τ0
+ σ2

Ls−1


)

= 1−
Ls−1∑
τ=0
τ 6=τ0

Q

(
µτ0 − µτ

1
Ns

√
σ2

τ0
+ σ2

τ

)
(4.8)

The result of equation (4.8) makes us understand the importance to have small vari-

ances. We can also calculate the normalized Mean Squared Error of the estimation

of the offset as:

MSE = E

[(
τ̃ − τ0

Ls

)2
]

=
Ls−1∑
τ=0

Pr(τ̃ = τ)

(
τ − τ0

Ls

)2

(4.9)

To calculate the probabilities Pr(τ̃ = τ) of each term in the summation in equation

(4.9) we have just to notice that they have similar expressions as the probability of

correct estimation (4.8). We arrive to the same conclusion: we want to have small

variances of the noise elements in the matrix N ′. If we generate the code sequence

randomly, as a random sequence of +1 and -1, we don’t have any control on the

consequences. This means that we could have also components X̃i with very small

norm, also equal to 0 in some cases. In the next section we’ll describe a practical

method to avoid this problem, also keeping the code sequences randomly generated.

4.3 The solution: replacement of components

The first approach to solve the problem described in the preceding section was to

work on the design of the code sequences. The idea was to propose a particular con-

figuration for the code sequences, maybe also redefining the set of values to which the

chips belong, for example, a particular set of complex numbers with certain phases

and certain norms. The goal of the new design was to avoid to produce DFT vectors

with components with too small norms. The problem met during this approach
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is the following: the FFT depends on many parameters and even if we find a se-

quence that produces a DFT with components characterized by norms high enough,

the same sequence could produce a completely different result when the parameters

change. In fact, remembering the equation (3.10), we notice that X̃i depends on the

parameters P, Ph, Nf (Ls = (Nf − 1)P + Ph). Changing one of them, we change the

result of the FFT. Actually there exist some code sequence that produce DFT with

constant norms. But in our algorithm we apply the FFT operation to a vector that is

a bit different by the transmitted code sequence. In fact, let’s suppose that the vector

c = [c0 c1 c2 . . . cNf−1]

is a sequence that has a DFT with constant norms. In our algorithm the FFT oper-

ation is applied to the first column of the matrix C0. This column has the following

structure:

c01 =
[
c0 0 0 c1 0 0 c2 0 . . . cNf−1 0 . . . 0 0

]T

Ls

It’s not just an oversampling of the vector c, because between two chips there are

(P − 1) 0’s, but after the last chip cNf−1 there are Ph − 1 0’s. It would be an over-

sampling if Ph = P . But this means that we wouldn’t have Inter Frame Interference,

because Ph = P means Th = Tf whereas we made the assumptions that we have

IFI and Th could be also À Tf . If c01 was just an oversampling of c we would

have a DFT with still with constant norms. But in reality, we don’t have just an

oversampling and in fact the DFT changes completely.

The solution was found following another approach. The idea was simply to replace

those components X̃i that are too small, compared with the other components. In

fact, the ideal situation is when all the frequency components have more or less the

same energy, around a certain mean value. But there are situations in which some

components have too small energy and this means that the variance could become

too high, as we can understand looking at (4.5). So, the idea is to calculate the

FFT of the column vector c01 . Then calculate the inverse of each components X̃i.

After that, set a threshold under a certain criteria and finally replace the elements
1

X̃i
, that are over the threshold, with another element (for example 0). In this way

we’ll reduce the value of the variances of the elements in N ′, but we’ll generate also

a mismatch. In fact, let’s take a look to the result we have modifing the algorithm
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as described: instead of the matrix C̃inv of equation (3.12), now we have the matrix

C̃inv new

C̃inv new =




1
X̃0

0 0 0 . . . 0

0 0 0 0 . . .
...

0 0 1
X̃2

0 . . .
...

...
...

...
. . .

...
...

