

UNIVERSITÀ DI PISA

College of Engineering

Master’s Degree in Automation Engineering

Candidate:

Vittorio Lippi ___________

Supervisors:

Prof. Carlo Alberto Avizzano _______________

Prof. Giuseppe Lipari _______________

Prof. Emanuele Ruffaldi _______________

DESIGN AND DEVELOPMENT OF A HUMAN
GESTURE RECOGNITION SYSTEM IN

TRIDIMENSIONAL INTERACTIVE
VIRTUAL ENVIRONMENT.

Graduation Session of 28/02/2008
accademic Year 2006/2007

Consultation Allowed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14695041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

To my parents.

iv

v

Abstract

This thesis describes the design and the development of a recognition system for
human gestures. The main goal of this work is to demonstrate the possibility to ex-
tract enough information, both semantic and quantitative, from the human action,
to perform complex tasks in a virtual environment. To manage the complexity and
the variability adaptive systems are exploited, both in building a codebook (by un-
supervised neural networks), and to recognize the sequence of symbols describing
a gesture (by Hidden Markov models). An high level description language for
the recognized processes has been produced. It describes the environment using
fuzzy logic and produces prior probabilities for recognized gestures derived from
the context they are performed in.

vi

vii

Acknowledgments

Thanks to the professors, the researchers and the students who work at
PERCRO laboratory where I had done this work, in particular to my supervi-
sors, Carlo Alberto Avizzano and Emanuele Ruffaldi, and to Paolo Tripicchio,
Edoardo Sotgiu, Otniel Pontiello, Walter Aprile, Silvia Pabon, Glauco Ferrari
and Alessandro Nicoletti who provided information about hardware and software
resources available at the laboratory. In particular Davide Sechi worked with me
to integrate my work in a virtual environment and Massimo Sattler helped me in
preparing movies of my experiments.

Thanks to Alessio Micheli, professor of the faculty of Computer Science
of university of Pisa, who reviewed an italian version of chapter 5 giving me
precious advices how to improve it.

Thanks to my parents, Giuseppe and Donatella who have been extremely
supportive during the realization of this work, and had a substantial influence
on my choice to became an engineer. Choice that gave me the opportunity to
find, being in contact with the world of science and technology, a nowadays
uncommon trust in human capabilities and an enthusiasm for the future.

Thanks to Silvia Bonotti who helped me to write this thesis in English by
reviewing the chapters 5 and 6.

I would like to thank also some friends who helped me in several ways during
the realization of this thesis and the whole university: Giacomo Ceccarelli, physi-
cist, who has always been ready to discuss mathematical issues (and even more)
with me; Nicola ”Talos” Gazzeri, colleague computer engineer, who shared with
me the secrets of operating systems and the passion for Weissbier; My cousin and
friend, Giovanni Vittorio ”Penna” Spina, colleague computer engineer, who has
been a supplier of materials, ideas and hints about informatics and engineering
issues.

viii

Contents

1 Introduction 1
1.1 Gesture Semantic . 2
1.2 Thesis Objectives . 3
1.3 Application Details . 3

2 State of Art 5
2.1 Main issues in gesture recognition 5
2.2 Capturing System . 5

2.2.1 Visual Recognition . 6
2.2.2 Haptic Interfaces . 6
2.2.3 Sensorized Gloves . 8

2.3 Codebook Definition . 9
2.3.1 Precision and Complexity 9

2.4 Quantization and Classification 10
2.4.1 Self Organizing maps . 10
2.4.2 Bayesian Learning Self Organizing Maps 13
2.4.3 Learning Vector Quantization 13
2.4.4 Radial Basis Function Networks 14
2.4.5 Support Vector Machines 14
2.4.6 A comparative experiment 15

2.5 Sequences Recognition . 17
2.5.1 Neural Networks . 17
2.5.2 Hidden Markov Models and Human Gestures 20
2.5.3 Dynamic Time Warping 22

2.6 High Level Description . 22
2.6.1 Grammar and Language Model in Speech Recognition . . 22
2.6.2 Bayesian Programming 23

2.7 Problems and Solutions . 24
2.7.1 Segmentation . 24
2.7.2 Two Handed gestures . 25
2.7.3 Retrieving Quantitative Informations 27

ix

x CONTENTS

3 System Overview 31
3.1 Objectives . 31
3.2 Structure . 31
3.3 Enhancing Performance . 33
3.4 Complex Tasks . 33

4 Codebook Definition and Use 37
4.1 Components and Parameters . 37
4.2 Principal Component Analysis 38
4.3 Frequency Analysis . 38
4.4 Neural Quantization . 41
4.5 Information, Precision and performance 41

5 Sequences Recognition System 43
5.1 Classifier Structure . 43
5.2 Training Principles . 44

5.2.1 MMI in the context of sequence classification 44
5.3 Training Algorithm . 45

5.3.1 Gradient Computing . 46
5.3.2 Constraints Management 47
5.3.3 Negative Examples . 50
5.3.4 Computational complexity 51

5.4 Mutual Information and Classification 51

6 Logical Environment 53
6.1 Fuzzy Logic . 53
6.2 Elements and syntax . 56

6.2.1 Objects Declaration . 56
6.2.2 Functions . 57
6.2.3 Statements . 58
6.2.4 Facts . 59
6.2.5 Rules . 59
6.2.6 Actions . 61
6.2.7 Prior probabilities . 62

6.3 Interface . 62
6.3.1 Retrieving truth values 62
6.3.2 Notifying a Fact . 63
6.3.3 Retrieving Prior Probabilities 63
6.3.4 Performing Actions . 63

6.4 The Inference Engine . 63
6.4.1 Research in the Space of Statements 64

CONTENTS xi

6.4.2 Representing implications 65
6.4.3 Theoretical notes . 66

6.5 Efficiency and Debugging . 68
6.6 An Example . 68

6.6.1 The Environment . 68
6.6.2 The Code . 69
6.6.3 The set of actions . 71
6.6.4 Running The Application 72

7 The Hardware 75
7.1 The PERCRO Dataglove . 75
7.2 The Pohlemus tracker . 77
7.3 The Vicon Tracker . 78

8 Demonstrative Applications 79
8.1 Assembling Application . 79

8.1.1 Video Messages . 80
8.1.2 Complete Logic Description 80

A Further Implementation Details 85
A.1 Application Overview . 85
A.2 Sequence Recognition library . 88

A.2.1 Methods and Structures 88
A.2.2 Detailed Code . 88

A.3 Logical Environment management library 92
A.3.1 Methods and Structures 92
A.3.2 Detailed code . 92

B Hidden Markov Models 97
B.1 Markov Chains . 97
B.2 Hidden States and Emission Matrix 98

B.2.1 Vectorial Output Symbols 99
B.3 Notation . 100
B.4 Key problems of interest . 101

B.4.1 The Forward-Backward procedure 102

C Principal Component Analysis 103
C.1 Definition . 103
C.2 Using The Covariance Matrix . 104

xii CONTENTS

D Competitive Neural Networks 105
D.1 Architecture . 105
D.2 Training . 106
D.3 Adjusting Biases . 106

List of Figures

2.1 A scheme of a generic gesture recognition system 6
2.2 Phantom, a commercial haptic device produced by SensAble . . . 7
2.3 Haptic device for writing recognition and correction 8
2.4 Variance of series produced with PCA 11
2.5 A possible topology for a SOM 12
2.6 LVQ implemented in Matlab . 14
2.7 Radial basis function network 15
2.8 Support vector machine optimal hyperplanes and training samples 16
2.9 The concept of kernel function 16
2.10 A recurrent neural network. 19
2.11 Left-Right model . 21
2.12 Generic structure of a bayesian program 23
2.13 A gesture ambiguous until its end 24
2.14 CHMM . 25
2.15 Ladder diagram for CHMM . 26
2.16 Finger painting . 28
2.17 Selecting from a menu . 28
2.18 Controlling a shape through hand position 29

3.1 System overview . 32
3.2 Two handed gesture ladder diagram with logical states 34

4.1 Encoding input data . 37
4.2 PCA for series produced by a gesture 39
4.3 Data stream describing screwing and unscrewing 40
4.4 Overfitting . 42

5.1 The parameter update produced by the normalization and the pro-
jection of the gradient . 48

5.2 Simplified constraints management 50
5.3 Target function and accuracy . 52

xiii

xiv LIST OF FIGURES

6.1 A situation in virtual environment and fuzzy values for assumpion
on it . 54

6.2 Example of imprecise concepts described by fuzzy logic 55
6.3 A rule: the conseguence has a truth value that is the minimum of

the ones of its causes. 61
6.4 The virtual environment represented with XVR 69
6.5 Prior probabilities changing during the task 74

7.1 PERCRO Dataglove . 76
7.2 Goniometric sensor . 76
7.3 Pohlemus Liberty hardware. 77
7.4 Vicon camera . 78

8.1 The virtual environment at the beginning of the task. 80
8.2 List of performed actions . 81
8.3 Prior probabilities influenced by the context 82

A.1 Simulink Scheme . 86

B.1 Graphic representation of a 2-state HMM 98
B.2 A ladder diagram for HMM . 99

C.1 Example of PCA . 103

D.1 Competitive Networks in Matlab 105

Chapter 1

Introduction

Gesture recognition is becoming an important task in technology and science. At
first it can be considered an advanced way to interface the user to an informatics
system, exploiting the significance of natural human actions as commands. This
would produce a greater efficiency both in using and in learning how to use the
system. In [WB] the main advantages in using gesture recognition have been
summarized:

• natural interaction: Gestures are a natural form of interaction and easy to
use1;

• terse and powerful: A single gesture can be used to specify both a command
and its parameters;

• direct interaction: The hand as input device eliminates the need for inter-
mediate transducer.

Beyond this, a system capable of reading a significance in human behavior
can be useful when the task performed by the user is to be studied. Performing an
operation in a virtual environment a user can test the effectiveness of his practical
choices and to train himself to work in various situation, in the meanwhile the
gesture recognition system could trace the steps performed: a model of the behav-
ior of a skilled performer could be produced, and a generic user can be aided by
the system to reproduce it. This can be useful in context where staff training, and
producing documentation are crucial economical issues in the working process.

1Again in [WB], is however noted that using gesture only interface can make the user tired
of performing movement in free space and requires him/her to remember the set of gestures and
their meaning. Actually, this arguments are applicable to every interface system, isn’t it difficult to
remember unix commands, and harmful for hand tendons to use a keyboard?

1

2 CHAPTER 1. INTRODUCTION

Distinguishing gestures is a matter of identifying their characteristic by, ex-
plicitly or implicitly, creating a model for them. An experiment of gesture recog-
nition is also a validation test for hypothesis assumed about human movements.
Hence techniques of gesture recognition can gain a great advantage from the sci-
entific study of human behavior, but also be a fundamental component of it pro-
ducing and testing models for a ”from inside” description of actions.

1.1 Gesture Semantic
This section is mainly based on [MMC05] and [WB].
A gesture may be defined as physical movement of the hands, arms, face and
body with the intent to convey information or meaning. Hence gesture recognition
consist in the interpretation of movement as semantically meaningful commands.

