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Frequently used notations

Differential operators
Symbol Description
∇ (∂x1 , ∂x2 , . . . , ∂xn) (gradient on Rn)
∆ ∂2

x1
+ ∂2

x2
+ . . . + ∂2

xn
(Laplace operator on Rn)

¤ ∂2
t −∆ (d’Alembert operator)

∆g Laplace–Beltrami operator in the metric g
¤g Laplace–Beltrami operator in the metric g of index 1
∇± ∂t ± ∂r

Function spaces
Symbol Description

C k k-times differentiable continuous functions (k nonnegative inte-
ger or k = ∞)

C k
0 C k compactly supported functions

Lp Lebesgue space (p ∈ [1,∞])
Ls,p Sobolev space (s ∈ R)
Hs Ls,2

Ḣs homogeneous space
Ḃs

p,q Besov space

Other symbols
Symbol Description

.
= equal by definition
≡ identically equal

f . g ∃C > 0 : f 6 Cg
f ∼ g f . g and g . f
Sn {x ∈ Rn+1 : |x| = 1} (unitary sphere)
〈x〉

√
1 + |x|2

¥ Q.E.D. (end of the proof)
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Chapter 1
Introduction

In this chapter, the whole content of the thesis is presented, along
with some preliminary information reported not only for the sake
of completeness, but also to provide a frame in which to put the
following results.

In particular, Section 1.1 introduces some known results on the
semilinear wave equations in the Minkowski space. From this
problem, certainly interesting on its own, stems the interest for
most of the original results presented in this dissertation, i.e. for
the problem of a semilinear wave equation in a curved back-
ground, that is, more precisely, in the Schwarzschild metric (this
problem is studied in the Chapters 4 and 5). The results and the
techniques illustrated in this section can be profitably compared
with the ones that appear in the Schwarzschild setting.

Section 1.2 presents some known results related to the wave
equation perturbed with a potential. Such a kind of perturba-
tion is related to the problem considered in Chapter 6, where we
prove dispersive estimates for the linear wave equation with an
electromagnetic potential, but also to the problem of a wave
equation in the Schwarzschild metric: indeed, under suitable hy-
potheses, we can reduce such an equation to a wave equation
in the Minkowski space perturbed through a potential.

Section 1.3 contains the assertions and some comments on
the original results: in particular, their mathematical and physical
interest, and the main difficulties that one has to afford to prove
them.

In Section 1.4 we discuss some problems related to the ones
previously considered.

Finally, Section 1.5 briefly describes the structure of this disser-
tation.

1



2 Some known results on the semilinear wave equation §1.1

1.1 Some known results on the semilinear wave equation

For each n > 1, let ∆ and ¤ be respectively the Laplace and the d’Alembert
operators, defined by

∆ =
n∑

k=1

∂2

∂x2
k

, ¤ =
∂2

∂t2
−∆ ,

acting on a function u(t, x) = u(t, x1, . . . , xn).

Let us consider the following semilinear Cauchy problem:

(1.1)





¤u = |u|p in [0,∞[×Rn ,

u(0, x) = u0(x) , ∂tu(0, x) = u1(x) in Rn .

The solution u represents a wave in the flat Minkowski space under the influ-
ence of a nonlinear source, that is given by |u|p, and with initial data u0 and
u1. One is interested in the large-time behavior of this solution under suitable
hypotheses on the initial data and the exponent p. In particular, for physical
reasons, one needs to know wether the solution is defined for every time, i.e.
we have a global in time solution, or it presents a singularity, that is it blows up
in finite time.

The first answer to this problem can be found in a work of Fritz John pub-
lished in 1979, [32], followed by a paper of the same author published two years
later, [33]. In these works, the author considers the case n = 3 and sufficiently
regular compactly supported initial data u0 and u1, and shows two main results:
(1) if p ∈]1, 1 +

√
2] and u0 and u1 are nonnegative (and nontrivial), the solution

blows up in finite time; (2) if p > 1 +
√

2, the solution exists globally in time,
provided the initial data are sufficiently small. In other words, we have a crit-
ical exponent, pc = 1 +

√
2, below which one has a blow-up phenomenon and

above which one has global existence.

After these results, Strauss conjectured that this situation should reproduce
for each n > 2 and a suitable critical exponent pc(n), which is the positive root
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of the quadratic equation

(n− 1)p2 − (n + 1)p− 2 = 0

(see [48]). Note that, in particular, pc(3) = 1 +
√

2. Since then, several mathe-
maticians have contributed to the proof of this conjecture, which has been only
recently completely proved. It has been shown that the solution develops a
singularity also in the critical case p = pc(n). In other words, one has a blow-
up phenomenon for each p ∈]1, pc(n)] (and nontrivial solutions), while one has
global existence for each p ∈]pc(n),∞[ and small data. Remember that the data
are assumed compactly supported and in suitable spaces.

Let us cite the papers containing these results. As anticipated, in his works
of 1979 and 1981 ([32] and [33]), F. John considered the case n = 3 and showed
blow-up for 1 < p < pc(3) and global existence for p > pc(3). The analogous
results for n = 2 were proved by R. Glassey in [29], a paper published in 1981.
In 1984, T.C. Sideris established the blow-up result in the case n > 4 when
1 < p < pc(n) ([47]), while the corresponding global existence result for n > 4

and p > pc(n) was obtained definitely later by V. Georgiev, H. Lindblad and C.
Sogge in [24], a work of 1997. Finally, the blow-up in the critical case was shown
by J. Schaeffer in the case n = 2 and n = 3 ([46], 1985), while the similar result
in the case n > 4 has been reached only recently, in 2005, by B.T. Yordanov and
Q.S. Zhang, in [55], completing the proof of the conjecture of Strauss.

Of course, during the years, most of the proofs have been simplified. We
want to spend some words about the main techniques involved in the proof of
these results, since they are useful to understand the difficulties met in the proof
of the results explained in this thesis.

As far as the blow-up is concerned, the main idea is to consider the space-
average function

F (t) =

∫

Rn

u(t, x) dx

and show that F blows up in finite time. The problem is hence reduced to the
proof of a blow-up for the solution to an ordinary differential equation (depend-
ing only on t) and can be solved through a lemma due to T. Kato contained in
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[35] (1980). It says that if F ∈ C 2 satisfies

F (t) > C(t + R)a , F ′(t) > 0 , F ′′(t) > C(t + R)−qF (t)p ,

where p > 1, a > 1 and
0 6 q < (p− 1)a + 2 ,

then F blows up in finite time (see also Section 5.2 for more details). Exploiting
the hypothesis on the initial data and the definition of u, and choosing suitable
a, p and q, one can prove that these conditions are satisfied and F blows up.
This implies in particular that there exists a positive T such that

||u(t)||L2(Rn) −→∞

as t ↑ T . This clarifies also the meaning of the blow-up of u. However, it is im-
portant to notice that this technique works straightforward only in the strictly
subcritical case 1 < p < pc(n), while in the case p = pc(n), because of the pres-
ence of badly-behaved terms in the proof of the aforementioned estimates, one
needs to resort to an auxiliary weighted average function:

F1(t) =

∫

Rn

u(t, x)ϕ(x) dx ,

where the weight ϕ has to be carefully chosen in order to avoid the badly-
behaved terms. This method was introduced in [55] and, in Chapter 5, we shall
develop this idea.

The global existence results follow a very different approach: they are based
on a contraction argument. The contractions are based on suitable a priori es-
timates. For instance, in the case n = 3, John proves a pointwise inequality
equivalent to the following one:

||t(t− |x|)ν−2w||L∞ 6 Cν ||tν(t− |x|)ν(ν−2)F ||L∞

where F (t, x) = 0 when t − |x| 6 1, 1 < ν 6 3 and w = w(t, x) solves the linear
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inhomogeneous wave equation Cauchy problem





¤w = F in [0,∞[×Rn ,

w(0, x) = ∂tw(0, x) = 0 in Rn .

A similar estimate cannot hold in higher dimensions; however, Georgiev, Lin-
deblad and Sogge have shown that, for n > 2, the following weighted Strichartz
estimate holds:

||(t2 − |x|2)γ1w||Lν 6 Cν,γ||(t2 − |x|2)γ2F ||Lν/(ν−1) ,

provided that

2 6 ν 6 2(ν + 1)

ν − 1
, γ1 < n

(
1

2
− 1

ν

)
− 1

2
, γ2 >

1

ν
.

Then, one sets v−1 ≡ 0 and, for m = 0, 1, . . ., and denotes by vm the solution to





¤vm = |vm−1|p ,

vm(0, x) = u0 , ∂tvm(0, x) = u1 ,

where the initial data are small and supported in the ball centered at the origin
and of radius R− 1. Eventually, one obtains the estimate

||((t + R)2 − |x|2)γ(um+1 − um)||Lp+1 6 1

2
||((t + R)2 − |x|2)γ(um − um−1)||Lp+1

for each m > 0 and γ such that

1

p(p + 1)
< γ < n

(
1

2
− 1

p + 1

)
− 1

2
,

from which one deduces the global existence of the solution to the Cauchy prob-
lem (1.1).
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1.2 Some known results on the wave equation with
potential

A first phisically relevant way to modify the wave equation consists in perturb-
ing it through an effective potential. We consider the Cauchy problem

(1.2)





¤u + Wu = F in [0, T [×Rn ,

u(0, x) = u0(x) , ∂tu(0, x) = u1(x) in Rn ,

where u, W , F depend on (t, x) ∈ [0,∞[×Rn. The function W is called effective
potential and it will satisfy precise conditions, above all concerning regularity,
sign, decay rate and dependence on t and x. If we know that there exists a
global solution to the problem above, we can investigate a priori estimates, that
is estimates of the form

||wu|| 6 C (||w0u0||0 + ||w1u1||1 + ||w2F ||2) ,

where C is a positive constant, w(t, x) and wj(t, x) are weight functions, while
|| · || and || · ||j are suitable norms on [0,∞[×Rn (j = 0, 1, 2). In particular, we are
interested in dispersive estimates, i.e. a priori L∞x -estimates, which means that
we have L∞(Rn) norms in x.

The dispersive properties of evolution equations are very important for their
physical meaning and, consequently, they have been deeply studied, though
the problem in its generality is still open. However, several cases have been
considered. The dispersive estimate obtained in Corollary 6.1.1 provides the
natural decay rate, which is the same rate that one has for the nonperturbed
wave equation (see [28, 36]), i.e. a t−(n−1)/2 decay in time, where n is the space
dimension. The generalization to the case of a potential-like perturbation has
been considered widely.

Let us consider the problem

(1.3)





(¤ + V (x))u = 0 (t, x) ∈ R×Rn ,

u(0, x) = f0(x) ∈ Lp,1(Rn) , ∂tu(0, x) = f1(x) ∈ Lp(Rn) .
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Beals and Strauss have shown in [4] that one has the decay estimate

||u(t)||Lp′ 6 Ct−d (||f0||Lp + ||∇f0||Lp + ||f1||Lp)

provided that n > 3,

1

p
=

1

2
+

1

n + 1
,

1

p′
=

1

2
− 1

n + 1
, d =

n− 1

n + 1
,

〈x〉MV ∈ L(n+1)/2(Rn) for a suitable M and that, for some q < (n + 1)/2, the
function

µ(t)
.
= td||〈x〉−Mu(t)||Lp′ (Rn)

satisfies

||µ||Lq(R+) + ||µ||L∞(R+) 6 C (||f0||Lp + ||∇f0||Lp + ||f1||Lp) .

Beals alone has completed this result proving in [3] the estimate

||u(t)||L∞ 6 Ct−(n−1)/2||(1−∆)λ/2f1||L1

as t → ∞, λ > (n + 1)/2, V rapidly decreasing either sufficiently small or non-
negative, and f0 ≡ 0.

Burq, Planchon, Stalker and Tahvildar-Zadeh have considered a potential of
the form V = a/|x|2 (inverse-square potential), where a is a real number, and
have obtained the following weighted L2-estimate:

||Ω−1/2−2α(−∆ + V )1/4−αu||L2 6 C (||f0||Ḣ1/2 + ||f1||Ḣ−1/2) ,

where Ωs is the multiplication operator defined by

(Ωsϕ)(t, x) = |x|sϕ(t, x)

and α > 0 is bounded from above by a suitable positive quantity. They have
proved a similar result also for the Schrödinger equation and have used these
estimates to obtain Strichartz estimates. For instance, for the wave equation,
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they have deduced

||(−∆)σ/2u||Lp
t Lq

x
6 C (||f0||Ḣγ + ||f1||Ḣγ−1) ,

provided p, q, γ, σ satisfy some conditions (depending on n). In particular, one
can take γ = 1/2. Planchon, Stalker and Tahvildar-Zadeh have also found in
[41] dispersive estimates in a similar setting.

Another Strichartz estimate can be found in [16] (a sort of extension of Cuc-
cagna’s paper [15]), where Cuccagna and Schirmer consider the wave equation
in R1+3 with a smooth rapidly decreasing small magnetic potential V

(∂2
t −∆V )u = f

with initial data (f0, f1), where

∆V =
3∑

j=1

(∂j + iAj(x))2 .

The achieved estimate is

||u||Lq1(R,Ḃρ
r1,2) 6 C

(
||f ||

Lq′2 (R,Ḃρ

r′2,2
)
+ ||f0||Ḣ2,µ + ||f1||Ḣ2,µ−1

)
,

where

ρ + 3

(
1

2
− 1

rj

)
− 1

qj

= µ , 0 6 2

qj

6 min

{
2

(
1

2
− 1

rj

)
, 1

}
,

(
2

qj

, 2

(
1

2
− 1

rj

))
6= (1, 1) j = 1, 2 ,

and q′ denote the dual exponent to q. Here we have denoted by Ḣp,s the comple-
tion of C∞

0 (R3) respect to the norm ||(−∆V )s/2f ||Lp , while the Besov space Ḃs
p,q

is the completion of the same space respect to the norm

[∑
j∈Z

(2js||χ(2−j
√
−∆V )f ||Lp)q

]1/q

,
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where χ(t) ∈ C∞
0 is an appropriate nonnegative function equal to 1 near 1 and

with support in [1/2, 2].

Visciglia has shown (see [51, 52]) that the following Cauchy problem for the
semilinear wave equation in R1+3 perturbed through a time-dependent poten-
tial





¤u + a0∂tu +
3∑

i=1

ai∂xi
u + V u = −u|u|α−1 (t, x) ∈ R×R3 ,

u(0, x) = f0(x) ∈ Ḣ1 , ∂tu(0, x) = f1(x) ∈ L2

is well-posed when the initial data are compactly supported, 1 6 α < 5, and

ai(t, x) ∈ L∞(Rt ×R3
x) , V (t, x) ∈ L∞(Rt, L

3(R3
x)).

So, in this case, the hypotheses on the potential decay are definitely weaker than
in the cases above. The proof is still based on a Strichartz estimate.

In [23], Georgiev, Heiming and Kubo have established a weighted L∞-esti-
mate for the solution to the linear wave equation with a smooth positive po-
tential depending only on space variables. In particular, they prove that the
inequality

|| τ+ τ−λ u||L∞ 6 C|| τ+
µ τ− F ||L∞ ,

where here
τ± = 1 + | t± |x| | , x ∈ R3,

holds provided
0 6 λ < 1 , µ > 2 + λ .

Here u is the solution to the null data Cauchy problem for the wave equation
with potential, with n = 3. This estimate is similar to the one of F. John and
allows to prove the existence of global small data solutions for the correspond-
ing semilinear wave equation with a potential W (x) > 0, typically F = |u|p and
F = u|u|p−1. The result is based on the proof of weighted estimates for the re-
solvent of the operator −∆ + W , since the representation of the solution to the
perturbed wave equation can be connected with the resolvent of −∆ + W .
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In [27], Georgiev and Visciglia consider some estimates that hold for the
nonperturbed wave equation and extend them to the case of a potential-like
perturbation. They assume that the time-independent potential W satisfies

W (x) 6 C

|x|2(|x|ε + |x|−ε)
∀x ∈ R3

and prove, for every ψ ∈ C∞
0 (]0,∞[) and each ϑ > 0, the decay estimate

||ψ(ϑ
√
−∆ + W )u||L∞(R3) 6 C

tϑ
||F ||L1(R3) .

The proof of this result relies on a suitable representation for the operators
ϕ(
√−∆ + W ), that is

ϕ(
√
−∆ + W ) = c

∫ ∞

0

λϕ(λ)[RW (λ2 + i0)−RW (λ2 − i0)] dλ ,

where
RW (λ2 ± i0)F = lim

ε→0
RW (λ2 ± iε)F

in a suitable L2-weighted sense and

RW (λ2 ± iε) = [(λ2 ± iε) + ∆−W ]−1

for ε 6= 0. Moreover, they prove

||u||L4(R3) 6 C√
t
||F ||L4/3(R3)

provided F ∈ C∞
0 (R3), and the Strichartz estimate

||u||Lp(R;Lq(R3)) + ||u||C 0(R;Ḣs(R3)) + ||∂tu||C 0(R;Ḣs−1(R3))

6 C
(
||u0||Ḣs(R3) + ||u1||Ḣs−1(R3) + ||F ||Lp̃(R;Lq̃(R3))

)
,
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where p, q, p̃, q̃, s ∈ R satisfy

1

p
+

1

q
6 1

2
,

1

p̃
+

1

q̃
> 3

2
, q < ∞ , q̃ > 1 ,

1

p
+

3

q
=

1

p̃
+

3

q̃
− 2 =

3

2
− s .

D’Ancona and Fanelli have considered in [17] the case

(1.4)





(∂2
t + H)u = 0 (t, x) ∈ R×R3 ,

u(0, x) = 0 , ∂tu(0, x) = g(x) ,

where

H
.
= −(∇+ iA(x))2 + B(x) ,(1.5)

A : R3 −→ R3 , B : R3 −→ R .(1.6)

Under suitable conditions on A, ∇A and B, in particular

(1.7) |A(x)| 6 C0

r〈r〉(1 + | lg r|)β
,

3∑
j=1

|∂jAj(x)|+ |B(x)| 6 C0

r2(1 + | lg r|)β
,

with C0 > 0 sufficiently small, β > 1 and r = |x|, they have obtained the disper-
sive estimate

(1.8) |u(t, x)| 6 C

t

∑
j>0

22j||〈r〉w1/2
β ϕj(

√
H)g||L2 ,

where wβ
.
= r(1 + | log r|)β and (ϕj)j>0 is a nonhomogeneous Paley–Littlewood

partition of unity on R3.

Another work that we want to cite is [54], a paper of Yajima that studies the
existence of the Moeller wave operator for two-dimensional Schrödinger oper-
ators. Let H0 = −∆ and let H = −∆ + V be the two-dimensional Schrödinger
operator with potential V decaying at infinity according to
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|V (x)| 6 C

〈x〉δ , δ > 6 .

Yajima shows that the Moeller wave operator

W±u = s- lim
t→±∞

eitH e−itH0 u

are bounded in Lp(R2) for each p ∈]1,∞[ provided

c0
.
=

∫
V (x) dx 6= 0

and that (1−P )G0V (1−P ) is invertible in L2,−s(R2) for some s ∈]1, δ−1[, where

V0(x) = c−1
0 V (x) , P0u(x) =

∫
u(x) dx ,

G0u(x) = − 1

2π

∫
(log |x− y|)u(y) dy , P = P0V0 .

In other words, he gets the estimate

||W±u||Lp 6 Cp||u||Lp ,

with Cp independent of u ∈ L2(R2) ∪ Lp(R2).

1.3 Main original results

First of all, we consider a metric perturbation of the Cauchy problem explained
in Section 1.1. In other words, the problem is formally the same, but we con-
sider, instead of the d’Alembert operator ¤, that is the Laplace operator in the
Minkowski metric (+1,−1, . . . ,−1), its equivalent ¤g in the Schwarzschild met-
ric:

¤g =
1

F

(
∂2

t −
F

r2
∂r(r

2F )∂r − F

r2
∆S2

)
,

where
F (r) = 1− 2M

r
, r = |x| , M > 0 ,
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∆S2 is the standard Laplace–Beltrami operator on the two-dimensional sphere
and

(t, x) ∈M = R×Ω , Ω = {(r, ω) : r > 2M, ω ∈ S2} =]2M,∞[×S2 .

The Schwarzschild metric is interesting, since it is an exact solution to the
Einstein’s empty space field equations

Rαβ = 0 ,

where Rαβ are the components of the Ricci tensor, and in particular it is a model
for a spherically symmetric (static) black hole. This metric is studied in Chapter
3, where other physical implications are described.

We begin by considering the Cauchy problem (for the semilinear wave equa-
tion in the Schwarzschild metric)





¤gu = |u|p in [0,∞[×Ω ,

u(0, x) = u0(x) , ∂tu(0, x) = u1(x) in Ω .

A natural question is to establish whether, also in this case, a situation sim-
ilar to the one described in Section 1.1 still holds, that is to determine the ex-
istence of a critical exponent p̄ ∈]1,∞[ such that, under suitable hypotheses on
the small data u0 and u1, the solution blows up in finite time for every p ∈]1, p̄[,
while it exists globally for every p > p̄. In this case, it is also interesting to
compare p̄ with the three-dimensional critical exponent pc(3) = 1 +

√
2.

As to blow-up, we obtain two results. In both of them, we restrict our-
selves to symmetrically radial solutions, so that the problem is equivalent to
(see Chapter 4)

(1.9)





[∂tt − ∂ss + W (s)] v = f(s)|v|p , (t, s) ∈ [0,∞[×R ,

v(0, s) = v0(s) , ∂tv(0, s) = v1(s) , s ∈ R

for suitable W (s), f(s) ∈ C (R) satisfying the following estimates:
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W (s) > 0 , f(s) > 0 ∀s ∈ R ,

W (s) ∼ s−3 , f(s) ∼ s1−p ∀s > 1 ,

W (s) ∼ es/(2M) , f(s) ∼ es/(2M) ∀s 6 0 .

The notation f . g means that there exists a positive constant C so that f 6 Cg

and the standard notation f ∼ g is equivalent to f . g and g . f.