0 0 0 . . . 1
X̃Ls−2

0

0 0 0 . . . 0 0




In this example we replaced the elements 1
X̃1

and 1
X̃Ls−2

with 0’s. Let’s substitute in

equation (3.12) the matrix C̃inv with C̃inv new:

C̃inv newC̃τ = (4.10)

=




1
X̃0

0 0 . . . 0

0 0 0 . . .
...

0 0 1
X̃2

. . .
...

...
...

...
. . .

...

0 0 0 . . . 0







X̃0

X̃1

X̃2

...

X̃Ls−1




1T ¯ [φτ φτ+1 . . . φτ+Ph−1]

=




1

0

1
...

1

0




1T ¯ [φτ φτ+1 . . . φτ+Ph−1]

=








1

1

1
...

1

1




−




0

1

0
...

0

1








1T ¯ [φτ φτ+1 . . . φτ+Ph−1]
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=




1

1

1
...

1

1




1T ¯ [φτ φτ+1 . . . φτ+Ph−1]−




0

1

0
...

0

1




1T ¯ [φτ φτ+1 . . . φτ+Ph−1]

Then, applying the IFFT, we obtain the same result as before, plus a new matrix

that we call M :

C̃inv newC̃τ =




0τ

IPh

0r


 + M (4.11)

where:

M = F−1





−




0

1

0
...

0

1




1T ¯ [φτ φτ+1 . . . φτ+Ph−1]





(4.12)

= F−1
{−ε · 1T ¯ [φτ φτ+1 . . . φτ+Ph−1]

}

So, let’s replace the new result (4.11) to the old result (3.12):
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F−1{C̃inv newFX} =

=







0τ

IPh

0r


 + M


 h1T

=




0τ

h

0r


1T + ∆ (4.13)

where

∆ = Mh1T (4.14)

The matrix ∆ depends on the number of components that we replace and also the

way to replace these components. In fact replacing the component 1
X̃i

with 0 is not

the best choice. To set the threshold and also to define the new elements to put in

the matrix C̃inv new, we should follow some criteria, as zero forcing or a criteria to

minimize the MSE, or something else. In this thesis a practical method to generate

the matrix C̃inv new is proposed, looking at values that we obtain by simulations.

Observing the norms of the components 1
X̃i

we have noted that in every case, chang-

ing sequences and parameters, we don’t have many components that become too

high, compared to the total number of components. It means that the vector ε in

(4.12) will have few elements different than 0, compared to the total number of ele-

ments. But now we should understand what does high components mean. We need

a threshold and then define too high the components 1
X̃i

that have a norm bigger

than the threshold. The proposed method is to treat the norms of the components
1

X̃i
as random variables with a certain average and a certain standard deviation. We

have good sequences when the energy of the frequency components of c01 is more

or less the same, around a certain mean value. Otherwise, a bad sequence produces

a vector c01 that has some frequency components too small and this means to have

some peaks in the vector u defined as
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u =

{
1

|X̃i|

}Ls−1

i=0

We have also to remember that the same sequence could be bad or good, changing

some parameters P, Ph, Nf .

So, for each sequence u, we calculate the average and the standard deviation of the

elements. Then we set the threshold: looking at the results of the simulations, we

found the best threshold was equal to the average plus standard deviation. Finally

we replace those components having norm bigger than the threshold with new com-

ponents that have the same phases but norms equal to the average. This choice is

due to the fact that we want to have a matrix ∆ with negligible values and replacing

the components with zero is a poor choice, besides besides that it is not necessary.

The last thing that we have to understand is that the peaks that really can increase

the variance of the noise samples are present in those vectors u in which more or

less the values are all around the mean value, except on these few peaks. Otherwise,

we can also have many peaks but not so high to worsen the performance really. The

following figure helps to understand:

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
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1.4

Figure 4.1: Vector u

In figure 4.1 we can see plotted the vector u: the related code sequence is randomly

generated, the parameters are P = 3, Tf = 30ns, Th = 100ns,Nf = 8. The dashed
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line is the mean value. The under solid line is the Threshold equal to the average

+ standard deviation. The upper solid line is the average + 2 standard deviation.

