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il suo sostegno; è stata sempre presente anche quando non lo era fisicamente.
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Chapter 1

Introduction

Ambient intelligence is defined as electronic environments that are aware of
and responsive to the presence of people. Ambient intelligence is a lively
field of research, pushing technology and relevant applications. So far, most
applications are focused toward monitoring scenes and persons.

Imaging could play and plays an important role in sensing devices for
ambient intelligence [1, 2]. Computer vision can for instance be used for
recognizing persons and objects and recognizing behavior such as illness and
rioting.

Tracking hands and head is important because human being movements
interpretation could potentially be used to interact with electronic systems
in more natural ways. For example, head and hands gestures and motions
are needed for gaming or for interact with computers.

In order to build handy applications time constraints are needful, so that
a real time system is required. Furthermore, a non-invasive technology is
highly necessary in specific environments.

The main body of this paper is divided as follows. Chapter 2 describes
the hardware used during this work. The Wireless camera (WiCa) developed
by NXP Semiconductor combines an SIMD processor (Xetal/IC3D) for low-
level operations, an 8051 microprocessor for high-level operations, RAM for
inter-frame processing and a ZigBee transmitter for communication [1, 2]. A
non-volatile memory is used to store programs for the IC3D.

Chapter 3 is a brief panoramic on image segmentation, edge detection,
background subtraction, tracking and how to combine these technique to
obtain the final result.

5
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Chapter 4 explains how the techniques seen in the Chapter 3 are imple-
mented on WiCa.

In Chapter 5 the hands and head tracking system is presented and the
experimental results are shown.

Finally, Chapter 6 contains the conclusions and discussion about future
works.



Chapter 2

Hardware : Wireless Camera

(WiCa)

Real-time video processing on (low-cost and low-power) programmable is now
becoming possible thanks to advances in integration techniques [1, 4]. It is
important that these platform are programmable since new vision methods
and applications emerge every month.

The algorithms in the application areas of smart cameras can be grouped
into three levels: low-level, intermediate level and high-level tasks. Figure
2.2 and Figure 2.3 show the task level classification and the corresponding
data entries respectively.

The low- or early-image processing level is associated with typical kernel
operations like convolution and data-dependent operations using a limited
neighborhood of the current pixel. In this part, often a classification or the
initial steps toward pixel classification are performed. Because every pixel
could be classified in the end as ’interesting’, the algorithms per pixel are
essentially the same. So, if more performance is needed in this level of image
processing, with up to a billion pixels per second, it is very fruitful to use
this inherent data parallelism by operating on more pixels per clock cycle.
The processors exploiting this have an SIMD 1 architecture, where the same
instruction is issued on all data pixels in parallel [5].

1Single Instruction Multiple Data

7



CHAPTER 2. HARDWARE : WIRELESS CAMERA (WICA) 8

An example can be seen in Figure 2.1. In this example there is a processor
array with four processor and some arbitrary values from a line memory
where the processors operate on. They receive the increment instruction and
all processors execute it in parallel. If the same operation should be done on
a general purpose processor it would require four times as many cycles, if we
neglect overhead from instruction and operand fetches.

Figure 2.1: SIMD example.

From a power consumption point of view, SIMD processors prove to be
economical. The parallel architecture reduces the number of memory ac-
cesses, clock speed, and instruction decoding, thereby enabling higher arith-
metic performance at lower power consumption [1, 4].

In the high- and intermediate-level part of image processing, decisions
are made and forwarded to the user. General purpose processors are ideal
for these tasks because they offer the flexibility to implement complex soft-
ware jobs and are often capable of running an operating system and doing
networking applications.

Figure 2.2: Algorithm classifica-
tion with respect to the type of op-
erations.

Figure 2.3: Data entities with pro-
cessing characteristics and possible
ways to increase performance by
exploiting parallelism.
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2.1 WiCa architecture

The Wireless camera (WiCa) developed by NXP Semiconductor combines an
SIMD processor (Xetal/IC3D) for low-level operations, an 8051 microproces-
sor for high-level operations, RAM for inter-frame processing and a ZigBee
transmitter for communication [1, 2]. A non-volatile memory is used to store
programs for the IC3D.

This platform is capable to handle video streams at 25 frames per second
with a power consumption of less than 200mW. A top level schematic of the
architecture is depicted in figure 2.5.

The smart camera used is the second one of the WiCa family (WiCa 1.1).
The basic components are : one or two VGA color image sensors, a SIMD
processor for low-level image processing (IC3D), a general purpose processor
for intermediate and high-level processing and control (8051 microprocessor),
a communication module (ZigBee transmitter) and a static RAM (SRAM)
(Figure 2.4. The presence of an SRAM, instead of dual port RAM (the
previous WiCa had a DPRAM), needs some kind of arbitration to allow Xetal
and 8051 access memory like pseudo-dual port. This feature is employed
inside a CPLD Cool Runner 2 component and it is transparent to WiCa
users.

Figure 2.4: WiCa top architecture.

A brief explanation of the principal components is given.

2.2 Hardware components

2.2.1 Xetal IC3D

The IC3D, a member of the NXP’s Xetal family of SIMD processor, is com-
posed by five specific internal blocks, see figure 2.6. Two blocks function as
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Figure 2.5: WiCa 1.1 hardware components.

video input and video output processors respectively. They are capable of
generating three digital video signals towards the internal memory.

Figure 2.6: Architecture of the IC3D which is a member of the Xetal family
of SIMD chips.

The heart of the chip is formed by the Linear Processor Array (LPA) with
320 RISC processors. Each of these processors can access (read and write)
within one clock cycle to memory positions in the parallel memory. Both the
memory address and the instruction of the processors are shared in SIMD
sense. All processors can also read the memory data of their left and right
neighbors directly. Data paths are 10-bits wide and each processor has two
word registers and one flag register.

The line-memory block stores 64 lines of 3200 bits. Pixels of the im-
age lines are placed in an interlaced way on this memory. So, CIF images
(320x240) result in one pixel per processor, VGA images (640x480) in two
pixels per processor, etc.

The GCP (Global Control Processor) is a processor dedicated to control
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the IC3D and to do some global DSP operations on the data. It takes care
of video synchronization, program flow and also communicates with the LPA
and the outside world.

The peak pixel performance of IC3D is around 50GOPS2. Despite its high
pixel-performance, the IC3D is an inherently low-power processor as not only
instruction decoding is shared between all 320 processors, but also memory
access is on ultra-wide memory words that contain complete image lines
instead of energy consuming access to multiple pixel-sized memory locations.

The IC3D can communicate with 8051 via I2C, via SRAM and via inter-
rupt3.

