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Introduction

Bose Einstein condensation is a phase transition emerging in systems of
integer-spin particles whose temperature is lowered under a critical value
[1, 2, 3]. One of the signatures of this phenomenon is the emergence of a
phase coherence through the whole system, so that its behaviors can be de-
scribed by single particle wavefunctions. After two-decades-long efforts in
the development of laser cooling techniques [4, 5, 6], Bose-Einstein conden-
sation was achieved in dilute gases of neutral atoms [7, 8]. Apart from its
fundamental interest, this experimental result opened the way to the study
of the quantum world with macroscopic samples.

In parallel with the research on cooling, the developments on laser physics
led to the creation of artificial atomic crystals by use of light-induced periodic
potentials, so-called optical lattices [9, 10]. These potentials were applied to
Bose-Einstein condensates shortly after their discovery [11].

In the last decade, a large part of the BEC community showed a strong
interest in ultra-cold atoms loaded into optical lattices [12, 13]. The periodic
potentials proved to be an exceptional tool for manipulating BECs, because
of their feasibility in the laboratory with the present technology, and be-
cause only few parameters govern the behavior of the sample. In fact, this
is described by the interplay between two fundamental physical processes:
atom-atom interactions and quantum tunneling.

The unifying theme of this thesis is the quantum tunneling in an ultra-cold
gas loaded into an optical lattice. In the experiments that we performed we
were able to observe effects due to quantum tunneling as well as to develop
experimental techniques to control it.

The thesis is organized as follows.
Chapter 1 introduces the theoretical background of Bose Einstein conden-

sation and gives a full description of the experimental procedure to reach this
quantum phase in dilute gases. Moreover, the experimental apparatus of the
Pisa BEC laboratory is described.

Chapter 2 introduces to the physics of cold atoms in periodic potentials.
Its first part shows how to realize a periodic potential by light interference.
Then, the theoretical description of cold atoms in an optical lattice is intro-



x Introduction

duced, with particular attention to the connections with solid state physics.
In its final part, the chapter describes the experimental realization of an
optical lattice, and the basic procedures for its characterization.

Chapter 3 describes the role of quantum tunneling in the evolution of
ultra-cold atoms in an optical lattice. The chapter introduces the concepts
of intra-band and inter-band tunneling, which constitute the main subject of
our experimental investigations.

Chapter 4 describes an experiment on inter-band tunneling. In its first
part the tunneling rate is defined by use of the Landau-Zener theory of
avoided energy crossings. It is then shown that if the quantized energy levels
at each lattice site are taken into account, the tunneling is expected to be
resonantly enhanced over this Landau-Zener prediction. The observation of
resonantly enhanced tunneling is reported. Finally, an investigation on the
role of the atom-atom interactions in inter-band tunneling is described. The
observation of the expected destruction of tunneling resonances when the
strength of the interactions is increased is reported.

Chapter 5 is devoted to the description of an experimental investigation
on the control of intra-band tunneling by strong driving of the optical lattice.
First the theoretical description of cold atoms loaded into a driven lattice is
given by the use of Floquet theory of time-periodic Hamiltonians. Then, the
chapter describes how to measure the intra-band tunneling by letting the
atoms expand into an optical lattice. The experimental realization of control
of tunneling is reported, and the dependence of the tunneling on the strength
and the frequency of the driving is investigated. Then, it is explained how
the phase coherence of the condensate is affected by the lattice driving. The
evidence of a change of the sign of tunneling is reported. Finally, the problem
of adiabaticity in a driven lattice is discussed.

Chapter 6 reports on an experiment in which the complete suppression
of tunneling is recovered by a ”photon assistance”. In its first part, the
chapter describes the experimental realization of the complete suppression
of tunneling by use of a linear potential, lifting the degeneracy between the
single site energy levels. Then, the partial recovery of tunneling by a driving
of the lattice is reported. The tunneling emerged when the energy carried by
the lattice driving matched the position-dependent energy shift induced by
the linear potential. An investigation on the dependence of the tunneling on
the strength of the driving is described.
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Chapter 1

Bose Einstein Condensation in
dilute alkali gases

In 1995 the phase transition of a dilute gas of bosons to a Bose-Einstein con-
densate (BEC) was observed for the first time [7][8]. These experiments were
the final results of a decade-long research on cooling of atomic gases. The
creation of a Bose-Einstein condensate is the first step of all the experiments
that will be described in this thesis. Some theoretical notes about BEC in
dilute gases will be given in the first part of the chapter. In the second part
the steps to experimentally realize BEC are explained. Finally the sequence
used in our experiment is described.

1.1 The non interacting Bose gas

In a gas of non-interacting bosons treated as a grand canonical ensemble, the
number of atoms is:

N =
∑
m

1

exp (βεm − µ)− 1
(1.1)

where εm is the m-th energy level, µ the chemical potential, β = (kBT )−1,
and kB is the Boltzmann constant. A useful approximation is to consider
the energy spectrum to be a continuum, so the sum in Eq. (1.1) can be
substituted by the integral:

N =

∫ ∞

0

g(ε)dε

exp (βε− µ)− 1
(1.2)

where g(ε) is the density of states, which depends on the potential experi-
enced by the bosons. Of particular interest is the case of a harmonic po-
tential, because the traps (magnetic or optical) used in the experiments on
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cold Bose gases can usually be well approximated by harmonic ones, whose
energy spectrum is:

εnx,ny,nz =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy +

(
nz +

1

2

)
~ωz. (1.3)

The density of states then reads:

g(ε) =
ε2

2(~ωho)2
(1.4)

where ωho = (ωxωyωz)
1/3 is the mean trapping frequency.

Bose-Einstein condensation occurs when the number of atoms N0 popu-
lating the lowest energy level ε0,0,0 becomes a macroscopic fraction of the
whole system, that is when the chemical potential is µ = 0. This corre-
sponds to a system in which the number of atoms in the excited energy levels
Nexc = N −N0 is much smaller than the total number of atoms: Nexc ¿ N .
When this is the case, it is convenient to separate the atoms in the ground
state N0 from the total number of atoms N in Eq. (1.2):

N −N0 =

∫ ∞

0

g(ε)dε

exp (βε)− 1
. (1.5)

Substituting the density of states (1.4) into Eq. (1.5) one can solve the
integral in the latter equation and obtain:

N −N0 = ζ(3)

(
kBT

~ωho

)
(1.6)

where ζ(·) is the Riemann ζ function, with ζ(3) ' 1.2.
The gas becomes a thermal Bose gas when the temperature reaches a

critical value T = TC such that N0 ¿ N . This value can be found by
imposing N0 = 0 in Eq. (1.6):

kBTC = ~ωho

(
N

ζ(3)

)
∼= 0.94~ωhoN

1/3. (1.7)

Eq. (1.7) shows that for a large enough number of atoms N the critical
temperature is much larger than the energy levels separation: kBTc/(~ωho) '
0.94N1/3 À 1. Then the phase transition from a thermal cloud to a Bose
Einstein condensate can be achieved in experiments with cold bosonic gases
trapped in harmonic potentials.
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Figure 1.1: Column density of a noninteracting Bose gas at T = 0.95Tc as
a function of the position. The dotted line is the density of the condensed
fraction, the dashed line the density of the thermal fraction, and the continous
line the total density of the gas.

Emergence of condensation

The wave function of the condensed gas fraction corresponds to the ground
state of the harmonic oscillator:

φ0(r) =
(mωho

π~

)3/4

exp
(
−m

2~
(ωxx

2 + ωyy
2 + ωzz

2)
)

. (1.8)

Therefore, the condensed atoms have a density distribution nc(r) = N0|φ0(r)|2.
The thermal fraction of the system can be estimated for T < TC by substi-
tuting Eq. (1.7) in Eq. (1.6):

N −N0 = N

(
T

TC

)3

(1.9)

whose density distribution is:

nT (r) =
1

λT

g3/2(e
−βVext(r)) (1.10)

where λT = [2p~2/(mkBT )]1/2 is the thermal wavelength, g3/2 is a function of
the type: gα(x) =

∑∞
n=1 xn/nα[14], and Vext(r) is the potential experienced

by the gas, i.e., the harmonic potential Vext(r) = 1/2m(ωxx
2 + ωyy

2 + ωzz
2).

A plot of the gas density integrated along one direction (column density) is
given in figure (1.1) for T < Tc: the condensate appears as a peaked spatial
distribution over the wider distribution of the thermal fraction.
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1.2 The interacting Bose gas: mean field the-

ory

The many-body Hamiltonian that describes a system of N interacting parti-
cles in a potential Vext is:

Ĥ =

∫
drΨ̂†(r)

[
− ~

2

2m
∇2 + Vext

]
Ψ̂(r)+

1

2

∫
drΨ̂†(r)Ψ̂†(r′)V (r−r′)Ψ̂(r′)Ψ̂(r)

(1.11)
where V (r − r′) is the inter-particle interaction potential and Ψ̂(†)(r) is the
boson field operator that annihilates (creates) a particle at the position r.
This can be written as:

Ψ̂(†)(r) =
∑

α

Ψα(r)âα (1.12)

where Ψα(r) is the single particle wave function of the α-th energy level, and
âα is its corresponding boson annihilation operator, obeying the commuta-
tion relations: [âα, â†α′ ] = δα,α′ , and [âα, âα′ ] = [â†α, â†α′ ] = 0, ∀α, α′. The
problem of calculating the ground state of the Hamiltonian (1.11) can be
solved analitically by use of a mean field approximation. If the gas is in the
BEC phase, that is if N0 À 1, the boson creation and annihilation operators
of the fundamental state â0, â

†
0 can be considered as complex numbers. Hence

the boson field operator Ψ̂(r) can be written as a sum of a complex function
for the condensed fraction and a field operator for the atoms in the excited
states:

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t). (1.13)

The wavefunction of the condensate is defined as Φ(r, t) ≡ 〈Ψ̂(r, t)〉. The
boson field operator in (1.13) is written in the Heisenberg picture, so it is
straightforward to write the Heisenberg equation:

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂, Ĥ

]

=

(
−~

2∇2

2m
+ Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

)
Ψ̂(r, t).

(1.14)

The integral in Eq. (1.14) is the interaction term. Assuming a dilute gas, the
relevant interactions are two-body scattering processes, and the interaction
potential can be approximated as:

V (r′ − r) =
4π~2as

m
δ(r′ − r) (1.15)
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where as is the s-wave scattering length. Moreover, if the term Ψ̂′(r, t) in
Eq. (1.13) is small, then the operator Ψ̂(r, t) can be substituted with the
complex function Φ(r, t)[15]. Therefore the problem (1.14) becomes the so-
called Gross-Pitaevskii Equation:

i~
∂

∂t
Φ(r, t) =

(
−~

2∇2

2m
+ Vext(r) + g |Φ(r, t)|2

)
Φ(r, t) (1.16)

where g = (4π~2as)/m. The Gross Pitavskii equation is a Schrödinger equa-
tion with a nonlinear term which takes into account the interactions. It is
valid if the total number of atoms is much larger than 1, and if the s-wave
scattering length is much smaller than the mean distance between atoms.
The latter condition corresponds to having a dilute gas, that is, the number
of atoms contained in a volume of size as must be very small: n|as|3 ¿ 1,
where n is the mean spatial density.

Thomas-Fermi approximation

The Gross-Pitaevskii equation describes the condensate behavior when the
assumption of dilute gas holds. However, this does not mean that the in-
teractions are weak. The gas can be dilute but exhibit strong interactions:
this is the case when the interaction energy Eint ∝ gN0n ∼ gN2

0 /a3
ho is much

larger than the kinetic energy Ekin ∝ N0~ωho.Therefore the key parameter
to estimate the strength of the interactions is:

Eint

Ekin

∝ N0|as|
aho

. (1.17)

For atoms with a repulsive interaction (as > 0) in a dilute gas (n|as|3 ¿ 1)
the kinetic energy term in the Gross Pitaevskii equation can be neglected.
This is known as the Thomas Fermi approximation. Under this assumption
the density distribution of the condensate reads:

n(r) = |Φ(r)|2 = g−1(µ− Vext(r)) for µ > Vext(r)

= 0 for µ < Vext(r).
(1.18)

For a harmonic potential this corresponds to:

n(r) =
µ

g

[
1− x2

R2
x

− y2

R2
y

− z2

R2
z

]
(1.19)

where Ri is the so-called Thomas Fermi radius of the condensate along the
direction i:

Ri =

√
2µ

mω2
i

. (1.20)
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The chemical potential can be evaluated by imposing the normalization∫
ndr = N0:

µ =
~ωho

2

(
15N0as

aho

)2/5

. (1.21)

1.3 Atom cooling by spontaneous emission

The experimental realization of Bose-Einstein condensation in dilute gases
has been the final result of a decade-long effort in the research on cooling
atomic gases. The first idea on this subject was to exploit the light absorption
of the atoms and the Doppler effect due to their motion [16]. In the ideal
model an atom in its ground state and with a transition at frequency ω0 is
irradiated by laser light at frequency ωL. If the detuning ∆ = ωL − ω0 is
negative (the laser is red detuned), an atom has the maximum probability
to absorb a photon when it moves in the opposite direction with respect
to the laser propagation, because of the Doppler effect that shifts the laser
frequency closer to the atomic transition frequency. Thus, the probability to
absorb a photon increases. When this is the case, the atom gains momentum
in a direction opposite to its motion, and its velocity is reduced.

This idea can be explained in a more rigorous treatment by considering the
radiation pressure of the light by solving the optical Bloch equations [17]. For
a small detuning (∆ ¿ ω0) a process of absorption and spontaneous emission
on one atom changes its momentum by:

δp = ~kL(1− cos(θ)) (1.22)

where kL = kLẑ is the laser wavevector and θ is random. This randomness
causes the effect of the photon emission by the atom to average to zero.
Therefore the force exerted on the atom is:

F =
Γ

2

~kLΩ2
R/2

∆2 + Γ2/4 + Ω2
R/2

ẑ (1.23)

where Γ is the natural linewidth of the excited atomic state, ΩR = ℘E0/~
the Rabi frequency of the atomic transition, ℘ the electric dipole moment
and E0 the amplitude of the light electric field.

It is interesting to consider the case of two counterpropagating laser beams.
In this case the total force is the sum of the forces exerted by the two beams.
In order to take into account the Doppler effect, it is convenient to make the
substitution ∆ → ∆−kLvz in Eq. (1.23), where vz is the atom velocity along
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the z direction. One then finds:

F = F+ + F−

≈ ~k2
LΓ∆

Ω2
R

(Γ2/4 + ∆2)2vz ẑ

= −γvz ẑ.

(1.24)

For red detuning, i.e. ∆ < 0, Eq. (1.24) states that the laser fields work
as a viscous medium for the atom. Such a system is known as an optical
molasses [18]. It can be evaluated [19] that the theoretical lowest temperature
achievable in an optical molasses is:

kBTD =
1

2
~Γ (1.25)

usually referred to as the Doppler temperature.

1.3.1 SubDoppler cooling

When experimentally realized, 3D optical molasses exhibited a surprising
behavior: temperatures far below the Doppler limit (1.25) were observed
[20]. The explanation of this experimental evidence was found by treating
the atom-light interaction in the so-called dressed atom model [21]. In par-
ticular, the sub Doppler cooling was explained as an effect due to a light
polarization gradient [22] along the atomic cloud. This process, usually re-

Figure 1.2: Space dependence of the local polarization of the light field in
the lin ⊥ lin configuration of the laser beams.

ferred as Sisyphus cooling, can be easily understood in the case of a lin ⊥ lin

configuration of the laser beams, that is, the two counterpropagating laser
beams have linear, mutually orthogonal polarization. In this case, the overall
electric field carried by the laser light is:

E(r, t) = E0x̂ cos(ωLt− kLz) + E0ŷ cos(ωLt + kLz)

= E0[(x̂ + ŷ) cos ωLt cos kLz + (x̂− ŷ) sin ωLt sin kLz]
(1.26)
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Figure 1.3: Energy of the ground state sublevels of a Jg = 1/2 atom in a
lin ⊥ lin laser fields configuration.

so the light polarization changes in space from circular to linear (see Fig.
(1.2)). Let us consider the atoms to have a ground and an excited state with
total angular momentum Jg = 1/2 and Je = 3/2 respectively. As shown
in figure (1.3), the two Zeeman sublevels of the ground state have different
energy depending on the local polarization of the laser field, and they cross
where the local polarization is linear. It can be shown that the maximum
probability for an atom to experience a photon absorption is when it is in
the higher energy sublevel. Every time an atom spontaneously decay to the
lower sublevel after an absorption, it loses the kinetic energy used to climb
the potential hill corresponding to the difference in energy between the two
ground state sublevels. Then the atom during its motion climbs again the
potential hill and the process is repeated. Averaged in time, this sequence
causes a cooling of the gas below the Doppler limit. In fact, the steady state
kinetic energy is of the order of few times the recoil energies Erec = ~k2

L/(2m),
where kL = 2π/λ is the light wavevector [23], leading to a temperature (for
87Rb) T ∼ 1 µK

1.4 The Magneto-Optical Trap

Cooling in optical molasses is based on the dependence of the detuning seen
by the atoms on their velocity (1.24). In order to trap the atoms, a good
strategy is to make this detuning dependent on the spatial position of the
atoms. This can be realized by use of a magnetic gradient b′. In a one
dimensional system this corresponds to having a magnetic field varying in
space: B = b′zx̂. Thus the Zeeman energy shift depends on the position of
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the atom:

∆EZ = µBgF mF b′z (1.27)

where µB is the Bohr magneton, gF is the Landé factor and mF is the x

component of the angular momentum. The energy shift (1.27) changes the
detuning seen by the atoms. Let us assume that two counterpropagating
circularly polarized laser beams create an optical molasses along the same
z axis. Referring to Fig. (1.4), the detuning for the σ(±) polarized beams
become:

∆∓ γvz ± µBgF mF b′z/~, (1.28)

hωL

σσ+ -

0 z
^

δ

Figure 1.4: Principle of a one dimensional MOT for a F = 0 → F ′ = 1
transition. The inhomogeneous magnetic field induces a space-dependent
shift of the Zeeman sublevels, producing a space-dependent force on the
atoms.

In order to understand how trapping occurs, let us consider the atoms to
have the ground state and the excited state with total angular momentum
Jg = 0 and Je = 1 respectively. The molasses laser beams become resonant
to the mJ = 0 → mJ = 1 transition for z < 0 and to the mJ = 0 →
mJ = −1 transition for z > 0. If the polarizations of the two molasses
beams are circular: σ+ and σ−, the atoms absorb photons only when they
move away from the B = 0 position, and only from the molasses beam that
counterpropagates with respect to their motion. This effect can be extended
to a three dimensional system with three counterpropagating pairs of laser
beams, resulting in a force exerted to the atoms:

F = (−γv + mω2r) (1.29)
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where:

γ = −~k2
LΓ∆

Ωr

(Γ2/4 + ∆2)2

ω2 =
µgF mF b′

m~kL

γ.

(1.30)

The atoms are then trapped around the B = 0 point. This trap is known as
Magneto-Optical Trap (MOT)[24].

1.5 Evaporative cooling

In order to achieve Bose-Einstein condensation it is necessary to cool the
atomic sample far below the temperature reachable in an optical molasses.
The technique used in the first observations of Bose Einstein condensation

Figure 1.5: The evaporative cooling process: the edges of the thermal velocity
distribution of the atoms are cut by expelling the atoms with higher energy.
The system then re-thermalizes and the final temperature is lowered

[7][8] was evaporative cooling [25]. The idea is to expel from the whole system
the atoms with the highest energy, i.e., by ”cutting” the edges of the thermal
velocity distribution, as shown in fig. (1.5). The truncated distribution is not
in equilibrium, and the remaining atoms undergo a process of thermalization
that creates again a Boltzmann distribution of the energies. In order to have
an efficient evaporation that lowers the temperature of the system as much
as possible with the minimum loss rate, the energy of the system must be
varied adiabatically with respect to the thermalization process. The latter
depends on the elastic collision rate, so a dense atomic sample is needed for
fast evaporation. However, it must be noted that excessive densities cause
strong atom losses from the sample due to inelastic and three body collisions.

In order to realize evaporative cooling experimentally, there must be a
physical parameter that can be varied in order to expel the most energetic
atoms from the trap. This can be done in several ways; in our experiment
evaporative cooling was realized both in a magnetic and in an optical trap.
These two setup will be explained subsequently.
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1.6 The TOP trap

All the optical processes of trapping and cooling have a lower limit corre-
sponding to the recoil energy Erec = ~2k2

2m
gained by an atom in the absorp-

tion of a photon. Cooling below this limit can be achieved by performing
evaporative cooling in an all-magnetic trap. The easiest way for trapping
neutral atoms without the use of light-assisted processes is to implement a
quadrupole trap. A spherical quadrupole field creates a magnetic gradient
resulting in a field:

~B = 2b′zẑ − b′yŷ − b′xx̂ (1.31)

where ẑ is called strong axis because of the factor 2. The potential is: U =
−~µ ~B, and the energy of the atoms is then:

E = µBgF mF B. (1.32)

Hence the atoms in a state with gF mF > 0 are trapped, because they will
have a minimum of the energy in the origin, where B = 0. Note that it is not
possible to trap atoms having a state such that gF mF < 0 because it would be
necessary to have a local maximum of the magnetic field, which is forbidden
by Maxwell’s laws. During their motion, the atoms see the magnetic field
always changing in modulus and direction; their magnetic dipole must follow
the magnetic field in order to avoid spin flips that would cause a change of
the atomic state from trapped to untrapped. This condition is satisfied if
the variation of the magnetic field experienced by the atoms is less than the
Larmor frequency ωLar:

dθ

dt
<

µB

~
= ωLar, (1.33)

where θ is the orientation of B. In the B = 0 point the derivative of the mag-
netic field has a discontinuity, therefore the condition (1.33) is not satisfied,
causing spin flips and then a loss of atoms from the trap.

In the Time-Orbiting-Potential (TOP) trap [26] the losses of the quadru-
pole trap are avoided by use of a rotating magnetic bias field BTOP added
to the quadrupole field (see fig. 1.6). The B = 0 point moves, because of
the rotating bias field, in a trajectory called the circle-of-death, because the
atoms that cross it undergo a spin flip and then are lost from the trap. The
radius of the circle of death is rcod ∝ (Btop/b

′)1/2. The displacement speed of
the B = 0 point must be such that the atoms cannot follow its trajectory; the
potential felt by the atoms then corresponds to the instantaneous potential
integrated in time:

U(x, y, z) =

∫
U(x, y, z, t)dt (1.34)
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Figure 1.6: The TOP trap. A rotating magnetic bias field causes a continuous
displacement of the B = 0 point in order to avoid spin flip losses at the center.

It can be shown that the shape of the integrated potential is, close to its min-
imum, parabolic, with its minimum Bmin 6= 0, and with average frequency:

ωho = (ωxωyωz)
1/3 =

b′√
BTOP

√
µ

m
(1.35)

1.7 The dipolar trap

An alternative method for trapping cold atoms without using spontaneous
emission processes is to exploit the dipolar force that emerges when the atoms
are illuminated by a laser beam [27]. This force emerges due to the electric
field carried by light:

E(r, t) = Eωe−iωt + E−ωeiωt (1.36)

where E−ω = E∗
ω. The resulting potential experienced by the atoms is:

U = −dEω (1.37)

where d is the atomic electric dipole. Because of the potential (1.37), the
ground state of the atoms changes as:

∆Eg =
∑

e

〈g|dEω|e〉 1

Eg − Ee + ~ω
〈e|dE−ω|g〉, (1.38)

where the sum is over all the excited states. In fact in Eq. (1.36), the
classical field Eωe−iωt corresponds to the absorption of a photon in a quantum
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Figure 1.7: Dipolar confinement along the gravity (z) direction created by a
laser beam with λ = 1030 nm, w0 = 46 µm and of power P = 1.1 W. Vdip is
the resulting trap depth.

mechanical treatment, while the field E−ωeiωt corresponds to the emission of
a photon.

After some calculations, Eq. (1.38) becomes:

∆Eg = −1

2
α(ω)〈E2(r, t)〉t (1.39)

where E = Eε̂, 〈·〉t corresponds to a time average and α(ω) is the atomic
polarizability:

α(ω) =
∑

e

2(Ee − Eg) |〈e|dε̂|g〉|2
(Ee − Eg)

2 − (~ω)2 . (1.40)

The change in energy of the ground state of the atoms can be seen as being
due to the presence of an effective potential Veff . Therefore, the atoms
experience a force:

F = −∇Veff = −1

2
α(ω)∇〈E2(r, t)〉t. (1.41)

It is important to note from Eq. (1.40) that the dipolar force (1.41) is
attractive if ~ω < Ee − Eg, i.e. the optical field is red detuned, while it
is repulsive if ~ω > Ee − Eg, i.e. the optical field is blue detuned. In the
description given above, the effect of spontaneous emission has been ignored.
This approximation is valid in the limit that the detuning of the optical field
is much larger than the frequency of the atomic transition:

|∆| = |~ω − (Ee − Eg)| À (Ee − Eg). (1.42)

Therefore, within this approximation the light excites the atoms to virtual
energy levels, and then the atoms decay to the ground state with a stimulated
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emission process. The absence of spontaneous emission processes, i.e., photon
scattering, makes the heating of the sample negligible.

Therefore, a red detuned optical laser creates a trap for the atoms. This
trap is usually called dipolar trap. Its depth in Kelvin is:

Vdip =
~Γ2

π∆IsatkB

P

w2
0

(1.43)

where P is the power of the laser beam and w0 its waist. The radial frequency
of the dipolar trap is:

ωdip =

√
2Γ2~

π|∆|mIsat

√
P

w2
0

. (1.44)

1.8 The Experiment

The first step of our experiments is the production of Bose-Einstein con-
densates of 87Rb atoms. This is an alkali element, i.e., of the group 1A
in the Mendeleev periodic table, with the valence electron in the 52S1/2 or-
bital. The lowest energy transitions are hence to the 52P1/2 and to the 52P3/2

levels, usually called the D1 and D2 lines, centered at 795 nm and 780 nm
respectively. The optical transition we used to cool the atoms was the D2
line, whose spectrum is shown in figure (1.8), where the hyperfine levels of
the 52S1/2 and 52P3/2 states are called F and F ′ respectively. The ground
state hyperfine level used in our experiment was |F = 2〉. Therefore, the
frequency of the light used for the optical molasses and the MOT was near
resonant to the transition |F = 2〉 → |F ′ = 3〉, the so-called laser cooling
transition, and hence only the atoms in the |F = 2〉 level were trapped in the
MOT. However, this laser cooling transition is not closed: the atoms can be
off-resonantly excited to the |F ′ = 2〉 level, then decaying to |F = 1〉. This
effect would cause a depletion of the number of atoms in the MOT. In order
to circumvent this problem, a light near resonant to the |F = 2〉 → |F ′ = 2〉
transition was added to the laser cooling light, hence re-pumping the atoms
in the |F = 1〉 level to the |F = 2〉 one. This light is called re-pumper.

1.8.1 Laser sources

The light for the laser cooling and the re-pumper was provided by two master
lasers, whose output was then optically amplified in order to have the power
needed for the experiment. A master laser was composed of a commercial
laser diode, whose natural linewidth was of the order of few MHz. In order
to reduce the linewidth, the diode output was sent to a grating creating an
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Figure 1.8: Scheme of the D2 line of 87Rb

external cavity with its first order of diffraction. At the back of the grating
a piezo electric transducer was placed to vary the cavity length. The diode
and the grating were placed in a home-made mount, stabilized in temperature
with two Peltier elements with more than 0.01K of precision. Moreover, the
current was supplied by external batteries rather than power supplies in order
to avoid any coupling to the usual line noise.

The stability of the frequency of the master laser output is a crucial point
in a cold atoms experiment. This goal was fulfilled by locking the laser
frequency to an atomic transition. This was realized by sending a small
portion of the laser output to an optical circuit. There, two beams were
sent almost counterpropagating to a cell containing thermal vapor of Rb,
one of them being stronger than the other. This beam (pump) saturated the
transition, so it was possible to measure the saturated absorption spectrum
by measuring the power of the weaker beam with a photodiode. Its output
was used to create an error signal then sent to the piezoelectric transducer.