As we can see, many elements of the vector are above the threshold. Nevertheless

this sequence is a good sequence, the values they have aren’t really so high: we have

problems when we have only few peaks with high values. For example let’s look at

figure 4.2. In this figure now we can see much less peaks over the threshold, but

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

Figure 4.2: Vector u

with higher values: we have also to remember that these values will squared.

So, in practical cases the last check to make is to see if there are values also over the

upper solid line (average + 2 standard deviation). If no elements are over the upper

solid line we consider the sequence a good sequence even if some components are

over the threshold. Otherwise, when we find components over the upper solid line,

we consider the sequence a bad sequence and we replace all the components over

the threshold. The explained method is just a practical way found by simulations.

In the next section we can see the gain reached with this method.

4.4 Simulation results

The simulations are made with the following parameters:

Tf = 30ns, Th = 90ns,Nf = 15, P = 3, Ns = 30. The code sequences are randomly

generated. We made 1000 Monte Carlo runs: In each run, the timing offset and the
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Figure 4.3: MSE new method compared with the old one

channel are randomly generated. In figure we can see the MSE of the estimation

of the offset (defined in (4.9)) for some values of ratio Ep

N0
. The dashed curve is

related to the performance for the original algorithm. The solid curve is plotted

with the same sequences but with the modification explained in this chapter. Other

simulations were done, with different parameters, but similar results. The method

could be improved following some more theorical criteria.
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Chapter 5

Detection Theory

Detection theory is defined as how to make a decision if an event of interest is

present or not [14]. In detection theory for TR-UWB Systems we want to determine

whether data is present or not. This results in a binary hypothesis test, where two

cases (hypotheses) are stated and the algorithm has to decide which one is (most

likely) true.

In the synchronization algorithm described in chapter 3 the signal is supposed to

be present starting from the first column of the data matrix built by collecting the

received samples. But if the signal is not present, the data model (3.7) is not valid

anymore and the synchronization algorithm doesn’t produce a correct estimation of

the offset. In this chapter we propose how to detect the presence of the signal before

applying the synchronization algorithm, in the single user case.

5.1 The noise samples

The mentioned model (3.7) has to be completed, because, as said in section 4.1, we

must consider the presence of the noise. The assumption we make is that the noise

picked up by the antenna receiver is an Additive Gaussian White Noise (AWGN).

Looking at figure 5.1 we notice now the presence of the Band Pass filter after

the antenna receiver. Usually the filter is omitted. As said, we suppose Wr(t) be

AWGN, with Power Spectral Density equal to N0. The Band Pass filter keeps only

the noise in the band of the signal. Let’s suppose the signal frequency be f0 and

the radio frequency signal band be β: in figure 5.2 we can see the band pass filter

frequency response.

So, the Power Spectral Density of the noise W (t), after the BP filter, is represented
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Figure 5.1: Autocorrelation receiver with Band Pass filter

Figure 5.2: Frequency response Band Pass filter

in the figure 5.3.

Figure 5.3: Noise power spectral density

The average power of the noise W (t) is

N =

∫ +∞

−∞
Sw(f)df = 2N0β (5.1)

Now, we must distinguish 2 cases:
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hypothesis H0 = {There isn′t the signal}

hypothesis H1 = {The signal is present}

In the first case H0 the expression of Y (t) is:

Y (t) = W (t)

In the second case H1:

Y (t) = S(t) + W (t)

Under hypothesis H0 we have:

Z(t) = W (t)W (t−D) (5.2)

there is only the noise, it’s only one term. Under Hypothesis H1 we have:

Z(t) = [S(t) + W (t)][S(t−D) + W (t−D)] (5.3)

= S(t)S(t−D) + [S(t)W (t−D) + S(t−D)W (t) + W (t)W (t−D)]

there is signal plus noise, they are four terms, but three of them are noise. Then

there’s the integration and the sampling. We already know the expression of the

signal samples after the oversampling. What we want now is to know the statistics

of the noise samples. A good analysis is made by Hoctor and Tomlinson in [13] .