2.2.2 Host controller 8051

As host controller an ATMEL 8051 is used. This device has all necessary
components inside to make a small, yet complete, system. It is geared of a
large number of usable I/O pins to control the camera and its surroundings.
The 8051 has a 16 bit-wide external address bus for memory which fits easily
to the memory connected to the IC3D.

To indicate special data transfers between the IC3D and 8051, an inter-
rupt line on the 8051 is used that can be triggered by IC3D. The used 8051
has 1792 bytes of internal RAM and 64kbyte of Flash to store its program
or additional data. The internal 2KB EEPROM is used to store parameters
and instruction code for the IC3D. Communication to the outside world is
done via the UART. The UART has its own baud rate generator so all three
timers of the 8051 are available for user applications. There are two 8 bit
timers and one 16bit timer. They are now partly used for task-switching in
a (tiny) operating system.

2.2.3 SRAM

The CMOS Static RAM is organized as 512K x 8 bits. This memory replaces
the 128 KB DPRAM used in WiCa 1.0. The main difference is that the new
capacity is 4 times larger. That means that WiCa 1.1 has 8 different blocks
available of 64KB that could be accessed by Xetal or 8051, so that it is
possibile to store up to 4 VGA images in the main memory. The second

2Giga Operations Per Second
3IC3D can generate interrupt on the 8051



CHAPTER 2. HARDWARE : WIRELESS CAMERA (WICA) 12

difference is the new memory is not Dual Port, so there is that arbitration to
allow Xetal and 8051 access memory like a pseudo-dual port. This feature
has been developed inside the CPLD (see 5.3) and it is transparent to WiCa
users.

2.2.4 Aquis grain ZigBee module

The Aquis Grain v2.0 ZigBee module is the transceiver part of the WiCa 1.1.
It was made by Philips Research Aachen around ChipCon’s CC2430 SoC, see
Figure 2.7.

Figure 2.7: AquisGrain v2.0 ZigBee.

The radio system implementation and general properties are very similar
to v1.0. The most important difference is, obviously, the size of the new
device. The antenna is integrated in the same board, as well as the new
CC2430 integrates the old CC2420 RF system plus an 8051 controller. A
real SoC that enables reduce au maximum the final area of this device.

The communication module is still attached to the camera as a wireless
UART port. But now, the maximum data-rate has increased up 250kb/Sec-
ond thanks to the new USB device integrated in the WiCa 1.1.

2.3 Programming Xetal

The Xetal chip is programmed using and extended C (XTC) language, a
sample code shown belowe.
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#include <s t d i o . xtc>
loop
{
// v a r i a b l e s mapped to GCP data memory
unsigned int current row =0;

// v a r i a b l e s mapped to LPA frame memory
lmem yuv [ 3 ] [ 2 ] ;
lmem rgb [ 3 ] [ 2 ] ;
do
{

Wait l ine ( ) ; // Hsynch
yuv=sensor1 yuv ( ) ; // Acquires from sensor
yuv [ 0 ] [ 0 ] = 0 .5 ∗ yuv [ 0 ] [ 0 ] . ne igh (−1) + 0 .5 ∗ yuv [ 0 ] [ 0 ] . ne igh ( 1 ) ;
rgb=YUVtoRGB(yuv ) ; // Color space model convers ion
WriteToLCD( rgb ) ; // Outputs on LCD used f o r debugg ing purposes
f i n a l i z eOutpu t ( ) ;
}while(++current row < 483 ) ;
}

One of the major extensions is the introduction of the vector data type (vint
or lmem) to represent the 320-element wide read-write memory in the LPA.
The remaining data are represented in a 16-bit integer or fixed point. In the
example code, the functions neigh(-1) and neigh(1) are used to access left
and right neighbors, respectively. The optional neigh(0) represents the data
directly connected to each PP.



Chapter 3

Video Tracking: Overview

Video tracking is the process of locating a moving object (or several ones) in
time using a camera. An algorithm evaluates the video frames and outputs
the location of moving targets within the video frame. The main difficulty
in video tracking is to associate target locations in consecutive video frames,
especially when the objects are moving fast or accelerating relative to the
frame rate.

Tracking in a single camera suffers from occlusion and makes the estima-
tion of the object movements difficult;when a single camera is not sufficient
to detect and track objects due to limited visibility or occlusion, multiple
cameras can be employed. A multi camera system (or camera network)
consists of a set of cameras, communication infrastructure and computation
units. Typically each camera is connected to a PC which receives the infor-
mation extracted in the cameras and, based on this informations, infers more
complex knowledge. A scheme is shown in Figure 3.1.

One underlying constraint of the network is the relatively low bandwidth.
Therefore, for efficient collaboration between cameras, we need concise de-
scriptions instead of raw image data as outputs from local processing in a
single camera. So that, each camera performs its local processing to extract
the features needed to estimate the behavior of moving objects.

For most tasks, a multi camera system has to be calibrated. Depending
on the application, the type of calibration information which is required can
be very different. Possible calibrations vary from a simple neighborhood
structure identifying cameras with a common field of view to a full metric
calibration, which consists of the internal parameters of each camera as well

14
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Figure 3.1: Camera Network scheme.

as the (relative) positions and orientations of the cameras [13, 12].

3.1 In-Node Features Extraction

The aim of this process is a concise representation of the raw image data
input. This process inevitably removes certain details in images of a sin-
gle camera, which requires the camera to have some “intelligence“ on its
observations (smart cameras), i.e., some knowledge of the subject.

The process that allows to achieve the goal can be described as shown in
Figure 3.2

At each step, the data is refined in order to achieve the goal. One or more
steps can be exploited in the same level in order to produce the input data
for the following step. The output of the process, is a concise representation
of the feature desired.

Another approach, shown in Figure 3.3, can be used. The main different
is that the features are normalized and combined together before inferring
knowledges about the object of interest.

The algorithm executed in each steps depends on the application. If the
goal is to localize a moving object, a possible implementation can be seen in
figure 3.4.

As can be seen, this procedure requires three steps: background subtrac-
tion, image segmentation and tracking.
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Figure 3.2: In-node features extraction scheme : Serial Approach.

Figure 3.3: In-node features extraction scheme : Parallel Approach.
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Figure 3.4: Tracking process in a single camera using motion detection.

The Background Subtraction block provides a method to isolate the ob-
jects of interest from the background, thus the output is a rough estimation
of the tracked objects. This information is given in input to the second block
(Segmentation) that refine the previous data in order to select the moving
objects basing on their characteristics (for example an image segmentation
based on a color can select the skin tone to follow the hands and the face).
The Tracking block can compute the positions of the objects thanks to the
output data given by the previous block and information from the previous
frame.

Instead of using movements detection is it possible to employ edge detec-
tion as is shown in Figure 3.5.