The output power of the two master lasers was ∼ 20 mW. The re-pumper
light was then amplified by injecting a slave laser diode, whose output power
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Figure 1.9: Scheme of the vacuum chamber. The magnetic field coils and
both the 2D and 3D MOT laser beams are not shown.

was ∼ 55 mW. The master used for generating the laser cooling light was
amplified in two stages: the master light injected a slave diode laser whose
output was in turn used to inject a MOPA amplifier, whose output power was
up to 600 mW. This light was used for all the purposes of the experiment, by
splitting it and varying its frequency with acousto-optic modulators (AOMs).

1.8.2 The vacuum chamber

The apparatus was composed of two quartz vacuum cells placed at opposite
sides of a central body. This was made of steel and internally devided by
a septum (see Fig.(1.9)) that divided the vacuum chamber into two parts,
connected only by a hole placed in the center of the internal septum, where
a carbon tube was placed. The two cells had a square section and different
sizes: (49 × 49 × 100) mm and (24 × 24 × 90) mm. Two ionic pumps were
connected with the two parts of the vacuum chamber, in order to have a
pressure ∼ 10−9 mbar in the big cell and ∼ 10−11 mbar in the science cell
, where the experiments are performed (for this reason called the ”science
cell”).

The Rb atoms were provided by two pairs of dispensers: electric resistances
whose surface was covered with Rb, which was emitted when an electric
current flowed in them. The dispensers were placed close to the big cell, where
a two dimensional MOT was created by two pairs of counterpropagating laser
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beams circularly polarized with waist w0 = 12 mm. These were detuned by
∆ = −2.4Γ from the |F = 2〉 → |F ′ = 3〉 transition (Γ = 6.065 MHz is the
natural linewidth of the |F ′ = 3〉 level), and a repumper beam was added to
them. The 2D MOT magnetic gradient was b′ = 11 G/cm.

In the 2D MOT the atoms were collected in a cigar shaped cloud, whose
long axis was parallel to the carbon tube. In the same direction, a near
resonant laser beam (the ”pushing beam”) was sent in order to push the
atoms from the 2D MOT cell to the science cell through the carbon tube.
The corresponding atomic flux was collected by a 3D MOT in the science
cell.

1.8.3 The 3D MOT

The 3D MOT was created by splitting a ∼ 30 mW beam into six beams of
waist w0 = 8 mm. The beams were directed to the cell as three mutually
orthogonal counterpropagating pairs. A repumper light was added to two of
these three pairs. The 3D MOT beams were detuned by ∆ = −2.5 Γ from
the |F = 2〉 → |F ′ = 3〉 transition. The magnetic gradient for the MOT was
b′ = 6.6 G/cm.

The flux of atoms from the 2D MOT led to a continuous loading of the 3D
MOT. This loading process was counteracted by an atoms loss process that
was mainly due to collisions with background atoms. After ∼ 90 s of loading
the MOT reached a stationary size, and up to 2 · 109 atoms were trapped.

A portion of the light scattered by the atoms was collected by a lens and
sent to a photodiode, whose signal was proportional to the number of atoms
in the MOT. This reference was used in order to start the experiments with
clouds of roughly the same size. Loading times of 25 − 40 s were usually
sufficient in order to trap enough atoms before starting sub-Doppler and
evaporative cooling.

1.8.4 The magnetic field

For trapping, cooling and displacing the atomic cloud several magnetic fields
were used in the experiment.

• The quadrupole field. This was created by six cylindrical pancake-
shaped coils placed along the direction of gravity z, that was hence
the strong axis with the largest field gradient. In order to create a
spatial magnetic gradient, the three coils above the science cell were
in anti-Helmholtz configuration with respect to the three coils below
the science cell (see Fig.(1.10)). The coils were made of copper and
were covered with an insulating sock. The wires used for the coils
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Figure 1.10: Schematic diagram of the mount of the coils for the magnetic
gradient (shaded) and the rotating bias field (white). The science cell is at
the center of the coils.

were hollow, and a continuous water flow inside them cooled the coils.
The resulting magnetic gradient had cylindrical symmetry so that its
modulus in the z direction (the strong axis) was 2b′, while in the x, y

directions it was b′. Magnetic gradients up to b′ = 366 G/m were
created when the current was 226 A. This value was reached in 4 ms,
while the time for switching off the field was of the order of 10 µs.

• The rotating bias field. This field BTOP was created by two pairs of
coils: a pair of circular coils that were placed in between the quadru-
pole coils, and a pair of square coils in the orthogonal direction (see
Fig.(1.10)), both in Helmholtz configuration. The current flowing in
each pair oscillated in time, and the pairs were mutually dephased
by π/4: Icircular = ITOP sin(ωt), Isquared = ITOP sin(ωt + π/4), with
ω = 10 KHz. The maximum value of the field was BTOP = 38 G. The
cooling of the coils was assured by their contact with the water-cooled
quadrupole coils.

• The compensation coils. These were three muthually orthogonal pairs
of coils in the Helmholtz configuration. The current flowing in these
coils was of the order of 100 mA. The magnetic field created by these
coils was used to compensate the external fields, such as the earth’s
magnetic field and the magnetic field created by the ion pumps.

• The extra-compensation coil. This was a single coil placed above and
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parallel to the quadrupole coils. Its role was to create a magnetic field
that was varied during the experiment in order to be able to change
the position of the cloud along the z-axis and hence to minimize the
losses when the trap was changed, e.g., when passing from the TOP to
the dipolar trap.

1.9 The experimental sequence

After that ∼ 109 atoms were trapped in the MOT, sub-Doppler and evap-
orative cooling were used in order to create a Bose Einstein condensate,
which was the starting point for all the experimental investigations reported
in this thesis. The different stages for driving the atoms through the BEC
phase transition constituted a temporal sequence during which several exper-
imental parameters (laser frequency and intensity, magnetic fields etc.) were
changed. Every single experiment performed was destructive, so the whole
process had to be restarted from the 3D MOT loading.

The experimental sequence was controlled by a computer, which controlled
in time (within a resolution of 10 µs) all the experimental parameters. In
the following, the experimental sequence for the creation of a Bose-Einstein
condensate is listed in chronological order.

• The compressed MOT (C-MOT). During this phase the size of the
MOT was reduced by decreasing the magnetic gradient (to b = 2.6 G/cm)
and increasing the detuning (to ∆ = −4.8 Γ) of the laser. This phase
was 200 ms long. This compression was done in order to optimize the
loading into the TOP trap.

• The Molasses. During this phase, which was 6 ms long, the magnetic
gradient was switched off and the detuning of the laser increased to ∆ =
−5.0 Γ. The sample was cooled to the sub-Doppler regime, reaching at
the end of the stage a temperature around 15 µK. Moreover, during the
molasses phase the capacitors of the quadrupole field power supply were
charged, in order to reduce the rising time of the magnetic gradient in
the TOP trap.

• Optical pumping. This phase consisted of three light pulses that pumped
the atoms into the |F = 2,mF = 2〉 state. The light frequency was res-
onant with the |F = 2〉 → |F ′ = 2〉 transition, and the quantization
axis was defined by the rotating bias field BTOP that was switched on
with amplitude BTOP = 3.8 G. In order to pump the atoms into the
|F = 2,mF = 2〉 state, the selection rule for the light-induced atomic
transition had to be ∆mF = +1. This condition was realized when the
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light was circularly polarized σ(+) and the magnetic field was pointing
in the same direction as the light wavevector. Because the direction
of BTOP rotated with frequency 10 KHz, the optical pumping was re-
alized by sending to the atoms three light pulses of 10 µs duration and
synchronized with the BTOP field in order to illuminate the atoms only
when BTOP was pointing in the desired direction.

• The TOP trap. At the end of the optical pumping stage the atoms were
loaded into the TOP trap. This was done by increasing the magnetic
gradient in 1 ms to b′ = 73 G/cm, while the rotating bias field was
turned on at its maximum value, in order to maximize the circle of
death. After the loading, the trap frequencies were first increased in
order to enhance the collision rate, and hence to create the conditions
for an efficient evaporative cooling. The evaporative cooling was then
realized by reducing the circle of death. At the end of the process the
cloud contained ∼ 6 · 105 atoms at a temperature T = 2.5 µK.

• The Dipolar trap. After the evaporative cooling in the TOP trap,
the atoms were loaded into the dipolar trap. This was created by
use of a Yb:YAG laser, with a maximum power of 5W and emitting
at λ = 1030nm, i.e., far off-resonance from the Rb transitions. Its
output was split into two beams, and each of them was sent to an
acousto-optic modulator, and then to the atoms. There the two beams
intersected at an angle ∼ 90◦, creating hence an optical trap for the
atoms. After passing through the science cell, each beam was collected
and sent to a photodiode, whose signal was sent to a PID circuit. In
this circuit the photodiode signal was compared to a reference from
the computer, and the PID output was then used to control the power
of the radiofrequency input of the corresponding AOM and hence the
power of the dipolar beam. By these feedback circuits the power of
each beam was controlled by the computer, and the noise in the beam
powers was reduced to a signal-to-noise ratio S/N ∼ 10−4. The dipolar
beams had a maximum power of 1.2W each, and were focalized to the
atoms with a waist w0

∼= 46 µm. The corresponding maximum depth
of the optical trap was 7 µK, while the maximum mean frequency was
ω̄ = 490 Hz.

1.9.1 Bose-Einstein condensation

Once the atoms were loaded into the dipolar trap, evaporative cooling started
in this trap as well. This was performed by ramping down in time the power
of both the dipolar beams, so both the depth and the frequencies of the opti-
cal trap were reduced. The overall ramp was formed by four linear ramps of
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decreasing gradient. This cooling stage was 2.5 s long, and at its end a Bose
Einstein condensate of up to 105 atoms was created. Fig.(1.11a)) reports
the CCD image of a sample formed by a thermal part over which a conden-
sate fraction emerges. The density profile reported in Fig. (1.11 a)) shows
the typical bimodal distribution (see Fig.(1.1)) in which the Bose Einstein
condensate emerges as a density peak surrounded by a broader distribution
of thermal atoms. Fig. (1.11 b)) shows the CCD image of an almost pure
condensate.

Figure 1.11: Absorption images of the cloud at the end of the evaporative
cooling in the dipolar trap. The lines correspond to the density profiles. a)
Image of a cloud in which ∼ 30% of the atoms are condensed. The line over
the density profile is a fit with a sum of two gaussian functions. b) Image of
a cloud which is an almost pure BEC.

Imaging the cloud

At the end of the evaporative cooling the atoms were released from the trap
and allowed to expand in free space, in order to decrease the density of the
cloud. After a certain time (called time of flight) of the order of∼ 10−20 ms a
resonant light pulse of 10 µs duration was sent to the atoms and then collected
by a CCD camera, in which the shadow of the atomic cloud was imaged. This
signal was proportional to the column density of the condensate. The CCD
camera was purchased from DTA, featuring a Kodak Chip (KAF 1400) with
pixel size 6.8 × 6.8 µm, whose quantum efficiency was 40% at 780 nm. In
front of the CCD camera an objective (Rodenstock Aporadagon) of focal
length f = 75 mm and f-number f/# = 4.5 was placed. The objective
was optimized for 1:2 reduction, but it was used reversed in order to have a
magnification of ∼ 2. The system was focused by minimizing the apparent
size of small atomic clouds imaged on the CCD. The calibration of the image
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size was done by performing an experiment of free fall of the condensate
under gravity.
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Chapter 2

Optical lattice

The experiments described in this thesis were performed on Bose Einstein
condensates in a periodic potential. This was created optically by the inter-
ference of two laser beams, far detuned from the atomic transitions. This
chapter gives both the theoretical and the experimental background of the
physical system that forms the basis of our experiments.

2.1 Introduction

At the end of the 1970s, the technological developments in experimental laser
physics allowed to realize experiments on the interactions between atomic
beams and standing waves created by the interference of laser beams [28].
The study of the interactions between atoms and light of frequency near
resonant to some atomic transition eventually led to the realization of laser
cooling [4, 5, 6].

On the other hand, the study of the interactions of atoms and far off-
resonant light also paved the way towards ”atom optics” [9, 29]. Within
this subject, many predicted effects were observed using atomic beams as
a sample [10, 30]. This interest was renewed once cold atomic clouds were
realized, and the periodic potentials created by light interference (usually
called optical lattices) were used to observe basic phenomena of solid state
physics [31, 32, 33].

More recently, Bose-Einstein condensates were loaded into optical lattices
[11]. The coherence of the BECs permitted to study more accurately solid
state physics effects [12], as well as the physics of strongly interacting systems
[34]. Within this research field, the emergence of phase transitions such as the
superfluid-Mott insulator [35] led to the use of optical lattices for studying
the physics of phase transitions.
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2.2 Atom optics

A standing wave is created by the interference of two laser beams at frequency
ωL = 2πc/λ. If the two beams propagate along the x axis and have the same
polarization ε̂, the resulting total electric field carried by the light is

E(r, t) = E0 sin(kLr + ωLt)ε̂ + E0 sin(kLr − ωLt)ε̂, (2.1)

where E0 is the amplitude of each field, and kL = 2π/λ the light wavevector.
Under the hypothesis that the frequency of the laser beams is far off-resonant
from the closest atomic transition at frequency ω, i.e. |∆| = |ωL − ω| À ω,
then spontaneous emission can be neglected. Therefore, the stimulated emis-
sion process in which j photons are transferred from one laser beam to the
second one causes a change of the atomic momentum of ∆p = 2j~kL [36]. In
this atom optics approach the atomic states are plane waves that experience
Bragg diffraction from the standing wave. In a j-th order diffraction process,
energy conservation reads:

~2p2

2m
=
~2(p + ∆p)2

2m
=
~2(p + 2j~kL)2

2m
. (2.2)

The condition (2.2) leads to the atom optics analogue of the Bragg law:

p = −j~kL. (2.3)

Let us consider a first-order diffraction process in which the initial atomic
momentum is ~kL. The state of the system after a time t is:

Ψ(x, t) = c(−1, t)| − 1, g〉+ c(0, t)|0, e〉+ c(1, t)|1, g〉 (2.4)

where |n, g(e)〉 is the free particle state of the ground (excited) level with
momentum n~kL. Under the dipole approximation, the Hamiltonian of the
system is [29]:




~ω0 −ie−iωLt~Ωr/2 ie−iωLt~Ωr/2
ieiωLt~Ωr/2 −~ωrec 0
−ieiωLt~Ωr/2 0 ~ωrec


 , (2.5)

where:

Ωr = ℘E0/~ single beam Rabi frequency
℘ electric dipole moment
ωrec = Erec/~ recoil frequency
Erec = ~2k2

L/2m recoil energy

If at t = 0 the atomic momentum is ~kL, so that the initial state is:

ψ(x, t = 0) = |1, g〉, (2.6)
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Figure 2.1: First order Bragg transition. The atom initially in the state |1, g〉
absorbs a photon, thus reaching the virtual level represented by the dotted
line. A subsequent stimulated emission of one photon into the other beam
forming the standing-wave field takes the particle to the level |−1, g〉.

then the state of the system at time t is:

c(−1, t) = ie−iΩ
(2)
r /2 sin

(
Ω

(2)
r t

2

)

c(0, t) = 0

c(1, t) = e−iΩ
(2)
r /2 cos

(
Ω

(2)
r t

2

)
,

(2.7)
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where the two photon Rabi frequency Ω
(2)
r is given by:

Ω(2)
r =

Ω2
r

2∆
. (2.8)

The atomic momentum oscillates in time from ~kL to −~kL, and the proba-
bility of finding the atoms in the initial state is thus:

P (p = ~kL, t) = sin

(
Ω

(2)
r

2
t

)
(2.9)

This process is known as Pendellösung oscillation [37] and it is the analogue
of the Rabi oscillations in a two-level system.

2.3 Solid state approach

The effects of a standing wave on an atomic sample can be studied by use
of the dressed-atom approach [21], for which the light interaction results in
a change of the atomic adiabatic levels. Let us consider a system with one
ground state |g〉 and one excited state |e〉. The Hamiltonian reads:

H =

( −~∆ ~Ωr sin(kLx)
~Ωr sin(kLx) 0

)
, (2.10)

where x is the mean value of the position and can therefore be considered
as a parameter. If one solves the problem by adiabatically eliminating the
excited state |e〉, the energy of the ground state is:

Eg = ~
Ω2

r

∆
sin2(kLx). (2.11)

The eigenvalue (2.11) can be considered as a conservative potential expe-
rienced by the atoms in the ground state. In the case of far off-resonant
light, the population of the excited level is infinitesimally small, therefore
the Hamiltonian of the system is:

H(x) =
p2

2m
+

V0

2
cos(2kLx), (2.12)

where

V0 = ~
Ω2

r

∆
= 2~Ω(2)

r (2.13)

is the lattice depth, usually expressed in units of recoil energies Erec =
~2k2

L/(2m).
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Figure 2.2: a) the dispersion law for the free particle (dashed line) is plotted
together with the energy-vs-momentum curve in the presence of the periodic
potential (continuous line): the shaded regions correspond to energy gaps;
b) the energy spectrum is folded into the first Brillouin zone

Before solving the eigenvalue problem of the Hamiltonian (2.12), let us
reanalyze the first order Bragg scattering process within this picture. As
stated in the previous section, if the atomic momentum is ~kL the evolution
of the atomic wavefunction involves only the states with momentum ±~kL.
In the base formed by the plane waves |kL〉, | − kL〉, the Hamiltonian (2.12)
reads:

H =

(
Erec V0/4
V0/4 Erec

)
. (2.14)

The eigenvalues and eigenfunctions of this Hamiltonian are:

E1(kL) = Erec − V0

4
; |ψ1,kL

〉 = 1√
2
(|+ kL〉 − | − kL〉)

E2(kL) = Erec + V0

4
; |ψ2,kL

〉 = 1√
2
(|+ kL〉+ | − kL〉). (2.15)

Let us call |ψ(t)〉 the atomic wavefunction. The initial condition is |ψ(t =
0)〉 = |kL〉, in which the plane wave |kL〉 can be expressed in terms of the
eigenvectors (2.15):

|kL〉 =
1√
2

(|ψ1,kL
〉+ |ψ2,kL

〉) . (2.16)
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The atomic wavefunction at time t is therefore:

|ψ(t)〉 =
1√
2
eiErect/~(e−iV0t/4~|ψ1,kL

〉+ eiV0t/4~|ψ2,kL
〉). (2.17)

The probability at time t that the atomic momentum has at the initial value
~kL is:

|〈+kL|ψ(t)〉|2 = sin2

(
V0

4~
t

)
, (2.18)

that is equal to the probability (2.9) that was found in the atom optics
picture.

Apart from demonstrating that the Hamiltonian (2.12) describes this phys-
ical system as the atom optics picture does, the previous calculations allow
us to observe one of the key features of the energy spectrum of this problem.
The Hamiltonian (2.14) has two eigenvalues E1(kL) and E2(kL) that are not
degenerate, but have a difference in energy ∆E1 = E2(kL)−E1(kL) = V0/2.
This corresponds to an energy gap in the dispersion law, because a region of
forbidden energies emerges. Energy gaps of different sizes emerge in the dis-
persion law periodically with period ~kL (see Fig.(2.2)). The dispersion law
is therefore divided into branches, called energy bands, that can be labeled
by an index n: in first order Bragg scattering the two eigenvalues (2.15) cor-
respond to the first (n = 1) and the second (n = 2) band. The energy bands
can be folded into the region [−~kL, ~kL] of momentum space, called first
Brillouin zone, and the momentum p is substituted by the quasimomentum
q = p + ~K, where K = jkL, j integer, is a generic reciprocal lattice vector.

The band structured dispersion law of an atom in an optical lattice recalls
the dispersion law of an electron in a crystal. In fact, as in this physical
system, the Hamiltonian (2.12) is periodic in space: H(x) = H(x + dL),
where dL = λ/2 is the lattice constant. Therefore the Bloch theorem holds
[38], and the eigenstates of the Hamiltonian (2.12) are of the form:

|ψn,q(x)〉 =
∑

q

eiqx|un,q(x)〉 (2.19)

where the functions |un,q(x)〉 are periodic in space: |un,q(x)〉 = |un,q(x +
dL)〉. In the case of a sinusoidal potential as in Hamiltonian (2.12), the
wavefunctions (2.19) are the Mathieu functions [39]. It is interesting to point
out the link between the atom optics and the solid state approach. This can
be done by expanding the periodic functions |un,q(x)〉 in the Fourier series:

|un,q(x)〉 =
∑

j

un,q(j)e
i2jkLx. (2.20)
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The exponential terms in (2.20) correspond to plane waves of momentum
2j~kL:

|un,q(x)〉 =
∑

j

cn,q|2jkL〉. (2.21)

Therefore the eigenfunctions (2.19) can be written as a sum of plane waves:

|ψn,q〉 =
∑

j

cn,j(q)|q/~+ 2jkL〉. (2.22)

The analogies between the problem of an atom in an optical lattice and
an electron in a crystal suggest that solid state physics can be explored in a
different framework. In fact, with respect to solid state experiments, there
are several advantages in studying solid state physics using a condensate in an
optical lattice. First, the optical lattice can be easily manipulated: its depth
and lattice constant can be varied, it can be switched on and off in a short
time, and different lattice structures can be implemented [40]. Moreover, an
optical lattice has no impurities, resulting in an increase of the mean free
path. Finally, the dynamics of the atoms can be observed both in real and
momentum space, and the role of nonlinearity in the system can be explored.

2.4 The tight-binding approximation

In the previous section the Mathieu functions |ψn,q(x)〉 were expanded in the
basis of the plane waves |q/~+2jkL〉. Another full basis of the system is given
by the Wannier functions. The Wannier function |φn(x− xl)〉 is centered at
the l-th lattice site of coordinate xl, and it is defined as the Fourier transform
of the Mathieu function [38]:

φn(x− xl) =
1

2~kL

∫ ~kL

−~kL

dqe−ildLqψn,q(x). (2.23)

The Wannier functions are localized, and Wannier functions centered at dif-
ferent lattice sites are orthogonal:

〈φn(x− xl)|φn(x− xj)〉 = δl,j. (2.24)

Because the Wannier functions form a complete set, the Mathieu functions
can be expanded in this basis:

|ψn,q(x)〉 =
∑

l

cl|φn(x− xl)〉 =
1√
N

∑

l

eildLq|φn(x− xl)〉. (2.25)

The Hamiltonian (2.12) can be expressed in the Wannier basis as well. The
Hamiltonian matrix elements are:

Hl,j = 〈φ1(x− xl)|H|φ1(x− xj)〉, (2.26)
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where for simplicity we restricted the analysis to the fundamental band, i.e.,
n = 1. In the case of a deep lattice one can neglect all the interactions
between lattice sites that are not nearest neighbors:

Hl,j = 0 for j 6= l, l ± 1. (2.27)

This is a tight binding approximation that makes the Hamiltonian matrix
tri-diagonal. The terms of the principal diagonal of the matrix are:

Hl,l = 〈φ1(x− xl)|H|φ1(x− xl)〉 = E0, (2.28)

while the off-diagonal terms are:

Hl,l±1 = 〈φ1(x− xl)|H|φ1(x− xl±1)〉 = γ. (2.29)

The off-diagonal terms connect neighboring lattice sites. The physical process
that is behind these connections is the inter-well tunneling. This point will
be cleared when the Bose-Hubbard model will be introduced. The dispersion
law for the fundamental band can be calculated by use of the expansion of
the Mathieu function for n = 1 in the Wannier basis (2.25) [38]:

E1(q) = 〈ψ1,q(x)|H|ψ1,q(x)〉 = E0 + 2γ cos(qd/~). (2.30)

2.4.1 The Bose-Hubbard model

In 1998 Jaksch et al. [41] proposed to use a tight-binding-like approximation
to write an Hamiltonian for a condensate of N interacting bosons loaded
in a deep lattice. The starting point is the many-body Hamiltonian for the
Bose-field operators:

H =

∫
d3rΨ̂†(r)

(
− ~

2

2m
∇2 +

V0

2
cos(2kLx)

)
Ψ̂(r)+

+
1

2

4πas~2

m

∫
d3rΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r),

(2.31)

where Ψ̂(r) is the Bose field operator in a three dimensional space of coor-
dinate r = (x, y, z), and the 1D optical lattice is along the x direction. The
3D Hamiltonian (2.31) is separable in three 1D Hamiltonians. In the y, z

directions the Bose-field operator can be approximated by a single particle
wavefunction Φ(y, z) as shown when the Gross-Pitaevskii equation was de-
rived. In the x direction, the Bose field operator can be expanded in terms
of the boson creation and annihilation operators a†l , al at the single lattice
site:

Ψ̂(†)(x) =
∑

l

a
(†)
l φl(x− xl) (2.32)
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where the amplitude of each term is given by the corresponding Wannier
function. The expansion (2.32) can be now substituted into the Hamiltonian
(2.31). If, as in the tight binding approximation, only the interactions be-
tween next neighboring sites are considered, then the Hamiltonian along the
x axis is:

H = −J
∑

〈l,j〉
a†l aj +

U

2

∑

l

nl(nl − 1) (2.33)

where:

• the sum 〈l, j〉 is over nearest neighbor sites

• nl = a†l al is the number operator that counts the number of atoms in
the n-th site

• J =
∫

dxφ(x − xl)
(
− ~2

2m
∇2 + V0

2
cos(2kLx)

)
φ(x − xj) is the hopping

matrix element that considers the tunneling from one lattice site to a
neighboring one. J is equal to the off diagonal term γ (2.29) of the
Hamiltonian that was found in the tight binding approximation.

• U = 1
2

4πas~2
m

∫
dx |φ(x)|4 is the interaction energy of two atoms occupy-

ing the same lattice site.

The Bose-Hubbard Hamiltonian (2.33) expresses therefore that the dynamics
of cold atoms in a deep lattice depend only on two parameters: the on-site
interaction U and the tunneling between lattice sites J . Their dependence
on the lattice depth V0 is [42]:

J =
4√
π

Erec

(
V0

Erec

)
exp

(
−2

√
V0

Erec

)

U =
8√
π

kasErec

(
V0

Erec

)1/4
(2.34)

The preceding formulas demonstrate how the evolution of an atomic sample
in an optical lattice can be controlled by just varying the lattice depth.
Experimentally, this can be done very easily by changing the power of the
laser beams creating the lattice. However, by changing the lattice depth both
U and J are varied at the same time. The interaction U can be controlled
independently by using a Feshbach resonance [43, 44], that allows to vary
the scattering length as. On the other hand, one can control independently
the tunneling parameter J by strongly driving the lattice. This technique
has been explored in an experiment described in Chapter 5.
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2.5 The lattice and a force

The flow of an electric current in a conductor is one of the fundamental
problems of solid state physics. Theoretically, this results in the problem
of a crystal Hamiltonian to which an external force is added. This same
physical system can be implemented in an experiment of cold atoms in an
optical lattice by applying a force F to the atoms.

One of the first solid state phenomena that was observed in an atomic
physics experiment were the Bloch oscillations [32]. In order to observe how
this effect emerges, let us start from the problem of an atom loaded into an
optical lattice and on which a force is exerted. The force leads to a linear
potential that must be added to the optical lattice Hamiltonian (2.12):

H = Hlattice + HF =
p2

2m
+

V0

2
cos (2kLx)− Fx. (2.35)

Let us assume that one atom is loaded in the fundamental band of an optical
lattice with initial quasimomentum q = 0, and to exert at t = 0 a constant
force F on the atom. At time t the atomic wavefunction is:

|ψ(x)〉t = exp

(
− i

~
(Hlattice + HF )t

)
|ψq=0(x)〉t=0. (2.36)

The exponential operator into Eq.(2.36) can be transformed in a product of
exponential operators by use of the Baker-Campbell-Hausdorff formula [45].
In this operator product, all the terms containing the momentum operator p

give no contribution. Therefore, Eq.(2.36) reduces to:

|ψ(x)〉t = exp

(
− i

~
Hlatticet

)
exp

(
− i

~
HF t

)
|ψq=0(x)〉t=0

= exp

(
− i

~
Hlatticet

)
exp

(
i

~
Fxt

)
|ψq=0(x)〉t=0

= exp

(
− i

~
Hlatticet

)
|ψq(t)(x)〉.