The typical human computer interaction is strongly consrained by the interface
and limited to manipulation of interactive devices (keyboard, mouse, trackball
etc.). This interaction results in a simplified gesture the meaning of which is
defined by convention. Natural human gestures are variable not just in quantitative
aspects like speed and trajectory but also in their nature. Gestures can be classified
according to their function:

• semiotic: gestures used to communicate meaningful information;

• ergotic: gestures used to manipulate the physical world and to create arti-
facts;

• epistemic: gestures used to learn from the environment through tactile or
haptic exploration;

Being this work focused on interacting with a virtual environment, but without any
force feedback, the gestures exploited would be prevalently semiotic, carrying
information for the computer. Anyway the form of the gestures used would be
inspired by the functional execution of ergotic gestures, for example a gesture
triggering the movement of an object in the virtual environment could replicate
the act of grabbing and moving it. A further classification of semiotic gestures is
possible:

• symbolic Gestures: these are gestures that have a single meaning (by cul-
tural convention). The ”OK” gesture and sign language are examples of this
category;

• dietic gestures: these are the gestures of pointing or, in general, directing
the listeners attention to specific events or objects in the environment;

1.2. THESIS OBJECTIVES 3

• iconic gesture: these gestures are used to convey information about size,
shape or orientation of the object of discourse;

• pantomimic gestures: these are gestures typically used showing the use of
movement of some invisible tool or object in the speaker’s hand.

Gesture types can be also ordered according to their speech/gesture dependency.
This is described by Kendon’s Continuum:

In contrast to this rich gestural taxonomy, current interaction with computers
is almost entirely free of gestures. The dominant paradigm is direct manipulation.
Even the most advanced gestural interfaces typically only implement symbolic or
dietic gesture recognition.

1.2 Thesis Objectives
There are several gesture recognition systems in literature2, the main issues dis-
tinguishing this work are:

• Design oriented to scalability;

• Exploiting discriminative training for gesture models, and knowledge about
the environment to enhance performance;

• Let the user act through more than an agent in the virtual world;

• Coordinate use of two hands;

• Retrieve both semantic and quantitative informations from the gestures;

1.3 Application Details
The gesture identification system described in details in this thesis is a frame-
work implemented through C, C++, Matlab/Simulink, and XVR3. The principal
operations performed by the system are:

• reading the user position (in the sense of hand coordinates in space and fin-
gers configurations). A sequence of sampled position is the raw description
of users dynamics;

2The state of art in gesture recognition is the subject of chapter 2.
3MATLAB and Simulink are trademarks registered by Matworks inc. XVR is a scripting

language oriented to virtual reality and online application

4 CHAPTER 1. INTRODUCTION

• processing the stream of data to obtain a description of the gestures as a
sequence of symbols (codebook);

• creating gesture models based on collected examples;

• real time gesture recognition;

• controllng a virtual environment according to user’s actions;

• retrieve useful informations from the environment;

The hardware exploited to read users position consist in a electromagnetic sen-
sor of position and orientation and a sensorized glove, described in details in 7.
The construction of a codebook, and the real time encoding are performed with
Matlab as explained in 4. Sequence recognition and a logical description of the
environment are implemented by two libraries built in C++, based on the principia
respectively explained in 5 and 6.

Chapter 2

State of Art

2.1 Main issues in gesture recognition
Gesture Analysis requires several stages. First of all data about the gesture per-
formed should be in some way collected. There are several kind of sensors capable
of retrieving significant data about human positions and movement: an overview
about possible hardware solutions is presented in 2.2, while more details about
the hardware effectively used in this work are presented in chapter 7. The data
collected are then encoded in a useful way. This means that a code identifying
interesting user’s dynamic configuration should be somehow defined. The set of
symbols used and the encoding rules to obtain them from input data are known
as codebook. Using a codebook is a way to make the stream of input data leaner,
aiding the efficiency of the next elaboration steps. In for details about codebook
definition in this work see chapter 4. The last operation is the recognition of the
symbols sequence produced encoding the input data. Actually this step can incor-
porate the former, using a classification system that takes as input the raw sampled
data, but this solution is not optimal as will be clear in the next paragraphs. Se-
quence recognition is the core process of gesture recognition. Beside the general
approach given in this chapter (paragraph 2.5) sequence recognition is described
with details concerning this work in chapter 5 and paragraph A.2, the appendix B
describes sequences recognition using Hidden Markov Models.

2.2 Capturing System
In order to classify human gestures an proper hardware is needed. Considering the
complex nature of human movements the acquisition hardware should be able to
retrieve a lot of data (compared to the ones required for speech recognition, or for
the common interface devices). Specific solutions are hence needed. The systems

5

6 CHAPTER 2. STATE OF ART

Figure 2.1: A scheme of a generic gesture recognition system

for gesture capturing consist basically in visual recognition and recognition based
on weared sensors.

2.2.1 Visual Recognition

Visual recognition exploits cameras to retrieve users position. Commercial web-
cams are not usually suitable for this purpose. This is because the usual sampling
ratio of 60 fps is too slow compared to human dinamics. The recognition is often
based on markers tracking, like in the Vicon system, described in section 7.3. For
hand recognition gloves of different colors can be used as visual markers [AJ05].
Identifying hand and finger position from hand shape (a so called blob) is the base
of several systems like [MB97]

2.2.2 Haptic Interfaces

Haptic systems interfaces the user via the sense of touch by applying forces, vi-
brations and/or motions to the user. This mechanical stimulation may be used to
assist in the creation of virtual objects (objects existing only in a computer sim-
ulation), for control of such virtual objects, and to enhance the remote control of
machines and devices. To produce a feedback the aptic interface should gather
interesting informations from user actions. Gesture recognition can be the most
important component of an haptic application. In [JS02] a device to teach to write
japanese characters is presented. A force feedback helps the user to move the pen
(the haptic device) on the right trajectory. In order to decide which correction
apply on user action, the system should recognize the written character using the

2.2. CAPTURING SYSTEM 7

Figure 2.2: Phantom, a commercial haptic device produced by SensAble

8 CHAPTER 2. STATE OF ART

informations from the haptic device itself.

Solis.JPG

Figure 2.3: Haptic device for writing recognition and correction

2.2.3 Sensorized Gloves

Glove based system represent one of the most important application and research
field in gesture recognition[LDD]. They consist in a glove the user can wear
equipped with an array of sensors. Some gloves have some kind of force feed-
back, so they can be considered a kind of haptic device. The first experiments on
sensorized gloves started in the ’70s. The earliest devices where usually appli-
cation specific, mounting few hardwired sensors. The main differences between
gloves produced nowadays are in the kind of sensors, the way they are connected
to the hand (supported by a cloth or directly attached to fingers), the kind of data
gathered. Commonly used sensors are piezoresistive, optical fibers (which change
the light intensity they carry when bended) and hall effect sensors. The usually
retrieved data are hand joint positions, fingertip position or some mix of those.

2.3. CODEBOOK DEFINITION 9

2.3 Codebook Definition
This section introduces briefly a general concept of codification and analyzes the
advantages in using it for this application. Several method described in literature
are then presented and compared. The encoding is a sort of feature extraction
from raw input data. Codification can be seen as a pre-classification operation
(the symbol is the label of a class including the input element) or as quantiza-
tion (the symbol can be decoded obtaining an element in the domain of input
elements). Even if the codebook in this application is used just to encode input
data, the concept of quantization will be referred in this chapter when needed to
take some conclusion or when, traditionally, the algorithm explained is referred as
a quantization algorithm. The codebook can be manually produced on the basis
of a deep knowledge of the problem or with adaptive methods. The first method
is applicable just when data have a simple and easily understandable structure.
Human gesture complexity would require a too large set of rules to be explicitly
listed (coherently!) and usually difficult to be defined. Moreover the encoding
rules would have to be written again in case of modification/improvement. Hence
through the chapter only adaptive methods will be considered.

2.3.1 Precision and Complexity
Using a codebook leads to two simplification of input data:

• Quantization;

• Complexity reduction;

The former consist in representing the input data with a finite set of symbols, the
latter in reducing the number of data series taken in account.

Quantization is associated to a loss of precision. Quantization is hence consid-
ered a non conservative method. Even if in the application described the codebook
is used just to encode the data in a useful way, in order to quantify it also a de-
coding stage should be considered, so that the precision achievable encoding and
decoding the data is the quantization precision. The measure of precision loss
introduced by a quantizer (that represent encoding and decoding together) is the
average distortion:

D =
L

∑
k=1

∫
m∈Pk

d(m,vk) fM(m)dm (2.1)

Where L is the number of symbols in the codebook, Pk is the subset of the input
data domain M associated with the kth symbol by the quantizer, d(m,vk) is a
measure of distance between an element m ∈M and the value vk used to represent

10 CHAPTER 2. STATE OF ART

all the values m ∈ Pk. A quantizer is optimum when minimizes D for a given
fM(m). The distance d(m,vk) could be defined in various way for example the
commonly used

d(m,vk) = (m− vk)2 (2.2)

When using D is referred as mean-square distortion. It is anyway to point that
representing a set of input vectors with a symbol is not just a simplification, but
also a first step of the generalization performed by the classification system.

Reducing the number of data series brings advantages in term of speed having
the recognition system less computation to do1, and of efficiency having less pa-
rameters to adapt in the recognition system: the number of parameters affects not
only the duration of the adaptation phase, but also the quality of the results. An
adaptive classification system with too much parameters can happen to be affected
by overtraining that is an exceeding adaptation to the examples given, with loss of
generalization. A theoretical explanation of this intuitively possible phenomena is
given in [Vap99], where the risk of making a classification is shown to grow with
the scattering capacity of a classifier. This comes in expense of a certain loss of
information. The series of the reduced set should be a certain combination of the
original set of values build to maximize the information brought. An indicator of
how much information is preserved reducing the complexity could be the percent
of the total variance of the original series brought by the ones of the reduced set:

V% = ∑S′∈R var(S′)
∑S∈O var(S)

·100 % (2.3)

Where R is the reduced set, and O the original set of data series. As example
consider the following graphic showing how variance is distributed in the original
and in a transformed set. The transformation is performed through PCA, or Prin-
cipal component analysis (see appendix C), notice how a reduced set featuring the
first 3 transformed series is capable of holding more than the 90% of the original
variance. The data used in the example are sampled by the sensorized glove used
in this work (see the chapter 7 for details) while performing movements with the
left hand.

2.4 Quantization and Classification

2.4.1 Self Organizing maps
Self organizing maps, or SOMs, are classification networks mapping the the in-
put vectors to an output space with lesser dimensions. SOMs are so called be-
cause they are trained without supervised algorithms. A peculiarity of this kind of

1Of course data encoding should be simple and fast.

2.4. QUANTIZATION AND CLASSIFICATION 11

Figure 2.4: Variance of series produced with PCA

network is that it is capable of keeping topological informations about the input
vector. This mean that near input vectors are associated to near neurons in the net-
work. Near in this context is meant in the sense of a norm (usually the euclidean
norm) for the input neurons, while for the network neurons a predefined topol-
ogy is given. Every neuron i of a SOM has an associated vector with the same
dimension of input vectors, the weight vector2 wi. When a vector is presented to
the network an activation value for every neuron is computed, usually the nega-
tive euclidean distance between the input and the weight vector. The neuron with
the highest activation value is considered the winner and identifies the input class.
Training is performed giving as input the samples of the training set and modi-
fying the weight of the winner vector to be more near to the given sample p(t),
where the integer t is the step of the algorithm.
For example consider the Kohonen rule[Koh90]:

wi(t) = wi(t−1)+α(p(t)−wi(t−1)) (2.4)

Where α is a coefficient called learning rate. The same modify, is applied to the
neurons near to the winner, according to the chosen topology (the neighborhood).
During the training the neighborhood is made progressively tighter, and al pha is
decreased in modulus.

