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Summary

During the three years of the PhD project we extended the diffuse interface
(DI) method and apply it to engineering related problems, particularly re-
lated to mixing and demixing of two fluids. To do that, first the DI model
itself was validated, showing that, in agreement with its predictions, a single
drop immersed in a continuum phase moves whenever its composition and
that of the continuum phase are not at mutual equilibrium [D. Molin, R.
Mauri, and V. Tricoli, ”Experimental Evidence of the Motion of a Single
Out-of-Equilibrium Drop,” Langmuir 23, 7459-7461 (2007)]. Then, we de-
veloped a computer code and validated it, comparing its results on phase
separation and mixing with those obtained previously. At this point, the DI
model was extended to include heat transport effects in regular mixtures In
fact, in the DI approach, convection and diffusion are coupled via a nonequi-
librium, reversible body force that is associated with the Kortweg stresses.
This, in turn, induces a material flux, which enhances both heat and mass
transfer. Accordingly, the equation of energy conservation was developed
in detail, showing that the influence of temperature is two-folded: on one
hand, it determine phase transition directly, as the system is brought from
the single-phase to the two-phase region of its phase diagram. On the other
hand, temperature can also change surface tension, that is the excess free en-
ergy stored within the interface at equilibrium. These effects were described
using the temperature dependence of the Margules parameter. In addition,
the heat of mixing was also taken into account, being equal to the excess
free energy. [D. Molin and R. Mauri, ”Diffuse Interface Model of Multiphase
Fluids,” Int. J. Heat Mass Tranf., submitted]. The new model was applied
to study the phase separation of a binary mixture due to the temperature
quench of its two confining walls. The results of our simulations showed that,
as heat is drawn from the bulk to the walls, the mixture phase tends to phase
separate first in vicinity of the walls, and then, deeper and deeper within the
bulk. During this process, convection may arise, due to the above mentioned
non equilibrium reversible body force, thus enhancing heat transport and,
in particular increasing the heat flux at the walls [D. Molin, and R. Mauri,
”Enhanced Heat Transport during Phase Separation of Liquid Binary Mix-
tures,” Phys. Fluids 19, 074102-1-10 (2007)]. The model has been extended
then and applied to the case where the two phases have different heat con-
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ductivities. We saw that heat transport depends on two parameters, the
Lewis number and the heat conductivity ratio. In particular, varying these
parameters can affect the orientation of the domains that form during phase
separation. Domain orientation has been parameterized using an isotropy
coefficient ξ, varying from -1 to 1, with ξ = 0 when the morphology is
isotropic, ξ = +1 when it is composed of straight lines along the transversal
(i.e. perpendicular to the walls) direction, and ξ = −1 when it is composed
of straight lines along the longitudinal (i.e. parallel to the walls) direction
[D. Molin, and R. Mauri, ”Spinodal Decomposition of Binary Mixtures with
Composition-Dependent Heat Conductivities,” Int. J. Engng. Sci., in press
(2007)]. In order to further extend the model, we removed the constraint of
a constant viscosity, and simulated a well known problem of drops in shear
flows. There we found that, predictably, below a certain threshold value of
the capillary number, the drop will first stretch and then snap back. At
lager capillary numbers, though, we predict that the drop will stretch and
then, eventually, break in two or more satellite drops. On the other hand,
applying traditional fluid mechanics (i.e. with infinitesimal interface thick-
ness) such stretching would continue indefinitely [D. Molin and R. Mauri,
” Drop Coalescence and Breakup under Shear using the Diffuse Interface
Model,” in preparation]. Finally, during a period of three months at the
Eindhoven University, we extended the DI model to a three component fluid
mixture, using a different form of the free energy, as derived by Lowengrub
and Coworkers.. With this extension, we simulated two simple problems:
first, the coalescence/repulsion of two-component drops immersed in a third
component continuum phase; second, the effect of adding a third component
to a separated two phase system. Both simulations seem to capture physical
behaviors that were observed experimentally [D. Molin, R. Mauri and P.
Anderson, ” Phase Separation and Mixing of Three Component Mixtures,”
in preparation].
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Introduction

The theory of multiphase systems was developed at the beginning of the
19th century by Young, Laplace and Gauss, assuming that different phases
are separated by an interface, that is a surface of zero thickness. In this ap-
proach, physical properties such as density and concentration, may change
discontinuously across the interface and the magnitude of these jumps can
be determined by imposing equilibrium conditions at the interface. For ex-
ample, imposing that the sum of all forces applied to an infinitesimal curved
interface must vanish leads to the Young-Laplace equation, stating that the
difference in pressure between the two sides of the interface (where each
phase is assumed to be at equilibrium) equals the product of surface tension
and curvature. Later, this approach m was generalized by defining surface
thermodynamical properties, such as surface energy and entropy, and surface
transport quantities, such as surface viscosity and heat conductivity, thus
formulating the thermodynamics and transport phenomena of multiphase
systems. At the end of the 19th century, though, another approach was
proposed by Rayleigh (1892) and Van der Waals (1893), who assumed that
interfaces have a non-zero thickness, i.e. they are ”diffuse”. Actually, the ba-
sic idea was not new, as it dated back to Maxwell (1876) and Gibbs (1876),
Poisson (1831) and Leibnitz (1765) or even Lucretius (50 B.C.E.), who wrote
that ”a body is never wholly full nor void.” Concretely, in a seminal article
published in 1893, Van der Waals used his equation of state to predict the
thickness of the interface, showing that it becomes infinite as the critical
point is approached. Later, in 1901, Korteweg continued this work and pro-
posed an expression for the capillary stresses, which are generally referred to
as Korteweg stresses, showing that they reduce to surface tension when the
region where density changes from one to the other equilibrium value col-
lapses into a sharp interface (see Rowlinson and Widom, 1982, for a review
of the molecular basis of capillarity). In the first half of the 20th century,
the diffuse interface (D.I.) approach was basically ignored because assum-
ing that interfaces are sharp allows one to obtain a few analytical results
and seemed to better fit the needs of the multiphase scientific community.
However, at mid 1900, Cahn and Hillard (again the Dutch school!) first ap-
plied Van der Waals’ D.I. approach to binary mixtures (Cahn and Hillard,
1958) and then used it to describe nucleation (Cahn and Hillard, 1959) and
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spinodal decomposition (Cahn, 1961). This approach was later extended
to model spinodal decomposition of polymer blends and alloys (de Gennes,
1980; Pincus, 1981). Then, in the mid 1980’s, the D.I. approach was coupled
to hydrodynamics, developing a set of conservation equations, thanks to the
work by Kawasaki (1970), Siggia (1979), Hohenberg and Halperin (1977)
and others. These latter authors referred to this approach as ”model H”
and only later the name ”diffuse interface method” was introduced. Finally,
recent development in computing technology has stimulated a resurgence of
the D.I. approach, above all in the study of systems with complex morpholo-
gies and topological changes. Detailed discussion about D.I. theory coupled
with hydrodynamics can be found in Antanovskii (1996), Lowengrub and
Truskinovsky (1997) and Anderson, McFadden and Wheeler (1998). In or-
der to better understand the basic idea underlying the D.I. theory, let us
remind briefly the classical approach to multiphase flow that is used in fluid
mechanics. There, the equation of conservation of mass, momentum, energy
and chemical species are written separately for each phase, assuming that
temperature, pressure, density and composition of each phase are equal to
their equilibrium values. Accordingly, these equations are supplemented by
boundary conditions at the interface, namely (see for example Davis and
Scriven, 1982),

|∆τ |−+ · n = κσn; (1)

|∆v|−+ = 0, (2)

with n denoting the normal at the interface, stating that the jump of the
stress tensor at the interface is related to the product of the curvature and
the surface tension , while velocity v and temperature T are continuous
(unless we introduce concepts such as surface viscosity and surface heat
conductivity, so that they become discontinuous as well). Naturally, this
results in a free boundary problem, which means that one of the main prob-
lems of this approach is to determine the position of the interface. To that
extend, many interface tracking methods have been developed, which have
proved very successful in a wide range of situations. However, there are few
instances where the interface tracking breaks down. That happens when
the interface thickness is comparable to the lengthscale of the phenomenon
that is being studied, such as a) in near-critical fluids or partially miscible
mixtures, as the interface thickness diverges at the critical point; b) near
the contact line along a solid surface or in the breakup/coalescence of liquid
droplets, as the related physical processes act on lengthscales that are com-
parable to the interface thickness. In addition, interface tracking becomes
very problematic for self intersecting free boundaries. In front of these dif-
ficulties, the D.I. method offers an alternative approach. Quantities that
in the free boundary approach are localized in the interfacial surface, here
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are assumed to be distributed within the interfacial volume. For example,
surface tension is the result of distributed stresses within the interfacial re-
gion, which are often called capillary, or Korteweg, stresses. In general, the
interphase boundaries are considered as mesoscopic structures, so that any
material property varies smoothly at macroscopic distances along the in-
terface, while the gradients in the normal direction are steep. Accordingly,
the main characteristic of the D.I. method is the use of an ”order parame-
ter” which undergoes a rapid but continuous variation across the interphase
boundary, while it varies smoothly in each bulk phase, where it can even
assume constant equilibrium values. For a single-component system, the
order parameter is the fluid density ρ, for a liquid binary mixture it is the
molar (or mass) fraction φ, while in other cases it can be any other param-
eter, not necessarily with any physical meaning, that allows to reformulate
free boundary problems. In all these cases, the D.I. model must include a
characteristic interface thickness, over which the order parameter changes.
In fact, in the asymptotic limit of vanishing interfacial width, the diffuse in-
terface model reduces to the classical free boundary problem. In Chapter 1
we formulate the diffuse interface model for single-component fluids and liq-
uid binary mixtures at equilibrium, respectively. Then, in the next sections,
the equations of motion are developed for non-dissipative systems, while at
the end these results are generalized to the model dissipative systems. In
Chapter 2, we presents some theory about the implementation of the model
in and in Chapter 3 some results of numerical simulations are presented for
the case of regular liquid binary mixtures, in particular in the first section
is described an experimental result that it is used to validate the theoret-
ical finding, in section two a validation of the code is presented based on
reproducing the numerical results already published by Valdimirova et al.
previously.
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Chapter 1

Diffuse Interface Model

Reproduced in part from

”Diffuse Interface Model of Multiphase Fluids” D. Molin and R. Mauri,
Int. J. Heat Mass Tranf., submitted.

1.1 The free energy and Van der Waals’ equation

All thermodynamical properties can be determined from the Helmholtz free
energy. This, in turn, depends on the intermolecular forces which, in a
dense fluid, are a combination of weak and strong forces. Fortunately, strong
interactions nearly balance each other, so that the net forces acting on each
molecule are weak and long-range. In addition, mean field approximation is
assumed to be applicable, meaning that molecular interactions are smeared
out and can be replaced by the action of a continuous effective medium
(see discussion in Pismen, 2001). Based on these assumptions, the case of
dense fluids can be treated as that of nearly ideal gases, so that, allowing for
variable density, the molar Helmholtz free energy at constant temperature
T can be written as (Landau & Lifshitz, 1980, Ch. 74):

f [ρ(x)] = fid +
1
2
RTNA

∫ (
1− eU(r)/kT

)
ρ(x + r)d3r, (1.1)

where k is Boltzmann’s constant, R = NAk is the gas constant, with NA the
Avogadro number, U is the pair interaction potential, which depends on the
distance r = |r|, ρ is the molar density, while the factor 1/2 compensates
counting twice the interacting molecules. The first term on the RHS,

fid = RT ln ρ, (1.2)

is the molar free energy of an ideal gas (where molecules do not interact).
Now, we assume that the interaction potential consists of a long-range term,
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decaying as r−6 (like in the Lennard-Jones potential), while the short-range
term is replaced by a hard-core repulsion, i.e. (see Israelachvili, 1992)

U(r) =

{
−U0(r/l)6 (r > d)
∞ (r < d)

(1.3)

where d is the nominal hard-core molecular diameter, l is a typical inter-
molecular interaction distance, and the non-dimensional constant U0 rep-
resents the strength of the intermolecular potential. When the density is
constant, Eq. (1.1) gives the thermodynamic free energy, fTh,

fTh(T, ρ) = fid(T, ρ) + fex(T, ρ), (1.4)

where
fex(T, ρ) = RTρB(T ), (1.5)

is the excess (i.e. the non ideal part) of the free energy, with

B(T ) =
1
2
NA

∫ ∞

0
(1− e−U(r)/kT )4πr2dr (1.6)

denoting the first virial coefficient. This integral can be solved as:

B(T ) = 2πNA

∫ d

0
r2dr + 2πNA

∫ ∞

d
(1− e

U0
kT

(l/r)6)r2dr = b− a

RT
(1.7)

where
b =

2
3
πd3NA (1.8)

is the excluded molar volume and

a =
2
3
πU0N

2
Al6/d3 (1.9)

is a pressure adding term. Finally we obtain:

fTh(ρ, T ) = fid + RTbρ− aρ ≈ RT ln
(

ρ

1− bρ

)
− aρ, (1.10)

that is
fTh(ρ, T ) = RT ln(v − b)− a

v
, (1.11)

where v = ρ−1 is the molar volume. At this point, applying the thermody-
namic equality (Landau & Lifshitz, 1980, Ch. 76) P = −(∂f/∂v)N,T , we
obtain van der Waals’equation,

(
P +

a

v2

)
(v − b) = RT. (1.12)
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1.1.1 The critical point

In the P−T diagram, the vapor-liquid equilibrium curve stops at the critical
point, characterized by a critical temperature TC and a critical pressure PC .
At higher temperatures, T > TC and pressures, P < PC , the differences
between liquid and vapor phases vanish altogether and we cannot even speak
of two different phases In addition, as the critical point is approached, the
difference between the specific volume of the vapor phase and that of the
liquid phase decreases, until it vanishes at the critical point. Accordingly,
near the critical point, since the specific volumes of the two phases, v and
v + δv , are near to each other, we obtain:

P (T, v) = P (T, v + δv) = P (T, v) +
(

∂P

∂v

)

T

δv +
1
2

(
∂2P

∂v2

)

T

(δv)2 + ....,

(1.13)
where we have considered that the two phases at equilibrium have the same
pressure, in addition of having the same temperature. At this point, dividing
by v and letting δv → 0, we see that at the critical point we have:

(
∂P

∂v

)

T

= 0, that is κT →∞ as T → TC , (1.14)

where κT is the isothermal compressibility. Note that this condition is the
limit case of the inequality (∂P/∂v)T ≤ 0, which manifests the internal
stability of any single-phase system. In addition, since near an equilibrium
point, δf + Pδv > 0, expanding δf in a power series of δv, with constant T ,
we obtain:

δfTh =
(

∂fTh

∂v

)

T

(δv) +
1
2!

(
∂2fTh

∂v2

)

T

(δv)2 +
1
3!

(
∂3fTh

∂v3

)

T

(δv)3

+
1
4!

(
∂4fTh

∂v4

)

T

(δv)4 + ...

Finally, considering that (∂fTh/∂v)T = −P and that at the critical point
(∂2fTh/∂v2)T = 0, we obtain:

1
3!

(
∂2P

∂v2

)

TC

(δv)3 +
1
4!

(
∂3P

∂v3

)

TC

(δv)4 + ... < 0. (1.15)

Since this equality must be valid for any value (albeit small) of δv (both
positive and negative), we obtain:

(
∂2P

∂v2

)

TC

= 0;
(

∂3P

∂v3

)

TC

< 0. (1.16)
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Therefore, the critical point corresponds to a horizontal inflection point in
the P − v diagram, which means that, since P = −(∂fTh/∂v)T ,

(
∂2fTh

∂v2

)

TC

= 0;
(

∂3fTh

∂v3

)

TC

= 0. (1.17)

Imposing that at the critical point the P−v curve has a horizontal inflection
point, we can determine the constant a e b in the Van der Waals equation
(the same is true for any 2 parameter cubic equation of state) in terms of
the critical constant TC and PC , finding (Landau & Lifshitz, 1980, Ch. 84):

a =
9
8
RTCvC =

27
64

(RTC)2

PC
and b =

1
3
vC =

1
8

RTC

PC
. (1.18)

Viceversa, the critical pressure, temperature and volume can be determined
as functions of a and b as follows:

PC =
1
27

a

b2
; TC =

8
27

a

Rb
; vC = 3b; ZC =

PCvC

RTC
=

3
8

= 0.375.

(1.19)
Note that, imposing that PCvC = (3/8)RTC and substituting the expressions
for a and b in terms of the intermolecular potential, we obtain the following
relation: (

l

d

)2

=
3
2

(
kTC

U0

)1/3

(1.20)

Using these expressions, the Van der Waals equation can be written in terms
of the reduced coordinates as:

(
Pr +

3
v2
r

)
(3vr − 1) = 8Tr; Pr =

P

PC
; vr =

v

vC
; Tr =

T

TC
. (1.21)

This equation represents a family of isotherms in the Pr−vr plane describing
the state of any substance, which is the basis of the law of corresponding
states. As expected, when Tr > 1, the isotherms are monotonically decreas-
ing, in agreement with the stability condition (∂P/∂v)T < 0, while when
Tr < 1, each isotherm has a maximum and a minimum point and between
them we have an instability interval, with (∂P/∂v)T > 0, corresponding to
the two-phase region (see Figure 1.3).

1.1.2 Coexistence and spinodal curves

Let us consider a one-component system at equilibrium, whose pressure and
temperature are below their critical values, so that it is separated into two
coexisting phases, say α and β. According to the Gibbs phase rule, these
two phases have the same pressure and temperature and therefore, defining
the Gibbs molar free energy gTh = fTh + Pv, with dgTh = −sdT + vdP ,
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Fig. 1.1: Phase diagram (P − v) of a single component fluid and (µ− φ) of
a binary mixture.

the corresponding equilibrium, or saturation, pressure Psat at a given tem-
perature can be easily determined from the equilibrium condition, stating
that at equilibrium the Gibbs molar free energies of the two phases must be
equal to each other. So we obtain:

gβ
Th − gα

Th =
∫ e

b
dgTh = 0 =⇒

∫ e

b
vdP =

∫ e

b
v

(
δP

δv

)

T

dv = 0, (1.22)

where P = P (v) represents an isotherm transformation. From a geometrical
point of view, this relation manifests the equality between the shaded area
of Figure 1.1 (Maxwell’s rule), where the point b and e correspond to the
equilibrium, or saturation, point of the liquid and vapor phases at that
temperature at equilibrium, respectively, with specific volumes vα

e and vβ
e .

Conversely, the specific volumes of the two phases at equilibrium could also
be determined from the molar free energy fTh, rewriting Eq. (1.20) in terms
of reduced coordinates as

fTh

RTC
= Tr ln(vC)− Tr ln

(
vr − 1

3

)
− 9

8vr
. (1.23)

When Tr < 1, a typical curve of the free energy is represented in Figure
1.2. Now, keeping Tr fixed and considering that the two phases at equi-
librium have the same pressure, using the relation P = −(∂fTh/∂v)T , we
obtain:

Pα = P β =⇒
(

∂fth

∂v

)α

T

=
(

∂fTh

∂v

)β

T

, (1.24)

which, in Figure 1.2, represents the fact that the two equilibrium points
have the same tangent. From this relation we can determine the specific
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Fig. 1.2: Typical double-well curve of the free energy of a single component
fluid.

volumes of the two phases at equilibrium, vα
e and vβ

e . This relation can
also be obtained considering that the specific volumes of the two phases at
equilibrium minimizes the total free energy, i.e.

FTh =
∫

f̂Th(ρ)d3x = min., (1.25)

where f̂ = ρf is the free energy per unit volume,

f̂Th = ρfTh = f̂id + f̂ex = RT [ρ ln ρ + ρ2B(T )]. (1.26)

This minimization is carried over in Section 1.1.5. In Figure 1.1, besides
the equilibrium curve, we have represented the, so called, spinodal curve,
defined as the locus of all points (like c and d) satisfying (∂P/∂v)T = 0.
When the equilibrium and spinodal points are plotted in a T − v diagram,
we obtain the curves of Figure 1.3.

All points lying outside the region encompassing the equilibrium curve
are stable and represent homogeneous, single-phase systems; all points lying
inside the region within the bell-shaped spinodal curve are unstable and
represent systems that will separate into two phases (one liquid and another
vapor, in this case); the region sandwiched between the equilibrium and the
spinodal curves represents metastable systems, that is overheated liquid and
undercooled vapor. The spinodal points can be also determined using the
relation (∂P/∂v)T = 0, obtaining:

(
∂2fTh

∂v2

)

T

= 0, (1.27)

determining the spinodal specific volumes ṽα
s and ṽβ

s .
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Fig. 1.3: Phase diagram (T − v) of a single component fluid and (T − φ) of
a binary mixture.

1.1.3 The critical exponents

Let us turn now to study the equation of state of a single component system
close to its critical point. Then, instead of T , P and v, it is convenient to
use the following variables:

t̃ ≡ Tr− 1 =
T − TC

TC
; p̃ ≡ Pr− 1 =

P − PC

PC
; ṽ ≡ vr− 1 =

v − vC

vC
, (1.28)

where Tr = T/TC , Pr = P/PC and vr = v/vC are the reduced variables.
At the end of a tedious, but elementary power expansion in terms of these
variables, we see that the Van der Waals equation reads, neglecting higher
order terms,

p̃ = 4t̃− 5t̃ṽ − 3
2
ṽ3. (1.29)

Note that we cannot have any term proportional to ṽ or ṽ2, in agreement
with the conditions (∂P/∂ṽ)TC

= (∂2P/∂ṽ2)TC
= 0, while the coefficient

of the ṽ3-term must be negative, as (∂3P/∂ṽ3)TC
< 0. When t̃ > 0, all

states of the system are stable, that is there is no phase separation and
the system remains homogeneous. That means that, when t̃ > 0, it must be
(∂P/∂ṽ)TC

< 0, and therefore the coefficient of the t̃ṽ-term must be negative.
Finally, note that the t̃ṽ2 and t̃2ṽ-terms have been neglected because they
are much smaller than t̃ṽ, while the t̃ṽ-term must be kept, despite being
much smaller than t̃, for reasons that will be made clear below. In general,
in the vicinity of the critical point the isotherms of a homogeneous system
can be written as

p̃ = bct̃− 2act̃ṽ − 4Bcṽ
3. (1.30)
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This expression for the free energy is the basis of Landau’s mean field theory
(Landau & Lifshitz, 1980, Ch. 146, 148); it corresponds to Van der Waals’
Eq. (1.29) with ac = 3, bc = 4 and Bc = 3/8. At the critical point, where t̃ =
0 , from (1.30) we obtain: p̃ ∝ ṽδ, where δ = 3 is a critical exponent, that we
find unaltered in all critical phenomena. Following an isotherms t̃ = costant,
in the unstable region between the spinodal points, where (∂P/∂v)T > 0,
the system separates into two coexisting phases. At equilibrium, the two
specific volumes satisfy Eq. (1.24), and considering that

(
∂p̃

∂ṽ

)

t̃

= −2act̃− 12Bcṽ
2, (1.31)

we can determine the specific volumes of the two phases at equilibrium:

ṽα
e = −ṽβ

e =

√
−aC t̃

2B
⇒ ∆ṽαβ

e = ṽα
e − ṽβ

e ∝ (−t̃)β, (1.32)

where β = 1/2 is another critical exponent. Now we see why we could
not neglect the ṽt̃ term: if we did it, the two specific volumes would result
equal to each other. Note that the difference between the specific volumes
of points that lye on the spinodal curve can be determined as well, applying
the condition (∂p̃/∂ṽ)T̃ = 0, obtaining:

ṽα
s = −ṽβ

s =

√
−act̃

6Bc
. (1.33)

The critical properties can also be determined from the free energy fTh. In
fact, integrating (dfTh)T = −Pdv and substituting (1.30), we see that in the
vicinity of the critical point the free energy has the following expression:

fTh(ṽ, T̃ ) = PCvC [h(T̃ ) + (1 + bcT̃ )ṽ + acT̃ ṽ2 + Bcṽ
4], (1.34)

where h(t̃) is an undetermined function of the temperature. For a Van der
Waals system, we obtain the same result expanding (1.21); in that case,
h(t̃) = (1 + t̃) ln[3/(2vC)] − 9/8. Finally, applying (1.24) and (1.27), we
obtain again (1.32) and (1.33). Another critical exponent, γ , is defined as
κ−1

T ∝ t̃γ , where κT is the isothermal compressibility coefficient. From its
definition, we obtain:

κ−1
T = −v

(
∂P

∂v

)

T

= −PC(1 + ṽ)
(

∂p̃

∂ṽ

)

T̃

∼= 2acPC t̃, (1.35)

showing that γ = 1. On the equilibrium curve, with t̃ < 0 and ṽ = 0, we
have p̃ = bct̃ [see Eq. (1.30)]. Therefore, applying the Clausius-Clapeyron
equation,

(
dP

dT

)sat

=
∆hαβ

T (vβ − vα)
=⇒ dP̃

dt̃
= b ∼= ∆hαβ

PCvC(ṽβ − ṽα)
, (1.36)
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where ∆hαβ is the latent heat of vaporization, we obtain an expression for
∆hαβ near the critical point,

∆hαβ ∼= bcRTC(ṽβ − ṽα) =

√
acb2

c

Bc
RTC

√
−t̃, (1.37)

where we have substituted Eq. (1.32), considering that PCVC
∼= RTC . From

this equation we see that on approaching the critical point the latent heat
of evaporation vanishes like

√
−t̃.