From this paper we can assert that in both the hypothesis H0 and H1 the noise

samples are INDEPENDENT GAUSSIAN variables, with null mean value and the

same variance. Nevertheless the value of the variance is different in the two different

hypothesis. In the hypothesis H0 the expression of the variance is [13]
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σ2
H0

= 4TsamN2
0 β (5.4)

where Tsam is the integration interval and also the sampling interval. In the hypoth-

esis H1 the variance depends also on the power of the signal, in fact the expression

of the variance is

σ2
H1

= 4Tsam(1 +
S

N
)N2

0 β (5.5)

where S
N

is the signal to noise power ratio at the input of the pulse pair correlator

(N has the expression (5.1) ).

Now we can decide a strategy of signal detection.

5.2 The training sequence for the first stage

Considering the model (3.7), when the synchronization algorithm is applied, the

signal is present starting from the first column of the matrix X. As already said:

X is a Ls ×Ns data matrix and it is equal to [Cτ ]h1T when the training sequence

used for the synchronization is composed of Ns + 1 symbols all equal to 1.

So, before applying the synchronization algorithm we have to be sure that the signal

is present since the first column. To do it, a good idea is to transmit a previous

training sequence composed of Nd symbols still equal to 1, but with another partic-

ular characteristic: the chips of the code sequence are all equal to 1. We can define

it as the ”first stage”: the detection of the presence of the signal.

Transmitting the first training sequence and collecting the samples in the same way

we do in the synchronization algorithm we obtain:

X = [Cτ ] h1T (5.6)

that is the same expression of (3.7) used to apply the synchronization algorithm,

but in this case 1T is a Nd length vector and in Cτ the elements different by zero

are all equal to 1. Let’s think for a moment to sum all the elements of the matrix

X, defined in (3.7):
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LsNd−1∑
n=0

x[k + n] = NfEhNd (5.7)

where

Eh =

Ph−1∑
i=0

h[i] (5.8)

To understand it, let’s look at the following example, in which Nf = 3, P = 2,

Ph = 6 and τ = 3:
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X = [Cτ ]h1T

=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1







h(0)

h(1)
...

h(5)




1T

X =




h(3)

h(4)

h(5)

h(0)

h(1)

h(2)

h(0) + h(3)

h(1) + h(4)

h(2) + h(5)

h(0) + h(3)

h(1) + h(4)

h(2) + h(5)




1T

If we sum the elements of each column, we obtain

3
∑5

n=0 h(n)1T or in general Nf

∑Ph−1
n=0 h(n)1T = NfEh1

T

So that summing all the elements we obtain the expression (5.7). We’ll use this

result later. Now in the next section we’ll define a criteria to set a threshold to

decide if the signal is present or not.
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5.3 The Neyman-Pearson theorem

Let’s start introducing a general method to detect the presence of a signal, as done

also in [8].

Following [14] let’s consider to send a signal with constant amplitude A in white

Gaussian noise w[n] with variance σ2. First of all, we develop the data model and

the hypothesis for this specific case. When the signal is not present we are in the

”noise only” case, the so called ”null hypothesis” , which we indicate with H0,

whereas H1 is the ”signal embedded in noise” case, the so called ”alternative hy-

pothesis”.

H0 : z[n] = w[n]

H1 : z[n] = A + w[n]

We need to define a threshold in way to decide if the received samples z[n] belong to

the hypothesis H0 or H1. To do it we need to establish a certain detection criteria.

The performance of a detector can be characterized by its probability of correct

detection (PD) and false alarm rate (PFA):

PFA = Probability of deciding H1 when H0 is true

PD = Probability of deciding H0 when H0 is true

It’s intuitive to understand that the two mentioned probabilities are correlated: when

the probability of false alarm decreases, the probability of detection will decrease

as well. We have choosen to use the Neyman-Pearson criteria: we decide a certain

probability of false alarm and we maximize the probability of detection. A different

approach is the Bayesian theorem: it minimizes a risk function instead of the PFA,

but requires a prior probability of the hypothesis, a so called a priori distribution,

in particular it requires the probability of the signal presence, which generally is not

known, as in our case. We need to have a test statistic. To do it, we start from the

likelihood ratio L(z), whichis the probability of z being a data signal (hypothesis
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H1 ) and the probability of z being a noise only signal (hypothesis H0), where z is

the vector composed of the samples z[n]:

L(z) =
p(z; H1)

p(z; H0)

H1
>
<
H0

γ

When the samples are independent Gaussian variables we can write:

L(z) =

1

(2πσ2)
N
2
exp

[
−

∑N−1
n=0 (z[n]−A])2

2σ2

]

1

(2πσ2)
N
2
exp

[
−

∑N
n=0(z[n])2

2σ2

]
H1
>
<
H0

γ (5.9)

By canceling common terms and constants, this relation can be transformed to the

test statistics needed to compute a threshold:

T (z) =
1

N

N−1∑
n=0

z[n]
H1
>
<
H0

λ (5.10)

Let’s notice that we decided to replace γ by λ, because N and σ2 are all constant

factors. What we must do now is analyze the mean value and the variance of T (z),

which is our test statistic. After that we can compute the threshold:

T (z) ∈ N (0,
σ2

N
) under H0

T (z) ∈ N (A,
σ2

N
) under H1

Following [14] , PFA and PD can be computed using the right-tail probability Q(·),
or the probability of exceeding a given value with a Gaussian distribution, as follows:

PD = Q


λ− A√

σ2

N


 (5.11)

PFA = Q


 λ√

σ2

N


 (5.12)
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Transforming (5.12) to compute the threshold we obtain:

λ =

√
σ2

N
Q−1 (PFA) (5.13)

where λ is the one threshold that yields the maximum PD for the given PFA.

5.4 Neyman-Pearson theorem to TR-UWB

The Neyman-Pearson theorem is applied to set a threshold and decide if the signal is

present or not, also in the TR-UWB system we are considering in this thesis. First

of all, let’s define the two hypothesis:

Hypothesis H0 : Z = N

Hypothesis H1 : Z = X + N

where X is the signal model as in (5.6) and N is the noise sample matrix. Actu-

ally, the two mentioned hypothesis don’t cover the case where the signal is partially

present, but we’ll take care of this case in the last section of the chapter. Following

section 5.1 we know that the elements in N are Independent Gaussian Variables,

with null mean value. In the hypothesis H0 the variance of each noise sample is

σ2
H0

as in (5.4), whereas in the hypothesis H1 the variance is σ2
H1

as in (5.1). Let’s

calculate the likelihood ratio L(z):

L(z) =
p(Z; H1)

p(Z; H0)

H1
>
<
H0

γ

=

1

(2πσ2
H1

)
NdLs

2

exp

[
−

∑NdLs
n=0 (z[n]−x[n])2

2σ2
H1

]

1

(2πσ2
H0

)
NdLs

2

exp

[
−

∑NdLs
n=0 (z[n])2

2σ2
H0

]
H1
>
<
H0

γ (5.14)

The expression (5.14) is different by (5.9) because in our case the variance of the
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variables is different in the two different hypothesis. The calculation of the test

statistic becomes very complex, but at the end the result is the same as (5.10):

T (z) =
1

NdLs

NdLs−1∑
n=0

z[n]
H1
>
<
H0

λ (5.15)

where λ depends by both σ2
H0

, σ2
H1

and also by NdLs. So, the test statistic coincides

with the calculation of the mean value of the matrix Z. Let’s call in general µ̂ the

calculated mean value of Z: µ̂ = 1
NdLs

∑NdLs−1
n=0 z[n]. In the hypothesis H0 we define

µ̂H0 the test statistic:

µ̂H0 =
1

NdLs

NdLs−1∑
n=0

z[k + n] =
1

NdLs

NdLs−1∑
n=0

n[k + n] (5.16)

whereas in the hypothesis H1:

µ̂H1 =
1

NdLs

NdLs−1∑
n=0

z[n] =

=
1

NdLs

NdLs−1∑
n=0

(x[k + n] + n[k + n]) =
1

NdLs

NdLs−1∑
n=0

x[k + n] +
1

NdLs

NdLs−1∑
n=0

n[k + n]