(2.37)

The state of the atom remains an eigenstate of the Hamiltonian Hlattice but
with quasimomentum changing in time according to

q(t) = Ft. (2.38)

In the more general case of a time dependent force F (t) Eq.(2.38) becomes:

q(t) =

∫
F (t)dt. (2.39)

Eq.(2.37) states that the evolution of the wavefunction of the atom cor-
responds to an evolution of its quasimomentum in momentum space. Let us
follow this evolution in the case of a constant force step by step:
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• At t = 0 the quasimomentum is q = 0 and the constant force F is
switched on.

• At t = ~kL/F the quasimomentum is q = ~kL, i.e., the atom is at the
first Brillouin band edge.

• The atomic quasimomentum jumps from q = ~kL to q = −~kL, while
the atom remains in the fundamental band.

• At t = 2~kL/F the quasimomentum is equal to its initial value: q = 0.

The quasimomentum is therefore periodic in time with period:

τB =
h

FdL

. (2.40)

τB is called Bloch time. The mean velocity of an atom in the |ψn,q(x)〉 state
is:

〈vn,q〉 =
1

~
dEn(q)

dq
. (2.41)

Therefore the time periodic evolution of the quasimomentum causes both
the mean velocity and the position of the atom to oscillate with a frequency
νB = τ−1

B . This effect is known as Bloch oscillations.
While predicted in the 1930s [46], Bloch oscillations were observed for the

first time only in the early 1990s in semiconductor superlattices [47, 48, 49],
because in natural crystals the Bloch time is much longer than the time of
scattering from crystal impurities. Later on, Bloch oscillations were observed
in cold atoms in an optical lattice [32, 50, 51] and, more recently, with use
of a Bose Einstein condensed sample [52].

It must be noted that in the derivation of the Bloch oscillations given
previously, it was assumed that during the time evolution atom always stayed
in the fundamental band. However, when a force is exerted on an atom loaded
into an optical lattice, at the band edge tunneling through the energy gap
to the upper band can occur. This inter-band tunneling will be discussed in
detail in the next chapter.

2.6 Experimental realization of an optical lat-

tice

This section is devoted to the description of how an optical lattice can be
implemented. First, the setup of the Pisa experiment is described. Then, the
problem of adiabatically loading a Bose-Einstein condensate into an optical
lattice is discussed. Finally, some experiments performed to measure the
lattice depth are presented.
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2.6.1 The setup

The optical lattice was created by crossing two (independent) laser beams.
The experimental setup is shown in Fig.(2.3). The lattice beams originated
from the same laser, a Master Oscillator Power Amplier (MOPA), purchased
from Toptica (model TA100). The laser output was single mode at a wave-
length centered around λ = 852.2 nm, and its power was up to 750 mW. The
laser beam passed first through an optical insulator in order to avoid any
back reflection that could affect the light mode. The beam was then split
by use of a λ/2 waveplate and a polarizing beam splitter. Each of the two
beams then created was sent to an acousto-optic modulator (AOM) (Crystal
Technologies) that diffracted the input beam and detuned it from its initial
frequency. Each AOM had its own radio-frequency (RF) source (Agilent
3325A and Stanford DS345). Both the AOMs were aligned in order to op-
timize the first order of diffraction and had RF input centered at 72 MHz.
Therefore the lattice beams were at the same frequency, apart from the cases
in which a detuning between them was voluntarily imposed. The zero-th
order diffracted light of one AOM was sent to a Fabry Perot cavity that
was used to monitor the single mode output of the laser. Each first order
diffracted beam was sent to a single mode, polarization preserving optical
fiber (OZ Optics). The optical setup described until now was mounted on a
different optical table than the one in which the vacuum chamber was placed.

Figure 2.3: Scheme of the experimental setup implemented in our laboratory
for the creation of an optical lattice.
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The optical fiber outputs were mounted at a distance of 18 cm from the
center of the cell, where the condensates were created. The power of each
beam at the output was up to 80 mW. In front of each fiber output a polar-
ization cube was placed in a rotating mount as a polarization filter. The two
beams were focused onto the atoms, and each beam had a waist of 110 µm
at the center of the cell. For each beam, a small portion of the beam that
was reflected by the cell was sent to a photodiode, whose signal was sent to
a PID circuit with a reference signal provided by the computer. The output
of the PID was sent to an attenuator that controlled the RF power at the
AOM input, and hence its diffraction efficiency. The PID circuits allowed
us to control the power of each lattice beam independently during the ex-
periment, and to reduce the light amplitude noise to a signal-to-noise ratio
S/N ∼ 10−4.

The optical lattice created by the intersection at an angle φ of the two
laser beams had lattice constant

dL =
λ

2 sin
(

φ
2

) . (2.42)

In particular, when the lattice beams were counterpropagating, dL = λ/2.

2.6.2 Adiabaticity of loading

Let us suppose that the lattice is suddenly switched on at t = 0 at a lattice
depth V0, and that the initial state of the BEC is a plane wave |p/~〉. The
plane waves are not eigenstates of the Hamiltonian of the lattice (2.12).
Therefore, the state of the atoms in the basis of the Bloch states |ψn,q〉 is:

|ψ〉t=0 =
∑

n

|ψn,q〉〈ψn,q|q/~〉 (2.43)

where q is the initial momentum p of the atoms in the first Brillouin zone.
The probability for the atoms to be in the |ψn,q〉 Bloch state is therefore
〈ψn,q|p/~〉.

However, in most of the experiments described in this thesis, the atoms had
to populate a single Bloch state instead of being in a superposition of many
Bloch states as in Eq.(2.43). This can be achieved by loading the lattice in a
time τon such that the atom wavefunction follows the instantaneous adiabatic
state. When this is the case the initial free particle state |p/~〉 is connected
to one Bloch state |ψn,q〉 whose band index n and quasimomentum q are such
that:

|p| = (n− 1)~kL + |q|. (2.44)
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The adiabatic condition can be expressed analytically by use of the adia-
baticity criterion [32]:

∣∣∣∣〈ψn′,q| d
dt
|ψn,q〉

∣∣∣∣ ¿
|En′ − En|

~
. (2.45)

Therefore the loading of the optical lattice is adiabatic if the condition (2.45)
holds for any Bloch state with n′ 6= n. However, the most restrictive condition
is for the closer band, that is for n′ = n ± 1. Let us suppose that we are
interested in loading the condensate in the |ψ1,0〉 state of the fundamental
band. Therefore, the loading will be adiabatic if the condition (2.45) holds for
n′ = 2, i.e., for the Bloch state of quasimomentum q = 0 in the first excited
band. In the limit of a shallow lattice, the gap between the fundamental and
the first excited state can be approximated with its value in the free particle
case: |En′ −En| ' 4Erec. Therefore the condition (2.45) can be written [50]:

d

dt

V0

Erec

¿ 32
√

2
Erec

~
. (2.46)

If the lattice is ramped up linearly in a time τon, the condition (2.46) reduces
to the following condition for τon:

τon À τad =
1

32
√

2ωrec

V0

Erec

(2.47)

where ωrec = Erec/~. For instance, for typical parameters in our experiment
such as dL = 426.1 nm, V0 = 5Erec the condition (2.47) becomes: τon À 5 µs.
It must be noted that the condition (2.47) was found for q = 0, i.e., for the
value of quasimomentum for which the gap between the fundamental and
the first excited band is maximum. In fact, the adiabaticity condition for
loading the atoms into the fundamental band becomes more restrictive when
q 6= 0. In particular, for |q| = ~kL the time τad diverges and the adiabatic
loading is impossible. This is true for every point in the band structure for
which the bands are degenerate in the free particle case.

The adiabaticity condition (2.47) is valid even for the time τoff in which
the lattice is switched off. In fact, if τoff ¿ τad the wavefunction of the
atoms will be formed by the plane wave decomposition, i.e., the Fourier
transform, of the wavefunction of the atoms in the lattice. On the other
hand, if τoff À τad the wavefunction of the atoms follow instantaneously the
adiabatic state, and hence if the wavefunction of the atoms in the lattice
was a single Bloch state, the wavefunction of the atoms when the lattice is
switched off is a single plane wave.

Depending on the loading time τon and on the time τoff , the behaviors of
the sample change [53]. The regimes realized in our experiments are listed
in the following.
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• τon, τoff ¿ τad. In this case the initial state of the atoms is a super-
position of many Bloch states, as in Eq.(2.43). Then, if the system is
allowed to evolve in time inside the lattice, each of these Bloch states
evolve with a different phase, and after a time t the state of the atoms
is:

|ψ〉t =
∑

n

e−iEn(q)t/~|ψn,q〉〈ψn,q|q/~〉. (2.48)

After a fast switching off of the lattice, the atomic wavefunction is the
Fourier transform of Eq.(2.48). Thus the probability for the atoms to
be in the state |p/~+ 2jkL〉 is:

Pp+2j~kL
=

∣∣∣∣∣
∑

n

e−iEn(q)t/~〈p/~+ 2jkL|ψn,q〉〈ψn,q|q/~〉
∣∣∣∣∣

2

. (2.49)

The probability (2.49) for p = ~kL and j = 0 corresponds to the
probability (2.9). Measurements in this regime can be used to measure
the lattice depth by exploiting the Kapitza-Dirac effect [10, 12].

• τon, τoff À τad. In this case the atomic wavefunction at the end of the
experiment is equal to the atomic wavefunction before the lattice was
switched on. Measurements in this regime were used in the experiment
to test the adiabaticity of loading.

• τon À τad, τoff ¿ τad. This is the regime of most of the measurements
performed in our experiments. The wavefunction of the atoms in the
lattice is one Bloch state |ψn,q〉, because of the adiabatic loading. On
the other hand, the atomic state observed after switching off the lattice
is the Fourier transform of |ψn,q〉. The probability for the atoms to be
in the |p/~+ 2jkL〉 state is:

Pp+2j~kL
= |〈p/~+ 2jkL|ψn,q〉|2 . (2.50)

2.6.3 Measuring matter waves in an optical lattice

In the experiments described in this thesis we observed the behavior of ultra-
cold atoms loaded into an optical lattice. In the measurements performed,
the condensate was detected by absorption imaging techniques. We used two
type of measurements to obtain information on the sample:

• In situ measurements. In these measurements the atoms were released
from the dipolar trap and from the optical lattice at the same time,
and the cloud was imaged immediately afterwards (i.e., after a time of
flight ttof such that the free expansion of the atoms was negligible). In
these measurements the sample was thus observed in real space.
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• Time of flight measurements. In these measurements the lattice and
dipolar trap were switched off as in the in situ measurements, but the
time of flight ttof was now such that the atomic wavefunction decom-
position in plane waves was visible. In fact, after that the atoms were
released from the lattice, each plane wave component of momentum p

in the lattice frame had velocity in the laboratory frame v = vlat+p/m,
where vlat is the final velocity of the lattice in the laboratory frame. Af-
ter a time of flight ttof the atoms displaced in an interference pattern in
which the distance between the different plane wave components was:

δx =
2~kL

m
ttof ∝ d−1

L . (2.51)

Each plane wave component is called also class of velocity. It is im-
portant to note that the decomposition in plane waves can be observed
only if the state of the sample is a coherent superposition of Bloch
states. If the phase coherence is broken, the interference pattern dis-
appears. This is the case, for instance, when the inter-well tunneling
is suppressed and the matter wave of each lattice site evolves indepen-
dently [54]. However, in this case the interference pattern can have a
revival if the sample is let evolve in the lattice for a time such that the
single site phases become equal all along the lattice.

2.6.4 Measurements of the lattice depth

The lattice depth was defined in Eq.(2.13) considering an atom as a two level
system. However, the actual energy spectrum of an atom is more compli-
cated. A full calculation gives:

V0 = ζ~Γ
(

I

Isat

)(
Γ

∆

)
(2.52)

where

ζ is a numerical factor (depending on the Clebsh-Gordan coefficients)
Γ is the line width
Isat is the single beam saturation intensity.

In our experiments, the lattice depth was always measured before the ac-
tual measurements were performed. We used different techniques, briefly
described in the following.

Rabi Oscillations

If the lattice is switched on suddenly, i.e., τon . τad, and the atoms are
loaded with quasimomenentum q = ~kL, the atomic wavefunction |ψ〉 is a
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superposition of the two Bloch states |ψ0,~kL
〉 and |ψ1,~kL

〉. In the plane wave
decomposition of |ψ〉, the time evolution of the wavefunction is a Rabi-like
oscillation between the initial state |kL〉 and the diffracted state | − kL〉 [55].
Eq.(2.9) gives the probability for the atoms to be in the initial state |kL〉.
By switching the lattice off abruptly, i.e., τoff . τad, we were able to observe
this oscillation by measuring the number of atoms N0 belonging to the class
of velocity vrec = ~kL/m and the number of atoms N1 belonging to the class
of velocity −vrec. The frequency ΩR of the oscillation is proportional to the
lattice depth in the shallow lattice limit, for which [56]:

V0 = 2~ΩR. (2.53)

In Fig.(2.4) the measurement of the ratio N1/Ntot, where Ntot is the total
number of atoms in the sample, is reported as a function of the time the
condensate spent in the lattice.

Figure 2.4: Rabi oscillations of the number of atoms in the class of velocity
−vrec as a function of time.

Ground state analysis

Assume that a BEC is loaded into an optical lattice and has an initial wave-
function that is a Bloch state |ψ0,0〉. If kM + 1 lattice sites are occupied
with uniform filling, the atomic Bloch state can be written in a tight binding
approximation as a sum of gaussian functions of equal width σ centered at
each lattice site:

|Ψ0,0(x)〉 ∝
kM∑

n=−kM

exp

(
−(x− xn)2

2σ2

)
, (2.54)
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where xn is the position of the n-th site. The Fourier transform of the
expression (2.54) is [57]:

Ψ0,0(px) ∝ exp

(
−p2σ2

2~2

)
sin [(2kM + 1)pdL/2~]

sin (pdL/2~)

= exp

[
−π2

2

(
p

pB

σ

dL

)2
]

sin
[
(2kM + 1)π p

pB

]

sin
[
π p

pB

]
(2.55)

where pB = 2~kL. The interference pattern that is observed in a time of
flight measurement after that the lattice is switched off abruptly is therefore
a structure of peaks of the form sin(x)/x spaced by δx = ttof · pB/m, and
whose amplitude is given by a gaussian envelope centered at p = 0. The
amplitude of the first side peaks (p = ±pB) with respect to the amplitude of
the central one is:

P±1 = exp

(−4π2σ2

d2
L

)
. (2.56)

The value of sigma depends on the potential depth [57] and can be estimated
variationally. It is possible to show [56, 58] that the σ satisfies the following
relation:

exp

[
−

(
σ

σh

)2 √
Erec

V0

]
=

(
σ

σh

)−4

, (2.57)

where:

σh =
d

π

(
V0

Erec

)−1/4

. (2.58)

By use of the relation (2.56), the Eq.(2.57) can be written as:

P
−1/4
±1 = (ln P

1/4
±1 )2 V0

Erec

. (2.59)

Therefore by measuring the ratio between the number of atoms in the first
order diffracted classes of velocity and the number of atoms in the central
peak we were able to measure the lattice depth.
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Chapter 3

Quantum tunneling in an
optical lattice

The work of this thesis is based on three experiments we performed in the
Pisa BEC laboratory. All the experiments explored the effects of tunneling
in a BEC loaded into an optical lattice. This subject is of interest both
as a fundamental physical concept (quantum tunneling) and for the exper-
imental progress in manipulating cold atoms in an optical lattice. In this
chapter an overview of the theoretical ideas is given that form the basis of
the experiments to be discussed in subsequent chapters.

3.1 Which tunneling?

The physical system of a Bose Einstein condensate loaded into an optical
lattice is formally similar to the problem of electrons in a solid. In both
cases the wavefunctions of the matter waves obey the Bloch theorem, while
the dispersion relation is structured in bands separated by energy gaps. A
BEC in an optical lattice is an ideal tool to study both solid state physics
and fundamental quantum theory. This thesis is devoted to the experimental
study and control of quantum tunneling in such systems.

The effects of tunneling that we observed in our experiment were of two
types:

• Inter-band tunneling: this effect emerges when the atoms tunnel through
an energy gap from one energy band to the upper/lower one.

• Intra-band tunneling: this effect emerges when the atoms tunnel from
a lattice site to a neighboring one through the sinusoidal barrier. In
fact this type of tunneling leads to delocalization and hence to the
formation of energy bands.



42 Chapter3. Quantum tunneling in an optical lattice

Fig. (3.1) shows these two processes schematically. The main difference is
that in intra-band tunneling an atom passes through an avoided region in
space, while in inter-band tunneling an atom passes through an avoided re-
gion in energy. Therefore, intra-band tunneling connects energy levels that
are almost degenerate, while inter-band tunneling connects different energy
levels. The aim of this thesis is to show how both tunnelings can be exper-
imentally observed and controlled in an optical lattice. How these effects
emerge in an optical lattice will be explained in the rest of this chapter.

Figure 3.1: Scheme representing the two types of tunneling investigated in
this thesis. In intra-band tunneling (dashed arrow) the atoms tunnel through
the sinusoidal barrier from one lattice site to a neighboring one, whose energy
levels are degenerate. On the other hand, in inter-band tunneling (solid
arrow) the atoms tunnel from one energy band to an upper/lower one through
an energy gap.

3.2 Intra-band tunneling

Let us start from the easiest problem in quantum mechanics: the free par-
ticle in one-dimensional space. This problem is defined by a Hamiltonian
containing only the kinetic term: HFP = p2/(2m). The particle can have
any value of energy, which is connected to the particle momentum k by the
one-to-one dispersion relation E = ~2k2/(2m); also the particle is delocalized
in space, i.e., the probability for the particle to be at position x is non-zero
for any value of x. If an infinite optical lattice is turned on, the Hamiltonian
becomes:

H =
p2

2m
+ V0 sin2(kLx). (3.1)

A spatial periodicity is now imposed on the system. As far as the energy
spectrum is concerned, the spatial periodicity causes the emergence of values
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of energy that the particle can not have, i.e., the energy gaps. The disper-
sion relation also becomes periodic, but in the quasi-momentum q, and it is
structured in energy bands En(q). It is important to note that, as well as
the free particle eigenfunctions, the eigenstates |ψn,q(x)〉 = exp(iqx)un,q(x)
of the Hamiltonian (3.1) describe a spatially delocalized particle. Moreover,
they are stationary states, because for a fixed value of q̃, each energy level
En(q̃) has an infinitesimal width. If the particle, in our case the atom, has
an energy that is lower than the lattice depth V0, the delocalization occurs
by tunneling through the sinusoidal barriers that divide the lattice sites. In
order to see how the tunneling emerges one has to observe the atom at the
single lattice site. This can be done by use of the Wannier functions, because
they are spatially localized: the Wannier function φn,l(x) describes one atom
in the n-th energy level of the l-th lattice site. It is important to note that
the Wannier functions do not depend on the quasimomentum q, just like the
energy levels of a single lattice site potential. In fact, the energy levels in a
single lattice site have a finite width that is equal to the corresponding band
width (see Fig. (3.2)) [31]. The energy levels width implies a decay of the
corresponding Wannier states. This decay is the tunneling to the neighboring
sites.

Figure 3.2: Comparison between the single site energy levels and energy
bands. The band widths correspond to the width of the single site energy
levels, that is 2J for a one dimensional lattice. The energy bands are calcu-
lated for a lattice of depth V0/Erec = 10. The dotted lines are guides for the
eye.

In the previous section, the intra-band tunneling was introduced in a differ-
ent way. Within the Bose-Hubbard model, the tunneling rate J was defined
in the fundamental band as [41]:

J =

∫
dxφ1,l(x)

(
p2

2m
+ V0 sin2(kLx)

)
φ1,l+1(x). (3.2)
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The tunneling rate (3.2) refers to the probability of tunneling from the l-
th to the (l + 1)-th site. On the other hand, the fundamental band width
(E1(q = ~kL)− E1(q = 0)) corresponds to the decay of the single site state,
and it is therefore equal to the tunneling rate to both the (l + 1)-th and
(l − 1)-th sites. Therefore, the width of the fundamental band is (E1(q =
~kL)− E1(q = 0)) = 2J .

In an optical lattice, the energy levels of the single site potentials are all
degenerate to each other, and therefore the intra-band tunneling can emerge.
However, if this degeneracy is partially destroyed, then the tunneling is re-
duced. In order to see how this suppression of tunneling emerges, consider
an energy shift ∆Eshift between neighboring sites (see Fig.(3.3)). The energy
shift can be created by use of a linear potential Vshift = ∆Eshiftx/dL. Thus
the tunneling (3.2) becomes:

Jshifted =

∫
dxφ1,l(x)

(
p2

2m
+ V0 sin2(kLx) +

∆Eshift

dL

x

)
φ1,l+1(x). (3.3)

The new contribution to the tunneling
∫

dxφ1,lVshiftφ1,l+1 has positive sign,
and therefore decreases the tunneling rate:

Jshifted ≤ J. (3.4)

This simple idea for varying the tunneling is at the base of our experiments

Figure 3.3: Partial suppression of intra-band tunneling. The energy shift
FdL partially lifts the degeneracy of the energy levels at neighboring lattice
sites and the tunneling rate is reduced. The dotted lines are guides for the
eye.

on intra-band tunneling, and we implemented it in several ways. In Chapter
6 it is reported an experiment in which the complete suppression of tunneling
was realized by use of a linear potential. On the other hand, in Chapter 5 it
is described an experiment in which an energy shift was implemented by use
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of a sinusoidal potential, leading to a rather complicated transformation of
tunneling.

3.3 Inter-band tunneling

The energy spectrum of an atom in an optical lattice is characterized by the
energy bands En(q). These are separated by energy gaps ∆n = En+1(q) −
En(q) that emerge, within the first Brillouin zone, at q = ±~kL when n is odd
and at q = 0 when n is even. In fact, for these values of the quasimomentum
the free particle energies at different Bragg planes are degenerate:

~2k2

2m
=
~2(k + G)2

2m
(3.5)

where G = ±2nkL, n integer, is a reciprocal lattice vector. The energy
degeneracies are lifted by the emergence of avoided crossings, corresponding
to the energy gaps.

Let us suppose that the atom is loaded in the fundamental band of the
lattice and with initial quasimomentum q = 0. At t = 0 an external and
constant force F is switched on, resulting in a change of the quasimomentum
of the atom:

q(t) = Ft. (3.6)

The evolution of Eq.(3.6) is adiabatic, i.e., the atom remains in the funda-
mental band, if the force F satisfies the adiabatic theorem:

∣∣∣∣〈u0,q| d
dt
|u1,q〉

∣∣∣∣ ¿
E1(q)− E0(q)

~
, (3.7)

which can be written in the form [50]:

|F | ¿ kL

8

V 2
0

Erec

. (3.8)

During its motion, the atom first crosses the energy gap with the first
excited band at t = ~kL/F . Let us suppose that this is the only energy gap
crossed by the atom. The probability for the atom to tunnel through the gap,
i.e., to be in the first excited band at t = ∞, is given by the Landau-Zener
formula [59, 60]:

r = exp(−Fc/F ) (3.9)

where Fc is the critical force [31]. In the shallow lattice approximation the
energy gap is E1(q = ~kL) = V0/2, and the critical force is

Fc =
π

4

kL

8

V 2
0

Erec

(3.10)



46 Chapter3. Quantum tunneling in an optical lattice

Figure 3.4: Fundamental and first excited energy bands for a lattice of depth
V0/Erec = 4 in the proximity of q = ~kL where an energy gap occurs. The
dotted lines correspond to the free particle dispersion law.

which is proportional to the adiabatic condition (3.8).
The Landau-Zener formula has already been tested experimentally with

BECs loaded into an optical lattice [52, 56]. However, in our experiment we
observed deviations from the Landau-Zener prediction of Eq. (3.9). These
deviations are caused by resonances between single site energy levels at dif-
ferent lattice sites. In fact, the linear potential Vshift = Fx associated with
the force F creates an energy shift ∆Eshift = FdL between neighboring lat-

tice sites. Let ∆E
(site)
1 be the gap between the first and the second energy

levels in the single lattice site potential. If this energy gap is equal to ∆i

times the energy shift created by the force:

∆iFdL = ∆E
(site)
1 , (3.11)

then the ground energy level of each lattice site is degenerate with the first
excited level of its ∆i-th neighboring lattice site. This degeneration makes it
possible for the atoms to tunnel through the potential barrier to the excited
state of the ∆i-th neighboring site. This tunneling through a spatial barrier
results in an enhancement of the tunneling in energy to the excited level
with respect to the Landau Zener formula. This enhancement of tunneling
emerges only when the force F satisfies the condition (3.11). Therefore, with
respect to the force, this effect has a resonance-like behavior. We observed
this resonant enhancement of tunneling in an experiment that is reported in
Chapter 4.
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Chapter 4

Resonantly enhanced tunneling

In this chapter the observation of resonantly enhanced tunneling using a
BEC loaded into an optical lattice is reported. The tunneling was measured
by applying an acceleration to the lattice. When the resulting linear poten-
tial matched the difference between energy levels at different lattice sites, a
resonance in the tunneling was observed. Resonances in the tunneling from
the fundamental and the first two excited bands were measured. Finally, the
effect of nonlinearity on the resonances is reported.

4.1 Landau-Zener theory in an optical lattice

Landau-Zener theory describes the behavior of a physical system that passes
through an avoided energy crossing during its time evolution[59, 60], i.e.,
such that the energy levels are separated by a gap. This situation can occur
when the Hamiltonian depends on some variable parameter q(t), and the
crossing energy levels are coupled by some interaction in the Hamiltonian.
The Landau-Zener formula predicts that the probability for the system to
tunnel through the energy gap from one energy level to an adjacent level
depends exponentially on the velocity dq(t)/dt and on the square of the gap.

This ideal problem is realized in a system of cold atoms in a one dimen-
sional optical lattice:

H = −~
2∇2

2m
+

V0

2
cos(kLx) (4.1)

In this physical system, the energy spectrum has a band structure En(q),
periodic in the quasimomentum q. Neighboring bands En(q), and En+1(q)
have avoided energy crossings at q = ±~kL when n is odd, and at q = 0
when n is even (within the first Brillouin Zone)[38]. The prediction of the
Landau Zener formula can be tested by considering the quasimomentum as
the varying parameter. In fact, if an external force is applied to the atoms,
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their quasimomentum changes as:

q(t) = q(t = 0) + Ft = q(t = 0) + 2π~
F0νrec

dL

t, (4.2)

where F0 = F/(Erecd
−1
L ) is the dimensionless force and νrec = Erec/h is the

recoil frequency. If N atoms are in the n-th band and experience a force F ,
they will pass through an avoided energy crossing with the (n+1)-th band at
some time. Because of tunneling through the energy gap ∆En = En+1(q =
~kL) − En(q = ~kL), a fraction of the sample will populate the (n + 1)-th
band. According to the Landau-Zener formula the number of atoms that will
tunnel to the (n + 1)-th excited bands will be:

Nn+1 = Ntotrn = Ntote
−ac

a , (4.3)

where ac = Fc/m = d/(4~2)∆E2
n is the critical acceleration [50, 56], and

a = (1/m)dq/dt is the acceleration of the atoms. Therefore the number of
atoms that remain in the n-th band will be:

Nn = Ntot (1− rn) = Ntot

(
1− e−

ac
a

)
. (4.4)

4.2 The Landau-Zener tunneling rate

The ideal situation of the previous paragraph becomes more complicated
in a real experiment because the atoms pass through many avoided energy
crossings. A good example is to study the problem of N atoms prepared in
the fundamental band of a one dimensional optical lattice and with initial
quasimomentum q(t = 0) = 0. At t = 0 a uniform force is switched on, so
the quasimomentum evolves for t > 0 according to Eq.(4.2).