2The term comes from the traditional feed-forward neural networks where neuron inputs (net
inputs or other neurons output) are multiplied with a weight before computing the neuron output
value, that is function of them. Commonly the weight are the adaptive component in the net, so in
the case of a SOM, the term weight points that the vector is the adapted during the training. But
they are not weight in a proper sense, because computing the activation value shall not include a
multiplication with them.

12 CHAPTER 2. STATE OF ART

Figure 2.5: A possible topology for a SOM

2.4. QUANTIZATION AND CLASSIFICATION 13

2.4.2 Bayesian Learning Self Organizing Maps
The model described above does not compute neither exploits any information
about probability distributions of the classes of samples given. That can affect
negatively the performance in application where input vectors are produced by
different probability distributions and the classification success is more impor-
tant than minimize the quantization error[YA97]. Assuming that the vectors are
produced by a mixture of gaussians the parameters θi to identify are the a priori
probability P(ci) for the class ci to have emitted a symbol, the mean vector m̂i and
the variance matrix Σ̂i for the gaussian representing the ith class. The Bayesian
Self organizing Maps implement the identification of such parameters based on
the a posteriori probability maximization of the example vector to belong to a
class. The winner is the class associated with the distribution more likely to have
emitted the input vector. The updating formulas are:

m̂i(t +1) = m̂i(t)+αP(Ci|p(t),θi)(p(t)− m̂i(t)) (2.5)

Σ̂i(t +1) = Σ̂i(t)+αP(Ci|p(t),θi)
{
[p(t)− m̂i(t)][p(t)− m̂i(t)]T − Σ̂i(t)

}
(2.6)

P(ci|t +1) = P(ci|t)+α[P(ci|p(t),θi)−P(ci|t)] (2.7)

The posterior probability takes the role of the concept of neighborhood and
at every step all the neurons are update proportionally with it. BSOM are capa-
ble to achieve an optimal accuracy in classifying vectors produced by gaussian
distributions.

Another kind of unsupervised networks, exactly the one used in this applica-
tion, is described in detail in appendix D.3

2.4.3 Learning Vector Quantization
Learning vector quantization (LVQ) is a method to quantize vectorial inputs ex-
ploiting a competitive neural network together with a supervised network. Com-
petitive neural networks have several output neurons, just one, considered the win-
ner on a certain basis has a exit value equal to 1, while the other neurons have it
null. The index of the winner neuron is a label for the class In the picture 2.6 the
LVQ implemented by Matlab is shown as described in the documentation. The
architecture of this system is made of two layers: the first is a not supervised com-
petitive network the second is a linear supervised network. The first layer learns
automatically to cluster input vector: the clustering is based just on the euclidean
distance between the input vector and a weight vector representing the cluster. The
supervised layer is trained later, taking as input the output of the already trained
first layer,and the desired label for its cluster (symbol). Notice that the first layer
can define more clusters than the desired output labels (both are parameters to set)

14 CHAPTER 2. STATE OF ART

Figure 2.6: LVQ implemented in Matlab

a recognized class included the elements classified in more than a cluster by the
first layer. Several training algorithm are available.

2.4.4 Radial Basis Function Networks
A radial basis function network, or RBF, is a neural network the neurons of which
have an activation function φ(x)dependent only from the distance of the input vec-
tor x from a given center vector c, so that φ(x) = φ(‖x− c‖). The structure of an
RBF network as implemented in matlab is shown in figure 2.7, they work simi-
larly to LVQ. The function purelin referred in the picture is a linear transformation
with trainable parameters. RBF network usually count a bigger number of neurons
than other kind of networking performing the same task, but they are quicker to
train[Mat04]. Training principles can be both geometric (for example least square
error) or statistic (for example maximum likelihood). Notice that in case φ(x) is a
gaussian function RBF networks become a trainable model of a gaussian mixture.
Besides classification they can be used to interpolate functions(also exactly, and
computing directly their parameters).

2.4.5 Support Vector Machines
Support vector machines, or SVM are classifiers trained in a supervised way, ca-
pable of shattering object of the input space into two classes. The main limitations
in performing this task with neural networks is that linear neural networks are not
capable of separating elements of non linearly-separable classes and multilayer
linear networks are complex to train because of the great number of parameters.
The SVM are designed to solve these problems. they can be trained with an ef-
ficient algorithm and classify elements of non-linearly separable classes. Basi-
cally the SVM is a linear classifier that defines the hyperplane separating the two

2.4. QUANTIZATION AND CLASSIFICATION 15

Figure 2.7: Radial basis function network

classes searching the maximum margin from it and the elements of the training
set. Shattering non linearly separable inputs is acheived through the use of kernel
functions, as explained in the following paragraph.

Kernel Methods

Non-linearly separable classes of vectors can be transformed into linearly sepa-
rable classes by an opportune function that maps their elements on an another
space euclidean, usually with higer dimension than the original one. Computing
the best shattering hyperplane for a SVM involves computing the inner product of
the input elements. This can be computed in the space mapped by the function. A
kernel function generalize this procedure, being the composition of the mapping
from the input space to the higher dimention one and the inner product. Hence it is
a function that maps the space of couples of input vectors to reals. Usually it is de-
fined without using an explicit transformation between the two spaces. There are
some theorems/rules that defines which fuctions can be cosidered a kernel func-
tion. Every algorithm exploiting an inner product can use this method. Besides
allowing non-liner shattering with linear methods, the kernel function can also be
applied to shatter classes of non vectorial elements, once the kernel function is
defined on them.

2.4.6 A comparative experiment

In the article [AC00], three architectures for gesture recognition are compared:

• SOM as codebook, HMM as sequence recognitor;

16 CHAPTER 2. STATE OF ART

Figure 2.8: Support vector machine optimal hyperplanes and training samples

Figure 2.9: The concept of kernel function

2.5. SEQUENCES RECOGNITION 17

• RBF as model for emission probabilities for HMM;

• dynamic time warping;

Dynamic time warping is explained in section 2.5.3.
The results in classifying 5 gestures are displayed in the following tables. The

models have been trained with examples build making five people performing 45
gestures.
The RBF outperforms the other methods, anyway due to limited training data3 is

gesture SOM RBF DTW
stop. 83.6 84.2 76.2
hi r. 85.4 88.9 76.2
hi l. 85.0 88.5 75.0
go r. 85.5 87.2 74.6
go l. 84.2 91.2 77.3

Table 2.1: Recognition Rate in %

gesture SOM RBF DTW
stop. 6.4 5.2 6.6
hi r. 7.1 4.3 7.4
hi l. 7.4 4.7 7.0
go r. 6.3 5.0 6.0
go l. 7.4 4.4 6.1

Table 2.2: % of wrong classifications

not possible to conclude that in general RBF are absolutely best. The HMM have
been trained with Baum-Welsch algorithm4, an improvement in the performance
for the hybrid SOM-HMM is expected by the authors, using a principle leading to
an higher discrimination power5.

2.5 Sequences Recognition

2.5.1 Neural Networks
Neural network is a classical approach to pattern recognition. The simplest so-
lution is to feed a classical kind of neural network (SOM,LVQ,feed forward etc.)

3It is an article authors admission.
4Maximizing likelihood.
5That is, in part what is proved in this thesis

18 CHAPTER 2. STATE OF ART

with the sequence represented as a vector. This simple solution is limiting: a
gesture is characterized by a dynamic and it is not easy to create an opportune
vectorial representation of it. There are hence several architectures created to ap-
ply the neural networks to not vectorial features [AS] [PF97], in particular for
sequences is possible to use a recurrent neural network or RNN. In the recurrent
neural networks the output is fed back (with one or more delay step) as an in-
put. This makes the network a dynamic system. The architecture in figure very
general: computationally equivalent to a Turing machine6. The way to train a re-
current neural network known in literature are various, as the principles that can
lead them are a lot. It is interesting to compare two different choice in training:

• Adapting the network in a classic way considering both the input and the
feed-back;

• Unfolding the network through time steps;

In the first case (also implemented in Matlab) the effect of the weight updating on
the fed-back values is not considered, this simplification does not create problems
in the most cases if a gradient algorithm is applied to train the weight7. In the
second, more accurate method, a network with several layers representing the
same recurrent element at different time steps. The system can be trained with
an usual error-backpropagation algorithm, but is to consider that the weight at
different time step are the same.

In this application neural network will be used just in the codebook, anyway
is important to define their capabilities as comparison term.
There are several desirable features in RNN, that should be guarantee also in the
sequence recognition system for the described application:

• good noise rejection;

• high performance in discrimination tasks[Bri90];

• great adaptability to different tasks;

• a wide literature about theory and practice of using RNNs is available;

Besides, there are some limitations that should be overcome in gesture recognition
to achieve a good performance:

1. the number of neurons can grow too much to reach a good performance;

6It is anyway difficult to know how many neurons/layers a network should include to perform
a given task. For example in neural networks are built adding neurons during the training since a
target accuracy is achieved.

7A second order algorithm can be too fast and emphasize the effect of the approximation

2.5. SEQUENCES RECOGNITION 19

Figure 2.10: A recurrent neural network.

20 CHAPTER 2. STATE OF ART

2. results not independent from the speed the gesture is performed with;

3. the generality of the model can make it seem an ”obscure” black-box8;

In the next section will be discussed how HMMs can avoid this limitations;

2.5.2 Hidden Markov Models and Human Gestures
In this section are discussed the reasons to use HMM in gesture recognition, the
current frontier of their application and the problem commonly arising in this
context. For an introduction to the model see appendix B.

An HMM is a stochastic dynamic system. In recognition application HMM
are adapted through examples to modelize the process to recognize (an HMM for
every process). The reason to use HMM are various:

• Defining a model structure, in case it is suitable for the application, even if
decreasing the generality can improve the efficiency, avoiding to weight the
system with the gathering of the information implicit in the model chosen;

• The number of parameters is relatively small compared to a neural network
capable of classifying processes of the same complexity[Mic05];

• HMM parameters have a probabilistic meaning that, integrated with infor-
mation about the context where they are applied, can be interpreted as ob-
jective characteristics of the analyzed process (physics[G.E],events[LR86]
etc.);

• HMMs are good models for processes that can happen with different speed,
because they can modelize a system that stay in the same state for several
steps;

• Although gesture recognition is relatively a new branch of pattern recog-
nition, HMMs have been exploited since the 70’s in application of speech
recognition, so a wide literature is available.

The first point is equivalent to say that HMMs are a good approximation of
human gestures. There are also more specialized version of HMM that allow state
transition just in one direction (the transition matrix is triangular), the left-right
models[Bis06]. They are employed successfully, besides gesture recognition,
written characters recognition[WZ02][JS02] and speech recognition[Cho90].

8This psychological argument is controvert (in the author honest opinion, obsolete) but it rises
so often that the fear that it could spread over users should be taken in account.