To study the maximal time interval of existence of the solution, we choose
the following initial data:

(1.10) v0(s) = ρ(ε)χ0

(
s− s0(ε)

)
, v1(s) = ρ(ε)χ1

(
s− s0(ε)

)
,

where χj ∈ C∞
0 (R) satisfy, for j = 1, 2, the conditions

χj(s) > 0 , s ∈ R ,(1.11)

χj(s) = 1 , s ∈ [−R/2, R/2] ,(1.12)

supp χj ⊆ [−R,R](1.13)

for a positive constant R. The function ρ(ε) will be chosen appropriately later
on.

It is not difficult to see that

(1.14) ||v0||Hσ(R) + ||v1||Hσ−1(R) ∼ ρ(ε)

for each σ > 1, so the initial data in (1.10) have small Hσ×Hσ−1 norms provided
ρ(ε) is small.

Moreover, note that a big Regge–Wheeler coordinate s corresponds to the
domain where one is far away from the black hole (R3 \Ω), i.e. the domain with
almost flat metric. On the other hand, s → −∞ corresponds to the domain close
to the black hole.

The first result follows closely what holds in the Minkowski space. In this
case, we shall choose ε > 0 sufficiently small and shall set
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(1.15) s0(ε) = ε−ϑ , ρ(ε) = ε ,

where ϑ satisfies

(1.16) ϑ > b(p− 1)

−p2 + 2p + 1
, ϑ > 1 +

b(3p− 5)

−p2 + 2p + 1
,

and b = p if p ∈ [2, 1 +
√

2[, b = p2 if p ∈]1, 2[.

In this case, the initial data in (1.10) have support far away from the black
hole and small data solutions manifest a blow-up phenomenon in the subcritical
case. We have the following theorem.

Theorem 1.3.1. Under the above hypotheses on the initial data, for any p, 1 <

p < 1+
√

2, there exists a positive number ε0 so that for any ε ∈]0, ε0[ there exists
a positive number T = T (ε) < ∞ and a solution

v ∈
2⋂

k=0

C k
(
[0, T [; H2−k(R)

)

of (1.9) such that
lim
t↑T

||v(t)||L2(R) = ∞ .

The above result means that, when the initial data are supported far away
from the black hole, the wave equation in the Schwarzschild metric has a critical
exponent similar to that one of the free wave equation. In this region, we can
estimate from above the lifespan of the solution.

The situation changes completely in the second case, when one tries to ap-
proach the black hole. To have a model that simulates this phenomenon, we
take initial data such that

(1.17) s0(ε) = −T2(ε) ,

where T2(ε) > 0 grows very rapidly as ε → 0. More precisely, we take T2(ε) ∈ Σ,

where Σ is the following class of functions:
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(1.18) Σ = {T (ε) ∈ C (]0, 1]) : ∀A > 1, lim
ε↓0

εAT (ε) = ∞}.

A typical example is T (ε) = e1/ε .

Approaching the black hole, one meets an essential difficulty to overcome
the attraction force of the black hole. In this case, the coefficient f(s) in the
source term in (1.9) decays exponentially and this dissipative phenomenon is
in competition with the blow-up properties of the source term. Because of this,
the blow-up mechanism which we propose is based on a different choice of the
quantity ρ(ε) that measures the Sobolev norm of the initial data according to
(1.14). We have to take ρ(ε) ∈ Σ, i.e. the initial data are large.

Then we have the following blow-up result.

Theorem 1.3.2. For any p, 2 < p < 1 +
√

2, there exists a positive number
ε0 so that for any ε ∈]0, ε0[ and any initial data satisfying the aforementioned
hypotheses, there exists a function ρ(ε) ∈ Σ, a positive number T = T (ε) < ∞
and a solution

v ∈
2⋂

k=0

C k
(
[0, T [; H2−k(R)

)

of (1.9) such that
lim
t↑T

||v(t)||L2(R) = ∞ .

The base idea for both results is to adapt the approach described in Sec-
tion 1.1, but this approach meets the essential difficulty that there is no sim-
ple explicit representation of the corresponding fundamental solution to the
d’Alambert operator in the Schwarzschild metric. In particular, one has to
handle the sign-changing properties of the fundamental solution of the linear
wave equation in Schwarzschild metric (or more generally in curved metrics).
In the case of the flat (1 + 3)-Minkowski metric, the fundamental solution is
nonnegative and this property is used effectively in the study of the blow-up
phenomenon for the corresponding semilinear wave equation.

On the other hand, one is interested in a global existence result for a similar
problem. At the moment, this problem is widely open (see Section 7.1).
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Finally, we consider a different kind of perturbation of the wave equation or,
more precisely, of the d’Alembert operator. Indeed, we consider a Cauchy prob-
lem for the linear wave equation in the Minkowski space with a perturbation
given by an electromagnetic potential satisfying suitable hypotheses.

In particular, we investigate the dispersive properties of the linear wave
equation

(1.19) (¤A −B)u = F (t, x) ∈ [0,∞[×R3,

where

x = (x1, x2, x3) , r = |x| ,(1.20)

¤A = ¤− A · ∇t,x ,(1.21)

¤ = ∂2
t −∆ = ∂2

t − (∂2
x1

+ ∂2
x2

+ ∂2
x3

) ,(1.22)

∇t,x = (∂t, ∂x1 , ∂x2 , ∂x3) .(1.23)

As anticipated, we assume that the potential A = A(t, x), depending on space
and time, is electromagnetic, that is, A assumes imaginary values. This will play
a crucial role in the development of the proof, since electromagnetic potentials
are gauge invariant (see what follows). Note that also in the previous prob-
lems, where we considered the Schwarzschild metric instead of the Minkowski
one, we could reduce the problem to the case of the Minkowski metric with an
effective potential.

We assume further that the potential decreases sufficiently rapidly when r

approaches infinity; more precisely, we suppose that

(1.24)
∑
j∈Z

2−j〈2−j〉εA||ϕjA||L∞ 6 δA

(that is, A is a short-range potential), where εA > 0, δA is a sufficiently small pos-
itive constant independent of r and the sequence (ϕj)j∈Z is a Paley–Littlewood
partition of unity, which means that ϕj(r) = ϕ(2jr) and ϕ : R+ −→ R+ (R+ is
the set of all nonnegative real numbers) is a function so that

(a) supp ϕ = {r ∈ R : 2−1 6 r 6 2} ;
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(b) ϕ(r) > 0 for 2−1 < r < 2 ;

(c)
∑

j∈Z ϕ(2jr) = 1 for each r ∈ R+.

In other words,
∑

j∈Z ϕj(r) = 1 for all r ∈ R+ and

(1.25) supp ϕj = {r ∈ R : 2−j−1 6 r 6 2−j+1}.

Similarly, we assume for B = B(t, x) the smallness hypothesis

(1.26)
∑
j∈Z

(2−j)2〈2−j〉εA||ϕjB||L∞ 6 δA .

Moreover, we shall restrict ourselves to radial solutions u = u(t, r), with
F = F (t, r), A = (A0, A1, A2, A3), where

(1.27) Aj = Aj(t, r) ∈ iR j = 0, 1, 2, 3 ,

and B = B(t, r). This is another similarity with the previous problems.

Because of this assumption, setting

(1.28) Ã = (Ã0, Ã1) , Ã0 = A0 , Ã1 =
A1x1 + A2x2 + A3x3

r
,

we have

(1.29) A · ∇t,x = Ã · ∇t,r , ∇t,r = (∂t, ∂r) .

It is well-known that there exists a unique global solution to the Cauchy
problem

(1.30)





(¤A −B)u = F (t, x) ∈ [0,∞[×R3,

u(0, x) = ∂tu(0, x) = 0 x ∈ R3 ;

in particular, this fact holds for the smaller class of radial solutions, that is for



Ch. 1 INTRODUCTION 19

the problem

(1.31)





(¤A −B)u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+.

Let us introduce the change of coordinates

(1.32) τ±
.
=

t± r

2

and the standard notation 〈s〉 .
=
√

1 + s2; our main result can be expressed as
follows.

Theorem 1.3.3. Let u be a radial solution to (1.30), i.e. a solution to (1.31), where
A = A(t, r) and B = B(t, r) satisfy respectively (1.24) and (1.26) for some δA > 0

and εA > 0. Then, for every ε > 0, there exist two positive constants δ and C

(depending on ε) such that for each δA ∈]0, δ], one has

(1.33) || τ+ u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r .

Let us introduce the differential operators

(1.34) ∇±
.
= ∂t ± ∂r .

The proof of the previous a priori estimate follows easily from the following
one.

Lemma 1.3.1. Under the same conditions of Theorem 1.3.3, for every ε > 0,
there exist two positive constants δ and C (depending on ε) such that for each
δA ∈]0, δ], one has

(1.35) || τ+ r∇−u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r .

An immediate consequence of Theorem 1.3.3 is the following dispersive es-
timate.

Corollary 1.3.1. Under the same conditions of Theorem 1.3.3, for every ε > 0,
there exist two positive constants δ and C (depending on ε) such that for each
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δA ∈]0, δ], one has

(1.36) |u(t, r)| 6 C

t
|| τ+ r2〈r〉εF ||L∞t,r

for every t > 0.

To prove the lemma, one begins by thinking the potential term in (1.31) as
part of the forcing term, that is, (¤A −B)u = F can be viewed as

(1.37) ¤u = F1
.
= F + Ã · ∇t,ru + Bu .

Then we can rewrite this equation in terms of τ± and ∇±, obtaining

(1.38) ∇+∇−v = G ,

where

(1.39) v(t, r)
.
= ru(t, r) and G(t, r)

.
= rF1(t, r) .

This last equation can be easily integrated to obtain a relatively simple explicit
representation of (∇−v)(τ+, τ−) in terms of G.

Another fundamental step consists in taking advantage of the gauge invari-
ance property of the electromagnetic potential A, which means that, set

(1.40) A±
.
=

Ã0 ± Ã1

2
,

we can assume, without loss of generality, that A+ ≡ 0 (see [5], p. 34). This
implies that

(1.41) Ã · ∇t,ru = A−∇−u + A+∇+u = A−∇−u .

1.4 Related problems

When the solution blows up in finite time, it is interesting to have an estimate
of the lifespan T (ε) depending on the parameter ε, which provides a measure of
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the smallness of the initial data. For the semilinear wave equation in the (1+n)-
Minkowski metric (¤g = ¤), Zhou has proved (see [56, 57]) that the following
limit exists, provided p < p0 (subcritical case):

Tp = lim
ε→0

εk(p)T (ε) ∈]0,∞[ , k(p) =
2p(p− 1)

2 + 3p− p2
.

In the critical case p = p0(n), he has got the existence of two positive constants c

and C independent of ε such that

exp(cε−p(p−1)) 6 T (ε) 6 exp(Cε−p(p−1)) .

All these results hold for n = 2, 3, while when n = 4 Li Ta-Tsien and Zhou Yi
have shown in [38] the following estimate from below:

T (ε) > exp(cε−2) , p = p0(4) = 2 .

This problem is still open in its generality for n > 4. We also lack any precise
result in the presence of the Schwarzschild metric, though our proof of the blow-
up result suggests a rough estimate in the subcritical case (see Sections 5.3 and
5.4 for these estimates and their proofs when we have small initial data far from
the black hole or large initial data next to the black hole respectively; see the
end of Section 7.1 for further comments).

The large-time behavior of the solution can be investigated for other evolu-
tion equations, and in particular for the Schrödinger equation. The solution u

to the Schrödinger Cauchy problem





(i∂t + H0)u = 0 ,

u(0) = f

is dispersive in the sense that, for each t > 0, one has

(1.42) ||u(t)||Lp′ (Rn) . t−n(1/p−1/2)||f ||Lp(Rn) ,

provided 1 6 p 6 2 and 1/p + 1/p′ = 1. Replacing H0 with more general
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Hamiltonians
H = −∆ + V (x) ,

the situation becomes more complicated. Journé, Soffer and Sogge have consid-
ered in [34] potentials V (x) satisfying




〈x〉αV (x) : Hη → Hη

V̂ ∈ L1(Rn) ,

where α > n + 4, η > 0 and V̂ is the Fourier transform of V . If n > 3 and Pc

denotes the projection onto the continuous part of the spectrum of H , then their
main result is the following: if 0 is neither an eigenvalue nor a resonance for H

then, for each t > 0,

|| eitH Pcψ||Lp′ (Rn) . t−n(1/p−1/2)||ψ||Lp(Rn) ,

with p and p′ as before. Thus, if u = eitH f (i.e. it is a solution to the Cauchy
problem for the Schrödinger equation with Hamiltonian H and initial datum f )
and f is orthogonal to the bound states of H , estimate (1.42) still holds.

Georgiev and Tarulli have studied in [26] the smoothing properties of this
equation with magnetic potential A = (A1, . . . , An), where Aj(t, x) ∈ R, x ∈ Rn

and n > 3. The corresponding Cauchy problem has the form





(∂t − i∆A)u = F ,

u(0, x) = f(x) ,

where

∆A =
n∑

j=1

(∂xj
− iAj)(∂xj

− iAj) .

Under the essential assumption

max
16j6n

∑

k∈Z

∑

|β|61

2k(1+|β|)||Dβ
xAj(t, x)||L∞t L∞|x|∼2k

6 ε

for a suitable ε > 0, which avoids eigenvalues or resonances of ∆A, the follow-



Ch. 1 INTRODUCTION 23

ing estimate holds:

∫

R

(
sup
k∈Z

∥∥|x|−1/2
k u(t)

∥∥
Ḣ

1/2
x

)2

dt . ||f ||2L2
x

+

∫

R

(∑

k∈Z

∥∥|x|1/2
k F (t)

∥∥
Ḣ
−1/2
x

)2

dt ,

where
|x|±1/2

k = |x|±1/2ϕ

( |x|
2k

)
, ϕ ∈ C∞

0 (]1/2, 2[) , ϕ > 0

and ∑

k∈Z
ϕ(|x|/2k) = 1 .

In [25], Georgiev, Stefanov and Tarulli have proved, under similar hypothe-
ses and for suitable spaces X and X ′, the estimate

∥∥∥∥
∫

t−s>0

ei(t−s)∆A F (s) d

∥∥∥∥
X′

. ||F ||X ,

which implies, in particular, the smoothing Strichartz estimate

||u||X′ . ||f ||L2 + ||F ||X .

Rodnianski and Schlag have established in [43] dispersive estimates for so-
lutions to the linear Schrödinger equation in three dimensions

1

i
∂tψ −∆ψ + V ψ = 0 , ψ(s) = f ,

where V (t, x) is a time-dependent potential that satisfies

sup
t
||V (t)||L3/2(R3) + sup

x∈R3

∫

R3

∫ ∞

−∞

V (τ̂ , x)

|x− y| dτdy < c0 .

Here c0 is a small constant and V (τ̂ , x) represents the Fourier transform with
respect to the first variable. Under these conditions, the above problem admits
solutions

ψ(·) ∈ L∞t L2
x(R

3) ∩ L2
t L

6
x(R

3) , ∀f ∈ L2(R3) ,
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satisfying the dispersive inequality

||ψ(t)||L∞ . |t− s|−3/2||f ||L1

for all times t, s. For the case of time independent potentials V (x), the same
estimate remains true if

∫

R6

|V (x)| |V (y)|
|x− y|2 dxdy < (4π)2 and ||V ||K .

= sup
x∈R3

∫

R3

|V (y)|
|x− y| dy < 4π .

The authors also establish the dispersive estimate with an ε-loss for large ener-
gies provided ||V ||K + ||V ||L2 < ∞. Finally, they prove Strichartz estimates for
the Schrödinger equations with potentials that decay like |x|−2−ε in dimensions
n > 3, thus solving an open problem posed by Journé, Soffer and Sogge.

These problems can be compared with the ones that we have presented in
Section 1.2, where also potentials satisfying different conditions are considered.
The cited papers provide further references.

1.5 Structure of the work

The first part of this work is dedicated to the introduction of preliminary no-
tions, both from a geometrical and a physical point of view. Chapter 2 contains
notions of Riemannian geometry, recalling rapidly but completely what needed
to define the Schwarzschild metric and the Einstein’s equations. We give the
fundamental definitions and fix some notations. Chapter 3 is dedicated to the
description of the Schwarzschild metric, its properties and its physical interpre-
tation. The main aim is to explain why it is interesting to consider the wave
equation in the Schwarzschild metric from a physical point of view.

Then we move to the core of the work, that is the details about the original
results discussed in this thesis. In Chapter 4 we present some preliminary re-
sults for the wave equation in the Schwarzschild metric, that is the reduction
of the problem to the one dimensional case of a wave equation with potential
in the Minkowski metric, and a local existence theorem. We also provide some
asymptotic estimates. We shall exploit either these results in Chapter 5. Chap-
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ter 5 deals with the blow-up results concerning the semilinear wave equation in
the Schwarzschild metric, i.e. Theorem 1.3.1 and Theorem 1.3.2. In Chapter 6,
we afford the other main problem of this thesis and we prove some a priori esti-
mates for the linear wave equation with electromagnetic potential; in particular,
we show the dispersive estimate of Theorem 1.3.3, Lemma 1.3.1 and Corollary
1.3.1.

Eventually, in Chapter 7 we present some open problems related to the main
original results, i.e. concerning the semilinear wave equation in the Schwarzschild
metric and the wave equation with electromagnetic potential.





Chapter 2
Elements of Pseudo-Riemannian
Geometry

The aim of this chapter consists in introducing some fundamen-
tal notions —both definitions and results— of pseudo-Riemannian
geometry. We shall introduce the essential stuff that we shall need
in the following chapters, above all to fix notations; for a definitely
more complete treatment, we refer to [13] (in particular, Chap-
ters III and V), [1], [18] (Chapters 0–4) and [19] (Chapters 1–4).
Penrose diagrams, as well as notions about the Minkowski metric,
are studied in [20] and [30].

In Section 2.1, we define differentiable manifolds and local co-
ordinates, differentiability between two manifolds, tangent vec-
tors and differentials. We also explain and assume the Einstein
convention about repeated indices, a very useful notation tool in
differential geometry.

Section 2.2 is dedicated to tensors and the tensor product. We
also revise the exterior product and the exterior differentiation op-
erator.

In Section 2.3, we review metric and pseudo-Riemannian man-
ifolds. We also introduce the Laplace–Beltrami operator respect
to a metric.

Section 2.4 is dedicated to the Minkowski metric. We use
several coordinate systems to study this metric and represent it
through a Penrose Diagram.

27
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We conclude with Section 2.5, where we recall linear connec-
tions and in particular Riemannian connections. These notions
lead to the definition of the Ricci tensor, which is the main char-
acter of the Einstein equation, an important equation of general
relativity that is the source of the topic of the following chapter
and the setting of Chapters 4 and 5: the Schwarzschild metric.

2.1 Differentiable manifolds

An n-dimensional manifold is a Hausdorff topological space such that every
point has a neighborhood homeomorphic to Rn.

A chart (U,ϕ) of a manifold M is an open set U of M together with a homeo-
morphism (a bijective bicontinuous application) ϕ : U → V onto a (necessarily)
open set V ⊂ Rn. The coordinates (x1, x2, . . . , xn) of the image ϕ(x) ∈ Rn of the
point x ∈ U ⊂ M are called coordinates of x in the chart (U,ϕ); this is the reason
why charts are also called local coordinate systems.

An atlas of class C k on a manifold M is a set {(Uα, ϕα)}α∈A such that:

• M =
⋃

α∈A Uα ,

• the maps ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) are of class C k.

Two C k-atlases {(Uα, ϕα)}α∈A and {(Uα, ϕα)}α∈A′ are equivalent if and only if
their union {(Uα, ϕα)}α∈A∪A′ is again a C k-atlas.

A C k-manifold is a manifold M together with a an equivalence class of C k-
atlases. A smooth manifold is a C∞-manifold. If we require only the differ-
entiability of the involved maps, we have differentiable atlases and differen-
tiable manifolds.

We use local charts to introduce the notion of differentiability on a manifold.
Let us consider a real function defined on a manifold M , i.e. f : M → R. If
(U,ϕ) is a chart at x, that is x ∈ U , then f ◦ ϕ−1 : ϕ(U) → R represents f in
the local chart. We say that f is differentiable at x if, in a chart at x, f ◦ ϕ−1 is
differentiable at ϕ(x). This is a suitable definition, since it does not depend on
the choice of the chart. As a matter of fact, if f ◦ ϕ−1 is differentiable at ϕ(x),
then f ◦ ϕ′−1 is differentiable at ϕ′(x) for every chart (U ′, ϕ′) at x, since

f ◦ ϕ′−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ϕ′−1).
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More generally, given two differentiable manifolds M and N , we say that a
function f : M → N is differentiable at x ∈ M if ψ ◦ f ◦ ϕ−1 is differentiable at
ϕ(x), where (U,ϕ) and (W,ψ) are local charts at x and at f(x) respectively.

The tangent vector space at a point can be defined following several ap-
proaches. The straightest way is to say that a tangent vector vx to a smooth
manifold M at a point x is a linear map from the space of functions defined and
differentiable on some neighborhood of x ∈ M into R that satisfies the Leibniz
rule, i.e.

vx(af + bg) = avx(f) + bvx(g) linearity,

vx(fg) = f(x)vx(g) + g(x)vx(f) Leibniz rule

for all a, b ∈ R and for all real functions f, g on M differentiable at x. The
space TxM of all such vectors, endowed with addition and scalar multiplication
defined by

(aux + bvx)(f) = aux(f) + bvx(f) ,

is a vector space called tangent vector space at the point x.

This definition of tangent vector can be made more precise through the no-
tion of germ. We say that two functions on M differentiable at x have the same
germ at x if they coincide in a neighborhood of x. The equivalence class of dif-
ferentiable functions at x with the same germ of a function f is called germ of
f . Therefore, a tangent vector can be viewed as a derivation on the algebra of
germs of differentiable functions at x.