=
NfEh

Ls

+
1

NdLs

NdLs−1∑
n=0

n[k + n] (5.17)

To write (5.17) we used the result of (5.7). In both the hypothesis the test statistic

is the sum of NdLs independent gaussian variable and this means that it still is

a gaussian variable. µ̂H0 is a gaussian variable with null mean value and variance

equal to

σ2
µH0

=
1

NdLs

σ2
H0

(5.18)

See figure 5.4

µ̂H1 is a gaussian variable with mean value

46



Figure 5.4: Probability density function of µ̂H0

µ =
NfEh

Ls

(5.19)

and variance

σ2
µH1

=
1

NdLs

σ2
H1

(5.20)

See figure 5.5

Figure 5.5: Probability density function of µ̂H1

The first clarification to do is that, really, to have mean value of µ̂H1 equal to
Nf Eh

Ls

the detection training sequence must be composed by Nd + 1 symbols, because in

the first column of the matrix X must be present the tail of the preceding symbol:

only in that case it’s true that, in the equation (5.6), the matrix Cτ has the struc-

ture shown in figure 3.5 So let’s start finally to understand how we can detect the

presence of the signal. Let’s suppose in the beginning the signal is not present. Let’s

suppose that when the receiver is turned on, the user doesn’t transmit for a certain
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fixed period,at least. Under this assumption we can estimate the variance of the

variable µ̂H0 by estimating the variance of the noise samples applying the maximum

likelihood criteria:

σ̂2
H0

= 1
Nl

∑Nl

i=1 n2[i], where Nl depends on how long we decide the user doesn’t trans-

mit, at least, since the receiver has been turned on. As Nl is larger, the estimation

of the variance is better. Then, we begin to collect the samples in the matrix Z and

we begin to calculate the test statistic µ̂:

µ̂ =
1

NdLs

NdLs∑
i=1

z[i] (5.21)

When we have the estimation of the mean value we must compare it with a threshold

λ. If µ̂ is bigger than λ we can assert that the signal is present, otherwise the signal is

not present and we must rebuild the matrix Z removing the first column and adding

another column with the Ls following samples. Then we re-estimate the mean value

and we compare it with the threshold. We repeat the procedure until the estimation

becomes bigger than the threshold. In that case we have detected the presence of

the signal. Now we have to understand how to set the threshold λ. As we said

in the preceding section, we’ll calculate the threshold under a given PFA: equation

(5.13). We already know the statistics of our decision variable in the hypothesis H0

and, applying (5.1) as we’ll show later, we know the statistics in the hypothesis H1

too. Nevertheless between these two cases there is a transition, during which the

probability density function of the variable µ̂ changes from the first to the second

(from the pdf of µ̂H0 to the pdf of µ̂H1). See figure 5.6

Figure 5.6: Transition of the PDF of µ̂
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The event False Alarm occurs when, in the hypothesis H0, the decision variable is

bigger than the threshold λ. The threshold is set in a way that the False Alarm

Probability (PFA) is as small as we want.

PFA = Pr[(µ̂|H0) > λ] = Pr[µ̂H0 > λ] =

∫ +∞

λ

fµH0
(x)dx (5.22)

The integration in (5.22) is the integration of a Gaussian Variable: see figure 5.7

Figure 5.7: False Alarm probability, depending on the threshold

So, as we know, we can write:

PFA = Q


 λ√

σ2
µH0


 (5.23)

And then:

λ =
√

σ2
µH0

Q−1(PFA) (5.24)

That is the same result as (5.13) We have already said how to estimate the variance

σ2
µH0

, so, we set the threshold deciding the PFA and applying the formula (5.24).

When the signal begins to be received, the matrix Z begins to include also data

samples, starting by the last column and the probability density function of µ̂ be-

gins to move towards the pdf of µ̂H1 . So, intuitively, the probability that µ̂ goes over

the threshold begins to grow. What we can calculate is the Detection Probability

PD in the hypothesis H1, when the pdf of our test statistic coincides with the pdf of
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µ̂H1 . It will depend on the threshold that we had set and also on the power of the

received signal.