2.5. SEQUENCES RECOGNITION 21

Figure 2.11: Left-Right model

The second point is connected with the first: the less a model is general, less is
expected to be the number of parameters. Keeping the model as simple as possible
is not just good for training and running speed9 but also a good precept do decrease
the classification error, as proved, with statistical arguments in [Vap99].

The third point is important because meaningful parameters can reveal some-
thing about the process under analysis and because sometimes users and develop-
ers find unreliable adaptive system that are difficult to understand, as told about
neural networks (see 2.5.1)

The forth is a major point of strength of HMMs. Gestures have the evident
property of keeping their meaning independently from the speed they are per-
formed with. Anyway the natural capability of HMMs to cope with sequence
stretched through time has been found not sufficient in some applications and
modified HMMs explicitly taking in account a variable state duration have been
proposed[JP], this can also allow to specify a probability density for states time
duration that is not necessary the exponential one typical of HMM10. The problem
is connected with the difficulties in the numeric computation of emission probabil-
ities (formula B.15) for long sequences: Being the emission probability computed
as the product of terms smaller than 1 for every sample, it shrinks exponentially
to zero with the number of samples. When needed, representing parameters (that
are probabilities) with their logarithm can avoid such problems[JS02].

The last point gives a strong theoretical basis and a large set of well known
and well tested technical solution to apply to the problems arising in the innova-
tive field of gesture recognition. A lot of problems are shared between speech-
and gesture-recognition, hence also the solutions can be shared if opportunely
extended.

9The classification is anyway usually fast, algorithms are linear in the number of processes
considered and the length of the sequence[LR86], the classification itself usually does not happen
to be a critical issue in term of speed

10The probability for a Markov process to stay present state i at the next state is specified in the
model aii.Hence the probability of keeping the same state for k time steps is ak

ii.

22 CHAPTER 2. STATE OF ART

2.5.3 Dynamic Time Warping

Dynamic time warping is an algorithm for measuring similarity between two se-
quences which may vary in time or speed. In gesture recognition applications it
consist in creating a template sequence for every class of gestures, and matching
the input sequence with the class associated to the template nearest to it.For exam-
ple in [MB97] to work with sequences of different length the template is chosen
to be as long as the mean of the length of the training set, and it is build as mean
of the samples that have the same length of it. Then, when classifying a sequence
time alignment through a temporal transform function is performed to make the
input sequence to match with the template.

2.6 High Level Description

The human action is usually lead by complex intenctions. A complete analysis
of human gesture should hence take in account also an high level description of
the task. Historically, an example of high level description is the language gram-
mar exploited in speech recognition. Being gesture recognition exploited in more
complex task, more complex descriptions should be exploited. In this section,
after a brief introduction on grammar exploited in speech recognition, bayesian
programming would be presented as a possible way to modelize the high level
structure of the gesture. This will be useful as comparison term for the ad hoc
solution described in chapter 6.

2.6.1 Grammar and Language Model in Speech Recognition

A grammar is a precise description of a language that is, of a set of strings over
some alphabet. In other words, a grammar describes which of the possible se-
quences of basic items in a language actually constitute valid words or sentences
in that language, but it does not describe their semantics. In practice, in a speech
recognition application, a grammar could be used to restrict the number of possi-
ble recognized words to a smaller set. Usually the set of valid sentences is defined
by a set of rules. Languages like XML or semantic webs can be used in practice
for this purpose. The theory of grammars itself is beyond the scope of this work.
It is interesting to note that the language model can integrate, beside the grammar,
also a probabilistic model[Cho90]. For example an HMM can be used to modelize
the sentence and retrieve prior probabilities for the low level HMM modellizing
the single word.

2.6. HIGH LEVEL DESCRIPTION 23

Figure 2.12: Generic structure of a bayesian program

2.6.2 Bayesian Programming

Bayesian programming is a method to create a probabilistic model of a system
and to update it according to observed data. A bayesian program includes several
fact with associated probability (or probability distributions) and a set of rules
to update the probabilities. The bayesian program can answer queries returning
the probability of a fact requested by the user. The term bayesian describes an
approach that consider probability as the degree of reliability in the possibility
of an event, states prior probabilities and adapt them on the basis of observa-
tions11. Bayesian programming is particularly powerful in applications coping
with complex and uncertainly known environments, such as controlling a robot
for applications in the real world.

11The name comes from the Bayes theorem P(A|B) = P(B|A)P(A)
P(B) , that in this context is applied

to update the probability of the event A once B is observed. Historically speaking, it is not known
if Bayes would have used what today we call a ”bayesian approach”

24 CHAPTER 2. STATE OF ART

Figure 2.13: A gesture ambiguous until its end

2.7 Problems and Solutions
This section analyzes some problems often arising in gesture recognition and how
they have been faced by various author. It will be useful to understand the solu-
tions described in the following chapters.

2.7.1 Segmentation
A gesture has a finite duration that can vary and that is unknown to a recognition
system. Segmentation is the division of the input data stream in different segments
representing distinct gestures. It is a difficult task, due to the possible variations
of human behavior. In some applications [Ros96] HMMs are considered enough
powerful to determine the start and the end of a gesture: a gesture can be con-
sidered still performed until the probability of the sequence of data registered by
the sensors of being produced by it is higher than the probabilities of being pro-
duced by other gestures. Is also possible to classify sequences of defined length
and consider a gesture to be performed when the partial sequences are classified
as part of it. This second solution reduces the speed of the classifier limiting it
to give a response only at the end of a sequence12. But the real problem with it
is that some gestures can be ambiguous until they reveal their nature exhibiting
some peculiar aspect. An example could be, if the gesture performed is writing a
character, distinguishing a cursive ”o” from a cursive ”a” until the last stroke has
been written (figure 2.13).

Segmentation is usually an operation performed at a level higher than the sim-

12it can be acceptable if the sequences are enough short

2.7. PROBLEMS AND SOLUTIONS 25

Figure 2.14: CHMM

ple analysis of sequences with, for example, an HMM. This mean that an over-
standing model for the whole operation should exist. In application of speech
recognition this can be represented by the language grammar[Cho90], in case of
gestures in a virtual environment events should work to segment the action.

An interesting approach to the problem is shown in [WZ02] where handwrit-
ten English words are recognized through a variant of HMM called cascade con-
nection HMM or CCHMM. In this model low level actions (characters or kind
of strokes) are represented by left-right HMM. For every model a probability to
transit to other models is specified, also more than two levels are possible in this
model. It is like having several level of Markov processes, like shown in figure
2.14. Notice that in this case the last element in the left-right HMM has no self re-
cursion being considered the end of the stroke represented. This system is shown
to reach 82.34% recogniton rate in when the lowest level has 89.26% accuracy.
The main limitation of this approach is that it involves adaptating of a lot of pa-
rameters (due to the multiple levels modellized) this mean that a lot of examples
are needed (the experiment performed in the cited article needed a training set of
15000 examples).

2.7.2 Two Handed gestures

Using two handed gestures in computer interface is an advanced feature, hence
few experimental application have been documented. Anyway two handed gesture
recognition seem to be a great resource to produce a natural interaction interface
to the computer: some experiments show that two handed interaction is easier to
learn, faster and more accourate [AJ05].

26 CHAPTER 2. STATE OF ART

Figure 2.15: Ladder diagram for CHMM

Gestures performed with two hands together introduces the following prob-
lems in gesture recognition:

• the hardware should be complicated to gather informations about two hands,
without confusing them;

• the combination of two hands dynamics makes the gesture more than twice
complicated. This is because all the possible combination of the two move-
ment can come as input. The recognition system can have to incorporate
too much internal states to manage this complexity13;

• the hands could have a different importance in performing a gesture and
different degrees of influence one on the other’s action. Both these factors
can vary between gestures and during the same gesture;

Speaking of experimental applications the first problem is not so important: in
the present work the expensive electromagnetic tracking system can mount up to
4 position sensors, so using two hands doesnt increase its cost (neither echonomic
or computational), the matter in this case is just to set up two gloves (see chap-
ter 7); in [AJ05] a visual tracking system for two hands exploits coloured gloves,
and a visual system without particular markers is presented as one of the future
goals in this field. The other points are more complicate problems: the complexity
would suggest to create spare models for the two hands, while the mutual depen-
dence requires an unique model for the whole gesture. An interesting solution
is proposed in [MB97] where two HMMs representing hands dynamic are cou-
pled by introducing conditional probabilities between their hidden state variables.

13Again, gross overfitting would occour.

2.7. PROBLEMS AND SOLUTIONS 27

This model is called coupled hidden markov model or CHMM14, in figure 2.15 is
represented the associated ladder diagram (see appendix B) where the two lines
of nodes represents the internal states of the two HMM through time, emission
is not represented. CHMMs have let no decomposition of the prior probability
that might lead to a simple parameter identification procedure. Hence, to train
paramenters, an HMM C with states ci j representing a couple of states li and r j of
the two original HMMs is produced. At every training step the complex model is
adapted and than projected back on the CHMM, this makes the posterior probabil-
ity increase while the structure of CHMM is respected. The transition probability
between two states of C is

P(cik|c jl) = Ψ(P(li|l j),P(rk|rl),P(li|rl),P(rk|l j)) (2.8)

Using a linear Ψ, linear projection will factor the joint HMM into its components,
the transition probabilities:

P(li|l j) = ∑
l

P(rl)∑
k

P(cik|c jlP(rk|rl) = ∑
j

P(l j)∑
i

P(cik|c jl (2.9)

and the coupling parameters:

P(li|rl) = ∑
j

P(l j)∑
k

P(cik|c jlP(rk|li) = ∑
l

P(rl)∑
i

P(cik|c jl (2.10)

Recognizing 3 gestures, CHMMs in the article acheive an accuracy of 94.2 %.
The sample gestures where exercises of tai chi, that is a martial art.

2.7.3 Retrieving Quantitative Informations
As told in the introduction the most of gesture recognition applications are lim-
ited to symbolic gestures. Hence there is not a wide literature about gathering
quantitative parameters from gesture itself. In the figures are shown two sam-
ple applications [WB]. The figures 2.16 and 2.17 are examples of recognition of
deitic gestures. The user’s finger is used as a pointer to choose options and point
positions in the space. To work, this application has relatively simple require-
ments: recognize when the finger is extended (when the hand is closed it can me
moved without consequences) and localize the hand. The figure 2.18 shows an
application where the shape of an object,a parametric curve15, is defined with the
index fingers and the thumbs. Besides the more complicated recognition task this
reveals how the segmentation problem16 affects the recognition: the shape of the

14Note that it can lead to confusion with CCHMM seen in 2.7.1
15a Bezier curve.
16As seen in section 2.7.1

28 CHAPTER 2. STATE OF ART

Figure 2.16: Finger painting

Selecting.JPG

Figure 2.17: Selecting from a menu

2.7. PROBLEMS AND SOLUTIONS 29

Figure 2.18: Controlling a shape through hand position

figure has to be somehow fixed. Usually in such cases a temporal cue is used,
this means that after a certain time with the hands in places the shape is fixed so
the user can perform other tasks. In general recognizing a beginning and an end is
crucial when the gesture dynamic, and not just the position, brings the quantitative
information about the task performed.