In the chart (U,ϕ), the local coordinates, or components, of a tangent vector
are the set of numbers

vi = vx(ϕ
i) ,

where ϕi are the coordinates of ϕ in Rn. In the local chart (U,ϕ), if f is a C 1-
function on a neighborhood of x0 ∈ M , thanks to the mean value Lagrange
theorem we have, with f̄ = f ◦ ϕ−1,

(2.1) f(x) = f̄(ϕ(x0)) + (ϕi(x)− ϕi(x0))
∂f̄

∂xi

∣∣∣∣
ϕ(x0)+s(ϕ(x)−ϕ(x0))
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for some s ∈]0, 1[, where here and in the following we assume tacitly summation
over repeated indices. More precisely, we adopt the Einstein convention about
repeated indices: if the same index appears twice in the same formula, once up
and once down, we suppose understood a sum over all the possible values for
that index. For instance, formula (2.1) can be made explicit in the form

f(x) = f̄(ϕ(x0)) +
n∑

i=1

(ϕi(x)− ϕi(x0))
∂f̄

∂xi

∣∣∣∣
ϕ(x0)+s(ϕ(x)−ϕ(x0))

.

At x0, the derivative of f along the vector vx is

(2.2) vx0(f) = vi ∂f̄

∂xi

∣∣∣∣
ϕ(x0)

, where vi = vx0(ϕ
i) .

Each element vx ∈ TxM can therefore be represented in the form

vx = vi ∂

∂xi
,

where the vectors ∂/∂xi tacitly depend on x, according to (2.2). The set of these
vectors, {∂/∂x1, ∂/∂x2, . . . , ∂/∂xn}, is a basis, called natural basis, for the tan-
gent vector space, which has whence the same dimension of the manifold (note
that the chart (U,ϕ) at x induces an isomorphism of TxM onto Rn ). The el-
ements of the dual basis of the natural basis, called natural cobasis, are often
denoted by dxi, so that dxi(∂/∂xj) = δi

j, where the Kronecker δ symbol is de-
fined as

δi
j =





1 if i = j ,

0 if i 6= j .

If f : M → N is a mapping differentiable at x between manifolds, we define
the differential of f at x by

dfx : Tx(M) 3 v −→ w ∈ Tf(x)(N) ,

where for every function h differentiable at f(x), we have the identity
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w(h) = v(h ◦ f) .

In the following, we shall simply write Tx instead of TxM .

2.2 Tensor and exterior products

Let V1, V2, . . . , Vn,W be vector spaces on K and let

M(V1, V2, . . . , Vn; W )

denote the (natural) vector space on K of all multilinear (i.e. linear in each
component) maps from V1 × V2 × · · · × Vn to W . We assume that V1, V2, . . . , Vn

are finite-dimensional spaces, denote by V ∗ the dual of a vector space V , and
set

T = M(V ∗
1 , V ∗

2 , . . . , V ∗
n ;K) .

If F ∈ M(V1, V2, . . . , Vn; T ) is given by

F (v1, v2, . . . , vn)(ϕ1, ϕ2, . . . , ϕn) = ϕ1(v1)ϕ
2(v2) · · ·ϕn(vn)

for all vi ∈ Vi and for all ϕi ∈ V ∗
i , then we have the following result (see [1],

page 3, Theorem 1.1.3).

Theorem 2.2.1. With the notations above, we have that:

(a) for each vector space W onK and for each Φ ∈ M(V1, V2, . . . , Vn; W ), there
exists a unique linear map Φ̃ : T → W such that Φ = Φ̃ ◦ F (universal
property of the tensorial product);

(b) if (T ′, F ′) is another couple satisfying a), there exists a unique isomor-
phism Ψ : T → T ′ such that F ′ = Ψ ◦ F (uniqueness of the tensorial product).

Two couples (T1, F1), (T2, F2), where Tj are vector spaces and

Fj ∈ M(V1, V2, . . . , Vn; Tj) ,

are called isomorphic if there exists an isomorphism Ψ : T1 → T2 such that
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F2 = Ψ ◦ F1.

A couple (T, F ) satisfying the properties of Theorem 2.2.1(a) is called the
tensor product of the vector spaces V1, V2, . . . , Vn and denoted by V1⊗V2⊗· · ·⊗
Vn. Thanks to Theorem 2.2.1(b), the tensor product is well-defined modulo some
isomorphisms. The elements of the form F (v1, v2, . . . , vn) are denoted by v1 ⊗
v2 ⊗ · · · ⊗ vn.

In other words, if

vi ∈ Vi , ϕi ∈ V ∗
i i = 1, 2, . . . , n ,

we have

v1 ⊗ v2 ⊗ · · · ⊗ vn(ϕ1, ϕ2, . . . , ϕn) = ϕ1(v1)ϕ
2(v2) · · ·ϕn(vn)

and, from the multilinearity of F ,

λ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = (λv1)⊗ v2 ⊗ · · · ⊗ vn = · · · = v1 ⊗ v2 ⊗ · · · ⊗ (λvn) ,

v1 ⊗ · · · ⊗ (v′i + v′′i )⊗ · · · ⊗ vn = v1 ⊗ · · · ⊗ v′i ⊗ · · · ⊗ vn

+ v1 ⊗ · · · ⊗ v′′i ⊗ · · · ⊗ vn

for all λ ∈ K, for all v′i, v
′′
i ∈ Vi.

We introduce the following spaces:

T 0
0 (V ) = T 0(V ) = T0(V ) = K , T p(V ) = T p

0 (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
p times

,

Tq(V ) = T 0
q (V ) = V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸
q times

, T p
q (V ) = T p(V )⊗ Tq(V ) .

An element of T p
q (V ) is called p-contravariant q-covariant tensor, or tensor of

type (p, q).

We denote by Sp the set of all permutations of (1, 2, . . . , p). It is known that
each σ ∈ Sp can be written as a composition of transpositions. This decompo-



Ch. 2 ELEMENTS OF PSEUDO-RIEMANNIAN GEOMETRY 33

sition can vary but the number of transpositions is always the same. We define
the sign of a permutation σ, composition of r ∈ N transpositions, as

sign(σ) = (−1)r .

Let V and W be two vector spaces over a field K of characteristics 0. A p-
multilinear map ϕ : V × · · · × V → W is said to be an alternating map if

ϕ(vσ(1), vσ(2), . . . , vσ(p)) = sign(σ)ϕ(v1, v2, . . . , vp)

for every (v1, v2, . . . , vp) ∈ V p and for every permutation σ ∈ Sp. We denote by
Λp(V ) the space of all p-covariant alternating tensors —which is hence a sub-
space of T p(V )— and, if the dimension of V is n, we set

Λ(V ) =
⊗

06p6n

Λp(V ) ;

note that Λ0(V ) = K.

In order to define a product on this space, we introduce the operator

A :
⊗
p>0

T p(V ) −→ Λ(V )

defined by

A(α)(ϕ1, ϕ2, . . . , ϕp) =
1

p!

∑

σ∈Sp

sign(σ)α(ϕσ(1), ϕσ(2), . . . , ϕσ(p))

for every α ∈ T p(V ) and ϕ1, ϕ2, . . . , ϕp ∈ V ∗ (note that it is well-defined, linear
and the identity on Λ(V )). Now, for each α ∈ Λp(V ) and β ∈ Λq(V ), we set

α ∧ β =
(p + q)!

p!q!
A(α⊗ β) ∈ Λp+q(V ) .

Extending by bilinearity, we have the exterior product (or wedge product)

∧ : Λ(V )× Λ(V ) −→ Λ(V ) .
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The quadruple (Λ(V ), +,∧, ·) is an algebra called exterior algebra of V .
Now, let M be a smooth manifold and α ∈ Λp(M) —that is, αx ∈ Λp(Tx)— be

of class C k (in x). The exterior differentiation operator d maps α into dα ∈ Λp+1

of class C k−1 and satisfies the following conditions:

(a) linearity: if λ is a constant,

d(α + β) = dα + dβ , d(λα) = λdα ;

(b) d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ ;

(c) d2 = 0;

(d) if f ∈ C k(M), then df is the usual differential of f introduced in the previ-
ous section.

These properties determine d uniquely, as shown in [13], page 200. Note that, if
f ∈ C k(M), we set

fα = f ∧ α

to simplify notations.

2.3 Pseudo-Riemannian manifolds

We call tensor field of order (p, q) a map that associates to each x ∈ M a tensor
in T p

q (Tx). For instance, a 2-covariant tensor field is a map

g : M 3 x −→ gx ∈ T2(Tx) .

A pseudo-Riemannian manifold is a couple (M, g), where M is a differen-
tiable manifold and g is a differentiable symmetric non-degenerate 2-covariant
tensor field, called metric tensor or also pseudo-Riemannian metric. In other
words, a pseudo-Riemannian metric provides a map M 3 x 7→ gx, where
gx : Tx × Tx → R is a bilinear map that satisfies:

• g is differentiable, that is, if (U,ϕ) is a chart at x, then gx(∂/∂xi, ∂/∂xj) is a
differentiable function on ϕ−1(U) ⊂ Rn into R;
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• g is symmetric, that is,

gx(v, w) = gx(w, v) ∀v, w ∈ Tx, ∀x ∈ M ;

• for each x ∈ X , the bilinear form gx is non-degenerate, that is

gx(v, w) = 0 ∀w ∈ Tx if and only if v = Ox .

If we assume further that g is positive definite, i.e.

gx(v, v) > 0 ∀v ∈ Tx \Ox, ∀x ∈ M

(so that each gx is a positive definite scalar product), we call it Riemannian
metric and say that (M, g) is a Riemannian manifold.

We denote by {e1, e2, . . . , en} a moving frame for the tangent space, that is,
for each x ∈ M , we have

ei

∣∣
x

i = 1, 2, . . . , n

basis for Tx, while {ϑ1, ϑ2, . . . , ϑn} will be the dual basis. Hence, if we denote
the tensor g with ds2, we have

g = ds2 = gijϑ
i ⊗ ϑj = gijϑ

iϑj,

where
ϑiϑj =

1

2

(
ϑi ⊗ ϑj + ϑj ⊗ ϑi

)
,

because g is symmetric (remember that sum over repeated indices is assumed).
Moreover, we have

gij = gx(ei, ej) ei, ej ∈ Tx

and an inner product on each vector space Tx defined by

(v|w) = gx(v, w) ∀v, w ∈ Tx .
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An inner product on any vector space defines a canonical isomorphism be-
tween the space and its dual. Indeed, for a fixed u ∈ Tx, the map

(u|·) : Tx 3 v −→ (u|v) ∈ R

is an element of T ∗
x , hence the canonical isomorphism is given by

Tx 3 u −→ u∗ .
= (u|·) ∈ T ∗

x .

Resorting to coordinates, we have (u|v) = giju
ivj and hence u∗ = giju

iϑj. With
abuse of notation, one generally uses the same symbol u to indicate either u,
either its image u∗. The ui are called contravariant components of u, while
ui are called covariant components of u; these components are related by the
formulae

ui = giju
i , ui = gijuj ,

where (gij) is the inverse of the matrix (gij), i.e. gijgjk = δi
k. One says that indices

are raised or lowered by means of the tensor g. For instance, we have the mixed
components:

tij = giktkj .

We have an inner product on T ∗
x inducted by the canonical isomorphism, that is

(u∗|v∗) = (u|v) = gikuivj ,

and similar canonical isomorphisms, terminology and properties are used for
tensors. In particular, all the following spaces are isomorphic:

T p(Tx) , Tp(Tx) , T q(Tx)⊗ Tp−q(Tx) .

Choosing a suitable basis {e′i} for Tx, we can recast the expression for the
quadratic form gx(v, v) as a sum of k positive and n− k negative squares:

gx(v, v) = gijv
ivj = g′ijv

′iv′j =
k∑

i=1

(v′i)2 −
n∑

i=k+1

(v′i)2 .
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The number k does not depend on the choice of the basis and it is called index
of the quadratic form, while the couple (k, n − k) is called signature. In terms
of the basis {ϑ′i} dual to {e′i}, we get

gx =
k∑

i=1

(ϑ′i)2 −
n∑

i=k+1

(ϑ′i)2 .

A 4-dimensional pseudo-Riemannian manifold of index 1 is called hyper-
bolic manifold. As usual, we label with Greek indices the coordinates that take
the values 0, 1, 2, 3 and with Latin indices the ones that take the values 1, 2, 3. A
basis {eα} on a hyperbolic manifold is called orthonormal if

(e0|e0) = 1 (ei|ei) = −1 , (eα|eβ) = 0

for all α 6= β. In terms of an orthonormal basis {ϑα}, one has

g = (ϑ0)
2 −

3∑
i=1

(ϑi)2 .

The (1+n)-dimensional Minkowski space is the spaceR1+n with the metric

(2.3) ds2 = (dx0)2 −
n∑

i=1

(dxi)2

(of index 1), called Minkowski metric.

Given a metric g, represented by the matrix G = (gij), the Laplace–Beltrami
operator respect to g is the operator ∆g defined by

∆gf =
1√

| det G|
∂

∂xi

(
gij

√
| det G| ∂

∂xj
f

)
,

where f : M → K.

In the case of the space (Riemannian manifold) Rn with the classical eu-
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clidean metric of signature (n, 0), i.e.

g =
n∑

i=1

(dxi)2 ,

the Laplace–Beltrami operator reduces to the standard Laplace operator ∆:

∆gf = ∆f =
n∑

i=1

∂2
i f , ∂i =

∂

∂xi
.

When g is a metric of index 1, we write ¤g instead of ∆g, and we use the
symbol−∆g only for the negative part of the metric. For instance, if we consider
the (1 + n)-dimensional Minkowski space, using the variables (t, x1, . . . , xn) ∈
R1+n, we have

¤g = ∂2
t −∆g = ∂2

t −∆ = ∂2
t −

n∑
i=1

∂2
i

.
= ¤ ;

hence, in this case, ¤g reduces to the standard d’Alembert operator ¤.

Example 2.3.1. R3 with the euclidean metric gij = δij induces on the sphere

S2 = {x ∈ R3 : |x| = 1}

the metric

(2.4) dω2 = dϑ2 + sin2 ϑdϕ2 ,

where we have chosen the parameters

(ϑ, ϕ) ∈]0, π[×]0, 2π[

so that, if x = (x1, x2, x3), we have

(2.5) x1 = r sin ϑ cos ϕ , x2 = r sin ϑ sin ϕ , x3 = r cos ϑ .

The Laplace–Beltrami operator on the 2-dimensional sphere, computed respect
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to this metric, is

(2.6) ∆S2 = cot ϑ∂ϑ + ∂2
ϑ +

1

sin2 ϑ
∂2

ϕ .

2.4 The Minkowski space-time

In the previous section, we have introduced the (1+n)-dimensional Minkowski
space. If we consider the case n = 3 (three-dimensional space), we get the
ordinary Minkowski space-time. From (2.3), we see that its metric, in terms of
the natural coordinates (t, x1, x2, x3) ∈ R1+3, gets the form

ds2 = dt2 − (dx1)2 − (dx2)2 − (dx3)2 .

Using spherical polar coordinates (t, r, ϑ, ϕ), related to the natural coordinates
by the relations in (2.5), we have

ds2 = dt2 − dr2 − r2dω2 = dt2 − dr2 − r2(dϑ2 + sin2 ϑ dϕ2) ,

where dω2 is the metric defined in (2.4) on the 2-sphere. Apparently, this metric
is singular for r = 0 and sin ϑ = 0, but these singularities depend on the co-
ordinate system. One can obtain regular coordinate neighborhoods restricting
the ranges of the coordinates —for instance, by taking r > 0, 0 < ϑ < π and
0 < ϕ < 2π. It is possible to cover the whole of the Minkowski space through
two such coordinate neighborhoods.

A further coordinate system is given by choosing the advanced time null
coordinate v = t + r and the retarded time null coordinate w = t− r, so that the
metric becomes

ds2 = dvdw − 1

4
(v − w)2dω2 , v, w ∈ R .

Note that it is always v > w. We say that v is a null coordinate to indicate the
fact that the surface {v = constant} is a null surface, that is vavbg

ab = 0 (and
similarly for w).

Penrose introduced new null coordinates p and q, which are very useful in
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order to study the structure of infinity in the Minkowski space–time, since in
these coordinates the infinities of v and w are transformed in finite values. In-
deed, setting

tan p = v , tan q = w ,

we have
−π

2
< p , q <

π

2
, p > q ,

and the metric takes the form

ds2 = sec2 p sec2 q

(
dp dq − 1

4
(p− q)dω2

)
.

By defining
t′ = p + q , r′ = p− q ,

where
−π < t′ + r′ < π , −π < t′ − r′ < π , r > 0 ,

we obtain another expression for the metric of the Minkowski space, more sim-
ilar to the one in polar coordinates, that is

ds2 =
1

4
sec2

(
1

2
(t′ + r′)

)
sec2

(
1

2
(t′ − r′)

)
[(dt′)2 − (dr′)2 − sin2 r′dω2] .

In terms of the null coordinates p and q, the infinity of the Minkowski space
consists of the null surfaces

I + = {p = π/2} , I − = {q = −π/2}

together with the (p, q)-points

i+ = (π/2, π/2) , i0 = (π/2,−π/2) , i− = (−π/2,−π/2) .

This structure of infinity is often represented by drawing a diagram, called
Penrose diagram, of the (t′, r′) plane (see Figure 2.1).

Each point of this diagram represents a sphere S2, except for i+, i0 and i−

(each of which is a single point), and points on the line r = 0 (where the polar
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Figure 2.1 – Penrose diagram for the Minkowski metric.

coordinates are singular).
Penrose diagrams can be used to represent the structure of infinity in any

spherically symmetric space-time (and we shall use them in the next chapter
for the Schwarzschild metric). On such diagrams, single lines represent infin-
ity, dotted lines the origin of polar coordinates and double lines irremovable
singularities of the metric (i.e. that do not depend on the coordinate system).

2.5 Linear connections

A vector field is a map that associates to each point x ∈ M a tangent vector
vx ∈ Tx. The set of all C∞ vector fields on a smooth manifold M is denoted by
X (M). If u, v ∈ X (M), we define the Lie bracket as

[u, v] = uv − vu ;

the Lie bracket is still a vector field.
A linear connection on a smooth manifold M is a mapping v 7→ ∇v from

the germs of smooth vector fields on M into the germs of differentiable tensors
of type (1, 1) on M such that

(a) ∇(v + w) = ∇v +∇w,
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(b) ∇(fv) = df ⊗ v + f∇v,

where f is a germ of a differentiable function on M . The tensor ∇v is called
covariant derivative of v. The connection coefficients γj

ki are defined by the
relation

∇ei = γj
kiϑ

k ⊗ ej ,

where {ei} and {ϑi} are dual bases.

The covariant derivative ∇uv of v in the direction of u is by definition

∇uv = (∇v)(u) .

To extend the covariant derivative to germs of tensors of arbitrary type, we
require that the directional covariant derivative satisfies:

(a) ∇vf = v(f) for each f ∈ C 1(M),

(b) ∇v(t + s) = ∇vt +∇vs,

(c) ∇v(t⊗ s) = ∇vt⊗ s + t⊗∇vs,

(d) ∇v commutes with the operation of contracted multiplication.

Then, if t is a tensor of type (p, q), the covariant derivative ∇t is the tensor of
type (p + 1, q) defined by

(∇t)(v, v1, . . . , vp, ω1, . . . , ωq) = (∇vt)(v1, . . . , vp, ω1, . . . , ωq) .

The torsion operation τ and the curvature operation ρ are defined by

(2.7) τ(u, v) = ∇uv −∇vu− [u, v] , ρ(u, v) = ∇u∇v −∇v∇u −∇[u,v] ,

where u, v ∈ X (M). The torsion tensor T and the curvature tensor R are
defined by

T(α, u, v) = α(τ(u, v)) , R(w, α, u, v) = α(ρ(u, v)w) ,(2.8)
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where αx ∈ Λ1(TxM). In local coordinates, the components of T and R are

(2.9) T i
kl = T(ϑi, ek, el) , R j

i kl = R(ei, ϑ
j, ek, el) .

We also introduce the torsion forms Θi and the curvature forms Ωi
j by

Θi =
1

2
T i

klϑ
k ∧ ϑl , Ωi

j =
1

2
R j

i klϑ
k ∧ ϑl .

These forms can be conveniently be expressed by means of the Cartan structural
equations (see [13], Chapter V, § B.1, page 306).

Theorem 2.5.1 (Cartan structural equations). If we denote by ωj
i the connection

forms γj
kiϑ

k, then

Θi = dϑi + ωi
l ∧ ϑl ,

Ωj
i = dωj

i + ωj
m ∧ ωm

l .

The following results are shown, for instance, in [13], Chapter V, § B.2, page
308 and following ones.

Theorem 2.5.2. On a pseudo-Riemannian manifold there exists a unique linear
connection such that:

(a) the torsion tensor T is the null tensor (T = 0),

(b) the covariant derivative of g vanishes (∇g = 0).

Such a connection is called Riemannian connection (or Levi–Civita con-
nection). If we consider such a connection, we have Θi = 0; moreover, in an
orthonormal frame, we get

ωij = −ωji , Ωij = −Ωji .

The components of the curvature tensor of a Riemannian connection, called
the Riemann tensor, satisfy the identities

(a) R j
i kl = −R j

i lk,
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(b)
∑

(ikl) = 0 (first Bianchi identity),

(c)
∑

(mkl)∇mR j
i kl = 0 (second Bianchi identity),

(d) Rijkl = −Rjikl,

(e) Rijkl = Rklij .

Note that the symbol
∑

(ikl) denotes the sum over cyclic permutations of three
indices.

The Ricci tensor is a contraction of the curvature tensor and its components
are, by definition,

Rik = R j
i kj .

The Ricci tensor is symmetric: Rik = Rki. The Riemann scalar curvature is, by
definition,

R = gijRij .

The tensor G
.
= Rj

k −
1

2
δj
kR is called the Einstein tensor.



Chapter 3
The Schwarzschild Metric
in Physics

In this chapter, we are going to introduce the Schwarzschild met-
ric, which represents the setting of the problems considered in
Chapters 4 and 5. This metric will be studied from both a geo-
metrical and a physical point of view. Actually, we are interested
in how it naturally arises as a solution to a physical problem and
in how it is used to model some physical phenomena. Except
for some relevant mathematical results, we are not going to en-
ter into details and proof: our aim is to give an idea of why the
problems that we handle are interesting and what is their physical
interpretation. However, we provide precise references for all the
statements of this chapter (mainly, we refer to [40], [13] and [14]).