3.1.1 Edge Detection

The aim of this process is to select the pixels in a digital image basing on the
sharply changes in the luminance intensity. Edge detection is useful in order
to select relevant information in an image while preserving the important
structural properties.

The methods for edge detection can be grouped into two categories :
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Figure 3.5: Tracking process in a single camera using edge detection.

Search based detects edge by looking for maximum and minimum in the
first derivative of the image (usually local directional maximum of the
gradient magnitude).

Zero-crossed based searches for zero crossing in the second derivative of
the image.

In Chapter 4 the Sobel filter is described.

3.1.2 Background Subtraction

A common approach in order to identifying moving objects from a video se-
quence is to perform background subtraction.The aim is to identify moving
objects from the portion of a video frame that differs significantly from a
background model. This process must be robust against changes in illumi-
nation, it should avoid detecting non-stationary background objects such as
moving leaves, rain, and shadows cast by moving objects and its internal
background model should react quickly to changes in background. These
challenges has to be taken into account so that the algorithm works well.

A survey on background subtraction techniques can be found in [6].
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In the chapter 4 an implementation of thresholding method on WiCa
platform is given.

3.1.3 Image Segmentation

A way of segmenting and tracking objects is to first generate temporally
tracked homogeneous regions and then apply further processing to identify
the objects. Many different video segmentation techniques exist [7]. For
example, it is possible to carry image segmentation algorithms, such as color
or texture segmentation, to generate homogeneous regions in each frame and
then track the motion of the segmented regions.

Several general-purpose algorithms and techniques have been developed
for image segmentation. Since there is no general solution to the image seg-
mentation problem, these techniques often have to be combined with domain
knowledge in order to effectively solve an image segmentation problem for a
problem domain.

Clustering Clustering is a feature-space based technique in which classes
are generated (or partitioned) without any a priori knowledge. The
K-means algorithm belongs to this class of methods; it is an iterative
technique that is used to partition an image into K clusters [8];

Histogram thresholding Histogram-based methods are very efficient when
compared to other image segmentation methods because they typically
require only one pass through the pixels. In this technique, a histogram
is computed from all of the pixels in the image, and the peaks and val-
leys in the histogram are used to locate the clusters in the image. Color
or intensity can be used as the measure;

Region growing In the region growing techniques, a region is started with
a single pixel. Adjacent pixels are recursively checked and added to
the region if they are sufficiently similar to the region. If a pixel is
too dissimilar to the current region, it is used to start a new region.
At every step a pixel, not yet allocated, and close to at least a region,
is allocated to an adjacent region that is more similar basing on the
chosen criterion;

Edge Detection Edge detection is a well-developed field on its own within
image processing. Region boundaries and edges are closely related,
since there is often a sharp adjustment in intensity at the region bound-
aries. Edge detection techniques have therefore been used to as the base
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of another segmentation technique. The edges identified by edge detec-
tion are often disconnected. To segment an object from an image how-
ever, one needs closed region boundaries. Discontinuities are bridged
if the distance between the two edges is withing some predetermined
threshold.

In the chapter 4 an implementation of a k-means segmentation algorithm
on WiCa platform is shown.

3.1.4 Tracking

The final step of the tracking process is to localize the objects of interest
in every frame during time. There are two major components of a visual
tracking system; Target Representation and Localization and Filtering and
Data Association.

Some common Target Representation and Localization are listed below;
this kind of algorithms are mostly based on a bottom-up process. Typically
the computational complexity for these algorithms is low.

Blob tracking Segmentation of object interior (for example blob detection,
block-based correlation or optical flow)[15];

Kernel-based tracking An iterative localization procedure based on the
maximization of a similarity measure(Mean-shift)[9];

Contour tracking Detection of object boundary (e.g. active contours)[14];

Filtering and Data Association is mainly a top-down process, which in-
volves incorporating prior information about the scene or object, dealing
with object dynamics, and evaluation of different hypotheses. The computa-
tional complexity for these algorithms is usually much higher. Some common
algorithms are Kalman Filter [10] and Particle Filter [11].

In the chapter 4 a different method that uses the centers of mass of the
segmented objects is used.



Chapter 4

Tracking on WiCa

4.1 Algorithms on WiCa

4.1.1 Edge Detection

The Sobel operator is employed to detect edges on WiCa. It is a discrete
differentiation operator, computing an approximation of the gradient of the
image intensity function. At each pixel the Sobel operator gives either the
corresponding gradient vector or the norm of this vector. The operator com-
putes the gradient of the image intensity so that the result is the largest
possible increase from light to dark and the measurement of change in that
direction. Therefore, the result describes how abruptly (or smoothly) the
image changes are in each pixel, therefore how likely that pixel represents an
edge.

Mathematically, the operator computes the convolution between the orig-
inal image and two kernels giving as result the approximations of the deriva-
tives (one for horizontal changes and one for vertical changes). Let A be
the source image, Gx and Gy, that are the two images representing respec-
tively the horizontal and vertical derivatives approximations, are computed
as follows :

21
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Gx =

∣∣∣∣∣∣
1 0 −1
2 0 −2
1 0 −1

∣∣∣∣∣∣ ∗ A (4.1)

Gy =

∣∣∣∣∣∣
1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣∣ ∗ A (4.2)

where ∗ here denotes the 2-dimensional convolution operation.
Using these informations, it is possible to calculate the gradient magni-

tude and direction :

G =
√
Gx

2 +Gy
2 (4.3)

θ = arctan
Gy

Gx

(4.4)

The Sobel filter implementation on WiCa uses the previous two lines, the
current line and the closest left and right neighbors to compute the horizontal
and vertical values at every pixel.

edge h = a ∗ l 1 . ne igh (−1) + a ∗ l 1 . ne igh (0 ) + a ∗ l 1 . ne igh (1 )
− a ∗ l 3 . ne igh (−1) − a ∗ l 3 . ne igh (0 ) − a ∗ l 3 . ne igh ( 1 ) ;

edge v = a ∗ l 1 . ne igh (−1) − a ∗ l 1 . ne igh (1 )
+ a ∗ l 2 . ne igh (−1) − a ∗ l 2 . ne igh (1 )
+ a ∗ l 3 . ne igh (−1) − a ∗ l 3 . ne igh ( 1 ) ;

The thresholding mechanism is applied to select the edges.

edge h = edge h > HOR THRESHOLD ? 1 : 0 ;
edge v = edge v > VER THRESHOLD ? 1 : 0 ;

In Chapter 5 a combination of vertical and horizontal edge detection is
explained, so that a single threshold is used.

Experimental Results

The thresholding applied to the output Sobel operator is shown in Figure 4.1
and Figure 4.2.

4.1.2 Background Subtraction

Two techniques have been implemented on WiCa. The major difference
between these two methods is that one works with blocks and the other works
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Figure 4.1: Sobel filter : horizontal direction.