Another important thing is the accuracy: the recognition system should be
designed to retrieve the geometric information needed with a decent precision.
For example, the Glove described in this work (see chapter 7) describes the
hand position with 11 degrees of freedom, with non sensors for finger abduc-
tion/adduction17, Hence this movement cannot give a measure. This shows how
retrieving quantitative informations is more limited by hardware capabilities than
symbolic gesture recognition that, being performed through neural or statistical
systems, can work well with approximative or noisy data.

17spreading or tighten the hand

30 CHAPTER 2. STATE OF ART

Chapter 3

System Overview

This chapter gives a general description of the system architecture designed and
employed during the design of the gesture recognition system. The problems han-
dled and the components implemented are mainly the same described in the pre-
vious chapter: there will be several references to it to show how classical methods
have been integrated in the work and to evaluate the original solutions proposed.
Details about important components of this works are given in the chapters from
4 to 7 while remaining details, concerning the implementation are described in
appendix A.

3.1 Objectives
The system design is led by the following objectives:

• achieve an high performance with an useful number of gestures;

• take advantage from the environment knowledge;

• Recognizing two handed gestures;

• performing complex operation changing the state of the virtual environ-
ment.

3.2 Structure
The system is a mainframe of programs and files, produced with C++, Matlab,
and XVR. The functional structure is summarized in picture 3.1, where arrows
represent a flow of data and blocks represent elaboration steps. The application
works continuously.

31

32 CHAPTER 3. SYSTEM OVERVIEW

Figure 3.1: System overview

The ”3D env” block represent the application of a 3D motion in virtual reality
implemented with XVR. Raw data coming for the glove are analyzed by fourier
transform and encoded by quantization through neural networks. Both the oper-
ations are performed in Matlab. The classifier runs continuously both producing
a classification response and integrating the prior probabilities computed on the
basis of the state of virtual environment. Sequence classification is implemented
by a library programmed in C++ (see chapter 5), it is compiled as a dll and so it
can be called by Matlab, the application, or a dedicated program. The ”Effects
Database”, representing the effects of the gestures performed on the virtual envi-
ronment, and ”Env. states”, representing the state of virtual objects are part of the
logical description of the environment implemented by a dedicated library (see
chapter 6). Producing prior probabilities is the way to aid the recognition system
exploiting the environment knowledge. The price to pay is that this knowledge
should be explicitly formalized and, at this stage, it should be done besides the
geometric model of the 3D virtual environment1.

This modular structure is designed to be easily adaptable to different applica-
tions. The use of Matlab, for signal processing and codebooking is decided with
the same aim, anyway, once the application is defined all the components can be
compiled and integrated in the same program.

1The aim of this work is mainly to test the efficiency of this solution. An application based on
it should come with tools to define the virtual environment

3.3. ENHANCING PERFORMANCE 33

3.3 Enhancing Performance
As told the section 3.1 two main objectives of this work is to keep the performance
high (in the sense of recognition ratio and, in general, of the accuracy perceived
by the users) and to exploit the context informations to do it.

In chapter 2 has been explained how sequence classifiers based on HMM (and
in general on generative methods) can exhibit a poor discriminative power com-
pared to methods like recurrent neural networks. Hence a discriminative training
principle is applied in adapting classifiers parameters (how this works is explained
in chapter 5).

Prior probabilities for gestures are computed on the basis of the situation in
which the gestures are performed (see chapter 6). This makes possible to compare,
at every recognition performed, just a small subset of plausible gestures, making
the system scalable to an higher number of gestures. If an information about prior
probabilities in known during the training of the classifier, the algorithm described
in chapter 5 can incorporate it: the result is a classifier trained focusing on the
differences between gestures more likely to be performed in the same context (and
hence confused). Notice that when performing a meaningful task every object has
really few ways to be used. For example a screw can only be screwed, unscrewed,
put in place to perform one of the two or moved; to unscrew it, it should be
screwed (at least partially) an to screw it, it should be put in place. considering
this reduces drastically the possibilities.

3.4 Complex Tasks
A logical description for the system is not used just to estimate prior probabili-
ties to enhance performance. It works as a model for high level processes. This
mean that the task performed by the user can be more complicated than the simple
hand movement: for example to assemble an object in the virtual environment the
components positions and interconnection should be tracked during the operation.

Logical variable are useful also to gather quantitative informations during the
process. The state of object and of the environment in general can define when
an operation starts and when it ends. This mean that the task performed can be
measured both in the duration and in the movement. The problem of segmentation
is in this way solved bringing it to an higher level: fixed length sequences of
samples can be recognized at low level while their effect is regulated by the high
level description.

Also two handed gestures are handled at high level. The hands are two ele-
ments in the virtual environment and the system can infer conclusions from their
state/position. Single handed gestures are recognized at low level, at the same

34 CHAPTER 3. SYSTEM OVERVIEW

Figure 3.2: Two handed gesture ladder diagram with logical states

3.4. COMPLEX TASKS 35

time the logical description is updated, this makes the prior probabilities change.
In figure 3.4 the model of the two handed gesture is represented graphically in a
fashion similar to the one seen in 3.4. Note that in the picture the white arrow
does not represent a probability but the effect of the current state on the environ-
ment (consequences of the recognized effect). This solution has the advantage
that the models are kept simple and so the training of the classifier. The disadvan-
tage is that complex gestures should be described explicitly at high level: this can
be acceptable in applications where the objective is the interaction with a virtual
environment and there is a logic leading the task;this solution can result tricky if,
like in the cited [MB97] (see), the movement itself is important and not the task.

36 CHAPTER 3. SYSTEM OVERVIEW

Chapter 4

Codebook Definition and Use

4.1 Components and Parameters
The encoding is performed in three steps:

• complexity reduction by principal component analysis (PCA);

• frequency analysis by fourier transform;

• quantization by neural networks;

The first two steps are linear transformations so the order they are performed is
not influent on the result. Making the principal component analysis first simplifies
the operation because fourier transform is applied on less series. Neural networks
are non linear and they are applied as final step. The encoding process is summa-
rized in figure 4.1, where the a series of 11 signals is reduced to 3 by PCA. Note
that once the PCA is applied the other two operations are applied independently
on the series. This elaboration requires several parameters to be specified:

• the number of series kept after PCA. This parameter determines the total
variance preserved;

Figure 4.1: Encoding input data

37

38 CHAPTER 4. CODEBOOK DEFINITION AND USE

• the time window on which the fourier transform is applied. This is a trade
off between the precision and the responsiveness of the system;

• the number of overlapping samples between time sequences;

• the number of classes recognized by the neural network1. This parameter
define the precision of the neural network and also the number of symbols
that the sequence classifier should recognize. If the symbols are too many
the parameters of the sequence classifier can grow excessively in number
and overfitting to the training set can occur.

This components are described in details in the following sections.

4.2 Principal Component Analysis
Principal component analysis is a procedure to obtain a linear transformation that,
applied to data series results in independent series. For procedure details see ap-
pendix C. The series produced are ordered on the basis of the variance they hold:
using just some of them nearly the whole variance of the system is maintained as
shown in the example in section 2.3.1.

Usually PCA is applied to data offline, once a series is fully available. In this
work an online encoding is needed. The codebook should be anyway defined in a
unique way, so the transformation can not be computed online just on a given time
window. The training set is hence used to define the transformation offline and to
estimate how many components should be hold to achieve a decent precision. The
transformation is than applied online to incoming data. In figure 4.2 is shown the
variance of the series obtained with the transformation computed on a training set
of five gestures applied on the series of raw input produced by a single gesture.

Note that, due to the minor complexity of the single gesture, compared to the
training set, less components are needed to describe it.

4.3 Frequency Analysis
A discrete fourier transform is applied on the series before using the neural net-
works. This let the system focus on the dynamics more that on the position. To
make the results independent from the position the first component of the fourier
transform, that represent the mean2 is dropped from the vector obtained. The

1The neural network has some other internal settings that will be explained later, this parameter
is the more significant at this level.

2Or the component at frequency zero

4.3. FREQUENCY ANALYSIS 39

Figure 4.2: PCA for series produced by a gesture

fourier transform results in a vector of complex, and in this form it is used as in-
put for the neural network (In the appendix D.3 will be clear that this introduces
no complications).

The algorithm applied is the fast fourier transform as implemented in Matlab.
It has the highest efficiency on vectors of samples with a number of elements that
is a power of two, and, in case it is not, a number with small prime factor like 50,
the number used in this work.

The fourier transform is conservative, in the sense that all the information is
kept (all but the willingly excluded element). This does not mean that the elab-
oration is not useful: samples of the same gesture can be different represented
as sequences of positions and result similar in terms of frequency. The ”weight”
of this consideration is not on the neural network, that can be leaner and more
efficient.

It is to point tht the vector produced by FFT is complex. The neural network
as implemented in matlab can work with complex values as well as real ones.
When just the modulus of the FFT is used as input for the neural networks the
performance can be strongly degraded. This happen because often the phase is an
important element in defining the nature of a gesture. Consider the data stream
produced by the ”screw” and the ”unscrew” gestures in figure 4.3. They have al-
most the same shape but inverted in time; for the property of the fourier transform:

F [x(t)] = X(f)⇔ F [x(−t)] =−X(− f) (4.1)

being the modulus of real signals symetric, the two signals have the same modulus
in frequency but inverted phase.

40 CHAPTER 4. CODEBOOK DEFINITION AND USE

Figure 4.3: Data stream describing screwing and unscrewing

4.4. NEURAL QUANTIZATION 41

4.4 Neural Quantization
The neural networks are used to finally produce the encoding symbol. The struc-
ture and the training algorithm exploited are explained in the appendix D.3. The
competitive neural network exploited perform a quantization splitting the input
space into several clusters. For every sequence there is a neural network trained
separately.

The neural network output is an integer representing the cluster in which the
input vector ha been classified. The numbers have no particular meaning, and no
relation one with the other.

During the training phase the same training set is used both for the neural
networks and the HMMs. The neural networks are of course trained before the
HMMs because they are needed to produce the symbols. The classification is
performed minimizing the quadratic error on the training set: this is possible ar-
ranging the clusters to have the minimum possible error on the most frequent input
vectors.

4.5 Information, Precision and performance
As anticipated in the previous chapters, the codebook is used just to translate the
input into symbols and never to do the opposite. Anyway it can be interesting to
check the precision of the codebook to evaluate its efficiency.

The principal component analysis, discarding components, is a projection of
the series on the hyperplane having the first N principal components as genera-
tors. These generators are independent, and hence orthogonal. Going back to the
first representation by the applying the pseudoinverse of the transformation the
quadratic error is the squared modulus of the dropped components multiplied for
the coefficient associated to them. The variance of the principal components, hav-
ing they zero mean, is the squared modulus itself. Hence the precision is directly
proportional to the amount of variance kept. Of course it is true for the training
set on which the transformation is computed. Experiments shows that once the
number of components hold is enough to save the 90% of the training set variance
there are no advantage to increase the number of series in term of classification
success.

The fourier transform does not introduce any loss of information. It just helps
the analysis. Experiments show that the efficiency can decrease from 90% to less
than 60% if the mean is not cut off.

The neural networks can be as precise as needed, just increasing the number
of neurons. The matter is that HMMs parameters grow linearly with the number
of output symbols. In figure 4.4 is shown how this produces overfitting when too

42 CHAPTER 4. CODEBOOK DEFINITION AND USE

Figure 4.4: Overfitting

many symbols are used.