In Section 3.1, we briefly describe the Einstein field equation,
recalling its structure, its meaning and in particular its applica-
tions. Most of the assertions are not justified. Their proofs, along
with a complete treatment of the Einstein equation, can be
found in [40], above all in Chapter 17, where in particular are
presented the main idea in the formulation of the field equation
and several ways to derive it rigorously.

In Section 3.2, we find a particular class of solutions (that is so-
lutions of a particular form) to a particular Einstein field equation,
i.e. the Einstein empty space field equation. In this case, the ref-
erence is [13], page 341.

45
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In Section 3.3, we describe very rapidly some geometrical
properties of the Schwarzschild metric. We introduce the Kruskal–
Szekeres and the Regge–Wheeler coordinates. Moreover, we
spend some words on gravitational collapses and black holes,
whose fields can be described through the Schwarzschild metric.
These two topics are treated vastly in [40], Chapters 32 and 31.
We also refer to [20] and [30] for further physical discussions.

3.1 The Einstein field equation

A. Einstein has shown that the Einstein tensor G, introduced in the previous
chapter (see Section 2.5), is always generated by the local distribution of matter.
The Einstein tensor is a sort of average over all directions of the Riemann tensor
R. G is generated by a geometric object called the stress-energy tensor of the
matter, which will be denoted by S. No coordinates are needed to define G and
none to define S: like the metric tensor g, these tensors exist in the complete
absence of coordinates. Moreover, in nature they are always equal, aside for a
8π factor, which is the Einstein field equation, i.e.

G = 8πS

or, in terms of components in an arbitrary coordinate system,

Gαβ = 8πSαβ .

This equation shows how the stress-energy of matter generates a curvature,
represented by G, in its neighborhood. At the same time, the field equation is a
propagation equation for the remaining part of the curvature, governing the ex-
ternal space-time curvature of a static source. It governs the generation of grav-
itational waves (ripples in curvature of space-time) by stress-energy in motion
and their propagation through the universe. The field equation also contains in
itself the equations of motion (that is, force is given by the mass multiplied by
acceleration) for the matter whose stress-energy generates the curvature.

All these considerations would be sufficient to say that the Einstein field
equation is very rich, despite its formal simplicity. Indeed, it has a lot of ap-
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plications that make it even more valuable. For instance, the field equation
governs:

• the motion of the planets in the solar system,

• the deflection of light by the sun,

• the collapse of a star to form a black hole,

• the evolution of space-time singularities at the endpoint of collapse,

• the expansion and recontraction of the universe.

We shall be interested, in particular, in the connections between the Einstein
equation and black holes, since the problems considered in the Chapters 4–6
are set in a space with a particular metric, the Schwarzschild metric, which is a
particular solution to the Einstein empty space field equation

Rαβ = 0 ,

which corresponds to the case S = 0 (see Section 3.2).

3.2 A solution to the Einstein equation: the Schwarzschild
metric

In the previous section, we have introduced the Einstein field equation, but we
have not given any example of solution. In this section, we shall give such an
example. Indeed, we restrict ourselves to the case of empty space, that is the
stress-energy tensor S is null and the equation becomes simply

Rαβ = 0 ,

where Rαβ are the components of the Ricci tensor. In this case, we have already
seen an exact solution to this problem, although we did not know it, that is the
Minkowski metric, introduced in the previous chapter. This solution is not good
in general, for instance if we want to describe the local geometry of space-time



48 A solution to the Einstein equation: the Schwarzschild metric §3.2

in the solar system with a good approximation. Therefore, we shall look for
spherically symmetric solutions of the form

(3.1) ds2 = eµ(t,r) dt2 − eν(t,r) dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 .

Note that t represents the time coordinate, r = |x|, with x ∈ R3 space coordinate,
and (ϑ, ϕ) are the polar coordinates on S2.

In other words, we shall solve the following problem.

Problem 3.2.1. Find all metrics of the form (3.1) defined on a four-dimensional
hyperbolic manifold and satisfying the Einstein empty space field equation

Rαβ = 0 .

SOLUTION OF THE PROBLEM. First of all, we choose a convenient frame, that
is the orthonormal frame

ϑ0 = eµ/2 dt ,

ϑ1 = eν/2 dr ,

ϑ2 = rdϑ ,

ϑ3 = r sin ϑdϕ .

In regard to this frame, the metric has signature (1, 3). We denote by a prime
the derivative with respect to r and with a point the derivate respect to t. For
instance,

µ′ =
∂µ

∂r
, µ̇ =

∂µ

∂t
.

Then, we have

dϑ0 =
1

2
e−ν/2 µ′ϑ1 ∧ ϑ0 ,

dϑ1 =
1

2
e−µ/2 ν̇ϑ0 ∧ ϑ1 ,

dϑ2 =
1

r
e−ν/2 ϑ1 ∧ ϑ2 ,

dϑ3 =
1

r
e−ν/2 ϑ1 ∧ ϑ2 +

cot ϑ

r
ϑ2 ∧ ϑ3 .
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Note that, using the notations of Section 2.5, we have T i
jj = 0, since τ(ej, ej) = 0

(see (2.7), (2.8) and (2.7)). Thanks to the choice of an orthonormal frame, we
deduce then

Θi =
1

2
T i

klϑ
k ∧ ϑl = 0

and the first Cartan structural equation becomes dϑα + ω α
β ∧ ϑβ = 0 , as one can

see from Theorem 2.5.1. Solving this linear system of equations, we can find the
(Riemannian) connection forms

ω 0
1 = ω10 = −ω01 = ω 1

0 =
1

2
eν/2 µ′ϑ0 +

1

2
e−µ/2 ν̇ϑ1 ,

ω 2
1 = −ω 1

2 =
1

r
e−ν/2 ϑ2 ,

ω 3
1 = −ω 1

3 =
1

r
e−ν/2 ϑ3 ,

ω 3
2 = −ω 2

3 =
cot ϑ

r
ϑ3 ,

ω 2
0 = ω 0

2 = ω 3
0 = ω 0

3 = 0

(the remaining connection forms are obviously identically zero, since ωii = 0,
hence we have indeed a system of 24 equations in 24 unknowns). Then

dω 0
1 =

1

2

[
e−ν

(
1

2
µ′(µ′ − ν ′) + µ′′

)
− e−µ

(
1

2
ν̇(ν̇ − µ̇) + ν̈

)]
ϑ1 ∧ ϑ0 ,

dω 2
1 = − 1

2r
e−(ν+µ)/2 ν̇ϑ0 ∧ ϑ2 − 1

2r
e−ν ν ′ϑ1 ∧ ϑ2 ,

dω 3
1 =

cot ϑ

r2
e−ν/2 ϑ2 ∧ ϑ3 − 1

2r
e−(ν+µ)/2 ν̇ϑ0 ∧ ϑ3 − 1

2r
e−ν ν ′ϑ1 ∧ ϑ3 ,

dω 3
2 = − 1

r2
ϑ2 ∧ ϑ3 .

To compute the Riemann tensor, we can now use the second Cartan structural
equation (see Theorem 2.5.1). The nonvanishing forms are therefore

Ω 1
0 = Ω 0

1 = dω 1
0

= 1
4

[
e−ν

(
1
2
µ′(µ′ − ν ′) + µ′′

)− e−µ
(

1
2
ν̇(ν̇ − µ̇) + ν̈

)]
(ϑ1 ∧ ϑ0 − ϑ0 ∧ ϑ1) ,



50 A solution to the Einstein equation: the Schwarzschild metric §3.2

Ω 2
0 = −ω 1

0 ∧ ω 3
1

= − 1

4r
e−ν µ′(ϑ0 ∧ ϑ2 − ϑ2 ∧ ϑ0)− 1

4r
e−(ν+µ)/2 ν̇(ϑ1 ∧ ϑ2 − ϑ2 ∧ ϑ1) ,

Ω 3
0 = −ω 1

0 ∧ ω 2
1

= − 1

4r
e−ν µ′(ϑ0 ∧ ϑ3 − ϑ3 ∧ ϑ0)− 1

4r
e−(ν+µ)/2 ν̇(ϑ1 ∧ ϑ3 − ϑ3 ∧ ϑ1) ,

Ω 2
1 = −Ω 1

2 = dω 2
1 − ω 3

1 ∧ ω 2
3

=
1

4r
e−(ν+µ)/2 ν̇(ϑ2 ∧ ϑ0 − ϑ0 ∧ ϑ2)− 1

4r
e−ν ν ′(ϑ1 ∧ ϑ2 − ϑ2 ∧ ϑ1) ,

Ω 3
1 = −Ω 1

3 = dω 3
1 − ω 2

1 ∧ ω 3
2

=
1

4r
e−ν ν ′(ϑ3 ∧ ϑ1 − ϑ1 ∧ ϑ3) +

1

4r
e−(ν+µ)/2 ν̇(ϑ3 ∧ ϑ0 − ϑ0 ∧ ϑ3) ,

Ω 3
2 = −Ω 2

3 = dω 3
2 − ω 1

2 ∧ ω 3
1

=
1

2r2
(e−ν −1)(ϑ2 ∧ ϑ3 − ϑ3 ∧ ϑ2) .

Since the curvature forms are defined as

Ωi
j =

1

2
R j

i klϑ
k ∧ ϑl ,

we can deduce the components of the curvature tensor R and use them to com-
pute the components of the Ricci tensor:

R00 = R 1
0 01 + R 2

0 02 + R 3
0 03

= −1
2
e−ν

(
1
2
µ′(µ′ − ν ′) + µ′′

)
+ 1

2
e−µ

(
1
2
ν̇(ν̇ − µ̇) + ν̈

)− 1

r
e−ν µ′ ,

R01 = R 2
0 12 + R 3

0 13 = −1

r
e−(ν+µ)/2 ν̇ ,

R11 = R 0
1 10 + R 2

1 12 + R 3
1 13

= 1
2
e−ν

(
1
2
µ′(µ′ − ν ′) + µ′′

)− 1
2
e−µ

(
1
2
ν̇(ν̇ − µ̇) + ν̈

)− 1

r
e−ν ν ′ ,

R22 = R 0
2 20 + R 1

2 21 + R 3
2 23

=
1

2r
e−ν µ′ +

1

r2
(e−ν −1)− 1

2r
e−ν ν ′ ,
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R33 = R 0
3 30 + R 1

3 31 + R 2
3 32

=
1

2r
e−ν µ′ +

1

r2
(e−ν −1)− 1

2r
e−ν ν ′ ,

R02 = R03 = R12 = R13 = R23 = 0 .

From the Einstein equation, we have R01 = 0, which implies ν̇ = 0. The remain-
ing equations for µ and ν are

1
2
µ′(µ′ − ν ′) + µ′′ +

2

r
µ′ = 0 ,

1
2
µ′(µ′ − ν ′) + µ′′ − 2

r
ν ′ = 0 ,

e−ν(µ′ − ν ′) +
2

r
(e−ν −1) = 0 .

The difference between the first two equations gives µ′ + ν ′ = 0, hence the last
equation can be solved in ν obtaining

e−ν = 1− K

r
,

where K is a constant. It follows that

eµ = f(t)

(
1− K

r

)
,

with f arbitrary function of t. We can eliminate the dependence of µ on t by
making the change of coordinates

(t, r, ϑ, ϕ) 7→ (t̂(t), r, ϑ, ϕ)

such that
dt̂

dt
=

√
f(t) .
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Therefore, we can take F (t) = 1 and conclude

ds2 =

(
1− K

r

)
dt2 −

(
1− K

r

)−1

dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 .

This solves completely the problem. ¥

For physical reasons, it is assumed that K > 0. Generally, one writes K =

2M , where M > 0 has the meaning of a mass. Setting

F (r) = 1− 2M

r
,

we finally have

(3.2) ds2 = F (r)dt2 − F (r)−1dr2 − r2 dϑ2 − r2 sin2 ϑ dϕ2 ;

this metric is called the Schwarzschild metric and it represents the spherically
symmetric empty space-time outside a spherically symmetric massive body.
Note that, recalling that the standard metric on the 2-dimensional unit sphere
S2 is

dω2 = dϑ2 + sin2 ϑ dϕ2

(see Example 2.3.1), the Schwarzschild metric can be recast in the form

ds2 = F (r) dt2 − F (r)−1 dr2 − r2 dω2 .

3.3 Some properties of the Schwarzschild metric

The Schwarzschild space-time geometry (3.2) seems to behave badly near r =

2M , where gtt becomes zero and grr becomes minus infinity. However, this
pathology depends on the coordinate system and not on the space-time geom-
etry itself; in other words, one can show that the space-time geometry is not
singular in the region where r = 2M , called gravitational radius. Actually, an
infalling observer reaches r = 2M in finite proper time but infinite coordinate
time and he does not feel infinite tidal forces at the gravitational radius (for a
proof, see [40], §31.2, page 820). Hence the space-time geometry is well-behaved
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at r = 2M , while the coordinate system is pathological.

On the contrary, at r = 0, we have infinite tidal forces, independently of
the path that we choose to reach there. Indeed, in every local Lorentz frame,
the curvature is infinite at r = 0 (the Riemann tensor has at least one infinite
component as r → 0), and one says that r = 0 is a physical singularity of space-
time.

One can exhibit several system of coordinates that avoid the pathology at the
gravitational radius, like the Kruskal–Szekeres coordinates (u, v, ϑ, ϕ), where
u is a dimensionless radial coordinate and v a dimensionless time coordinate
related to the Schwarzschild r and t by

when r > 2M





u = (r/2M − 1)1/2 er/4M cosh(t/4M) ,

v = (r/2M − 1)1/2 er/4M sinh(t/4M) ,

when r < 2M





u = (1− r/2M)1/2 er/4M sinh(t/4M) ,

v = (1− r/2M)1/2 er/4M cosh(t/4M) .

In this new coordinate system, the line element becomes

ds2 = (32M3/r) e−r/2M(dv2 − du2) + r2(dϑ2 + sin2 ϑdϕ2) ,

where r must be viewed as an implicite function of u and v defined by

(r/2M − 1) er/2M = u2 − v2 .

These new coordinates show interesting geometrical and physical proper-
ties (among which the possibility of the presence of warmholes connecting two
asymptotically flat universes or two different regions of one universe), but they
will not be used in the following and therefore, as usual, we refer to [40] for an
extensive treatment (see Chapter 31).

Another interesting coordinate, which will be used massively in the follow-
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ing chapters, is the Regge–Wheeler coordinate. It is defined by

(3.3) r∗ =

∫
dr∗ =

∫
dr

1− 2M/r
= r + 2M log (r − 2M) .

Note that while the r-coordinate can freely pass through the value r = 2M , the
r∗-coordinate can go arbitrarily far in the direction of minus infinity and still
remains outside r = 2M . Hence there is a great difference between the descrip-
tion of the notion in terms of the proper time of a clock on a falling particle
(described through r, which goes from a certain R to 0) and the same descrip-
tion in terms of the time appropriate for a faraway observer (r∗ goes from R∗

down to −∞, so that as r∗ → −∞, r is asymptotically brought down only to
2M ). Therefore the second description leaves out the whole range of values
from r = 2M down to r = 0, where we have perfectly behaved physics, which
the falling particle is going to see and explore, but physics that the faraway
observer can not see and never will see.

Another possibility is represented by Kruskal coordinates

v′ = e(t+r∗)/4M , w′ = − e−(t−r∗)/4M .

We can construct the Penrose diagram by defining new advanced and retarded
null coordinates

v′′ = arctan(v′
√

2M) , w′′ = arctan(w′√2M)

for
−π < v′′ + w′′ < π , −π

2
< v′′ , w′′ <

π

2

(see Figure 3.1).

One has now future, past and null infinities for each of the asymptotically
flat regions I and I′. This situation may be compared with the situation repre-
sented in the Penrose diagram for the Minkowski metric portrayed in Figure
2.1, page 41.

The Schwarzschild metric is interesting and important because it illustrates
clearly the highly non-Euclidean character of space-time geometry when grav-
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Figure 3.1 – Penrose diagram for the Schwarzschild.

ity becomes strong, but above all because, when appropriately truncated, it
is the space-time geometry of a black hole and of a collapsing star. Actually,
physics teaches that there is no equilibrium state at the endpoint of thermonu-
clear evolution for a star containing more than about twice the number of baryons
of the sun. Such a star must eject the exceeding baryons — for instance by nova
or supernova explosions — before settling down into its final resting state, oth-
erwise there will be no final resting state. If a star fails to eject its exceeding
baryons before the endpoint of thermonuclear evolution, since it can neither
explode (it has no more thermonuclear energy to release), nor reach a static
equilibrium state, the supercritical mass must collapse through its gravitational
radius r = 2M , leaving behind a black hole.

Note that Problem 3.2.1 can be restated in the following form.

Theorem 3.3.1 (Birkhoff, 1923). Let the geometry of a given region of space-
time be spherically symmetric and a solution to the Einstein field equation in
vacuum. Then that geometry is necessarily a piece of the Schwarzschild geom-
etry.

The collapse of an electrically neutral star endowed with spherical sym-
metry produces a black hole with external gravitational field described by the
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Schwarzschild metric. The surface of the black hole, the horizon, is located at
r = 2M . Only the region r > 2M is relevant to external observers: events inside
the horizon can never influence the exterior.

The collapse of a real star, with asymmetries and a charge, produces a black
hole different from the Schwarzschild hole.



Chapter 4
Preliminary Results for the
Schwarzschild Problem

In Chapter 5, we shall study two nonlinear wave equation Cauchy
problems in the Schwarzschild setting. Both results are based
on a preliminary reduction of the (1 + 3)-dimensional problem
to the 1-dimensional case and some estimates. More precisely,
we transform the original problem in a Cauchy problem for a
1-dimensional nonlinear equation with effective potential. Note
that this reduction works since we restrict ourselves to radially sym-
metric solutions. Moreover, the proof of the local existence of the
solution is given. All this stuff can be found in my joint works with
Prof. V. Georgiev [9], [10] and [11], and also in my paper [7]. The
most extensive treatment can be found in [11].

Section 4.1 shows the reduction, while in Section 4.2 the afore-
mentioned estimates and the local existence result are proved.

4.1 Reduction of the problem to the one-dimensional case

As widely anticipated, we consider the manifold

M = R×Ω, Ω = {(r, ω) : r > 2M, ω ∈ S2} =]2M,∞[×S2,

equipped with the Schwarzschild metric, which has the form (see the identity
(3.2) and what follows):

(4.1) g = F (r) dt2 − F (r)−1 dr2 − r2 dω2.

57
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We recall that here

(4.2) F (r) = 1− 2M

r
,

the constant M > 0 has the interpretation of a mass and dω2 is the standard
metric on the unit sphere S2 (compare with Example 2.3.1).

The D’Alembert operator associated with the metric g is

¤g =
1

F

(
∂2

t −
F

r2
∂r(r

2F )∂r − F

r2
∆S2

)

(see page 37), where ∆S2 denotes the standard Laplace–Beltrami operator on S2.
Now, let us consider the following wave equation in the (1+3)-dimensional

space-time:

(4.3) ¤gu = sign(|x| −R0)|u|p in [0,∞[×Ω

for a certain R0 > 2M and p > 1. Note that, for R0 = 2M , we have the standard
semilinear equation

¤gu = |u|p .

An important tool — which will reduce the case of a radially symmetric
wave equation in the Schwarzschild metric to the case of a 1-dimensional wave
equation with suitable potential — is the use of the Regge–Wheeler coordinate

(4.4) s(r) = r + 2M log(r − 2M)

(see equation (3.3) for a brief introduction to this coordinate). We can rewrite
equation (4.3) as

(4.5) ∂2
t u− ∂2

su−
2F

r(s)
∂su− F

r(s)2 ∆S2u = sign(r(s)−R0)F |u|p,

where
F = F (s) = 1− 2M

r(s)

and r(s) is the inverse function to (4.4), which is well-defined, since s(r) is
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strictly increasing.

For simplicity, we shall restrict our considerations to the case of solutions of
the form u = u(t, s), that is to say radially symmetric solutions. Then (4.5) is
simplified to the following equation:

(4.6) ∂2
t u− ∂2

su−
2F (s)

r(s)
∂su = sign(r(s)−R0)F (s)|u|p.

Making further the substitution

u(t, s) =
v(t, s)

r(s)
,

we obtain the semilinear Cauchy problem:

(4.7)





[∂2
t − ∂2

s + W (s)] v = sign(r(s)−R0)f(s)|v|p, (t, s) ∈ [0,∞[×R ,

v(0, s) = v0(s), ∂tv(0, s) = v1(s), s ∈ R ,

where

(4.8) W (s) =
2MF (s)

r(s)3
, f(s) = F (s)r(s)1−p.

It is easy to see that W (s), f(s) ∈ C (R) satisfy the following estimates

W (s) > 0, f(s) > 0 ∀s ∈ R,(4.9)

W (s) ∼ s−3, f(s) ∼ s1−p ∀s > 1,(4.10)

W (s) ∼ es/(2M), f(s) ∼ es/(2M) ∀s 6 0.(4.11)

Here and below we shall use often the notation f . g, which means the exis-
tence of a positive constant C so that f 6 Cg. The standard notation f ∼ g is
equivalent to f . g and g . f.

For this reason, the study of the large-time behavior of solutions to the wave
equation in the Schwarzschild metric is reduced to the study of the semilinear 1-
dimensional wave equation in (4.7). We shall study the behavior of the solutions
to (4.7) without using the explicit representation (4.8), but simply assuming that
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W (s), f(s) obey the asymptotic properties (4.9), (4.10), (4.11) only.

4.2 Asymptotic estimates and the local existence theorem

The Regge–Wheeler coordinate

(4.12) s(r) = r + 2M log(r − 2M)

satisfies the relation
r

r − 2M
dr = ds .

If r(s) denotes the function inverse to (4.12), then one can find positive constants
C1, C2 so that we have the following asymptotic behaviors:

(4.13)





C1s 6 r(s) 6 C2s if s > 2 ,
C1 6 r(s) 6 C2 if |s| 6 2 ,
C1 es/2M 6 r(s)− 2M 6 C2 es/2M if s 6 −2 ;

further, the coefficient F (r(s)) defined in (4.2) satisfies

(4.14)





|F (s)− 1| 6 C2/s if s > 2 ,
C1 6 F (s) 6 C2 if |s| 6 2 ,
C1 es/2M 6 F (s) 6 C2 es/2M if s 6 −2 .