Figure 4.2: Sobel filter : vertical direction.
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with pixels. The former computes the average of the luminance component
Y [7] of each block and checks for the difference in successive frames. The
latter uses the RAM memory to store the previous frame and checks for the
difference (pixel by pixel) in the current frame. In the following sections a
more detailed explanation is given.

Block-based technique

Each frame is divided in blocks and the background subtraction is computed
basing on the differences arising between the averages of the blocks in differ-
ent frames.

The thresholding mechanism is used to accomplish this task. More in de-
tail, two thresholds are used : slow threshold and fast threshold ; because of
this, two averages are computed during the time : fastaverage and slowaver-
age. The former is a quickly updated background used to detect the moving
objects while the latter is a slowly updated background used to remove the
smears. Both are compared with the previous blockaverage. The slowaver-
aging is used to deal with the limited changes that happen when an object
enters in a block. When the object leaves the block, the latter becomes back-
ground (if the object remains in the block for few time) because slowaverage
did not change during this period thereby removing the smearing effect.

The algorithm can be characterized by the following pseudo code :

for each frame

1.<determine which b locks have to be di sp layed>

2.<compute the new va lue s o f f a s t av e r ag e and slowaverage>

3.<compute the value o f b lockaverage>

end

The first step involves the values of fastaverage, slowaverage and blockav-
erage computed at the previous frame; to accomplish the task, two thresholds
are used : fast threshold and slow threshold. The thresholding mechanism
is used to determine whether the blocks have to be displayed or no in the
current frame:

|fastaverage− blockaverage| > fast threshold (4.5)

|slowaverage− blockaverage| > slow threshold (4.6)
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The test is passed if and only if both the conditions 4.5 and 4.6 are true.
The test can be done not only on the Y component but also for every YUV
components, so that it is possible to take the decision basing on the logical
AND of each tests or it can be considered the whole test passed if just one
component pass the test (logical OR).

The second step is used to update the values of fastaverage and slowaver-
age; two parameters are involved in this task : α and β. The former appears
in the computation of fastaverage and decides the percentage of blockaverage
(concerning to the previous frame) that has to be used, while the latter de-
cides how fast slowaverage is updated when the average of the block changes
its value.

The third step calculates the average of every blocks in the current frame.

Computation of fastaverage

Fast average is used to detect moving objects, its computation (for each
component YUV) concerns two parameters : α and fast threshold. The test
is accomplished carrying out the equation 4.5 while fastaverage is the convex
combination of fastaverage and blockaverage as shown in 4.7

fastaverage = α ∗ fastaverage+ (1− α) ∗ blockaverage (4.7)

It is possible to write 4.5 into formulas that allows us to better understand
how the condition is affected by the changes in the blockaverage (a proof of
4.8 is given in Appendix A).

|
i∑

j=1

αi−j ∗ (yj−1 − yj)| > λ (4.8)

where fastaverage and blockaverage have been replaced with x and y re-
spectively, fast threshold with λ and i is the current frame.

The term inside the absolute operator is a weighted sum of the differences
between blockaverages computed in adjacent frames. Thus, at frame i + 1,
the previously computed blockaverages (weighted) are summed to check for
the validity of 4.8.

As can be seen, since α is in the [0,1) interval, the last differences have
higher weight than the first differences; how the weights are distributed is
appointed by the value of α. Figure 4.3 shows the curves of αi−j (for i=100)
with different values of α.

The values close to the origin are the weights of the last blockaverages
differences, that is, when α decrease it is considered just the last differences
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Figure 4.3: .

while when α increase more previously computed differences are taken into
account. This means that, with low values of α, it is troublesome to detect
slow objects because the differences are small hence they are not high enough
to overcome the threshold (this means that α should be controlled by the
tracking informations). Because of this, only the boundaries are shown when
the objects move on the screen. Setting α to its lowest possible value, i.e. 0,
only the previous one difference is used, hence, the objects disappear from
the screen immediately (motion difference).

On the other hand, with high values of α, the slow moving objects are
easily detected, but they become background slowly, so they are visible even
if they do not move anymore. Setting α to its highest possible value, i.e.
1, all the previous differences are used, so that, the objects never disappear
from the screen (actually, the objects disappear,even if very slowly, thanks
to the contribution of slowaverage).

Intermediate values of α introduces smear because objects are transferred
to background with diminishings values.

In Appendix A an example is performed.

Computation of slowaverage

Slowaverage is used to deal with the limited change that happen when an
object enters in a block. When the object leaves the block, it disappears (if
the object remains in the block for few frames) because slowaverage did not
change (significantly) during this period.

The computation of slowaverage (for each components YUV) concerns
two parameters : β and slow threshold. For every frame, slowaverage is
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compared with blockaverage to check if the difference overcome the threshold
(slow threshold). After which, slowaverage is updated using the β parameter.
Therefore, the “slowaverage test” involves two steps :

1. |slowaverage− blockaverage| > slow threshold

2. update(slowaverage)

The first step is the same used in fastaverage computation, while the
second steps is more complicated. More in detail, when blockaverage changes,
slowaverage follows it very slowly. In fact, slowaverage is varied by 1 if and
only if blockaverage differs (for more than 1) from slowaverage for at least β
frames.

Thus, slowaverage is updated only if it differs steadily from fastaverage,
that is, the object becomes background. The parameter β has to be large
enough to avoid the smears. In fact, if slowaverage would change too quickly,
the object would become background and when it leaves, the previous back-
ground would be displayed as foreground. It is clear that β and slow threshold
are related. The former determines how fast the object become background,
while the latter indicates when the object becomes background. It is impor-
tant to clarify that slowaverage is needed to deal with the changes in the
background, therefore, it has to be quite quick to absorb this transition, but
it has not to be too fast to avoid that the moving object become background.

Experimental Results

In Figure 4.4 and Figure 4.5 are shown the results of the algorithm imple-
mented on WiCa.

Pixel-based technique

This technique is really simple but it needs a RAM memory to work; at
every frame each pixel is compared with its luminance value in the previous
frame so that, it is possible to apply the thresholding algorithm. Figure
4.6 shows the scheme of this approach. The rows acquired from the sensor
are compared with the rows stored in the RAM to decide if the pixels are
foreground or background. In order to compare the rows acquired from the
sensor in the subsequent frame, the current row is sent also to the RAM.
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Figure 4.4: Background Subtraction Block-Based screenshot one.

Figure 4.5: Background Subtraction Block-Based screenshot two.
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Figure 4.6: Background Subtraction Pixel-Based Scheme.

Experimental Results

In Figure 4.7 and Figure 4.8 are shown the results of the algorithm imple-
mented on WiCa.

Figure 4.7: Background Subtrac-
tion Pixel-Based screenshot one.