Chapter 5

Sequences Recognition System

This chapter describes the peculiarities of the implemented classification method,
Hidden Markov Models are described in appendix together with the notation ex-
ploited.

5.1 Classifier Structure
As exposed in the Overview, the classification of sequences is implemented
through a collection of Hidden Markov Models (HMM) with vectorial output.
Each model represents a class of inputs. The classification is usually performed
by the assignment of a given input sequence to the class associated to the HMM
with the highest probability to emit it, as described in the formula:

C = maxargi (P(S|Mi)) (5.1)

Where C is the class given as output for the input sequence S. In this application,
for reasons that will be explained in this chapter, the classification is performed
by a different formula:

C = maxargi (P(Mi|S)) (5.2)

By this formalism, that represents the emission probability as a conditioned
probability, the sequence is considered as the evidence produced by the gesture
performed. Every gesture Mi is associated to its own probability

P(Mi) (5.3)

That is supposed to be given a priori and not to be dependent on parameters1.
The probability of a sequence S to be observed (namely, produced by the models

1This makes sense considering P(Mi) a concept of higher level respect to P(S|Mi). For exam-
ple, when recognizing gestures, the probability of a sequence to be observed during a gesture is
related to movement coordination (low level), while the probability of a gesture to be performed
is connected to the task performed (high level)

43

44 CHAPTER 5. SEQUENCES RECOGNITION SYSTEM

featured by the classifier) is

Pθ(S) = ∑
i

Pθ(S|Mi)P(Mi) (5.4)

where the subscript θ marks the probabilities dependent on the parameters, repre-
sented by the vector θ

5.2 Training Principles
Training2 the parameters of an HMM to maximize the emission probability of a
given sequence is a well known problem for which several algorithms are pro-
posed in literature. Maximization of likelihood is the basis of the most of them.
But, while representing a well known and (relatively) easy principle to match the
model to the distribution of examples, is not optimal for classification problems
in the general case, leading maximum likelihood to an optimal classifier when
the model chosen for probability distributions (in this case HMM) has the same
structure of the process that actually produces samples to classify, and the per-
formance of a classifier is not affected directly by the accuracy the probability
distributions of sequences classes are identified with. The important matter is the
relative probability distribution between classes. Hence the principle of Maxi-
mum Mutual Information (MMI) is followed[Cho90]. The Mutual Information
between a sequence S and the model Mi associated to the class i is:

I(Mi;S) = log
Pθ(S,Mi)

Pθ(S)P(Mi)
= logPi(S|Mi)− log(P(S) (5.5)

The aim of the training is to maximize the Mutual Information between the given
sequence and the model representing the class which the sequence is supposed to
be classified in.

5.2.1 MMI in the context of sequence classification
Before describing the algorithm performing the training, a short explanation of
Mutual Information is to be given, to understand how its maximization can aid
classification performance.

Mutual Information, in the form defined above, is a measure of the discrep-
ancy between the probability of the coincidence of observing the sequence S and
of perform the gesture described by Mi, given their joint distribution versus the

2The term, common in the field of neural networks, is used here with the meaning of ”model
parameters adapting based on examples”

5.3. TRAINING ALGORITHM 45

probability of their coincidence given only their individual distributions and as-
suming them independent. Usually Mutual Information is defined between prob-
ability distributions, and the form used here is referred as Pointwise Mutual In-
formation. Notice how the value is equal to 0 in case of independent variables,
grows with P(S|Mi) and decreases with P(S). P(S),as defined in 5.4, is the sum of
the emission probabilities of S by all the model in the classifier, weighted by the
probabilities P(Mi). Exploiting MMI is hence like to train the whole system to
make every single HMM to have an high probability to produce in output training
sequences belonging to the class they represent, and low probability to emit train-
ing sequences belonging to other classes.In the trade-off between the two goals
the former is achieved also by ML (it is not surprising that the first term in the
equation 5.5, Pθ(S)P(Mi) is the likelihood itself.), while the latter is peculiar of
this method. Although creating a model for each class this MMI-trained classifier
should be considered a discriminative rather than a generative method.

It could be useful to notice another interpretation of MMI,considering again
the definition[Bri90]:

I(Mi;S) = log
Pθ(S,Mi)

Pθ(S)P(Mi)
(5.6)

terms could be arranged to put in evidence the term P(Mi), not dependent on θ.

logPθ(Mi|S)− logP(Mi) (5.7)

Finding the MMI over θ is equivalent to maximize Pθ(Mi|S), or adapt parameters
to enhance the probability that, if the sequence S is observed, it has been produced
by the process Mi it is in one sense the opposite of ML approach. Notice again
that Pθ(Mi|S) is a property of the whole classifier rather than the single HMM.

5.3 Training Algorithm
MMI approach could not be implemented by an expectation-maximization algo-
rithm, like Baum-Welsch for ML. A gradient algorithm is therefore exploited.
There are two kind of constraints to take in account, which are implicit in the
definition of probability itself:

• all the entries of HMM characteristic matrices should be positive and less
or equal to 1;

• the sum of the elements on the rows of the transition matrix should be equal
to 1.

There is also a practical matter to be considered: MMI is, as told, a principle that
applies to the whole classifier, this mean that every HMM in it should be trained

46 CHAPTER 5. SEQUENCES RECOGNITION SYSTEM

on the basis of all training samples considered, this leads to increase the train-
ing time quadratically with the number of classes considered3. The performance
should greatly decrease considering a wide set of classes and sample, as needed
in non trivial applications. There are several solutions accounted in literature: for
example an hybrid ML/MMI method, or focusing the training on sequences con-
sidered likely to be confused by the classifier. In this work the latter method is
implemented, as described further.

5.3.1 Gradient Computing
Computing the gradient of MI is the basis of this algorithm. It is computed consid-
ering each HMM separately. , with positive examples for the class related to it, and
a set of negative examples: sequences, belonging to other classes, but easily con-
fused.It does not contradict the fact that MMI considers all the models together, it
will be clear noticing how the gradient computation involves global informations
like Pθ(S), and negative examples. It is possible to do so because the emission
probabilities related to the HMMs take part to the formula of MI as terms of a
sum (see equations 5.4 and 5.5) so the derivative of MI respect to a parameter of a
particular HMM is independent from other parameters. The sets of sequences and
models are considered in the training by maximizing the function:

Fθ = ∑
i

∑
k

Iθ(Mi;Sk) (5.8)

So the gradient is the sum of the gradients of Iθ(Mi;Sk) for every HMM Mi and
every sequence Sk:

∇θFθ = ∑
i

∇θ ∑
k

Iθ(Mi;Sk) (5.9)

The function 5.8 resembles the mutual information defined between two probabil-
ity distributions of sequences and gestures that caused it

∑
i

∑
k

P(Mi,Sk)Iθ(Mi;Sk) (5.10)

but the term P(Mi,Sk) is missing. This complete version of MI is unsuitable for the
application, because the probability distribution P(M,S) is not directly available,
and computing it from the emission probabilities would lead the gradient to lose
the property stated in 5.9.It is also to point that the training set itself works as a
representation of sequences distribution, in the sense that a sequence Sk associated

3For every class there is a certain number of training samples.So, growing the number of
classes, the total number of samples grows roughly linearly with it. As well, the whole train-
ing set is presented to every model of the classifier (one for every class)

5.3. TRAINING ALGORITHM 47

to an high actual P(Mi,Sk) is represented by a large number of sequences similar
to it in the training set, so the the formula 5.8 is an approximation of 5.10. The
derivative of 5.8 respect to a parameter θi could be written as

∂I(M;A)
∂θi

=
∂Pθ(S|M)

∂θi

Pθ(S|M)
−

∑M̂
∂Pθ(S|M̂)

∂θi
P(M̂)

Pθ(S)
(5.11)

where M̂ are the generic models and M is the model related to the class wanted to
recognize the sequence S. In order to compute

∂Pθ(S|M)
∂θi

(5.12)

the parameters could be evidenced in Pθ(S|M), for a and b

Pθ(S|M) =
T

∑
t=1

∑
i

α(t−1)ai jb j(Ot)β(t) (5.13)

and for π:
Pθ(S|M) = ∑

i
πiai jb j(O0)β(0) (5.14)

Applying the rule of product to compute the derivative for a:

∂Pθ(S|M)
∂ai j

=
T

∑
t=1

∑
i

α(t−1)
∂ai j

∂ai j
b j(Ot)β(t) =

T

∑
t=1

∑
i

α(t−1)b j(Ot)β(t) (5.15)

to apply it to b considering the case of vectorial symbols emitted

∂bi(Ot)
∂bOt j

=
∂∏

n
l=1 bOtl

∂bOt j

=
n

∏
l=1,l 6= j

bOt j (5.16)

is obtained.

5.3.2 Constraints Management
In some applications with HMMs the constraints are respected applying a renor-
malization of matrices row after any adjustment of parameters. It happens for
example in [JS02], and implicitly when using Baum-Welsh algorithm.

The renormalization consists in the assignment (for ai j for example)

ai j←
ai j

∑k aik
(5.17)

48 CHAPTER 5. SEQUENCES RECOGNITION SYSTEM

Figure 5.1: The parameter update produced by the normalization and the projec-
tion of the gradient

5.3. TRAINING ALGORITHM 49

this procedure is unsuitable in the context of a gradient algorithm, as show in the
following example. The equation constraints could be expressed as:

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1 0 0

...
1 . . . 1

θ = V θ = 1n (5.18)

they force the parameters to lie on a hyperplan. the normalization 5.17 is equiva-
lent to the substitution

θ←

κ1 . . . κ1 0 . . . 0
0 . . . 0 κ2 . . . κ2 0 0

...
κN . . . κN

θ = Kθ (5.19)

where κi is the normalization coefficient for any group of parameters belonging to
the same distribution, defined so that

V Kθ = 1 (5.20)

Let∆θ be the vector representing the update performed on parameters at every step

θ← θ+∆θ (5.21)

that, for the gradient algorithm is

∆θ = µ∇θI(S;M) (5.22)

where µ is a scaling factor needed to tune the step length to ensure stability.
Assuming that the µ selected is small enough, the linear approximation of

I(S;M) is consistent (this is the basis of gradient descent algorithm) is expected
that the operations of parameter updating and parameter renormalization would
produce a translation of the parameter vector θ not contrary to the gradient

[K(θ+∆θ)−θ]∇I > 0 (5.23)

the update leads instead to a decrease of the objective function.
This is in general not verified, for example when

θ̂ =

 0.1
0.2
0.7

∇
θ̂
I =

 0.1
0.2
0.2

(5.24)

50 CHAPTER 5. SEQUENCES RECOGNITION SYSTEM

Figure 5.2: Simplified constraints management

the inequality 5.23 is not verified

κ = 1.5
µ = 1 ⇒ [K(θ+∆θ)−θ]T ∇I =

 0.1
0.2
0.2

[0.1 0.2 0.2
]
=−0.0033

(5.25)
and it is true also for smaller µ.As shown in 5.1 the parameter update produced
by normalization (black) and projection (green) of the gradient (red) have two
different directions. Their scalar product can be negative.