Moreover, we can use the definitions (4.8) of the potential W (s) and of the coef-
ficient f(s) to conclude that (4.9), (4.10) and (4.11) are satisfied.

Now we can state and show the local existence result for the Cauchy prob-
lem (4.7).

Theorem 4.2.1. Given any σ ∈ [1, p + 1[ and any real number E > 0, one can
find T = T (E) so that if the initial data

v0 ∈ Hσ(R), v1 ∈ Hσ−1(R)

satisfy
‖v0‖Hσ(R) + ‖v1‖Hσ−1(R) 6 E ,
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then the Cauchy problem (4.7) has a unique solution

v(t, s) ∈ C 0([0, T [; Hσ(R)) ∩ C 1([0, T [; Hσ−1(R)) .

PROOF OF THEOREM 4.2.1. It is not difficult to see that

G = −∂2
s + W (s)

is a nonnegative symmetric operator in the Hilbert space L2(R, ds) with dense
domain H2(R). Thus the estimates (4.9), (4.10) and (4.11), combined together
with the KLMN-theorem (see Theorem 10.17 in [42]), imply that G is a nonneg-
ative self-adjoint operator.

Let us consider the Cauchy problem

(4.15)





∂2
t v + Gv = Φ ,

v(0, s) = v0(s), ∂tv(0, s) = v1(s) ;

then the solution can be represented in the form

v(t) = cos(t
√

G)v0 +
sin(t

√
G)√

G
v1 +

∫ t

0

sin((t− τ)
√

G)√
G

Φ(τ)dτ .

From this representation, we find

‖v(t)‖L2(R,ds) 6 ‖v0‖L2(R,ds) + t‖v1‖L2(R,ds)

+

∫ t

0

|t− τ |‖Φ(τ)‖L2(R,ds) dτ ,
(4.16)

and for any σ > 1 we have

‖Gσ/2v(t)‖L2(R,ds) 6 ‖Gσ/2v0‖L2(R,ds) + ‖G(σ−1)/2v1‖L2(R,ds)

+

∫ t

0

‖G(σ−1)/2Φ(τ)‖L2(R,ds) dτ ;
(4.17)
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thus, using the equivalence

‖Gσ/2h‖L2(R,ds) + ‖h‖L2(R,ds) ∼ ‖h‖Hσ(R) ,

we arrive at the energy estimate

‖v(t)‖Hσ(R) 6 C‖v0‖Hσ(R) + C(1 + t)‖v1‖Hσ−1(R)

+ C

∫ t

0

(1 + |t− τ |)‖Φ(τ)‖Hσ−1(R) dτ
(4.18)

for any σ > 1 and a suitable constant C > 0. Now we use the fact that in our
case Φ = |v|p, and we can apply the inequality

‖ |v|p ‖Hσ−1(R) 6 c‖v‖Hσ−1(R) ‖v‖p−1
L∞(R)

for σ − 1 < p and a positive constant c (see Theorem 1 of Section 5.4.3, page 363
of [44]) to get

‖v(t)‖Hσ(R) 6 C‖v0‖Hσ(R) + C(1 + t)‖v1‖Hσ−1(R)

+ cC

∫ t

0

(1 + |t− τ |)‖v‖Hσ−1(R) ‖v‖p−1
L∞(R) dτ .

(4.19)

Since σ > 1, we have

(4.20) ||v||Hσ−1 6 C||v||Hσ , ||v||L∞ 6 C||v||Hσ

for a suitable constant C > 0, hence (4.19) becomes

‖v(t)‖Hσ(R) 6 C‖v0‖Hσ(R) + C(1 + t)‖v1‖Hσ−1(R)

+ C

∫ t

0

(1 + |t− τ |)‖v‖p
Hσ(R) dτ

(4.21)

(with a new positive constant C).
To conclude, it is sufficient to combine this energy estimate with the Sobolev

embedding Hσ(R) ⊂ L∞(R), which holds for σ > 1/2, obtaining easily the
desired local existence result for σ ∈ [1, p + 1[ (i.e. Theorem 4.2.1). ¥



Chapter 5
Blow-up in the
Schwarzschild Metric

This chapter deals with the blow-up of radially symmetric solutions
to the semilinear wave equation Cauchy problem under suitable
assumptions. We prove two different results. The first one con-
cerns the blow-up when the initial data are small and far from
the black hole, while the exponent p of the nonlinearity satisfies
1 < p < 1 +

√
2. In the second case, we consider large initial data

close to the black hole and get a blow-up result for 2 < p < 1+
√

2.
These problems present additional difficulties if compared with
the flat case and even the blow-up with large data is not triv-
ial; consequently, in this chapter we also develop the instruments
that we shall need in the proofs of the main results.

My paper [7] provides a first approach to the blow-up phe-
nomenon in the case p ∈]1, 2], while the complete results can be
found in my joint works with Prof. V. Georgiev: [9], [10] and above
all [11].

In Section 5.1 we introduce the problem, the assumption and
the results, along with the used tools. We compare the results and
the difficulties with the ones that appear in the flat case.

Section 5.2 contains the statement of the Kato lemma and the
statements and the proofs of its needed variants.

In Section 5.3 we prove the first blow-up result, that is for small
data far from the black hole and p ∈]1, 1 +

√
2[.

In Section 5.4 we prove the blow-up result for large data close
to the black hole and p ∈]2, 1 +

√
2[.
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The following sections are a sort of appendix including techni-
cal results previously used in this chapter. In particular, Section 5.5
is dedicated to the proof of an estimate for the auxiliary function
F1 (used in the Sections 5.3 and 5.4), while Section 5.6 is devoted
to the verification of some asymptotic estimates for ϕ0, ϕ1 and
for ψ0, all functions that we shall use in Section 5.3 and following
ones, which are solutions to an associated elliptic problem.

5.1 Introduction

In this chapter we are going to study the large-time behavior of solutions to the
corresponding Cauchy problem for the semilinear wave equation

(5.1) ¤gu = |u|p in [0,∞[×Ω,

where p > 1. This problem can be considered as a natural analogue of the clas-
sical semilinear wave equation

(5.2) ¤g0u = |u|p in [0,∞[×Rn,

where g0 is the flat Minkowski metric

(5.3) g0 = dt2 − dr2 − r2 dω2.

It is well-known (see [32], [33], [29], [46], [47], [49], [56], [58], [24], [55], [37] or
the review in [22] for a more complete list of references on the subject) that, for
any space dimension n > 2, there exists a critical value p0 = p0(n) > 1 such
that the Cauchy problem for (5.2) admits a global small-data solution provided
p > p0(n). For subcritical values of p 6 p0(n), a blow-up phenomenon in the flat
background is manifested. In the case of a space dimension n = 3, the critical
exponent is p0(3) = 1+

√
2, while in the general case of a space dimension n > 2,

the critical exponent is defined as the positive solution to

(n− 1)p2 − (n + 1)p− 2 = 0.



Ch. 5 BLOW-UP IN THE SCHWARZSCHILD METRIC 65

The blow-up results in [32], [33], [29], [46], [47] require a suitable comparison
principle for the free wave equation. One further remark is connected with the
fact that the critical exponent p0(n) is the same for the smaller class of radially
symmetric solutions.

For the case of the Schwarzschild metric, the dispersive properties of the
solution to the linear problem

(5.4) ¤gu = Φ in [0,∞[×Ω

with zero initial data depend essentially on the distribution of resonances for
the operator

(5.5) P =
F

r2
∂r(r

2F )∂r +
F

r2
∆S2 .

This problem is studied in [2], [45] (see also [12]) and in [45] it is shown that
the resolvent R(z) = (z2 − P )−1 can be extended as a meromorphic function (as
an operator from C∞

0 (Ω) to C∞(Ω)) from {z ∈ C : Im z > 0} to C \ iR. The re-
sult in [45] shows that the resolvent can be extended further to a meromorphic
function in the whole complex plane C. The corresponding poles of the resol-
vent are called resonances and they are isolated and have finite rank. Moreover,
there exists a strip of the type

(5.6) {z ∈ C : | Im z| < ε}

free of resonances. However, the result contained in [45] is shown only for the
De Sitter–Schwarzschild metric (see Section 7.1). This phenomenon is similar to
the situation of an exterior domain of several convex obstacles, studied in [31],
where a similar domain free of resonances is found. The approach in [31] leads
to an exponential decay of the local energy with a derivative loss. A similar
exponential energy decay with derivative losses is assumed in [39] for the case
of the wave equation in the exterior of compact obstacles. In this work, some
weighted space-time a priori L2-estimates are obtained and further applications
to quasilinear wave equation in the exterior of compact obstacles are done.
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As shown in Chapter 4, if we restrict ourselves to symmetrically radial solu-
tions, our problem is equivalent to

(5.7)





[∂tt − ∂ss + W (s)] v = f(s)|v|p, (t, s) ∈ [0,∞[×R,

v(0, s) = v0(s), ∂tv(0, s) = v1(s), s ∈ R

(this corresponds to the case R0 = 2M ), where W and f are defined and char-
acterized in Section 4.1, and our main goal in this chapter is to show a blow-up
result for 1 < p < 1+

√
2. A natural idea here is to adapt the approach of F. John

from [32], [33] to the semilinear problem (5.1) in the flat metric and to show
the blow-up for some subcritical values of p. This approach meets the essential
difficulty that there is no simple explicit representation of the corresponding
fundamental solution to the d’Alambert operator in the Schwarzschild metric.

To study the maximal time interval of existence of solutions to (5.7), we
choose the following initial data:

(5.8) v0(s) = ρ(ε)χ0

(
s− s0(ε)

)
, v1(s) = ρ(ε)χ1

(
s− s0(ε)

)
,

where χj ∈ C∞
0 (R) satisfy, for j = 1, 2, the conditions

χj(s) > 0 , s ∈ R ,(5.9)

χj(s) = 1 , s ∈ [−R/2, R/2] ,(5.10)

supp χj ⊆ [−R,R](5.11)

for a positive constant R. The function ρ(ε) will be chosen appropriately later
on.

It is not difficult to see that

(5.12) ||v0||Hσ(R) + ||v1||Hσ−1(R) ∼ ρ(ε)

for each σ > 1, so the initial data in (5.8) have small Hσ × Hσ−1 norms provided
ρ(ε) is small.

Recall that a big positive Regge–Wheeler coordinate s corresponds to the
domain where one is far away from the black hole (R3 \Ω), i.e. the domain with
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almost flat metric. On the other hand, s → −∞ corresponds to the domain close
to the black hole.

First, we shall choose ε > 0 sufficiently small and shall set

(5.13) s0(ε) = ε−ϑ , ρ(ε) = ε ,

where ϑ satisfies

(5.14) ϑ > b(p− 1)

−p2 + 2p + 1
, ϑ > 1 +

b(3p− 5)

−p2 + 2p + 1
,

and b = p if p ∈ [2, 1 +
√

2[, b = p2 if p ∈]1, 2[.

In this case, the initial data in (5.8) have support far away from the black
hole and our next result asserts that small data solutions manifest a blow-up
phenomenon in the subcritical case.

Theorem 5.1.1. For any p, 1 < p < 1 +
√

2, there exists a positive number ε0 so
that, for any ε ∈]0, ε0[ and any initial data of type (5.8) satisfying (5.13), there
exists a positive number T = T (ε) < ∞ and a solution

v ∈
2⋂

k=0

C k
(
[0, T [; H2−k(R)

)

of (5.7) such that
lim
t↑T

||v(t)||L2(R) = ∞ .

The above result means that, when the initial data are supported far away
from the black hole, the wave equation in the Schwarzschild metric has a critical
exponent similar to that one of the free wave equation. In this region, we can
estimate from above the lifespan of the solution.

The situation changes completely when one tries to approach the black hole.
To have a model that simulates this phenomenon, we take initial data of the
type (5.8) choosing

(5.15) s0(ε) = −T2(ε) ,
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where T2(ε) > 0 grows very rapidly as ε → 0. More precisely, we take T2(ε) ∈ Σ,

where Σ is the following class of functions:

(5.16) Σ = {T (ε) ∈ C (]0, 1]) : ∀A > 1, lim
ε↓0

εAT (ε) = ∞}.

A typical example is T (ε) = e1/ε .

Approaching the black hole, one meets an essential difficulty to overcome
the attraction force of the black hole. In this case, the coefficient f(s) in the
source term in (5.7) decays exponentially and this dissipative phenomenon is
in competition with the blow-up properties of the source term. Because of this,
the blow-up mechanism which we propose is based on a different choice of the
quantity ρ(ε) that measures the Sobolev norm of the initial data according to
(5.12). We have to take ρ(ε) ∈ Σ, i.e. the initial data are large.

Then we have the following blow-up result.

Theorem 5.1.2. For any p, 2 < p < 1 +
√

2, there exists a positive number ε0 so
that, for any ε ∈]0, ε0[ and any initial data of type (5.8) satisfying (5.15), there
exists a function ρ(ε) ∈ Σ, a positive number T = T (ε) < ∞ and a solution

v ∈
2⋂

k=0

C k
(
[0, T [; H2−k(R)

)

of (5.7) such that
lim
t↑T

||v(t)||L2(R) = ∞ .

However, the proof we follow here suggests that the lifespan of the solu-
tion has a completely different behavior —it might be much longer than in the
corresponding flat case (see Lemma 5.2.3 below).

The main difficulty to establish the blow-up of the solution is connected
with the sign-changing properties of the fundamental solution of the linear
wave equation in Schwarzschild metric (or more generally in curved metrics).
In the case of the flat (1 + 3)-Minkowski metric, the fundamental solution is
nonnegative and this property is used effectively in the study of the blow-up
phenomenon for the corresponding semilinear wave equation.

Our blow-up analysis, in the case of initial data supported far away from the
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black hole, is based on the study of the asymptotic behavior of the following
quantities:

U(t) =

(∫

R

ϕ0(s)|v(t, s)|pf(s) ds

)1/p

,(5.17)

V (t) =

∫

R

ϕ0(s)v(t, s) ds .(5.18)

Here ϕ0 is a solution to the equation

(5.19) ∂ssϕ0(s)−W (s)ϕ0(s) = 0 .

Lemma 5.6.3 implies that there exists a solution ϕ0 to (5.19) such that

(5.20) ϕ0(s) = ψ0(s) + D ∀s ∈ R

for some positive constant D and ψ0(s) > 0 has the asymptotic expansion

ψ0(s) ∼




s s →∞ ,

es/(2M) s → −∞ .
(5.21)

The key point in the proof of Theorem 5.1.1 is to verify the following a priori
estimates for V :

V (0) > C0ε
β , V ′(0) > C0ε

β ,(5.22)

V (t) > C0ε
b(t + R)a ∀t ∈ [T0, T1 + T0[ ,(5.23)

V ′′(t) > C0(t + R)−qV (t)p ∀t ∈ [T0, T1 + T0[ ,(5.24)

and then to apply a suitable variant of the classical Kato Lemma (see Lemma
5.2.2 below).

For the case of initial data supported close to the black hole we modify U, V

as follows:

U(t) =

(∫

R

ψ0(s)|v(t, s)|pf(s) ds

)1/p

,
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V (t) =

∫

R

ψ0(s)v(t, s) ds .

The main new phenomenon manifested in this case is the possible loss of
positivity of V (t). Indeed, one can show that V satisfies the differential equation
(see (5.113) below)

V ′′(t) = U(t)p + D

∫
vW (s) ds ,

so the positivity of V (t) cannot be obtained as a trivial consequence of the posi-
tivity of V (0), V ′(0) and the differential equation satisfied by V (t).

We use in this case another variant of the classical Kato Lemma stated in
Lemma 5.2.3 and involving two functions U and V .

5.2 Variants of the classical Kato lemma

A key point in the blow-up argument that we follow is an appropriate modifi-
cation of the following lemma due to Kato (see [35]).

Lemma 5.2.1 (Classical Kato lemma). Assume that a > 1, p > 1 and

(5.25) 0 6 q < (p− 1)a + 2.

Given any positive constants R, C0 one can find a constant

C1 = C1(a, p, q, R, C0) > 0

so that for any T0 > 0 the condition

a) there exists a nonnegative function V ∈ C 2([T0, T0 + T [) so that

V (T0) > 0 , V ′(T0) > 0 ,(5.26)

V (t) > C0(t + R)a ∀t ∈ [T0, T0 + T [ ,(5.27)

V ′′(t) > C0(t + R)−qV (t)p ∀t ∈ [T0, T0 + T [(5.28)
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will imply

(5.29) T 6 C1(1 + T0) .

PROOF. For 0 6 T0 6 1 this is the classical assertion of the Kato lemma. For
T0 > 1 the inequality (5.29) is equivalent to T 6 C1T0 and we can use a rescaling
argument. More precisely, we shall perform the following transform:

(5.30) t = T0τ , V (t) = T a
0 Ṽ (τ) .

Setting
τ1 = T/T0 ,

we see that

(5.31)





Ṽ (1) > 0 , Ṽ ′(1) > 0 ,

Ṽ (τ) > C0τ
a ∀τ ∈ [1, 1 + τ1[ ,

Ṽ ′′(τ) > C0T
a(p−1)−q+2
0 τ−qṼ (τ)

p ∀τ ∈ [1, 1 + τ1[ .

Assumption (5.25) implies that T
a(p−1)−q+2
0 > 1 so, applying for (5.31) the classi-

cal Kato’s argument, we get τ1 6 C1. This completes the proof. ¥

The above lemma gives the following more precise information for the lifes-
pan interval in t.

Lemma 5.2.2 (Finite lifespan for the classical Kato lemma). Assume that a > 1,

p > 1 satisfy
0 6 q < (p− 1)a + 2 ,

R, C0 are two positive constants and b > 0. There is a positive constant

C1 = C1(a, p, q, R, C0, b) ,

so that for any ε ∈]0, 1[ and for any couple of real numbers T0 > 0, T1 > 0 the
condition

a) there exists a nonnegative function V ∈ C 2([T0, T0 + T1[) such that
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the inequalities

(5.32) T0 > C0ε
α, α = − b(p− 1)

2 + (p− 1)a− q
6 0 ,

(5.33) V (T0) > C0ε
β, V ′(T0) > C0ε

β, β = −b(q − 2)/(2 + (p− 1)a− q) ,

V (t) > C0ε
b(t + R)a ∀t ∈ [T0, T0 + T1[ ,(5.34)

V ′′(t) > C0(t + R)−qV (t)p ∀t ∈ [T0, T0 + T1[(5.35)

will imply

b) T1 6 C1(T0 + εα) .

PROOF. For b = 0 the assertion of the lemma follows directly from the clas-
sical Kato Lemma 5.2.1. Take b > 0; making the transform

(5.36) t = εατ , V (t) = εβṼ (τ)

and setting
τ0 = T0ε

−α, τ1 = (T0 + T1)ε
−α,

we see that

(5.37)





Ṽ (τ0) > C0 , Ṽ ′(τ0) > C0ε
α,

Ṽ (τ) > C0ε
b−β+αa(τ + Rε−α)

a ∀τ ∈ [τ0, τ1[ ,

Ṽ ′′(τ) > C0ε
β(p−1)−α(q−2)(τ + Rε−α)

−q
Ṽ (τ)

p ∀τ ∈ [τ0, τ1[ .

We choose α, β so that

b− β + αa = β(p− 1)− α(q − 2) = 0 .

The solution to the above system is given by

α = − b(p− 1)

(2 + (p− 1)a− q)
, β = − b(q − 2)

(2 + (p− 1)a− q)
.
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Then (5.37) becomes

(5.38)





Ṽ (τ0) > C0 , Ṽ ′(τ0) > C0ε
α,

Ṽ (τ) > C0(τ + Rε−α)
a > C0τ

a ∀τ ∈ [τ0, τ1[ ,

Ṽ ′′(τ) > C0(τ + Rε−α)
−q

Ṽ (τ)
p ∀τ ∈ [τ0, τ1[ .

Since α 6 0, q > 0 and 0 < ε < 1, we have

(τ + Rε−α)
−q > (τ + R)−q .

Note that assumption (5.32) implies τ0 = T0ε
−α > C0. We are now in the situ-

ation to apply the classical Kato Lemma 5.2.1 and get τ1 6 C1(1 + τ0), which
implies

b) T1 6 C1(T0 + εα).

This completes the proof of the lemma. ¥

We shall need another variant of the Kato lemma. For the purpose, we in-
troduce the following class of functions:

(5.39) Σ = {T (ε) ∈ C(]0, 1]) : ∀A > 1, lim
ε↓0

εAT (ε) = ∞} .

Lemma 5.2.3. Assume that a > 1, p > 1 satisfy

(5.40) 0 6 q < (p− 1)a + 2 ,

while R,C0, C1 are positive constants. Then there exist two constants

D1 = D1(a, p, q, R, C0, C1) > 0 , ε0 = ε0(a, p, q, R, C0, C1) > 0 ,

so that for any positive T0(ε) ∈ Σ, for any ε ∈]0, ε0[ and for any real number
T1 > 0, the condition

a) there exist two functions U ∈ C ([0, T0(ε) + T1[), V ∈ C 2([0, T0(ε) +
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T1[), so that

V (0) > 0 , V ′(0) > 0 , U(t) > 0 ∀t ∈ [0, T0(ε) + T1[ ,(5.41)

U(t)p > C0(t + R)−q|V (t)|p + C0ε
p(t + R)a−2 ∀t ∈ [0, T0(ε) + T1[ ,(5.42)

V ′′(t) > C0U(t)p − C1U(t) ∀t ∈ [0, T0(ε) + T1[ ,(5.43)

V ′′(t) > C0U(t)p − C1 e−C0T0(ε) U(t) ∀t ∈ [0, T0(ε)[(5.44)

implies

b) T1 6 D1T0(ε) .

PROOF. Consider the function

(5.45) K(x) = xp − Cx ,

where C = C1/C0 > 0. For

(5.46) x > x0
.
= 2C1/(p−1) ,

we have

(5.47) K(x) & xp .

In a similar way, given T0(ε) ∈ Σ, we can consider the function

(5.48) KT0(ε)(x) = xp − C e−C0T0(ε) x .