The typical time-scale is given by the Bloch time: τB = vB/a, with a =
F/m, corresponding to the time for the quasimomentum to scan an entire
Brillouin zone. By use of the dimensionless force F0, the Bloch time may be
written: τB = (F0νrec)

−1.

• At t = τB/2 the atoms have quasimomentum q = ~kL. At this value
of q the fundamental band E1 has an avoided crossing with the first
excited band E2. Therefore, following Eq. (4.4), N2 = N · r1 atoms
tunnel to the first excited band.

• At t = τB the atoms have quasimomentum q = 0 (within the first Bril-
louin zone) and occupy the fundamental and the first excited band. The
first excited band has an avoided energy crossing with the second ex-
cited band for q = 0, so N3 = N2 · r2 = N · r1 · r2 atoms tunnel through
the energy gap ∆E2 to the second excited band. It is interesting to
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Figure 4.1: Dynamics of a BEC in an accelerated optical lattice in the ex-
tended zone representation. When the BEC quasimomentum crosses the
lowest energy gap (for q = ~kL) part of the cloud is tunneled to the first
excited band. When these atoms cross the lowest energy gap with the sec-
ond excited band (for q = 3

2
~kL) they are almost completely tunneled to the

second excited band because ∆E2 ¿ ∆E1.

compare this tunneling with the one at t = τB/2. The Landau-Zener
formula (4.4) states that the probability of tunneling depends expo-
nentially on the square of the energy gap. In our experiment, when
the atoms were prepared in the fundamental band the lattice depth
was in the range: V0/Erec = 1− 10. Within this range one has always
∆E2

2 ¿ ∆E2
1 . For instance, in a lattice of depth V0/Erec = 3, the

square of the first and the second energy gaps are: (∆E1/Erec)
2 ∼ 2,

(∆E2/Erec)
2 ∼ 0.08. Thus, if the N2 atoms that tunneled at t = τB/2

from the fundamental to the first excited band are a non-negligible
fraction of the whole sample, that is if r1 ∼ 1, then almost all these
N2 atoms will tunnel at t = τB to the second excited band, because
r2 À r1. For example, if the atoms are loaded in a V0/Erec = 3 deep
lattice and then accelerated at a = 14 g, where g is the acceleration
due to gravity, the probabilities of tunneling through the first and the
second energy gaps are: r1 ∼ 0.5,r2 ∼ 0.98. A plot of the probability of
tunneling rn as a function of the lattice depth is shown for n = 1, .., 4 in
Fig. (4.2), for an acceleration a = g. This plot shows that in a lattice
whose depth is such that the probability of tunneling rn from the n-th
band is in the range 0.1 < rn < 0.9, the probabilities of tunneling from
the other bands are out of this range. Usually in the experiments, the
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accelerations were in the range a = 0.5− 20 g.

• At t = 3/2τB the atoms have quasimomentum q = ~kL. Neglecting the
fraction that remained in the first excited band, the atoms populate
the fundamental and the second excited band. These have avoided
crossings with the first and the third excited band respectively. The
first excited band is again populated by E1 → E2 tunneling events. On
the other hand, all the atoms in the second excited band tunnel to the
third excited band because r3 > r2.

Figure 4.2: Probability of tunneling rn for n = 1, .., 4 and for different values
of the lattice depth V0. The two shaded strips highlight the regions where
0.9 < ri < 1 and 0 < ri < 0.1. When one of the probabilities is in the range
0.1 < ri < 0.9, all the other probabilities are close to 0 or to 1. All the curves
were calculated for the acceleration of gravity: a = g.

For t À τB and t = nτB, where n is an integer number, the atoms that
are still in the fundamental band are hence [56]:

N1(t) = Ntot

(
1− e−

ac
a

) t
τB (4.5)

because the atoms that tunneled through the gap ∆E1 in the n = t/τB energy
crossings with the first excited band tunneled in turn through the gap ∆E2

and therefore never tunneled back to the fundamental band. By expanding
in series the right hand term of Eq. (4.5) for t ¿ 1 one obtains:

N1(t) ∼= Ntot

(
1 + ln

(
1− e−ac/a

) t

τB

)
. (4.6)

Eq.(4.6) can be further on expanded in series for exp(−ac/a) ¿ 1, thus
becoming:

N1(t) ∼= Ntot

(
1− e−ac/a t

τB

)
. (4.7)



4.3 Resonantly enhanced tunneling 51

The right-hand side of Eq.(4.7) can be considered as the first two terms of
the expansion in series of an exponential function. Therefore the number of
atoms in the fundamental band becomes:

N1(t) ∼= Ntote
−ΓLZt, (4.8)

where

ΓLZ = τ−1
B e−

ac
a . (4.9)

In Eq.(4.8,4.9) a Landau-Zener tunneling rate has been introduced that allows
us to characterize the decay from the initial energy band. By use of the
approximated formula for the wavefunctions and the energy gap ∆E1 in the
limit of shallow lattices (∆E1 ∼ V0/2), the Landau-Zener tunneling rate for
the E1 → E2 transition is:

ΓLZ = F0νrece
−π2(V0/Erec)2/32F0 . (4.10)

As stated above, the main assumption behind the introduction of the
tunneling rate is to consider that for the population of the fundamental band
the tunneling to the first excited band acts as a depletion. This argument
holds even if the atoms are initially loaded at the center of the n-th band
En(q), n 6= 1, and one considers the tunneling to the En+1(q) band. In fact,
the only difference now is that the tunneling to the lower band En → En−1

must be considered as well. However, the tunneling to the higher band is
always larger than the tunneling to the lower band, because the energy gap
∆En decreases with increasing n. Therefore, if the probability of tunneling to
the higher band is such that a non-negligible fraction of the sample tunnels,
that is rn ' 1, the probability to tunnel to the lower band is negligible:
rn−1 ¿ 1. In this regime the tunneling to the lower band can be ignored,
and the tunneling rate formula (4.8) can be written:

Nn(t) = Ntote
−Γnt (4.11)

where Γn is the tunneling rate from the n-th band.

4.3 Resonantly enhanced tunneling

In the previous paragraph the tunneling between energy bands has been
studied starting from the energy spectrum of the Hamiltonian (4.1), and then
varying the quasimomentum by use of an external force (4.2). This approach
is not formally correct, because the force was not inserted in the Hamiltonian
of the system. In fact, the force was only used to vary the quasimomentum
in the energy spectrum of the Hamiltonian without the force. Going beyond
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Figure 4.3: Schematics of the energy spectrum of an optical lattice in the
presence of an external force. The optical lattice potential is tilted in energy
and the Wannier-Stark ladder emerges (from ref. [61]).

this approximation, the physical system of cold atoms loaded into an optical
lattice and subjected to an external force is described by the Hamiltonian

H =
~2∇2

2m
+

V0

2
cos (kLx) + F · x, (4.12)

whose eigenfunctions and energy spectrum are different from the F = 0 case.
The eigenfunctions of the Hamiltonian (4.12) are the Wannier-Stark func-

tions. There are two differences of particular interest between these functions
and the Bloch functions. Firstly, the Wannier-Stark functions are not delo-
calized all along the lattice as the eigenfunctions of a lattice with F = 0, but
are localized at the lattice sites [61]. This effect, known as Wannier-stark
localization, emerges because the force F corresponds to an energy tilt of
the lattice potential. Thus neighboring lattice sites are shifted in energy by
FdL, and the interwell-tunneling is reduced because the degeneracy of the
single site energy levels is lifted. Secondly, the Wannier-Stark states are not
stationary, and hence have a finite lifetime 1/Γ, where Γ is the tunneling
rate (4.11). In fact the eigenvalues of the Hamiltonian (4.12) are complex
functions whose real part forms a ladder of energy levels localized at the
different lattice sites [61], while the imaginary part is the tunneling rate Γ
that corresponds to the widths of these levels (see Fig.(4.3)).

The Wannier-Stark localization, the tunneling rate and hence the lifetime
of the Wannier-Stark states depend on the strength of the force. It is of
particular interest when this is such that the ground state at one lattice site
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Figure 4.4: Resonantly enhanced tunneling in an optical lattice. When the
tilt in energy caused by the force exerted on the system creates a degeneracy
in energy between neighboring sites, the tunneling rate is enhanced.

and the excited state at the ∆i-th neighboring site become degenerate in
energy. This occurs when:

FdL∆i = ∆E (4.13)

where ∆E is the difference in energy between levels in the single well, and
∆i is the distance, expressed in units of lattice sites (see Fig.(4.4)).

When the condition (4.13) holds, the lower and the higher energy levels
are resonantly coupled, and hence the probability of tunneling increases[62].
In figure (4.5) the tunneling rate Γ calculated by two different methods is
plotted against the force. In the first (dashed line) the Landau-Zener formula
is used, and Γ has an exponential behavior as expected. In the second (solid
line) Γ is evaluated by numerically solving the eigenvalue problem of the
Hamiltonian (4.12), and the tunneling rate is resonantly enhanced when the
condition (4.13) holds.

This effect is known as Resonantly Enhanced Tunneling (RET), and has
interested the solid state community for a long time. It was observed experi-
mentally first in semiconductors, by use of superlattice structures [63, 64, 65],
and with quantum wells [66]. More recently, a first evidence of RET has
been observed with a cold thermal cloud loaded in an optical lattice [67]. In
our experiment [68] we study the resonantly enhanced tunneling with BECs
loaded into an optical lattice, and we observe for the first time the effect of
interactions, i.e., of the intrinsic nonlinearity of a BEC.
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Figure 4.5: Tunneling rate as a function of the force. The dashed line cor-
responds to the Landau-Zener theory. The solid line corresponds to the
numerical solution of the eigenvalue problem of the Hamiltonian (4.12). The
tunneling is enhanced when the force is such that the condition (4.13) is
satisfied. The curves were calculated for a lattice of depth V0/Erec = 2.5.

4.4 Measuring the tunneling rate

It has been stated previously that the atoms that tunnel from the n-th to the
n + 1-th band subsequently tunnel to the higher energy bands with almost
100% probability. As a consequence, after a certain time these atoms occupy
an energy band that is above the lattice depth, i.e., in the continuum, where
the energy gaps are infinitesimally small. This implies that these atoms
do not experience Bloch oscillations anymore, but are uniformly accelerated
in the lattice rest frame due to the force, i.e., they are stationary in the
laboratory frame.

In order to measure the tunneling rate, the time sequence of a typical
experiment was the following:

• Once the BEC was created, the trap frequencies were adiabatically
changed in order to confine the sample in a cigar-shaped trap, with
longitudinal frequency νlong ∼ 20Hz and radial frequency νrad varying
in the range 80− 250Hz.

• A one-dimensional optical lattice was loaded adiabatically along the
long axis of the cigar, in order to maximize the number of lattice sites
occupied. Typically, 50 sites were occupied, with a mean occupation
number of 1000 atoms per site. The time of loading tload was in the
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range 1−50 ms, depending on the lattice depth and on the interactions
between the atoms [69], and the atoms were loaded into the n-th band
of the lattice. The choice of the time for the lattice loading as well as
the procedure for loading the atoms in the n-th band will be explained
later in this chapter.

• The optical lattice was accelerated by varying the detuning ∆νL be-
tween the two laser beams creating the lattice: a = dL(d∆νL/dt). This
acceleration results in the lattice rest frame as a force exerted on the
atoms: F = mdL(d∆νL/dt). This technique is of great advantage with
respect to the application of external forces, e.g., by use of a magnetic
gradient, because of the precision in the strength of the force and its
homogeneous application to all the sample. The main disadvantage of
this procedure is that the atoms are displaced by the lattice, and there-
fore the acceleration can not hold for long time because of the finite
dimensions of the CCD camera and because the displacement causes
the trapping potential experienced by the atoms to change in time.
However, the time scales of our experiments are such that both effects
are negligible.

• The lattice was accelerated for a time tacc = nτB, n integer. At the end
of the acceleration, both the lattice and the dipolar trap were suddenly
switched off, in order to make the atoms expand. The time-of-flight was
∼ 20 ms in order to distinguish the peaks of the interference pattern.

A typical picture is shown in figure (4.6). The atoms that were still in

Figure 4.6: Image of the condensate after acceleration for t = 8τB and a
Time of Flight of 15 ms. The atoms that are still dragged by the lattice, i.e.
that are still in the fundamental band, are the ones in the right-side box,
while the atoms in the left-side box are the ones that tunneled to the first
excited band (and subsequently to higher bands).

the fundamental band at the end of the acceleration were dragged by the
lattice until the end of the acceleration, and were released from the lattice
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at a velocity

vdrag =
Ftacc

m
=

tacc

τB

~kL

m
= 2nvrec (4.14)

in the laboratory frame. In the CCD image, the atoms dragged by the lattice
were considered the ones with momentum p = −2~kL, 0, 2~kL in the lattice
frame (right box in Fig. (4.6)), to take into account the interference pattern
of the atoms released from the lattice. In fact, for the lattice depth used
in our experiments (V0/Erec ≤ 23), the atoms with momentum |p| > 2~kL

in the interference pattern were less than the 3% of the whole sample. The
atoms in the other velocity classes (left box in Fig.(4.6)) were the ones that
had tunneled from the n-th band and then passed to the continuum. The
velocities of these atoms in the laboratory frame corresponded to the velocity
of the lattice at the moment that they tunneled to the continuum, i.e. when
they stopped being accelerated by the lattice.

By measuring the number of atoms Ntot in the whole sample and the
number of atoms Ndrag that were still occupying the fundamental band at
the end of the acceleration, it was possible to calculate the value of the
tunneling rate Γn by use of Eq. (4.11). Here and in the following this is
expressed in units of the recoil frequency νrec = Erec/h.

Experimental resolution

The measurement of the tunneling rate boils down to a measurement of
numbers of atoms. Therefore the resolution achievable depended on the
minimum number of atoms that were distinguishable from the background
in the CCD images. This number was between 500 and 1000, depending
on the dimension of the region where the atoms were distributed. Another
limitation in measuring Γn was given by the minimum and maximum value
for tacc. The minimum acceleration time was tacc = 2τBloch, in order to
distinguish the tunneled fraction from the whole cloud. On the other hand
the maximum constraint for tacc was given by the dimension of the CCD
images. In fact, if tacc was too long, the atoms were displaced out of the image
after the time-of-flight. For usual accelerations, this limit was tacc < 12τBloch.
Taking into account these limitations, we were able to measure Γn between
νrec and 10−2νrec.

4.5 Resonantly enhanced tunneling in the weakly

nonlinear regime

One of the main characteristics of BECs in dilute gases is the atom-atom
interaction, whose effect can be taken into account as a mean field term in
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the Schrödinger equation, then called Gross-Pitaevskii equation:

i~
∂

∂t
ψ(t) =

[
−~

2∇2

2m
+ g |ψ|2

]
ψ(t) (4.15)

where g = 4π~2as/m is the coupling parameter, and as is the s-wave scat-
tering length. One can introduce a dimensionless parameter C that reflects
the nonlinearity in the natural energy units of the problem, i.e., the recoil
energy Erec [70]:

C =
n0asd

2
L

π
=

n0g

8Erec

(4.16)

where n0 is the peak density of the condensate, ∝ N
2/5
tot ν6/5 in the Thomas-

Fermi regime. The strength of the nonlinearity depends on two physical
quantities: the number of atoms in the condensate Ntot and the mean trap-
ping frequency ν = (νxνyνz)

1/3.
Three techniques have been used in our experiment in order to vary the

nonlinearity:

1. Varying the trap frequency. As stated previously, the lattice was ramped
up in the longitudinal direction of a cigar shaped cloud. Along the lat-
tice the leading frequency was the single site frequency that was an or-
der of magnitude larger than the frequency of the dipolar confinement
νlong. Therefore, at a given lattice depth and for a given number of
atoms, the density of the sample and hence the nonlinearity depended
on the frequency of the radial confinement νrad. In the experiment this
was varied in the range 80 − 250Hz, causing a change in C of up to a
factor ∼ 2.5.

2. Varying the lattice spacing dL. In fact, dL depends on the angle of
intersection φ between the two laser beams that create the optical lat-
tice: dL = λ/(2 sin(φ/2)). In our experiment the measurements were
performed with two lattice constants: dL = 0.426 µm (when the two
beams were counterpropagating: φ ∼= 180◦), and dL = 0.620 µm (when
φ ∼= 87◦). In the latter case C was enhanced by a factor ∼ 2 with
respect to the counterpropagating case.

3. Varying the number of atoms. The BECs created in our experiment
had up to 5 · 104 atoms, that is ∼ 2 orders of magnitude bigger than
the minimum number of atoms measurable. Therefore we were able to
vary C up to a factor 1002/5 ' 6 by changing the size of our sample.

The latter technique has the strong disadvantage that by reducing the num-
ber of atoms one reduces the experimental resolution. Therefore, in order to
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test linear resonantly enhanced tunneling, the measurements were performed
with the lowest radial frequency: νrad = 80 Hz. This solution was sufficient
to find good agreement with the linear theoretical predictions.

4.5.1 Tunneling from the fundamental band

The tunneling rate from the fundamental band was measured by using the ex-
perimental procedure previously explained. The lattice was linearly ramped
up in 1ms, the atoms were loaded into the fundamental band, and the lat-
tice was then accelerated for tacc. In order to observe the resonances in the
tunneling rate, a natural choice was to measure Γ1 for different values of the
force. Figs. (4.7) and Fig. (4.8) show the measurement of the tunneling
rate from the fundamental band in the weakly nonlinear regime and in a
lattice of depth V0/Erec = 2.5 and V0/Erec = 4 respectively. In both fig-

Figure 4.7: Tunneling rate from the fundamental band in the weakly nonlin-
ear regime. The solid line corresponds to the numerical solution of the eigen-
value problem from Hamiltonian (4.12), while the dashed line corresponds to
the Landau-Zener theory given by Eq. (4.9). The experimental points are an
average of three measurements. The lattice depth was V0/Erec = 2.5. The
acceleration time tacc was varied in the experiment within the range 4− 8τB,
depending on the value of the tunneling rate. In order to highlight the de-
viation from the Landau-Zener prediction when the tunneling is resonantly
enhanced, the same experimental data of the main figure but divided by their
Landau-Zener theoretical prediction are plotted in the inset.

ures the experimental data are compared with two theoretical predictions:
the Landau-Zener formula (dashed line) and Γ1 calculated by numerically
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Figure 4.8: Tunneling rate from the lowest band. The experiment is equiv-
alent to the one in Fig.(4.7), but with lattice depth V0/Erec = 4. In this
experiment, the acceleration time tacc was varied within the range 5− 11τB,
depending on the value of the tunneling rate.

solving the eigenvalue problem of the Hamiltonian (4.12)(solid line). The ex-
perimental data agrees with the latter one, and an enhancement of tunneling
over the Landau-Zener prediction is evident when the resonance condition
(4.13) is fulfilled. The two theoretical curves were independently evaluated
and are not a fit to the experimental data. However, Fig.(4.7) shows that
in a small region of forces the measured tunneling rate disagrees with the
theory, and there is no evidence of the ∆i = 1 peak. We interpreted this
disagreement as being due to the value of Γ1 that is, at the top of this res-
onance peak, out of our experimental resolution. This is highlighted in Fig.
(4.7) by the two black arrows on the vertical axis.

The same measurement of figures (4.7),(4.8) was performed for different
lattice depths and lattice constants: V0/Erec = 4, 6, 9 with dL = 0.426µm,
and V0/Erec = 2.5, 10 with dL = 0.620µm. The experimental results always
followed the theoretical predictions, within the experimental resolution.

For lattice depths V0/Erec > 10 the tunneling rate Γ1 was out of our
experimental resolution. In order to partially test the theory at deeper lattice
depths, we increased the time of the acceleration tacc by applying the force
back and forth. In these experiments, the atoms were first accelerated for
t ' 20 τB. Then, the lattice was accelerated in the opposite direction by
applying a frequency chirp to the lattice beam whose frequency was fixed
during the first acceleration. The second acceleration stage was t ' 25 τB long
in order to separate the dragged fraction of the sample from the whole cloud.
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Apart from its sign, the acceleration was constant during each measurement.
At the end of this procedure not all the atoms in the sample were imaged,
because in the time-of-flight measurements the maximum separation between
the density peaks was larger than the CCD size. Therefore, it was not possible
to measure the absolute value of the tunneling rate Γ1. However, it was
possible to measure the number of the dragged atoms Ndrag, that was reduced
when the resonance condition (4.13) held. Thus it was possible to measure the
positions of the resonances, and these corresponded to the expected values.
This measurement was performed for V0/Erec = 16 with dL = 0.426 µm, and
V0/Erec = 12 and 14 with dL = 0.620 µm.

Figure 4.9: ∆i = 1 peak positions plotted versus lattice depth. The relative
error in the lattice depth is estimated to be 0.05. The dashed line is a fit with
a square root function of the lattice depth (see text). The same measurement
for the ∆i = 2 and ∆i = 3 interference peaks is shown in the inset.

The positions of the tunneling resonances of the orders ∆i = 1, 2, 3 are
plotted in Fig. (4.9) versus the lattice depth. There the dashed lines are
independent fits of the experimental data with the function

∆iFdL = αErec

√
V0

Erec

. (4.17)

Our experimental data could be fitted with α ' 1.5. If the separation be-
tween the energy levels in a single site ∆E is calculated by approximating
each lattice site as an harmonic oscillator, one would expect α = 2. Our mea-
surement is consistent with the fact that only few energy levels were bound
in our lattice, and hence the single site potential was highly anharmonic,
which leads to a reduction of the actual value of ∆E.
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The widths of the resonance peaks of the order ∆i = 1 are plotted in Fig.
(4.10) versus the lattice depth. The experimental data used for the measure-
ment of the widths were the number of the atoms dragged by the lattice Ndrag,
whose decrease in correspondence with a resonance was fitted with a single
gaussian function. The empty circles are the theoretical predictions obtained
by numerical integration of the eigenvalue problem of the Hamiltonian (4.12).
The width of the resonance peaks decreases for deeper lattices; this behavior
corresponds to the one expected for the width of the Wannier-Stark states,
which decreases when the lattice depth is increased. However, this behavior
was not observed for lattice depths in the range V0/Erec = 4−8, within which
the numerical calculations predict that the lattice width is almost constant.
Apart from the numerical calculations, there is not a theoretical explanation
of this behavior, as far as we know.

Figure 4.10: Measurement of the width of the resonant peaks of order ∆i = 1
as a function of the lattice depth. The filled circles are the experimental
data, while the empty ones are the theoretical prediction. The dashed line
is a guide for the eyes.

4.5.2 Tunneling rate from excited bands

The experimental procedure in the measurement of the tunneling rate from
the excited bands corresponded to the one described previously for the tun-
neling from the fundamental band. The only difference in this case concerned
the preparation of the sample, which had to be initially loaded in the n-th
band of the lattice. This was done by ramping up the lattice with a fixed
detuning ∆ν between the two lattice beams [51]. In the lattice frame this
corresponded to a momentum p of the atoms of mdL∆ν. If p was outside the
first Brillouin zone, conservation of energy and momentum led to the atoms
populating higher energy bands. In particular, the atoms were loaded into
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Figure 4.11: Measurement of the tunneling rate from the first and the second
excited bands. The lattice depths were V0/Erec = 10 and V0/Erec = 23,
respectively. The solid line is the numerical prediction, while the dashed line
is the Landau-Zener prediction.

the n-th band, where n = [p/(~kL)], and [·] is the integer part function (see
Fig.(4.1), where the Bloch bands and the free particle dispersion relation are
plotted). However, it is important to note that if for the momentum p there
is an avoided energy crossing between two bands, that is if p = j~kL (j inte-
ger), the atoms split and populate both bands. Therefore, in order to load
the atoms into a single band, p must be equally distant from the Brillouin
zone boundaries. In order to load the atoms into the first and the second ex-
cited bands we imposed to the lattice a constant velocity dL∆ν = 1.5 vrec and
dL∆ν = 2.5 vrec, respectively. This procedure was tested by measuring the
number of tunneled and dragged atoms after separating the atoms belonging
to different bands by accelerating the lattice in appropriate conditions. In
order to test the loading into the first excited band, for instance, the lattice
depth and acceleration had to be such that the probability of tunneling from
the first excited band to the fundamental one was r1 ¿ 1, while the proba-
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bility of tunneling from the first to the second excited band was r2 ∼ 1. As
an example, this was the case for a lattice of depth V0/Erec = 3 and a force
F0 = 0.92, for which r1 ' 0.05 and r2 ' 0.90. Efficiencies of loading into the
first and second excited bands of up to 90% were reached.

Fig.(4.11 a)) shows the measurement of the tunneling rate from the first
excited band as a function of the force. The same measurement but from the
second excited band is reported in Fig. (4.11 b)). The lattice depths were
V0/Erec = 14 and V0/Erec = 23, respectively, with dL = 0.620 nm. In both
cases the resonances were observed where expected by the theory.

4.5.3 The crossing-anticrossing scenario

The energy spectrum of the Hamiltonian (4.1) of a BEC in an optical lat-
tice is characterized by the band structure. This results from the spatial
symmetry of the optical lattice potential, which makes the energy spectrum
periodic in quasimomentum. Because of the coupling through the potential,
the degeneracy that occurs when bands of different orders cross is lifted in
avoided crossings (or anticrossings) characterized by the energy gaps.

Figure 4.12: Anticrossings of the tunneling rate in resonantly enhanced tun-
neling. (a): theoretical plot of Γ1,2 and experimental data of Γ1 for a lattice
depth of V0/Erec = 2.5. (b): theoretical plot of Γ1,2 and experimental data
of Γ2 for a lattice depth of V0/Erec = 10.
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In the Hamiltonian (4.12) of a BEC in an optical lattice and subject to
an external force, the spatial symmetry is broken. Therefore, the quasimo-
mentum not longer plays the role of a parameter for the energy spectrum.
In fact, this now depends on two parameters: the lattice potential V0 and
the strength of the external force F . The eigenvalues of the Hamiltonian are
now complex functions whose real part is the energy level while the imaginary
part corresponds to the width of the energy levels, i.e. the Wannier-Stark
states. Indeed, these have a mean life Γ−1

n .
When the force F is such that a resonance in tunneling occurs, i.e., the res-

onance condition (4.13) is fulfilled, the Wannier-Stark ladders cross [71][66].
It is interesting to note that this crossing can be of two types [72][73]:

1. The energy levels have an avoided crossing and the tunneling rates have
a real crossing.

2. The tunneling rates have an avoided crossing and the energy levels a
real one.

In our experimental range of parameters, the crossings we observed were
always of the second type. It has been predicted that at resonance the mean
life of the two crossing states have opposite behavior: the lower one has a
strong depletion, while the upper one reduces its decay rate (because it is
coupled with the lower state that is more stable) [62]. In our experiment we
were not able to measure for the same set of parameters the Γ of two differ-
ent levels, because of lack of experimental resolution. Fig. (4.12) shows the
measurement of Γ1 and Γ2 with the theoretical prediction for the two bands.
The experimental data, while not complete, are in agreement with the the-
ory. In order to prove this behavior directly it would be necessary to expand
the range of measurable Γ, for instance by increasing the time of accelera-
tion. This could be realized in experiments in which, with respect to our
experiment, larger displacements of the cloud due to the lattice acceleration
can be achieved [74].

4.6 Resonantly enhanced tunneling in the strongly

nonlinear regime

The intrinsic nonlinear behavior of Bose-Einstein condensates has been widely
studied since the first experimental realizations of BEC in dilute gases. When
loaded into an optical lattice, ultracold atoms experience many effects due
to nonlinearity, such as the dynamical instability [76, 77, 78]. In our ex-
perimental study of resonantly enhanced tunneling we investigated how the
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Figure 4.13: Numerical simulation of resonantly enhanced tunneling with
nonlinearity. When this is increased, the resonance peak is destroyed both
in the cases of repulsive (g > 0) and attractive (g < 0) interactions. From
Ref. [75].

nonlinearity affects the phenomena. The effects of nonlinearity can in gen-
eral be well approximated by considering the system as evolving within an
effective potential [52, 70, 79]:

Veff =
V0

1 + 4C
(4.18)

where C is the parameter introduced in Eq. (4.16) that takes into account
the ”strength” of the nonlinearity. In our experiment C > 0 because the
atom-atom interactions are repulsive. Therefore the nonlinearity reduces the
potential experienced by the atoms, causing a decrease of the height of the
barrier that the atoms have to tunnel through. This leads to an increase in
the tunneling rate Γ, i.e., the lifetime of the Wannier-Stark states is reduced.