Finally, the last thermodynamical quantity to be determined is the spe-
cific heat. From the definition, cv = (∂uTh/∂T )V , where uTh is the molar
internal energy, and considering that uTh = fTh +Ts = fTh−T (∂fTh/∂T )v,
we obtain from Eq. (1.34)

csat
v =

PCvC

TC

[
1 + bc + fTh(0)− dfTh

dt̃
(0)

]
. (1.38)

Therefore, we see that csat
v remains finite at the critical point and it does

not depend on t̃, that is cv ∝ t̃α, where α = 0 is another critical exponent.
Consequently, using the well known relation

cp − cv ∝
[(

∂p̃

∂t̃

)

ṽ

]2 /(
∂p̃

∂ṽ

)
, (1.39)

we see that, since (∂p̃/∂t̃)t̃=0,ṽ=0 = bc and (∂p̃/∂ṽ)t̃=0,ṽ=0 = 0, the specific
heat cp diverges. In fact, we find:

cp ∝ 1
(∂p̃/∂t̃)t̃

=
1

−2act̃− 12Bcṽ2
∝ 1

t̃
, (1.40)

where we have considered that on the equilibrium curve, ṽ ∝
√

t̃ . It has been
shown (see Le Bellac, Ch. 1.3) that the mean field theory provides results
that compare favorably with those that have been obtained by molecular
dynamics simulations.

1.1.4 The diffuse interface

Suppose now that the molar density of the system is not constant. Accord-
ingly, when U ¿ kT , Eq. (1.1) can be rewritten as

f(x) = fTh(x) + ∆fNL(x), (1.41)

where fTh is the molar free energy (1.4) corresponding to a system with
constant density, while

∆fNL(x) =
1
2
N2

A

∫

r>d
U(r)[ρ(x + r)− ρ(x)]d3r, (1.42)
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is a non local molar free energy, due to density changes, typical of the diffuse
interface model. In fact, when there is an interface separating two phases
at equilibrium, this term corresponds to the interfacial energy. This result
is a direct consequence of the ”exact” expression (1.1), showing that the free
energy is non-local, that is its value at any given point does not depend
only on the density at that point, but it depends also on the density at
neighboring points. As stated by Van der Waals (1893), ”the error that we
commit in assuming a dependence on the density only at the point considered
vanishes completely when the state of equilibrium is that of a homogeneous
distribution of the substance. If, however, the state of equilibrium is one
where there is a change of density throughout the vessel, as in a substance
under the action of gravity, then the error becomes general, however feeble
it may be.” Now, in (1.42) the density can be expanded as

ρ(x + r) = ρ(x) + r · ∇ρ +
1
2
rr : ∇∇ρ + .. (1.43)

As we have tacitly assumed that the system is isotropic, we see that the
contribution of the linear term vanishes, so that, at leading order, we obtain
(Pismen, 2001):

∆fNL(x) = −1
2
RTK∇2ρ(x), (1.44)

with

K =
2π

3
NAU0

kT

l6

d
=

9π

4
TC

T
NAd5, (1.45)

where we have substituted (1.20). Note that, defining a non-dimensional
molar, ρ̃ = NAd3ρ , the non local free energy can be rewritten as

∆fNL(x) = −1
2
RTa2∇2ρ̃(x), (1.46)

where

a =
√

K

NAd3
=

√
9πTC

4T
d (1.47)

is the characteristic length. The total free energy is therefore:

F =
∫

V
f̂dV d3x, (1.48)

where f̂ = ρf is the free energy per unit volume. Now, observing that,
integrating by part,∫

ρ(x)∇2ρ(x)d3x = −
∫
|∇ρ(x)|2d3x, (1.49)

we see that the free energy per unit volume is:

f̂(ρ,∇ρ, T ) = RT

[
ρf̃Th(ρ, T ) +

1
2
K(T )(∇ρ)2

]

= RT

[
ρ ln ρ + B(T )ρ2 +

1
2
K(T )(∇ρ)2

]
,
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where f̃Th = fTh/RT . Now, at equilibrium, the total free energy F will be
minimized, subjected to the constraint of having a constant number of moles,∫

ρd3x = const. Accordingly, introducing a Lagrange multiplier, RTµ̃, the
minimization condition is:

δ

∫
(ρf −RTµ̃ρ)d3x = 0, (1.50)

that is,

δ

∫
ρ(x)[f̃Th[ρ(x)]− µ̃] +

1
2
K|∇ρ(x|2)d3x = 0. (1.51)

1.1.5 The generalized chemical potential

The Euler-Lagrange equation corresponding to the minimization condition
(1.51) is (see derivation in Section 1.2.5):

µ̃ =
1

RT

δ(ρf̂)
δρ

=
d(ρf̃Th)

dρ
−K∇2ρ. (1.52)

Now, by definition, RTµ̃ = fTh − v(∂fTh/∂v)T is Gibbs free energy, which,
in a one-component system, coincides with the chemical potential, i.e.,

µ̃Th =
d(ρf̃Th)

dρ
= f̃Th − v

df̃Th

dv
. (1.53)

This (apart from the dimensional constant RT ) is the equation of the straight
line represented in Figure 1.2, stating that two phases at mutual equilibrium
have the same chemical potential. Therefore, Eq. (1.52) can be rewritten as

µ̃(ρ,∇ρ) = µ̃Th(ρ)−K∇2ρ, (1.54)

showing that at equilibrium, when ρ is non-uniform, it is µ̃, and not µ̃Th,
that remains uniform. Note that the thermodynamic chemical potential,
µ̃Th, can be determined from the solvability condition of Eq. (1.53), that is:

µ̃Th =
ραf̃α

Th − ρβ f̃β
Th

ρα − ρβ
=

vαf̃α
Th − vβ f̃β

Th

vα − vβ
, (1.55)

as it can also be seen geometrically from Figure 1.2, stating that the chemical
potential equals the intercept of the tangent line on the v = 0 vertical axis.
Accordingly, as at the critical point this tangent line becomes horizontal,
there the chemical potential must vanish [this result can also be obtained
from Eq. (1.32) and (1.34)]. When two phases are coexisting at equilibrium,
separated by a planar interfacial region centered on z = 0, Eq. (1.52)
can be solved once the equilibrium molar free energy f is known, imposing
that, far from the interface region, the density is constant and equal to its
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equilibrium value, so that the generalized chemical potential is equal to its
thermodynamic value (1.53). In particular, in the vicinity of the critical
point, the chemical potential vanishes, the free energy is given by Eq. (1.34)
and we obtain at leading orders the following equation:

d2ṽ

dz̃2
− 2at̃ṽ − 4Bṽ3 = 0, z̃ = z/λ; λ =

√
K

vC(−at̃)
, (1.56)

to be solved imposing that

ṽ(z̃ −→ ±∞) = ±ṽe = ±
√
−at̃

2B
.

The solution, due (again!) to Van der Waals (1893), is:

ṽ(z̃) = ṽe tanh z̃, (1.57)

showing that λ is a typical interfacial thickness. For a Van der Waals system,
considering that K is given by Eq. (1.45), vC = 3b = 6πd3NA and a = 3,
we obtain:

λ =

√
A

27(−t̃)
l3

d2
=

√
1

8(−t̃)
d, (1.58)

where we have substituted Eq. (1.20). As expected, the interfacial thickness
diverges like (−t̃)−1/2 as we approach the critical point, while far from the
critical point it is of O(d). Recently, Pismen (2001) pointed out that Eq.
(1.56) is flawed, as some of the neglected terms diverge at the critical point.
In fact, Pismen showed that in the correct solution the specific volume tends
to its equilibrium value as |z|−4, instead of exponentially, as in the Van der
Waals solution.

1.1.6 The surface tension

In the previous section we have seen that the total free energy is the sum
of a thermodynamical, constant density, part, and a non local contribution
(1.42). When the system is composed of two phases at equilibrium, separated
by a plane interfacial region, we may define the surface tension as the energy
per unit area stored in this region. This quantity can be calculated through
the following integral:

σ = −1
2
RTK

∫ ∞

−∞
ρ
d2ρ

dz2
dz =

1
2
RTK

∫ ∞

−∞

(
dρ

dz

)2

dz, (1.59)

where we have integrated by parts and considered that, outside the interfa-
cial region, the integrand is identically zero as density is constant. We see
that, near the critical point,

σ ≈ RTCK(∆ρe)2/λ ≈ kTC

d2
(−t̃)3/2, (1.60)
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where we have considered Eqs. (1.32), (1.45) and (1.58). In fact, using the
density profile (1.57), Eq. (1.59) yields, for a Van der Waals system:

σ =
2
3
RTC(−at̃)3/2

(
K

v3
c

)
= C

kTC

d2
(−t̃)3/2, (1.61)

with C = 33/2/(23/2π), where we have used Eq. (1.20). These results
show that the surface tension decreases as we approach criticality, until it
vanishes at the critical point. A more detailed numerical solution based on
the solution of the Van der Waals equation can be found in Pismen and
Pomeau (2000). Applying this approach, Van der Waals (1893) showed
that in a curved interface region there arises a net force [see Section 1.3.1],
which is compensated by a pressure term, thus obtaining the Young-Laplace
equation. To see that, let us denote the position of the interface by z = h(ξ),
where ξ is the 2D vector in the support plane, and assume that |∇ξh| ¿ 1,
where |∇ξh| is the 2D gradient (see Pismen, 2001). Now, the free energy
increment due to the interface curvature can be written as

∆F = σ

∫ (√
1 + |∇ξh|2 − 1

)
d2ξ ≈ 1

2
σ

∫
|∇ξh|2d2ξ. (1.62)

This increment is the free energy induces an increment in the pressure,

∆P = δF/δh = −σ∇2h = −κσ, (1.63)

where κ = ∇2h is the curvature of a weekly curved interface. Applying a
rigorous regular perturbation approach to Eq. (1.52), Pismen (2000) de-
rived both the Young-Laplace equation (1.63) and the Gibbs-Thomson law,
relating the equilibrium temperature or pressure to the interfacial curvature.

1.2 Binary mixtures

In this Section we will show that Van der Waals’ approach can be applied to
study binary solutions. To simplify matters, at first let us confine ourselves
to the case of regular binary solutions, that are mixtures in which the volume
and the entropy of mixing are both equal to zero. That means that when
we mix the two species, say 1 and 2, a) the volume remains unchanged, so
that the mixture can be considered to be incompressible, and b) the entropy
change is equal to that of ideal mixtures (see Sandler, 1999, Section 7.6).
Generalization to non regular, even compressible, binary mixtures can be
found in Lowengrub and Truskinovsky (1997).

1.2.1 The Gibbs free energy

The molar free energy can be determined using the same procedure as for
single component systems. Consider a mixture composed of species 1 and
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species 2, with molar fraction x1 = φ and x2 = (1 − φ) and let us first
determine the molar free energy when the composition of the mixture is
uniform. Considering the definition of Gibbs free energy, g = f + P/ρ, from
Eq. (1.1) we obtain:

gTh(φ) = gid(φ) + gex(φ). (1.64)

Here gid is the Gibbs free energy of an ideal mixture, that is a mixture where
the intermolecular potentials Uij between molecule i and molecule j are all
the same, i.e. U11 = U22 = U12. Generalizing the expression of the free
energy for a single component fluid, RT ln ρ, we obtain:

gid = RT [x1 ln(x1ρ) + x2 ln(x2ρ)],

that is:
gid = RT ln ρ + RT [φ log φ + (1− φ) log(1− φ)]. (1.65)

Note that for a pure fluid the molar density ρ is a variable, while for a
regular binary mixture the total molar density ρ can even be constant, since
the variables are the molar densities of the two components, x1ρ and x2ρ.

The second term in the RHS of Eq. (3.44), gex, is the so called excess,
that is non ideal, part of the free energy. This term has a particularly
convenient form for regular mixtures, as it is explained below. The theory
of regular mixtures was developed by Van Laar (a student of van der Waals),
who assumed that (a) the two species composing the mixture are of similar
size and energies of interaction, and (b) the Van der Waals equation of
state applies to both the pure fluids and the mixture. Consequently, regular
mixtures have negligible excess volume and excess entropy of mixing, i.e.
their volume and entropy coincide with those of an ideal gas mixture, with
sex = 0 and vex = 0. Therefore, we see that for a regular mixture, since
sex = −(∂gex/∂T )P,x = 0, then gex must be independent of T . In addition,
as the excess Gibbs free energy results to be equal to the excess internal
energy, i.e. gex = uex, it can be shown (see Sandler, 1999, Section 7.6)
that the Gibbs free energy of a regular mixture with molar fractions x1 and
x2 = 1− x1 is:

gex = x1
a1

b1
+ x2

a2

b2
− amix

bmix
, (1.66)

where we have used obvious notations to indicate the Van der Waals con-
stants (a and b) for the pure fluids, 1 and 2, and for the mixture, and we
have considered that uex = a/b. From here, assuming that

bmix = b1 = b2; amix = x2
1a1 + x2

2a2 + 2x1x2a12, (1.67)

with a12 =
√

a1a2, we obtain,

gex =
1
b
x1x2(a1 + a2 − 2

√
a1a2). (1.68)
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Thus, we see again that the excess free energy does not depend on T , so that
sex = 0. Similar considerations can be applied to the dependence of the free
energy on the pressure, confirming that vex = 0 for regular mixtures.

The same conclusions can be reached starting from the fundamental
expression (1.1) for the Helmholtz free energy and considering that:

gex = fex + Pvex. (1.69)

Applying Eq. (1.20) to a system with constant molar density ρ, i.e. with
vex = 0, we obtain: gex = fex = RTρB, where B is the virial coefficient,

B = x2
1B11 + 2x1x2B12 + x2B22. (1.70)

Here Bij characterizes the repulsive interaction between molecule i and
molecule j [see Eq. (1.6)],

Bij =
1
2
NA

∫ [
1− exp

(
−Uij(r)

kT

)]
d3r. (1.71)

In particular, for symmetric solutions, U11 = U22 6= U12, so that B11 =
B22 6= B12. Accordingly, denoting x1 = φ, we obtain:

gex = ρRTB = 2ρRT (B12 −B11)φ(1− φ),

that is,
gex(T, P, φ) = RTΨ(T, P )φ(1− φ), (1.72)

where
Ψ(T, P ) = 2ρ(B12 −B11), (1.73)

is the so called Margules coefficient (Sandler, 1999). In particular, for an
ideal mixture, B11 = B12 and therefore Ψ = 0. For a mixture composed of
Van der Waals fluids at constant pressure, substituting the expression (1.6)
for B and assuming that the characteristic lengths d and l are the same for
the two species, we obtain:

Ψ =
2ρ

RT
(a11 − a12) =

4π

3
ρN2

Al6

RTd3
(U0,11 − U0,12), (1.74)

where U0,11 and U0,12 characterize the strength of the potential between
molecules of the same species and that of different species, respectively. From
this expression we see that Ψ ∝ T−1, confirming that gex is independent of
T . Note that when Ψ > 0 the repulsive forces ∼= U0,12/d between unlike
molecules are weaker than those between like molecules, ∼= U0,11/d. As
shown in Mauri, Shinnar and Triantafyllou (1996), when the solution is
not symmetric, this approach is easily generalized by defining two Margules
coefficients.
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1.2.2 Coexistence and spinodal curve

In the previous Section, we saw that the free energy of a homogenous sym-
metric binary mixture can be written as:

gTh = g1 + RT [φ log φ + (1− φ) log(1− φ) + Ψφ(1− φ)]. (1.75)

Now, the thermodynamic state of a one-component system is determined
by fixing two quantities, e.g. P and T . In binary mixtures, we have an
additional degree of freedom, i.e. the molar fraction of the two species, x1.
Associated with x1 and x2 we can define the respective chemical potentials,
RTµi = ∂(NgTh/Ni)j 6=i. Generalizing the relation obtained in the previous
Section, at equilibrium the chemical potentials µ1 and µ2 are uniform every-
where and, in particular, they must be the same in each phase, i.e. µα

1 = µβ
1

and µα
2 = µβ

2 . Considering that x1 and x2 depend on each other, there is a
relation between µ1 and µ2, namely the Gibbs-Duhem relation (see Sandler,
1999), x1∇µ1 = −x2∇µ2. This relation can be easily obtained by imposing
that the specific Gibbs free energy, gth, defined as,

NgTh = NuTh −NTs + NPv + RTN1µ1 + RTN2µ2, (1.76)

where uTh is the molar internal energy, must satisfy the following equality,

dgTh = −sdT + vdP + RTµdφ, (1.77)

where µ = µ1 − µ2 is the chemical potential difference. This last relation
reveals that the chemical potential difference is the quantity that is thermo-
dynamically conjugated with the composition φ. This same result can be
obtained from the identities (Sandler, 1999),

RTµ1(T, P, φ) = gTh(T, P, φ) +
(

dgTh

dφ

)
(1− φ), (1.78)

RTµ2(T, P, φ) = gTh(T, P, φ) +
(

dgTh

dφ

)
φ, (1.79)

obtaining,

µ = µ1 − µ2 =
d(gTh/RT )

dφ
= log

(
φ

1− φ

)
+ Ψ(1− 2φ), (1.80)

where we have substituted Eq. (1.75). At constant temperature T and pres-
sure P , since Ψ is a known function of T and P , this equation gives the
dependence of the chemical potential difference on the composition, just like
the equation of state, e.g. Van der Waals’ equation, gives the dependence
of the pressure on the specific volume. Clearly, µ represents the tangent to
the free energy curve and it is the same for the two phases at equilibrium.
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Accordingly, this equation leads to the determination of the equilibrium
composition of the two coexisting phases, φα

e and φβ
e . In particular, in our

case, where we have considered symmetric mixtures, the tangent is horizon-
tal and therefore µ = 0. Note that, as expected, in this case φα

e = 1 − φβ
e .

Now we can apply to binary mixtures the same considerations about the
critical point that we made in the previous Section on one-component sys-
tems, observing that chemical potential difference µ and composition φ play
the same role as pressure and density (or specific volume). In fact, in the
µ−T diagram, the liquid-liquid equilibrium curve stops at the critical point,
characterized by a critical temperature TC and a critical chemical potential
difference, µC = 0 (note that for symmetric mixtures µ = 0 at any equilib-
rium state, while in general that is true only at the critical point). At higher
temperatures, T > TC , the differences between the two liquid phases vanish
altogether and the system is always in a single phase. In addition, as the
critical point is approached from below (i.e. with two coexisting phases),
the difference between the composition of the two phases decreases, until
it vanishes altogether at the critical point. Accordingly, near the critical
point, since the composition of the two phases, φ and φ + δφ, are near to
each other, we obtain (Landau and Lifshitz, 1980, Ch. 97):

0 = µC(T, φ) = µC(T, φ + δφ) =⇒ 0 =
(

∂µ

∂φ

)

TC ,PC

δφ

+
1
2

(
∂2µ

∂φ2

)

TC ,PC

(δφ)2 + ....,

where we have considered that, since the two phases are at equilibrium, they
have the same chemical potential (in addition to having the same pressure
and temperature). At this point, dividing by δφ and letting ∂φ −→ 0, we
see that at the critical point we have:

(
∂µ

∂φ

)

TC ,PC

= 0. (1.81)

Note that this condition is the limit case of the inequality (∂µ/∂φ)T,P ≤ 0,
which manifests the internal stability of any two-phase system. In addition,
expanding δgTh in a power series of δφ, with constant T and P , we obtain:

δgTh =
(

∂gTh

∂φ

)

T,P

(δφ) +
1
2!

(
∂2gTh

∂φ2

)

T,P

(δφ)2 +
1
3!

(
∂3gTh

∂φ3

)

T,P

(δφ)3

+
1
4!

(
∂4gTh

∂φ4

)

T,P

(δφ)4 + ..

Therefore, since near an equilibrium point, we have:

δuTh − Tδs + Pδv −RTµδφ = δgTh −RTµδφ > 0,
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considering that (∂gTh/∂φ)T,P = RTµ and that at the critical point (∂2gTh

∂φ2 )T,P =
0, we obtain:

1
3!

(
∂2µ

∂φ2

)

TC ,PC

(δφ)3 +
1
4!

(
∂3µ

∂φ3

)

TC ,PC

(δφ)4 + .. > 0. (1.82)

Since this equality must be valid for any value (albeit small) of ∂φ (both
positive and negative), we obtain:

(
∂2µ

∂φ2

)

TC ,PC

= 0;
(

∂3µ

∂φ3

)

TC ,PC

> 0. (1.83)

Therefore, the critical point corresponds to a horizontal inflection point in
the µ− φ diagram (see Figure 1.1), which means that,

(
∂2gTh

∂φ2

)

TC ,PC

= 0;
(

∂3gTh

∂φ3

)

TC ,PC

= 0. (1.84)

Imposing that at the critical point the µ−φ curve has a horizontal inflection
point, from Eq. (1.80) we see that φα

C = φβ
C = 1/2, confirming that ΨC = 2.

Therefore, considering that Ψ ∝ T−1, we obtain:

Ψ =
2TC

T
(1.85)

In particular, near the critical point, defining ψ̃ = (Ψ− 2)/2 and t̃ = (TC −
T )/TC , we obtain at leading order:

ψ̃ = −t̃. (1.86)

Now, let us consider a binary liquid mixture at equilibrium, whose chemical
potential difference and temperature are below their critical values, so that
the mixture is separated into two coexisting phases. At equilibrium, the
phase transition takes place at constant temperature, pressure and chemi-
cal potential difference and therefore it can be represented as a horizontal
isotherm isobaric segment in a µ − φ diagram. Now, define a generalized
potential (see Landau and Lifshitz, 1980, Ch. 85) as ΦTh = gTh − µφ, with
dΦTh = −sdT + vdP − RTφdµ and (∂Φ/∂µ)T,P = RTφ. The chemical
potential difference µ at a given temperature and pressure can be easily de-
termined, considering that at equilibrium the generalized potentials of the
two phases must be equal to each other, that is

Φβ
Th − Φα

Th =
∫ e

b
dΦTh = 0 ⇒

∫ e

b
φdµ =

∫ e

b
φ

(
∂µ

∂φ

)

T,P

dφ = 0, (1.87)

where we have considered that the phase transition is isothermal and iso-
baric. From a geometrical point of view, this relation manifests the equality
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Fig. 1.4: Typical double-well curve of the free energy of a symmetric binary
mixture.

between the shaded area of Figure 1.1 (Maxwell’s rule), where the point b and
e correspond to the saturation points of the two phases at that temperature
and pressure, with compositions φα and φβ. Conversely, the composition of
the two phases at equilibrium can be determined from the molar free en-
ergy g of Eq. (1.75) as follows. A typical curve of the free energy g for a
symmetric binary mixture is represented in Figure 1.4, when T < TC (i.e.
when Ψ > 2). The condition (1.87) expresses the fact that at equilibrium
the two phases have the same temperature, pressure and chemical potential
(so that the chemical potential difference µ is identically zero). Being on an
isotherm-isobar, the first two conditions are automatically satisfied while,
using the relation µ = (∂g/∂φ)T,P , the last condition gives:

µα = µβ = 0 =⇒
(

∂gTh

∂φ

)α

T,P

=
(

∂gTh

∂φ

)β

T,P

=⇒ (φα
e , φβ

e ), (1.88)

which, in Figure 1.4, represents the fact that the two equilibrium point have
the same tangent and this tangent is a horizontal line. When the mixture is
not symmetric, the gTh − φ curve is similar to the fTh − v curve of Figure
1.2. Consequently, it is still true that µα = µβ, but, in general, they are
not equal to zero, i.e. the tangent to the Gibbs free energy curve is not
horizontal.

In Figure 1.1, besides the equilibrium curve, we have represented the,
so called, spinodal curve, defined as the locus of all points (like c and d)
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satisfying (∂µ/∂φ)T,P = 0. When the equilibrium and spinodal points are
plotted in a T − φ diagram (at constant pressure), we obtain the curves
of Figure 1.3. All points lying outside the region encompassing the equilib-
rium curve represent homogeneous, single-phase mixtures in a state of stable
equilibrium, while all points lying inside that region represent systems in a
state of non equilibrium, which tend to separate into two phases. How-
ever, all points lying in the region inside the spinodal curve are unstable,
that is any infinitesimal perturbation can trigger the phase transition pro-
cess, while all points sandwiched between the equilibrium and the spinodal
curves represent metastable systems, i.e. mixtures that need an activation
energy to phase separate. The spinodal points can be also determined using
the relation (∂µ/∂φ)T,P = −(∂2gTh/∂φ2)T,P = 0 , obtaining:

(
∂2gTh

∂φ2

)

T,P

= 0 =⇒ (φα
s , φβ

s ). (1.89)

1.2.3 The critical exponents

Let us turn now to study the behavior of a binary mixture close to its
critical point. Then, instead of Ψ and φ, it is convenient to use the following
variables,

ψ̃ =
1
2
(Ψ− 2); ũ = 2φ− 1. (1.90)

Consequently, neglecting higher order terms, we obtain from the equation
of state (1.80),

µ = −2ψ̃ũ +
2
3
ũ3. (1.91)

Note that we cannot have any term proportional to ũ or ũ2, in agreement
with the conditions (∂µ/∂φ)Tc,Pc and (∂2µ/∂φ2)Tc,Pc = 0, while the co-
efficient of the ũ3-term must be positive, as (∂3µ/∂φ3)Tc,Pc > 0. When
ψ̃ < 0, all states are stable, that is there is no phase separation and the
mixture remains homogeneous. That means that, when ψ̃ < 0, it must be
(∂µ/∂φ)T,P < 0, and therefore the coefficient of the term ψ̃ũ must be neg-
ative. Equation (1.91) is a particular case of the general expression (1.30),
with ac = 1, bc = 0 and Bc = −1/6. Accordingly, all considerations that we
made in the Section 1.1.3 relative to this expression can be repeated now.
In particular, the critical exponent are the same. Based on the expression
(1.91) it is easy to evaluate the composition of the two coexisting phases at
equilibrium and those on the spinodal curve near the critical point. In fact,
at constant temperature and pressure (and therefore at constant Ψ ) we saw
that (∂g/∂φ)Ψ = 0, so that µ = µ1 − µ2 = 0. Therefore, substituting the
expansion (1.91) valid near the critical point, we obtain:

ũe = ±
√

3ψ̃. (1.92)
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The spinodal point, instead, can be determined via Eq. (1.89), obtaining,
near the critical point:

ũs = ±
√

ψ̃. (1.93)

Note that, as expected, |ũs| < |ũe|.