For

(5.49) x > x0(ε)
.
= 2C1/(p−1) e−C0T0(ε)/(p−1) ,

we have

(5.50) KT0(ε)(x) & xp .
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Note that inequality (5.42) assures that

(5.51) U(t) & ε(t + R)(a−2)/p > ε(T0 + R)(a−2)/p

for t ∈ [0, T0] if a 6 2, and

(5.52) U(t) & ε(t + R)(a−2)/p > εR(a−2)/p

for t ∈ [0, T0] if a > 2. Now it is clear that choosing T0 = T0(ε) ∈ Σ, we can
guarantee the following analogue of inequality (5.49):

(5.53) U(t) > x0(ε)
.
= 2C1/(p−1) e−C0T0(ε)/(p−1) for t ∈ [0, T0(ε)] , ε ∈]0, ε0[ .

Indeed, the lower bound of U(t) is at most polynomially decaying (in T0)
due to (5.51) and (5.52), while x0(ε) decays exponentially in T0(ε) as ε → 0.

Since (5.49) implies (5.50), we conclude that

V ′′(t) & U(t)p & εp(t + R)a−2 for t ∈ [0, T0[ ,

and integrating this inequality twice, we obtain

(5.54) V (t) & εp(t + R)a, V ′(t) & εp(t + R)a−1 for t ∈ [T0/2, T0[ ,

because of (5.41). Note that we have also the inequality

(5.55) V ′′(t) & (t + R)−qV (t)p for t ∈ [T0/2, T0] .

Now we are in the situation when estimates similar to the estimates (5.27)
and (5.28) of the classical Kato lemma are fulfilled. Setting

a0 = a , p0 = p ,

we define the recurrence sequence

(5.56) ak+1 = pak − q + 2 , pk+1 = pkp .
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It is clear that

(5.57) ak+1 = a +
pk+1 − 1

p− 1
((p− 1)a− q + 2) , pk = pk+1,

so integrating twice the differential inequality (5.55) in combination with (5.54),
we prove inductively in k the following estimates

(5.58) V (t) & εpk(t + R)ak , V ′(t) & εpk(t + R)ak−1

for t ∈ [(1 − 2−(k+1))T0, T0]. It is not difficult to see that ak tends to infinity, due
to (5.57) and (5.40).

We can choose in particular k > 0 so that ak > 2 and fix this k. Then estimate
(5.58) combined with (5.42) implies

(5.59)





V (t) & εpk(t + R)ak , V ′(t) & εpk(t + R)ak−1 ,

U(t)p & εpk+1(t + R)ak+1−2

for t ∈ [(1− 2−(k+1))T0, T0]. Thus, we have

(5.60) U(t) & εpk+1/p(T0(ε) + R)(ak+1−2)/p > x0
.
= 2C1/(p−1)

for t ∈ [(1 − 2−(k+1))T0, T0], due to the property T0 ∈ Σ and the definition (5.39)
of the class Σ (we assume that ε is sufficiently small). Once this inequality is
satisfied, we can use (5.42), (5.60) and (5.43), and see that

U(t)p & (t + R)−q|V (t)|p + εp(t + R)a−2 ,(5.61)

V ′′(t) & U(t)p − CU(t)(5.62)

for t ∈ [(1− 2−(k+1))T0, T0 + T1[ and

(5.63) U(t) > x0, V ′(t) > 0 for t ∈ [(1− 2−(k+1))T0, T0] .

Let
T2

.
= sup{T ∈ [0, T1] : U(t) > x0, t ∈ [(1− 2−(k+1))T0, T0 + T [} .
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One can show that T2 = T1. Indeed, for t ∈ [(1− 2−(k+1))T0, T0 + T2[, we have

(5.64) V ′′(t) & U(t)p & (t + R)−q|V (t)|p + εp(t + R)a−2 ;

so we are in the situation to repeat the argument of the proof of (5.59) and we
can prove inductively in m the following estimates:

(5.65) V (t) & εpm(t + R)am , V ′(t) & εpm(t + R)am−1

for all t ∈ [(1− 2−(k+m+1))T0, T0 + T2[. Take m = k so that ak > 2. Then estimate
(5.65) combined with (5.64) implies

(5.66)





V (t) & εpk(t + R)ak , V ′(t) & εpk(t + R)ak−1 ,

U(t)p & εpk+1(t + R)ak+1−2 ,

for t ∈ [(1− 2−(2k+1))T0, T0 + T2[. Since, provided ε small, we have

εpk+1(T0(ε) + R)ak+1−2 > xp
0

due to the property T0 ∈ Σ, we get also U(t) > x0 near t = T0 + T2. This
inequality, combined with the definition of T2, guarantees that T2 = T1.

From this conclusion we see that the functions

U ∈ C ([0, T0(ε) + T1[) , V ∈ C 2([0, T0(ε) + T1[) ,

satisfying the condition a), will also obey the following stronger estimates

V (t) & εpk(t + R)ak , V ′(t) & εpk(t + R)ak−1 ,(5.67)

V ′′(t) & (t + R)−qV (t)p ∀t ∈ [(1− 2−(2k+1))T0(ε) , T0(ε) + T1[ .(5.68)

It remains to verify condition (5.33) in order to apply the lifespan estimate of
Lemma 5.2.2. Indeed, (5.67) implies

V (T0(ε)) & εpk(T0(ε) + R)ak ,
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therefore the fact that T0 ∈ Σ and ak > 0 imply (5.33), so applying Lemma 5.2.2
we complete the proof. ¥

5.3 Blow-up for small data far from the black hole and
p ∈]1, 1 +

√
2[

In this subsection, we verify the hypotheses of Lemma 5.2.2 to get Theorem
5.1.1. In particular, we take

(5.69) p > 1 , q = 3(p− 1) , a = 4− p ,

and prove (5.33), (5.34) and (5.35) for

(5.70) U(t) =

(∫

R

ϕ0(s)|v(t, s)|pf(s) ds

)1/p

,

(5.71) V (t) =

∫

R

ϕ0(s)v(t, s) ds ,

where v is a solution to the Cauchy problem (5.7), (5.8) with

(5.72) ρ(ε) = ε , s0(ε) = ε−ϑ

and

ϑ > b(p− 1)

δ
, ϑ > 1 +

b(3p− 5)

δ
,(5.73)

b =





p if 2 6 p < 1 +
√

2 ,

p2 if 1 < p < 2 ,
(5.74)

δ = (p− 1)a− q + 2 > 0 .(5.75)

Let us notice that (5.75) is equivalent to

p2 − 2p− 1 < 0 ,



Ch. 5 BLOW-UP IN THE SCHWARZSCHILD METRIC 79

that is,
1 < p < 1 +

√
2 ;

in particular, we have a > 1. Moreover, (5.72) guarantees that

(5.76) ||v0||H2(R) + ||v1||H1(R) ∼ ε ,

therefore the initial data in (5.7), (5.8) have small H2 × H1 norms.

First, we check (5.33). We apply Lemma 5.3.1 (see the end of this section)
and get that there exists a positive constant C0 such that

V (0) > C0ε
β, V ′(0) > C0ε

β, β = −b(3p− 5)

δ

thanks to the second part of condition (5.73), that is 1− ϑ 6 β.

Further, we have the relation

V ′′(t) =

∫

R

vtt(t, s)ϕ0(s) ds

=

∫

R

vss(t, s)ϕ0(s) ds−
∫

R

W (s)v(t, s)ϕ0(s) +

∫

R

f(s)|v(t, s)|pϕ0(s) ds ,

so (5.19) implies

V ′′(t) =

∫

R

f(s)|v(t, s)|pϕ0(s) ds = U(t)p(5.77)

and we conclude that V ′′(t) is a nonnegative function. This argument guaran-
tees that setting

(5.78) T0 = T0(ε) = 2C1s0(ε) ,

where C1 > 0 is the constant from Lemma 5.2.2, one has

(5.79) V (T0) > C0ε
β, V ′(T0) > C0ε

β,

thus (5.33) is verified.
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The estimates of (5.34) and (5.35) are based on a finite dependence domain
argument, that is,

(5.80) supp v(t, s) ⊆ {(t, s) : |s− s0(ε)| 6 t + R} .

This dependence domain property implies that the support of v(t, s) is in the
domain s > 1 for 0 6 t 6 2T0, provided ε > 0 is sufficiently small. Hence we
can use the Hölder’s inequality and get, for 0 6 t 6 2T0,

|V (t)| 6
∫

R

|v(t, s)|ϕ0(s) ds

=

∫

|s−s0(ε)|6t+R

(
f 1/p|v|ϕ1/p

0

)(
f−1/pϕ

(p−1)/p
0

)
ds

6
(∫

R

f |v|pϕ0 ds

)1/p (∫

|s−s0(ε)|6t+R

f−1/(p−1)ϕ0 ds

)(p−1)/p

;

since f(s)−1/(p−1)ϕ0(s) . (1 + |s|)2, we conclude

|V (t)| 6 CU(t)(t + R)3(p−1)/p

for each t ∈ [T0, 2T0] (i.e. s0(ε) 6 t/2C1), where C > 0 is a constant independent
of ε, T0. Thus, we have

(5.81) U(t)p > C(t + R)−q|V (t)|p, q = 3(p− 1) ,

and the inequality (5.35) is verified.

It is easy to show that estimate (5.34) follows from an estimate of the type

(5.82) U(t)p > Cεb(t + R)a−2, t ∈ [T0, 2T0] .

Indeed, using (5.77) and integrating twice (5.82) we get (5.34), since the ini-
tial data are nonnegative due to (5.79).

To verify (5.82), we use the auxiliary quantity

(5.83) F1(t) = e−t/(2M)

∫

R

v(t, s)ϕ1(s) ds ,
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where ϕ1 is a solution to

(5.84) −∂ssϕ1 + W (s)ϕ1 +
1

4M2
ϕ1 = 0

having asymptotic behavior

(5.85) ϕ1(s) ∼ es/(2M) as |s| −→ ∞ .

The existence of such a function is shown in Lemma 5.6.4.

Proceeding as before, we obtain

F1(t) 6 e−t/2M

∫

R

|v|ϕ1 ds

= e−t/2M

∫

|s−s0(ε)|6t+R

(
f

1
p |v|ϕ0

1
p

)(
f−

1
p ϕ0

− 1
p ϕ1

)
ds

6 U(t)

(
e−

t
2M

p
p−1

∫

|s−s0(ε)|6t+R

f−
1

p−1 ϕ0
− 1

p−1 ϕ1

p
p−1 ds

) p−1
p

;

thanks to the hypotheses on f , ϕ0, ϕ1 (see (4.10), (5.20), (5.21) and (5.85)), we
deduce

(5.86) F1(t) 6 CU(t)

(∫

|s−s0(ε)|6t+R

(1 + s)
p−2
p−1 e

s−t
2M

p
p−1 ds

) p−1
p

.

Now we distinguish two cases.

Case 1: p ∈ [2, 1 +
√

2[. Let observe that, given any α > 0, β > 0 and R > 0,
one can find a positive constant C = C(R, α, β) so that the inequality

(5.87)
∫

06s6t+R+s0(ε)

(s + R)α eβ(s−t) ds 6 C (t + R + s0(ε))
α eβs0(ε)

holds for any t > 0 and ε ∈]0, 1]. Applying (5.87) with

α =
p− 2

p− 1
> 0 , β =

p

2M(p− 1)
> 0
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in (5.86), we derive

F1(t) 6 CU(t)(t + R + s0(ε))
p−2

p e
s0(ε)
2M .

Now, Lemma 5.5.1 assures that

F1(t) > C ′ε e
s0(ε)
2M ;

so, taking t ∈ [T0, 2T0] (i.e. t ∼ s0(ε)) and the power p on both sides, we get

(5.88) U(t)p > Cεp (t + R)2−p,

that is, the desired estimate (5.82) with a = 4− p, b = p.

Case 2: p ∈]1, 2]. Given any α 6 0, β > 0 and R > 0, one can find a positive
constant C = C(R, α, β) so that the inequality

(5.89)
∫

06s6t+R+s0(ε)

(s + R)α eβ(s−t) ds 6 C eβs0(ε)

holds for any t > 0 and ε ∈]0, 1]. Applying this estimate and (5.86), we derive

F1(t) 6 CU(t) e
s0(ε)
2M .

Lemma 5.5.1 implies that
C ′ε e

s0(ε)
2M 6 F1(t)

and, hence, the inequalities

C ′ε e
s0(ε)
2M 6 F1(t) 6 CU(t) e

s0(ε)
2M

imply U(t)p > Cεp, so we get

(5.90) V ′′(t) = U(t)p > Cεp.
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Integrating twice, we obtain

(5.91) V (t) > Cεp(t + R)2

which, substituted in (5.81), yields

(5.92) V ′′(t) = U(t)p > Cεp2

(t + R)3−p

and, consequently,

(5.93) V (t) > Cεp2

(t + R)5−p > Cεp2

(t + R)a,

that is (5.34), with a = 4− p, b = p2.

Now, suppose that the lifespan T (ε) for the solution to (5.7) is greater than
(C1 + 1)T0(ε). Then we can apply Lemma 5.2.2 with T1 = (C1 + 1)T0(ε) and
derive the inequality T1 6 C1(T0 + ε−b(p−1)/δ), so

T0 6 C1ε
−b(p−1)/δ

and this is in contradiction with the choice

T0 = 2C1ε
−ϑ, ϑ > b(p− 1)

δ
.

The contradiction shows that V (t) must blow up in finite time T (ε) 6 (C1 +

1)T0(ε).

To conclude, we recall that |ϕ0(s)| . 1 + |s| (see (5.20) and (5.21)) and apply
the Cauchy–Schwartz inequality, obtaining

(5.94) V (t) .
∫

|s−s0(ε)|6t+R

(1 + |s|)|v(t, s)| ds . (t + R)3/2||v(t)||L2(R) .

Since V blows up in finite time, the same happens to v and this concludes the
proof of Theorem 5.1.1.

We conclude with the statement and the proof of a result that we have used
previously in this section.
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Lemma 5.3.1. There exist a positive constant ε0 > and a positive constant C0 =

C0(R) independent of ε0 such that, for each ε ∈]0, ε0[, one has

(5.95) V (0) > C0ε
1−ϑ, V ′(0) > C0ε

1−ϑ ,

where ϑ is the parameter introduced in (5.72) and (5.73).

PROOF. First of all, let us observe that, thanks to our hypotheses on χj and
the nonnegativity of the integrand functions, we have

V (0) =

∫

R

ϕ0(s)v(0, s) ds = ε

∫

|s−s0(ε)|6R

ϕ0(s)χ0(s− s0(ε)) ds

> ε

∫

|s−s0(ε)|6R/2

ϕ0(s) ds

(5.96)

and similarly

(5.97) V ′(0) > ε

∫

|s−s0(ε)|6R/2

ϕ0(s) ds ;

hence it is sufficient to prove that

(5.98) I(ε)
.
= ε

∫

|s−s0(ε)|6R/2

ϕ0(s) ds > C0ε
1−ϑ ∀ε ∈]0, ε0[

for suitable constants C0 = C0(R) > 0 and ε0 > 0.

Since s0(ε) ∼ ε−ϑ and ϕ0(s) & s for every s > s̄, where s̄ > 0 is sufficiently
large (independent of ε0), we can choose ε0 > 0 small enough, such that

(5.99) s0(ε) > R , s0(ε) > 2s̄ ,

so that

(5.100) s0(ε)− R

2
> s0(ε)

2
> s̄ ∀ε ∈]0, ε0[
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and, consequently,

(5.101) I(ε) & ε

∫

|s−s0(ε)|6R/2

s ds = Rεs0(ε) ∼ ε1−ϑ ∀ε ∈]0, ε0[ .

(note that throughout the proof, the implicit constants in “&” and “∼” are inde-
pendent of ε and ε0). ¥

5.4 Blow-up for large data close to the black hole and
p ∈]2, 1 +

√
2[

In this subsection, we verify the hypotheses of Lemma 5.2.3 to get Theorem
5.1.2. For this purpose, we set

(5.102) U(t) =

(∫

R

ψ0(s)|v(t, s)|pf(s) ds

)1/p

,

(5.103) V (t) =

∫

R

ψ0(s)v(t, s) ds ,

where v is a solution to the Cauchy problem (5.7) with

(5.104) T2(ε) ∈ Σ , s0(ε) = −T2(ε) , ρ(ε) = ε eT2(ε)/2M .

The function ψ0(s) can be represented as ψ0(s) = ϕ0(s)−D, where D is an appro-
priate constant (see Lemma 5.6.3 below), ϕ0(s) is the solution to (5.19), obeying
the asymptotic properties of Lemma 5.6.3. Equation (5.19) implies further the
relation

(5.105) ∂2
sψ0 −W (s)ψ0 = DW (s) .

We assume further

(5.106) p ∈]2, 1 +
√

2[ ;
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as to the other hypotheses, we do not make any change.

We set T0(ε) = T2(ε)/2 and suppose that T1 > 0 is chosen so that

T0(ε) + T1

is the lifespan of the solution to (5.7), i.e. for any T < T1 + T0(ε) there exists a
solution

v ∈
2⋂

k=0

C k
(
[0, T [; H2−k(R)

)

of (5.7), (5.8).

Let notice that in this case, (5.12) and (5.104) imply

(5.107) ||v0||H2(R) + ||v1||H1(R) ∼ ρ(ε) ∼ ε eT2(ε)/2M ,

therefore the initial data in (5.8) have large H2 × H1 norms.

First of all, we observe that the conditions in (5.41) are trivially satisfied.
Moreover, to prove estimate (5.42), we proceed exactly as in the previous sub-
section, with ψ0 instead of ϕ0. In fact, we have the inequality

|V (t)| 6
∫

R

|v(t, s)|ψ0(s) ds

6
(∫

R

f |v|pψ0 ds

)1/p (∫

|s−s0(ε)|6t+R

f−1/(p−1)ψ0 ds

)(p−1)/p

due to the Hölder inequality. Further, from Lemma 5.6.3 and the asymptotic
expansions (4.9)–(4.11), we get

(5.108) f(s)−1/(p−1)ψ0(s) .
{

(1 + s)2 if s > 0 ,
e(p−2)s/2M(p−1) if s < 0 .

Hence, we can use the assumption p > 2 and deduce estimate (5.81) with q =

3(p− 1).

To derive an estimate similar to (5.86), we use the quantity F1(t) and the
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estimate

F1(t) 6 e−t/2M

∫

R

|v|ϕ1 ds

6 U(t)

(
e−

t
2M

p
p−1

∫

|s−s0(ε)|6t+R

f−
1

p−1 ψ0
− 1

p−1 ϕ1

p
p−1 ds

) p−1
p

;

(5.109)

from the estimate

(5.110) f−1/(p−1)(s)ψ
−1/(p−1)
0 (s)ϕ1

p
p−1 (s) .

{
(1 + s)

p−2
p−1 e

ps
2M(p−1) if s > 0 ,

e
(p−2)s

2M(p−1) if s < 0 ,

we get

(5.111) F1(t) 6 CU(t)(t + R)
p−2

p for t > 0 .

To finish the proof of (5.42), it is sufficient to take a = 4− p, q = 3(p− 1) and
to mention that, in this case, Lemma 5.5.1 implies

F1(t) > C ′ρ(ε) es0(ε)/(2M) = C ′ε .

In order to prove estimate (5.43), we multiply equation (5.7) by ψ0, integrate
on R and then integrate by parts:

V ′′(t) =

∫

R

vtt(t, s)ψ0(s) ds

=

∫
(vss −W (s)v) ψ0 ds +

∫
f |v|pψ0 ds

=

∫
v (ψ′′0 −W (s)ψ0) ds +

∫
f |v|pψ0 ds ;

(5.112)

using the relation (5.105), we deduce

(5.113) V ′′(t) = U(t)p + D

∫
vW (s) ds .
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From the Hölder’s inequality, we get

∫
vW > −

∫
|v|W

= −
∫ (

f
1
p |v|ψ

1
p

0

)(
f−

1
p Wψ

− 1
p

0

)

> −U(t)

(∫
(fψ0)

− 1
p−1 W

p
p−1

) p−1
p

.

Using Lemma 5.6.3 and the assumptions (4.9), (4.10) and (4.11), we obtain

(5.114) (fψ0)
− 1

p−1 W
p

p−1 ∈ L1(R) for p > 2

(see also (5.148) below, where this property is verified in details). Thus, we get

∫
vW & −U(t) ,

and (5.113) implies

(5.115) V ′′(t) > U(t)p − CU(t)

for a suitable positive constant C.

Now, it remains to prove estimate (5.44) in [0, T0(ε)[, where we recall that
T0(ε) = T2(ε)/2.

To begin, let us observe that if t ∈ [0, T0(ε)[, supp v ⊂ {s < R}, since

s 6 s0 + T0(ε) + R = −T2(ε)/2 + R = −T0(ε) + R ,

thus we can consider only (4.11) and the asymptotic behavior of ψ0 for s → −∞,
which yields

(5.116) (fψ0)
− 1

p−1 W
p

p−1 . e
s

2M
p−2
p−1 .
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Recalling the argument of the proof of (5.115), we obtain

∫
vW > −U(t)

(∫

|s−s0(ε)|6t+R

(fψ0)
− 1

p−1 W
p

p−1

) p−1
p

& −U(t)

(∫

|s−s0(ε)|6t+R

e
s

2M
p−2
p−1 ds

) p−1
p

& −U(t) e
s0+T0+R

2M
p−2

p & −U(t) e−C0T0 ,

where we have chosen
C0 6 p− 2

2Mp
;

from (5.113), we finally deduce estimate (5.44).

To finish the proof, we suppose that the lifespan T (ε) of the solution to (5.7)
is greater than (D1 + 2)T0(ε), where D1 > 0 is the constant from Lemma 5.2.3.
Then we apply Lemma 5.2.3 with T1 = (D1 + 1)T0(ε) and get

(D1 + 1)T0(ε) 6 D1T0(ε) .

This is an obvious contradiction and shows that

T (ε) 6 (D1 + 2)T0(ε) ,

which concludes the proof of Theorem 5.1.2

5.5 Estimate of F1(t)

Lemma 5.5.1. There exists a positive constant C ′ independent of ε such that

F1(t) > C ′ρ(ε) es0(ε)/(2M)

for all t > 0.