Figure 4.8: Background Subtrac-
tion Pixel-Based screenshot two.
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4.1.3 Image Segmentation

As stated in Chapter 3 there are many algorithms able to accomplish this
task. The K-means algorithm is easy applicable on WiCa. In the following
section a brief explanation is given.

K-means Algorithm

The K-means algorithm is one of the most commonly used algorithm for
cluster segmentation. K-means clustering is an iterative technique that is
used to partition an image into K clusters. The basic algorithm is :

1. Choose K cluster centers, either randomly or based on same heuristic;

2. Assign each pixel to the closest cluster center;

3. Recompute the cluster centers using the current cluster memberships;

4. If a convergence criterion is not met, go to 2. (for example, minimal
reassignment of pixels to new cluster centers).

This algorithm is guaranteed to converge, but it may not return the opti-
mal solution. The quality of the solution depends on the initial set of clusters
and the value of K.

The algorithm implemented on WiCa is slightly different, the step 4 is
not needed because of the real-time environment. During each frame, it is
decided which pixel belongs to which class and the values of UV components
are collected to update the centroids (cluster centers) at the end of the frame.

In Appendix B the code that executes the k-means algorithm is per-
formed.

Experimental Results

The result of the k-means algorithm implemented on WiCa that segments
the skin tone is shown in Figure 4.9. As can be seen, the result is significant
even if is still present noise due to skin-like color objects in the background.

In order to remove the noise a combination of background subtraction
and segmentation can be used. Therefore, the segmentation is applied and
the background subtraction is carried out subsequently, the result is shown
in Figure 4.10. As it possible to see, the noise disappears and the result is
better for tracking purposes.
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Figure 4.9: Skin tone segmentation.

Figure 4.10: Skin tone segmentation and Background Subtraction.
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4.1.4 Tracking

The algorithm implemented on WiCa uses the center of mass of the object
to follow it. It uses also a simple motion model on top of tracking. Each
frame the center of mass is computed and according to its position the object
is tracked. A motion model with constant velocity is addressed, so that the
object cannot move faster than the model indicates.

More in detail, a square area is used to track the object so that, the pixels
that belong to the object (as indicated by the segmentation) in this area are
taken into account to compute the center of mass. Thus, given the set of
pixels {~xi}i=1...k with ~xi ∈ N2 and given S(~x) be the square area, the center
of mass is given by 4.9.

~c =

∑
~xi∈S(~x)mi ∗ ~xi∑
~xi∈S(~x)mi

(4.9)

In this case mi is computed as in 4.10.

mi =

{
1 if ~xi ∈ C(~x),

0 if ~xi /∈ C(~x).
(4.10)

where C(~x) is the set of pixels that belong to the object tracked (as
indicated by the segmentation).

In Appendix B the xtc code to track is shown.

Object Recovery

The algorithm showed uses a simple motion model with constant velocity, so
that if the object moves too fast it is lost. A strategy to recover from lost
objects is employed. Every frame, the maximum concentration of pixels is
searched in the neighborhood of the search area. When the object is lost,
this zone is explored.

In the next section the experimental results, with and without the recov-
ery strategy, are shown.

Experimental Results

The Figure 4.11 shows the outcome of the algorithm without object recovery,
while in Figure 4.12 is shown a fail in tracking.

In Figure 4.13 are shown two different recovery from lost. Because of
the different frame rate between the LCD screen and the webCam used to
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capture the outcomes it is possible to notice two white squares in the images.
This allows us to capture the object lost and the recovery simultaneously.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 4.11: Experimental results of tracking without recovery.



CHAPTER 4. TRACKING ON WICA 35

(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 4.12: Experimental results of tracking without recovery with object
lost. Frames 6, 7 and 8 show a failing of tracking probably because of accel-
eration.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 4.13: Experimental results of tracking with recovery : two sequences,
from (1) to (4) and from (5) to (8)



Chapter 5

Gesture Tracking

In order to get informations about human behavior it is needed to track in
real time the movements. The goal of this work is to track human movements
using the WiCa platform. Our assumption states that the orientation of the
WiCa is such that the face is in front of the camera.

As shown in Chapter 4, it is possible to extract relevant features useful
to track hands and head. Therefore, it is needed to identify the suitable
characteristics fitted for hands and head under different conditions. The
scope is to get enough information to recognize the object of interest and to
remove the noise as well.

Two different approaches are possible as stated in Chapter 3 : serial and
parallel. In this chapter we show the latter because it gives more reliability,
while the latter is explored in Appendix C.

Furthermore, it has been shown in Chapter 4 as a recovery mechanism
is needed because of the insufficient reliability of tracking employing a mo-
tion model with constant velocity. The experiments with a motion model
that includes acceleration did not give enough reliability. Therefore, another
approach has been implemented so that the recovery becomes less necessary.

Two different approaches are used to select hands and head because of
their different features. Basically, movement detection is used for hands and
edge detection is used for head; usually the hands are moving fast while the
head moves slowly and the face is full of edges (notice that we assume the face
in front of the camera). Skintone segmentation is employed for both hands
and head. These two approaches are shown in Figure 5.1 and in Figure 5.2
respectively.

37



CHAPTER 5. GESTURE TRACKING 38

In the next paragraphs the features extraction is explained.

Figure 5.1: Hands detection block diagram.

5.1 Skintone Segmentation

As explained in Chapter 4 the k-means algorithm is employed. It is defined
a region in the UV space that is supposed to embody the skintone. The color
model is updated basing on the color distribution of the tracked objects. Let
S be the set of pixels currently recognized as skin-tone, the color distribution
computed respect to the present cluster center is:

DU =
∑
~p∈S

u(~p)− uc (5.1)

DV =
∑
~p∈S

v(~p)− vc (5.2)

Where (uc, vc) is the cluster center position in the UV color space while the
functions u() and v() give the values of the U and V components respectively.

The kernel is updated from the equations 5.3 and 5.4
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Figure 5.2: Head detection block diagram.

uc = uc + fth(DU) (5.3)

vc = vc + fth(DV ) (5.4)

Where

fth(X) =

{
A if X > th,

−A if X < −th.
(5.5)

The hysteresis function is shown in Figure 5.3.
The classification phase relies on the thresholding. The threshold defines

a region around the current cluster center and classifies the pixels inside this
region as skin-tone. It is computed the Manhattan distances between the
pixels and the cluster center and these quantities are thresholded in order to
select the skin-tone. Therefore, given the current cluster center (uc, vc) and
given the Manhattan distance D̄(~p) computed as follows:

D̄(~p) = |u(~p)− uc|+ |v(~p)− vc| (5.6)

The pixel ~p is classified as skin-tone according to 5.7.
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Figure 5.3: Skintone segmentation hysteresis function.