1.2.4 The diffuse interface

Suppose now that the composition of the system is not constant. Accord-
ingly, Eq. (1.1) can be rewritten as

g(x) = gTh(x) + ∆gNL(x), (1.94)

where gTh is the molar free energy (1.75) corresponding to a system with
constant density,

gTh = [g1φ+g2(1−φ)]+RT [φ log φ+(1−φ) log(1−φ)+Ψφ(1−φ)], (1.95)

while ∆gNL is a non local molar free energy, due to changes in composition,
typical of the diffuse interface model. In fact, when there is an interface
separating two phases at equilibrium, this term corresponds to the interfacial
energy. Using a procedure similar to that seen in the previous Section, we
can derive an expression, originally due to Cahn and Hilliard (1958),

∆gNL = ∆gCH =
1
2
RTa2(∇φ)2, (1.96)

stating that whenever there is an interface, or even a change in composition,
there must be an increase of energy (see van der Waals, 1893, for an extended
discussion about this term). Therefore, we may conclude that the expression
for the free energy in this case is basically identical to that or a single-phase
fluid [cf. Eq. (1.50)], i.e.,

g(φ,∇φ) = gTh(φ) +
1
2
RTa2(∇φ)2. (1.97)

Here a is a characteristic length, roughly equal to the interface thickness at
equilibrium which, for a regular mixture, has the same value as that seen in
Eq. (1.47), i.e.,

a =

√
9πTC

4T
d, (1.98)

where d is the excluded volume length defined in (1.3). Now, following the
same procedure as in Section 1.1.6, observe that at the end of the phase
segregation process, a surface tension σ can be measured at the interface
and from that, as shown by van der Waals (1893), a can be determined as

a ≈ 1√
ψ̃(∆φ)2eq

σMw

ρRT
, (1.99)
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where ψ̃ = (Ψ−2)/2 , while (∆φ)eq is the composition difference between the
two phases at equilibrium. This relation can be easily derived considering
that at equilibrium the surface tension σ is equal to the integral of the
Cahn-Hilliard free energy across the interface, i.e. σ ≈ (ρl/Mw)∆geq, where
∆geq ≈ RT (∆φeq)2a2/l2 is a typical value of the change in the Cahn-Hilliard

molar free energy within the interface at equilibrium, while l ≈ a
/√

ψ̃ is the
characteristic interface thickness (Van der Waals, 1979; see below).

1.2.5 The generalized chemical potential

At equilibrium, the total free energy is minimized, i.e.
∫

V
g(φ,∇φ)d3x = min., (1.100)

with the constraint ∫

V
φ(x)d3x = const., (1.101)

Therefore, applying to the system a virtual change in composition, δφ(x),
we obtain:

δ

∫

V
[g(φ,∇φ)− (RTµ̃)φ]dx = 0, (1.102)

where RTµ̃ is a Lagrange multiplier, to be determined using the constraint
(3.31) of mass conservation. Now consider that

∂g =
∂g

∂φ
δφ +

∂g

∂(∇iφ)
δ(∇iφ), with δ(∇iφ) = ∇i(δφ) (1.103)

where the last equality is easily derived considering that δφ is arbitrary. In
addition,
∫

V

∂g

∂∇iφ
∇i(δφ)d3xdt =

∮

S
ni

∂g

∂∇iφ
δφdS −

∫

V
∇i

(
∂g

∂∇iφ

)
δφd3x, (1.104)

where the surface integral on the RHS is identically zero because the virtual
change in concentration, δφ, is identically zero at the boundary. Finally, we
obtain: ∫ [

∂g

∂φ
−∇i

(
∂g

∂∇iφ

)
− (RTµ̃)

]
δφd3x = 0. (1.105)

From here, since δφ is arbitrary, we obtain, as expected, the Euler-Lagrange
equation,

µ̃ =
1

RT

δg

δφ
=

1
RT

(
∂g

∂φ
−∇i

∂g

∂(∇iφ)

)
= µ(φ)− 1

RT
∇i

∂g

∂(∇iφ)
, (1.106)

showing that µ̃ is the generalized chemical potential difference, which must
be uniform at equilibrium. Substituting Eq. (1.97) and reminding that µ =
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µ1 − µ2 is the difference between the thermodynamical chemical potentials
of the two species (1.86), we obtain:

µ̃(φ,∇φ) = µ(φ)− a2∇2φ. (1.107)

Near the critical point, the generalized chemical potential difference is zero
and therefore, in 1D, along z, substituting Eq. (1.107) into (1.91), we obtain:

∂zzũ + 4ψ̃ũ− (4/3)ũ3 = 0, (1.108)

with ∂z = ∂/∂z̃, where O(u5) terms have been neglected, while ũ and ψ̃
have been defined in (1.90). Solving this equation imposing that ũ(±∞) =

±ũe = ±
√

3ψ̃ (this is the composition at equilibrium, when ψ̃ ¿ 1) we
obtain Van der Waal’s solution,

ũ(z) = ũe tanh(
√

2ψ̃z/a). (1.109)

As shown in Mauri, Shinnar and Triantfyllou (1996), this solution can be
generalized to finite systems, obtaining a family of Jacobi’s elliptic functions.

This solution shows that the typical interface thickness l is of O(a/

√
ψ̃). As

we have remarked in the previous Section, Pismen (2001) solved the full
problem, showing that u tends to its equilibrium value as |z̃|−4, instead of
exponentially, as in the Van der Waals solution.

1.3 Equations of motion for non-dissipative mix-
tures

1.3.1 The Korteweg stresses

In this Section, we confine ourselves to study a binary mixture with constant
density, composed of two species with the same molecular weight, Mw. How-
ever, the case of a single-component system and that of non-symmetric and
even compressible binary mixtures can be handled in the same way, obtain-
ing very similar results. These generalizations can be found in Lowengrub
and Truskinovsky (1997) and Anderson, McFadden and Wheeler (1998).
First, let us consider the reversible, dissipation-free case. Then, there is
no diffusion and therefore the concentration field can be derived from the
initial conditions, knowing the velocity field. In fact, if x(t,x0) denotes the
trajectory of a material particle which is located at x0 at time t = 0, i.e.
with x0 = x(0,x0), then the fluid velocity field is v(x, t) = ẋ(t,x0), where
the dot denotes time derivative at constant x0, while the concentration field
φ(x, t) = φ(x0) does not depend explicitly on time, and therefore φ̇ = 0.
According to the Hamilton, minimum action, principle, the motion of any
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conservative system minimizes the following functional:

S =
∫ t

0

∫

V
L(v, φ,∇φ)d3xdt, (1.110)

where

L = L(v, φ,∇φ) = ρ(
1
2
v2 − 1

Mw
g) (1.111)

is the Lagrangian of the system, subjected to the constraint of incompress-
ibility,

∇ · v = 0. (1.112)

Accordingly, starting from the minimum condition, let us give a virtual
displacement δxi, corresponding to an infinitesimal change of the fluid flow.
Among all the possible virtual displacements, let us choose those such that
δφ = ∇iφ · δxi = 0. Since the action S in (1.110) is minimized, we have:

δS =
∫ t

0

∫

V
ρviδvid

3xdt−
∫ t

0

∫

V

ρ

Mw
δgd3xdt−

∫ t

0

∫

V
q(∇ivi)d3xdt = 0,

(1.113)
where q(x, t) is a function to be determined through the constraint (1.112).
Note that the constraint (3.31) does not apply here because the concen-
tration field remains unchanged, following the evolution equation φ̇ = 0.
Considering that δ(dxi) = d(δxi), the first integral gives, after integrating
by parts: ∫ t

0

∫

V
ρviδvid

3xdt =
∫ t

0

∫

V
ρviδ

dxi

dt
d3xdt = (1.114)

∫ t

0

∫

V
ρvi

d

dt
(δxi)d3x =

∫

V
[ρviδxi]t2t1d

3x−
∫ t

0

∫

V
ρ
dvi

dt
δxid

3xdt,

i.e. ∫ t

0

∫

V
ρviδvid

3xdt = −
∫ t

0

∫

V
ρ
dvi

dt
δxid

3xdt, (1.115)

where the first integral after integrating by parts is identically zero because
we assume that the virtual displacement is equal to zero at the beginning
and at the end, i.e. when t = t1 and t = t2, and also on the boundary, S, of
the volume V of integration. The second integral in the RHS of Eq. (1.113)
gives, considering that g = g(φ,∇φ):

∫ t

0

∫

V
δgd3xdt =

∫ t

0

∫

V

∂g

∂φ
δφd3xdt+ (1.116)

∫ t

0

∫

V

∂g

∂∇iφ
δ(∇iφ)d3xdt
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Now, considering that δφ = 0, the first term on the RHS is identically zero.
In addition, applying the following equality,

δ(∇jφ) =
∂(∇jφ)

∂xi
δxi = (∇i∇jφ)δxi = ∇j(δφ)−(∇iφ)∇j(δxi) = −(∇iφ)∇j(δxi),

(1.117)
we obtain:

∫ t

0

∫

V
δgd3xdt = −

∫ t

0

∫

V

∂g

∂∇jφ
(∇iφ)(∇jδxi)d3xdt = (1.118)

−
∫ t

0

∮

S
nj

∂g

∂∇jφ
∇iφδxidSdt +

∫ t

0

∫

V
∇j

(
∂g

∂(∇hφ)
∇iφ

)
δxid

3xdt,

where we have integrated by parts. Here, too, the surface integral is identi-
cally zero, because δxi = 0 at the boundary, so that

∫ t

0

∫

V
δgd3xdt =

∫ t

0

∫

V
∇j

(
∂g

∂(∇hφ)
∇iφ

)
δxid

3xdt. (1.119)

Finally, the last integral on the RHS of (1.113) gives:
∫ t

0

∫

V
qδ(∇ivi)d3xdt =

∫ t

0

∮

S
niqδvidSdt−

∫ t

0

∫

V
δvi(∇iq)d3xdt =

(1.120)

−
∫

V
[(∇iq)δxi]t0d

3x +
∫ t

0

∫

V

(
∇i

∂q

∂t

)
δxid

3xdt =
∫ t

0

∫

V
(∇ip)δxid

3xdt,

where p = ∂q/∂t and we considered that δxi (and δvi as well) vanishes at
the boundary S and for t = t1 and t = t2. Concluding, substituting (1.115),
(1.119) and (1.120) into Eq. (1.114) gives:

∫ t

0

∫

V

(
ρ
dvi

dt
+∇ip−∇jPji

)
δxid

3xdt = 0, (1.121)

where
Pij = − ρ

Mw

∂g

∂(∇iφ)
∇jφ (1.122)

is the Cauchy stress tensor. Now, considering the arbitrariness of the virtual
displacement δxi and applying Reynolds theorem, we finally obtain the linear
momentum equation:

ρ
dvi

dt
+∇ip = Fφ,i = ∇jPji, (1.123)

where d/dt is the material derivate, to be solved with the incompressibility
constraint:

∇ivi = 0. (1.124)
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In addition, for non-dissipative systems, the heat equation and the equation
of conservation of chemical species have trivially only the convective term,
that is,

dT

dt
=

∂T

∂t
+ v · ∇T = 0, (1.125)

dφ

dt
=

∂φ

∂t
+ v · ∇φ = 0, (1.126)

with diffusive fluxes that are identically zero. The body force Fφ in Eq.
(1.123) can be rewritten as:

Fφ,i = ∇jPji = − ρ

Mw

[
∇j

(
∂g

∂∇iφ

)
∇iφ− ∂g

∂∇jφ
∇i∇jφ± ∂g

∂φ
∇iφ

]

=
ρRT

Mw
µ̃∇iφ− ρ

Mw
∇ig,

and therefore the momentum equation becomes

ρ
dvi

dt
+∇ip

′ =
ρRT

Mw
µ̃∇iφ, (1.127)

where the pressure term has been redefined as p′ = p + (ρ/Mw)g. Alterna-
tively, this equation can also be written as

ρ
dvi

dt
+∇ip

′′ = −ρRT

Mw
φ∇iµ̃, (1.128)

with a pressure term p′′ = p′ − (ρRT/Mw)µ̃φ. Similar results were also
obtained by Jasnow and Vinals (1996) and Antanovskii (1996). It should
be stressed that the body force Fφ is non dissipative, as it arises from the
minimum action principle. Its expression in (1.128) is quite intuitive: the
momentum flux is directed towards regions with smaller chemical potential
differences. Finally, note that, using the expression (1.94)-(1.96) for the free
energy, the Cauchy stress tensor P becomes:

Pij = −
(

ρRT

Mw

)
a2(∇iφ)(∇jφ), (1.129)

which coincides with the Korteweg stresses (1901), provided that composi-
tion φ is replaced by density ρ.

1.3.2 Noether’s theorem

The result (1.129) could be more easily determined by applying Noether’s
theorem. Let us illustrate this theorem for a somewhat simplified problem,
where we omit the dependence of the Lagrangian L on v, so that

L = L(φ,∇φ) = − ρ

Mw
g(φ,∇φ). (1.130)
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Accordingly, the system will follow a path that is described through the
Euler-Lagrange equation,

∂g

∂φ
−∇k

∂g

∂(∇kφ)
= 0. (1.131)

Now, consider the following equality,

∂g

∂xi
=

∂g

∂φ

∂φ

∂xi
+

∂g

∂(∇kφ)
∂(∇kφ)

∂xi
. (1.132)

Substituting the Euler-Lagrange equation we obtain:

∂g

∂xi
−

[
∇k

∂g

∂(∇k)

]
(∇iφ)−

[
∂g

∂(∇kφ)

]
(∇k∇iφ) = 0, (1.133)

that is:

∇k

{
gδik −

(
∂g

∂(∇kφ)

)
(∇iφ)

}
= 0 (1.134)

In our case, since g is not an explicit function of position, ∇ig = 0 and
therefore we obtain the equation

∇ ·P = 0, (1.135)

where P represents the Korteweg stresses (1.122) and (1.129). Naturally,
including the kinetic term in the Lagrangian, we would obtain also the ac-
celeration and the pressure gradient term.

1.4 Dissipative terms

1.4.1 The stress tensor

When dissipation is taken into account, the equation of motion remains
basically Eq. (1.123), where the stress tensor can be considered as the sum
of a Korteweg term and a viscous term, Sij , i.e.

ρ
dvi

dt
= ∇j(Pji + Sji), (1.136)

with
Sij = −pδij + η(∇ivj +∇jvi), (1.137)

where η is an effective viscosity, that, assuming Newtonian behavior, is in-
dependent of the shear rate, so that η = η(φ).
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1.4.2 The diffusive molar flux

The equation of conservation of chemical species now will contain a dissipa-
tive term as well, that is

dφ

dt
+∇ · Jφ = rφ, (1.138)

where Jφ is a diffusive molar flux, while rφ is the chemical reaction term,
that is the number of moles of component 1 that are generated per unit
volume and time. In the following, we will assume that rφ = 0, that is
chemical species do not react. As for the diffusive fluxes, when the Cahn-
Hilliard part of the free energy is neglected, the mass flux of component 1
is proportional to the gradient of the chemical potential of component 1 as
(Cussler, 1984, page 180),

J1 = −Dx1∇µ1, (1.139)

where D is the molecular diffusivity (i.e. D is a function of temperature and
pressure, but not of composition), while the proportionality term (Dx1) has
been chosen so that in the ideal case we obtain Fick’s constitutive law (see
below). For symmetric binary mixtures, substituting (1.75) into (1.78), we
obtain the chemical potential as:

RTµ1 = g1 + RT [lnx1 + Ψx2
2], (1.140)

so that (1.139) yields:

J1 = −Dx1
dµ1

dx1
∇x1 ⇒ J1 = −D∗∇x1, (1.141)

where
D∗ = D(1− 2Ψx1x2) (1.142)

is the diffusion coefficient. Inverting the suffices 1 and 2 in (1.141) and
(1.142) we see that a) the diffusivity of component 1 into 2 equals the dif-
fusivity of component 2 into 1, as it should, and b) the flux of species 2
is opposite to the flux of species 1, that is J2 = −J1, showing that these
are really diffusive fluxes, with no convective components. In general, from
(1.139) and applying the Gibbs-Duhem relation, x1∇µ1 = −x2∇µ2 , we see
that it is always true that J2 = −J1. Therefore, for ideal or dilute mixtures,
i.e. when either Ψ = 0 or x1 << 1 (or x2 << 1) we obtain that D∗ = D and
therefore Eq. (1.141) reduces to Fick’s law. When we plot D∗ as a function
of x1 we see that for Ψ > 2 there is a region of negative diffusion, as it cor-
responds to the region where d2g/dx2

1 < 0. Going back to our notation, i.e.
x1 = φ , observe that, denoting Jφ ≡ J1, the constitutive relation (1.139)
can also be written as

Jφ = −Dφ(1− φ)∇µ, (1.143)
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where µ = µ1 − µ2. This can be proven considering that

−Dφ(1− φ)∇µTh = −Dφ(1− φ)∇µ1 + Dφ(1− φ)∇µ2

= (1− φ)J1 − φJ2 = J1 − φ(J1 + J2) = J1.

At this point, a natural extension of the constitutive relation (1.143) is the
following one:

Jφ = −Dφ(1− φ)∇µ̃. (1.144)

This is the constitutive equation that has been used in Mauri, Shinnar &
Triantafyllou (1996) and in all subsequent works by Mauri and coworkers.

1.4.3 The diffusive heat flux and the energy dissipation term

The equation of energy conservation (1.125) in general can be written as

ρc
dT

dt
+∇ · Jq = q̇, (1.145)

where Jq is the diffusive heat flux, while q̇ is the energy dissipation term.
Assuming a simple Fourier constitutive relation, we have:

Jq = −k∇T, (1.146)

where k is the heat conductivity, that, in general, depends on the com-
position, i.e. k = k(φ). The energy dissipation term is the sum of three
contributions: the dissipative work of non-conservative external forces, F(e)

nc ,
viscous dissipation and the enthalpy of mixing term:

q̇ = F(e)
nc · v + η|∇v|2 + ḣmix, (1.147)

where ḣmix = (ρ/Mw)hexφ̇. In most practical cases, viscous dissipation is
negligible. Therefore, in the absence of any external force, dissipation is due
exclusively to the enthalpy of mixing, hex, which is the energy that is either
generated or consumed when the two components of the mixture are isother-
mally mixed together. As is well known from classical thermodynamics (see
Sandler, 1999),

hex

RT
= −T

[
∂(gex/RT )

∂T

]

P,φ

, (1.148)

showing that hex = 0 when gex ∝ RT , i.e. when Ψ in the expression (1.72)
is independent of T . In that case, the processes of mixing and demixing can
occur isothermally, with q̇ = 0. In our case, though, i.e. for regular mixtures
where gex does not depend on T , we obtain:

hex = gex. (1.149)
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1.4.4 Summary of the equations (binary mixtures)

In the case of incompressible regular binary mixtures, assuming that den-
sity ρ , viscosity η, specific heat c and thermal conductivity k of the two
components are equal to each other, we have:

dφ

dt
= −∇ · Jφ; (1.150)

ρ
dv
dt

= ∇ · (P + S) + F(e); ∇ · v = 0, (1.151)

ρc
dT

dt
= k∇2T + q̇, (1.152)

where φ is the molar fraction of component 1, Jφ is the diffusion flux (1.143),
v the average local velocity of the fluid mixture, P are Korteweg stresses
(1.129), S the viscous stresses, F(e) is the external force, T the temperature
and q̇ the heat generated (3.28). As shown above [see Eq. (1.144)], Jφ is
proportional to the gradient of the chemical potential through the relation,

Jφ = −φ(1− φ)D∇µ̃, (1.153)

where D is the molecular diffusivity, and µ̃ is the generalized chemical po-
tential difference between the two species defined in (1.107),

µ̃ = δ(∆g/RT )/δφ. (1.154)

Here ∆g denotes the molar Gibbs free energy, defined as:

∆g/RT = φ log φ + (1− φ) log(1− φ) + Ψφ(1− φ) +
1
2
a2(∇φ)2, (1.155)

where R is the gas constant, a is a characteristic microscopic length and Ψ
is the Margules parameter, which describes the relative weight of enthalpic
versus entropic forces. Since Ψc = 2 is the critical value of Ψ, we find that
the single-phase region of the phase diagram corresponds to values Ψ < 2,
while, conversely, Ψ > 2 in the two-phase region. For an incompressible
fluid, considering that Sij = −pδij + η(∇ivj + ∇jvi), with η denoting the
(here constant) fluid viscosity, Eq. (1.151) reduces to the simpler following
equation:

ρ
dv
dt

+∇p = η∇2v + Fφ ∇ · v = 0. (1.156)

Here Fφ = ∇·P is a non equilibrium body force, which equals the generalized
gradient of the free energy and therefore it is driven by chemical potential
gradients within the mixture [see Eq. (1.128)],

Fφ = −
(

ρRT

Mw

)
φ∇µ̃. (1.157)
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In particular, when the system presents well-defined phase interfaces, such
as at the late stages of phase separation, this body force reduces to the more
conventional surface tension, as shown by Jasnow and Viñals (1996) and by
Jacqmin (2000). Therefore, being proportional to ∇µ̃ which is identically
zero at local equilibrium, Fφ can be thought of as a non-equilibrium capillary
force. Since Fφ is driven by surface energy, it tends to minimize the energy
stored at the interface resulting in a non-equilibrium attractive force between
drops of the same phase, therefore driving, say, drops of the α phase towards
regions of the same phase. The ratio between convective and diffusive mass
fluxes defines the Peclet number, NPe = V a/D, where V is a characteristic
velocity, which can be estimated through (1.150) and (1.156), obtaining (see
Vladimirova, Malagoli and Mauri, 1999a,b),

NPe =
V a

D
≈ a2

D

ρ

η

RT

Mw
≈ σa

ηD
. (1.158)

For systems with very large viscosity (e.g. polymer solutions) or very large
diffusivity (e.g. mixtures very close to the critical point), NPe is small and
the model describes a diffusion-driven separation process. For low-viscosity
liquid mixtures, far from criticality, NPe is very large, showing that diffusion
is important only in the vicinity of local equilibrium, when the body force
Fφ is negligibly small. In general, therefore, for fluid mixtures that are in
conditions of non-equilibrium, either phase-separating or mixing, convection
dominates diffusion. Although this approach has been developed for very
idealized systems, it seems to capture the main features of real mixtures,
at least during the phase separation process. This is why we did not add
further terms to generalize our model, although they can be derived rather
easily.

1.4.5 Energy dissipation

Now we show that the time derivative of the energy of the system equals its
energy dissipation, i.e.

d

dt

∫

V
(ρcT +

1
2
ρv2 +

ρ

Mw
g)d3x =

∫

V
ėd3x, (1.159)

where ė is the energy dissipation per unit volume,

ė = q̇ + Jq · ∇T − S : (∇v) + Jφ · ∇µ̃ = q̇ − k|∇T |2 − η||∇v||2 −D(φ)|∇µ̃|2,
(1.160)

and the integrals are taken over a material volume V = V (t). First, consid-
ering Eq. (1.153), we obtain:

d

dt

∫

V
(ρcT )d3x =

∫

V
(q̇ −∇ · Jq)d3x. (1.161)
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Multiplying Eq. (1.156) by vi and volume integrating we obtain:

d

dt

∫

V

(
1
2
ρv2

)
d3x =

∫

V

[
−vi(∇ip) + ηvi(∇2vi) +

(
ρRT

Mw

)
µ̃vi(∇iφ)

]
d3x.

(1.162)
Now, using the incompressibility condition, the RHS becomes:
∮

S
ni[−vip + η(∇ivj)vj ]dS −

∫

V

[
η(∇ivj)(∇ivj) +

(
ρRT

Mw

)
µ̃vi(∇iφ)

]
d3x,

(1.163)
where the first term is identically zero because of the no-slip (or periodic)
boundary conditions. The last term in (1.163) can be simplified considering:

µ̃vi(∇iφ) = −µ̃
∂φ

∂t
− 1

ρ
[∇i(µ̃J1)− J1∇iµ̃]. (1.164)

Integrating by parts and applying the no-flux boundary condition, the sec-
ond term of the RHS in (1.164) is identically zero. In addition, considering
that

g

RT
= µ2 + φµ̃, (1.165)

we have:
∂g

∂t
= RTµ̃

∂φ

∂t
, (1.166)

where we have applied the Gibbs-Duhem relation,

φ
dµ1

dφ
+ (1− φ)

dµ2

dφ
= 0 =⇒ ∂µ2

∂t
+ φ

∂µ̃

∂t
= 0. (1.167)

Finally, substituting (1.161) and (1.163)-(1.165) into (1.162), we obtain Eq.
(1.159)-(1.160). The same result was obtained by Antanovskii (1995,1996),
by maximizing the entropy production of the system.

1.4.6 Summary of the equation (one-component systems)

Very similar results can be obtained for the equations of motion of one-
component systems subjected to conservative forces. As we saw in Section
2, in this case the order parameter is the density ρ , which is different in
the two phases. Therefore, the mixture is not incompressible, even when
each phase can be assumed to be incompressible (think, for example, to a
solid-liquid phase transition). Accordingly, mass conservation equation is
the usual continuity equation for compressible fluids. Similarly, the mo-
mentum conservation equation is the usual Navier-Stokes equation, with an
additional body force which is identical to Fφ , with composition φ replaced
by density ρ (in fact, Korteweg stresses were originally derived for this case).
Therefore, the equations of motion are the following:

dρ

dt
= −ρ(∇ · v), (1.168)
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ρ
dv
dt

= ∇ · (P + S) + Fe, (1.169)

dT

dt
= α∇2T +

q̇

ρc
, (1.170)

where α = k/ρc is the heat diffusivity, P are Kortweg stresses,

P = −K(∇ρ)(∇ρ) (1.171)

while S is the stress tensor, which for compressible fluids reads:

Sij = [−p + (ζ − 2
3
η)(∇ · v)]δij + η(∇ivj +∇jvi), (1.172)

with ζ denoting the second viscosity. These equations are supplemented
with Van der Waals equation of state that fixes the pressure p as a function
of density ρ and temperature T .
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Chapter 2

Numerical Methods

2.1 Finite difference scheme

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analysis or simulations of continuous physical systems, such as
fluids, electromagnetic fields, the human body, etc.