PROOF. We multiply equation (5.7) by ψ(t, s)
.
= e−t/2M ϕ1(s) and integrate
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over R in s and over [0, τ ] in t:

∫ τ

0

∫

R

(vtt − vss + W (s)v) ψ ds dt =

∫ τ

0

∫

R

f |v|pψ ds dt .

Since
v ∈ ∩2

k=0C
k([0, T [; H2−k(R)) ,

we can apply an integration by parts argument and obtain

−
∫ τ

0

∫

R

v (ψtt − ψss + W (s)ψ) ds dt +

∫ τ

0

∫

R

f |v|pψ ds dt

=

∫

R

(vtψ − vψt) ds
∣∣∣
t=τ

−
∫

R

(vtψ − vψt) ds
∣∣∣
t=0

.

The right-hand side of this equality can be rewritten as

∫

R

(vtψ − vψt) ds
∣∣∣
t=τ

−
∫

R

(vtψ − vψt) ds
∣∣∣
t=0

=

∫

R

(vtψ + vψt) ds
∣∣∣
t=τ

− 2

∫

R

vψt ds
∣∣∣
t=τ

−
∫

R

e−t/2M
(
vt +

v

2M

)
ϕ1 ds

∣∣∣
t=0

=
d

dτ

∫

R

vψ ds +
1

M

∫

R

vψ ds−
∫

R

( v0

2M
+ v1

)
ϕ1 ds

due to the property ψt = −ψ/2M. The relation

ψtt − ψss + W (s)ψ = e−t/2M

(
−∂2

ss + W (s) +
1

4M2

)
ϕ1 = 0

implies

−
∫ τ

0

∫

R

v (ψtt − ψss + W (s)ψ) ds dt = 0 ;

so, being

F1(t) = e−t/2M

∫

R

v(t, s)ϕ1(s) ds =

∫

R

v(t, s)ψ(t, s) ds ,

we arrive at
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F ′
1(τ) +

1

M
F1(τ) =

∫ τ

0

∫

R

f |v|pψ ds dt +

∫

R

( v0

2M
+ v1

)
ϕ1 ds .

The right-hand side of this identity is greater than ρ(ε) es0(ε)/(2M) multiplied
by a positive constant, since

∫
vj(s)ϕ1(s) ds = ρ(ε)

∫

|s−s0(ε)|6R

χj

(
s− s0(ε)

)
ϕ1(s) ds ,(5.117)

with j = 0, 1. For ε > 0 small enough, we are in position to apply the asymptotic
expansion derived in Lemma 5.6.4 and we find

∫
vj(s)ϕ1(s) ds > Cρ(ε) es0(ε)/(2M)

∫

R

χj

(
s− s0(ε)

)
ds > C ′ρ(ε) es0(ε)/(2M) ,

(5.118)

so we get

F ′
1(τ) +

1

M
F1(τ) > C ′ρ(ε) es0(ε)/(2M) .

Now, we multiply both sides by eτ/M obtaining

d

dτ

(
eτ/M F1(τ)

)
> C ′ eτ/M ρ(ε) es0(ε)/(2M)

and integrating over [0, t] we deduce

et/M F1(t) & F1(0) + M(et/M −1)ρ(ε) es0(ε)/(2M)

=

∫

R

v0ϕ1 ds + M(et/M −1)ρ(ε) es0(ε)/(2M)

& [1 + M(et/M −1)]ρ(ε) es0(ε)/(2M) & et/M ρ(ε) es0(ε)/(2M) ,

(5.119)

namely
F1(t) > C ′ρ(ε) es0(ε)/(2M) ,

that is the claim. ¥
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5.6 Estimates for some associated elliptic linear problems

Our first step in this section is to consider the problem

(5.120)





−ϕ′′(s) + W (s)ϕ(s) = 0 s ∈ R ,

|ϕ(s)− bs| . log(2 + s) for s > 0 ,

0 < ϕ(s) . 1 for s < 0 ,

where the potential W (s) is assumed to satisfy

(5.121) 0 < W (s) . (1 + |s|)−a

for some a > 3. Note that condition (5.121) is weaker than the assumptions
(4.9), (4.10) and (4.11).

Our first result is the following.

Lemma 5.6.1. There exists a real number b > 0 such that problem (5.120) has a
nonnegative solution ϕ0 ∈ C 2(R) so that the limit

D = lim
s→−∞

ϕ0(s)

exists, D > 0 and the following relation

(5.122) 0 6 ϕ0(s)−D . |s|2−a for s → −∞

holds.

PROOF. Consider the Cauchy problem

(5.123)

{
−y′′(s) + W (s)y(s) = 0 s ∈ R ,

y(0) = 1 , y′(0) = 0 .

This Cauchy problem has a unique solution y(s) ∈ C 2(R). A qualitative analysis
of the equation and the assumption W (s) > 0 show that the solution satisfies

y′(s) > 0 for s > 0 ,
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y′(s) < 0 for s < 0 ,

and hence
y(s) > 1

for all real s.

One can rewrite problem (5.123) in the form of the following integral equa-
tion

(5.124) y(s) = 1 + I(y)(s) ,

where

(5.125) I(y)(s) =

∫ s

0

∫ σ

0

W (ϑ)y(ϑ) dϑ dσ =

∫ s

0

(s− ϑ)W (ϑ)y(ϑ) dϑ .

We shall show that

|y(s)− d+s| . log(2 + s) for s > 0 ,(5.126)

|y(s)− d−s| . log(2 + |s|) for s < 0 ,(5.127)

where

d± =

∫ ±∞

0

W (ϑ)y(ϑ) dϑ .

Assumption (5.121) shows that the integral operator I(y)(s) is well-defined
(in particular d± ∈ R) and satisfies the estimate

(5.128) 0 6 I(y)(s) 6 s

∫ s

0

W (ϑ)y(ϑ) dϑ ;

hence (5.124) implies the inequality

(5.129) y(s) 6 1 + s

∫ s

0

W (ϑ)y(ϑ) dϑ .

Now, let us consider the case s > 0. The previous inequality yields

(5.130) y(s) 6 1 + s

∫ ∞

0

W (ϑ)y(ϑ) dϑ = 1 + d+s .
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On the other hand, combining (5.124) and (5.130), we get

y(s)− 1− d+s = s

∫ ∞

0

W (ϑ)y(ϑ) dϑ− s

∫ ∞

s

W (ϑ)y(ϑ) dϑ

−
∫ s

0

ϑW (ϑ)y(ϑ) dϑ− d+s

= −s

∫ ∞

s

W (ϑ)y(ϑ) dϑ−
∫ s

0

ϑW (ϑ)y(ϑ) dϑ

& −s

∫ ∞

s

dϑ

(1 + ϑ)a−1 −
∫ s

0

dϑ

(1 + ϑ)a−2 .

But, for each a > 3, we have also
∫ ∞

s

dϑ

(1 + ϑ)a−1 . (1 + s)2−a ,

∫ s

0

dϑ

(1 + ϑ)a−2 . log(2 + s) ,

and thus we deduce

y(s)− 1− d+s & − log(2 + s) .

From this equation and (5.130), we finally obtain the precise asymptotic esti-
mate (5.126). Analogously, we get a similar result for s < 0. It is important to
note that d+ > 0 and

d− = −
∫ 0

−∞
W (ϑ)y(ϑ) dϑ < 0 .

In a similar way, we can consider the Cauchy problem

(5.131)

{
−z′′(s) + W (s)z(s) = 0 s ∈ R ,

z(0) = 0 , z′(0) = 1 .

Obviously, this Cauchy problem has a unique solution z(s) ∈ C 2(R). The as-
sumption W (s) > 0 guarantees that the solution satisfies

z′(s) > 0 ∀s ∈ R ,
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so
z(s) > 0 for s > 0

and
z(s) < 0 for s < 0 .

Equation (5.124) has to be replaced by

(5.132) z(s) = s + I(z)(s)

and the argument given in the proof of estimates (5.126) and (5.127) leads to

|z(s)− e+s| . log(2 + s) for s > 0 ,(5.133)

|z(s)− e−s| . log(2 + |s|) for s < 0 ,(5.134)

where

e± = 1 +

∫ ±∞

0

W (ϑ)z(ϑ) dϑ ∈ R .

Note that e+ > 0 and

e− = 1−
∫ 0

−∞
W (ϑ)z(ϑ) dϑ > 0 .

Setting

ϕ(s) = e−y(s)− d−z(s) , b = e−d+ − d−e+ > 0 ,

we take advantage of (5.127) and (5.134), and conclude that

(5.135) |ϕ(s)| . log(2 + |s|) for s < 0 ,

while from (5.126) and (5.133), we deduce

(5.136) |ϕ(s)− bs| . log(2 + s) for s > 0 .
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To improve estimate (5.135), we note that ϕ(s) satisfies the integral equation

(5.137) ϕ(s) = ϕ(0) + ϕ′(0)s + I(ϕ)(s) .

As before, we have (for any s < 0)

ϕ(s)− ϕ(0)− ϕ′(0)s = −s

∫ 0

−∞
W (ϑ)ϕ(ϑ) dϑ + s

∫ s

−∞
W (ϑ)ϕ(ϑ) dϑ

+

∫ 0

−∞
ϑW (ϑ)ϕ(ϑ) dϑ−

∫ s

−∞
ϑW (ϑ)ϕ(ϑ) dϑ(5.138)

and then a combination between (5.135) and assumption (5.121) implies

(5.139) s

∫ s

−∞
W (ϑ)|ϕ(ϑ)| dϑ . (1 + |s|)2−a log(2 + |s|) . 1 ,

(5.140)
∫ s

−∞
ϑW (ϑ)|ϕ(ϑ)| dϑ . (1 + |s|)2−a log(2 + |s|) . 1 ,

so (5.138) yields

∣∣∣∣ϕ(s)−
(

ϕ′(0)−
∫ 0

−∞
W (ϑ)ϕ(ϑ) dϑ

)
s

∣∣∣∣ . 1 .

Comparing this estimate with (5.135), we see that

ϕ′(0)−
∫ 0

−∞
W (ϑ)ϕ(ϑ) dϑ = 0 ;

this implies

(5.141) |ϕ(s)| . 1 for s < 0 .

We set

(5.142) D = ϕ(0) +

∫ 0

−∞
ϑW (ϑ)ϕ(ϑ) dϑ
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and observe that the function ϕ(s) is positive near s = 0. Moreover, for s > 0,
ϕ(s) increases and is positive. It is easy to show that ϕ(s) > 0 for all s < 0.

Indeed, if ϕ(s0) < 0 for some s0 < 0, then ϕ(s1) < 0, ϕ′(s1) > 0 for some s1 < 0,
thus the equation

ϕ′′(s) = W (s)ϕ(s)

would imply that

ϕ(s) < 0 , ϕ′(s) > 0 , ϕ′′(s) < 0 for s < s1 .

This contradicts (5.141) and shows that ϕ(s) > 0 for all s < 0. Hence D is non-
negative, because ϕ(s) > 0 for all s ∈ R and

lim
s→−∞

(ϕ(s)−D) = 0 .

We have indeed ϕ > D, since

(5.143) ϕ(s)−D =

∫ s

−∞
(s− ϑ)W (ϑ)ϕ(ϑ) dϑ > 0 ;

so ϕ(s) > D > 0.

From these relations and (5.143), we also get

(5.144) ϕ(s)−D .
∫ s

−∞

s− ϑ

(1 + |ϑ|)a dϑ ∼ |s|2−a for s → −∞

and this proves (5.122). ¥

If we make a stronger assumption on the potential for negative values of s,
then we can prove the positiveness of D.

Lemma 5.6.2. If W (s) satisfies estimate (5.121) and

(5.145) 0 < W (s) . (1 + |s|)−4 for s < 0 ,

then there exists a real number b > 0 such that problem (5.120) has a positive
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solution ϕ0 ∈ C 2(R) so that the limit

D = lim
s→−∞

ϕ0(s)

is strictly positive.

PROOF. The previous lemma guarantees that D > 0. Let us suppose that
D = 0. Using (5.144) together with the assumption a > 3, we can get the better
decay estimate

(5.146) |ϕ(s)|+ |ϕ′(s)| . |s|−N for s → −∞

for any integer N > 1. Turning back to the equation satisfied by ϕ, we make the
change

s → σ = 1/s , ϕ → ψ = s−1ϕ ,

and see that ψ satisfies the equation

ψ′′(σ) = σ−4Wψ ;

moreover, estimate (5.146) guarantees that

ψ(0) = ψ′(0) = 0 .

Therefore, our assumption (5.145) that s4W (s) is bounded as s → −∞ implies
that σ−4W is bounded, so the classical Cauchy uniqueness theorem implies that
ψ is identically 0 and this contradiction implies D > 0. ¥

Lemma 5.6.3. If W satisfies estimates (4.9), (4.10) and (4.11), then there exists a
positive function ϕ0 ∈ C 2(R) such that (−∂2

ss + W (s))ϕ0 = 0 in R and for some
positive constants b and D we have

{
|ϕ0(s)− bs| . log(2 + |s|) for s > 0 ,

ϕ0(s)−D ∼ es/2M for s → −∞ .

PROOF. Let ϕ satisfy
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ϕ′′(s)−W (s)ϕ(s) = 0 .

Using the asymptotic estimates (4.9), (4.10) and (4.11), we find for s < 0

ϕ(s)−D =

∫ s

−∞
(s− ϑ)W (ϑ)ϕ(ϑ) dϑ

∼
∫ s

−∞
(s− ϑ) eϑ/2M dϑ = 4M2 es/(2M)

(5.147)

as s → −∞, and this leads to

ϕ0(s)−D ∼ es/2M for s → −∞ .

The rest of the claim follows directly from the assertion of the previous
lemma. ¥

Set
ψ0(s) = ϕ0(s)−D ,

we shall also need the property

(5.148) Ψ(s) = (fψ0)
− 1

p−1 W
p

p−1 ∈ L1(R) for p > 2 .

Indeed, Lemma 5.6.3 implies that

(5.149) ψ0(s) ∼
{

s as s → +∞ ,
es/2M as s → −∞ ,

hence we get

(5.150) Ψ(s) ∼
{

s−2(p+1)/(p−1) as s → +∞ ,
e

s
2M

p−2
p−1 as s → −∞ ,

and we conclude that (5.148) is verified.

Now we state a corollary of the Levinson theorem (see [21], page 49, Chapter
2, §5.4), which we are going to apply to get the estimate for ϕ1.
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Proposition 5.6.1. Consider the equation

(5.151) y(n) +
n∑

k=1

αk(s)y
(n−k) = 0 , s ∈ R+,

where αk(s) ∈ C∞(R+) are complex-valued functions such that

αk(s) = βk + γk(s) ,

∫

R+

|γk(s)| ds < ∞ ,

and let q1, q2, . . . , qn be the distinct roots of the equation

qn +
n∑

k=1

βkq
n−k = 0 .

Then equation (5.151) has n linearly independent solutions

yj(s) , j = 1, 2, . . . , n ,

having the asymptotic expansion

y
(k−1)
j (s) = qk−1

j eqjs[1 + o(1)] as s →∞ ,

where j, k = 1, 2, . . . , n.

Lemma 5.6.4. Given any A > 0, the equation

(5.152) (−∂2
ss + W (s) + A2)ϕ(s) = 0 , s ∈ R

admits a positive solution ϕ1 ∈ C 2(R) such that ϕ1(s) ∼ eAs as |s| approaches
∞.

PROOF. Proposition 5.6.1 guarantees that there exists a solution ϕ1 of (5.152)
such that ϕ1(s) ∼ eAs as s → −∞. From

ϕ′′1 =
(
W (s) + A2

)
ϕ1 , W (s) + A2 > 0
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and a qualitative study, we get

(5.153) ϕ′′1(s) > 0 and thus ϕ1(s) > 0 , ϕ′1(s) > 0

for each s ∈ R. Now, from Proposition 5.6.1 for s → +∞, we deduce ϕ1(s) ∼
λ eAs +µ e−As for suitable λ, µ ∈ R and s → +∞. Property (5.153) guarantees
that λ > 0, so it is necessarily ϕ1(s) ∼ eAs for s → +∞ and the proof is fin-
ished. ¥





Chapter 6
A Dispersive Estimate for a Wave
Equation with Potential

In this chapter, we slightly change the subject of our investiga-
tions. Actually, we consider radial solutions to the Cauchy prob-
lem for the linear wave equation with a small short-range elec-
tromagnetic potential (the “square version” of the massless Dirac
equation with a potential) and zero initial data. We prove two a
priori estimates that imply, in particular, a dispersive estimate.

However, this problem presents a lot of similarities with the pre-
vious ones. We continue to consider a wave equation, even if,
in this case, it is linear. We don’t work in the Schwarzschild set-
ting, whose metric can be considered as a perturbation of the
Minkowski flat metric and that we recast as an effective poten-
tial, but we still have a perturbation represented by a potential
under suitable conditions. Moreover, we still investigate the large-
time behavior of radially symmetric solutions, providing several es-
timates. The results that we are going to show can be found in [8].

In Section 6.1 we introduce the problem and reformulate it in
terms of conformal coordinates, and we present the main results.

Section 6.2 contains the proof of the main results, along with
some other estimates and technical lemmas.

103
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6.1 Introduction and main results

In this chapter, we investigate the dispersive properties of the linear wave equa-
tion with an electromagnetic potential, that is

(6.1) (¤A −B)u = F (t, x) ∈ [0,∞[×R3,

where

x = (x1, x2, x3) , r = |x| ,(6.2)

¤A = ¤− A · ∇t,x ,(6.3)

¤ = ∂2
t −∆ = ∂2

t − (∂2
x1

+ ∂2
x2

+ ∂2
x3

) ,(6.4)

∇t,x = (∂t, ∂x1 , ∂x2 , ∂x3) .(6.5)

The fact that the potential A = A(t, x), depending on space and time, is elec-
tromagnetic means that A assumes imaginary values. This will play a crucial
role in the development of the proof, since electromagnetic potentials are gauge
invariant (see what follows).

We assume further that the potential decreases sufficiently rapidly when r

approaches infinity; more precisely, we suppose that

(6.6)
∑
j∈Z

2−j〈2−j〉εA||ϕjA||L∞ 6 δA

(that is, A is a short-range potential), where εA > 0, δA is a sufficiently small
positive constant independent of r (see Section 6.2) and the sequence (ϕj)j∈Z
is a Paley–Littlewood partition of unity, which means that ϕj(r) = ϕ(2jr) and
ϕ : R+ −→ R+ (R+ is the set of all nonnegative real numbers) is a function so
that

(a) supp ϕ = {r ∈ R : 2−1 6 r 6 2} ;

(b) ϕ(r) > 0 for 2−1 < r < 2 ;

(c)
∑

j∈Z ϕ(2jr) = 1 for each r ∈ R+.
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In other words,
∑

j∈Z ϕj(r) = 1 for all r ∈ R+ and

(6.7) supp ϕj = {r ∈ R : 2−j−1 6 r 6 2−j+1}.

Similarly, we assume for B = B(t, x) the smallness hypothesis

(6.8)
∑
j∈Z

(2−j)2〈2−j〉εA||ϕjB||L∞ 6 δA .

Moreover, we shall restrict ourselves to radial solutions u = u(t, r), with
F = F (t, r), A = (A0, A1, A2, A3), where

(6.9) Aj = Aj(t, r) ∈ iR j = 0, 1, 2, 3 ,

and B = B(t, r). Because of this assumption, setting

(6.10) Ã = (Ã0, Ã1) , Ã0 = A0 , Ã1 =
A1x1 + A2x2 + A3x3

r
,

we have

(6.11) A · ∇t,x = Ã · ∇t,r , ∇t,r = (∂t, ∂r) .

It is well-known that there exists a unique global solution to the Cauchy
problem

(6.12)





(¤A −B)u = F (t, x) ∈ [0,∞[×R3,

u(0, x) = ∂tu(0, x) = 0 x ∈ R3 ;

in particular, this fact holds for the smaller class of radial solutions, that is for
the problem

(6.13)





(¤A −B)u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+.
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Let us introduce the change of coordinates

(6.14) τ±
.
=

t± r

2

and the standard notation 〈s〉 .
=
√

1 + s2; our main result can be expressed as
follows.

Theorem 6.1.1. Let u be a radial solution to (6.12), i.e. a solution to (6.13),
where A = A(t, r) and B = B(t, r) satisfy respectively (6.6) and (6.8) for some
δA > 0 and εA > 0. Then, for every ε > 0, there exist two positive constants δ

and C (depending on ε) such that for each δA ∈]0, δ], one has

(6.15) || τ+ u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r .

Let us introduce the differential operators

(6.16) ∇±
.
= ∂t ± ∂r .

The proof of the previous a priori estimate follows easily from the following
one.

Lemma 6.1.1. Under the same conditions of Theorem 6.1.1, for every ε > 0,
there exist two positive constants δ and C (depending on ε) such that for each
δA ∈]0, δ], one has

(6.17) || τ+ r∇−u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r .

An immediate consequence of Theorem 6.1.1 is the following dispersive es-
timate.

Corollary 6.1.1. Under the same conditions of Theorem 6.1.1, for every ε > 0,
there exist two positive constants δ and C (depending on ε) such that for each
δA ∈]0, δ], one has

(6.18) |u(t, r)| 6 C

t
|| τ+ r2〈r〉εF ||L∞t,r

for every t > 0.
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The idea to prove the lemma is the following. First of all, the potential term
in (6.13) can be thought as part of the forcing term, that is, (¤A − B)u = F can
be viewed as

(6.19) ¤u = F1
.
= F + Ã · ∇t,ru + Bu .

Then we can rewrite this equation in terms of τ± and ∇± (see Section 6.2), ob-
taining

(6.20) ∇+∇−v = G ,

where

(6.21) v(t, r)
.
= ru(t, r) and G(t, r)

.
= rF1(t, r) .

This last equation can be easily integrated to obtain a relatively simple explicit
representation of (∇−v)(τ+, τ−) in terms of G.