The more suitable approach is to project the gradient on the hyperplane defined
by constraints. The update in this case is

∆← µ(∇Iθ−V +V ∇Iθ) (5.26)

The constrains expressed as a inequality are managed in the same way, by a
projection of ∆θ. The projection is to be performed only when the constraint is
violated. To simplify the implementation, every time the parameters update would
produce a constraint violation the ∆θ is projected. So θ does not need to lie exactly
on the constraints (parameters are not exactly 0 or 14).

5.3.3 Negative Examples
As introduced, not all the samples in the training set are used as negative examples.
The sequences considered likely to be confused are chosen as negative example.
The confusion margin is quantified by the formula:

P(Mk|S j) > αP(Mi|S j) (5.27)

4Actually, parameters are not constrained to be included between 0 and 1 but between 0+ε and
1-ε, where ε is a small value. This is preferred to avoid impossible sequences to exist and make
the performance more robust to noise [JS02]

5.4. MUTUAL INFORMATION AND CLASSIFICATION 51

Where S j is a sample for the class i, k is the class which takes S j as negative
example when the condition is verified and α is a parameter to be specified: for
α = 0 all the sequences are taken in account, for α = 1 only the ones misclassified
at a certain step of the training algorithm become negative examples.

As explained in the section 5.2.1 P(M|S) is connected with prior probabilities.
This allows to take advantage from high level information in the training process.
Batches of samples could be presented with different prior probabilities in order
to decide which classes should be affected by negative training.

For example, if a sample S j for the class i is presented during the training
together with a null prior probability P(Mk),S j will never become a negative ex-
ample for the class k, being P(Mk|S j) = 0 and so, never greater of αP(Mi|S j) that
is always positive (or at least zero). This is useful because there are some gestures
that could occur together in a certain environment and in a certain situation. The
performance is so enhanced by a training considering which gestures are likely
to be confused, not just for their representation as sequences of symbols, but also
their high level relationship with other gestures.

5.3.4 Computational complexity
To compute α and β, that figure in gradient equations, the methods described in ??
is applied5. They have quadratic complexity in the number of hidden states. Every
algorithm step α and β are computed for every sample (positive or negative), every
one of the N models at every sample time. Let Tm be the mean number of symbols
in a sample sequences (its duration), Sm the number of sequences (actually not all
of them are presented as examples) and n the number of states of the models6.
The number of operations to be performed are

k ·N ·n2 ·Tm ·Sm (5.28)

5.4 Mutual Information and Classification
Maximizing the MI is a way to reduce classification errors. Nothwistanding that
the two things are not the same: while the whole target function ??target) is grow-
ing, some of its summed terms, related to a sigle example can decrease; it is neither
sure that an increment in an term of the target function changes the classification
result. It can happen for when the target function could be increased making the
terms related to already well classified examples at expense of the classification

5see appendix B for details
6It is possible that different models have different number of hidden states, this is a very par-

ticular case and will not be analyzed

52 CHAPTER 5. SEQUENCES RECOGNITION SYSTEM

Figure 5.3: Target function and accuracy

of other terms7. In figure 5.3 is plotted, as example, the classification accurancy
versus the target function. The data are related with a set of sequences obtained
encoding hand gestures, considering just finger movements (and not hand orien-
tation).

7The rules applied to create the negative training set, exposed in 5.3.3, act also preventing this
to degrade too much the performance.

Chapter 6

Logical Environment

The logical description of the environment is implemented by a new inferece al-
gorithm. Routines implementing the inference engine are thought to work in real
time and so optimized to retrieve the logical value of a preposition about the en-
vironment very quickly. A particular language is used to describe a logical model
of the environment: objects, classes of objects and proposition about both objects
and classes can be defined in a fashion that represents a simplification of a com-
plete syntax for predicative logic. Fuzzy logical values are exploited. This makes
quick and efficient to handle physical concepts like proximity or alignment.

The term logical description represent in this context:

• a set of statements with their truth values;

• a set of rules to compute the truth values of statements from other statements
truth values;

• a set of rules to compute the probability of a certain gesture to be performed
by the user;

• a set of rules to define the consequences of an action;

In this chapter is given a description of the description language syntax, and
of the principles used by the inference algorithm. The section 6.4.3 compare
the approach described with other ways to implement a logical description of a
system, representing a theoretical overview. Further details about the code (C++)
are available in A.3.

6.1 Fuzzy Logic
This sections explain quickly how fuzzy operators are defined in this application.
Fuzzy logic allows truth values that range between 1 and 0 inclused. This is useful

53

54 CHAPTER 6. LOGICAL ENVIRONMENT

Figure 6.1: A situation in virtual environment and fuzzy values for assumpion on
it

to describe concept that are imprecisely defined. Imprecise means that a concept
is true with a certain degree, not that it is known with uncertainity, like in the case
of probabilistic logic. An example could be the case in which an object is defined
”near” or ”far” from a given point. Even if the object position is exactly known, it
could be told that, for example, it is 0.4 near from the reference point. An example
model is specified in figure 6.2 where the truth values for ”near” and ”far” are
showed as fuction of the distance. Note that these function should be designed as
part of the model design (in some application they could be adapted on the basis
of examples). Transforming informations in fuzzy values is told fuzzyfication.

To work with fuzzy values logic operators should be properly defined. In the
described library the following convenction have been employed:

AND operator is defined as the minimum truth value among the operands ones.

OR operator is defined as the maximum truth value among the operands ones.
It is not used explicitly in the syntax used to build statements, but it computed in
certain cases (see 6.2.5).

Negation operator is defined as the complement to one of the truth value of the
negated term.

Implication It is not used in a generic statement but just like a rule to compute
truth values from other truth values 6.2.5. This mean that the unknown truth

6.1. FUZZY LOGIC 55

Figure 6.2: Example of imprecise concepts described by fuzzy logic

56 CHAPTER 6. LOGICAL ENVIRONMENT

values are set to maximize the truth value of the implication. Hence, defining
the implication as

A⇒ B≡ A∧B∨¬A (6.1)

and considering the definition of AND and OR given it becomes

max(min(A,B),1−A) (6.2)

that to compute B given A is maximized:

B = argmaxB (max(min(A,B),1−A)) (6.3)

Note that, altough associating values between 0 and 1 to statements, fuzzy
logic is something different from the probabilities used, for example, in bayesian
programming (see 2.6.2). Fuzzy logic does not give a measure of expectation of
something to happen or to be true when not yet known, it describes a logical state
that lies between two statements. It is deterministic. For example consider the
following statement: ”the user hand is near to the screw”. Giving a fuzzy truth
value to it would mean to define, having some fuzzification rule, a state of the
hand. If the value is 1 or close to it the hand is near the screw, if the value is 0 or
close to it, the hand is considered far from the screw. The uncertainity expressed
is just ontologic, in other word part of what is described. The fact that what is
expressed is known is considered certain.

6.2 Elements and syntax
The logical description of the environment is a collection of statements about
the objects represented in the simulation and some rules, expressed in a
”cause+effect” form1 that are used to build a chain of inferences when computing
the logical value not (or not yet)included in the description. The elements of the
description are classes of objects,functions, rules and fact, all of them declared in
a special text file or at runtime through a specific function.

6.2.1 Objects Declaration
A class of objects is declared with the command object followed by the name of
the class. An object is declared with its class name followed by its own name, for
example the following code declares the class screw and instances two objects
screw1 and screw2 .

1it will be clear soon why the rules are not implications neither clauses in a general sense

6.2. ELEMENTS AND SYNTAX 57

object screw
screw screw1
screw screw2

The class could be referred in statements in order to refer one or all of the
object belonging to it,the class itself is not an object referred by sentences, hence
it is not term of relations with other objects or have his own attributes. This
actually mean that statements like ”all the screws are lubricated” can be part of the
environment description, a sentence like ”the screws are four” instead cannot be
part of the description because ”lubricated” is an attribute applied to every single
”screw”, ”four”, instead, could only apply to a set of screws and no one of them is
obviously ”four”. Notice that only instanced objects are considered, any sentence
about ”all the screws” or ”any screw” is implicitly equivalent respectively to a
sentence about ”all instanced screws” or ”any screw among instanced ones”. An
object can belong to one and only one class.

6.2.2 Functions
Functions associate a fuzzy logical value to an object or a set of objects: a
function with its arguments is the simplest statement that could be written.
two examples of statements referring the objects screws instanced in the
previous example 6.2.1:
lubricated(screw1)
near(screw1,screw2)

The logical description can include a value of truth for these statements or
it can be retrieved using inference rules (how this work will be described in
6.2.5 together with the rules). A function is declared by the keyword function
followed by the name of the function and its arity, for example: function
lubricated(1)
function near(2)

The arity is the number of arguments, and should be at least one. The
given examples, using meaningful words, can lead to confusing interpretations.
for example
near(screw2,screw1)
near(screw1,screw2)

are two different statements, and should have different values! In order to
make these statements equivalent, rules should be used to let the application infer
one from the other.

58 CHAPTER 6. LOGICAL ENVIRONMENT

Function can also take a class name as argument, this is used to refer to a
generic object of that class. for example
lubricated(screw)

has the highest truth value among the values of sentences in the form
lubricated(S)

where S is an instanced object of class screw . This is equivalent to an
OR, according to the convention explained in ??. There is also a special argument
for the function that is ANY that refers to any instanced object.

6.2.3 Statements

A statement is built upon the concept of function. As told a function with its
arguments is the simplest statement. A statement is built as a product (AND) of
functions with arguments. Arguments could be negated. The logical operator OR
is not represented explicitly. an sample statement could be:
lubricated(screw1) AND lubricated(screw2)
In case a generic object is referred (through the name of its class) a number could
be specified. This allows to refer the same generic object as argument of two
functions. For example consider the following set of objects and functions.
object pizza
object oven
pizza pizza1
pizza pizza2
oven oven1
function well done(1)
function inside(2)
The two statements below have two different meanings (in the sense that they
may not have the same truth value)
well done(pizza) AND inside(pizza,oven)
well done(pizza#1) AND inside(pizza#1,oven)

The first means that a pizza is well done and a pizza, not necessary the
same is in the oven, the second means that a pizza is well done and in the oven2.
Every generic object can have a number, even ANY . the negation is expressed
with the symbol ”˜” put before the element like in:

2this is an understandable interpretation, anyway the model is just a set of symbols (the function
with arguments) that have some truth values, nothing to do with real concepts like ”pizza” and
”oven”.

6.2. ELEMENTS AND SYNTAX 59

˜well done(pizza#1) AND inside(pizza#1,oven)

The negation applies only to the next element. The operator OR is not
allowed to appear explicitly in a statement.

6.2.4 Facts
A fact is an elementary statement (without AND operators) explicitly put in the
description, it is declared in the description file with the keyword fact , followed
by the statement and its truth value (if missing it is considered 1). The facts
should refer to instanced objects (no generic object are allowed). The fact could
be negated with ”˜”, it just make the list to assign the complementary truth value
to that statement.
examples of possible declared facts are:
fact well done(pizza1) 0.5
fact fixed on(screw1,bolt1) 1.0
fact screwed on(screw1,bolt1) 0.3

6.2.5 Rules
Rules define relationships between facts. They are expressed in a intuitive way in
the form of a cause-effect couple. The cause is a generic statement, the effect is
an elementary statement (no AND operators allowed). Rules are declared by the
keyword rule like in the example:
rule inside(pizza#1,oven#2) AND turned on(oven#2) =>
well done(pizza#1)
In this example a ”turned on function is supposed to exist. The statement on
the right side of ”=> ” (that represent an arrow), can be inferred from statement
on the left3. Notice that the number ”1” is the same for the object pizza in the
cause and in the effect, this mean that the cause should be applied to the objects
of the class pizza for which the statement inside(pizza#1,oven#2) AND
turned on(oven#2) is true. If more than one rule have the same effect the truth
values of all the causes are computed and than the greatest is given as truth value
for the effect. This operation is equivalent to apply the operator OR to the causes
(see ??). This make the rules behave like an implication: the effect can be true
even if the cause is false if it is triggered from another cause.