The effect of the nonlinearity in resonantly enhanced tunneling has been
studied in ref. [75] by numerical integration of the 3D Gross-Pitaevskii equa-
tion (4.15). Fig. (4.13) shows the results of ref. [75]. As expected the tun-
neling rate is increased in the case of repulsive interactions and decreased in
the case of attractive interactions, independently of the force. An even more
evident effect is the destruction of the resonance peak. This effect is difficult
to interpret in an intuitive way. Two effects that could broaden the width of
the peak can be pointed out. The first is the enhancement of the width of
the Wannier-Stark states. This occurs because the effective potential (4.18)
is lower than the linear one, i.e., the energy gap decreases for increasing C,
leading therefore to an increase of Γ. The second effect is the inhomogeneity
in the lattice filling, resulting in a different nonlinearity C on each lattice
site depending on its number of atoms. This causes a different displacement
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of the energy levels in each lattice site and therefore the resonance condition
(4.13) is no longer well defined all along the lattice.

4.6.1 Destruction of the resonant tunneling

The experiments in the nonlinear regime were performed by using an optical
lattice with constant: dL = 0.620nm, and by increasing the radial frequency
νrad of the dipolar confinement. Nonlinearities up to C = 6 · 10−2 were
reached for νrad = 250 Hz. The loading of the lattice was performed in a
longer time compared to the experiments with weak nonlinearity in order to
take into account the time-scale of the atom-atom interactions [80]. This is
defined as [81]: τNL = ~/µ where µ is the chemical potential, proportional
to the condensate peak density and hence to the parameter C. In order not
to excite collective modes, the lattice was loaded in 5− 10 ms [69].

Figure 4.14: Measurement of the tunneling rate close to a resonance peak for
three different nonlinearities: C = 0.024 (empty squares), C = 0.035 (filled
circles), C = 0.057 (empty diamonds). The lattice depth was V0/Erec = 2.5.
The resonance is of order ∆i = 3.

Fig.(4.14) shows the effects of nonlinearity in the measurement of the tun-
neling rate close to a resonance peak. The tunneling rate was measured for
three different values of C: C = 0.024, C = 0.035, C = 0.057. The nonlin-
earity was changed by varying the number of atoms and the radial frequency
of the dipolar trap. Both expected behaviors were observed: a general en-
hancement, independent of the force, of Γ when C was increased, and a
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broadening of the resonance peak that almost disappeared for the strongest
nonlinearity. The experiment agrees thus with the theoretical predictions of
Ref [75]. The evidence of the latter effect was highlighted in a second ex-
periment, where the tunneling rate was measured off and on resonance, i.e.,
by imposing two different forces, as a function of C. This measurement is
reported in Fig.(4.15). The tunneling rates on and off resonance exhibited
different behaviors when the nonlinearity was changed.

Figure 4.15: Measurement of the tunneling rate as a function of C in a lattice
of depth V0/Erec = 2.5 and for two values of the force: on the resonance peak
at F−1

0 = 1.21 (filled squares), off the resonance peak at F−1
0 = 1.03 (empty

squares). The lines are fits to guide the eyes.

4.6.2 Tunneling vs time

A second prediction of Ref. [75] about nonlinearity-induced effects on the
tunneling rate regards its dependence on time. The numerical simulations
predict an exponential decay of the survival probability Psur = Ndrag/Ntot as
expected by the Landau-Zener theory in the linear case. In the nonlinear case
a faster decay and a deviation from the exponential behavior is predicted. In
order to prove these behaviors experimentally, we measured the probability
Psur of remaining in the fundamental band for different times of acceleration
tacc in the weakly and strongly nonlinear regimes. In the first case we had
C = 8 · 10−3, while in the latter one C = 3.7 · 10−2, and the lattice depth
was V0/Erec = 3. Both measurements are reported in Fig. (4.16) with the
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theoretical predictions evaluated as in Ref. [75] for the parameters of our
experiment. The survival probability in the nonlinear case decayed clearly
faster than in the linear case. However, the predicted non-exponential be-
havior was not observed. This was interpreted as being due to our limit in
the maximum value of tacc that we can realize in the experiment. In fact the
agreement of the theoretical and the experimental data in Fig.(4.16) is satis-
factory, but a strong deviation from the exponential decay was only expected
for tacc > 10τB.

Figure 4.16: Measurement of the survival probability Psur = Ndrag/Ntot from
the fundamental to the first excited band as a function of the time of accel-
eration tacc. The lattice depth was V0/Erec = 3, and the force F0 = 1.68.
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Chapter 5

Dynamical control of
matter-wave tunneling

In this chapter the experimental control of the interwell tunneling in a strongly
driven optical lattice is reported. This effect has been observed both by mea-
suring the condensate expansion in in situ experiments and by observing its
interference pattern in time-of-flight experiments. By the latter procedure
it was demonstrated that the coherence of the sample is preserved during
the driving. Apart from the intrinsic interest in managing the tunneling
parameter, the results discussed here open the possibility of realizing the
superfluid-Mott insulator phase transition in a strongly driven optical lattice
[82, 83].

5.1 The driven optical lattice

In Chapter 2 the Bose-Hubbard Hamiltonian has been introduced in order
to describe the behavior of cold atoms in an optical lattice:

ĤBH = −J
∑

〈i,j〉

(
ĉ†i ĉj + ĉ†j ĉi

)
+

U

2

∑
j

n̂j (n̂j − 1) = Ĥtun + Ĥint, (5.1)

where the sum over 〈i, j〉 is taken over nearest neighbors sites, n̂i is the
number operator of the i-th site, and ĉ†i , ĉi are the boson creation and
annihilation operators at site i obeying the usual commutation relations:
[ĉi, ĉ

†
j] = δi,j, [ĉ†i , ĉ

†
j] = [ĉi, ĉj] = 0 ∀i, j. The Hamiltonian (5.1) depends only

on the parameters U and J : U ∝ V
3/4
0 is the energy contribution due to

the interaction between two or more atoms occupying the same lattice site;
J ∝ V

3/4
0 exp(−2(V0/Erec)

1/2) is the energy cost associated with one atom
tunneling from one lattice site to another one, and is usually referred to as
the kinetic term.
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Figure 5.1: Sketch of the dynamical suppression of tunneling. In the Bose-
Hubbard model, the parameters that characterize an optical lattice are the in-
teraction energy U and the tunneling energy J . When the lattice is ”shaken”
(by modulating one of the frequencies of the two lattice beams), the tunneling
parameter J changes to an effective Jeff .

In the experiments described in this chapter the lattice was frequency
modulated, leading to a sinusoidal motion referred to as ”shaking” in this
thesis. This corresponds to a contribution in the Hamiltonian [82, 84]:

ĤFM(t) = K cos (ωt)
∑

j

jn̂j (5.2)

where K is the modulation amplitude and ω its frequency. The full Hamil-
tonian then reads:

ĤT (t) = ĤBH + ĤFM(t) = Ĥ(t + T ) (5.3)

where T = 2π/ω. As stressed in Eq.(5.3), the full Hamiltonian is now periodic
in time with period T . A good strategy for this theoretical problem is to use
a semiclassical approach by the so-called Floquet theory [85]. Following this
theory, the Schrödinger equation

i~
∂

∂t
|ψn(t)〉 = ĤT |ψn(t)〉 (5.4)

has solutions of the form:

|ψn(t)〉 = |un(t)〉 exp

[
−i

εnt

~

]
(5.5)

where the so-called Floquet mode |un(t)〉 = |un(t + T )〉 is again periodic in
time with period T . The energy εn is called a quasienergy because of the
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formal analogy with the quasimomentum in the Bloch problem in a spa-
tially periodic Hamiltonian. By substituting the Floquet solution (5.5) into
the Schrödinger equation (5.4) one arrives at the following relation for the
Floquet mode [86]:

(
ĤT (t)− i~

∂

∂t

)
|un(t)〉 = εn|un(t)〉. (5.6)

This result is crucial in the development of the theory. Eq.(5.6) can be
interpreted as an eigenvalue problem by defining the Hamiltonian Ĥ = ĤT −
i~∂/∂t in an extended Hilbert space R⊗T , where T is the space of the time
periodic functions of period T and R is the Hilbert space of square integrable
functions on the configuration space. The space T is a Hilbert space whose
inner product is defined as:

〈f |g〉 =
1

T

∫ T

0

f ∗(t)g(t)dt. (5.7)

In this way the problem (5.6) can be solved using all theorems characteristic
for time-independent Schrödinger theory in the composite Hilbert space R⊗
T whose inner product is:

〈〈h|s〉〉 =
1

T

∫ T

0

〈h(r, t)|s(r, t)〉dt =
1

T

∫ T

0

∫
h∗(r, t)s(r, t)drdt. (5.8)

It is important to note that if |un(t)〉 is a solution of Eq.(5.6) with eigenvalue
εn, then |un,m(t)〉 = |un(t)〉 exp(imωt) is also a solution of Eq.(5.6) with
eigenvalue εn + m~ω, where m = ±1,±2, ... The quasienergy spectrum has
a Brillouin-zone-like structure, where the width of one zone is ~ω.

It can be demonstrated that the Floquet modes within the first Brillouin
zone and for a fixed time t |un,0(t)〉 form a complete set in the Hilbert space
R [87]. In the physical system of M atoms loaded in N sites of an optical
lattice, a natural basis in the R space is given by all the combinations of
Fock states |{nj}〉, where j = 1, .., N and

∑
j nj = M (nj is the number of

atoms in the j-th site). The Floquet basis in the R⊗ T space is then given
by [82]:

|un,m(t)〉 = |{nj},m〉 = |{nj}〉 exp

[
−i

K

~ω
sin(ωt)

∑
j

jnj + imωt

]
. (5.9)

The final step in order to solve the eigenvalue problem (5.6) is to write the
Hamiltonian Ĥ = ĤT − i~∂/∂t in the Floquet basis (5.9) and to diagonalize
it. This has the form:

〈〈{n′j},m′|ĤT − ~∂/∂t|{nj}, m〉〉 =

= δm′,m[〈{n′j},m′|Ĥint|{nj},m〉]
+ sm′−mJm′−m(K/(~ω))〈{n′j},m′|Ĥtun|{nj},m〉

(5.10)
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where s =
∑

j(n
′
j − nj)j, and Jm′−m is the Bessel function of order m′ −m.

This matrix is formed by diagonal blocks for different Brillouin zones m

that are coupled by nondiagonal terms. It can be shown that the coupling
between these diagonal blocks can be ignored if the distance between the
blocks, i.e. ~ω, is much larger than the other energies, i.e., the tunneling and
the interaction energy: ~ω À max(J, U). Within this approximation only
terms with m = m′ are important, and Eq.(5.10) becomes:

〈〈{n′j},m|ĤT − ~∂/∂t|{nj},m〉〉 = [〈{n′j}|Ĥint + J0(K/(~ω))Ĥtun|{n′j}〉].
(5.11)

This Equation corresponds to the eigenvalue problem of the Bose-Hubbard
Hamiltonian (5.1) without frequency modulation of the lattice where the tun-
neling parameter J is substituted by an effective tunneling Jeff given by:

Jeff = J0(K0)J (5.12)

where K0 = K/(~ω).
This result is very general, because the same theoretical approach can

be used to describe any experiment in which a physical system is subjected
to a strong time periodic driving potential. A beautiful example in the lit-
erature is an experiment reported in 1970 by Haroche et al. [88], where
the Zeeman hyperfine spectrum of 87Rb and 1H was measured in the pres-
ence of a static magnetic field B and an orthogonal radio-frequency field
B1 cos(ωt). A variation of the peak positions in the atomic spectrum was
observed when the oscillating field was present. The experimental data were
fitted very well by substituting the Landé g-factor with an ”effective” one ḡF :
ḡf = gfJ0(gF µBB/ω) [89]. Although this effect was interpreted by the au-
thors within the ”dressed-atom” approach, the experiment can be perfectly
described within the Floquet theory by use of the same procedure introduced
above [90].

Signatures of tunneling suppression in time periodic driven systems has
been observed in a number of experiments [91, 92, 93], and recently dynamical
localization and coherent suppression of tunneling have been demonstrated
using light propagating in coupled waveguide arrays [94, 95]. So far, however,
an exact experimental realization of the Bose-Hubbard Hamiltonian with a
time-periodic potential (5.3) has not been reported.

5.1.1 Band distortion in a shaken lattice

The calculation presented previously showed that the main effect of the lat-
tice shaking regarded the tunneling J , which has to be substituted in the
Bose-Hubbard Hamiltonian by the effective tunneling Jeff . It is interesting
to study now how the shaking affects the energy spectrum of the lattice, i.e.,
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the energy bands. This can be done by using a simple model, consisting
of a single particle loaded in an infinite lattice (a single particle means that
there are no interactions). The Hamiltonian of the system is, within the tight
binding model:

Ĥ = −J

∞∑

l=−∞
(|l + 1〉〈l|+ |l〉〈l + 1|) + K cos(ωt)

∞∑

l=−∞
l|l〉〈l| (5.13)

where |l〉 is the Wannier state centered at the l-th site. The solution of this
problem can be found within the Floquet theory and by use of the Houston
functions [90] (a different procedure leading to the same result was used by
Ref. [96]). However, if the shaking amplitude is weak compared to the scale
of energy of the undriven lattice, i.e. if K ¿ J , one can approximate the
energy spectrum by the energy bands of the unshaken lattice En(q(t)). Thus
the effect of the shaking reduces to a change in time of the quasimomentum
q(t) through the relation:

q̇(t) = F (t) (5.14)

where F (t) = K/dL cos(ωt). Integrating the relation (5.14) one finds the
dependence of the quasimomentum q in time:

q(t) = q0 +
K

dLω
sin(ωt). (5.15)

The fundamental energy band E0(q(t)) can hence be written substituting the
quasimomentum of Eq.(5.15):

E0(q(t)) = −2J cos

(
q(t)

~kL

π

)
= −2J cos

(
q0

~kL

π +
Kπ

dLω~kL

sin(ωt)

)

= −2J cos

(
q0

~kL

π + K0 sin(ωt)

)

= −2J cos

(
q0

~kL

π

)
cos (K0 sin(ωt)) + 2J sin

(
q0

~kL

π

)
sin (K0 sin(ωt))

(5.16)

The shape of the band can therefore be calculated by integrating Eq.(5.16)
in time over a period of the shaking T = 2π/ω. The integral of the sin(sin(·))
term on the right hand side of Eq.(5.16) is zero; therefore, the fundamental
band E0(q) is:

E0(q) = −2JJ0(K0) cos

(
q

~kL

π

)

= −2Jeff cos

(
q

~kL

π

)
.

(5.17)
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The fundamental band of the shaken lattice corresponds hence to the funda-
mental band of the unshaken lattice but with the tunneling J (reflecting the
band width) substituted by its effective value Jeff .

Figure 5.2: Scheme of the experimental procedure. a) The atoms were con-
fined by two laser beams in a cigar shaped trap, and loaded into a lattice that
was almost collinear with one of the dipolar beams. b) The dipolar beam
orthogonal to the lattice was turned off suddenly, and the atoms started to
expand along the lattice. This expansion was observed in an in situ mea-
surement

5.2 In situ measurements

The aim of our experiment is to demonstrate that the interwell tunneling in
an optical lattice can be controlled coherently by modulating it in frequency.
This section is dedicated to showing the measurements that demonstrate how
the tunneling J varies by applying the frequency modulation according to
Eq. (5.12).
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5.2.1 Experimental procedure

In order to measure how the tunneling changes in a strongly driven optical
lattice, we designed an experiment in which the single particle tunneling J

can be indirectly estimated by observing the dynamics of the whole cloud.
In our experiment, once the BECs were created inside the dipolar trap, the

power of the two dipolar beams was changed in order to obtain cigar shaped
condensates. This operation took 50 ms in order to assure adiabaticity, and
the frequencies of the elongated trap were νlong = 20 Hz and νrad = 80 Hz.
Once the atoms were in this trap, two counterpropagating, independent laser
beams at the same frequency were ramped up linearly in 50 ms in order to
adiabatically load a one-dimensional lattice of depth V0. The two lattice
beams were almost collinear to the dipolar beam aligned with the longitudinal
axis of the cigar-shaped trap (see Fig. (5.2)). Once the lattice was ramped
up, the dipolar beam orthogonal with respect to the lattice was turned off.
The longitudinal frequency νlong of the trap passed hence suddenly from the
initial 20 Hz to ∼ 3 Hz (this weak confinement being caused by the focusing
of the dipolar beam collinear with the lattice). Because of this change in
the confinement frequency, the atoms started to expand along the lattice.
The atoms were allowed to expand for a time texp, after which they were
released both from the lattice and the dipolar confinement, and finally imaged
after 0.3 ms. This very short time was chosen in order to make the effect of
expansion in free space negligible. This kind of measurement is usually called
in situ, and the BECs are observed in real space instead of the momentum
space as in the time-of-flight measurements. In the in situ measurements we
observed the width of the cloud σlong in the longitudinal direction.

Figure 5.3: Linear expansion of the condensate in an optical lattice. In
this measurement the lattice depth was V0 = 3Eerec and the lattice was not
driven.

The expansion rate r = dσlong/dt of the condensate along the lattice is
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linked to the interwell tunneling and can be determined by measuring the
width of the cloud in the elongated direction for different values of texp. When
no frequency modulation was applied during the experiment, this measure-
ment was done by fitting the cloud width σlong with a single gaussian. An
example of the measurement of the expansion rate is presented in figure (5.3).
The expansion was almost linear and its rate r was extracted with a linear
fit of the experimental data. The same measurement was performed for dif-
ferent values of the lattice depth V0: a plot of the expansion rate versus V0

is shown in figure (5.4), where it is expressed in units of the lattice constant
dL. The data have been fitted with the function r/dL = αJ/h, where J is
the theoretical formula for the tunneling [41, 42]:

J =
4√
π

Erec

(
V0

Erec

)3/4

exp

(
−2

√
V0

Erec

)
, (5.18)

and α is a factor used for the fit. The fit involved all the points except the
one for V0 = 0, and the factor has been found to be α = (6.29± 0.15). This
measurement proves that the expansion rate has the same dependence on V0

as the expected tunneling rate J/h and can, therefore, be used as a tool to
estimate the value of J .

Figure 5.4: Expansion rate as a function of the lattice depth. The expansion
is measured in units of lattice constant dL. The red line is a fit with the
theoretical function r/dL = αJ/h with α = (6.29± 0.15).

5.2.2 Tunneling in a strongly driven lattice

The experimental investigation of tunneling in a strongly driven lattice was
done by observing the expansion of the condensate in a shaken lattice. When
νlong was suddenly reduced, the shaking was abruptly switched on. The lat-
tice was shaken during all the expansion time texp. The shaking was realized
by modulating the radio-frequency (RF) source of one of the acousto-optic
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modulators that were placed in the optical path of the two lattice beams.
The two RF sources were two Agilent 3325A synthesizers, phase locked to an
internal reference, and whose output frequency was centered around 72 MHz.
By detuning the frequency of one of the synthesizers by ∆ν, it was possi-
ble to move the lattice at a velocity v = dL∆ν or to accelerate it with an
acceleration a = dL(d∆ν/dt).

The shaking of the lattice was realized by imposing ∆ν = dL∆νmax sin(ωt),
where ∆νmax was the maximum detuning between the two lattice beams. In

Figure 5.5: Expansion of the condensate in a lattice of depth V0/Erec = 6
without (full squares) and with (empty squares) strong driving. For the
empty squares the shaking parameter was K0 = 2.3.

the rest frame of the shaken lattice the atoms experienced a force:

F (t) = mωdL∆νmax cos(ωt) = Fmax cos(ωt). (5.19)

The amplitude of the shaking K appearing in the Hamiltonian (5.2) is linked
to the force (5.19) by the relation:

K = FmaxdL, (5.20)

so the argument of the Bessel function J0 in Eq. (5.12) reads:

K0 =
K

~ω
=

md2
L∆νmax

~
=

π2∆νmax

2ωrec

. (5.21)

The maximum displacement of the lattice in the laboratory frame is:

∆xmax =
2

π2

ωrec

ω
K0dL. (5.22)
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For a typical modulation frequency ω/(2π) = 3 KHz this was ∆xmax ∼ 0.5 dL

for K0 = 2.4. When the modulation is applied, the tunneling and hence

Figure 5.6: Measurement of the ratio Jeff/J for different values of K0. The
experimental data agree very well with the theoretical prediction given by
formula (5.12). The different shapes of the points correspond to different
lattice depths and different frequencies of modulation at which the mea-
surement was performed; circles: V0/Erec = 6, ω/(2π) = 0.5KHz; squares:
V0/Erec = 6, ω/(2π) = 1.0KHz; triangles: V0/Erec = 4, ω/(2π) = 1KHz

the expansion rate of the condensate along the lattice, is expected to be
reduced according to the relation (5.12). The effective tunneling Jeff cannot
be measured directly. However, if r(K0) is the expansion rate of the sample in
a shaken lattice with modulation amplitude K0/(~ω),and r(0) the expansion
rate without frequency modulation, these two quantities satisfy the relation:

Jeff

J
=

r(K0)

r(0)
. (5.23)

Therefore, in our experiments we measured the ratio on the right-hand side
of Eq.(5.23), from which the effective tunneling Jeff can be calculated. The
assumption (5.23) is based on the result presented in figure (5.4) that has
been previously discussed. An example of the condensate expansion in the
regimes of shaken and unshaken lattice is presented in figure (5.5). There the
lattice was shaken with K0 = 2.3. By repeating the measurement of figure
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Figure 5.7: Expansion of the condensate in the lattice in different regimes
of stationary (off) and driven (on) lattice. The driving was applied only in
distinct time intervals, with K0 = 2.4 and ω/(2π) = 1KHz. The lattice
depth was V0/Erec = 6.

(5.5) for different values of K0 we were able to verify the relation (5.12).
This measurement is presented in figure (5.6). This figure demonstrates a
very good agreement between the theoretical prediction and the experimental
data. The theoretical curve in Fig. (5.6) contains no free parameters. As
expected, the smallest value for the tunneling was found for K0 = 2.4, i.e.,
the first zero of the zeroth order Bessel function. Suppression of tunneling up
to a factor of 25 was observed. However, this estimate has to be considered as
a lower bound of the real tunneling suppression achievable by this technique,
because we were limited by the experimental resolution in the measurement
of the sample width, which was approximately 1/2 pixel. A similar result
was obtained in an array of double wells by Ref. [97].

The feasibility of tunneling suppression was demonstrated in a ”toy” ex-
periment, where the shaking with K0 = 2.4 was applied at different time
intervals in order to ”freeze” the expansion of the cloud when desired.

5.2.3 Effects of the shaking frequency

In the first paragraph of the chapter it was stated that the effect of frequency
modulation on an optical lattice results in a substitution of the tunneling J

by an effective Jeff , whose value is governed by the zero-th order Bessel
function. This was possible under the hypothesis of a shaking frequency that
was much larger than the tunneling and interaction energies J and U :

~ω À max(J, U). (5.24)

In our experiment, all the measurements we performed with a one dimen-
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Figure 5.8: Measurement of the width of the cloud at the end of the expansion
σlong in a shaken lattice with K0 = 2.0 fixed for different values of the shaking
frequency ω. The lattice depth was V0/Erec = 9, corresponding to a tunneling
energy J/h ' 90 Hz. The time of the expansion was texp = 200 ms.

sional optical lattice up to V0/Erec < 9 deep. Therefore, U < J always, and
the condition (5.24) reduces to:

~ω À J. (5.25)

The measurements presented so far were performed at V0/Erec = 4 and 6,
corresponding to a tunneling energy of J/h ∼ 280 and 210 Hz respectively,
and with a minimum shaking frequency ω/(2π) = 0.5 KHz. Therefore, the
condition (5.25) was effectively satisfied. In order to observe the dependence
of the tunneling suppression on the shaking frequency, we measured the width
of the cloud at the end of the expansion σlong for a fixed value of K0 but for
different values of ω. Apart from a region of frequency 2J/h < ω/(2π) <

5J/h in which σlong is almost constant, the size of the cloud increases both
for higher and lower frequencies. While the increase in σlong for ω/(2π) >

5J/h can be interpreted as due to an excitation of the sample, as will be
explained in the next section, the behavior of σlong for ω/(2π) . 2J/h is
difficult to interpret. In fact, together with a tunneling enhancement, a
strong scatter of the experimental data was observed. To our knowledge,
there is no theoretical prediction for the behavior of a condensate in a shaken
optical lattice at a frequency ω/(2π) < J/h. The aim of the measurement
was not to explore this regime but to verify that the limit (5.25) agrees with
the experiment.
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Figure 5.9: Typical image of a cloud after expansion in a shaken optical
lattice. The profile was fitted by a double gaussian fit. The time of expansion
was texp = 150 ms, the lattice V0/Erec = 6 deep, the shaking frequency
ω/2π = 1 KHz and K0 = 1.5.

5.2.4 Excitation of the sample

The physical quantity that was observed in all the in situ measurements was
the width of the condensate σlong. As stated previously, when the lattice was
not shaken, σlong was measured by a single gaussian fit of the cloud profile.
However, when the lattice was shaken, the central peak in the atom distri-
bution was surrounded by a broader pedestal (see Fig.(5.9)). The fraction
of atoms in the pedestal increased when the frequency of the shaking was
increased. For frequencies above a certain value, depending on the lattice
depth, e.g. around 4 KHz at V0/Erec = 9 as shown in figure (5.8), the central
peak was strongly suppressed, and a single gaussian fit measured mainly the
pedestal distribution. This effect emerged in the distribution as a sudden
rise in the cloud width. In order to verify that the atoms distributed in the
pedestal were in the excited bands of the condensate, we performed a sepa-
rate experiment. After the usual experimental sequence, we applied a force
that allowed to separate the atoms in the fundamental band Nfond from the
atoms in the excited bands Necc. This was possible because the force was
such that only the atoms in the fundamental band were dragged by the lat-
tice, while the atoms in the excited bands tunneled to the continuum. We
tested this technique by performing a measurement analogous to the ones
described in the previous chapter, by loading the sample in the fundamental
or in the first excited band of the unshaken lattice and then accelerating it.
Once this technique was tested, we measured the fraction of atoms in the
excited band at different values of the shaking frequency ω.

It can be noted from figures (5.8, 5.10) that apart from high and low fre-
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Figure 5.10: Measurement of the excited fraction of atoms versus the shaking
frequency ω. For the empty squares the lattice depth was V0/Erec = 9 and
the force F0 = 2.92. The filled circles in the inset are the data for the same
measurement in a V0/Erec = 5 deep lattice, for which F0 = 1.86. In both
cases the lattice was shaken for 50 ms before being accelerated.

Figure 5.11: Measurement of the cloud width after 200 ms of expansion in a
shaken lattice with ω/2π = 80 Hz. The cloud width is estimated by a double
gaussian fit. The larger width (pedestal distribution) is plotted with filled
circles, while the narrower (central peak distribution) is plotted with empty
squares. The inset is the measurement of the excited fraction of atoms for
the same set of data.

quency regions where the behavior of the sample cannot be easily interpreted,
there is a large plateau of frequencies for which excitations are negligible and
the conditions imposed by theory are fulfilled. Apart from the measurements
presented in this section and in the previous one, all the other measurements
reported in this thesis were done by shaking the lattice at frequencies within
this plateau region.

Once we were able to interpret the pedestal distribution as being due to
atoms in the excited bands, we observed their behavior when the shaking
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amplitude was varied. This results in a measurement analogous to (5.6)
which is reported in figure (5.11). It can be noted that, apart from a stronger
scattering of the experimental data, the behavior of the width is similar to
that of (5.6). We conclude from this that the frequency modulation of the
lattice also affects the interwell tunneling in the excited bands, and |Jeff/J |
in the excited bands could be described by the same Bessel function J0.