{
~p ∈ Skintone if D̄(~p) ≤ γ,

~p /∈ Skintone if D̄(~p) > γ.
(5.7)

Figure 5.4 shows the function.

Figure 5.4: Skintone segmentation threshold function.
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5.2 Edge Density

In Chapter 4 it has been explained that the Sobel operator that detects hard
edges. In order to obtain as much edges as possible the thresholds have to
be relaxed. More in details, only one threshold is used and vertical edges
are combined with horizontal edges and a single thresholding is applied. The
result can be seen in Figure 5.5. As it is possible to notice by the circles,
the hands and the head are recognized very well, but because of the low
threshold the result is affected by noise (noise is considered the recognition
of pixels that do not belong to hands or edge).

In order to remove part of the noise, a density function is used. Basically,
this function counts the number of edges in the neighborhood of each pixel
and applies a threshold. More formally, let ~p be the 2-D location of the pixel
in the image and let N(~p) be its neighbourhood, the number of edges in N
is:

ED(~p) =
∑

~c∈N(~p)

Edge(~c) (5.8)

Where Edge(~c) is 1 if ~c is an edge and 0 otherwise. The quantity given
by 5.8 is thresholded using the following function:

gα(~p) =

{
Valid if ED(~p) > α,

Non-Valid if ED(~p) ≤ α.
(5.9)

The improvement can be seen in Figure 5.6. As it is possible to see, the
noise is still present. In Chapter 5.4.2 the noise is removed by combining
edge density and skintone segmentation.

5.3 Motion Density

The background subtraction technique is utilized in order to detect moving
pixels. The approach used for edge is employed for motion. The background
subtraction relies on a low thresholding to detect as much moving pixels as
possible and applies a density filter to erase the noise. So, let ~p be the 2-D
location of the pixel in the image, the difference in the luminance component
at the frame t is computed as follows:

Difft(~p) = |It(~p)− It−1(~p)| (5.10)
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Figure 5.5: Edge detection using a low threshold.

Figure 5.6: Edge density detection.
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Where It(~p) is the luminance value at the frame t. A low threshold is
applied at the decision level as depicted in 5.11.

Motion(~p) =

{
1 if Difft(~p) > T ,

0 if Difft(~p) ≤ T .
(5.11)

The outcome is displayed in Figure 5.7. The hands are totally recognized
but the result is noisy. It is also important to notice that the head is almost
unrecognizable because it was almost static during the experiment.

The noise is filtered out making use of the density filter shown before.
Therefore, given the neighbourhood N(~p) of the pixel ~p in the 2-D spatial
space, the number of moving pixels in that region is figured as follows:

MD(~p) =
∑

~c∈N(~p)

Motion(~c) (5.12)

Where Motion(~c) is worked out as in 5.11. The density filter is put into
operation using the following threshold function:

gβ(~p) =

{
Valid if MD(~p) > β,

Non-Valid if MD(~p) ≤ β.
(5.13)

The improvement can be seen in Figure 5.8; the noise is still present but
less and the head is not recognizable anymore.

Figure 5.7: Motion detection using a low threshold.
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Figure 5.8: Motion density detection.

In Chapter 5.4.1 the noise is removed by combining motion density and
skintone segmentation.

5.4 Tracking

In order to give reliability to the tracking we need a recovery mechanism as
concluded in Chapter 4. This mechanism is expensive because it computes
the recovery points every frame even if the tracking does not fail.

Another tracking approach gives more reliability so that we do not need
an expensive recovery mechanism. Basically, it defines a region in the 2-D
space and selects the column and the row (that is the x-axis and the y-axis
respectively) with the maximum presence of pixels belonging to the object
tracked; than the region is centered in this points in the next frame. This
point represents the coordinates of the object is being tracked. More formally,
given a NxN search region and given the function m(x, y) be 1 if the pixel
located at (x, y) belongs to the object and 0 otherwise, column and row are
selected using 5.14 and 5.15 respectively.

max1≤x≤N

N∑
y=1

m(x, y) (5.14)
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max1≤y≤N

N∑
x=1

m(x, y) (5.15)

Basically, 5.14 computes the vertical sum of each column and select the
column with the maximum result, while 5.15 computes the horizontal sum of
each row and takes the row with the maximum result. Figure 5.9 shows the
graphical interpretation of 5.14 and 5.15. Figure 5.10 shows a snapshot of
the algorithm running on WiCa; it is displayed the region, the column and
the row position in two consecutive frames.

Figure 5.9: Tracking : graphical interpretation.

5.4.1 Hands Tracking

As seen before, motion density detection is useful to capture moving hands
but is pointless for head detection as head do not move that sharply. At
the same time, edge detection is not reliable to capture fast moving objects
because they are usually blurred. Therefore, in order to track hands the
motion detection is employed. As shown in Figure 5.8 motion detection is
still noisy so, most of the noise is removed by combining motion detection
and skintone segmentation. Figure 5.11 shows the result.
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Figure 5.10: Tracking on WiCa.

Figure 5.11: Motion density detection and skintone segmentation.
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5.4.2 Head Tracking

Because of its low mobility head is well identified by edge density detection.
As in 5.4.1 combination of edge density and skintone removes most of the
noise as shown in Figure 5.12. Due to a static position of the hands during
the experiment, they are also detected; this should not confuse with moving
hands detection because usually the hands are moving quite fast therefore
they are not recognizable through the edges.

Figure 5.12: Edge density detection and skintone segmentation.

5.5 Adaptable Thresholding

Each of the mechanisms shown above (skintone segmentation, edge and mo-
tion density detection) uses a threshold to detect the pixels of interest. In
order to give more flexibility, an adaptable thresholding is employed.

Basically, it supposes that in the search region a certain percentage of
pixels belongs to the object tracked, so that it tries to keep the number of
pixels in that region close to this percentage. Therefore, if the amount of pix-
els is lower than expected the threshold is relaxed to keep more pixels, while
if the amount of pixels is larger than supposed the threshold is constrained.
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More formally, let K be the number of pixels in the region R that belong
to the object of interest:

K =
∑
~p∈R

m(~p) (5.16)

where m(~p) is 1 if ~p belongs to the object of interest and 0 otherwise. At
the frame t, the threshold λ is updated as follows:

λt = λt−1 + hk1,k2(Kt−1) (5.17)

Where hk1,k2() is defined in 5.18.

hk1,k2(K) =


+∆ if K < k1,

−∆ if K > k2,

0 Otherwise.

(5.18)

In 5.18 ∆ is positive for skin-tone segmentation, while it is negative for
motion and edge density detection.

The outcomes are shown in Chapter 5.6.

5.6 Hands and Head Tracking: Experimental

Results

In this chapter the experimental results are presented. Figure 5.13, Figure
5.14 and Figure 5.15 show a sequences of images taken from the LCD screen
connected to the WiCa. The white H, L and + represent the the search areas
centers of head, left hand and right hand respectively.