In general partial differential equations (PDEs) are classified into the
three categories, hyperbolic, parabolic, and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical ex-
amples of a hyperbolic equation is the one-dimensional wave equation

∂2u

∂t2
= v2 ∂2u

∂x2
(2.1)

where v = constant is the velocity of wave propagation. The prototypical
parabolic equation is the diffusion equation

∂u

∂t
=

∂

∂x
(D

∂u

∂x
) (2.2)

where D is the diffusion coefficient. The prototypical elliptic equation is the
Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y) (2.3)

where the source term ρ is given. If the source term is equal to zero, the
equation is Laplace’s equation. From a computational point of view, the
classification into these three canonical types is not very meaningful - or
at least not as important as some other essential distinctions. Equations
(2.1) and (2.2) both define initial value or Cauchy problems: If information
on u is given at some initial time t0 for all x, then the equations describe
how u(x, t) propagates itself forward in time. In other words, eq (2.1) and
(2.2) describe time evolution. The goal of a numerical code should be track
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that time evolution with some desired accuracy. By contrast, equation (2.3)
directs us to find a single ”static” function u(x, y) which satisfies the equation
within some (x, y) region of interest, and which - one must also specify - has
some desired behavior on the boundary of the region of interest. These
problems are called boundary value problems. In general it is not possible
stably to just ”integrate in from the boundary” in the same sense that an
initial value problem can be ”integrated forward in time”. Therefore, the
goal of a numerical code is somehow to converge on the correct solution
everywhere at once.

2.1.1 Boundary value problems

The questions that define a boundary value problem are

• What are the variables?

• What equations are satisfied in the interior of the region of interest?

• What equations are satisfied by points on the boundary of the region
of interest.

In contrast to initial value problems, stability is relatively easy to achieve
for boundary for boundary value problems. Thus, the efficiency of the al-
gorithms, both in computational load and storage requirements, becomes
the principal concern. Because all the conditions on a boundary value prob-
lem must be satisfied ”simultaneosly”, these problems usually boil down, at
least conceptually, to the solution of large numbers of simultaneous algebraic
equations. When such equations are nonlinear, they are usually solved by
linearization and iteration; so without much loss of generality we can view
the problem as being the solution of special, large linear sets of equations.
Let’s represent the function u(x, y) by its values at the discrete set of points

xj = x0 + k∆, j = 0, 1, ..., J, (2.4)
yl = y0 + l∆, l = 0, 1, ..., L, (2.5)

(2.6)

where ∆ is the grid spacing. From now on, we will write uj,l for u(xi, yl), and
ρj , l for ρ(xj , yl). We can then substitute a finite-difference representation:

uj+1,l − 2uj,l + uj−1,l

∆2
+

uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (2.7)

or equivalently

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (2.8)
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To write this system of linear equations in matrix form we need to make a
vector out of u. Let us number the two dimensions of grid points in a single
one-dimensional sequence by defining

i ≡ j(L + 1) + l for j = 0, 1, .., J, l = 0, 1, ..., L (2.9)

In other words, i increases most rapidly along the columns representing y
values. Equation (2.8) now becomes

ui+L+1 + ui−(L+1) + ui+1 + ui−1 − 4ui = ∆2ρi (2.10)

This equation only holds at the interior points j = 1, 2...J−1; l = 1, 2, ...L−
1. The points where

j = 0 [i.e., i = 0, ..., L] (2.11)
j = J [i.e., i = J(L + 1), .., J(L + 1) + L] (2.12)
l = 0 [i.e., i = 0, L + 1, .., J(L + 1)] (2.13)
l = L [i.e., i = L,L + 1 + L, .., J(L + 1) + l] (2.14)

(2.15)

are boundary points where either u or its derivative has been specified. If
we pull all this ”known” information over to the right-hand side of equation,
then the equation takes the form

A · u = b (2.16)

where A has the form of a matrix with diagonal blocks that are themselves
tridiagonal, and sub- and super-diagonal blocks that are diagonal. This form
of matrix is called ”tridiagonal with fringes”. A general linear second-order
elliptic equation

a(x, y)
∂2u

∂x2
+ b(x, y)

∂u

∂x

+ c(x, y)
∂2u

∂y2
+ d(x, y)

∂u

∂y

+ e(x, y)
∂2u

∂x∂y
+ f(x, y)u = g(x, y)

will lead to a matrix of similar structure except that the nonzero entries
will not be constants. As a rough classification, there are three different
approaches to the solution of equation, not all applicable in all cases: re-
laxation methods, ”rapid” methods, and direct matrix methods. Relaxation
methods make immediate use of the structure of the sparse matrix A. The
matrix is split into two parts

A = E− F (2.17)
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where E is easily invertible and F is the remainder. Then becomes

E · u = F · u + b (2.18)

The relaxation method involves choosing an initial guess u(0) and then solv-
ing successively for iterates u(r) from

E · u(r) = F · u(r−1) + b (2.19)

Since E is chosen to be easily invertible, each iteration is fast. Rapid meth-
ods apply for only a rather special class of equations: those with constant
coefficients, or, more generally, those that are separable in the chosen coor-
dinates. In addition, the boundaries must coincide with coordinate lines.

2.1.2 Flux-conservative initial value problems

A large class of initial value PDEs in one space dimension can be cast into
the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)
∂x

(2.20)

where u and F are vectors, and where F may depend not only on u but also
on spatial derivatives of u. The vector F is called the conserved flux. For
example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂2u

∂x2
(2.21)

can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
(2.22)

∂s

∂t
= v

∂r

∂x
(2.23)

(2.24)

where

r ≡ v
∂u

∂x
(2.25)

s ≡ ∂u

∂t
(2.26)

(2.27)

In this case r and s become the two components of u, and the flux is given
by the linear matrix relation

F(u) =
(

0 −v
−v o

)
· u (2.28)
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Let’s consider a prototypical example of the general flux-conservative equa-
tion (2.20), namely the equation for a scalar u

∂u

∂t
= −v

∂u

∂x
(2.29)

with v a constant. As it happens, we already know analytically that the
general solution of this equation is a wave propagating in the positive x-
direction,

u = f(x− vt) (2.30)

where f is an arbitrary function. However, the numerical strategies that we
develop will be equally applicable to the more general equations represented
by (2.20). In some contexts, equation (2.29) is called an advective equation,
because the quantity u is trasported by a ”fluid flow” with a velocity v. To
finite differencing equation (2.29) the straightforward approach is to choose
equally spaced points along both the t− and x− axes. Thus denote

xj = x0 + j∆x, j = 0, 1, ..., J, (2.31)
tn = t0 + n∆t, n = 0, 1, ..., N. (2.32)

(2.33)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t
|j,n =

un+1
j − un

j

∆t
+ O(∆t) (2.34)

This is called forward Euler differencing. While forward Euler is only first-
order accurate in ∆t, it has the advantage that one is able to calculate
quantities at timestep n + 1 in terms of only quantities known at timestep
n. For the space derivative, we can use a second-order representation still
using only quantities known at timestep n:

∂u

∂x
|j,n =

un
j+1 − un

j−1

2∆x
+ O(∆x2) (2.35)

The resulting finite-difference approximation to equation is called the FTCS
representation

un+1
j − un

j

∆t
= −v(

un
j+1 − un

j−1

2∆x
) (2.36)

which can easily be rearranged to be a formula for un+1
j in terms of the other

quantities. The FTCS is a nice examples of an algorithm that is easy to
derive, takes little storage, and execute quickly. It is a explicit scheme, that
means that un+1

j for each j can be calculated explicitly from the quantities
that are already known. This algorithm is also an example of a single-level
scheme, since only values at time level n have to be stored to find values at
time level n+1.
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2.1.3 Von Neumann stability analysis

Unfortunately, equation (2.36) is of very limited usefulness. It is an unsta-
ble method, which can only be used to study waves for a short fraction of
one oscillation period. To find an alternative methods with more general
applicability, we must introduce the von Neumann stability analysis. The
von Neumann analysis is local: we imagine that the coefficients of the dif-
ference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the
difference equation are all of the form

un
j = σneikj∆x (2.37)

where k is a real spatial wave number and ξ = ξ(k) is a complex number
that depends on k. The key fact is that the time dependence of a single
eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable if |ξ(k)| > 1 for
some k. The number ξ is called the amplification factor at a given wave
number k. The factor is given by:

ξ(k) = 1− i
v∆t

∆x
sink∆x (2.38)

whose modulus is > 1 for all k; so the FTCS scheme is unconditionally
unstable. If the velocity v were a function of t and x, then we would write
vn
j in eq. In the von Neumann stability analysis we would still treat v as a

constant, the idea being that for v slowly varying the analysis is local. In
fact, even in the case of strictly constant v, the von Neumann analysis does
not rigorously treat the end effects at j = 0 and j = N . More generally,
if the equation’s right-hand side were nonlinear in u, then a von Neumann
analysis would linearize by writing u = u0 +δu, expanding to linear order in
δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.
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2.2 Finite element scheme

The finite-element method is an approximation procedure for solving dif-
ferential equations of boundary and/or initial-value type in engineering and
mathematical physics. The procedure employs subdivision of the solution
domain into many smaller regions of convenient shapes, such as triangles and
quadrangles, and uses approximation theory to quantize behavior on each
finite element. Suitably disposed coordinates are specified for each element,
and the action of the differential equation is approximately replaced using
values of the dependent variables at these nodes. Using a variational princi-
ple, or a weighted.residual method, the governing differential equations are
then transformed into finite-element equations governing the isolated ele-
ment. These local equations are collected together to form a global system
of ordinary differential or algebraic equations including a proper accounting
of the boundary conditions. The nodal vales of the dependent variables are
determined from solution of this matrix equation system.

The finite-element method was originally developed bu engineers in the
1950s to analyze large structural system for aircraft. Turnet et al. (1956)
presented the first paper on the subject; these authors were followed by
Clough (1960) and Argyris (1963), among others. Application of the finite-
element method to nonstructural problems, such as elementary flow and
electromagnetism, was first reported by Zienkiewicz and Cheung (1965).
Applications to a wide class of problems in nonlinear mechanics were con-
tributed by Oden (1972). As the finite-element method matured in appli-
cation, the concept of ”force balance” was replaced by a robust theoreti-
cal analysis founded in the classical variational calculus and Rayleigh-Ritz
methods (Rayleigh, 1877; Ritz, 1909). There have been many contributions
to the development of the mathematical theory of finite elements, including
those of Babuska and Aziz (1972), Ciarlet and Raviart (1972), Aubin (1972),
strang and Fix (1973), Oden and Reddy (1976), and the pioneering works
of Lions and Magenes (1972). The direct extension of these classical theo-
retical concepts to algorithm construction for most problem classes in fluid
mechanics is not possible. The principal difficulty is that the typical eulerian
reference frame renders the expression for conservation of momentum explic-
itly nonlinear. Therefore, a variational principle is not assured even to exist,
let alone be found. For this reason, at least, the most widely practiced con-
struction for approximation procedures for fluid mechanics has been direct
replacement of derivatives by divided difference quotients, that is, finite dif-
ferences. A variation of this concept has been the integration of conservation
equations over a discretization, using the divergence theorem and replacing
cell fluxes with difference quotients, yielding finite volumes (Patankar, 1980).
The particle in cell method (Evans and Harlow, 1957), employs the cell flux
concept, but uses pseudolagrangian particle distributions to approximately
enforce the basic conservation laws. Most of the difference quotient-based
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algorithm constructions in fluid mechanics can be viewed in a unified manner
as specific criteria within a weighted-residuals framework. Here, the error in
the approximate satisfaction of the conservation equations is not set to zero
itself, but instead its integral with respect to selected ”weights” is required to
vanish (Finlayson, 1972). Within weighted residuals, the collocation method
reproduced the classical finite difference quotients. Conversely, the family
of finite volume algorithms is retrieved by using constant weights. Gener-
alizing the weights to be function and defining them as identical to the the
approximation functions for the conservation variables yields the Galerkin
criteria, named after the original procedure of Galerkin (1915). For a linear
elliptic differential equation, this definition reproduces exactly the classical
variational principle extremization, the successor formulation of the original
finite-element concept. Finally, defining the weights to be the differential ap-
proximation error itself yields the least-squares method. Pioneering research
on finite element applications to fluid mechanics problems has employed sev-
eral of these weighted-residuals criteria. Oden (1972) was among the first to
derive the basic theoretical analog for the Navier-Stokes equations. Baker
(1971, 1973, 1974) published results for an elementary incompressible flow
with recirculation, obtained using the Galerkin criteria. Olson (1972) pub-
lished a pseudo-variational finite-element algorithm for the biharmonic equa-
tion streamfunction analog for two-dimensional incompressible flow. Lynn
(1974) utilized the least-squares criteria to develop a finite-element algorithm
for laminar boundary-layer flow that preserved a symmetric matrix struc-
ture. Popinski and Baker (1976) developed a Galerkin criteria algorithm for
laminar boundary-layer flow and published direct comparisons with results
of a Crank-Nicolson finite-difference algorithm. Chung and Chiou (1976)
published a similar algorithm construction for laminar boundary-layer flow
behind a shock. From the current perspective, it appears that the Galerkin
criteria weighted-residuals formulation is most representative of a direct ex-
tension from the classical concepts. Therefore, in this text, the finite-element
algorithm is synonymous with Galerkin weighted residual when addressed
to a nonlinear problem definition. Thereby, for the introductory linear prob-
lem classes, we always retrieve the classical variational principle extremiza-
tion. Let us now review some basic analytical solution procedures for linear
differential equations, as a means of reviewing terminology and concepts
appropriate to the important developments.

2.2.1 Galerkin criteria

While it is possible to develop simple finite-element algorithm for linear field
problems, linearity is a to big constraint for the vast majority of the problem
classes in fluid mechanics and heat transfer. For finite-element algorithm
to exhibit wide-ranging applicability, it is imperative that an alternative
residuals (MWR) is the theoretical vehicle required. This method has been
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introduced by Garlekin (1915) in its first formulation for a problem class in
elasticity.

The fundamental concept in MWR is to deal directly with the governing
differential equation L(q) and the boundary condition l(q). Any approximate
solution, say qh, is hypothesized to exist; upon direct substitution, L(qh) and
l(qh) are statements of the error in the solution approximation. Defining any
set of weighting functions say W (x), the generated error is required to be
orthogonal on Rn and on ∂R in the sense that:

∫

Rn

W (x)L(qh)dτ − λ

∫

∂R
W (x)l(qh)dσ ≡ 0 (2.39)

In the equation, λ is an arbitrary multiplier that can take on a convenient
value, and there are as many (scalar) equations as members wk of the weight
set W (x), 1 ≤ k ≤ K. The essential step is restatement of the main equation
onto the assembly of operations performed on a finite-element domain basis.
The required matrix operator is Se hence equation 2.39 takes the form :

Se

[∫

Ren

W (x)L(qe)dτ − λ

∫

∂Re∩∂R
W (x)l(qe)dσ

]
≡ 0 (2.40)

where qe(x) is the elemental contribution to the approximate solution qh:

qx ≡
M∑

e=1

qe(x) =
M∑

e=1

Nk(x)T Qe (2.41)

Equation 2.40 is sufficiently general to encompass the theoretical statement
of practically all discrete approximation algorithms in the Eulerian descrip-
tion of fluid dynamics, including finite differences, finite volume, control
volume, and discrete element procedures. The basic distinction between
these methods and a finite-element algorithm is selection of the weight func-
tion basis W (x). The psychology of the finite-element definition is simply
to faithfully reproduce the energy functional extremization

Se

[
∂Ih

∂Qe

]
≡ 0 (2.42)

for the linear, steady-state heat-conduction problem statement, since in this
instance the theoretical structure guarantees an optimally accurate approxi-
mation. The differential equation statement for the steady-state conduction
problem is

L(T ) = ∇ · k∇T + pq̇ = 0 (2.43)
l(T ) = k∇T · n̂ + h(T − Tr) = 0 (2.44)

(2.45)
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Direct substitution yields to

Se

[∫

Ren

W (∇ · k∇Te + pq̇e)dτ − λ

∫

∂Re
⋂

∂R
W [k∇Te]dσ

]
≡ 0 (2.46)

Correspondingly the extremization of elemental contribution to the energy
functional, for the variational statement equivalent to 2.43 is

Se

[∫

Ren

[k∇Nk · ∇Nk
T Qe −Nkρq̇]dτ +

∫

∂Re
⋂

∂R
Nkh[Nk

T Qe − Tr]dσ

]
= 0

(2.47)

2.2.2 An example using Galerkin FEM

Lets consider the Poisson equation in a region Ω:

−∇2u = f on Ω (2.48)

with boundary conditions

u = uD on ΓD (2.49)

−∂u

∂n
= −n · ∇u = hN on ΓN (2.50)

(2.51)

where the boundary Γ = ΓD
⋃

ΓN has been split into a Dirichlet and a
Neumann part. The weak part can be obtained by multiplying Eq. (2.48)
with a testfunction v:

(v,−∇2u− f) = 0 for all v (2.52)

where the standard inner product on L2(Ω) is

(a, b) =
∫

Ω
abdx (2.53)

With
∇ · (∇u)v = ∇ · ((∇u)v)−∇u · ∇v (2.54)

and the divergence theorem (Gauss):
∫

Ω
∇ · adx =

∫

Γ
n · adΓ (2.55)

we get the weak form, that means we have to find u ∈ SS such that

(∇v,∇u) + (v, hN )ΓN
= (v, f) (2.56)

for all v ∈ V . where S and V are suitable functional spaces for u and v,
respectively. Notes
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• v = 0 on ΓD, u = uD on ΓD

• we have silently introduced that:

(a,b) =
∫

Ω
a · bdΩ

(a, b)Γ =
∫

Γ
abdΓ

The weak form can be used to obtain an approximate solution using the
Galerkin FEM technique. For this we define approximating spaces Sh and
Vh, that means that we have to divide the region into elements:

Ω =
⋃
e

Ωe, Ωe

⋂
Ωf = ∅fore 6= f (2.57)

and interpolate u and v by polynomials on each element (approximation
denoted by uh and vh)

uh(x, t) =
∑

i

ui(t)φi(x) = φT (x)u(t)

vh(x, t) =
∑

i

vi(t)φi(x) = φT (x)v(t)

where φ(x) are global shape functions. Substituting into the weak form leads
to

vT Ku = vT f for all v (2.58)

or
Ku = f (2.59)

where the ’stiffness matrix’ K and the right-hand side f are given by

K = (∇φ,∇φT ) or Kij = (∇φi,∇φj)
f = (φ, f)− (φ, hN )ΓN

fi = (φi, f)− (φi, hN )ΓN

where the left column is in matrix notation and the right column in index
notation.
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Chapter 3

Results

In this chapter we are going to presents some of the results obtained applying
the Diffuse Interface Model to engineering problems. In the first section we
present the experimental evidence of the motion of a single non-equilibrium
drop due to a non-equilibrium force that arise whenever its composition and
that of the continuum phase are not at mutual equilibrium. This effect was
shown in a previous work by Vladimirova et al. applying the diffuse interface
model to a non-equilibrium drop. The experiment allowed us to check the
theoretical assumption that are present in the model. The second section
that we present in this chapter includes some results on the mixing/demixing
problem that have been solved and modeled by Vladimirova et al. This
simulations were done to check the validity of our own written code. The
successive four sections we present contain some new results coming from the
application of the diffuse interface model to engineering problems, like the
behavior of a drop or of a group of drops in a shear flow, the enhancement
to the separation process due to a temperature effect and how the presence
of a two different phase with different conductivities can determine with the
orientation of the spinodal domains during the phase separation. Finally,
we presents some results from a collaborative project with the Eindhoven
University, done over a three component system.

3.1 Motion of a single non-equilibrium drop

Reproduced in part from

”Experimental Evidence of the Motion of a Single Out-of-Equilibrium
Drop” D. Molin and R. Mauri, Langmuir , 23, 7459-7461 (2007)

3.1.1 Introduction

In this work, we intend to document with a ”clean” experiment that a single,
neutrally buoyant drop at conditions of chemical nonequilibrium experiences
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a force that induces its movement, whereas, at equilibrium, such drop re-
mains still.

The movement of out-of-equilibrium drops has been extensively observed
in the study of the process of phase separation of liquid binary mixtures. In
fact, it was observed that, even in the viscous regime, i.e. in the absence
of any buoyancy forces, liquid-liquid phase transition is driven by convec-
tion. This conclusion was reached in the early works by Chou & Goldburg
(1979) and Wong & Knobler (1981) using light scattering techniques, or,
more recently, by Guenoun et al. (1987), Tanaka (1995), Tanaka & Araki
(1998) and Poesio et al. (2006) by direct observation. In particular, 10 µm
droplets during phase separation are observed to move with 10 ÷ 100µm/s
typical speeds. (Gupta et al., 1999) As a result, phase separation of partially
miscible solvent mixtures occurs very rapidly, irrespective of the presence of
emulsifying compounds within the solution. (Ullmann et al., 1995) However,
no clean experiment has even been conducted to document the movement
of a single drop.

Theoretically, phase transition of fluid mixtures has been successfully de-
scribed through the diffuse interface model, Anderson et al. (1998), Lowen-
grub and Triskinovsky (1998) and Vladimirova et al. (1999) also known as
H model under the taxonomy of Hohenberg and Halperin (1977). Here,
transports of mass and momentum are coupled via a Korteweg body force.
This force, which arises from minimizing the free energy of the system, is
proportional to chemical potential gradients, and therefore it is identically
zero at thermodynamic equilibrium. As shown in many simulations, the
Korteweg body force is responsible for diffusiophoresis, that is the strong
motion of the single-phase domains that is observed experimentally during
liquid-liquid phase transition (Lamorgese and Mauri, 2005; Lamorgese and
Mauri, 2006). As expected, when the system is composed of single-phase do-
mains separated by sharp interfaces, the Korteweg force reduces to the more
conventional Marangoni capillary force (Jasnow and Vinals, 1996; Jacqmin,
2000). Imposing that such non equilibrium capillary force balances viscous
forces (assuming that inertial forces are negligible), Siggia (1979) showed
that the enhanced coalescence caused by such effects can explain the exper-
imentally observed linear growth of the nucleating droplet size during phase
separation.

In related works, Karpov (1995) and Karpov and Oxtoby (1997) no-
ticed that capillary forces drive the motion of nucleating droplets along a
composition gradient, leading to particle clustering and direct coalescence.
Similar phenomenon was also observed by Santonicola et al. (2001), who
also noticed that convection starts to occur as soon as the temperature of the
mixture reaches its critical value, well before the appearance of nucleating
droplets.

Here we are interested in the motion of a single drop in conditions of
nonequilibrium. Such phenomenon has been studied in other contexts as
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Fig. 3.1: Phase diagram of the acetone-hexadecane liquid mixture (data
taken from Macedo and Rasmussen [70]).

well. In particular, Kogi et al. (2001) studied the behavior of a single
micrometer-size oil droplet that forms at the end of a capillary tube and is
immersed in an aqueous surfactant solution. The drop appears to vibrate,
with oscillation frequencies and amplitudes that depend on the droplet size
and the surfactant concentration. Also, Magome and Yoshikawa (1996) stud-
ied the self-movement in an oil/water system generated by chemically driven
Marangoni instability. This effect was also studied theoretically by Tsemakh
et al. (2004).

In all these works, the movement of the isolated drop arises as a re-
sult of uneven surfactant concentration at the interphase during adsorption.
As noted above, though, a similar phenomenon can also arise in generic
nonequilibrium conditions, even when the initial configuration is isotropic.
In fact, numerical simulations by Vladimirova, Malagoli and Mauri (2003)
have shown that a single drop in nonequilibrium conditions is unstable and
starts to move, due to the effects of the Korteweg body force. In this letter,
we intend to document experimentally this movement.

3.1.2 Experimental setup and results

We employed the acetone-hexadecane mixture that was used in previous
works (Mauri et al., 2003; Califano et al, 2005 ) It consists of an isopycnic,
partially miscible binary liquid mixtures, with the two coexisting phases
having the same density, so that buoyancy forces can be neglected. The
phase diagram of this binary system is shown in Figure 3.1.

At 20oC, acetone and hexadecane have a ∆ρ = 4× 10−4g/cm3 (i.e. less
than 0.1%) density difference and the mixture separates into two phases
having 0.25 and 0.80 acetone volume fractions.

The following procedure was utilized in a standard experiment. After a
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Fig. 3.2: Dynamic of the injection of a hexadecane-rich phase drop in the
acetone-rich phase mixture. Pictures were taken from above, showing the
movement of the drops in a horizontal plane.

50% acetone - 50% hexadecane mixture was prepared at ambient tempera-
ture, we waited for the two phases to separate and then filled a glass tube
with the acetone-rich phase. Then, we injected a drop, which was composed
either of the hexadecane-rich phase at equilibrium, or of pure hexadecane.
In the first case, the drop was at thermodynamic equilibrium with the sur-
rounding phase, while in the second case it was not. The drop was generated
and injected using an Eppendorf (CellTram Vario) microinjector, with a cap-
illary tip ranging from 1 µm to 100 µm in diameter, so that the drop size
was in the 10µm to 500µm range, with a Bond number not exceeding 10−5.
After the injection, the movement of the droplet was monitored from above,
i.e. on a horizontal plane, using a CCD camera-video system attached to
a Nikon (Eclipse 80i) optical microscope. The experimental setup was de-
signed to avoid vibration of the capillary tip as well as solvent evaporation.
All experiments were carried out at room temperature.