5.3 Time of flight measurements

The in situ measurements shown in the previous paragraphs demonstrated
that the tunneling in a shaken lattice follows the relation (5.12), as predicted
by theory. However, so far we have not addressed the problem of whether the
lattice shaking affects the phase coherence of the condensate. This can be
measured by observing the interference pattern of the sample in momentum
space. The experimental procedure for this kind of measurements was the
same as for the in situ measurements until the condensate was loaded into
the optical lattice. At this point, the trapping frequencies were not varied
anymore, i.e., the sample was not allowed to expand, and the lattice was
shaken for a time tshake. The shaking was switched on abruptly. At the end
of this stage, the lattice was accelerated for 2.5 τB ∼ 1 ms. The acceleration
was chosen in order to separate the atoms in the fundamental band from the
atoms in the excited bands, and ended at the band edge, i.e. at |q| = ~kL.
At the end of the acceleration the atoms were released both from the dipolar
trap and the optical lattice, and they were allowed to expand and fall in free
space for ttof ' 20 ms. The density profile of a typical image taken is shown
in Fig.(5.12). The interference pattern of a condensate, i.e., for a coherent
sample, was composed of two peaks, belonging to classes of velocity separated
by 2vrec. The phase coherence of the condensate was characterized by the
visibility V of the interference pattern, that was defined as:

V =
hmax − hmin

hmax + hmin

(5.26)

where hmax is the mean value of the condensate density at the position of
the two interference peaks, and hmin is the mean condensate density in a
region of width equal to 1/4 of the peak separation and centered around the
halfway point between the two peaks (see Fig.(5.12)). For a phase coherent
condensate one expects V ∼ 1, while for a dephased sample V ∼ 0.

In a first experiment, we measured the visibility (5.26) as a function of
time for fixed values of the shaking amplitude K0. Fig.(5.13) shows one of
these measurements for K0 = 2.2. The coherence of the sample was preserved
for several tens of ms for K0 ≤ 2.2, while the tunneling was suppressed up to
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Figure 5.12: Density profile of the interference pattern created by a conden-
sate released from the fundamental band edge, i.e. |q| = ~kL. The visibility
of the pattern is calculated using the formula (5.26), where hmax and hmax

are the mean optical densities of the region highlighted in red and blue re-
spectively.

a factor ∼ 10. The experimental data for each value of K0 were fitted with
an exponential function, and the resulting characteristic times τdeph of the
exponential decays were extracted. The results for the extracted τdeph are

Figure 5.13: Measurement of the visibility V as a function of the time during
which the lattice was shaken tshake. The amplitude of the shaking was K0 =
2.2. The solid line is an exponential fit with the offset fixed to zero.

plotted in Fig. (5.14) against K0. A clear dip emerged for K0 ∼ 2.4, i.e., in
proximity of the first zero of the Bessel function J0, for which the tunneling
is strongly suppressed. When this was the case the effective tunneling was
Jeff/h ≤ 10 Hz, i.e., of the same order of magnitude as in this regime the
on-site interaction potential U/h ∼ 50 Hz. This loss of visibility can be
explained as being due to the independent evolution of the local phases in
distinct lattice sites [54, 80, 98].
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Figure 5.14: Measurement of the dephasing time τdeph as a function of K0.
The figure reports the characteristic times τdeph measured for different values
of K0. A clear dip is present at K0 = 2.4, whose position is highlighted by
the dashed line. The measurement was taken in a lattice with V0/Erec = 9
and with a shaking frequency ω = 2π × 3 KHz.

In fact for those values of K0 the tunneling is almost completely sup-
pressed, and the phase evolution of the wavepacket at each single site was
mostly due to the on-site interactions. We checked that the on-site inter-
action was not affected by the lattice shaking by measuring the number of
atoms in the side peaks of the interference pattern of the condensate released
from the lattice at q = 0. In fact, the population of these side peaks depends
on the width of the on-site wavefunctions and hence on the interaction U .

Finally, we explored how the phase coherence depended on the shaking
frequency. This experiment was performed by measuring the characteristic
time τdeph of the phase coherence decay for K0 = 2.2 for different values of
the shaking frequency ω. This measurement is reported in Fig. (5.15). In
the in situ experiment we observed that the suppression of tunneling was
efficient until hω/J ' 1. However, now we observed that in order to preserve
the phase coherence during the shaking much larger shaking frequencies are
needed. In fact we found the optimal lattice frequency to be hω/J ' 30.
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Figure 5.15: Measurement of the dephasing time τdeph as a function of the
shaking frequency ω. The lattice depth was V0/Erec = 9 and the shaking
amplitude was fixed to K0 = 2.2.

5.3.1 The phase inversion

In the experiment reported in Fig. (5.14) the evolution of the phase co-
herence was measured for K0 varying in the range [0, 3.5]. However, within
this range the evolution of the interference pattern was substantially differ-
ent for K0 < 2.4 and K0 > 2.4. For K0 < 2.4, the visibility decayed as
shown in Fig. (5.13). For K0 > 2.4, we observed an additional ”shift” of
the interference pattern. This emerged as a shift of ~kL in the plane wave
decomposition of the wavefunction of the condensate when this is released
from the lattice. This effect is reported in Fig.(5.16), where the images of
the condensate taken at different times are shown. During the first ∼ 5 ms of
shaking the interference pattern evolved from the usual band edge pattern to
the one experienced by atoms at the center of the fundamental band. This
was confirmed by increasing the final acceleration time by 0.5τB, for which
the band edge interference pattern was recovered but displaced by ~kL in
momentum space. Then for longer values of tshake the usual exponential de-
cay of the pattern visibility was observed, and no other classes of velocity
were populated.

This effect can be explained by considering that for 2.4 < K0 < 5.5 the
zero-th order Bessel function is negative. Therefore, the effective tunneling
Jeff becomes negative. A consequence of this change of sign is that the
energy bands invert their shape: the minima of the fundamental band are
now at q = ±~kL, while for q = 0 the energy has a maximum. This ef-
fect, which can be also interpreted as a change of the sign of the effective
mass m∗, causes a displacement of the interference pattern, as was observed
experimentally. Thus, this measurement demonstrated that by shaking the
lattice, the interesting regime of a negative tunneling can be explored.
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Figure 5.16: Observation of the inversion of the interference pattern. This
effect emerged when the effective tunneling became negative. The lattice
depth was V0/Erec = 9, and ω = 2π × 3 KHz, K0 = 4.

Figure 5.17: Re-phasing of the condensate. The lattice was initially shaken
for 5 ms at K0 = 2.4, and then allowed to evolve at a lower value of K0. The
lattice depth in the experiment was V0/Erec = 9, and the shaking frequency
ω = 2π × 3 KHz. The dotted line is the theoretical prediction in a two-well
model.
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5.3.2 Re-phasing of the sample

In order to further confirm the phase coherence of the condensate in a shaken
lattice, we performed an experiment in which the phase coherence was re-
established. In this experiment the lattice was initially shaken with ampli-
tude K0 = 2.4 for 5 ms. After this time the phase coherence was completely
lost. Then, the shaking amplitude was suddenly changed to a smaller value
of K0, and we observed the time evolution of the visibility. This was re-
established exponentially in time. We measured the characteristic time τreph

of this evolution for different values of K0. Fig. (5.17) shows the result of this
experiment. The phase coherence was re-established faster for smaller values
of K0, i.e., for higher tunneling rate Jeff . This behavior can be explained
with an intuitive argument. The phase coherence and hence the speed of the
re-phasing depends on the on-site interactions U and on the phase coupling
between lattice sites that is provided by the tunneling Jeff . As we stated
previously, the on-site interaction U was not affected by the lattice shaking.
Thus, when the tunneling is suppressed, i.e., when the lattice is shaken at
K0 = 2.4, each site evolves independently. When the tunneling is allowed
again, the phase coherence is re-established faster for higher values of the
tunneling rate. In Fig. (5.17) the experimental data are compared with the
inverse of the Josephson frequency as a function of the effective tunneling:
ωJosephson ∝ J

−1/2
eff , as predicted by a two-well modes [99].

Figure 5.18: Spectrum of the quasienergies εn within the first Brillouin zone
for a system of N = 5 atoms in M = 5 wells of a V0/Erec = 3 deep lattice.
The arrow marks the ground state. From Ref. [82].
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5.3.3 Adiabaticity in the shaken lattice

In the first section of this chapter the theoretical problem of a BEC in a
strongly driven optical lattice has been introduced. By use of the Floquet
theory, it was found that this problem can be reduced to the case of a BEC
in an optical lattice at rest but with the tunneling parameter J substituted
by an effective Jeff . However, the problem of the time evolution of an initial
wavepacket has not been addressed in detail so far.

Within the Floquet theory, the eigenvalue problem (5.6) was defined in
the R ⊗ T Hilbert space, which is defined as the extension of the space of
the square integrable functions on configuration space R to the space T of
the time periodic functions of period T = 2π/ω. The eigenvalues of Eq.(5.6)
are the quasienergies εn,m, defined in a Brillouin-zone like spectrum of width
~ω. Their corresponding eigenstates |un(t)〉 are the so-called Floquet modes,
forming a basis in the R⊗T space. A general property of the Floquet theory
is that the Floquet modes in the first Brillouin zone and for a fixed time t

form a basis in the R space.

Figure 5.19: Different trajectories that the system can experience when pass-
ing through an avoided energy crossing. The solid arrow corresponds to the
diabatic trajectory, i.e., the probability of tunneling through the energy gap
is r = 1. The dotted arrow corresponds to the adiabatic trajectory, i.e., the
probability of tunneling through the energy gap is r = 0, and the system
follows the lowest energy level.

In the case of N atoms loaded into an optical lattice of M sites, the basis
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in R is formed by the states:

|{nj}〉 = |n1〉 ⊗ |n2〉⊗, ..., |nM〉,
M∑

j=1

nj = N (5.27)

where |nj〉 is the Fock state of nj atoms in the j-th site. The basis is composed
of all the possible combinations of atom numbers in the lattice sites. The
problem of the evolution in time of a system prepared initially in one of these
states is a very hard task, and a full description of the problem can be found in
Ref. [82]. Here we are interested in showing qualitatively how this evolution
affects the system. Fig. (5.18) shows, within the first Brillouin zone, the
quasienergies εn for all the states (5.27) of a system of N = 5 atoms in M = 5
wells as a function of the shaking parameter K0. If this system is initially
prepared in its ground state at K0 = 0 and then K0 is increased to some
value K

(max)
0 , during its trajectory the energy level experiences many energy

avoided crossings with other levels. For each of these crossings, the Landau-
Zener theory predicts that there is a probability of tunneling r through the
energy gap depending on how fast K0 has changed. In particular, three
regimes can be considered (see Fig.(5.19)): the system follows an adiabatic
trajectory, i.e., no tunneling occurs (r = 0); the system follows a diabatic
trajectory, i.e., the tunneling probability is r = 1; the system follows a
trajectory that is neither adiabatic nor adiabatic, i.e. 0 < r < 1. Referring
to Fig. (5.19), in the adiabatic trajectory the system follows the lower energy
state, that is not the same for K0 ¿ K̄0 and K0 À K̄0, i.e., the state of the
system in the R space changes passing through the crossing. On the other
hand, in the diabatic trajectory the system changes energy level but it does
not change its state in theR space. Finally, when the probability of tunneling
is 0 < r < 1, the state of the system becomes a coherent superposition of the
two crossing states in R. In this particular case the evolution of the system
is not reversible, i.e., if the parameter K0 is changed back to its initial value
the initial state cannot be recovered. In Fig.(5.18) the energy level marked
by the arrow is the ground state at K0 = 2.4. This is the evolution of the
ground state of the system if it follows only diabatic trajectories for all the
energy crossings experienced in its evolution in parameter space. This level
is well separated from the other energy levels, and moreover the tunneling is
suppressed, because K0 = 2.4.

Ref. [82] proposed to exploit the tunneling suppression in a shaken op-
tical lattice in order to enter into the Mott Insulator phase. In this phase,
first predicted for cold atoms in an optical lattice by Ref. [41], the number
of atoms per lattice site is exactly determined, and can emerge if the filling
of the lattice is homogeneous. The Mott insulator phase has been realized
experimentally first by Ref. [35] loading the condensate in the ground state
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Figure 5.20: Measurement of the dephasing time τdeph as a function of the
ramping time tramp of the shaking parameter K0. The lattice depth was
V0/Erec = 9, the shaking frequency ω = 2π × 3 KHz, and the shaking para-

meter was ramped up to K
(max)
0 = 2.2.

of a 3D optical lattice and then increasing adiabatically the lattice depth.
Contrary to the spectrum of Fig. (5.21) of a shaken lattice, in the experi-
ment reported by Ref. [35] the ground state does not experience any energy
crossing with other levels when the lattice depth is increased. Ref. [82]
found some experimental conditions in order to go from the superfluid into
the Mott insulator phase by strongly driving a shallow lattice. We were not
able to test these conditions in our experiment, because the mean number of
atoms per lattice site was of order of several hundreds, making the transition
unfeasible in our one-dimensional setup [42].

However, we performed two experiments in order to observe how the phase
coherence was affected by the crossings in the energy spectrum. In a first
experiment, we measured the characteristic time for the loss of phase coher-
ence τdeph in a shaken lattice whose parameter K0 was ramped up linearly in

a time tramp to a stationary value K
(max)
0 . Fig. (5.20) shows the measured

τdeph for different values of tramp. No clear evidence of a dependence of τdeph

on tramp was observed.
In a second experiment, the lattice was shaken during all the experiment,

i.e., both during its loading (that was tlattice long) and the shaking time
tshake. The shaking parameter K0 was not varied during the experiment.
The parameter in this case is the lattice depth. Fig.(5.21) shows the energy
spectrum in parameter space for K0 = 1.5. As in the case of Fig. (5.18), the
system experiences many energy crossings when the parameter is varied. In
the measurement reported in Fig.(5.22), the characteristic time for the loss
of coherence τdeph was measured for different values of the lattice ramp time
tlattice. In the case of an unshaken lattice, one expects that the coherence
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Figure 5.21: Spectrum of the quasienergies εn within the first Brillouin zone
for a system of N = 5 atoms in M = 5 wells in a lattice shaken with K0 = 1.5.
From Ref. [82].

Figure 5.22: Measurement of the dephasing time τdeph as a function of the
ramping time tlattice of the lattice. The final lattice depth was V0/Erec = 9,
the lattice shaking had frequency ω = 2π × 3 KHz with K0 = 2.2.

of the BEC is preserved in an adiabatic loading. Therefore, the longer the
ramping time, the longer τdeph should be. However, in a shaken lattice we
observed a different behavior. As shown in Fig. (5.22), phase coherence was
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preserved for longer time when the lattice was loaded in a shorter time. We
interpreted this as an evidence of the effects of the crossings experienced by
the energy levels while the lattice was loaded, i.e., while moving through one
of the trajectories plotted in Fig. (5.21).

In fact, when the lattice was loaded in a shorter time, the state of the
system passed with a higher velocity through the energy crossings and hence
the probability of following a diabatic trajectory was higher.
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Chapter 6

Photon-assisted tunneling

In the experiment described in the previous chapter the control of tunneling
in an optical lattice was realized by shaking the lattice. In particular, for
appropriate values of the shaking amplitude and frequency, the tunneling
was strongly suppressed. In the experiment described in this chapter we first
realize the suppression of tunneling in an optical lattice by use of a constant
force, i.e., a linear potential, that shifts the energy levels of neighboring sites.
Then, we partially restore the tunneling by shaking the lattice at appropriate
frequency and amplitude. This experiment is the analogue of the photon-
assisted tunneling observed in several solid state experiments [100, 101, 102].

6.1 Photon-assisted tunneling in an optical

lattice

The physical system of a Bose-Einstein condensate loaded into an optical
lattice is characterized by two parameters: the on-site interaction energy
U and the inter-site tunneling energy J . The latter describes a tunneling
event, and its value depends on the overlap of the single site wave functions
at different lattice sites. In particular, J is maximum when all the single well
energy levels are degenerate. If an additional potential (such as an external
force) creates an energy shift between the lattice sites, the degeneracy is
lifted and the inter-well tunneling is strongly suppressed. As stated when
the resonantly enhanced tunneling was introduced, the eigenstates in this
case are the Wannier-Stark states, which are localized at the lattice sites.

Photon-assisted tunneling occurs when one or more photons couple the
shifted energy levels, partially restoring the tunneling. This phenomenon is
very general, and it can be realized in physical systems composed of cou-
pled energy wells whose levels are tuned out of degeneracy by an external
potential. In fact, photon-assisted tunneling was first observed in supercon-
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ducting junctions [100], and more recently in semiconductor superlattices
[91, 102, 103] and quantum dots [101, 104]. In these systems the frequency
that coupled the energy levels varied from tens of GHz to THz. In the case
of an optical lattice the maximum shift between the energy levels must be
of the order of the lattice depth, i.e., up to tens of KHz, in order to avoid
inter-band tunneling to the continuum. The role of the photon can be played
by a shaking of the lattice, which leads to sidebands to the frequency ωL of
the lattice lasers. The energy shift, on the other hand, can be provided by
an external force F , that creates a linear potential along the lattice. In this
case the full Hamiltonian of the system reads:

H =− J
∑

〈i,j〉

(
a†iaj + a†jai

)
+

U

2

∑
j

nj (nj − 1) +

+ ∆E
∑

j

jnj + K cos (ωt)
∑

j

jnj

(6.1)

where:

• ai, a†i are the bosonic annihilation and creation operators on site i,

• ni = a†iai is the number operator on site i,

• ∆E = FdL is the difference in energy between neighboring sites caused
by the force F ,

• K and ω are the amplitude and the frequency of the shaking.

In the Hamiltonian (6.1) the first row corresponds to the Bose-Hubbard
Hamiltonian, while the two contributions in the second row are the linear
potential and the shaking term, respectively. A schematic overview of the
quantities involved is shown in Fig. (6.1).

Once the lattice depth V0 and the force F are fixed, photon assisted tun-
neling is characterized by the last two free parameters in the Hamiltonian
(6.1): the shaking amplitude K and the shaking frequency ω. The latter
must be such that the energy provided by the shaking fills in the gap of the
energy shift between neighboring sites. The resonance condition is thus:

n~ω = FdL (6.2)

where the integer n is the order of the photon-assisted resonance and de-
scribes how many ”photons” are needed to bridge the gap FdL. The depen-
dence of the photon assisted tunneling on K can be calculated by solving
the eigenvalue problem of the Hamiltonian (6.1) within the Floquet theory.
The calculations are equivalent to the ones introduced in the previous chap-
ter, where the effect of shaking the lattice was to destroy the tunneling. It
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Figure 6.1: Sketch of the photon assisted tunneling in an optical lattice. a)
The atoms in an optical lattice can move from site to site by tunneling. b)
The inter-well tunneling is destroyed by the application of an external force
F that de-couples the energy levels. c) The tunneling is partially restored by
shaking the lattice at an appropriate frequency ω.

can be demonstrated [105] that if FdL > J , i.e., if the energy shift is larger
than the width of the fundamental band of the unperturbed lattice, and the
resonance condition (6.2) holds, then the Hamiltonian (6.1) reduces to the
Bose-Hubbard Hamiltonian but with the tunneling energy J substituted by
an effective one such that

|Jeff/J | = |Jn (K0)| , (6.3)

where Jn is the n-th order Bessel function, n is the order of the resonance
that appears in Eq.(6.2), and K0 = K/(~ω).

6.2 Experimental technique

In order to demonstrate the experimental realization of photon assisted tun-
neling, the physical quantity that had to be measured was the inter-well
tunneling. This same quantity was measured in the ”control of tunneling”
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experiment described in the previous chapter. Therefore, the experimental
sequence was very similar to the one followed in that experiment:

• After reaching condensation, the trap frequencies were adiabatically
varied in 50 ms to a cigar shaped trap of frequencies νrad = 80 Hz,
νlong = 20 Hz

• In the longitudinal direction a one dimensional optical lattice was cre-
ated by ramping up linearly in 50 ms two independent, counterpropa-
gating laser beams of the same wavelength λ = 852.2 nm. The atoms
were loaded into the fundamental band of the lattice.

• The dipolar beam responsible for the longitudinal confinement of the
atoms was switched off suddenly. The dipolar frequency in this direc-
tion was now νlong ∼ 5Hz, caused mainly by the focusing of the dipolar
beam. The duration of this phase texp was such that the effects of the
longitudinal trapping force were negligible, and the atoms were free to
expand along the lattice. This condition was experimentally tested by
imposing texp such that the size of the cloud expanded linearly.

• After an expansion time texp along the lattice the atoms were released
both from the lattice and the dipolar trap, and then imaged after a time
of flight of 0.3 ms. This very short time assured that the effects of the
expansion of the cloud in free space were negligible. The measurement
was hence in situ, and the spatial width of the cloud was extracted by
fitting its profile with a single gaussian.

The force and the sinusoidal driving were applied to the system during the
expansion time texp. They were realized using the same technique introduced
in the previous chapters.

The parameters that characterized the lattice shaking are the same as
those introduced in the ”control of tunneling” experiment: the frequency of
the modulation ω and the dimensionless parameter K0 = K/~ω.

In other experiments described in this thesis, the force exerted on the
atoms was realized by increasing the detuning ∆ν between the lattice beams
linearly in time. In the experiment described here, the expansion time was
up to 400ms, while the acceleration varied in the range 0-4ms−2. For these
parameters, two problems did not allow us to realize the force by ramping
linearly in time the detuning ∆ν. First, the atoms would have been displaced
by up to 32cm, which is roughly two orders of magnitude larger than the
field of view of the CCD camera. Second, the longitudinal trap of frequency
νlong ' 5 Hz would have created a non-negligible restoring force Frestore to
the center of the dipole trap. In fact, this force had to be much smaller
than the force created by the lattice acceleration F À Frestore = mω2

long∆x,
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Figure 6.2: Scheme of the frequency variations involved in the experiment.
The force F and the frequency modulation FM are created by varying the
detuning between the two lattice beams ∆ν(t). The corresponding accelera-
tion a(t) is plotted in the right column. The time scale for the rocking force
is expanded by a factor of ten.

because the energy shift between the lattice sites had to be fixed during the
experiment. We decided hence to keep the displacement ∆x of the atoms
below 100 µm, so that the restoring acceleration was arestore < 0.1 ms−2 ¿
F/m. In order to have no limitations on the expansion time texp, we applied
the force with a rectangular profile, i.e. alternating in time a force F and
its inverse −F . This force ”rocked” the lattice back and forth, creating a
piecewise static potential shift between neighboring lattice sites of FdL. The
frequency of this ”rocking” force ωrock was always chosen to be much less
than the shaking frequency: ωrock ¿ ω, in order to have a clear separation
of the frequencies in the experiment.

In order to measure the tunneling, we used the same technique as in the
”control of tunneling” experiment. Therefore we chose the time texp such that
the expansion of the condensate along the lattice was approximately linear
in time. The ratio between the expansion rates in the case of an unperturbed
(F = 0, K = 0) and a perturbed (F 6= 0, K 6= 0) lattice corresponded to the
ratio between the tunneling in these two cases: |Jeff/J |. The experimental
verification of this statement and the measurement of the linear expansion
of the cloud are not reported here because they are analogous to the one
reported in the previous chapter.
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6.3 Destruction of tunneling in a ”rocked”

lattice

The first experiment that was performed was the observation of the destruc-
tion of tunneling when the force was applied. In this experiment only the
rocking force was implemented, and the lattice was not shaken. The tun-
neling was expected to be strongly suppressed when the force was such that
the energy shift between neighboring lattice sites was larger than the funda-
mental level width. This corresponds in a first approximation to the width
of the fundamental band of the lattice at rest, i.e., the tunneling J . A mea-
surement of the tunneling for different values of the force is reported in Fig.
(6.3). There the force on the horizontal axis is expressed in units of the
tunneling energy J . As expected, when the force approached the tunnel-
ing energy FdL/J ' 1 the tunneling was strongly suppressed. In fact, for
FdL/J > 1 no expansion of the cloud along the lattice was observed within
the experimental error. In the measurement reported in Fig. (6.3) the lattice
depth was V0/Erec = 5, the rocking frequency ωrock = 2π × 30 Hz and the
expansion time texp = 100 ms.

Figure 6.3: Suppression of tunneling in an optical lattice subject to a force
F . When FdL ≈ J the tunneling is strongly suppressed. The solid line is a
Lorentzian fit with a half-maximum half-width of 0.13.

A similar effect was observed by ref. [106], where the tunneling suppression
was observed in a 3D optical lattice with one atom per lattice site. As well
as in ref. [106] we fit the experimental data in Fig. (6.3) with a Lorentzian
function (solid line). The half-width half-maximum we measured was 0.13.
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6.4 Photon-assisted tunneling

Photon assisted tunneling occurs when the rocked lattice is shaken at a fre-
quency that matches the energy shift between lattice sites created by the
force, i.e. when the resonance condition (6.2) holds. The first experiment
performed was the observation of the resonance of the first order: n = 1.
Eq. (6.3) states that the effective tunneling Jeff in this case is proportional
to the first order Bessel function J1. For this reason we set the frequency
modulation amplitude ∆νmax to the first maximum of the J1 Bessel function
at K0 = 1.8. A measurement of the condensate width against the tunneling
frequency is presented in Fig.(6.4) (filled circles). There the ”rocking” force
was FdL/J = 1, so that the tunneling was strongly suppressed. The lattice
depth was V0/Erec = 5, and J/h = 270 Hz. A resonance in the tunneling was
observed for the expected value of the frequency ωres = 2π × 270 Hz. Apart
from the resonance peak, two symmetric peaks were observed at ±30 Hz
from the resonance. These were interpreted as being due to the ”rocking”
frequency that created two sidebands at ω ± ωrock in the overall frequency
spectrum. This explanation was proved in a separate experiment where ωrock

was varied and the side peaks shifted with respect to the resonance peak as
expected. The resolution limit in the measurement of the resonance position
corresponded to t−1

exp, i.e., the inverse of the expansion time during which
the force and the shaking were applied. In the experiment reported in Fig.
(6.4) this was texp = 400 ms. The measured width of the resonance peak was
∼ 3 Hz, i.e., close to the resolution limit. It must be pointed out that for
this value of texp the expansion of the cloud along the lattice was no longer
linear in time. Therefore, it was not possible to measure the amplitude of the
restored tunneling. However, the aim of this experiment was to test the reso-
nance condition (6.2) by performing spectroscopy-like measurements, whose
accuracy depended on the resolution in frequency. In order to increase the
resolution we therefore increased the time texp to values for which the ex-
pansion was no longer linear. The amplitude of the effective tunneling was
measured in a separate experiment that will be described in the following.

The same experiment has been performed to measure the second order
resonance, i.e., n = 2. This measurement was initially done in the same
conditions as for the n = 1 resonance, i.e., with K0 = 1.8. However, Fig.
(6.4) shows that at ω ' FdL/(2~) and K0 = 1.8 the second order resonance
was not clearly observed. This was because according to Eq. (6.3) the
effective tunneling Jeff was now proportional to the second order Bessel
function J2. By setting the shaking amplitude close the maximum of the
J2 Bessel function, i.e. K0 = 3.1, the resonance peak clearly emerged. This
measurement corresponds to the empty circles in Fig.(6.4). The resonance
peak width was again ∼ 3 Hz, and its position was ωres = 2π × 135 Hz, as
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Figure 6.4: Photon-assisted tunneling resonances. The resonances were found
at the expected positions, i.e., ωres = FdL/(n~) for the resonances of order
n = 1, 2. The peaks at the sides of each resonance were due to the sidebands
created in the frequency spectrum by the ”rocking” frequency ωrock = 2π ×
30 Hz of the force F . For the experimental data reported with filled circles,
the amplitude of the shaking was such that K0 = 1.8, i.e., close to the J1

maximum. In this set the n = 1 resonance clearly emerged, but not the n = 2
one. The n = 2 resonance was observed by setting K0 = 3.1, i.e. close to
the first maximum of J2. These data are reported in the figure with empty
circles. The solid lines connect the data points as a guide to the eye.

expected. Two side peaks now emerged at a distance ±15 × 2π Hz from
the resonance peak. These peaks corresponded to a resonance condition
~(2ω ± ωrock) = FdL, so that ω = ωres ∓ ωrock/2. We performed the same
measurement reported in Fig. (6.4) for different values of F . The position of
the n = 1 resonance frequencies ωres are plotted in Fig. (6.5) as a function
of the energy shift between adjacent wells created by the force. As expected
by Eq. (6.2), the resonance frequency ωres varied linearly with F .