Another fundamental step consists in taking advantage of the gauge invari-
ance property of the electromagnetic potential A, which means that, set

(6.22) A±
.
=

Ã0 ± Ã1

2
,

we can assume, without loss of generality, that A+ ≡ 0 (see [5], p. 34). This
implies that

(6.23) Ã · ∇t,ru = A−∇−u + A+∇+u = A−∇−u ,

and hence

(6.24) F1 = F + A−∇−u + Bu ,

thus

(6.25) G = rF + rA−∇−u + rBu = rF + A−∇−v +
1

r
A−v + Bv .
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Obviously, one still has

(6.26)
∑
j∈Z

2−j〈2−j〉εA||ϕjA−||L∞ 6 δA .

These simplifications, combined with the technical Lemma 6.2.1 and the esti-
mate of Lemma 6.2.2, allow us easily to obtain Lemma 6.1.1 and Theorem 6.1.1.

The dispersive properties of evolution equations are very important for their
physical meaning and, consequently, they have been deeply studied, though
the problem in its generality is still open. The dispersive estimate obtained in
Corollary 6.1.1 provides the natural decay rate, that is the same rate one has for
the non–perturbed wave equation (see [28, 36]), i.e. a t−(n−1)/2 decay in time,
where n is the space dimension (in our case, n = 3). The generalization to the
case of a potential-like perturbation has been considered widely (see [3, 6, 15, 16,
23, 27, 41, 51, 52, 53, 54]), also for the Schrödinger equation (see [25, 26, 34, 43]).
Recently, D’Ancona and Fanelli have considered in [17] the case

(6.27)





∂2
t u(t, x) + Hu = 0 , (t, x) ∈ R×R3,

u(0, x) = 0 , ∂tu(0, x) = g(x) ,

where

H
.
= −(∇+ iA(x))2 + B(x) ,(6.28)

A : R3 −→ R3, B : R3 −→ R .(6.29)

Under suitable condition on A, ∇A and B, in particular

(6.30) |A(x)| 6 C0

r〈r〉(1 + | lg r|)β
,

3∑
j=1

|∂jAj(x)|+ |B(x)| 6 C0

r2(1 + | lg r|)β
,

with C0 > 0 sufficiently small, β > 1 and r = |x|, they have obtained the disper-
sive estimate

(6.31) |u(t, x)| 6 C

t

∑
j>0

22j||〈r〉w1/2
β ϕj(

√
H)g||L2 ,
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where wβ
.
= r(1 + | log r|)β and (ϕj)j>0 is a nonhomogeneous Paley–Littlewood

partition of unity on R3.

In this chapter, restricting ourselves to radial solutions, we are able to obtain
the result in Corollary 6.1.1, which is optimal from the point of view of the es-
timate decay rate t−1 and improve essentially the assumptions on the potential,
assuming the weaker condition (6.6) instead of (6.30) and allowing that it could
depend on time.

We recall that the equation that we have considered, i.e. the linear wave
equation with an electromagnetic potential, is strictly related to the massless
Dirac equation with an electric potential. Let us introduce some notations. First,
the Dirac matrices are defined by

γ0 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




, γ1 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0




,

γ2 =




0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0




, γ3 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0




,

where, here and in what follows, i denotes the imaginary unit. The Dirac op-
erator, applied to a vector function ψ : R1+3 → C4 (generally called spinor),
is

D? =
3∑

k=0

γk∂k ,

with
∂0 = ∂t , ∂k = ∂xk

for k = 1, 2, 3 .

Note that here we are not assuming the sum over repeated up-down indices.
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We consider radial solutions u : R1+3 → C4 to the Cauchy problem

(6.32)





(D? + V0(t, r))u = F0 ,

u(0, r) = 0 ,

that is, the Cauchy problem for the relativistic-invariant form of the massless
Dirac equation with a radial potential V0 = V0(t, r) represented by a 4 × 4 com-
plex matrix. The solution u to the Cauchy problem (6.32) must be a solution
to

(6.33)





i∂tu−Du− V (t, r)u = F (t, r) ,

u(0, r) = 0

for suitable V, F , where D is another form of the Dirac operator:

D =
1

i

3∑

k=1

αk∂k ,

with the Dirac matrices αk defined as follows:

α1 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




, α2 =




0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0




, α3 =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0




.

Note that the operator D is elliptic and self-adjoint in L2. Moreover, the massless
Dirac equation can be viewed as the square root of the wave equation in the
sense that

−(i∂t −D)(i∂t + D) = ∂ttI4 + D2 = (∂tt −∆)I4 ,

where I4 is the 4× 4 identity matrix.
To prove what affirmed, it is sufficient to multiply on the left both sides of

the equation in (6.32) by iγ0 and get

i

3∑

k=0

γ0γk∂ku + iγ0V0u = iγ0F0 .
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Note that
γ0γ0 = I4 , γ0γk = αk for k = 1, 2, 3 ,

which implies
(i∂t −D − V )u = F ,

having set
V = −iγ0V0 and F = iγ0F0 .

If we apply to both sides the operator i∂t + D + V , we get that u satisfies also
the equation

(−∂tt + ∆)u− (V 2 + DV )u +
3∑

k=1

iV αk∂ku = (i∂t + D + V )F .

Note that we have used the definition of D and the property D2 = −∆I4.

In other words, the solution u to the Cauchy problem

(6.34)





i∂tu−Du− V u = F ,

u(0, r) = 0 ,

is also a solution to the Cauchy problem





(∂tt −∆)u−
3∑

k=1

Ak∂ku−Bu = −(i∂t + D + V )F ,

u(0, r) = ∂tu(0, r) = 0 ,

where
Ak = iV αk for k = 1, 2, 3 , B = −V 2 −DV .

Now we observe that Theorem 6.1.1 can be easily generalized to the case of
a system of wave equations of the form

(6.35) (∂tt −∆)u−
3∑

k=1

Ak(t, r)∂ku−B(t, r)u = F (t, r) ,
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where u ∈ CN , and Ak, B are CN×N matrices that satisfy the hypotheses of the
theorem. In particular, this holds for N = 4. In other words, one has the prob-
lem to find conditions on V such that, for the problem (6.34), similar estimates
to the ones provided in Theorem 6.1.1 and Corollary 6.1.1 hold.

For some further possible applications to the results contained in this chap-
ter, see Section 7.2.

6.2 Some a priori estimates and proof of the main results

First of all, we reformulate our problem taking advantage of the radiality of the
solution u to (6.13). Indeed, since ∆S2u(t, r) = 0 and v = ru, we have

¤u(t, r) = (∂2
t −∆x)u =

(
∂2

t − ∂2
r −

2

r
∂r − 1

r2
∆S2

)
u(t, r)(6.36)

=
1

r
∂2

t v(t, r)− 1

r
∂2

rv(t, r)(6.37)

=
1

r
∇+∇−v(t, r) =

1

r
∇−∇+v(t, r) .(6.38)

Recalling (6.21) and (6.24), we get that the equation in (6.13) is equivalent to

(6.39) ∇+∇−v = G .

Let us notice that the support of u(t, r) is contained in the domain {(t, r) ∈ R2 :

r > 0, t > r}, therefore we have

(6.40) supp v(τ+, τ−) ⊆ {(τ+, τ−) ∈ R2 : τ− > 0, τ+ > τ−} .

From this fact, we get

(6.41) ∇−v(τ+, τ−) = ∇−v(τ−, τ−) +

∫ τ+

τ−
G(s, τ−) ds =

∫ τ+

τ−
G(s, τ−) ds .

Let us observe that, for each s ∈ [τ−, τ+], we have

(6.42) s 6 τ+ , s− τ− 6 τ+− τ− = r ,
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hence
∣∣∣∣
∫ τ+

τ−
G(s, τ−) ds

∣∣∣∣ 6
∫ τ+

τ−

s〈s− τ−〉ε|G(s, τ−)|
〈s〉〈s− τ−〉ε ds

6 || τ+〈r〉εG||L∞t,r
∫ τ+

τ−
〈s〉−1〈s− τ−〉−ε ds

for every ε > 0. Applying Lemma 6.2.1 (see the end of this section), we conclude

(6.43) τ+ |∇−v(τ+, τ−)| 6 Cr|| τ+〈r〉εG||L∞t,r ;

recalling that G satisfies (6.25), we obtain

τ+ |∇−v(τ+, τ−)| 6 Cr
(
|| τ+〈r〉εA−∇−v||L∞t,r + || τ+〈r〉εr−1A−v||L∞t,r

+ || τ+〈r〉εBv||L∞t,r + || τ+〈r〉εrF ||L∞t,r
)
.

(6.44)

Now, if we choose for the moment ε 6 εA, we have

(6.45) r〈r〉εϕj(r)|A−(t, r)| 6 C2−j〈2−j〉εA||ϕjA−||L∞t,r

(here and in the following, we assume that C = C(ε) > 0 could change time by
time), thus

r|| τ+〈r〉εA−∇−v||L∞t,r 6 C|| τ+∇−v||L∞t,r
∑
j∈Z

2−j〈2−j〉εA||ϕjA−||L∞t,r

6 CδA|| τ+∇−v||L∞t,r ,

(6.46)

where we have used the fact that (ϕj)j∈Z is a Paley–Littlewood partition of unity
and property (6.26).

Moreover, v(τ+, τ+) = 0 because of (6.40), whence

(6.47) v(τ+, τ−) = −
∫ τ+

τ−
∇−v(τ+, s) ds

and, consequently,
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(6.48) |v(τ+, τ−)| 6
∫ τ+

τ−
|∇−v(τ+, s)| ds 6 r||∇−v||L∞t,r .

Thus we have

(6.49) 〈r〉εϕj(r)|A−(t, r)v(τ+, τ−)| 6 C2−j〈2−j〉εA||ϕjA−||L∞t,r ||∇−v||L∞t,r ,

which implies

(6.50) r|| τ+〈r〉εr−1A−v||L∞t,r 6 CδA|| τ+∇−v||L∞t,r .

Similarly, from (6.48) and (6.8), we get

r|| τ+〈r〉εBv||L∞t,r 6 C|| τ+∇−v||L∞t,r
∑
j∈Z

2−2j〈2−j〉εA||ϕjB||L∞t,r

6 CδA|| τ+∇−v||L∞t,r .

(6.51)

Combining this estimate with (6.46) and (6.50) in (6.44), we deduce

(6.52) || τ+∇−v||L∞t,r 6 C|| τ+ r2〈r〉εF ||L∞t,r ,

provided δA is sufficiently small. For instance, one can take δA such that

4C2δA 6 1 .

From the definition of v, we have

(6.53) r∇−u = ∇−v + u

and, hence,

(6.54) | τ+ r∇−u| 6 | τ+∇−v|+ | τ+ u| .

Now, thanks to the inequality in Lemma 6.2.2, we have
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| τ+ u| 6 τ+ r2〈r〉ε|F1|
6 τ+ r2〈r〉ε|A−∇−u|+ τ+ r2〈r〉ε|Bu|+ τ+ r2〈r〉ε|F |

6
(∑

j∈Z
r〈r〉εAϕj|A−|

)
| τ+ r∇−u|+

(∑
j∈Z

r2〈r〉εAϕj|B|
)
| τ+ u|

+ τ+ r2〈r〉ε|F |
6 CδA(| τ+ r∇−u|+ | τ+ u|) + τ+ r2〈r〉ε|F | ,

(6.55)

and thus

(6.56) | τ+ u| 6 C(δA| τ+ r∇−u|+ | τ+ r2〈r〉εF |) .

Combining this result with (6.52) in (6.54), we conclude

(6.57) || τ+ r∇−u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r ,

provided δA > 0 small enough, that is, Lemma 6.1.1.

Now we use the fact that, because of (6.53), we have

(6.58) | τ+ u| 6 | τ+ r∇−u|+ | τ+∇−v| ;

combining this estimate with (6.17) and (6.52), we finally conclude

(6.59) || τ+ u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r ,

and also Theorem 6.1.1 is proven.

Now we are going to prove the two lemmas that we have used previously
in this section.

Lemma 6.2.1. For each ε > 0, there exists a positive constant C = C(ε) such
that ∫ τ+

τ−
〈s〉−1〈s− τ−〉−ε ds 6 Cr

τ+

.

PROOF. We distinguish two cases.
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Case 1: τ+ > 2 τ−. Let us notice that, since r = τ+− τ− > τ+ /2, in this case it
is sufficient to prove that

(6.60)
∫ τ+

τ−
〈s〉−1〈s− τ−〉−ε ds 6 C0(ε) .

We observe that s− τ− > s/2 provided s > 2 τ−, so

∫ τ+

τ−
〈s〉−1〈s− τ−〉−ε ds 6

∫ τ−+1

τ−
〈s〉−1 ds + 2ε

∫ τ+ +1

τ−+1

s−(1+ε) ds

6 1

〈τ−〉 + 2ε

∫ ∞

1

s−(1+ε) ds

6 1 + C1(ε) .

Case 2: τ+ < 2 τ−. We use the estimates 〈s〉−1 < 2/ τ+ and 〈s − τ−〉−ε 6 1 to
get

(6.61)
∫ τ+

τ−
〈s〉−1〈s− τ−〉−ε ds 6 2

τ+

(τ+− τ−) =
2r

τ+

.

This concludes the proof. ¥

In the case A ≡ B ≡ 0 (non-perturbed equation), we have the following
version of the estimate in Theorem 6.1.1. It consists in a slight modification of
estimate (1.8) shown in [23], p. 2269.

Lemma 6.2.2. Let u be the solution to

(6.62)





¤u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+.

Then, for every ε > 0, there exists C > 0 such that

(6.63) || τ+ u||L∞t,r 6 C|| τ+ r2〈r〉εF ||L∞t,r .

PROOF. Let us notice that u is the solution to (6.13) with A ≡ B ≡ 0. Then,
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from (6.44), we have

(6.64) τ+ |∇−v(τ+, τ−)| 6 C|| τ+ r2〈r〉εF ||L∞t,r ,

where v = ru. Using (6.48), we deduce

(6.65) τ+ |u| = τ+ |v|r−1 6 || τ+∇−v||L∞t,r

and hence the claim. ¥





Chapter 7
Open Problems

In this chapter, we present some open problems related to the
original results described in this thesis. Most of them are indeed
analogues of the problems considered for the semilinear wave
equation in the Minkowski metric presented in Section 1.1 and in
Section 1.4.

Section 7.1 deals with open problems related to the semilinear
wave equation in the Schwarzschild metric with exponent p > 1.
Summarizing, the following topics are covered: case p > 1 +

√
2,

global existence and decay estimate, case p < 1 +
√

2 for small
initial data, blow-up and lifespan, critical exponent, nonradial so-
lutions.

Section 7.2 illustrates some problems related to the wave
equation with electromagnetic potential.

7.1 The Schwarzschild Metric

One first important open problem is the study of the Cauchy problem for the
semilinear wave equation with small initial data in the Schwarzschild metric
for p > 1 +

√
2, that is the problem





¤gu = |u|p in [0,∞[×Ω ,

u(0, x) = εu0(x) , ∂tu(0, x) = εu1(x) in Ω

under suitable hypotheses. One possible conjecture is that a similar behavior to
the one manifested for the Minkowski metric is reproduced, that is the existence

119
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of a critical exponent p̄ such that the solution blows up in finite time if 1 < p < p̄,
while it exists globally if p > p̄. Moreover, according to what happens in the flat
case, one should also expect a blow-up phenomenon for the critical case p = p̄.

Note that our blow-up result for such a problem is compatible with the de-
picted situation and, in addition to this, it suggests the value p̄ = 1 +

√
2 for the

critical exponent, i.e. the same value that one has in the Minkowski metric.

Actually, it is not clear whether the solution exists globally in time or it blows
up when p > 1 +

√
2, and if this behavior depends essentially on the position

of the (compactly supported) initial data, that is the distance of their support
from the horizon event r = 2M . Indeed, this aspect seems to constitute a main
difference with respect to the flat case. We recall that we got a blow-up result
for small data supported far away from the black hole or large data next to the
black hole, and this latter case resulted to be nontrivial, despite the largeness of
the data.

One could try a similar approach to the one described in Chapter 4, that
is, the reduction of the problem to a one-dimensional semilinear wave equation
with effective potential, at least in the radial case, and try to reproduce the proof
used in the Minkowski metric (see Section 1.1), showing that suitable a priori
estimates hold; however, because of the sign-changing property of the solution
and the different decay properties of the effective potential W (s) as s → ∞ or
s → −∞, it is not easy to obtain such a priori estimates.

In particular, while W (s) decays esponentially for s → −∞, it decays only
as s−3 for s → ∞. For instance, this prevents one from applying the method
described in [50], where, if W (s) decays esponentially, a resolvent estimate for
the associated elliptic problem is proved (see Chapter IX in [50]). This result can
be used to prove a local energy decay estimate.

Similarly, because of the structure of the Schwarzschild metric, and in par-
ticular because it is asymptotically flat, the method of Sá Barreto and Zworski
used in [45] to prove the meromorphic continuation of the resolvent for the De
Sitter–Schwarzschild metric cannot be easily adapted. Actually, the De Sitter–
Schwarzschild metric has the same form as in the exact Schwarzschild case, that
is

g̃ = F̃ (r) dt2 − F̃ (r)−1 dr2 − r2 dω2,
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where dω2 is the standard metric on S2, but here we have

F̃ (r) =

(
1− 2m

r
− 1

3
Λr2

) 1
2

,

where m > 0 is the mass of the black hole and the cosmological constant Λ

satisfies the relation 0 < 9m2Λ < 1, while the manifold has the form

Ω̃ =]r+, r++[×S2 ,

where r+ and r++ are the two positive roots of F̃ (r) = 0. Note that the term Λr2

in the definition of F̃ is the one that makes this metric well-behaved. A result
similar to the one provided in [45] could be useful to prove a resolvent estimate
and hence a local energy decay estimate.

As mentioned before, for 1 < p < 1 +
√

2 we have no result about the be-
havior of the solution to the problem above when the data are small and sup-
ported close to the black hole: this is another open problem. Moreover, the case
p = 1 +

√
2 is completely uninvestigated, both for large and small data, both for

data far from and next to the horizon event.

Indeed, because of the “erratic” behavior of the solution, one could have a
different critical exponent with respect to the flat case, or even several critical
exponents depending on the position of the (small) initial data. Eventually, also
in the case of a unique critical exponent, for instance p = 1 +

√
2 as in the flat

case, one should verify if the expected behavior is manifested, i.e. if the solution
blows up in finite time. To conclude, this problem is widely open.

When the solution exists globally in time, one can study its behavior at in-
finity, i.e. one can find a priori estimates, especially dispersive and decay es-
timates. In Section 1.4, we have shown some results concerning the nonlinear
wave equation with effective potential in the Minkowski metric. One can won-
der whether similar results hold also in the Schwarzschild metric or not; in par-
ticular, one could establish the decay rate of the solution. This matter is largely
open.

On the other hand, when the solution blows up in finite time, one is inter-



122 The Schwarzschild Metric §7.2

ested in a precise expression for the lifespan T (ε), where ε measures the small-
ness of the initial data. We have presented this problem for the semilinear wave
equation in the Minkowski metric in Section 1.4. Coming back to the original
results presented in this thesis, we have two estimates for the semilinear wave
equation in the Schwarzschild metric.

In the first case, when 1 < p < 1 +
√

2 and the initial data are small far from
the black hole, that is they are supported in |s − s0(ε)| 6 R, with s0(ε) = ε−ϑ,
ϑ > 0 opportunely defined, we have shown that

T (ε) 6 Cε−ϑ

(see Section 5.3 for the details and in particular page 83 for this estimate).

In the second case, when 2 < p < 1+
√

2 and the initial data are large next to
the black hole, that is they are supported in |s − s0(ε)| 6 R, with s0(ε) = −ε1/ϑ

(or similar expressions), ϑ > 0 opportunely defined, we have shown that

T (ε) 6 Cε1/ϑ

(see Section 5.4 for the details and in particular page 89 for this estimate).

These results are different from the ones known for the flat case, recalled in
Section 1.4, where T (ε) ∼ ε−p(p−1), in particular in the second case. However, we
lack an estimate from below for T (ε); in other words, we do not know whether
our estimates are optimal.

We have no results in the other cases. Note that, in general, the estimate
from below for the lifespan is related to the proof of results in the critical and in
the supercritical case.

Eventually, we recall that we have considered only radial solutions. In the
flat metric, this restriction seems of little importance, since the behavior of the
class of all solutions is the same as the one of the smaller class of radial solutions.
However, this could not be the case in the Schwarzschild metric.
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7.2 The Wave Equation with Potential

In Section 6.1, we have already noticed how the Cauchy problem for a wave
equation with potential of the form

(7.1)





(¤A −B)u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+,

where ¤A = ¤− A · ∇t,x, is related to the Cauchy problem for a massless Dirac
equation

(7.2)





(D? + V0)u = F0 ,

u(0, r) = 0 ,

where D? is the relativistic invariant form of the Dirac operator; this last prob-
lem can be recast in the form

(7.3)





i∂tu−Du− V u = F ,

u(0, r) = 0 ,

where D is the Dirac operator (this formulation is not relativistic invariant).
For the details, see Section 6.1, page 109 and following ones. One can wonder
whether a similar result to the one provided by Theorem 6.1.1 holds or not, that
is, if we have the a priori estimate

(7.4) || τ+ r∇u||L∞t,r 6 C||τ+r2〈r〉εF ||L∞t,r

or a similar one for the Cauchy problem (7.3).

Another possible application of Theorem 6.1.1 is related to another open
problem: the large-time behavior of a semilinear wave equation with elecro-
magnetic potential. In the same setting of Theorem 6.1.1, we can consider the
Cauchy problem for the nonlinear equation

(7.5) (¤A −B)u = |u|p, (t, x) ∈ [0,∞[×R3 ,
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where p > 1.
Now, we can consider the same questions that we have for the semilinear

wave equation (in the Minkowski or in the Schwarzschild metric) ¤u = |u|p,
questions that we have described in Section 7.1. Summarizing, under suitable
hypotheses on the initial data, we are interested in knowing the values of p such
that the solution blows up in finite time and the values such that the solution
exists globally; in the first case we are also interested in dispersive estimates,
while in the second one we would like to know the lifespan of the solution. Fi-
nally, all these problems can be considered both in the radial and in the general
case, and even for the Dirac equation

(7.6) i∂tu−Du− V u = |u|p.

Note that Theorem 6.1.1 could be useful in the proof of a global existence result.
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