Figure 3.2 shows the typical behavior of a drop at equilibrium with the
surrounding phase, using a capillary tip with 10µm diameter. As the drop
exits the capillary end, it does not move, until it is pushed away by a new
drop. Clearly, although this behavior was largely expected, since drops and
continuum phase are at equilibrium with each other, it shows that there
were no spurious effects, such as buoyancy and thermocapillarity, affecting
the results of our experiments. The experiment was repeated with drops
ranging from 50µm to 500µm in diameter, with identical results.

Figure 3.3 shows the typical behavior of a 20µm pure hexadecane drop
immersed in the surrounding acetone-rich phase. Here, as soon as it is in-
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Fig. 3.3: Dynamic of the injection of a pure hexadecane phase drop in the
acetone-rich phase mixture. Pictures were taken from above, showing the
movement of the drops in a horizontal plane.

jected, the drop moves in the horizontal plane, away from the capillary tip.
Since gravity is perpendicular to the observation plane, this movement can-
not be due to buoyancy. As the droplet moves, its composition changes,
tending to reach equilibrium with the surrounding. Eventually, when equi-
librium is attained, the drop stops moving. The experiment was repeated
with drops ranging from 10µm to 100µm in diameter and different out-of-
equilibrium compositions, with identical results. A few experiments were
also conducted using a water-acetonitrile-toluene mixture, obtaining similar
results.

A rough estimate shows that 10÷100µm, out-of-equilibrium drops move
at speeds exceeding 10 µm/s. Such velocities do not appear to depend
strongly on the drop size, although further experiments are needed to sup-
port such statement. Since no linear increase of the drop velocity with
its size was observed, we conclude that the motion of the drop cannot be
due to thermocapillary effects induced by non uniform temperature distri-
butions. (Lavrenteva and Nir, 2001) Accordingly, the observed movement
of the isolated, out-of-equilibrium drop must result from diffusiophoresis,
thus confirming the instability predicted by Vladimirova et al.. (1999) Also,
following the dimensional analysis of Gupta et al., (1999) we see that the
Korteweg force fK is much larger than the adhesive force fadh between the
drop and the capillary tip. This result can be obtained considering that
fK ≈ σR2/λ , where σ ≈ 10dyne/cm is the liquid-liquid surface tension,
R ≈ 10µm the drop radius and λ ≈ 10−2µm the interface thickness, while
fadh ≈ σslR, where σsl ≈ 100dyne/cm is the solid-liquid surface tension.
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In conclusion, the present section provides experimental evidence that,
even in the absence of buoyancy, a single droplet in conditions of non equilib-
rium can move as a result of a net Korteweg force. This force, resulting from
free energy minimization, is proportional to the chemical potential gradient,
and therefore it is identically zero in conditions of thermodynamic equi-
librium. On the contrary, in conditions of non equilibrium, the Korteweg
force induces an instability that, as predicted in numerical simulations by
Vladimirova et al., (1999) generates a movement of the drop, even when the
initial conditions are isotropic.
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3.2 Mixing/demixing of a binary mixture

3.2.1 Introduction

In most of the previous numerical studies on mixing, the mixing of two flu-
ids A and B has been considered as the result of the chaotic advection of
one fluid into the other, assuming that the instantaneous velocity of a fluid
particle is the solution of the Navier-Stokes equation for a single-phase fluid
(Aref, 1984; Ottino, 1990, Wiggins 1991, Fountain et al. 1999). Clearly,
this is rigorously true only in the dilute limit and when the fluid mixture
is ideal, which means that the enthalpic properties of the fluid mixture are
neglected, assuming that the interparticle forces between A and A are equal
to those between B and B and those between A and B (Sandler, 1999). This
approximation seems to be justified when the flow is turbulent, so that con-
vection dominates any diffusive process resulting from the thermodynamic
properties of the system. In general, however, at low Reyonolds numbers
this approximation ceases to be valid and the physico-chemical properties
of the fluid mixture have to be taken into account. In this section we will
present a series of simulations of the mixing process occurring after heating
a quiescent and initially phase-separated liquid mixture to a temperature
T well above its critical point of miscibility, showing that the process is
strongly influenced by the interplay between convection and diffusion. The
latter is induced by the velocity fluctuations of the molecules that compose
the system at thermal equilibrium and consist of their incoherent, random
motion, with no specific preferential direction. On the contrary, convection,
when it is not imposed from the outside, can exist only for a system far from
equilibrium, as it consists of the collective, coherent motion of its molecules,
and is therefore a much faster process than diffusion. As explained by the
so-called diffuse interface model, called also model H, in the taxonomy of
Hohenberg and Halperin, 1977, convection arises as the system tends to
minimize its free energy and, in fact, is induced by a body force that that
is proportional to the gradient of the chemical potential. At the late stages
of phase separation, after the system has developed well-defined phase in-
terfaces, this body force reduces to the more conventional surface tension,
as shown by Jasnow and Vinals (1996), so that the driving force can be
thought of as a non-equilibrium attractive force among drops.

3.2.2 Theory

The motion of an incompressible binary fluid mixture composed of two
species A and B is described here through a modification of the diffuse
interface model. Here, A and B are assumed to have the same viscosities,
densities and molecular weight with the composition of the system uniquely
determined though the molar fraction φ of, say, species A as a function of
position r and time t. If the flow is assumed to be slow enough to neglect
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the inertial terms in the Navier-Stokes equation, conservation of mass and
momentum lead to the following system of equation,

∂φ

∂t
+ v · ∇φ = −1

ρ
∇ · J, (3.1)

η∇2v −∇p = Fφ, (3.2)
∇ · v = 0, (3.3)

(3.4)

where v is the average local fluid velocity, J is the diffusion flux and Fφ is
a body force. As shown by Mauri et al. (1996), J is proportional to the
gradient of the chemical potential through the relation,

J = −ρφ(1− φ)D∇µ̃, (3.5)

where D is the molecular diffusivity, and µ̃ = µA−µB is the generalized (non-
dimensional) chemical potential difference between the two species defined
as (Landau and Lifshitz, 1953) µ̃ = δ(∆g/RT )/(δφ). Here ∆g denotes the
molar free energy of mixing, defined as

∆g = RT [φ log φ + (1− φ) log(1− φ) + Ψφ(1− φ) +
1
2
a2(∇φ)2], (3.6)

where R is the gas constant, a is a characteristic microscopic length and Ψ
is the Margules parameter, which describes the relative weight of enthalpic
versus entropic forces. Phase separation occurs whenever the temperature of
the system T is lower than the critical point d2g/dφ2 = 0 and φ = 1

2 , we find
that Ψc = 2 is the critical value of Ψ. Therefore, the single-phase region of
the phase diagram corresponds to values Ψ < 2, while the two-phase region
has Ψ > 2. At the end of the phase segregation process, a surface tension σ
can be measured at the interface and from that, a can be determined as

a ∼ 1√
τ(∆φ)2eq

σMw

ρRT
, (3.7)

where τ = (Ψ− 2)/2 while (∆φ)eq is the composition difference between the
two phases at equilibrium. This relation can be easily derived considering
that σ ∼ ρl(∆g)eq is the jump in free energy across an interface at equi-
librium, which can be estimated from and l ∼ a/

√
τ is the characteristic

interface thickness. In the following, we will assume that τ = O(1). The
body force is given by:

Fφ =
ρ

Mw

δg

δr
=

(
ρRT

Mw

)
µ̃∇φ =

(
ρRT

Mw

)
[∇p̃− φ∇µ], (3.8)

where p̃ = φµ̃ is a pressure term which does not play any role. In particular,
when the system presents well-defined phase interfaces, such as at the late
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stages of phase separation, this body force reduces to the more conventional
surface tension. Therefore, being proportional to µ̃, which is identically zero
at local equilibrium, Fφ can be thought of as a non-equilibrium interfacial
force.

Since Fφis driven by surface energy, it tends to minimize the energy
stored at the interface driving, say, A-rich drops towards A-rich regions. The
resulting non-equilibrium attractive force fA between two isolated drops of
radius R separated by a thin film of thickness d can be easily evaluated as
fA ∼ FφR2d ∼ R2σ/a. The magnitude of this attractive force is much larger
than that of any repulsive interaction among drops due to the presence of
surface-active compounds, this explaining why the rate of phase separation
in deeply quenched liquid mixtures is almost independent of the presence of
surfactants. The ratio between convective and diffusive mass fluxes defines
the Peclet number, NPe = V a/D, where V is a characteristic velocity, which
can be estimated considering that V ∼ Fφa2/η, with Fφ ∼ ρRT/(aMw).
Finally we obtain

NPe =
a2

D

ρ

η

RT

Mw
≈ σa

ηD
, (3.9)

which coincides with the ”fluidity” parameter defined by Tanaka and Araki
(1998) For systems with very large viscosities, NPe is small and the model
describes a diffusion-driven separation process, as in polymer melts and al-
loys. For most liquids, however, NPe is very large, typically NPe > 103,
showing that diffusion is important only in the vicinity of local equilibrium,
when the body force Fφ is negligible.

3.2.3 Numerical results

Let’s restrict out analysis to two-dimensional systems, so that the velocity
v can be expressed in terms of a stream function ψ, i.e. v1 = ∂ψ/∂r2 and
v2 = −∂ψ/∂r1. The equations of motion become

∂φ

∂t
= ∇ψ ×∇φ− 1

ρ
∇ · J, (3.10)

η∇4ψ =
(

ρRT

Mw

)
∇µ̃×∇φ, (3.11)

(3.12)

where A×B = A1B2 −A2B1.
Since material transport here is diffusion-limited, the length scale of the

process is the microscopic length a. Therefore, using the scaling,

r̃ =
1
a
r, t̃ =

D

a2
t, ψ̃ =

1
DNPe

ψ, (3.13)
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Fig. 3.4: Evolution of the concentration field assuming an initially plane
interface for NP e = 0 and NP e = 104 at time t = 0.1, 1, and 5 × 103 for
Ψ = 0 (left) and Ψ = 1.9 (right)

the equations of motion become

∂φ

∂t̃
= NPe∇̃ψ̃ × ∇̃φ + ∇̃ · (∇̃φ− φ(1− φ))× [2Ψ + ∇̃2]∇̃φ),(3.14)

∇̃4ψ̃ = −∇̃(∇̃2φ)× ∇̃φ. (3.15)
(3.16)

This system of differential equations has been time-integrated on a L =
1000a square domain with periodic boundary conditions using the finite
difference scheme described before. First, we simulated the mixing process
between two fluids which are initially quiescent and separated by a place
interface, r1 = L/2. In this case the body force is identically zero, so that
v = 0 and therefore the process does not depend on the Peclet number.
In fact the equations seen before are well approximated by the following
equation

∂φ

∂t
= D∗∂

2φ

∂r2
1

, (3.17)

with
D∗(φ̄) = D[1− 2Ψφ̄(1− φ̄)], (3.18)

where φ̄ represents the mean value of φ, as the neglected terms play a role
only at the very beginning of the mixing process, when the interface is still
sharp.

As shown in figure 3.4 the results are in perfect agreement with equation,
confirming that the mixing process of two fluids separated by an initially
phase plane sharp interface remains one-dimensional, does not depend on the
Peclet number and is a purely diffusive process, with an effective diffusivity
D∗ that depends on the thermodynamic properties of the mixture, i.e. the
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Fig. 3.5: Master curve of the evolution of the concentration field with an
initial plane interface for NP e = 0 and NP e = 104 for different value of Ψ

value of the Margules parameter ψ. The same result is obtained whenever
the initial configuration is one-dimensional, as in the case of an isolated drop.
If we simulate the mixing process of more drops, two drops for examples tend
to attract each other and even coalesce, provided that the Peclet number is
large enough and the drops are initially very close to each other.

This effect is shown in figure 3.6 the evolution of two identical drops with
Ψ = 1.9 and radius 40a that are placed within the quiescent bulk of fluid
at a distance of 120a from each other. When NPe = 0, the drops do not
move and are reabsorbed by diffusion, while when NPe = 104, they rapidly
coalesce and form a larger isolated single drop. This latter, though, has to
be reabsorbed by diffusion too, and, being larger than the original drops,
will take approximately twice as long to disappear. Consequently, mixing
appears to be faster in the absence of convection.

This effects that we observe in our simulation are in agrement with what
Vladimirova et al. (2004).
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Fig. 3.6: Snapshots of the evolution of two identical drops with NPe = 0
(left) and NPe = 104 (right) at time t = 0, 2, 5× 103a2/D. The drops have
Ψ = 1.9, an initial radius of 40a and are placed within the bulk fluid at a
distance of ”120 a” from each other.
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3.3 Heat transport during phase separation of liq-
uid mixtures

Reproduced in part from

”Enhanced Heat Transport During Phase Separation of Liquid Binary
Mixtures” D. Molin and R. Mauri, Phys. Fluids, 19 074102-1-10 (2007)

3.3.1 Introduction

In general, when a binary mixture is brought from the single phase region
of its phase diagram to the two-phase unstable region, it phase separates
through a process that is referred to as spinodal decomposition. As shown
in many experimental and numerical works, in low viscosity liquid mixtures
this process is driven by the convection that is induced by phase transition,
which is responsible for the experimentally observed enhanced coalescence
among the drops (see Poesio et al., 2006). Accordingly, it comes natural
to assume that during phase separation an effective heat diffusivity could
be defined, resulting from the fluctuations of the velocity and temperature
fields, just like in turbulent flows.

To study this phenomena, we simulated the phase separation of a binary
mixture that is confined within a domain whose walls are instantaneously
quenched below the critical temperature. Since we are interested in qual-
itative results, we confine ourselves to 2D simulations which, as shown in
previous works, (see Lamorgese and Mauri, 2005 and Lamorgese and Mauri,
2006) produce results that are very similar to their 3D counterparts. As ex-
pected, the mixture starts to demix near the walls, where, correspondingly,
a strong convection is induced, enhancing the transport of heat.The mixture
is modeled through the diffuse interface model (see Anderson et al., 1998 and
Lowengrub and Truskinovsky, 1998) (otherwise called model H, in the tax-
onomy of Hohenberg and Halperin, 1977), which is based on the pioneering
work of van der Waals (1979), together with the Ginzburg-Landau theory
of phase transition (see Le Bellac, 1991). This model was applied to model
the spinodal decomposition of binary mixtures by Cahn and Hilliard (1958)
and was later generalized to include hydrodynamics by Kawasaki (1970).
In the diffuse interphase model, convection is driven by a non-equilibrium
body force, proportional to the gradient of the chemical potential difference.
As noted by Jasnow and Viñals (1996), when the system is composed of
single-phase domains separated by sharp interfaces, this force, which is gen-
erally referred to as the Korteweg force, incorporates capillary effects, and
plays the role of a Marangoni force. This was formally proven by Lowen-
grub and Truskinovsky (1998) and Jacqmin (2000), who performed a careful
matched asymptotic expansion and showed that the motion of sharp inter-
faces between immiscible fluids can be obtained as the outer expansion of the
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velocity field, calculated using the diffuse interface approach, and it satisfies
the usual Marangoni-type boundary conditions at the interfaces. This model
shows that during the early stages of phase separation, initial instabilities
grow exponentially, forming, at the end, single-phase micro-domains whose
size corresponds to the fastest-growing mode of the linear regime. (Mauri
et al. (1996)) During the late stages of the process, the system consists of
well-defined patches, in which the average concentration is not too far from
its equilibrium value (see Vladimirova et al., 1999). At this point, depending
on whether mass transfer is dominated by inertial forces, diffusion or viscous
forces, the typical domain size grows with time as R(t) ∼ t2/3, R(t) ∼ t1/3 or
R(t) ∼ t, respectively (see Furukawa, 1994). The first scaling is observed for
large Reynolds number, e.g. when phase transition takes place in pressure-
driven fluid flows (see Kendon et al., 2001) or in free convection flows; the
second scaling, on the contrary, occurs for very viscous systems, e.g. poly-
mer solutions and alloys, with very weak convection, where phase separation
is driven by diffusion (see Siggia, 1979). The third scaling corresponds to
low Reynolds - large Peclet fluid flows and it is the most commonly observed
in closed systems, with no imposed pressure difference and negligible den-
sity variations (see Poesio et al., 2006). In this work, assuming to be in the
viscous regime, we show how induced convection enhances heat transfer.

Recently, a dynamic van der Waals theory has been presented by Onuki
(2005) and Onuki and Kanatani (2005), to study the motion of a droplet in
a single component fluid, subjected to small temperature gradients at zero
gravity. When phase change is taken into account, the density difference
between the two phases, together with the Korteweg reversible body force,
induces a convection that increases the heat flux, so that the temperature
gradients within the droplet nearly vanish. As a result, the Marangoni effect
arising from surface tension gradients is almost suppressed and the resulting
droplet velocity is much reduced. In the present work, since we consider a
two-component liquid mixture with constant density, convection is due only
to the Korteweg force, so that the effect of that force alone on heat transfer
can be studied. In addition, we revisited van der Waals’ theory, applying it to
binary mixtures, determining on one hand some well known thermodynamic
properties of regular mixtures (i.e. mixtures whose components are van der
Waals fluids), such as the fact that the excess free energy does not depend
on temperature, together with other properties of the non local part of the
free energy, that have been overlooked in the past. In particular, we showed
that interface thickness, a parameter that appears in the diffuse interface
method, is not a constant, as was assumed, for example, in Onuki (2005),
but it is proportional to the inverse square root of the temperature. Consider
a homogeneous mixture of two species A and B with molar fractions xA = φ
and xB = 1−φ, respectively, which are kept at temperature T and pressure
P . For simplicity, we assume that the molecular weights, specific volumes
and viscosities of A and B are the same; in particular, that means that we
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assume the mixture to be incompressible. The thermodynamic molar Gibbs
free energy, gth is a coarse-grained free energy functional given by:

gth(φ) = gid(φ) + gex(φ), (3.19)

where gid is the Gibbs free energy of an ideal mixture,

gid(φ) = RT [φ lnφ + (1− φ) ln(1− φ)], (3.20)

where R is the gas constant, while gex is the excess (i.e. non ideal) part of
the free energy,

gex(φ) = RTΨφ(1− φ), (3.21)

where Ψ is a function of T (it cannot depend on P , since the mixture is
assumed to be incompressible). This expression, which is generally referred
to as the one-parameter Margules correlation (see Prausnitz et al., 1986),
can be derived in terms of the difference between the intermolecular poten-
tials among identical and different neighbors. Accordingly, the ideal part of
the free energy in Eq. (3.19) represents an entropic contribution, which is
proportional to the temperature, while the excess part is an enthalpic term,
depending on interparticle potentials and therefore independent of the tem-
perature, so that Ψ ∝ 1/T . Consequently, considering that at the critical
point, when T = TC and φ = φC = 1/2, the free energy has an inflection
point, i.e. ∂2g/∂φ2 = 0, so that ΨC = 2, we obtain:

Ψ =
2TC

T
. (3.22)

Mixtures that behave in that way are denoted as regular (see Sandler, 1999).
Since sex = −(∂gex/∂T )P,x, we see that for regular mixtures sex = 0, i.e.
their entropy equals that of an ideal mixture. In addition, considering that
vex = (∂gex/∂P )T,x, since gex is independent of P , we see that vex = 0, i.e.
their specific volume as well equals that of an ideal mixture (in our case,
though, this last result is already implicit in the assumption of incompress-
ibility). In order to take into account the effects of spatial inhomogeneities,
Cahn and Hilliard (1958) introduced the generalized specific molar free en-
ergy g, which is given by the expression

g(φ,∇φ) = gth(φ) + ∆gnl(∇φ), (3.23)

where
∆gnl(∇φ) =

1
2
a2(∇φ)2, (3.24)

is a non local molar free energy due to changes in composition, where a
represents the typical length of spatial inhomogeneities. In Eq. (3.24), a is a
characteristic length, roughly equal to the interface thickness at equilibrium
which, for a regular mixture, has the same value as i.e. a =

√
(9πTC/4T )d,
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where d is the excluded volume length defined previously. Now, consider
that, at equilibrium, the mixture is segregated in two phases, separated by
a sharp interface. By definition, a surface tension σ can be defined as the
extra energy per unit surface associated with this surface. Accordingly, σ is
equal to the integral of the Cahn-Hilliard free energy across the interface,
so that, as shown by Van der Waals (1979), σ ≈ (ρλ/Mw)∆gex, where
∆gex ≈ RT (∆φ)eq a2/λ2 is a typical value of the change in the Cahn-Hilliard

molar free energy within the interface at equilibrium, while λ ≈ a/

√
ψ̃,

with ψ̃ = (Ψ− 2) /2, is the characteristic interface thickness (Van der Waals
(1979)). Therefore we obtain Eq. (3.79) and from there, considering that
(∆φ)eq ≈ ψ̃1/2, we see that a can be determined from σ as

a ≈ ψ̃−3/2 σMw

ρRT
. (3.25)

3.3.2 The equations of motion

These equations must be coupled to the equation of energy conservation,

ρc
dT

dt
+∇ · jq = q̇, (3.26)

where c is the molar specific heat (the same for A and B), jq is the diffusive
heat flux, while q̇ is the energy dissipation term. Assuming a simple Fourier
constitutive relation, we have:

jq = −k∇T, (3.27)

where k is the heat conductivity, that in general, depends on the compo-
sition, e.g. k = k(φ), although here we assume it independent of φ. The
energy dissipation term is the sum of three contributions: the dissipative
work of the external forces, F(e), viscous dissipation and the enthalpy of
mixing:

q̇ = F(e) · v + η|∇v|2 + ḣmix, (3.28)

where ḣmix = ρhexφ̇ depends on the energy hex that is either generated or
consumed when the two components of the mixture are isothermally mixed
together. Note that Fφ does not contribute to q̇, since it is a reversible force
(see Lamorgese and Mauri, 2006). In our case, since viscous dissipation
is negligible and there are no external forces, dissipation is due exclusively
to the enthalpy of mixing. Now, applying classical thermodynamics, (see
Siggia, 1999) we obtain,

hex

RT
= −T

[
∂(gex/RT )

∂T

]

P,φ

, (3.29)
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showing that for regular mixtures, when gex does not depend on T , hex = gex,
and therefore:

q̇ = ρRTΨφ(1− φ)φ̇. (3.30)

Now we restrict our analysis to two-dimensional systems, so that the
velocity v can be expressed in terms of a stream function ψ, i.e. v1 = ∂ψ/∂r2

and v2 = −∂ψ/∂r1. Consequently, we obtain:

∂φ

∂t
= ∇ψ ×∇φ− 1

ρ
∇ · j, (3.31)

η∇4ψ = ∇µ×∇φ, (3.32)

∂T

∂t
= ∇ψ ×∇T + α∇2T +

q̇

ρc
, (3.33)

where α = k/ρc is the heat diffusivity, while

A×B = A1B2 −A2B1. (3.34)

Since the main mechanism of mass transport at the beginning of phase
segregation in diffusion, the length scale of the process is the microscopic
length â. Therefore, using the scaling:

r̃ =
1
â
r; t̃ =

D

â2
t; ψ̃ =

1
αD

ψ, (3.35)

and substituting Eqs. (3.47) and (3.30) into Eqs. (3.31)-(3.33), we obtain
the governing equations in terms of concentration φ, stream function ψ and
inverse temperature Ψ:

∂φ

∂t̃
= NPe∇̃ψ̃×∇̃φ+∇̃·(∇̃φ−φ(1−φ)[Ψ(2+∇̃2)∇̃φ+(2φ−1)∇̃Ψ]), (3.36)

∇̃4ψ̃ = −∇̃(Ψ∇̃2φ)× ∇̃φ, (3.37)

∂Ψ
∂t̃

= −NPe∇̃ψ̃ × ∇̃Ψ + NLe[∇̃2Ψ− 2
Ψ

(∇̃Ψ)2]− c̃−1 ∂φ

∂t̃
, (3.38)

where c̃ = c/R is the non-dimensional specific heat, NLe = α/D is the Lewis
number, while the non-dimensional term,

NPe =
â2ρRT

Dη
, (3.39)

can be interpreted as the Peclet number, that is the ratio between con-
vective and diffusive mass fluxes in the convection-diffusion equation, i.e.
NPe = V â/D. Here V is a characteristic velocity, which can be estimated
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as V ∼ Fφâ2/η = NPeD/â, where Fφ ∼ ρRT/â. The same conclusion can
be reached considering that V ≈ σ/η and substituting the expression (3.79)
for the surface tension σ. A similar, so called ”fluidity” parameter was also
defined by Tanaka and Araki (1998). For systems with very large viscosity,
NPe is small, so that the model describes the diffusion-driven separation
process of polymer melts and alloys ( see DeGennes, 1980 and Vladimirova
et al., 1998). For most liquids, however, NPe is very large, with typical
values ranging from 103 to 105.

3.3.3 Numerical methods

The governing equations (3.36) - (3.38) were solved on a uniform two dimen-
sional square grid with constant width [(xi, yi) = (i∆x, j∆y), i = 1, N, j =
1, N ] where N = 128, 256, 512, and time discretization [t = n∆t, n =
0, 1, 2, ...]. The physical dimensions of the grid were chosen such that ∆x/â,
∆y/â = 3/2; such space discretization was based on a cell-centered, sec-
ond order accurate approximation. The time step ∆t satisfies ∆t/(â2/D) ≈
0.01− 0.001; such choice was determined semi-empirically in order to main-
tain the stability of the numerical scheme. Note that the nonlinearity of the
equations prevents a rigorous derivation of the stability constraints on ∆t,
but one can roughly estimate that the size of ∆t will scale as O(∆x4, ∆y4),
which is the order of the highest operator in the discretized system.