6.5 Amplitude of the photon assisted tunnel-

ing

The experiments previously described measured the dependence of photon
assisted tunneling on the frequency of the shaking, finding good agreement
with the theoretical prediction of Eq (6.2). The dependence of the photon as-
sisted tunneling on the shaking amplitude predicted by Eq. (6.3) was studied
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Figure 6.5: Measurement of the resonance frequencies ωres for different val-
ues of the linear potential created by the force F . The dashed line is the
theoretical prediction (6.2).

in an experiment in which the tunneling was measured for different ampli-
tudes of K0. The shaking frequency was now fixed at the center of one of
the resonances measured in Fig.(6.4), i.e., ~ω/FdL = 1/n with n = 1, 2. The
measurements of |Jeff/J | against K0 are reported in Fig. (6.6) for the first
order resonance and in Fig. (6.7) for the second order resonance. Our first
sets of experimental data are plotted there using filled squares. Both mea-
surements were taken in a lattice of depth V0/Erec = 5, force F ' 1.4 Jd−1

L ,
and with expansion time texp = 100 ms. The tunneling rate predicted by
theory, i.e., |Jeff/J | = |J1| and |Jeff/J | = |J2| for the first and second order
resonances respectively are plotted in Fig.s (6.6), (6.7) with a solid line. The
measured tunneling rate agreed qualitatively with the theoretical prediction,
and the maximum and the minimum values for Jeff were found where ex-
pected. However, there was a disagreement between theory and experiment
concerning the absolute value of the effective tunneling, and a factor ∼ 1.3 of
difference was found between the two curves. Surprisingly, the experimental
tunneling rate had a better agreement with the square of the expected Bessel
function behavior. This is reported in Fig. (6.6), (6.7) with a dashed line.
The dependence of the tunneling rate on the square of the related Bessel
function is expected in the case of sequential tunneling [107]. Sequential
tunneling occurs in systems where several energy wells are coupled, as in
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Figure 6.6: Dependence of the first order photon assisted tunneling on the
shaking amplitude. The experimental data have been taken for a lattice of
depth V0/Erec = 5, a ”rocking” force of amplitude F = 1.4J/d and frequency
ωrock = 2π × 30 Hz, and a shaking frequency at the first order resonance.
The average number of atoms was N ' 5 · 104 for the filled squares and
N ' 0.5 · 104 for the empty squares. The solid line is the modulus of the J1

Bessel function while the dashed line is its square J 2
1 .

an optical lattice, but the phase coherence is lost after each tunneling event
because of some decoherence mechanism. This can be, for instance, inelastic
scattering. In the case of cold atoms loaded into an optical lattice, a source
of dephasing is the dynamical instability that the atoms suffer when the ef-
fective mass becomes negative [77, 78]. For atoms in the fundamental band,
this corresponds to a quasimomentum q in the range ~kL/2 . |q| < ~kL

within the first Brillouin zone. In the measurements presented in Figs. (6.6),
(6.7), during the ”rocking” acceleration the maximum momentum reached by
the atoms was pmax = 6.3 ~kL. Therefore during the experiment the atoms
passed many times through unstable regions, where they spent a time τB/2.
In the measurement reported, τB ' 2.6 ms, that is comparable with the time
scale for which dephasing in the unstable region was observed [77, 78, 108].
In order to partially confirm that sequential tunneling might occur in our
experiments, we repeated our measurements using a sample with a number
of atoms that was one order of magnitude less than in the first experiment
(5 ·103 instead of 5 ·104 atoms). This allowed to decrease the nonlinearity by
a factor ∼ 2.5 and therefore the effects of instability. These measurements
are reported with the open squares in Figs. (6.6), (6.7). Interestingly, the
effective tunneling rate measured had a better agreement with the theoreti-
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Figure 6.7: Dependence of the second order photon assisted tunneling on
the shaking amplitude. The experiment has been carried out in the same
experimental conditions of the experiment reported in Fig.(6.6). The average
number of atoms was N ' 5 · 104 for the filled squares and N ' 0.5 · 104 for
the empty squares. The solid line is the modulus of the J2 Bessel function
while the dashed line is its square J 2

2 .

cal prediction for a coherent photon assisted tunneling, which supports our
statement. A further confirmation of our interpretation of the disagreement
between theory and experiment is given by the measurement of the control
of tunneling reported in the previous chapter. There the atoms did not cross
the unstable region of the energy spectrum during the lattice shaking, and
the measured tunneling rate agreed with the linear Bessel function theoret-
ical prediction. Moreover, in that experiment the sample was observed to
keep its phase coherence.

Another nonlinear effect that could have been responsible for the squared
Bessel function behavior of the experimental data taken with the larger num-
ber of atoms is self-trapping [109, 110]. This is a nonlinear effect that occurs
when the ratio between the inter-well interaction potential and the tunneling
is larger than some threshold, causing a suppression of the expansion of the
atoms along the lattice. For the parameters of our experiment, the system
could show self-trapping only when the tunneling was strongly suppressed,
that is, for shaking amplitudes close to the Bessel functions zeros. However,
the strongest deviation from the coherent photon assisted tunneling predic-
tion were in the regions close to the Bessel function maxima. Therefore, we
considered the self-trapping effects not to be responsible for the disagreement
between theory and experiment. However, this effect could be studied more
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in detail by tuning the scattering length, i.e., driving the system through a
Feshbach resonance. In this way the interplay between sequential and coher-
ent tunneling could be studied.
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Conclusion and perspectives

The unifying theme of this thesis has been the role of quantum tunneling
in a physical system of ultra-cold atoms loaded into an optical lattice. As a
fundamental effect of quantum mechanics, tunneling is at the heart of many
dynamical processes of atoms in a periodic potential. In the experiments
described in this thesis we studied three of these processes. The results of
these experiments and possible future developments are summarized in the
following.

Resonantly enhanced tunneling - In this experiment the inter-band tunnel-
ing rate was measured by applying a constant force on the atoms. In a first
approximation, this phenomenon can be studied by use of the Landau-Zener
theory for tunneling in energy anti-crossings. A resonant enhancement of
tunneling over the Landau-Zener prediction was observed when the position-
dependent energy shift due to the force matched the energy gap between
different energy levels. This behavior was predicted by a full theoretical
analysis of the system, and the experimental data agreed with this predic-
tion. The destruction of the tunneling resonances was observed when the
atom-atom interaction was increased by changing the density of the sam-
ple. This destruction was theoretically predicted by numerical simulations.
One of the limitations in our experimental investigations was given by the
limited range of measurable tunneling rates. For instance, evidence of an
anti-crossing between tunneling rates of different bands was observed, but
we were not able to collect a full set of experimental data showing this be-
havior. Increasing the range of measurable tunneling rates would allow one
to study both the energy and the tunneling rate anti-crossings [61]. Another
aspect that has not been investigated so far is the role of phase coherence in
inter-band tunneling. This could be explored by performing the experiment
with a partially thermal sample instead of a BEC. Finally, the theoretical
prediction of Ref. [75] on the destruction of the tunneling resonances in a
nonlinear sample was tested only for a repulsive interaction between atoms.
Using Feshbach resonances would allow one to investigate the inter-band
tunneling in the attractive interaction regime.
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Dynamical control of matter wave tunneling - In this experiment a sinu-
soidal driving of the lattice was used to control the tunneling between degen-
erate energy levels belonging to neighboring lattice sites. As expressed by the
Bose-Hubbard model, the intra-band, or inter-well tunneling and the atom-
atom interactions are the two parameters that characterize the behavior of
atoms in an optical lattice. The driving of the lattice allowed us to con-
trol the tunneling independently of the atom-atom interactions. We studied
the dependence of the inter-well tunneling both on the strength and on the
frequency of the driving. As far as the driving amplitude is concerned, our
experimental data were in good agreement with the theoretical expectation,
while for the dependence on the driving frequency there are no theoretical
predictions, as far as we know. Suppression of tunneling by up to a factor
25 was observed for particular values of the driving amplitude. Moreover,
when the driving amplitude was set within a certain range, an inversion of
the sign of the tunneling parameter was observed. The coherence of the sam-
ple in the driven lattice was studied by observing the interference pattern of
the atoms in a time-of-flight experiment. We found a range of values for
the shaking amplitude and frequency within which the phase coherence was
preserved. For instance, when the tunneling was suppressed by a factor 10,
the phase coherence was preserved for several tens of ms. The maintenance
of the phase coherence in a shaken lattice suggest the possibility of entering
into the Mott insulator phase by suppressing the tunneling in a driven lattice,
as suggested by Ref. [82]. This intriguing experiment could be performed
only in a 3D lattice, thus an upgrade of the experimental hardware would
be needed. In such an experiment, it would be possible to explore if the
energy anti-crossings that characterize the energy spectrum can affect the
realization of the superfluid-Mott insulator phase transition, and in general
it would be possible to study the adiabaticity of Floquet states.

Photon assisted tunneling - In this experiment a constant force was used
to suppress almost completely the inter-well tunneling by shifting the energy
levels with respect to each others and hence reducing resonant tunneling.
The tunneling was then partially restored by bridging the energy gap be-
tween neighboring sites through a driving of the lattice. For a given value of
the constant force, we observed the dependence of the tunneling both on the
frequency and the amplitude of the driving. The dependence of the tunnel-
ing on the frequency agreed well with the theoretical prediction. However,
the dependence of the tunneling on the driving amplitude agreed with the
theoretical prediction only qualitatively. The quantitative difference between
theory and experimental data was interpreted as being due to a loss of phase
coherence in the sample because of the dynamical instabilities experienced
by the atoms during their dynamics. In fact, the experimental data were bet-



109

ter in agreement with the theoretical prediction for a sequential rather than
coherent tunneling. Sequential tunneling is an effect for which, after each
inter-well tunneling event, the intra-well atom-atom interactions destroy the
phase information carried by the tunneled atom. In order to partially con-
firm this interpretation, we performed the same experiment with a smaller
number of atoms in the BEC, in order to decrease the interaction effects.
As expected, the tunneling measured in this experiment was better in agree-
ment with the theoretical prediction for a coherent tunneling regime. The
emergence of sequential tunneling could be confirmed by using a Feshbach
resonance, in order to decrease the interactions. If our prediction were con-
firmed, it would be possible to explore the cross-over between sequential and
coherence tunneling in a controlled way.
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Appendix A

Resonantly enhanced tunneling

This appendix contains a reprint of Ref. [68]: C. Sias, A. Zenesini, H. Lig-
nier, S. Wimberger, D. Ciampini, O. Morsch, and E. Arimondo, Resonantly
Enhanced Tunneling of Bose-Einstein Condensates in Periodic Potentials,
Phys. Rev. Lett. 98, 120403 (2007)



Resonantly Enhanced Tunneling of Bose-Einstein Condensates in Periodic Potentials

C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini, O. Morsch, and E. Arimondo

Dipartimento di Fisica ‘‘E. Fermi,’’ CNR-INFM, Largo Pontecorvo 3, 56127 Pisa, Italy
(Received 22 December 2006; published 23 March 2007)

We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into

an optical lattice. By controlling the initial conditions of our system we were able to observe resonant

tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect

of the intrinsic nonlinearity of the condensate on the tunneling resonances.

DOI: 10.1103/PhysRevLett.98.120403 PACS numbers: 03.65.Xp, 03.75.Lm

Resonantly enhanced tunneling (RET) is a quantum

effect in which the probability for tunneling of a particle

between two potential wells is increased when the quan-

tized energies of the initial and final states of the process

coincide. In spite of the fundamental nature of this effect

[1] and the practical interest [2], it has been difficult to

observe experimentally in solid state structures. Since the

1970s, much progress has been made in constructing solid

state systems such as superlattices [3–5] and quantum

wells [6] which enable the controlled observation of RET

[7].

In recent years, ultracold atoms in optical lattices [8]

have been increasingly used to simulate solid state sys-

tems. Optical lattices are easy to realize in the laboratory,

and their parameters can be perfectly controlled both stati-

cally and dynamically. Also, more complicated potentials

can be realized by adding further lattice beams [9]. This

makes them attractive as model systems for crystal lattices,

and in the past few years cold atoms and Bose-Einstein

condensates (BECs) in optical lattices have been used to

simulate phenomena such as Bloch oscillations [10] and

the Mott insulator transition [11]. In this Letter we show

that BECs in accelerated optical lattice potentials are

ideally suited to studying RET. While in solid state mea-

surements of RET only a few potential wells were used and

the periodic structures had to be grown for each realization,

in our experiment the condensate is distributed over several

tens of wells and the parameters of the lattice can be freely

chosen. Moreover, we are able to control the initial con-

ditions of the system and thus observe RET in any chosen

energy level and can also add nonlinearity to the system.

A schematic representation of RET is shown in Fig. 1. In

a tilted periodic potential, atoms can escape by tunneling to

the continuum via higher-lying levels. The tilt of the

potential is proportional to the force F acting on the atoms,

and in general the tunneling rate �LZ can be calculated

using the Landau-Zener formula [12]. However, when the

tilt-induced energy difference FdL�i between wells i and

i� �i matches the separation between two quantized

energy levels, the tunneling probability is resonantly en-

hanced and the Landau-Zener formula no longer gives the

correct result, as previously investigated in [13] for cold

atoms in optical lattices. While for the parameters of our

experiment the enhancement over the Landau-Zener pre-

diction was around a factor of 2 [see theoretical and

experimental results of Fig. 2(a)], in general it can be

several orders of magnitude.

The starting point of our experiments is a BEC of 87Rb

atoms, held in an optical dipole trap whose frequencies can

be adjusted to realize a cigar-shaped condensate. The

BECs are created using a hybrid approach in which evapo-

rative cooling is initially effected in a magnetic time-

orbiting potential (TOP) trap and subsequently in a crossed

dipole trap. The dipole trap is realized using two intersect-

ing Gaussian laser beams at 1030 nm wavelength and a

power of around 1 W per beam focused to waists of

50 �m. After obtaining pure condensates of around 5�
104 atoms the powers of the trap beams are adjusted in

order to obtain an elongated condensate with the desired

trap frequencies (�20 Hz in the longitudinal direction and

80–250 Hz radially).

Subsequently, the BECs held in the dipole trap are

loaded into an optical lattice created by two Gaussian laser

beams (� � 852 nm) with 120 �m waist intersecting at an
angle �. The resulting periodic potential V�x� �
V0sin

2��x=dL� has a lattice spacing dL � �=�2 sin��=2��
and its depth V0 is measured in units of the recoil energy

654321

well index i

∆i = 3

∆i = 2
d

L

V
0

F

FIG. 1. Explanation of resonantly enhanced tunneling.

Tunneling of atoms out of a tilted lattice is resonantly enhanced

when the energy difference between lattice wells matches the

distance between the energy levels in the wells.
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Erec � @
2�2=�2md2L�, where m is the mass of the Rb

atoms. In the present experiment, we used dL �
0:426 �m (for V0=Erec � 6, 4, 9, and 16) and dL �
0:620 �m (for V0=Erec � 2:5, 10, 12, and 14). By intro-

ducing a frequency difference �� between the two lattice

beams (using acousto-optic modulators which also control

the power of the beams), the optical lattice can be moved at

a velocity v � dL�� or accelerated with an acceleration

a � dL�d��=dt�.
A ramp from 0 to V0 in around 1 ms loads the BEC

adiabatically into the optical lattice [14]. For loading the

ground-state levels, the lattice velocity is v � 0 during the

ramp. For the first and second excited levels, during the

ramp the lattice is moved at a finite velocity calculated

from the conservation of energy and quasimomentum [16].

Finally, the optical lattice is accelerated with acceleration a
for an integer number of Bloch oscillation cycles. In the

rest frame of the lattice, this results in a force F � ma on

the condensate. Atoms that are dragged along by the

accelerated lattice acquire a larger final velocity than those

that have undergone tunneling, and are spatially separated

from the latter by releasing the BEC from the dipole trap

and lattice at the end of the acceleration period and allow-

ing it to fall under gravity for 5–20 ms. After the time of

flight, the atoms are detected by absorptive imaging on a

CCD camera using a resonant flash.

From the dragged fraction Ndrag=Ntot, we then determine

the tunneling rate �n in the asymptotic decay law

Ndrag�t� � Ntot exp���nt�; (1)

where the subscript n indicates the dependence of the

tunnneling rate on the local energy level n in which the

atoms are initially prepared (ground state: n � 1, first

excited state: n � 2, etc.). In the experiments reported in

this work, the number of bound states in the wells was

small (2–4, depending on the lattice depth), so after the

first tunneling event, the probability for tunneling to the

next bound state or the continuum was close to unity.

The resolution of our tunneling measurement is given by

the minimum number of atoms that we can distinguish

from the background noise in our CCD images, which

varies between 500 and 1000 atoms, depending on the

width of the observed region. With our condensate number,

and taking into account the minimum acceleration time

limited by the need to spatially separate the two fractions

after time of flight and the maximum acceleration time

limited by the field of view of the CCD camera, this results

in a maximum �n=�rec of �1 and a minimum of �1�
10�2, with the recoil frequency �rec � Erec=h.

A typical plot of the tunneling rate �1 out of the ground

state as a function of F�1
0 (where F0 � FdL=Erec is the

dimensionless force) in the linear regime is shown in

Fig. 2(a). This regime is reached either by choosing small

radial dipole trap frequencies or by releasing the BEC from

the trap before the acceleration phase and thus letting it

expand. In both cases, the density and hence the interaction

energy of the BEC is reduced. Superimposed on the overall

exponential decay of �1=F0 with F�1
0 , one clearly sees the

resonant tunneling peaks corresponding to �i � 2, 3, and 4

(for this choice of parameters, the �i � 1 peak lay outside

our experimental resolution). In order to highlight the

deviation from the Landau-Zener prediction, in the inset

of Fig. 2(a) we plot �1=�LZ, where the Landau-Zener

tunneling rate �LZ is given by [12,16]

�LZ � �recF0e
���2�V0=Erec�

2=32F0	: (2)

The experimental results are in good agreement with nu-

merical solutions obtained by diagonalizing the Hamilton-

ian of the open decaying system [17,18]. Figure 2(b) sum-

(a)

(b)

FIG. 2. Tunneling resonances in an accelerated optical lattice.

(a) Tunneling resonances of the n � 1 lowest energy level for

V0 � 2:5Erec. The arrows indicate the upper and lower limits for

our precise measurement of �n. Inset: Deviation from the

Landau-Zener prediction. For clarity, in both graphs only one

representative error bar is shown. (b) Positions of the �i � 1
resonance peaks as a function of the lattice depth. Only data

points for which the resonance is clearly visible [e.g., not �i � 1
of (a)] are included. Inset: Positions of the peaks for �i � 2
and 3.
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marizes our results for the positions of the ground-state

resonances �i � 1, 2, and 3 as a function of the lattice

depth together with a theoretical fit assuming the separa-

tion of the lowest energy levels to be

�E � �Erec

����������������

V0=Erec

q

: (3)

Independently of �i, the best fit is achieved for � � 1:5, to

be compared with � � 2 for the harmonic oscillator ap-

proximation. A value �< 2 is to be expected since our

lattice wells only contain a few bound states and are,

therefore, highly anharmonic.

Using BECs in optical lattices allows us to explore

resonant tunneling in regimes that are difficult or even

impossible to access in solid state systems. First, we can

prepare the condensates in the excited levels of the lattice

wells before the acceleration. Again, tunneling resonances

are clearly visible, and the experimental results agree with

theoretical calculations. The accessibility of higher energy

levels allows us to experimentally determine the decay

rates at resonance of two strongly coupled levels.

Although our experimental resolution does not allow us

to measure the decay rates in two different levels for the

same set of parameters F0 and V0, we are able to compare

the ground and excited state decay rates �1 and �2 with the

theoretical predictions for two different parameter sets, as

shown in Fig. 3. This figure reveals the anticrossing of the

decay rates of strongly coupled levels as a function of our

control parameter F0. These results demonstrate a peculiar

behavior of the Wannier-Stark states studied theoretically

[6,19] and more recently rephrased within a general con-

text of crossings and anticrossings for the real and imagi-

nary parts of the eigenvalues of non-Hermitian Hamilton-

ians [20]. Our data confirm the predictions of [17] that the

anticrossings modify the decay rates of the two perturbing

states in different ways.

Additionally, by exploiting the intrinsic nonlinearity of

the condensate due to atom-atom interactions, we can

study RET in the nonlinear regime, as simulated in [21].

In order to realize this regime, we carry out the accelera-

tion experiments in radially tighter traps (radial frequency

*100 Hz) and hence at larger condensate densities.

Figure 4(a) shows the results for increasing values of the

nonlinear parameter [22]

(a) (b)

FIG. 3. Anticrossing scenario of the RET rates. (a) Theoretical

plot of �1;2 for V0 � 2:5Erec with experimental points for �1.

(b) Theoretical plot of �1;2 for V0 � 10Erec with experimental

points for �2. For clarity, the vertical axes have been split and the

�n plotted on a linear scale, and only one representative error bar

is shown.

(a)

(b)

FIG. 4. Resonant tunneling in the nonlinear regime. (a) Reso-

nance �i � 3 for V0 � 2:5Erec with C � 0:024 (squares), C �

0:035 (circles) and C � 0:057 (triangles). The solid line is the

theoretical prediction for C � 0; the dashed lines are guides to

the eye. (b) Dependence on C of the tunneling rate at the position

of the peak F�1
0

� 1:21 (solid symbols) and of the trough F�1
0

�

1:03 (open symbols). The dashed lines are fits to guide the eye.

For clarity, in (a) and (b) only one typical error bar is shown.
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C �
n0asd

2
L

�
; (4)

where n0 is the peak condensate density and as the s-wave

scattering length. Two effects are visible: First, the over-

all (off-resonant) level of �1 increases linearly with C.

This is in agreement with our earlier experiments on non-

linear Landau-Zener tunneling [22,23] and can be ex-

plained describing the condensate evolution within a

nonlinearity-dependent effective potential Veff � V0=�1�
4C� [24]. Second, with increasing nonlinearity, the contrast

of the RET peak is decreased and the peak eventually

vanishes. This is confirmed by the different dependence

on C of the on- and off-resonant values of �1 [Fig. 4(b)].

We estimate that in order to significantly affect the reso-

nant tunneling rate, the nonlinearity parameter has to be

comparable to the width of the RET peak. This order-of-

magnitude argument agrees with our observations.

Finally, we have experimentally tested the robustness of

RET against a dephasing of the lattice wells induced by

nonadiabatic loading of the BEC into the lattice in the

nonlinear regime [15,25]. Even for completely dephased

wells, the tunneling resonances survive.

In summary, we have measured resonantly enhanced

tunneling of BECs in accelerated periodic potentials in a

regime where the standard Landau-Zener description is not

valid. Our results in the linear regime agree with numerical

calculations, and the possibility to observe RET for arbi-

trary initial conditions and parameters of the periodic

potential underlines the advantage of our system over solid

state realizations. Furthermore, we have explored RET in

the nonlinear regime and demonstrated that, as theoreti-

cally predicted, the tunneling resonances disappear for

large values of the nonlinearity.

In the present setup the measurement of the tunneling

rate is limited in its dynamic range by the detection ge-

ometry. A larger dynamic range can be realized by long-

distance transport of BECs [26]. Our method for observing

RET can also be generalized in order to study other regular

or disordered potentials, the effects of noise and the pres-

ence of a thermal fraction in the condensate. Furthermore,

one might exploit the tunneling resonances to explore the

spatial decoherence processes and to perform precision

measurements.
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Appendix B

Dynamical control of
matter-wave tunneling

This appendix contains a reprint of Ref. [111]: H. Lignier, C. Sias, D.
Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Dynami-
cal Control of Matter-Wave Tunneling in Periodic Potentials, Phys. Rev.
Lett. 99, 220403 (2007)



Dynamical Control of Matter-Wave Tunneling in Periodic Potentials
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We report on measurements of dynamical suppression of interwell tunneling of a Bose-Einstein

condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the

lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC

freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking

parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions.

Furthermore, we have verified that, in general, the strong shaking does not destroy the phase coherence of

the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength

as the control parameter.

DOI: 10.1103/PhysRevLett.99.220403 PACS numbers: 03.75.Lm, 03.65.Xp

Quantum tunneling of particles between potential wells

connected by a barrier is a fundamental physical effect.

While typically quantum systems decay faster when they

are perturbed, if the wells are shifted with respect to each

other by a time-varying linear potential (e.g., by periodi-

cally shaking them back and forth), the tunneling rate can

actually be reduced and, for certain strengths of the time-

varying potential, even completely suppressed [1,2].

Modifications of the dynamics of quantum systems by

applying periodic potentials have been investigated in a

number of contexts including the renormalization of Landé

g factors in atoms [3], the micromotion of a single trapped

ion [4], and the motion of electrons in semiconductor

superlattices [5]. In particular, theoretical studies of

double-well systems and of periodic potentials have led

to the closely related concepts of coherent destruction of

tunneling and dynamical localization [1,6]. In the latter,

tunneling between the sites of a periodic array is inhibited

by applying an oscillating potential, e.g., by shaking the

array back and forth (see Fig. 1), and, as a consequence, the

tunneling parameter J representing the gain in kinetic

energy in a tunneling event is replaced by jJeffj< jJj. In

a number of experiments, signatures of this tunneling

suppression have been observed [5,7,8], and recently dy-

namical localization and coherent suppression of tunneling

have been demonstrated using light propagating in coupled

waveguide arrays [9,10]. So far, however, an exact experi-

mental realization of the intrinsically nonlinear Bose-

Hubbard model [2] driven by a time-periodic potential

has not been reported.

In this Letter, we report on the observation of the dy-

namical tunneling suppression predicted in Refs. [2,11]

using Bose-Einstein condensates (BECs) in strongly driven

periodic optical potentials [12]. In contrast to other sys-

tems, the parameters of such optical lattices—potential

depth, lattice spacing, driving strength, and driving fre-

quency—can be varied over a wide range. Also, our sys-

tem allows us to observe the effects of the shaking both

through the real-space expansion of the BEC in the optical

lattice and by performing time-of-flight experiments, in

which the phase coherence of the BEC can be measured

and which allow us to verify that the tunneling suppression

occurs in a phase-coherent way.

Furthermore, BECs have an intrinsic nonlinear on-site

interaction energy (represented by U in Fig. 1), the inter-

play of which with the tunneling parameter J has been

shown to lead to the Mott-insulator quantum phase tran-

sition for a critical value of the ratio U=J [13,14]. It has

been theoretically predicted that, for a BEC in a shaken

optical lattice, this ratio can be replaced by U=Jeff and,

hence, that it should be possible to drive the system across

the quantum phase transition by varying the shaking pa-

rameter [2,11]. In this work, we demonstrate the feasibility

of the key ingredients of this scheme. In particular, we

show that, when tunneling in the shaken lattice is com-

pletely suppressed, the phase coherence of the BEC is

lost, in agreement with the physical picture of a sudden

‘‘switch-off’’ of the interwell coupling and a subsequent

independent evolution of the local phases due to collisions

between the atoms [15,16].