PD = Pr[(µ̂|H1) > λ] = Pr[µ̂H1 > λ] =

∫ +∞

λ

fµH1
(x)dx (5.25)

As before,the integration in (5.25) is the integration of a Gaussian variable: see

figure 5.8

Figure 5.8: Detection probability, depending on the threshold and the power of the sig-
nal, included in both µ and σµH1

So, we can write:

PD = Q


 λ− µ√

σ2
µH1




= 1−Q


 µ− λ√

σ2
µH1


 (5.26)

Let’s try to understand how the expression (5.26) depends on the power of the sig-

nal. First of all we can replace λ with the expression (5.25). Then, let’s remember

the expression of µ (5.19) and of σ2
µH1

. In particular, for this last one, remember the

relation between (5.20) and (5.1):

σ2
µH1

=
1

NdLs

σ2
H1

=
1

NdLs

4Tsam(1 +
S

N
)N2

0 β (5.27)

Nf , Ls , Tw are the parameters that we have decided designing the system. Eh

depends on the channel, in fact, remembering (5.8) and (2.3):
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Eh =

Ph−1∑
n=0

h(n) =

Ph−1∑
n=0

∫ (n+1)Tsam

nTsam

h2(t)dt =

∫ Th

0

h2(t)dt (5.28)

where Th is the length of the UWB physical channel.

But what is h(t) ?

h(t) is not only the channel. From (2.1) we realize that h(t) is the convolution

between the transmitted pulse g(t), the communication channel hp(t) and also the

antenna response a(t). So, Eh is right the power of the signal at the input of the

pulse pair correlator. In other words, Eh = S. Remembering also the expression

(5.1) let’s rewrite the Detection Probability:

PD = 1−Q




Nf S

Ls
−

√
σ̂2

µH0
Q−1 (PFA)

√
4Tsam(1 + S

N
)N2

0 β/NdLs


 (5.29)

The expression (5.29) is the Detection Probability we have applying this detection

algorithm. Let’s make some comments. First of all, as Nd gets larger, PD also

increases. Then, after having decided PFA, we can increase the PD also increasing

the power of the signal (so, increasing S). The problem is that we cannot calculate

the exact expression of PD, because of the simple reason that we don’t know the

channel, that means we don’t know hp(t) and so we can’t calculate S. Nevertheless.

there is a case where we can calculate at least the minimum Detection Probability

(PDmin
). This case occurs when we are sure that there is the Line Of Sight (LOS)

between the transmitter and the receiver. In fact, in this case, we can calculate the

attenuation of the direct ray and so we can consider only that ray to calculate the

minimum value of S:

Smin = K

∫ Th

0

g(t) ? a(t)dt (5.30)

where K is the attenuation due to the distance between the transmitter and the

receiver: we’ll consider the maximum possible distance. Let’s notice that we can

know also N by the estimation of σ2
µH0

. In fact, the expression (5.1) allows us

to calculate N using ˆσ2
µH0

and inverting the formula (5.4). Anyway it’s simple to

understand that, even in the case of the presence of the LOS, we would like to have

a channel with strong multipath, because we would like to take advantage of all the
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paths, in fact all the paths contribute to increase the signal power S.

5.5 The complete training sequence

As we said till now, to detect the signal we send a training sequence, called detec-

tion training sequence, composed of Nd + 1 symbols, in which the chips of the code

sequence are all equal to 1. When the decision variable µ̂ goes over the threshold we

say to have detected the signal and we apply the synchronization algorithm. Let’s

notice that the synchronization algorithm is applied to a matrix build by collecting

symbols in which the code sequence doesn’t have all chips equal to 1. It means that

the detection algorithm and the synchronization algorithm are applied to two dif-

ferent parts of the training sequence. In fact, we have divided the training sequence

in two parts: Let’s call the first part ”detection training sequence” and the second