The time integration from tn = n∆t to tn+1 = (n + 1)∆t was achieved
in three steps. First, we computed the stream function by solving the bihar-
monic equation (3.32) with the source term evaluated at the time tn = n∆t,
using a FFT algorithm; second, we computed the inverse temperature dis-
tribution, using the concentration field evaluated at the previous step; third,
Eq. (3.31) was advanced in time, using the velocity and temperature fields
computed from the updated stream function and updated inverse tempera-
ture, through a straightforward explicit Eulerian step. This makes the entire
scheme O(∆t) accurate in time, which is acceptable for our problem, since
the size of the time step was kept very small anyway by the stability con-
straint. The boundary conditions were no flux for the concentration field
and no slip for the velocity field at the two walls where the temperature
quench is applied, and periodic boundary conditions at the other two walls.
The discretization of the derivatives near the boundaries was modified to
use only interior points. We introduced some amount of randomness into
the system through a background noise in the concentration field, δφ, with
〈δφ〉 = 0 and 〈(δφ)2〉1/2 = 0.001, which was uncorrelated both in space and
in time. In two separated sets of simulation the noise was either added in
the initial condition only, as in Furukawa (1997), or introduced at each time
step and then subtracted at the next time step, only to be replaced with
another spatially uncorrelated background noise of the same amplitude, as
in Vladimirova et al. (1999). This last procedure, which is equivalent to
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adding noise to the flux j on the right hand side of Eq. (1.139), is fully
conservative in the sense that the volume integral of the composition φ is
not altered by addition of the ad hoc noise. In fact, since for deep quenches
the Ginzburg inequality is satisfied, (see Le Bellac, 1991 and Landau and
Lifshitz, 1980) the background noise does not affect the behavior of the sys-
tem, and only determines the instant of time when the system departs from
its initial uniform state: once the linear regime is reached, the presence of
the noise becomes irrelevant.

All our simulations were carried out assuming that, initially, the mixture
has a uniform critical composition, φ0 = 0.5 and a temperature T (t = 0) =
T0 above the critical temperature TC , so that Ψ(t = 0) = Ψ0 = 1.9 < ΨC =
2, where ΨC = 2 is the critical value of the Margules parameter. Then, at
time t = 0, two of the walls of the box are quenched instantaneously to a
temperature Tw well below the critical temperature, so that Ψ = Ψw > 2
at the walls. Different value of Ψw have been considered, ranging from
Ψw = 2.1 to Ψw = 5. Time was measured as t = (105â2/D)t̃5 where
t̃5 = 10−5t̃ is a non-dimensional coarse time. Since typical values of D
and â are 10−5cm2/s and 10−5cm, respectively, (Poesio et al., 2006) then
t̃5 ∼ t/(1s).

Various simulations were carried out for different box sizes, Peclet and
Lewis numbers, specific heats and quenching depths. In all cases, the mix-
ture starts to phase separate at the walls; then, as heat losses penetrate
deeper within the domain, demixing takes place everywhere, until, at steady
state, the temperature of the mixture reaches its equilibrium value.

First, we observed that (see Figure 3.7) the process of cooling, as well as
that of phase separation, is accelerated by convection. As shown in Figure
3.7a, when NPe = 0, the mixture phase separates through the formation
of bicontinuous structures; since the two phases have the same heat con-
ductivity, though, the isothermal lines (not shown here) remain parallel to
the walls through the whole process, as they move towards the center of
the domain. On the other hand, in the presence of convection, i.e. when
NPe = 102 (see Figure 3.7b), warm fluid tends to move towards the wall;
accordingly, the isothermal lines do not remain parallel to the walls and,
most important, they move faster than in the previous case.

The main result of our simulation was to determine how such heat trans-
port enhancement depends on the characteristics of the process, namely the
Peclet and Lewis numbers, the specific heat and the quenching depth. The
most obvious way to describe the heat transfer enhancement, is through the
Nusselt number, which is defined as the ratio between the heat flux Jq at
the wall and the heat flux that one would have in the absence of convection,
(Jq)NPe=0, i.e.

NNu = Jq/ (Jq)NPe=0 . (3.40)

Although NNu would seem to be a function of time, we see that it actually
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Fig. 3.7: Evolution of the concentration field for NPe = 0 (top) and NPe =
102 (bottom) when NLe = 1, ζ = 0.05 and with no source term. The
snapshots are taken at t = 50, 70 and 120, where t is expressed in ã2/D
units.

remains almost constant and therefore can be used effectively to characterize
the enhancement to heat transport due to phase transition.

Another way to characterize heat transport is through the cooling time.
In fact, denoting by T̄ the average temperature of the fluid, we know that,
in the absence of convection, at long times, t À τ = L2/α, a slab cools down
following the equation:

Tw − T̄ = ∆T = ∆T0e
−t/τ + O

(
e−t/4τ

)
, (3.41)

where τ is a characteristic cooling time and L the width of the domain. We
saw that in all cases Eq. (3.41) is satisfied, provided that the heat diffusivity
α is replaced with an effective heat diffusivity α∗. Not surprising, we saw
that with very good approximation,

NNu = (τ)NPe=0 /τ = α∗/α, (3.42)

thus confirming that the Nusselt number represents the enhancement to heat
transport due to phase transition.

At this point, we show how NNu depends on the Peclet number, the
Lewis number, the specific heat and the quenching depth,

ζ = 1− Ψc

Ψw
= 1− Tw

Tc
, (3.43)
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Fig. 3.8: The Nusselt number, NNu, as a function of the Peclet number,
NPe, when NLe = 1, ζ = 0.05, and with no source term.

where Ψc = 2.0 is the critical value of the Margules coefficient, representing
how much below the critical temperature the walls have been cooled down.

First, in Figure 3.8 we see that heat transport increases monotonically
with NPe, until it reaches a plateau at NNu ≈ 2.0 when NPe ≈ 106. This
result is in agreement with previous findings (Vladimirova et al., 1999),
showing that the induced fluid velocity grows linearly with NPe for NPe <
105, while at larger NPe it reaches a plateau.

In Figure 3.9 we show the dependence of NNu on NLe, revealing that
the cooling speed increases as the Lewis number increases when NLe < 1, it
remains constant at NNu ≈ 1.55 when 1 < NLe < 10 and then it decreases
when NLe > 1. This behavior is due to the fact that, as NLe increases,
i.e. α increases and/or D decreases, there are two competing effects. On
one hand, as D decreases, NPe increases, thereby enhancing heat transport,
while, on the other hand, as α increases, heat conduction also increases and
therefore NNu tends to decrease. When NLe is small, the first of these effects
prevails: in fact, as NLe → 0 (i.e. D → ∞ while α is kept constant), heat
transport is only conductive and therefore NNu → 1. On the other hand,
when NLe increases further, the enhancement due to convection reaches a
plateau (see Figure 3.8), while conduction continues to increase, so that the
Nusselt number starts to decrease and, in fact, NNu → 1 as α → ∞, i.e.
when heat is transported mainly by conduction.

In Figure 3.10 we see the dependence of NNu on the specific heat c̃. Now,
as c̃ measures the heat capacity of the mixture, NNu decreases as c̃ increases,
as expected. However, we see that the influence of the specific heat on the
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Fig. 3.9: The Nusselt number, NNu, as a function of the nondimensional
specific heat, c̃, when NPe = 102, NLe = 1 and ζ = 0.05
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Fig. 3.10: The Nusselt number, NNu as a function of the Lewis number,
NLe, when NPe = 102, ζ = 0.05, and with no source term.

cooling speed is really very limited, unless c̃ becomes unreasonably small.
Finally, we determined how the heat transfer enhancement depends on

the quenching rate ζ, defined in Eq. (3.43). In Figure 3.11 we show the
results of the simulations conducted by keeping Ψ0 = 1.9, Pe = 0.0 and 102,
while Ψw = 2.1, 2.4, 3.0 and 4.0. Unexpectedly, at first, we see that heat
transport is more influenced by convection at low quenching than at high.
This is due to the fact that, as ζ increases, conductive heat flux increases
proportionally, i.e. (Jq)NPe=0 ∝ ζ, while the increase of its convective coun-
terpart is slower, i.e. ∝ ζ1/2. In fact, when ζ → ∞, we see that NNu → 1,
as expected. This result complements Figure 8 of Poesio et al. (2007),
who found experimentally that, on approaching the critical temperature,
i.e. when ζ < 0.03, NNu tends to 1, as expected. In future works, we intend
to simulate this case.
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Fig. 3.11: The Nusselt number, NNu as a function of the quenching depth,
ζ, when NPe = 102, NLe = 1, and with no source term.
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3.4 Composition-dependent heat conductivities’s
binary mixtures

Reproduced in part from

”Spinodal Decomposition of Binary Mixtures with Composition-Dependent
Heat Conductivities” D. Molin and R. Mauri, Int. J. Engng. Sci, in press

3.4.1 Introduction

In the present section we would like to show the variation of the morphology
of a viscous binary system after an instantaneous quench on two of the four
walls that constitute the simulation box. In general, heat is transported
with two different modalities, namely conduction and convection. In the
first case heat propagates from hot to cold regions via a diffusive process,
regulated by heat conductivity, while in the second case heat is transported
by a moving fluid. Here, we assume that the fluid is very viscous, so that
convection can be neglected. Instead, we intend to show how a difference in
the heat conductivities of two components can affect the morphology of the
process. In conventional spinodal decomposition, the mixture is quenched
instantaneously and, therefore, it phase separates by forming isotropic bi-
continuous structures (for a review on spinodal decomposition, see Gunton
et al., 1983). A different result is obtained when we simulate spinodal de-
composition in a long tube whose walls are quenched instantaneously. In
that case, as shown by Vladimirova et al. (1998), the morphology of the
system during phase separation consists of dendrites aligned along the lon-
gitudinal direction, forming typical striped pattern as in the experiments of
Sagui and Desai (1994).

In the present simulations, we expect that the anisotropy of the mor-
phology will be further enhanced by the difference in heat conductivity of
the two phases. The rationale of this prediction is that the system should
tend to maximize heat transfer and therefore the morphology should try to
get as close as possible to that corresponding to straight tubular domains
spanning the whole width of the channel.

The mixture is described using the diffuse interface model, that is based
on the pioneering work by Van der Waals (1979) at the end of the 19th
century, then extended by Landau (Landau and Lifshitz, 1980) by developing
the mean field theory and finally was applied to binary mixtures by Cahn and
Hilliard (1958) at the end of the 1950’s. The model shows that during the
early stages of the phase separation, initial instabilities grow exponentially,
forming single-phase micro-domains whose size corresponds to the fastest-
growing mode of the linear regime. During the late stage of the process, the
system consists of well-defined patches in which the average concentration
is not too far from its equilibrium value. At this point, both analytical
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calculations (Lifshitz and Pitaevsky, 1984) and dimensional analysis (Siggia,
1979) predict a growth law of the typical domain size with time, R(t) ∼ t1/3,
due to the Brownian coagulation of droplets. Naturally, while, when the
mixture is unbounded, the process of phase separation is isotropic, when
the mixture is confined between two walls, the single phase domains will
form anisotropic patterns.

3.4.2 The governing equations

Consider a homogeneous mixture of two species A and B with molar frac-
tions xA = φ and xB = 1 − φ, respectively, which are kept at temperature
T and pressure P . For simplicity, we assume that the molecular weights,
specific volumes and viscosities are constant and that they are the same for
the two species, namely, MA = MB = Mw, VA = VB = V , ηA = ηB = η;
in particular, that means that we assume the mixture to be incompressible.
The thermodynamic molar Gibbs free energy, gth is a coarse-grained free
energy functional given by:

gth(φ) = gid(φ) + gex(φ) (3.44)

where gid is the Gibbs free energy of an ideal mixture,

gid(φ) = RT [φ lnφ + (1− φ) ln(1− φ)], (3.45)

where R is the gas constant, while gex is the excess part of the free energy,

gex(φ) = RTΨφ(1− φ), (3.46)

where Ψ is a function of T (it cannot depend on P , since the mixture is
assumed to be incompressible). This expression, generally referred to as the
one-parameter Margules correlation, can been derived considering the in-
termolecular potentials between identical and different neighboring particles
(Sandler, 1999; Mauri et al., 1996). The ideal part (3.44) of the free energy
is proportional to the temperature and represents an entropic contribution,
while the excess part is an enthalpic term and depends on inter-particle po-
tentials. In fact, assuming that our mixture is regular, its entropy equals
that of an ideal mixture (Sandler, 1999), i.e. gex does not depend on T , so
that Ψ ∝ 1/T . Accordingly, considering that the free energy has an inflec-
tion point at the critical point, i.e. when T = TC and φ = φC = 1/2, then
we see that ΨC = 2, and therefore the Margules parameter can be expressed
as:

Ψ =
2TC

T
. (3.47)

In order to take into account spatial inhomogeneities, Cahn and Hilliard
(1958) introduced the generalized specific molar free energy g, given by the
expression:

g(φ,∇φ) = gth(φ) + ∆gNL(∇φ), (3.48)
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where
∆gNL(∇φ) =

1
2
a2(∇φ)2, (3.49)

is a non local molar free energy due to changes in composition, where a
represents the typical length of spatial inhomogeneities. As shown in Molin
and Mauri (2007), a depends on the temperature as:

a = â

√
2TC

T
= â

√
Ψ, (3.50)

where â is a characteristic length, independent of the temperature. As shown
by Van der Waals (1979), as the surface tension σ is the energy stored in
the unit area of the interface separating two phases at local equilibrium, we
obtain:

σ =
1
2

ρRT

Mw
a2

∫
(∇φ)2dl ∼ ρRTa

Mw
, (3.51)

where we have considered that, far from the critical point, the molar fraction
difference between the two phases at equilibrium, (∆φ)eq, and the nondimen-
sional thickness of the interface region at local equilibrium, λ/a ≈ √

Ψ− 2,
are both of O(1). This shows that the characteristic length a can be deter-
mined once surface tension is known (see discussion in Vladimirova et al.,
2000).

From the molar free energy, we may define a generalized chemical po-
tential difference µ̃ as,

µ̃ =
δ(g/RT )

δφ
=

∂(g/RT )
∂φ

−∇·∂(g/RT )
∂(∇φ)

= µ0+ln
φ

1− φ
+Ψ(1−2φ)−a2∇2φ,

(3.52)
where µ0 = (gB − gA)/RT .

3.4.3 The equations of motion

Imposing that the number of particles of each species is conserved, we obtain
the continuity equations for the molar concentrations of species A and B
(Vladimirova et al., 2000),

∂cA

∂t
+∇ · (cAvA) = 0,

∂cB

∂t
+∇ · (cBvB) = 0, (3.53)

where vA and vB are the mean velocities of the two species. For an incom-
pressible mixture composed of species with identical physical properties,
these equations lead to the following continuity equation,

dφ

dt
=

∂φ

∂t
+ v · ∇φ = −∇ · j (3.54)

where d/dt = ∂/∂t + v · ∇ is the material derivative, v = xAvA + xBvB is
the average velocity of the mixture, while j is the diffusive mass flux. The
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latter is proportional to the gradient of the generalized chemical potential
gradient as:

j = −φ(1− φ)D∇µ̃, (3.55)

where D is a composition-independent diffusion coefficient. Finally, substi-
tuting (3.72) into (3.55), we obtain

j = −D∇φ + Dφ (1− φ)
[
a2∇∇2φ + 2Ψ∇φ + (2φ− 1)∇Ψ

]
. (3.56)

Here, the term D∇φ on the RHS represents the regular diffusion flux, while
the last term vanishes for small concentrations of either solvents, i.e. when
(φ → 0 or φ → 1), and for ideal mixtures, i.e. when a = Ψ = 0. Note that
the a2 term is always stabilizing, with a being a function of temperature
through Eq. (3.50).

Equation (3.54) must be coupled to the traditional heat equation,

ρc
dT

dt
+∇ · jq = q̇, (3.57)

where ρ is the mass density and c the specific heat (which are both assumed
to be uniform, here), jq is the diffusive heat flux, while q̇ is the energy
dissipation term. Assuming a simple Fourier constitutive relation for the
heat flux, we have:

jq = −k(φ)∇T, (3.58)

where k(φ) is the composition-dependent heat conductivity. Assuming a
linear dependence between heat conductivity and composition, with kA = k
and kB = λk denoting the heat conductivities of the two species, we obtain:

k(φ) = k [φ + λ(1− φ)] . (3.59)

Since the problem is invariant upon changing φ and λ into (1− φ) and λ−1,
here we will assume, without loss of generality, that 0 < λ ≤ 1.

In general, Eqs. (3.54) and (3.57) should be coupled to the equation of
momentum conservation. This equation here does not play any role, though,
as we assume that heat and molar convection fluxes are negligible compared
to diffusion fluxes, that is both molar and thermal Peclet numbers are small,
i.e. NPeM = V â/D << 1 and NPeT = V â/α << 1 , where α = k/ρc is
the heat diffusivity of species A and V is a characteristic velocity. Note
that NPeT = NPeMN−1

Le , where NLe = α/D is the Lewis number, which
for most polymer melts ranges from 104 to 106. Accordingly, NPeM << 1
is the leading assumption here, which allows us to state that v = 0, i.e.
d/dt = ∂/∂t, in Eqs. (3.54) and (3.57). As shown in previous works (see for
example Vladimirova et al., 1999), as V ≈ (âρRT ) / (Mwη), this assumption
can also be written as

(
â2ρRT

)
/ (MwDη) << 1 and therefore it is satisfied

for very viscous mixtures.
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The energy dissipation term in Eq. (3.57) is the sum of viscous dissipa-
tion and heat of mixing (Molin and Mauri, 2007),

q̇ = q̇v + ḣmix = η|∇v|2 +
(

ρ

Mw

)
hexφ̇, (3.60)

where hex is the the energy that is generated when one mole of mixture
is mixed together isothermally. Now, since from classical thermodynamics
(Sandler, 1999) hex = −RT 2 [∂(gex/RT )/∂T ]P,φ, we see that, for regular
mixtures, when gex does not depend on T , we have:

hex = gex = RTΨφ(1− φ). (3.61)

From these expressions, we see that q̇v ≈ ηV 2/â2, while ḣmix ≈ ρRTD/Mwâ2.
Therefore, q̇v/ḣmix ≈ NEc NPr/NLe ĉ, where NEc = V 2/c∆T is the Eckert
number, NPr = ν/α is the Prandtl number, NLe = α/D is the already de-
fined Lewis number, while ĉ = Mwc/R is the non dimensional specific heat.
In our case, in agreement with other assumptions, we have: NEc << 1,
NPr < 1, NLe >> 1 and ĉ >> 1. Accordingly, q̇v << ḣmix, so that
q̇ = ḣmix. Now, comparing in Eq. (3.57) the diffusive term with the energy
dissipation term, we see that O (∇ · jq/q̇) = NLe ĉ >> 1. Therefore, we may
conclude that the dissipation term can be neglected altogether, and the heat
equation becomes:

dT

dt
= α (1− λ)∇φ · ∇T + α [λ + (1− λ) φ]∇2T. (3.62)

At this point, scaling (3.54) and (3.62) in terms of

r̂ =
1
â
r and t̃ =

D

â2
t, (3.63)

we obtain the following equations governing the concentration field, φ, and
the Margules parameter Ψ [which is inversely dependent on the temperature
T through Eq. (3.47)]:

∂φ

∂t̃
= ∇̃ ·

{
∇̃φ− φ (1− φ)

[
Ψ

(
2 + ∇̃2

)
∇̃φ + (2φ− 1) ∇̃Ψ

]}
, (3.64)

and

N−1
Le

∂Ψ
∂t̃

= [λ + (1− λ)φ]
[
∇̃2Ψ− 2

Ψ

(
∇̃Ψ

)2
]

+ (1− λ) ∇̃φ · ∇̃Ψ. (3.65)

3.4.4 Numerical results

The governing equations (3.64) and (3.65) were solved on a uniform two-
dimensional square grid with constant width ((x(i), y(j)) = (i∆x, j∆y), i =
1, . . . , Nx, j = 1, . . . , Ny) and time discretization (t(n) = n∆t, n = 0, 1, 2, . . .).
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The physical dimensions of the grid and the time step were chosen such that
∆x = ∆y = 2a, while ∆t/(a2/D) ≈ 0.01 − 0.001. A convergence test with
respect to grid refinement was carried out in Lamorgese and Mauri (2005),
showing that such grid size is appropriate. The time step was determined
semi-empirically, in order to maintain the stability of the numerical scheme.
Note that the non-linearity of the equations prevents a rigorous derivation
of the stability constraints on ∆t, but one can roughly estimate that the size
of ∆t will scale as O(∆x4,∆y4), which is the order of the highest operator in
the discretized system (see discussions in Lamorgese and Mauri, 2005). The
space discretization was based on a cell-centered approximation of both the
concentration and the inverse temperature variables, φ and Ψ. The spatial
derivatives on the RHS of Eqs. (3.64) and (3.65) were discretized using a
straightforward second-order-accurate approximation. The time integration
from t(n) to t(n+1) was achieved in two steps. First, we solved Eq. (3.65)
to determine the Margules parameter Ψ at time t(n+1) using φ(t(n)) and
Ψ(t(n)); then, Eq. (3.64) was solved, determining the concentration field
φ(t(n+1)) using φ(t(n)) and Ψ(t(n+1)). This makes the entire scheme stable
both in time and in space.

Equations (3.64) and (3.65) were solved with periodic boundary condi-
tions along the y-axis, while at the other boundaries, i.e. the walls along
the x-axis, we assumed that the material flux is zero, while the tempera-
ture is imposed. Initially, at time t < 0, the concentration field is uniform,
with φ = 0.5, while the Margules parameter is Ψ = 1.9, corresponding to a
temperature well above its critical value. A random noise is superimposed
to the composition field, with 〈δφ〉 = 0 and 〈(δφ)2〉1/2 = 10−2, assuming
that it is uncorrelated both in space and in time (see Lamorgese and Mauri,
2006). Time is measured using a timescale 105â2/D, which is typically on
the order of 1 second.

The simulations were carried out using different square grids, ranging
from 128 × 128 to 1024 × 1024, to ensure that the results are independent
of the domain size. The results depend on three parameters: a) the Lewis
number, NLe = α/D, expressing the ratio between thermal and mass diffu-
sivities; b) the heat conductivity ratio, λ = kA/kB; c) the quenching depth.

First, we studied the effects of the first two parameters, i.e. λ and NLe,
while the quenching depth was kept constant. Accordingly, we assumed that
at time t = 0 the two walls are cooled down to two different temperatures,
Tw1 on the left side wall and Tw2 < Tw1 on the right side wall, corresponding
to Ψw1 = 2.1 and Ψw2 = 3.0, both well within the two phase region of the
phase diagram. This ensures the presence of a temperature gradient within
the system, so that a heat flux is always present.

In Figure 3.12, we show some snapshots of our simulations for different
values of the conductive ratio and the Lewis number, at different time steps.
The cases with small Lewis number, although perhaps not very common
in practice, have been included because, as will be shown, they help to
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understand the phenomenon. Comparing the results for λ = 0.001 with
those for λ = 0.1 we see that, as expected, the smaller is λ, the smaller
is the average heat conductivity of the mixture, and therefore the shorter
it takes to phase separate. In addition we see that, keeping constant the
heat conductivity ratio (here λ = 0.001), when NLe = 0.01 the dendritic
structures that form during the phase separation tend to align along the
y-axis, while when the Lewis number is increased to NLe = 100 they tend to
align along the x direction. In fact, the main result of our simulations is that
the values of the parameters λ and NLe strongly influence the anisotropy of
the system morphology.

The isotropy of any given discrete concentration field φi,j , with i, j =
1, 2...N , can be quantified by the isotropy coefficient ξ as follows:

ξ =
Nx −Ny

Nx + Ny
, (3.66)

with

Nx =
1
2

N∑

j=1

[
N∑

i=1

(N − ni,j ni+1,j)

]
; Ny =

1
2

N∑

i=1




N∑

j=1

(N − ni,j ni,j+1)


 ,

(3.67)
where the index ni,j is defined as equal to +1 when φi,j > 0.5 and equal to
−1 when φi,j < 0.5. Clearly, Nx and Ny indicate how many times, moving
along the x- and the y-axis, respectively, we cross an interface. Accordingly,
−1 ≤ ξ ≤ +1, with ξ = 0 when the morphology is isotropic, ξ = +1
when it is composed of straight lines along the y-axis, and ξ = −1 when
it is composed of straight lines along the x-axis. Note that the isotropy
coefficient has such a simple definition because we know that the anisotropy
can only be along the x or the y axis.

In Table 1 and Figure 3.13 we indicate and represent the value of ξ
corresponding to the final, steady state configuration of the mixture for any
value of λ and NLe. Without loss of generality, as mentioned above, we have
considered only the cases with λ < 1: the cases with λ > 1 can be derived
from these results with λ′ = 1/λ and N ′

Le = NLe/λ.
First of all, we see that, for λ = 1, the morphology is almost isotropic

for any value of the Lewis number, as the two phases have the same heat
conductivity. On the other hand, when the difference between the conduc-
tivity of the two phases increases, the morphology of the system strongly
depends on the value of the Lewis number. Specifically, we see that when
the Lewis number is very small, the dendrites tend to align along the y-axis,
while, as the Lewis number increases, they turn their orientation towards
the x-axis. In fact, when NLe ¿ 1, heat propagates much slower than mass;
accordingly, as soon as the temperature of the slab reaches its critical value,
the mixture phase separates immediately. Since the isothermal lines (not
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shown here) are in all cases almost parallel to the y-axis, it is therefore not
surprising that, in this case, the dendrites will be also aligned along the
same direction. On the other hand, when NLe À 1, heat propagates much
faster than mass; our results suggest that in this case the system will tend to
maximize the heat flux, forming lines of the more conducting species span-
ning between the two quenched walls, along the x-axis. Flux maximization
is known to occur for linear systems, as a consequence of the minimum en-
tropy production principle. For non linear cases, we are not aware of any
similar principle; accordingly, our explanation must be considered only as
an attempt to explain our numerical results.