The first sequence is relevant for head tracking, indeed the head goes
downhill from (1) to (4) and return up from (5) to (8). The second sequence
shows the hands crossing. Boxing is displayed in the third sequence.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 5.13: Experimental results of gesture tracking : first sequence.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 5.14: Experimental results of gesture tracking : second sequence.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 5.15: Experimental results of gesture tracking : third sequence.



Chapter 6

Conclusions and Future Works

A tracking system able to track hands and head in real time has been de-
veloped during this work. The algorithm was implemented on a wireless
camera (WiCa) developed by NXP Semiconductor research which combines
an SIMD processor (Xetal/IC3D) for low-level operations, an 8051 micro-
processor for high-level operations, RAM for inter-frame processing and a
ZigBee transmitter for communication.

The algorithm uses different characteristics specific of hands and head in
order to identify them during the time. These features are color, edge and
motion. Edge and motion allow to represent quite reliable head and hands
respectively. Indeed, the face is full of edges and moves slowly while hands
move relatively fast and therefore they are blurred so that it is difficult to
get sharp, high gradient edges.

We uses thresholds and apply a density function that allows to capture
quite reliably hands and head while removing most of the noise (we consider
wrong classification of pixels as hands or head noise). The noise is almost
absent when skintone is combined with edge density and motion density. In
order to track, a search area is defined around each object; the object is
followed from frame to frame inside this area.

Each of the features used is affected by the light conditions. In order to
make the system more robust, an adaptive thresholding mechanism has been
employed. However, the algorithm suffers under non-uniform light conditions
especially when there are different sources of light.

The algorithm does not involve the initialization phase, that is hands and
head have to be placed in the search areas before starting to track.

52
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Furthermore, the system supposes the person is being tracked in front
of the camera. In the future, this assumption can be avoided by migrating
from a single-camera to a multi-camera environment giving robustness from
occlusions.
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Appendix A

Background Subtraction Proofs

and Examples

A.1 Proof of 4.8

The equation 4.7 can be written as:

x = α ∗ x+ (1− α) ∗ y (A.1)

where in 4.7 fastaverage and blockaverage have been replaced with x and
y respectively. Now, it is considered the A.1 frame by frame.

• First frame

x1 = α ∗ x0 + (1− α) ∗ y0 = α ∗ (x0 − y0) + y0 (A.2)

• Second frame

x2 = α ∗ x1 + (1− α) ∗ y1 = α2 ∗ (x0 − y0) + α(y0 − y1) + y1 (A.3)

• Third frame

x3 = α∗x2 +(1−α)∗y2 = α3 ∗ (x0−y0)+α2(y0−y1)+α∗ (y1−y2)+y2

(A.4)
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• Fourth frame

x4 = α∗x3+(1−α)∗y3 = α4∗(x0−y0)+α
3(y0−y1)+α

2∗(y1−y2)+α∗(y2−y3)+y3

(A.5)

• ith frame

xi = αi ∗ (x0 − y0) +
i−1∑
j=1

αi−j ∗ (yj−1 − yj) + yi−1 (A.6)

Considering 4.5 at frame i+1 (replacing fast threshold with λ) we obtain
:

|xi − yi| > λ (A.7)

Taking into account A.6 the term inside the absolute value becomes :

xi − yi = αi ∗ (x0 − y0) +
i−1∑
j=1

αi−j ∗ (yj−1 − yj) + yi−1 − yi (A.8)

Then A.8 can be written as shown in A.9 (combining the last difference
in the sum).

xi − yi = αi ∗ (x0 − y0) +
i∑

j=1

αi−j ∗ (yj−1 − yj) (A.9)

Supposing that x0 = y0 = 0 (this is reasonable because before the first
frame these values are negligible) then A.7 becomes:

|
i∑

j=1

αi−j ∗ (yj−1 − yj)| > λ (A.10)

A.10 was presumed before as 4.8 Q.E.D.

A.2 Example of Block-based Background Sub-

traction

This example shows the behavior of the algorithm when an object enters in
a block and does not leave anymore. It has been supposed, for simplicity,
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that the changes in the blockaverage, frame by frame, are linear. The Figure
A.1 shows the trend of the blockaverage (that is Y component) curve.

As can be seen the object enters in the block at the frame 20th and it does
not move anymore at frame 40th; the correspondent values of blockaverage
are 0 and 100,so that the slope of the leaning curve is 5 (in this example it
was assumed 0 for a blockaverage value before the change but it is possible
to use any constant value).

Figure A.1: .

The figure A.2 shows how |xi − yi| changes for different values of α. As
can be seen, as α grows, the peak grows and the curve takes more frames to
decrease when blockaverage does not change anymore. Every curves reaches
the peak as soon as blockaverage reaches its peak, but the peaks values are
different. The exact value of the peak can be computed solving |xi − yi| on
the supposition that yj−1 − yj = K in 4.8. In fact, we considere simply the
frames in which the blockaverage changes, it is possible to write the 4.8 as
shown in A.11

|K ∗
i∑

j=1

αi−j| > λ (A.11)

The summatory inside the absolute operator can be solved as follows:

i∑
j=1

αi−j =
i−1∑
m=0

αm =
1− αi

1− α
(A.12)

Thus, the A.11 becomes as in A.13.
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Figure A.2: .

|K ∗ 1− αi

1− α
| > λ (A.13)

Therefore, the peak value is given by the left term of the inequation
when i is equals to the frames in which blockaverage reaches its maximum
value. It is clear the relationship between α, λ (that is fast threshold) and
the blockaverage difference. Figure A.3 shows the behavior for α equals to 0.9
and for different values of K (it was used the same range for the blockaverage
values previously used).

Comparing the two Figures A.2 and A.3 it is possible to notice that α
decides how many frames are needed to absorb the object in the background
when it does not move anymore, while the variation (K in this case) in the
blockaverage decides how many frames are needed to reach the peak.

It is interesting to view what happen when an object enters in the block
and leaves the block. In this case, it is important to know the number of
frames needed to converge below the threshold (i.e. foreground merge into
background). The Figure A.4 shows the blockaverage values used for the
example (the slope of the leaning curve is K=5). As can be seen, the average
start from zero (no moving object in the block) and arrives at 100 (maximum
value); after this, the object leaves the block and the average approaches the
background value.

In Figure A.5 the trend of for different values of α is shown. The focus
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Figure A.3: .

Figure A.4: .
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is on the last part of the graph when blockaverage starts to decrease. As can
be seen, with high values of α we require more frames to converge to zero,
so that, the block is displayed even if the object is almost disappeared.