”synchronization training sequence”. Let’s notice that in the beginning the samples

are only noise samples and the probability to go over the threshold is PFA. Then,

when the signal begins to arrive, the probability of detection grows. This happens

when we begin to receive the detection training sequence. What could happen is that

the decision variable goes over the threshold before the detection training sequence

is completely received. This means that if we apply the synchronization algorithm

immediately after the detection we are wrong because the data matrix that we use to

make the synchronization would be composed in part also by the symbols belonging

to the detection training sequence. So, what we must do is to be sure that after

the detection we apply the synchronization algorithm only to the synchronization

training sequence. To do this, the entire training sequence is so structured: the first

part, that is the detection training sequence is composed by Nd +1 symbols; the sec-

ond part, that is the synchronization training sequence is composed by Nd + Ns + 1

symbols, where Ns is the number of columns of the data matrix that we build to

apply the synchronization algorithm. So, when we detect the signal, we jump the

following Nd symbols and we apply the synchronization algorithm. Only in this way

we are sure that we don’t include in the synchronization algorithm symbols belong-

ing to the detection training sequence. The last thing to notice is that in the case of

multi-users, every users have the same detection training sequence. This means that

when one user transmits, everybody could detect the presence of a signal, but after

the synchronization and demodulation they will recognize that the signal is not for

them. Only the interested user will recognize his code sequence.
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5.5.1 An alternative approach

There is another simple way to detect the presence of the signal. Instead of dividing

the training sequence in two parts, we send only the synchronization training se-

quence. The idea is simply to apply the synchronization algorithm even if we don’t

know if the signal is present or not. Then, remembering formula (3.16), we compare

the maximum value we find (for each value of τ) with a threshold, set following a

certain criteria as still the Neyman-Pearson theorem. If the maximum value is bigger

than the threshold we say that we have received the signal and in the same moment

we have already estimated the offset τ . Otherwise we say that we received only

noise. The problem of this approach is that we apply the synchronization algorithm

even if we don’t receive the signal: every Ls samples we must do a FFT operation,

then the multiplication by matrix C̃inv and after that an IFFT operation. These

are a lot of calculations and it’s also possible that they are completely useless, since

it could happen that we won’t ever receive the signal.
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Chapter 6

Future developments

In the CAS group at TU-Delft, the synchronization algorithm is being improved. In

their last article [12], Yiyin Wang, Geert Leus and Alle-Jan van der Veen changed

slightly the algorithm: it’s based on the same concepts explained in the preceding

chapters, but the last modifications make it be able to handle ISI too and to achieve

joint channel and timing estimations, keeping a low complexity, due to property of

the circulant matrix in the data model.

Three channel estimators and three equalizers are derived. It’s interesting to take

a look to the simulations presented in [12] regarding the estimation of the delay in

the synchronization algorithm:

Figure 6.1: MSE performance for the estimation of the delay with Lw = 30ns
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Figure 6.2: MSE performance for the estimation of the delay with Lw = 60ns

Figure 6.3: MSE performance for the estimation of the delay with Lw = 90ns

The figures 6.1, 6.2 and 6.3 are taken from [12] and ”delta” indicates the delay

τ , whereas Tw is Tsam.

The bias caused by Inter Pulse Interference (IPI) is also considered, whereas it

wasn’t till now. Let’s put our attention to the curves related to the performance

of the matched filter (MF) and the synchronization algorithm in its first version
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(MMSE). As we can see the performances are practically the same. Nevertheless,

this simulations were done using IEEE UWB channel model CM3 [15], in which the

channel attenuates exponentially in a way that in one frame there is most of the

energy. It means that in these simulations the IFI is not so serious. The MMSE

estimator is able to handle more serious IFI and ISI, compared with the matched

filter.

Conclusions

In this thesis a new synchronization algorithm for UWB systems has been presented.

The property of the circulant matrix makes the complexity low, more or less the

same of the traditional matched filter. The performances are still good, but the new

algorithm can handle lots interferences and it could be improved to allow higher

data rate communications, for example making the data model more accurate. The

challenge is in fact to reach high data rate in UWB systems.
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