λ\NLe 0.01 0.1 1 10 100 1000
0.001 0.34 0.20 0.33 0.17 -0.22 -0.43
0.01 0.39 0.12 0.16 0.12 -0.33 -0.42
0.1 0.10 0.14 0.06 0.12 0.16 0.11
1 0.03 0.05 0.01 0.01 0.01 0.01

Table 1 - The isotropy coefficient ξ at steady state for different values
of the conductive ratio, λ, and the Lewis number, NLe.

The explanation that was given above is confirmed by the results ob-
tained by varying the quenching depth. First, we studied the phase separa-
tion occurring when the the two walls are quenched to the same temperature.
In this case, the system corresponds to the specular double of that obtained
when the left wall is quenched, while the right wall is insulated. In this case,
as shown in Figure 3.14, the mixture tends to phase separate by forming y-
oriented dendrites near the insulated wall, in the second case), in agreement
with Vladimirova et al. (1998). Accordingly, it is only in the presence of a
heat flux, i.e. when the two walls are quenched to two different temperatures,
that anisotropy might develop perpendicular to the isothermal lines, that is,
in our case, along the x-axis. Predictably, this happens when NLe À 1, so
that the tendency of the system to maximize the heat flux can prevail. In
fact, when at λ = 0.001 and NLe = 100 we keep Ψw1 = 2.1 constant on the
left side wall, while Ψw2 on the right side wall is changed from 3.0 to 5.0
(corresponding to a unrealistically large temperature quench), then we see
that at steady state the isotropy coefficient ξ changes from −0.22 to −0.53.
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Fig. 3.12: Evolution of the concentration field for different values of the
conductive ratio, λ, and the Lewis number, NLe. The snapshots are taken
at different times, where t is expressed in 105â2/D units.
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Fig. 3.13: The isotropy coefficient ξ at steady state for different values of
the conductive ratio, λ, and the Lewis number, NLe.

Fig. 3.14: Evolution of the concentration field for NLe = 0.1 and λ = 0.001
when the left wall is quenched, while the right wall is insulated.
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3.5 Deformation of drops in shear flow

Reproduced in part from

”Drop Coalescence and Breakup under Shear using the Diffuse Interface
Model” D. Molin and R. Mauri, in preparation.

3.5.1 Introduction

In most of the studies of two-phase flow, the equations of conservation of
mass, momentum, energy and chemical species are written separately for
each phase, assuming that temperature, pressure, density and composition
of each phase are equal to their equilibrium values, while at the interface, as-
sumed to be a zero-thickness surface, they are supplemented by appropriate
boundary conditions (see for example Davis and Scriven (1982)). Naturally,
this results in a free boundary problem, which means that one of the main
problems of this approach is to determine the position of the interface. To
that extend, many interface tracking methods have been developed, Unverdi
and Tryggvason (1992) which have proved very successful in a wide range
of situations. However, there are few instances where the interface tracking
breaks down. That happens when the interface thickness is comparable to
the lengthscale of the phenomenon that is being studied. Typical examples
are: a) near-critical fluids, as the interface thickness diverges at the critical
point; b) multiphase flows in microdevices; c) motion of the contact line
along a solid surface; d) breakup and coalescence of bubbles and droplets.

In front of these difficulties, the diffuse interface (D.I.) method offers
an alternative approach (see Hohenberg and Halperin, 1977; Anderson et
al., 1998; Lowengrub and Truskinovsky, 1998; Vladimirova et al., 2000 and
Nauman and He, 2001). Quantities that in the free boundary approach
are localized in the interfacial surface, here are assumed to be distributed
within the interfacial volume. For example, surface tension is the result
of distributed stresses within the interfacial region, which are often called
capillary, or Korteweg, stresses. In general, the interphase boundaries are
considered as mesoscopic structures, so that any material property varies
smoothly at macroscopic distances along the interface, while the gradients
in the normal direction are steep. Accordingly, the main characteristic of the
D.I. method is the use of an ”order parameter” which undergoes a rapid but
continuous variation across the interphase boundary, while it varies smoothly
in each bulk phase, where it can even assume constant equilibrium values.
For a single-component system, the order parameter is the fluid density, for a
liquid binary mixture it is the molar (or mass) fraction, while in other cases it
can be any other parameter, not necessarily with any physical meaning, that
allows to reformulate free boundary problems. In all these cases, the D.I.
model must include a characteristic interface thickness, over which the order
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parameter changes. In fact, in the asymptotic limit of vanishing interfacial
width, the diffuse interface model reduces to the classical free boundary
problem (see Jasnow and Viñals, 1996).

In most of the previous applications, the D.I. method has been applied to
study the dynamics of phase separation in near critical fluids. In the present
work, we intend to show that this approach can be successfully applied when
the two phases are at equilibrium with each other. Accordingly, we chose
to study the breakup and coalescence of droplets in shear flows, in the wake
of recent works by Keestra et al. (2003) and Yue et al. (2004), who have
studied the morphology of Newtonian and non Newtonian drops under shear
using the diffuse interface approach. In particular, here we will focus on
the study of a single Newtonian drop, since the original results by Taylor
(1932) , this problem has been studied extensively in theoretical (Rallison,
1984) and experimental, (Richardson, 1968; Buckmaster and Flaherty, 1973;
Leal, 2004) so that it can be used as an excellent test case. This problem
has also been studied using different numerical techniques based on lattice
discretization (Halliday et al., 1996 and Wagner and Yeomans, 1997).

All the previous studies of droplet breakup have shown that the strain-
ing motion of the external shear promotes drop deformation, while surface
tension acts, at first, as a restoring force while, later, when the drop be-
comes elongated, it may also promote burst. The actual process of break
up, though, cannot be modeled by purely fluid mechanical models, unless
other hypothesis are introduced, such as Marangoni stresses at the interface,
due to the presence of surfactants (Bazhlekov et al., 2006) Without this, or
similar, assumption, the model predicts that, when the shear rate exceeds a
critical value, the drop continues to elongate, never breaking neither reach-
ing a steady configuration. In particular, since the point of breakup can
never be reached, we cannot predict what happens after the burst, such
as the formation of satellite drops that has been observed experimentally
(Cristini et al., 2003).

Similar problems are encountered in studying flow-induced drop coales-
cence as well. Using classical fluid mechanics, head-on collision between two
drops can be modeled using the thin-film theory of the film drainage process
developed by Davis and coworkers (Davis et al., 1989 and Rother et al. ,
1997), which was recently expanded and completed by Baldessari and Leal
(2006), who included the effects of global drop deformation. On the other
hand, the behavior of two or more drops in shear flow has not received much
attention, with the exception of the work by Keestra et al. (2003), who ap-
plied the D.I. model this process. In the present work, we intend to extend
their work, showing how drop deformation and hydrodynamic interactions
play a dominant role in determining whether a pair of colliding drops under
shear flow will coalesce, or simply pass around one another. In particular, we
intend to study if, for a given drop size and shear flow, there is a minimum
distance below which the drops coalesce.

81



3.5.2 The governing equations

Consider a homogeneous mixture of two species A and B with molar frac-
tions xA and xB = 1−xA, respectively, kept at temperature T and pressure
P . For simplicity we assume that the molecular weights, specific volume
and viscosities of the two species are equal, so that the molar, volumetric,
and mass fractions are all equal to each other, and the mixture viscosity is
composition-independent. The equilibrium state of this system is described
by the ”coarse-grained”free energy functional, that is the molar Gibbs energy
of mixing, ∆geq,

∆geq = geq − (gAxA + gBxB), (3.68)

where geq is the energy of the mixture at equilibrium, while gA and gB are
the molar free energy of pure species A and B, respectively, at temperature
T and pressure P . The free energy ∆geq can be expressed as: the sum of an
ideal part ∆gid and a so-called excess part gex, with

∆geq = RT [φ log φ + (1− φ) log (1− φ) + Ψφ (1− φ)] , (3.69)

where φ = xA, R is the gas constant, while Ψ is a measure of the non-ideality
of the mixture and is function of T and P . This equation can also be derived
from first principles, (Mauri et al., 1996) showing that Ψ is proportional
to the difference between the attractive forces between identical molecules,
FAA and FBB, and the attractive forces between different molecules, FAB.
In order to account for the effects of spatial inhomogeneities, Cahn and
Hilliard (1958) introduced the generalized specific free energy g̃,

g̃ = geq +
1
2
RTa2 (∇φ)2 , (3.70)

where a represents a typical lengthscale of spatial inhomogeneities. Now,
defining the generalized chemical potential difference µ̃ as

µ̃ =
∂(g̃/RT )

∂φ
, (3.71)

we obtain,

µ̃ = µ0 + log
φ

1− φ
+ Ψ(1− 2φ)− a2∇2φ, (3.72)

where µ0 = (gB − gA)/RT . When Ψ > 2, the free energy presents a double
well, i.e. an instability region where ∂2geq/∂φ2 < 0. Accordingly, if the
overall composition lays within that instability region, the mixture phase
separates, eventually reaching an equilibrium state, which consists of two
coexisting phases, with an interface region separating them. Imposing that
in those conditions µ̃ = 0, we can determine the composition profile and
find that the interface thickness is λ = a/

√
Ψ− 2 (Van der Waals, 1979 and

Mauri et al., 1996).
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3.5.3 Equations of motion

Imposing that the number of moles of each species is conserved and assuming
incompressibility, we obtain the following continuity equations,(Vladimirova
et al. (2000))

∂φ

∂t
+ v · ∇φ = −∇ · j, ∇ · v = 0, (3.73)

where v is the average velocity of the mixture, while j is the diffusive volu-
metric flux, with the constitutive relation,

j = φ(1− φ)D∇µ̃. (3.74)

Finally, substituting Eq. (3.72) into Eq. (3.74), we obtain,

j = −D∇φ + Dφ(1− φ)
[
a2∇∇2φ + 2Ψ∇φ

]
. (3.75)

Here, the term D∇φ represents the regular diffusion flux, while the last term
vanishes for small concentrations of either solvents (i.e. φ → 0 or 1 ) and
for ideal mixtures (i.e. a = Ψ = 0).

The above equations of mass conservation must be coupled with the
Navier-Stokes equation, where the dynamic terms can be neglected, obtain-
ing,

η∇2v −∇p = −Fφ. (3.76)

Here η is the mixture viscosity, which, we assume, is composition-independent,
while Fφ is the Korteweg body force, which equals the generalized gradient
of the free energy (Lowengrub and Truskinovsky, 1998 and Lamorgese and
Mauri, 2006),

Fφ = −
(

ρRT

Mw

)
φ∇µ̃. (3.77)

In the limit of sharp interfaces located at r = rs, this body force reduces
to the more conventional surface tension, (Jasnow and Viñals, 1996 and
Jacqmin, 2000) i.e.,

Fφ = [n̂σκ + (I− n̂n̂) · ∇σ] δ [n̂ · (r− rs)] , (3.78)

where σ is the surface tension, while n̂ and κ are the unit vector perpen-
dicular to the interface and the curvature at rs, respectively. Accordingly,
as shown by Van der Waals (1879), since the surface tension is the energy
stored in the unit area of the interface, we obtain:

σ =
1
2

(
ρRT

Mw

)
a2

∫
(∇φ)2dl ∼ a

(
ρRT

Mw

)
(∆φ)2eq

√
Ψ− 2, (3.79)

where (∆φ)eq is the composition difference between the two phases at equi-
librium. Physically, Fφ tends to minimize the energy stored at the interface,
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and therefore it drives, say, A-rich drops towards A-rich regions, enhancing
coalescence.

Now we restrict our analysis to two-dimensional systems, so that the
velocity v can be expressed in terms of a stream function ψ, i.e. v1 = ∂ψ/∂r2

and v2 = −∂ψ/∂r1. Consequently, substituting Eq. (3.75) into Eq. (3.73)
and Eq. (3.77) into Eq. (3.76), we obtain,

∂φ

∂t
= ∇ψ ×∇φ−∇ · j, (3.80)

η∇4ψ =
(

ρRT

Mw

)
∇µ̃×∇φ, (3.81)

The above equations can be scaled in the following way:

r̃ =
1
a
r, t̃ = α

D

a2
t, ψ̃ =

1
γRa

ψ, (3.82)

obtaining,

∂φ

∂t̃
= ∇̃ψ̃ × ∇̃φ + α−1∇̃ ·

{
∇̃φ− φ(1− φ)[2Ψ + ∇̃2]∇̃φ

}
, (3.83)

and

∇̃4ψ̃ = −N−1
Ca ∇̃(∇̃2φ)× ∇̃φ, (3.84)

where

NCa =
ηγR

σ
; α =

a2

D

ρ

η

RT

Mw
≈ aσ

Dη
. (3.85)

Here NCa is the capillary number, expressing the ratio between viscous and
capillary forces, while α is the ratio between the diffusion time scale, τD =
a2/D and a viscous timescale, τσ = a/Vσ, where Vσ ≈ σ/η is a capillary-
induced velocity. Accordingly, as in our previous works (Vladimirova et
al., 1999; Vladimirova et al., 2000; Lamorgese and Mauri, 2005; Lamorgese
and Mauri, 2006) convection resulted from non-equilibrium, capillary effects
only, τσ was the convection timescale and therefore α was denoted as the
Peclet number, as it denoted the ratio between diffusive and convective
timescales. Here, however, that would be misleading, since convection is
mainly due the imposed shear, so that the characteristic convective timescale
τγ = γ−1 can be quite different from τσ (in fact, their ratio is the capillary
number). Accordingly, we can define a Peclet number NPe = γRa/D, so
that α ≈ NPe N−1

Ca . In the following (and for lack of a better name) we will
refer to α as the interfacial number, with reasonable values ranging between
103 and 106.
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3.5.4 Numerical results

The governing equations (3.83) and (3.84) were solved on a uniform two-
dimensional square grid with constant width ((xi, yi) = (i∆x, j∆y), i =
1, Nx, j = 1, Ny) and time discretization (t = m∆t, n = 0, 1, 2, ...). The
physical dimensions of the grid were chosen such that ∆x/a,∆y = 2 while
the time step satisfied ∆t/(a2/D) ≈ 0.01 − 0.001, so that the numerical
scheme remained robust. Note that the non-linearity of the equations pre-
vents a rigorous derivation of the stability constraints on ∆t, but one can
roughly estimate that the size of ∆t will scale as O(∆x4, ∆y4), which is the
order of the highest operator in the discretized system. The space discretiza-
tion was based on a cell-centered approximation of both the concentration
variable φ and of the stream function ψ. The spatial derivatives in the right-
hand side of Eqs. (3.83) and (3.84) were discretized using a straightforward
second-order-accurate approximation. The time integration from tn = n∆t
to tn+1 = (n + 1)∆t was achieved in two steps. First, we computed the
stream function ψ by solving the biharmonic equation with the source term
evaluated at time tn = n∆t. Second, Eq.(3.83) was advanced in time, us-
ing the velocity field computed from the updated stream function and a
straightforward explicit Eulerian step. This makes the entire scheme stable
in time and in space.

First, we studied the deformation of an insolated drop under shear when
NCa is not very large. Since the composition field of the drop and that of
the ambient fluid are initially at equilibrium with each other, we can assume
that such condition will continue to hold during most of the elongation of
the drop. Accordingly, the diffusion flux j in Eq. (3.80) is identically zero
and therefore the last term in Eq. (3.83) does not play any role during most
of the evolution of the drop. That means that the elongation of the drop
depends only on the capillary number and not on the interfacial number. In
fact we see that, irrespectively of the value of α, when the capillary number
lays below a threshold value, N∗

Ca = 0.1, the drop deforms and reach a
stationary, elongated configuration 3.15, while, on the other hand, when
NCa > N∗

Ca, the drop continues to stretch indefinitely, until it snaps. The
numerical value, N∗

Ca = 0.1, is in good agreement with classical results based
on continuum fluid mechanical models, the slight disagreement probably
being due to the fact that here we have used a 2D model.

At this point, we studied the evolution of two identical drops. In that
case, the process is far more dynamical, as drops may coalesce during their
encounter, if they get sufficiently close to each other. As expected, for small
values of NCa, the drops tend to remain spherical, while for larger values of
NCa drops tend to be deformed by the shear. These deformations, though,
occur in conditions of local equilibrium (unless NCa become very large),
so that, as in the case of an isolated drop, the value of α does not play
any relevant role as the drops approach one another. As soon as the two
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Fig. 3.15: Evolution of deformation of a drop (NCa = 0.05) in shear flow
(contour plot).

Fig. 3.16: Evolution of deformation of multiple drops (NCa = 0.5) in shear
flow (contour plot).

drops get very close, i.e. when their mutual distance become of O(a), then
coalescence (or the lack of it) is driven by the diffusive (or antidiffuse) flux
and therefore the value of α becomes essential in determining the outcome
of the process. For example, in Figure 3.16 we show the encounter between
various drops with NCa = 0.5 and with an initial distance around the double
of their radius. In almost all cases, the drops stretch and move towards one
another, following trajectories that are independent of α. Then, when their
mutual distance become of O(a), we see that when α = 103 the two drops
turn around each other and then move on, while when α = 106 the two
drops coalesce.
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3.6 Three component system: a different approach

This work has been done under the supervision of Prof. Anderson at the
Department of Mechanical Engineering of the Eindhoven University,

Eindhoven, The Netherlands

3.6.1 Introduction

Many biomedical, chemical and industrial processes involve mixture of three
or more liquids components. In spite of the importance of three-phase flow,
most studies of three-phase systems do not consider hydrodynamical inter-
action (Barrett and Blowey, 1999; Barrett et al., 2001; Bell et al., 1989), due
to the difficulties in dealing with hydrodynamics associated with interfaces
and triple junctions. Some of the methods used in the past to solve this
problem use a projection method (see Smith et al., 2002), or with bound-
ary integral methods that have been used to study the effect of surfactants
on drop dynamics and tip-streaming. In Kan et al. (1998) the effect of
surfactants on the dynamics of rising bubbles is investigated using an im-
mersed boundary/front-tracking algorithm. In Peskin (1977) a hybrid level-
set/front-tracking algorithm was used to study the effect of surfactants on
capillary waves. Further, in Johnson et al. (2000), the effect of surfactants
on the evolution of the shape of an initially non spherical drop translating in
an otherwise quiescent fluid at low Reynolds number is examined. A com-
bination of the boundary-integral method and a finite-difference scheme is
used to solve the coupled fluid dynamics and surfactant transport problem.
For this reasons in this section we would like to model and simulate a general
three-component system coupled with hydrodynamic. For this purpose we
use an extension of the diffuse interface model developed at the university
of Eindhoven under the collaboration of Prof. Anderson.

3.6.2 Local balance equations

Consider an arbitrary volume element Ω within V, with boundary Γ and
outer normal n. The total mass of component i within Ω is

Mi =
∫

Ω
ρid

3r. (3.86)

For chemical inter mixtures Mi can only change by a flux across the bound-
ary Γ. Therefore

dMi

dt
=

∫

Ω

∂ρi

∂t
d3r +

∫

Γ
ρivi · nd2r = 0, (3.87)

where vi is the velocity field of component i. Gauss’ theorem can be used
to transform the boundary integral into a volume integral. The resulting
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volume integral holds for an arbitrary volume element, therefore

∂ρi

∂t
+∇ · (ρivi) = 0. (3.88)

Conservation of total mass follows from summing equation over all compo-
nents. This yields

∂ρ

∂t
+∇ · (ρv) = 0, (3.89)

where ρ is the density of the mixture

ρ =
N∑

i=1

ρi (3.90)

and v is the barycentric velocity

v =
N∑

i=1

civi, with mass fraction ci = ρi/ρ. (3.91)

We can also define the velocities wi relative to the barycentric velocity

wi = vi − v. (3.92)

These velocities are called diffusion velocities. Combining eq 3.92 and eq.
3.89 yields

∂ρi

∂t
+∇ · (ρiv) = −∇ · (ji), (3.93)

where ji = ρiwi is the diffusion mass flow per unit area per unit time.
Summing this equation over all components we should again obtain equation
therefore:

N∑

i=1

ρiwi = 0. (3.94)

This shows that only N − 1 of the diffusion velocities are independent. In-
stead of using the N independent velocities vi we can also use the barycentric
velocity and the N−1 independent diffusion velocities as set of independent
variables. The momentum P of a volume element can change due to contact
and body forces. The equation of motion for Ω reads

dP

dt
=

d

dt

∫

Ω
ρvd3r =

∫

Γ
τ · nd2r +

∫

Ω
ρf exd3r, (3.95)

where τ is the extra stress tensor and ρf ex is the total external force density,
defined by

ρf ex =
N∑

i=1

ρif ex
i . (3.96)
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The same arguments as used for mass balance result in the following local
momentum balance equation

∂ρv
∂t

+∇ · (ρvv) = ∇ · τ + ρf ex. (3.97)

Using local mass balance this can be rewritten as

ρ
dv
dt

= ∇ · τ + ρf ex, (3.98)

where d/dt = ∂/∂t + v · ∇. In the absence of heat sources the first law of
thermodynamics for an open system states that the change in the sum of
kinetic and internal energy (dE) equals the work done by contact and body
forces (dW ) plus the total energy flux (dQ). That is

dE

dt
=

dW

dt
+

dQ

dt
(3.99)

where E, being the sum of the internal energy U and the kinetic energy K,
can be written as

E = U + K =
N∑

i=1

∫

Ω
ρi(ui +

1
2
vi · vi)d3r, (3.100)

with ui the specific internal energy of component i and vi the velocity field
of component i. Using equations and, E can be rewritten as

E =
∫

Ω
ρ(u +

1
2
vv)d3r, (3.101)

where

u =
N∑

i=1

(ciui +
1
2
ciwi · wi) = ũ +

1
2

N∑

i=1

ciwi · wi. (3.102)

The second term on the right hand side is the kinetic energy of diffusion and
ũ is the ’true’ internal energy, in the equilibrium sense. However, in most
cases, the kinetic energy of diffusion can be neglected. In the sequel we will
use the approximation u = ũ. The performed work and the energy flux can
be written as

dW

dt
=

∫

Γ
τ · v · nd2r +

N∑

i=1

∫

Ω
ρif

ex
i · vd3r, (3.103)

dQ

dt
= −

∫

Γ
q · nd2r. (3.104)

The resulting local energy balance equation is

ρ
d

dt
(u +

1
2
vv) = ∇ · (τ · v)−∇ · q + ρfex · v +

N∑

i=1

fex
i · ρiwi. (3.105)
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Mass and momentum conservation can be used to single out the kinetic
contribution to equation. This results in

ρ
du

dt
= τ : ∇v +∇ · q +

N∑

i=1

fex
i · ρiwi. (3.106)

In the following problems we are going to use only gravity as an external
force, which is the same for each component. In this case the last term on
the right hand side equals zero. In summary the local balance equations for
mass, momentum and energy in a gravity field are:

dρ

dt
= −ρ∇ · v, (3.107)

ρ
dci

dt
= −∇ · ji, (3.108)

ρ
dv

dt
= ∇ · τ + ρfg, (3.109)

ρ
du

dt
= τ : ∇v −∇q. (3.110)

To complete this set of equations we need additional equations for the mass,
momentum and energy flux, ji, τ and q respectively. To this end we fol-
low the phenomenological approach of classical irreversible thermodynamic
forces appearing in the entropy production σ. The entropy production ap-
pears in the local balance equation for the entropy s, which can be written
as

ρ
ds

dt
= −∇ · js + σ. (3.111)

This equation states that the entropy of a volume element can change be-
cause of entropy in-and outflow, represented by the entropy flux js, and be-
cause of irreversible processes taking place within the element, represented
by the entropy production σ. According to the second law of thermodynam-
ics σ has to be non-negative

σ ≥ 0. (3.112)

For reversible transitions or systems in equilibrium σ = 0. To find a more
explicit expression for σ we need to relate changes in the entropy to changes
in the other properties appearing in the other local balance equations. This
can be done by considering the Gibbs relation.

3.6.3 Gibbs relation

From classical thermodynamics it is known that, for a homogeneous system
in equilibrium, the internal energy is a function of the entropy s and the
densities ρi. Here we consider inhomogeneous fluids. In the spirit of the
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equilibrium diffuse-interface theory, the internal energy u is also a function
of density gradients

u = u(s, ρi,∇ρi). (3.113)

The total differential of this equations is

du =
∂u

∂s
ds +

N∑

i=1

∂u

∂ρi
dρi +

N∑

i=1

∂u

∂∇ρi
d∇ρi, (3.114)

where the partial differentiations are such that all other independent vari-
ables are kept constant. Using the thermodynamic relation ∂ũ/∂t = T ,
equation can be rewritten as a non-classical Gibbs relation

Tds = du−
N∑

i=1

∂u

∂ρi
dρi −

N∑

i=1

∂u

∂∇ρi
d∇ρi (3.115)

To be able to couple the Gibbs relation to the local balance equations of the
previous section we have to write it in a local form. To write it in a local
form we now assume that, even though the total system is necessarily in
equilibrium, the Gibbs relation remains valid for a volume element travelling
with the barycentric velocity v. This approximation is also called the local
equilibrium approximation (de Groot and Mazur, 1984).