The presence of double peaks can be explained by looking at the expres-
sion A.14.

|
i∑

j=1

αi−j ∗ (yj−1 − yj)| (A.14)

Before the peak of blockaverage, all the differences are negative but after
the peak the differences become positive, so that, A.14 starts to decrease.
When i (the frame number) is high enough to consider only the descend
line, all the differences are positive, that is, A.14 starts to increase. When
blockaverage reaches its steady state, A.14 decreases untill zero (how fast it
happens depends on the value of α).

Figure A.5: .



Appendix B

XTC Code

B.1 K-means

The code shows below execute the classification procedure basing on the
distance from the centroid. This code is carried out for every row of the
frame.

d i s t anc e = abs ( yuv [ 1 ] [ 0 ] −128 ) + abs ( yuv [ 2 ] [ 0 ] − 1 2 8 ) ;
t e s t [ 0 ] = abs ( yuv [ 1 ] [ 0 ] − u2 ) ;
t e s t [ 1 ] = abs ( yuv [ 2 ] [ 0 ] − v2 ) ;

c l a s s = (
d i s t anc e > t e s t [0 ]+ t e s t [ 1 ]
&& t e s t [ 0 ] < l im i t 2 u
&& t e s t [ 1 ] < l im i t 2 v

) ? 2 : 0 ;

Every frame the centroid is updated basing on the pixels classified as
belonging to the class tracked. To accomplish this step, during the frame the
distribution of these pixels in the UV space is computed by exploiting the
following code.

u pos = (
pid > ( c c en te r−dim)>>1 && pid <( c c en t e r+dim)>>1
&& c l a s s == 2
&& yuv [ 1 ] [ 0 ] > u cent e r
&& yuv [ 1 ] [ 0 ] < u cent e r + k means margin

) ? u pos+1 : u pos ;
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u pos = (
pid > ( c c en te r−dim)>>1 && pid <( c c en t e r+dim)>>1
&& c l a s s == 2
&& yuv [ 1 ] [ 0 ] < u cent e r
&& yuv [ 1 ] [ 0 ] > u cent e r − k means margin

) ? u pos−1 : u pos ;
v pos = (

pid > ( c c en te r−dim)>>1 && pid <( c c en t e r+dim)>>1
&& c l a s s == 2
&& yuv [ 2 ] [ 0 ] > v cen t e r
&& yuv [ 2 ] [ 0 ] < v cen t e r + k means margin

) ? v pos+1 : v pos ;
v pos = (

pid > ( c c en te r−dim)>>1 && pid <( c c en t e r+dim)>>1
&& c l a s s == 2
&& yuv [ 2 ] [ 0 ] < v cen t e r
&& yuv [ 2 ] [ 0 ] > v cen t e r − k means margin

) ? v pos−1 : v pos ;

The centroid is updated,at the end of the frame, according to the previous
computations as follow.

int temp sum ;
temp sum = Sum( u pos ) ;
i f ( temp sum > k means thresho ld ) u cen t e r++;
i f ( temp sum < −k means thresho ld ) u center −−;

temp sum = Sum( v pos ) ;
i f ( temp sum > k means thresho ld ) v c en t e r++;
i f ( temp sum < −k means thresho ld ) v center −−;

u2=u cent e r ;
v2=v cen t e r ;

// keep c l u s t e r s in t h e i r hemispheres
u2 = min(u2 , s t a r t u 2+hemi ) ;
u2 = max(u2 , s ta r t u2−hemi ) ;
v2 = min ( v2 , s t a r t v 2+hemi ) ;
v2 = max(v2 , s t a r t v2−hemi ) ;

B.2 Tracking

In order to track the center of mass of one object, a simple procedure is
used. For the x-coordinate it computes the number of pixels that lie to the
left and to the right of the center of the square area. It decides the direction
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of the movement by comparing the difference between the two quantities
previously computed; the displacement is determined by the velocity of the
motion model.

The same procedure is applied to the y-coordinate by counting the num-
ber of pixels in the upper part and in the lower part of the square.

The following code is executed during the frame to figure out the position
of the center of mass.

// x−coord ina te
i f ( rows > r c en t e r−dim && rows < r c e n t e r+dim)
{

// . . .
c t i c = c l a s s == 2

&& pid > ( c c en te r−dim)
&& pid < ( c c en t e r )
? c t i c −1: c t i c ; // l e f t s i d e

c t i c = c l a s s == 2
&& pid > ( c c en t e r )
&& pid < ( c c en t e r+dim)
? c t i c +1: c t i c ; // r i g h t s i d e

// . . .
}

// y−coord ina te
i f ( rows > r c e n t e r − dim && rows < r c e n t e r )
{ // upper par t

r t i c = c l a s s == 2
&& pid > ( c c en te r−dim)
&& pid < ( c c en t e r+dim)
? r t i c −1: r t i c ;

}

i f ( rows > r c e n t e r && rows < r c e n t e r+dim)
{ // lower par t

r t i c = c l a s s == 2
&& pid > ( c c en te r−dim)
&& pid < ( c c en t e r+dim)
? r t i c +1: r t i c ;

}

Armed with these quantities, at the beginning of each frame it computes
the new position of the object exploiting the code shown below.

int sum tic = Sum( c t i c ) ;
i f ( sum tic > 0) c c en t e r=c c en t e r+ve l x ;
i f ( sum tic < 0) c c en t e r=c cente r−ve l x ;

sum tic = Sum( r t i c ) ;
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i f ( sum tic > 0) r c e n t e r=r c e n t e r+ve l y ;
i f ( sum tic < 0) r c e n t e r=r c en t e r−ve l y ;



Appendix C

Single Thresholding Process

During this work, it has been implemented a method to extract relevant
information from the object that is being tracked in real time. As shown
in Figure 3.2, the input image is sift through a few steps each of which
represent a feature. Every step works separately, so that each feature has its
own thresholding.

Figure C.1: In-node features extraction parallel scheme : skin-like moving
object.

This is not the only approach that can be used. Indeed, in Chapter 3 we
gave a hint to the parallel method. Basically, the features are normalized and
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then combined in a single quantity which is thresholded in order to decide
the pixels that belong to the object of interest.

For example, if we are interested on tracking moving objects, a possible
solution is shown in Figure C.1.

This system did not give appreciable results because motion detection
prevails on segmentation, that is, has more influence on the system so that,
the skintone is not useful to remove the noise anymore.

A density function can be applied after the thresholding in order to re-
move part of the noise. We obtain interesting results applying the adaptive
thresholding explained in Chapter 5 to both thresholds (the one for the com-
bination of segmentation and motion and the one for the density function).

This approach is really interesting because it produces a more flexible
system able to adapt itself at different light conditions. However, the system
shown sensibility to the noise so that, it is less reliable compared to the serial
system developed during this work.