U U U U

U U U U

J J J

J J J
eff eff eff

FIG. 1. Suppression of tunneling by strong driving. The dy-

namics of a Bose-Einstein condensate in a periodic potential is

governed by the tunneling matrix element J and the on-site

interaction energy U (above). If the potential is strongly shaken,

tunneling between the wells is dynamically suppressed, leading

to a renormalized tunneling matrix element Jeff (below) but

leaving the interaction energy U unaffected.
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Our system consisting of a Bose-Einstein condensate

inside a (sinusoidally) shaken one-dimensional optical lat-

tice is approximately described [17] by the Hamiltonian

Ĥ 0 � �J
X

hi;ji
�ĉyi ĉj � ĉyj ĉi� �

U

2

X

j

n̂j�n̂j � 1�

� K cos�!t�
X

j

jn̂j; (1)

where ĉ�y�i are the boson creation and annihilation opera-

tors on site i, n̂i � ĉyi ĉi are the number operators, and K
and ! are the strength and angular frequency of the shak-

ing, respectively. The first two terms in the Hamiltonian

describe the Bose-Hubbard model [13] with the tunneling

matrix element J and the on-site interaction term U. The

shaking of the lattice is expected to create a Floquet-

quasienergy spectrum, in which the tunneling matrix ele-

ment J is renormalized to an effective tunneling parameter

[2]

Jeff � JJ 0�K0�; (2)

where J 0 is the zeroth-order ordinary Bessel function and

we have introduced the dimensionless parameter K0 �
K=@!.

In our experiment, we created BECs of about 5� 104

87-rubidium atoms using a hybrid approach in which

evaporative cooling was initially effected in a magnetic

time-orbiting potential trap and subsequently in a crossed

dipole trap. The dipole trap was realized by using two

intersecting Gaussian laser beams at 1030 nm wavelength

and a power of around 1 W per beam focused to waists of

50 �m. After obtaining pure condensates of around 5�
104 atoms, the powers of the trap beams were adjusted in

order to obtain elongated condensates with the desired trap

frequencies ( � 20 Hz in the longitudinal direction and

80 Hz radially). Along the axis of one of the dipole trap

beams, a one-dimensional optical lattice potential was then

added by ramping up the power of the lattice beams in

50 ms (the ramping time being chosen so as to avoid

excitations of the BEC). The optical lattices used in our

experiments were created using two counterpropagating

Gaussian laser beams (� � 852 nm) with 120 �m waist

and a resulting optical lattice spacing dL � �=2 �
0:426 �m. The depth V0 of the resulting periodic potential

is measured in units of Erec � @
2�2=�2md2L�, where m is

the mass of the Rb atoms. By introducing a frequency

difference �� between the two lattice beams (using

acousto-optic modulators which also control the power of

the beams), the optical lattice could be moved at a velocity

v � dL�� or accelerated with an acceleration a � dL
d��
dt

.

In order to periodically shake the lattice, �� was sinus-

oidally modulated with angular frequency !, leading to a

time-varying velocity v�t� � dL��max sin�!t� and, hence,

to an effective time-varying force in the lattice frame

F�t� � m!dL��max cos�!t� � Fmax cos�!t�: (3)

The peak shaking force Fmax is related to the shaking

strength K in Eq. (1) by K � FmaxdL, and hence

K0 �
K

@!
� md2L��max

@
� �2��max

2!rec

: (4)

The spatial shaking amplitude �xmax can then be written as

�xmax � �2=�2��!rec=!�K0dL, so for a typical shaking

frequency !=2� � 3 kHz we have �xmax � 0:5dL at

K0 � 2:4.

After loading the BECs into the optical lattice, the

frequency modulation of one of the lattice beams creating

the shaking was switched on either suddenly or using a

linear ramp with a time scale of a few milliseconds.

Finally, in order to measure the effective tunneling rate

jJeffj between the lattice wells (where the modulus indi-

cates that we are not sensitive to the sign of J, in contrast to

the time-of-flight experiments described below), we then

switched off the dipole trap beam that confined the BEC

along the direction of the optical lattice, leaving only the

radially confining beam switched on (the trap frequency of

that beam along the lattice direction was on the order of a

few hertz and hence negligible on the time scales of our

expansion experiments, which were typically less than

200 ms). The BEC was now free to expand along the lattice

direction through interwell tunneling, and its in situ width

was measured using a resonant flash, the shadow cast by

which was imaged onto a CCD chip. The observed density

distribution was then fitted with one or two Gaussians.

In a preliminary experiment without shaking (K0 � 0),

we verified that, for our expansion times, the growth in the

condensate width �x along the lattice direction was to a

good approximation linear and that the dependence of

d�x=dt on the lattice depth (up to V0=Erec � 9) followed

the expression for J�V0=Erec� in the lowest energy band

[18]

J

�

V0

Erec

�

� 4Erec
����

�
p

�

V0

Erec

�

3=4
e�2

������������

V0=Erec

p
; (5)

which is a good approximation for our range of lattice

depths. This enabled us to confirm that d�x=dt measured

at a fixed time was directly related to J and, in a shaken lat-

tice, to jJeff�K0�j. We also verified that, for our parameters

U and J, the condensate was not in the self-trapping regime

[19]. The results of our measurements of jJeff�K0�=Jj for

various lattice depths V0 and driving frequencies ! are

summarized in Fig. 2. We found a universal behavior of

jJeff=Jj that is in very good agreement with the Bessel-

function rescaling of Eq. (2). We were able to measure

jJeff=Jj for K0 up to 12, albeit agreement with theory

beyond K0 � 6 was not as good, with the experimental

values lying consistently below the theoretical curve. For

the zeros of the J 0 Bessel function at K0 � 2:4 and 5.5,

complete suppression of tunneling was observed (within
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our experimental resolution, we could measure a suppres-

sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of

! for a fixed value of K0 � 2 (see inset in Fig. 2) and found

that, over a wide range of frequencies between @!=J � 0:3
and @!=J � 30, the tunneling suppression works,

although for @!=J & 1 we found that jJeff�K0�=Jj deviated

from the Bessel function near the zero points, where the

suppression was less efficient than expected. In the limit of

large shaking frequencies (!=2� * 3 kHz, to be com-

pared with the typical mean separation of �15 kHz be-

tween the two lowest energy bands at V0=Erec � 9), we

observed excitations of the condensate to the first excited

band of the lattice. In our in situ expansion measurements,

these band excitations (typically less than 30% for K0 > 3

and less than 10% for K0 < 3) were visible in the conden-

sate profile as a broad Gaussian pedestal below the near-

Gaussian profile of the ground-state condensate atoms.

From the widths of those pedestals, we inferred that

jJeff=Jj of the atoms in the excited band also followed

the Bessel-function rescaling of Eq. (2) and that the ratios

of the tunneling rates in the two bands agreed with theo-

retical models.

We now turn to the phase coherence of the BEC in the

shaken lattice, which was made visible by switching off the

dipole trap and lattice beams and letting the BEC fall under

gravity for 20 ms. This resulted in an interference pattern

whose visibility reflected the condensate coherence [20]. In

the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see

Fig. 3(a)] that was shifted by half a Brillouin zone. This

shift can be interpreted as an inversion of the curvature of

the (quasi)energy band at the center of the Brillouin zone

when the effective tunneling parameter is negative. We

then quantified the visibility V � �hmax � hmin�=�hmax �
hmin� of the interference pattern after shaking the conden-

sate in the lattice for a fixed time between 1 and � 200 ms

and finally accelerating the lattice to the edge of the

Brillouin zone. In the expression for V , hmax is the mean

value of the condensate density at the position of the two

interference peaks, and hmin is the condensate density in a

region of width equal to about 1=4 of the peak separation

centered about the halfway point between the two peaks.

For a perfectly phase-coherent condensate, V � 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing

time �deph of the condensate as a function of K0 for V0=Erec �

9 and !=2� � 3 kHz. The vertical dashed line marks the

position of K0 � 2:4 dividing the regions with Jeff > 0 (left)

and Jeff < 0 (right). In both regions, a typical (vertically inte-

grated) interference pattern without final acceleration to the zone

edge is shown (the x axis is scaled in units of the recoil

momentum prec � h=dL.) Inset: Rephasing time after dephasing

at K0 � 2:4 and subsequent reduction of K0. (b) Dephasing time

as a function of @!=J for K0 � 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-

tice. Shown here is jJeff=Jj as a function of the shaking parame-

ter K0 for V0=Erec � 6, !=2� � 1 kHz (squares), V0=Erec � 6,

!=2� � 0:5 kHz (circles), and V0=Erec � 4, !=2� � 1 kHz

(triangles). The dashed line is the theoretical prediction.

Inset: jJeff=Jj as a function of ! for K0 � 2:0 and V0=Erec �
9 corresponding to J=h � 90 Hz.
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whereas for a strongly dephased condensate, V � 0. For

K0 & 2:2, the BEC phase coherence was maintained for

several tens of milliseconds, demonstrating that the tunnel-

ing could be suppressed by a factor of up to 10 over

hundreds of shaking cycles without significantly disturbing

the BEC.

This result is expressed more quantitatively in Fig. 3(a).

Here the condensate was held in the lattice (V0=Erec � 9),

and the shaking was switched on suddenly at t � 0 (we

found no significantly different behavior when K0 was

linearly ramped in a few milliseconds). Thereafter, V

was measured as a function of time, and the decay time

constant �deph of the resulting near-exponential function

was extracted. Apart from a slow overall decrease in �deph
for increasing K0, a sharp dip around K0 � 2:4 is visible.

In this region, jJeff=Jj< 1=20 and, hence, jJeff=hj &

10 Hz, which for our experimental parameters is compa-

rable to the on-site interaction U=h (we checked that the

widths of the on-site wave functions and hence U were

independent of K0 by analyzing the side peaks in the

interference pattern). This means that neighboring lattice

sites are effectively decoupled and the local phases evolve

independently due to interatomic collisions, leading to a

dephasing of the array [14,16]. By increasing the dipole

trap frequency (and hence U), we verified that �deph de-

creases as expected. We also studied a rephasing of the

BEC when, after an initial dephasing at K0 � 2:4, the value

of the shaking parameter was reduced below 2.4. The time

constant �reph of the subsequent rephasing of the conden-

sate (mediated by interwell tunneling and on-site colli-

sions) increased with decreasing Jeff [see the inset in

Fig. 3(a), where we compare �reph with the inverse of the

generalized Josephson frequency !�1
Josephson / J�1=2

eff pre-

dicted by the two-well model [16,21]].

Finally, we investigated the dependence of �deph on the

shaking frequency ! [see Fig. 3(b)]. Interestingly, while

the tunneling suppression as observed in situ works even

for @!=J � 1, in order to maintain the phase coherence of

the condensate, much larger shaking frequencies are

needed. Indeed, for our system there exists an optimum

shaking frequency of @!=J � 30.

In summary, we have measured the dynamical suppres-

sion of tunneling of a BEC in strongly shaken optical

lattices and found excellent agreement with theoretical

predictions. Our results show that the tunneling suppres-

sion occurs in a phase-coherent way and can, therefore, be

used as a tool to control the tunneling matrix element while

leaving the on-site interaction energy unchanged (in con-

trast to the usual technique of increasing the lattice depth,

which changes both) and without disturbing the conden-

sate. This might ultimately lead to the possibility of con-

trolling quantum phase transitions by strong driving of the

lattice. In this context, it will be important to investigate

the question of adiabaticity when dynamically changing

the shaking parameter. Furthermore, our system also opens

up other avenues of research such as the realization of

exact dynamical localization using discontinuous shaking

waveforms [8,22] or tunneling suppression in superlattices

[23].
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Note added in proof.—Similar results have been ob-

tained in an array of double wells by Kierig and co-workers

[24].
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I. Bloch, Nature (London) 415, 39 (2002).

[15] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature
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Appendix C

Photon-assisted tunneling

This appendix contains a reprint of Ref. [112]: C. Sias, H. Lignier, Y.
Singh, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Observa-
tion of photon-assisted tunneling in optical lattices, accepted for publication
in Phys. Rev. Lett.
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Observation of photon-assisted tunneling in optical lattices

C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch and E. Arimondo
CNR-INFM, Dipartimento di Fisica ‘E. Fermi’, Largo Pontecorvo 3, 56127 Pisa, Italy

We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein conden-
sates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently
large constant force, the ground energy levels of the lattice are shifted out of resonance and tunnel-
ing is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons
and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the
usefulness of optical lattices for studying solid-state phenomena.

PACS numbers: 03.65.Xp, 03.75.Lm

A number of experiments in recent years have shown
that Bose-Einstein condensates (BECs) [1] loaded into
optical lattices are well suited to simulating solid state
systems [2, 3]. Optical lattices are created by cross-
ing two or more laser beams, and the resulting periodic
potential landscapes (arising from the ac-Stark shift ex-
erted on the condensate atoms) are intrinsically defect-
free, their lattice wells have controllable depths, and it is
possible to move or accelerate the entire structure. This
flexibility has made it possible to study dynamical effects
such as Bloch oscillations [4] and resonant tunneling [5]
as well as ground-state quantum properties such as the
Mott-insulator transition [6]. More recently, the coherent
suppression of inter-well tunneling by strong driving of
the lattice has been demonstrated [7]. In this Letter, we
explore an effect [8] that is analogous to photon-assisted
tunneling in solids and arises from the interplay between
static acceleration and strong driving of the lattice. We
observe two regimes, a linear and a nonlinear one, with
different dependencies of the observed tunneling on the
theoretically predicted behaviour.

Photon-assisted tunneling occurs when adjacent poten-
tial wells whose ground states are tuned out of resonance
by a static potential are coupled by photons (see Fig. 1).
The static force leads to a suppression of resonant tunnel-
ing between the ground states. This suppression and the
related Wannier-Stark localization of the wavefunction
have been intensively discussed in the theoretical litera-
ture [9, 10]. In this work, we report a direct measure-
ment of this suppression based on the spatial tunneling
of the condensate atoms. When photons of an appro-
priate frequency are present whose energy bridges the
gap created by the static potential, tunneling is (partly)
restored. In solid state systems, the photons are typ-
ically in the microwave frequency range and the static
potential is provided by an electric bias field applied to
the structure. So far, photon-assisted tunneling has been
observed in superconducting diodes [11], semiconductor
superlattices [12, 13, 14] and quantum dots [15, 16].

Our system consists of a BEC inside a one-dimensional
optical lattice. The static potential is provided by a con-
stant acceleration of the lattice, resulting in a constant
force F in the lattice rest frame and hence in a potential
difference ∆E = FdL between adjacent wells a distance

FIG. 1: Photon-assisted tunneling. (a) In an optical lattice at
rest, the ground-state levels are resonantly coupled, leading to
a tunneling energy J . (b) When a linear potential is applied,
e.g. by accelerating the lattice, the levels are shifted out of
resonance and tunneling is suppressed. (c) If the lattice is now
periodically shaken at an appropriate frequency, the levels can
again be coupled through photons of energy h̄ω and tunneling
is partially restored.

dL apart. The role of the photons is played by a periodic
shaking of the lattice at frequency ω that leads to the
creation of sidebands around the carrier frequency of the
laser beam. In the limit of sufficiently deep lattice wells
and neglecting higher-lying energy levels, our system can
be described by the Hamiltonian [8]

Ĥ0 = − J
∑

〈i,j〉

(ĉ†i ĉj + ĉ
†
j ĉi) +

U

2

∑

j

n̂j(n̂j − 1) + (1)

+ ∆E
∑

j

jn̂j + K cos(ωt)
∑

j

jn̂j ,



2

where ĉ
(†)
i

are the boson creation and annihilation oper-

ators on site i, n̂i = ĉ†
i
ĉi are the number operators, and

K and ω are the strength and angular frequency of the
shaking, respectively. The first line of this equation is
the Bose-Hubbard model [17] with the tunneling matrix
element J and the on-site interaction term U (in a BEC,
the on-site interaction is due to atom-atom collisions and
hence proportional to the s-wave scattering length and
the density of the BEC). In the second line, the first term
describes the constant potential, whereas the second term
represents the sinusoidal shaking of the lattice. While for
a sufficiently strong linear potential inter-well tunneling
is suppressed, leading to Wannier-Stark localization, re-
cent theoretical work [8] predicts that the shaking term
can partially restore it, leading to an effective tunneling
rate

|Jeff(K0)/J | = |Jn(K0)| (2)

when the resonance condition

nh̄ω = FdL (3)

is satisfied, where n is an integer denoting the order of the
photon-assisted resonance, Jn is the n-th order ordinary
Bessel function, and K0 = K/h̄ω is the dimensionless
parameter characterizing the shaking amplitude.

In our experiment we produced BECs of 87Rb con-
taining around 5 × 104 atoms in a crossed optical dipole
trap. The two dipole traps were created by gaussian laser
beams at 1030 nm wavelength and a power of around 1 W
per beam focused to waists of 50 µm, and the frequen-
cies of the resulting trapping potentials could be con-
trolled independently. Subsequently, the BECs held in
the dipole trap were loaded into an optical lattice cre-
ated by two counter-propagating gaussian laser beams
(λ = 852 nm) with 120 µm waists by ramping up the
power of the lattice beams in about 50 ms. The resulting
periodic potential V (x) = V0 sin2(πx/dL) had a lattice
spacing dL = λ/2 = 426 nm and its depth V0 was mea-
sured in units of the recoil energy Erec = h̄2π2/(2md2

L
),

where m is the mass of the Rb atoms. By introducing
a frequency difference ∆ν between the two lattice beams
(using acousto-optic modulators, which also control the
power of the beams), the optical lattice could be moved
at a velocity v = dL∆ν or accelerated with an accel-
eration a = dL

d∆ν

dt
. In order to periodically shake the

lattice, ∆ν was sinusoidally varied with frequency ω and
amplitude ∆νmax leading to a time-varying force (in the
rest frame of the lattice)

F (t) = mωdL∆νmax cos(ωt) = Fmax cos(ωt). (4)

The dimensionless shaking parameter K0 is then given
by

K0 = K/h̄ω = md2
L
∆νmax/h̄ = π2∆νmax/2ωrec. (5)

Our method for measuring the effective tunneling pa-
rameter |Jeff/J | (where the modulus indicates that this

measurement is not sensitive to the sign of Jeff) is based
on the free expansion of the BEC [7, 18] confined only
radially but free to move along the direction of the lattice
(the dipole trap frequency in that direction being on the
order of a few Hz and hence negligible for our purposes).
After condensation was reached in the crossed dipole trap
and the optical lattice had been ramped up, the trapping
beam perpendicular to the lattice direction was suddenly
switched off. Subsequently, the in-situ width of the BEC
in the lattice direction was measured by flashing on a
resonant beam and imaging the shadow cast by the BEC
on a CCD camera. In the experiments with an acceler-
ated and / or shaken lattice, |Jeff/J | was determined by
measuring the expansion for the same lattice depth both
in the driven case and without the driving.

In a preliminary experiment, we studied the tunnel-
ing suppression caused by shifting adjacent ground states
out of resonance through a constant force F acting on
the BEC inside a lattice that was subjected to an ac-
celeration a. Typical accelerations in our experiment
were between 0 and 4 ms−2, meaning that for an expan-
sion time of 400 ms the lattice (and therefore the BEC)
would have been displaced by up to 32 cm, two orders
of magnitude more than the field-of-view of our imag-
ing system. Also, a displacement of more than 100 µm
along the lattice direction would have led to a restoring
force of the longitudinal harmonic trap created by the
radial dipole trap beam corresponding to an acceleration
arestore > 0.1 ms−2. Therefore, in order to be able to
achieve a high resolution in our measurements of the ex-
pansion rate (and hence J) of the condensate, implying
a long expansion time, whilst keeping the displacement
of the lattice below ≈ 100 µm, we used a rectangular
acceleration profile that alternated between +a and −a
and therefore ‘rocked’ the lattice back and forth. In this
way, the modulus of the resulting force and hence the
energy shift between adjacent wells was constant, while
the mean position of the lattice (and hence the BEC)
remained close to the center of the dipole trap. In or-
der to separate the frequency regimes of the rocking and
the shaking motion, we chose a ‘rocking frequency’ of
30 Hz, which was much smaller than the resonant fre-
quencies for photon-assisted tunneling (typically around
150 − 400 Hz).

Figure 2 (a) shows the results of our measurements
of |Jeff | in an accelerated (rocked) lattice. As expected,
when the energy difference FdL between adjacent lev-
els is increased, resonant tunneling is reduced and, for
FdL ≈ J , completely suppressed (as recently also ob-
served for single-atom tunneling in a double-well struc-
ture [19]). In this limit, the energy levels in the individual
wells can be viewed as Wannier-Stark levels. Our data
are fitted very well by a Lorentzian, but to our knowl-
edge there is no analytical prediction for such a depen-
dence in the theoretical literature. In [10], an expression
for the wavefunction in a tilted lattice as a function of
the applied force is given, but an analytical calculation
of Jeff(F ) has yet to be done.
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FIG. 2: (a) Suppression of tunneling by a linear potential.
Shown here is the normalized effective tunneling parameter
|Jeff/J | as a function of the linear potential FdL in units of
the tunneling energy. When FdL/J ≈ 1, the ground state lev-
els are shifted out of resonance and tunneling is suppressed
almost completely. The solid line is a Lorentzian fit with a
half-maximum half-width of 0.13. (b) Photon-assisted tunnel-
ing resonances in a shaken lattice. For a fixed linear potential
FdL/h = 380 Hz, the condensate width after 400 ms of free ex-
pansion is plotted as a function of the normalized shaking fre-
quency h̄ω/FdL. The fixed shaking parameter was K0 = 1.8
for the one-photon resonance (solid circles) and K0 = 3.1 for
the two-photon resonance (open circles), corresponding to the
first maximum of the J1 and J2 Bessel functions, respectively.
For both graphs, V0/Erec = 5 and J/h = 380 Hz.

Tunneling between the on-site levels shifted out of res-
onance by the static acceleration can be partially restored
by sinusoidally shaking the lattice at a frequency ω sat-
isfying the resonance condition of Eq. 3. The shaking
of the lattice effectively creates low-frequency ‘photons’
that bridge the energy gap between adjacent wells with
n such photons (see Fig. 1 (c)). Figure 2 (b) shows
the condensate width after 400 ms of free expansion in-
side a rocked lattice with FdL/J = 1 as a function of
the shaking frequency ω. One clearly sees two photon-
assisted tunneling peaks at h̄ω = FdL (for K0 = 1.8,
where J1(K0) has its first maximum) and at 2h̄ω = FdL

(for K0 = 3.1, the first maximum of J2(K0)). The peaks

are extremely narrow, with a width of ≈ 3 Hz (when we
repeated the experiment with smaller values of FdL, this
width increased slightly). The two side-peaks of each
peak are evidence of additional photon-assisted tunnel-
ing events due to the rocking motion of the lattice (for
the two-photon resonance at 2h̄ω = FdL, the side-peaks
are at half the distance to the main peak compared to
the one-photon case, as expected).
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FIG. 3: Photon-assisted tunneling as a function of the shaking
parameter K0. Shown here are the one-photon resonance at
ω/2π = 380 Hz (a) and the two-photon resonance at ω/2π =
190 Hz (b). In both graphs, the full and open squares are the
measurements for N ≈ 5×104 and N ≈ 0.5×104 , respectively.
The solid lines are the moduli of the J1(K0) and J2(K0)
Bessel functions, respectively, whereas the dashed lines are
the squares of these functions. The lattice depth V0/Erec = 5
and the constant force FdL/h = 380 Hz in this experiment,
with a free expansion time t = 100 ms.

Finally, we studied the dependence of the effective
tunneling rate on the shaking parameter K0. Figure
3 summarizes our results for the one-photon and two-
photon resonances. Theory predicts [8] that the effec-
tive tunneling rates |Jeff/J | for resonances of n-th order
should vary as an n-th order ordinary Bessel function (see
Eq. 2). While qualitative agreement between experiment
and theory is good, with the positions of the maxima
and minima of the one- and two-photon resonances as a
function of K0 coinciding perfectly with theoretical pre-
dictions, the absolute values of |Jeff/J | lie consistently
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below the theoretical curves by a factor of about 1.3.
Interestingly, quantitative agreement between experi-

ment and theory is better if we use the squares of the
Bessel functions rather than their moduli. A dependence
of the photon-assisted tunneling rate on the square of
the Bessel function is expected, e.g., for experiments on
Josephson junctions irradiated by microwaves and, more
generally, if the tunneling in a multi-well structure is se-
quential rather than coherent. The difference between
coherent and sequential tunneling has been extensively
studied in the theoretical literature [20]. Sequential tun-
neling would require a dephasing mechanism between two
successive tunneling events. In our experiments, such a
mechanism could be the dynamical instability inside the
optical lattice [21, 22, 23]: owing to the constant ap-
plied acceleration a, the BEC moves through the Bril-
louin zone and hence through the dynamically unstable
region within the Brillouin zone between about 0.5 prec

(where prec = πh̄/dL is the recoil momentum ) and the
zone edge. For the values of the intrinsic nonlinearity of
the BEC in our experiments (determined by the number
of atoms and the trap frequencies), we found in previous
experiments [21] (and have verified for this work) that
the BEC loses its phase coherence after a few millisec-
onds inside the unstable region, which is comparable to
the Bloch periods in the present experiment. Since the
effective tunneling frequencies Jeff in our experiment are
less than 100 Hz, the corresponding dephasing rate is al-
most an order of magnitude larger and hence it is likely
that dephasing of neighbouring wells occurs between two
tunneling events.

In future experiments one might use, e.g., Feshbach
resonances in order to tune the nonlinearity and hence
move from the strongly nonlinear regime to the linear
regime in order to test our hypothesis. As a prelimi-
nary test, we have repeated the measurement of the one-
photon assisted tunneling rate as a function of K0 with
the smallest atom number that allowed us to measure the
free expansion (N ≈ 0.5×104), resulting in a condensate
density that was about a factor of 3 smaller. Again,
we obtained qualitatively similar results to the measure-
ments with N ≈ 5×104, but this time the absolute values
of |Jeff/J | agreed better with the linear Bessel-function

prediction (see Fig. 3).

A further indication that dephasing might be respon-
sible for the observed deviation from the linear Bessel
functions comes from our measurements of the dynami-
cal suppression of tunneling in a shaken lattice without

linear acceleration [7], in which our measured values for
Jeff/J agreed perfectly with the linear Bessel function
prediction. In that system, the BEC does not cross the
unstable region of the Brillouin zone, and we have ex-
perimentally verified that during the shaking the BEC
retains its phase coherence.

If the two regimes of photon-assisted tunneling ob-
served in our experiment do, indeed, correspond to coher-
ent and sequential tunneling, our system is ideally suited
to studying the cross-over between these two extremes
in a well-controlled way. However, we also have to con-
sider the possibility that other effects play a role. In
particular, it is conceivable that a self-trapping mecha-
nism is present that depends on the relative magnitude
of the nonlinearity U and the effective tunneling param-
eter Jeff . Self-trapping in static optical lattices has al-
ready been observed [18] and could, if present also in our
strongly driven system, lead to a suppression of the tun-
neling rate compatible with our observations, also for the
case of a static force as in Fig. 2(a). On the other hand,
our system is only in a self-trapping regime (as calculated
from U/h ≈ 10−30 Hz and Jeff) in a small region around
the zeroes of the Bessel functions, whereas we observe the
largest deviation from the linear prediction close to the
local maxima.

In summary, we have demonstrated photon-assisted
tunneling of BECs in a linearly accelerated and sinu-
soidally shaken optical lattice. Our results agree quan-
titatively with recent theoretical predictions and show
the need for a theoretical investigation into the difference
between the (roughly) linear and the nonlinear regimes
for which we observe difference dependencies of the effec-
tive tunneling rate on the predicted linear Besse-function
scaling.
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[12] P.S.S. Guimarães et al., Phys. Rev. Lett. 70, 3792 (1993).
[13] B.J. Keay et al., Phys. Rev. Lett. 75, 4098 (1995).
[14] B.J. Keay et al., Phys. Rev. Lett. 75, 4102 (1995).
[15] L.P. Kouwenhoven et al., Phys. Rev. Lett. 73, 3443

(1994).
[16] T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen,

N.C. van der Vaart, and C.J.P.M. Harmans, Phys. Rev.



5

Lett. 78, 1536 (1997).
[17] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and

P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
[18] Th. Anker et al., Phys. Rev. Lett. 94, 0204003 (2005).
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