T
ds

dt
=

du

dt
−

∑

i=1

N
∂u

∂ρi

dρi

dt
(3.116)

Using the local mass balance equations and this equation can be rewritten
as

T
ds

dt
=

du

dt
− p0

ρ2

dρ

dt
−

N∑

i=1

µ0i
dci

dt
−

N∑

i=1

∂u

∂∇ρi

d∇ρi

dt
, (3.117)

where the homogeneous part of the chemical potential and the pressure are
given by

µ0i =
∂ρu

∂ρi
− Ts,

p0 =
∑

i=1

Nρiµ0i − ρu + ρTs,

respectively.
The gradient term in equation still needs to be evaluated. An expression

for d∇ρi/dt can be found by taking the gradient of the local mass balance
equation for component i. After some manipulations we find

d∇ρi

dt
= −∇v · ∇ρi −∇(ρi∇ · v)−∇∇ · ji. (3.118)
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We can now combine equations and . Using local mass balance together
with the identities ∇ · v = I : ∇v and

∂u

∂∇ρi
· ∇v · ∇ρi =

∂u

∂∇ρi
∇ρi : ∇v (3.119)

we obtain

ρT
ds

dt
= (τ − τr) : ∇v −∇ · (q− qr − qd) +

N∑

i=1

µi∇ · ji, (3.120)

with

τr = −pI−
N∑

i=1

∂ρu

∂∇ρi
∇ρi, (3.121)

qr =
N∑

i=1

∂ρu

∂∇ρi
ρi∇ · v, (3.122)

qd =
∂∇ρi∑

∂ρu

∇ · ji, (3.123)

µi =
∂ρu

∂ρi
−∇ · ∂ρu

∂∇ρi
− Ts, (3.124)

p =
N∑

i=1

ρiµi − ρu + ρTs. (3.125)

(3.126)

Note that µi has the same mathematical form as the chemical potential in
sections which was obtained by variational differentiation of the free energy
functional. It’s necessary now to find a correct expression for the entropy
production. Dividing eq. 3.106 by T and rearranging the terms we obtain:

ρ
ds

dt
= −∇ · js + σ (3.127)

with

js =
1
T

(q− qr − qd −
N∑

i=1

µiji), (3.128)

σ =
1
T

(τ − τr) : ∇v + (q− qr − qd) · ∇ 1
T
−

N∑

i=1

ji · ∇µi

T
. (3.129)

(3.130)

The entropy production has a simple structure: it is the sum of the products
of the thermodynamics fluxes and forces. In equilibrium both fluxes and
forces vanish. The equilibrium relations are therefore given by

ji = 0, τ = τr and q = qr. (3.131)
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Here we have identified τr and qr as the reversible parts of the stress tensor
and the energy flux, respectively. Besides the isotropic pressure contribu-
tion, there is also an anisotropic contribution, there is also an anisotropic
contribution, there is also an anisotropic contribution to τr, which depends
on the density gradients. This means that, at an interface between two
fluids, the tangential stress is not equal to the normal stress. We shall see
later on that this difference is closely related to the interfacial tension. To
find phenomenological relations for the thermodynamic fluxes we have to
consider the dissipative part of the entropy production.

3.6.4 Phenomenological equations

Let’s derive the phenomenological equations for the thermodynamic fluxes,
using the principle of classical irreversible thermodynamics: the fluxes are
assumed to be linea functions of the independent forces appearing in the
entropy production. To write the entropy production as a linear combination
of independent fluxes and forces we have to split up the first term on the
right hand side of equation in a deviatoric and a diagonal part.

σ =
1
T

τd
v : ∇dv+

1
3T

Tr(τv)∇·v+qh∇ 1
T

+qh∇ 1
T
−

N∑

i=1

ji ·∇µi

T
> 0, (3.132)

where τv = τ − τr is the viscous stress tensor and qh = q − qr − qd is
the heat flux, Tr is the trace operator and τd

v and ∇dv are the deviatoric
and a diagonal part we separate the contribution of shear viscosity and
bulk viscosity. We now assume that the fluxes are linear functions of the
independent forces appearing in 3.132. Keeping in mind that fluxes and
forces of different tensorial character can not couple, we obtain the following
phenomenological relations

τd
v =

Λs

2T
[∇v +∇vT − 2

3
∇ · vI], (3.133)

1
3
Tr(τv) =

Γb

T
∇ · v, (3.134)

qh = Γqq∇ 1
T

+
N−1∑

k=1

Γqk∇(
µk − µN

T
), (3.135)

ji = Γiq∇ 1
T

+
N−1∑

k=1

Γik∇(
µk − µN

T
). (3.136)

(3.137)

We have assumed that the viscous stress tensor is symmetric and we used
the fact that only N − 1 of the diffusion fluxes are independent. The total
viscous stress tensor τv = τd

v + Tr(τv)I/3 is the extra stress tensor and the
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coefficients Γs/(2T ) and Γb/T can be identified as the shear and bulk viscos-
ity, respectively. The relations for qh and ji include so-called cross effects:
the diffusion flux depends not only on the chemical potential gradients but
also on the temperature gradient and the energy flux also depends on the
chemical potential gradients. All these equations constitute a complete set
of equations, which can be solved with the appropriate initial and boundary
conditions.

3.6.5 Quasi-incompressible systems

So far we have considered non-isothermal, compressible systems. In this the-
sis, however, we are mainly concerned with incompressible, (nearly) isother-
mal systems. For an incompressible, isothermal fluid the density depends
only on the mass fractions ci. If there is no volume change upon mixing, the
reciprocal density is a linear function of the mass fractions

1
ρ

=
N−1∑

i=1

ci

%i − %N
+

1
%N

, (3.138)

where %i is the density of component i as a pure substance. Mixtures which
obey equation are called simple mixtures. For incompressible systems, the
internal energy is a function of ci rather than the densities ρi. That is

u = u(s, ci,∇ci) i = 1, ..., N − 1

This has some important consequences. The first one is that the pressure
can not be defined as in previous section. Ont he other hand, as pointed out
by Joseph and Renardy (1993), for a mixture of individually incompressible
fluids with different densities the density changes if the composition changes.
More specifically we obtain:

∇ · v =
N−1∑

i=1

κi∇ · ji with κi =
1
ρ2

∂ρ

∂ci
=

1
%N

− 1
%i

. (3.139)

A second important consequence of equation is that the structure of the en-
tropy production changes. Not only because the time derivatives of ci and
∇ci instead of ρi and ∇ρi appear in the Gibbs relation now, but also because
the divergence of the velocity field is no longer an independent thermody-
namic force. This effect was also reported by Lowengrub and Truskinovsky
(1977), The Gibbs relation for a quasi-incompressible system is:

T
ds

dt
=

du

dt
−

N−1∑

i=1

∂u

∂ci

dci

dt
−

N−1∑

i=1

∂u

∂∇ci

d∇ci

dt
, (3.140)
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where dci/dt is given by equation and

d∇ci

dt
= −∇v · ∇ci −∇(

1
ρ
∇ · ji). (3.141)

Combining the local energy balance equation and the Gibbs relation now
yields

ρT
ds

dt
= (τ − τr) : ∇v −∇ · (q− qd) +

N−1∑

i=1

(µi − µN )∇ · ji, (3.142)

with

τr = −ρ
N−1∑

i=1

∂u

∂∇ci
∇ci, (3.143)

qd = ρ
N−1∑

i=1

∂u

∂∇ci
∇ · ji, (3.144)

µi − µN =
∂u

∂ci
− 1

ρ
∇ · (ρ ∂u

∂∇ci
). (3.145)

(3.146)

As stated above, to find a correct expression for the entropy production in
terms of independent forces and fluxes we have to include the fact that ∇·v
and ∇ · ji are not independent. Using equation and slitting up ∇v into a
deviatoric part and a diagonal part we obtain

ρT
ds

dt
= (τ − τr) : ∇dv −∇ · (q− qd) +

N−1∑

i=1

(µ•i − µ•N )∇ · ji, (3.147)

where
µ•i − µ•N = µi − µN − 1

3
κiTr(τ − τr). (3.148)

The entropy production for an isothermal system is now given by

σ =
1
T

(τ − τr) : ∇dv − 1
T

N−1∑

i=1

ji · ∇(µ•i − µ•N ). (3.149)

The equilibrium relations are now

ji = 0 and τ − τr = −pI, (3.150)

with p is an arbitrary pressure field. The chemical potential difference µ•i −
µ•N can also be written as

µ•i − µ•N = µi − µN + κip. (3.151)
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Using the same technique as in the previous section, neglecting bulk vis-
cosity, we obtain the following phenomenological equations for the viscous
stress tensor and the diffusion flux

τv = ν[∇v +∇v − 2
3
∇ · vI], (3.152)

ji =
1
T

N−1∑

i=1

Γik∇(µ•k − µ•i ), (3.153)

where µ is he shear viscosity. The local momentum balance equation can
now be written as

ρ
dv
dt

= −∇p−∇
N−1∑

i=1

ρ
∂u

∂∇ci
∇ci +∇τv + ρfg. (3.154)

We can make one further simplification concerning the gradient term in
the momentum equation. The second term on the right hand side can be
rewritten as

−1
ρ
∇p +∇f +

N−1∑

i=1

µi∇ci = −∇(f +
p

ρ
) +

N−1∑

i=1

(µ•i − µ•N )∇ci. (3.155)

Defining the specific Gibbs free energy as g = f + p/ρ, the momentum
equation can now be written as

dv
dt

= −∇g +
N−1∑

i=1

(µ•i − µ•N )∇ci +
1
ρ
∇ · τv + fg. (3.156)

In summary, the local mass, mass fraction and momentum balance equations
for an in-homogeneous, quasi-incompressible, isothermal fluid mixture are

dρ

dt
= −ρ∇ · v, (3.157)

ρ
dci

dt
=

1
T
∇ ·

N−1∑

i=1

Γik∇(µ•k − µ•N ) (3.158)

µ•k − µ•N =
∂f

∂ci
− 1

ρ
∇(ρ

∂f

∂ci
) + κip, (3.159)

dv
dt

= −∇g +
N−1∑

i=1

(µ•i − µ•N )∇ci +
1
ρ
∇ · η[∇v (3.160)

+ ∇vT − 2
3
∇ · vI] + fg (3.161)

(3.162)
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3.6.6 Free energy

Different expressions of F (c) are needed in order to model miscible, partially
miscible and fully immiscible system The F (c) has to been chosen in an
appropriate way to reproduce the system we want to study. It is possible to
elaborate different kind of free energy to describe different kind of systems.
It is possible to model different kind of systems, where the three phases are
all miscible, partially miscible or fully immiscible with each other.

In order to compare our results with the one reported in Kim et al.
(2004) the following expression for the free energy was used:

f(c1, c2) =
1
4
[c2

1c
2
2 + (c2

1 + c2
2)(1− c1 − c2)2 − c1c2(1− c1 − c2)]. (3.163)

This function can be represent on a Gibbs triangle, with a minima in the
center of the triangle .

3.6.7 Numerical methods

Instead of solving the entire set of equations in a coupled way, we decouple
the set into a flow problem equations and a concentration problem equa-
tions. The flow problem is solved using a primitive variable i.e. the velocity-
pressure formulation and discretized by a standard Galerkin finite element
method (GFEM).

Let’s analyze the application of the Galerkin method to the diffuse in-
terface model.

3.6.8 Weak form of the diffuse-interface model

We consider the diffuse-interface model in a region Ω, with the flow equations
according to Stokes flow:

−∇ · (2ηD) +∇p = f + ρµ∇c, in Ω (3.164)
∇ · u = 0, in Ω (3.165)

(3.166)

where D = (∇u + ∇uT )/2, and the equations for the concentration c and
chemical potential µ are given by:

∂c

∂t
+ u · ∇c = 0 in Ω (3.167)

αc− βc3 + κ∇2c + µ = 0 in Ω (3.168)
(3.169)

In Eq. 3.164 the coefficient ρ in the right-hand side forcing term is the
density of the fluid. However, the inertia terms in the momentum balance,
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which also contain ρ, are assumed to be negligible. The weak form of the
flow equations is similar to the example for the Poisson equation: find u and
p such that

(Dv, 2ηD)− (∇ ·D)− (∇ · v, p) = (v, τN )ΓN
+ (v, f) + (v, ρµ∇c) for all v

(q,∇ · u) = 0, for all q

using appropriate spaces for u, p,v and q. In this equation Dv is defined by

Dv = (∇v +∇vT )/2 (3.170)

The weak form of the c and µ equations can easily be derived and reads:
find c and µ such that

(r,
∂c

∂t
+ u · ∇c) + M(∇r,∇µ) = 0 for all r

(s, αc− βc3)− κ(∇s,∇c) + (s, µ) = 0 for all s

using appropriate spaces for c, µ, r and s. The weak form can be used to
obtain an approximate solution using the Galerkin FEM technique. For this
we divide the region into elements:

Ω =
⋃
e

Ωe,Ωe

⋂
Ωf = ∅ for e 6= f (3.171)

and interpolate u, p, c and µ by polynomials on each element:

uh =
∑

k

φk(x)uk = φ̃T (x)ũ

ph =
∑

k

ψk(x)pk = ψ̃T (x)p̃

ch =
∑

k

φk(x)ck = φ̃T (x)c̃

µh =
∑

k

φk(x)µk = φ̃T (x)µ̃

where ˜φ(x) and ˜ψ(x) are global shape functions. Note, that c and µ are
interpolated using the same shape function as the velocity vector.

3.6.9 Time discretization of the diffuse-interface model

At the initial time t0 we solve the flow equations without the right-hand side
term ρµ∇c to obtain an initial flow solution. Also the initial field c0 = c(t0)
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should be specified. Then we do a time stepping where we first solve the
equations for cn+1 and µn+1 using the values of un and cn at the current
time tn. For this we use an implicit Euler scheme:

(r,
cn+1−cn

∆t
) + un · ∇cn+1) + M(∇r,∇µn+1) = 0 for all r

(s, αcn+1 − β[cn+1]3)− κ(∇s,∇cn+1) + (s, µn+1) = 0 for all s

where ∆t is the time step. This is a non-linear equation, which we solve by
Picard iteration:

(r,
ci+1 − cn

∆t
+ un · ∇ci+1) + M(∇r,∇µi+1) = 0 for all r

(s, (αci − βc2
i )ci+1)− κ(∇s,∇ci+1) + (s, µi+1) = 0 for all s

for i = 0, 1... with c0 = cn, until convergence. Then we solve the flow
equations to obtain un+1 and pn+1 using cn+1 and µn+1.

These discretized equations written in matrix for read:
(

Sv LT

L 0

)(
v
p

)
=

(
Mfv
0

)
(3.172)

where v is the discretized velocity, p is the discretized pressure, Sv is the
stiffness matrix containing the viscous terms, L is the matrix due to diver-
gence operation, LT is the matrix for the gradient operator, M is the mass
matrix, and fv is the right hand side containing the 1

CaCh
(µ∇c−∇f) term.

The discretized set of linear algebraic equations is solved using an integrated
metho with an iterative solver with incomplete Cholesky decomposition as
preconditioner. In the integrated method both velocity and pressure are
used as unknowns i.e. degrees of freedom. Due to the absence of pressure
in the continuity equation, a zero block appears in the main diagonal of
the matrix. It is therefore possible that the first pivot during the elimi-
nation process for the ILU preconditioner is zero. In order to ensure that
this does not happen, unknowns are renumbered per level, and also glob-
ally, so that first velocities and then the pressure unknowns are used during
the matrix assembling. Taylor-Hood quadrilateral elements, with continu-
ous pressure, that employ a biquadratic approximation for velocity and a
bilinear approximation for pressure are used. Two second-order differential
equations that constitute a concentration problem are solved in a coupled
way. For the temporal discretization of equation a first-order Euler implicit
scheme is employed so that the discretized time derivative reads: cn−cn−1

∆t
where ∆t is the item step size, and the superscript n represents the current
time label. The non-linear c3 term in equation is linearized bu a standard
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Picard iteration which yields (cn
i−1)

2cn
i where subscript i represents the ith

Picard iteration at time level n. A spectral element method (Patera, 1984;
Timmermans et al., 1994) is used for spatial discretization of the set of equa-
tions. In this method, similar to finite element method, the computational
domain is divided into Nel non-overlapping sub-domains Ωe and a spectral
approximation is applied on each element. The basis functions, φ, that are
used for spatial discretization, are high-order Lagrange interpolation poly-
nomials through Gauss-Lobatto integration points defined per element. The
full discretized set of linearized equations, written in matrix form, reads:

[
M + ∆tNn−1 ∆t

PeS
(1− (cn

i−1)
2)M− C2

hS M

] [
cn
i

µn
i

]
=

[
Mcn−1

0

0

]
(3.173)

where cn
i is the discretized concentration at the ith Picard iteration at time

step n, µn
i is the discretized chemical potential at the ith Picard iteration

at time step n, cn−1
0 is the discretized concentration at time step n− 1, M

is the mass matrix, N is the convection matrix, S is the diffusion matrix.
This set is solved using the above mentioned iterative solver. The scheme
to advance in time is as follows:

1. Initialize c0
0 to be the locally equilibrated concentration profile.

2. Compute µ0, f and η.

3. Solve the system for velocity with terms containing concentration treated
explicitly.

4. Solve the system iteratively for concentration and chemical potential
for the two components. Iterations are required due to the non-linear
term. Iteration is started with cn

i−1 = cn−1 and stopped when max
|cn

i − cn
i−1| ≤ δc.

5. Update the time and repeat steps 2-4

Implementation of the numerical method descrived above is in TFEM, a fi-
nite element package, developed in the Eindhoven University, by Prof. Mar-
tien Hulsen.

3.6.10 Numerical results

The numerical analysis of the behavior of a phase transition of a binary
mixture in presence of a compatibilizer have been carried on a grid with
dimensions of (0, 0) in the left bottom corner to (1, 1) in the top right corner.
In each simulation a grid with 60 x 60 mesh and a time step of ∆t = 10−3

has been used. A thermal fluctuation of O(10−5) was imposed introducing
a random noise at the concentration level. A biperiodic boundary condition
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Fig. 3.17: Spinodal decomposition of a binary mixture. The snapshots are
taken at different times steps: 0.001, 1.0, 1.5, 2.0

for c, µ, and v has been used. To describe the formation and disappearing
of the binary structure a correlation function has been defined as:

G(r, t) =
1

Nd

∑
((c(x + r, t)− cav) · (c(x, t)− cav), (3.174)

where r and x are the lattice vectors, N is the number of grid points, cav

the average concentration and d the dimensionality, d = 2. Radial averaging
s carried out using a Brillouin zone function to eliminate any directional
effects:

g(r, t) =
1

Nr

∑

r−∆(r/2)|x|<r+∆(r/2)

g(r, t). (3.175)

The initial composition is given by:

c1 = 0.25 + 0.3(0.5− rand(x, y))
c2 = 1− c1(x, y)
c3 = 0.0

where the rand(x, y) is a random number ranging between 0 and 1, and
the value 0.25 lies in the spinodal region. In this case there is no third phase.

As shown in figure (3.17), during the time evolution, spinodal decom-
position occurs first then the phases separate. Then a third component is
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Fig. 3.18: Mixing of the binary mixture in presence of the third component
at different time steps: t=0.001, 0.5, 1.0, 2.0

added to the phase separated system, and in agreement with what Kim
and Lowengrub (2005) shown the structure tends to disappear 3.18, and the
mixtures return to a single-phase system.

This can be quantify using the concentration correlation function (see
eq. (3.175). As shown in Figure (3.19) when the spinodal decomposition
takes place, the correlation function tends to evolve in a structured function.
Instead, after the addition of the third component, the structure disappear,
and the mixtures become homogeneous as before the spinodal decomposition
(Figure 3.20) .

3.6.11 Coalescence of two drops

In the first set of numerical experiments we tried to reproduce the variation
of the interfacial thickness and of the interfacial tension in two different cases:
a) very diffusive polymer, b) non-diffusive polymer. To do it we used the
three phase model with the partially miscible energy formulation. The drop
is initially made by the first phase that is immiscible with the matrix, and
by a second high diffusive phase, that is instead miscible with the matrix.
During the simulation, the second phase spreads from the drop to the matrix
causing a variation in the interfacial thickness of the drop itself. Following
the experimental results from Tufano et al. we tried to observe the attraction
and repulsion between two drops varying the mobility parameter in the
diffusion interface equations to model different kind of polymers. When
the Peclet number is around approximately 10− 100 and the interfaces are
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close the drops tend to attract each other and to coalesce as shown in figure
(3.21). As the Peclet number decrees, and the diffusion increase, the two
drops tend to coalesce faster. When the Peclet number is approximately
104 − 105 the drops do not move and no coalescence occurs (3.23). This
phenomena is observed both numerically and experimentally. A possible
explanation to the coalescence that occurs between the drops is that the
closer the interfaces are, the faster the liquid between them is squeezed out.
In the diffuse interface model, the interfacial tension is inversely proportional
to the thickness of the diffuse layer. Hence, the prescribed inhomogeneous
thickness is equivalent to prescribing an interfacial tension gradient. These
gradients lead to Marangoni stresses that are responsible for the attraction
between the interfaces. When the two drops were initially placed at distance
in which there is no overlap of the diffusive layer no attraction occurs. In
figure (3.21) the coalescence of two different drops is shown. In figure (3.22)
we shown the variation of the distance between the two interfaces versus
time for two different couple of drops with Pe = 100 and Pe = 10 with
different initial diameter and distance, and different capillary numbers.
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Fig. 3.19: Results of the simulation: (a)Concentration correlation function
at various time step for the separation of the binary mixture (the arrow
indicate the increasing of the time step), (b) structure size as a function of
time.
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Fig. 3.20: Concentration correlation function at various time step for the
mixing of the two phase system after the addition of the third component
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Fig. 3.21: Coalescence of two drops of the diffusive material with different
radius at different time steps: t=0.001, 1.2, 2.5, 2.75.
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Fig. 3.22: Ratio between the distance and the equivalent radius of the two
drops versus time at Pe = O(10) and Pe = O(100), with same value of the
diffuse thickness and capillary number.
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Fig. 3.23: Absence of coalescence between two drops with a Peclet number
of 105 at different time steps: t = 0.1, 1.2, 2.5, 2.75.
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Chapter 4

Conclusions

During the three years of the project we extended the diffuse interface (DI)
method and apply it to engineering related problems, particularly related
to mixing and demixing of two fluids. To do that, first the DI model it-
self was validated, showing that, in agreement with its predictions, a single
drop immersed in a continuum phase moves whenever its composition and
that of the continuum phase are not at mutual equilibrium [D. Molin, R.
Mauri, and V. Tricoli, ”Experimental Evidence of the Motion of a Single
Out-of-Equilibrium Drop,” Langmuir 23, 7459-7461 (2007)]. Then, we de-
veloped a computer code and validated it, comparing its results on phase
separation and mixing with those obtained previously. At this point, the
DI model was extended to include heat transport effects in regular mix-
tures. In fact, in the DI approach, convection and diffusion are coupled via
a nonequilibrium, reversible body force that is associated with the Kortweg
stresses. This, in turn, induces a material flux, which enhances both heat
and mass transfer. Accordingly, the equation of energy conservation was
developed in detail, showing that the influence of temperature is two-folded:
on one hand, it determine phase transition directly, as the system is brought
from the single-phase to the two-phase region of its phase diagram. On the
other hand, temperature can also change surface tension, that is the excess
free energy stored within the interface at equilibrium. These effects were
described using the temperature dependence of the Margules parameter. In
addition, the heat of mixing was also taken into account, being equal to
the excess free energy. [D. Molin and R. Mauri, ”Diffuse Interface Model of
Multiphase Fluids,” Int. J. Heat Mass Tranf., submitted]. The new model
was applied to study the phase separation of a binary mixture due to the
temperature quench of its two confining walls. The results of our simula-
tions showed that, as heat is drawn from the bulk to the walls, the mixture
tends to phase separate first in vicinity of the walls, and then, deeper and
deeper within the bulk. During this process, convection may arise, due to
the above mentioned non equilibrium reversible body force, thus enhancing
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heat transport and, in particular increasing the heat flux at the walls [D.
Molin, and R. Mauri, ”Enhanced Heat Transport during Phase Separation of
Liquid Binary Mixtures,” Phys. Fluids 19, 074102-1-10 (2007)]. The model
has been extended then and applied to the case where the two phases have
different heat conductivities. We saw that heat transport depends on two
parameters, the Lewis number and the heat conductivity ratio. In particu-
lar, varying these parameters can affect the orientation of the domains that
form during phase separation. Domain orientation has been parameterized
using an isotropy coefficient ξ, varying from -1 to 1, with ξ = 0 when the
morphology is isotropic, ξ = +1 when it is composed of straight lines along
the transversal (i.e. perpendicular to the walls) direction, and ξ = −1 when
it is composed of straight lines along the longitudinal (i.e. parallel to the
walls) direction [D. Molin, and R. Mauri, ”Spinodal Decomposition of Binary
Mixtures with Composition-Dependent Heat Conductivities,” Chem. Eng.
Sci. (2008)]. In order to further extend the model, we removed the con-
straint of a constant viscosity, and simulated a well known problem of drops
in shear flows. There we found that, predictably, below a certain threshold
value of the capillary number, the drop will first stretch and then snap back.
At lager capillary numbers, though, we predict that the drop will stretch and
then, eventually, break in two or more satellite drops. On the other hand,
applying traditional fluid mechanics (i.e. with infinitesimal interface thick-
ness) such stretching would continue indefinitely [D. Molin and R. Mauri,
” Drop Coalescence and Breakup under Shear using the Diffuse Interface
Model,” in preparation]. Finally, during a period of three months at the
Eindhoven University, we extended the DI model to a three component fluid
mixture, using a different form of the free energy, as derived by Lowengrub
and Coworkers.. With this extension, we simulated two simple problems:
first, the coalescence/repulsion of two-component drops immersed in a third
component continuum phase; second, the effect of adding a third component
to a separated two phase system. Both simulations seem to capture physical
behaviors that were observed experimentally [D. Molin, R. Mauri and P.
Anderson, ” Phase Separation and Mixing of Three Component Mixtures,”
in preparation].
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