3It could be different if a value is given through a ”fact” or previously computed and kept in
memory. It will be explained in detail together with the algorithm exploited to infer truth values
from the stored facts 6.4.

60 CHAPTER 6. LOGICAL ENVIRONMENT

A complication arises considering that the effect could be a negated statement.
This mean that the effect is inferred with the negated cause truth value. The same
statement could appear, as effect, negated and not in two different rules, for ex-
ample
rule well done(pizza1) => well done(pizza2)
rule ˜well done(pizza3) => ˜well done(pizza2)
can model a context where the condition of a pizza is retrieved from the con-
dition of other two ”pizza” (it could be because the order they entered in the
oven is fixed). Notice that the two rules could give two different values for
well done(pizza2) . In case of two non negated statements as effect the great-
est value was given, but it does not make sense here: if ˜well done(pizza3)
has a truth value greater than the one of well done(pizza1) the negative of
the former would be smaller than the one of the latter, this will make the ”weaker”
cause be more important than the other.Hence the negation is applied later, after
choosing the value of the stronger cause. Traditionally a fuzzy version of impli-
cation should be an extension of the classical one, in the sense that is supposed to
have the same truth values when applied to crisp values4. The difference between
a rule as here defined and an implication consist in the fact that the rule explic-
itly tells how to compute the truth value of a statement (effect) given the value of
another statement (cause). An implication is instead a statement itself and can be
used to compute the truth values of statements in the cause. Consider the sample
implication (crisp version)

A∧B⇒C (6.4)

If C is false can be deduced that A∧B is false, and so, if A is true, B is false, and
vice-versa. instead considering the similar rule
A(x) AND B(x) => C(x)

where x is an instanced object, no conclusions about A(x) and B(x) is
taken by the inference engine. Rules are a simplification of the concept of
implication, and are used because they bring two advantages:

• they are very quick to analyze at runtime because of their lean structure;

• they are a direct description of how the inference algorithm would compute
the truth values, making intuitive to write the system description5;

If a proper implication is needed in the system description it could be declared
in the descriptor file like a rule, adding the symbol ”$” at the end of the line, for

4it is not always true in any application, for example the implication proposed by ?? does not
satisfy this requirement.

5logical demonstrators often are based on a knowledge representation designed to optimize
inferences, like ??

6.2. ELEMENTS AND SYNTAX 61

Figure 6.3: A rule: the conseguence has a truth value that is the minimum of the
ones of its causes.

example
A(x) AND B(x) => C(x) $

is equivalent to the implication 6.4 In other words a rule can be considered
an ”IF. . .THEN” statement, common in high level programming languages.
Notice that in this context the rule is applied only when the truth value of the
consequence is asked to the application.

6.2.6 Actions

Actions represent the effects, on the system logical states of gestures performed
by the user. These effects are represented with the same syntax of rules. An
action is declared with the keyword actionlike in the following example:
action screwing: near(hand,screw #1) AND plugged on(screw
#1,hole #2) => screwed on(screw #1, hole #1)

Notice the ”:” that introduce the effects.

62 CHAPTER 6. LOGICAL ENVIRONMENT

6.2.7 Prior probabilities
A vector of prior probabilities for the several gestures is specified for several
logical condition. The logical condition is a statement. Prior probabilities vectors
are declared with the keyword priors followed by the condition on the same
line, then a list of gestures with their probability follows, for example:
priors near(hand,screw #1) AND set on(screw #1,hole)
screwing 0.25
picking 0.25
setting on 0.5

Gestures not listed are considered to have null probability in that particular
vector.

When prior probabilities are required by the application a weighted sum of all
the prior probability vectors is given. The truth value of the condition is used as
weight for the related vector.

6.3 Interface
Once the logical description is loaded from the file, interface functions are used
by the application to retrieve logical values and to modify them. In this section
the possible operation will be described, focusing on their meaning more than on
their implementation. All the function presented are methods of a C++ class that
represent the descriptor. More details about the library functions and the structure
are available in A.3.

6.3.1 Retrieving truth values
The truth value of a statement can be retrieved by the functions evaluate and
revaluate . Here are the C++ declarations:
double evaluate(string statement);
double revaluate(string statement);

The argument is a string of characters6 where the statement is stored with
the same syntax used in the file; the returned value is the fuzzy truth value
associated with it. The difference between evaluate and revaluate is that the
first just gives the value of the statement in any case, the second computes the

6the type string , representing an array of ”char”, is not displayed with bold characters in
the declarations, because it is not a basic C++ data type. It is introduced by the standard library
”string.h”

6.4. THE INFERENCE ENGINE 63

value of the statement as if it was not part of the description (if it is not actually
present it is the same) and than memorizes it in the description.

6.3.2 Notifying a Fact

A fact can be added at runtime to the description with the function notify .
void notify(string statement,bool provisional);

The fact is specified through the string statement . The value provisional
specifies that the fact is deleted when the method flushprovisional is called.
Like when declaring a fact in the description file, the truth value should be
specified next to the statement.If the fact is already stored in the description its
truth value is replaced by the one specified.

6.3.3 Retrieving Prior Probabilities

To get the prior probabilities the function GetPriors is used.
vector<double> GetPriors();

The function takes no arguments because prior probabilities are computed
on the basis of the current logical state, like explained in 6.2.7. The data type
vector<double> is implemented by the C++ standard libraries and is an array
of double

6.3.4 Performing Actions

Performing actions is implemented by the function act . void act(string
action);

Only the name that identifies the action is required, the action consequences truth
values are computed on the basis of the current logical states. If the consequence
of an action is a statement already part of the description the computed truth
value replaces the previous one.

6.4 The Inference Engine
The inference engine is the set of functions that computes truth values of arbitrary
statements from the logical description. In this section the algorithms exploited
are described, implementation details are in A.3

64 CHAPTER 6. LOGICAL ENVIRONMENT

6.4.1 Research in the Space of Statements
When the truth value of a statement is required, the following action are performed
by the engine:

1. The statement is searched in the description, if it is present its truth value is
returned and the research is ended;

2. A rule having the state as effect is searched. If found the procedure is re-
peated for all the terms in the cause. The value of truth is than computed
and returned.

3. If a value is not found in previous steps, 0 is returned.

Notice that the second step could lead to an infinite looping. consider as example
the following description:
object weathers weathers weather function cold(1)
function rainy(1)
function cloudy(1)

fact cold(weather) 1

rule rainy(weather) => cloudy(weather)
rule cloudy(weather) AND cold(weather) => rainy(weather)

In case that the truth value of rainy(weather) is asked, the second rule
is used (because the statement is not present in the description) to compute it.
The term cold(weather) is available in the description so is taken directly. The
to evaluate the value of the term cloudy(weather) the engine uses the first rule,
but this rule needs the value of rainy(weather) , so the second rule is used
again! An anticycle rule is used to avoid the engine to loop forever (and so stop
working). A rule can not be used in a node of the demonstration tree that has
a parent represented by an application of it7. A demonstration tree is the non
looping graph that represent the steps performed, nodes represent the application
of rules or (the terminal ones) a fact.

If several rules with the same effect are available the one with the cause with
greatest truth value is considered (see 6.2.5). If generic object are referred, using
the class name or the keyword ANY the engine creates all the particular rules
(only referring to instances objects) considering the statement whose truth value
is asked. For example,given the description

7A rule referring to general objects can be used in the same branch if applied to different
instanced objects

6.4. THE INFERENCE ENGINE 65

function happy(1)
function friend of(2)
object people
people Thomas
people Joseph
people Henry

rule happy(people#1) AND friend of(people#2,people#1) =>
happy(people#2)
a request for the truth value of happy(Henry) , will make the system create the
following rules
rule happy(Thomas) AND friend of(Henry,Thomas) => happy(Henry)
rule happy(Joseph) AND friend of(Henry,Joseph) => happy(Henry)
rule happy(Henry) AND friend of(Henry,Henry) => happy(Henry)

6.4.2 Representing implications
An implication is different from a rule because it gives the possibility compute,
not just the effect from the cause. Implications are implemented creating several
rules to describe the possible deductions. For example the declaration:
rule happy(Thomas) AND friend of(Henry,Thomas) => happy(Henry) $

Is represented in the description by a set of rules

rule happy(Thomas) AND friend of(Henry,Thomas) => happy(Henry)
rule ˜happy(Henry) happy(Thomas) AND => ˜friend of(Henry,Thomas)
rule ˜happy(Henry) AND friend of(Henry,Thomas) => ˜happy(Thomas)

Notice that, speaking about the rules representing an implication, even if
these rules refers to the same elementary statements, the presence of a rule does
not affect the results produced when another one is applied. This is because, as
told in the previous section, the rules are applied only when a statement is not rep-
resented in the description, and only one time in every branch of the inference tree.
If happy(thomas) , friend of(Henry,Thomas) and happy(Henry) are not
in the representation, asking the truth value of happy(Henry) to the system will
make it apply the rule rule happy(Thomas) AND friend of(Henry,Thomas)
=> happy(Henry) . The other two rules are then used to find the truth values of
happy(thomas) and friend of(Henry,Thomas) . After that the first rule is no
more applicable to search the value of happy(Henry) because used previously,

66 CHAPTER 6. LOGICAL ENVIRONMENT

the other two rules are applied another time (because it is done in two different
branches). The result is a truth value of zero for happy(Henry) , as expected
just from the first rule. In case that some of the tree truth values are available the
research stops earlier, using them directly.

6.4.3 Theoretical notes
Logic is a powerful tool to represent systems. Historically, logic modeling and
theorem demonstration represented two important tasks of artificial intelligence
research. The system presented in this chapter have some peculiarities that
make it different from classical application of logic,like automatic theorem
demonstrators. The kind of logic language used in this application shares some
characteristics with the ones represented in the following table:

Language Epistemological Commitment Ontological Commitment
(what is represented) (What is known about)

propositional logic facts true/false/unknown
first order logic facts,objects,relations true/false/unknown
probability theory facts confidence degree∈ [0,1]
fuzzy logic facts with truth degree known internal values

The syntax used express, about the environment described, facts, objects,
relations like first order logic. The ontological commitment does not include true,
false or unknown values, but truth degrees8. Besides, probability theory is used
for gestures. The syntax has some limitations compared to the first order logic:

• the facts declared can only refer to instanced objects;

• the facts declared can only be simple statements;

• the operator OR is not part of the syntax;

The first point, in practice means that the set of facts is actually a set of
propositions. Facts like ”all the screws are lubricated” or ”there is a rusty bolt”.
The first sentence should be represented listing the representative sentence for
any instanced screw, the second sentence should specify the name of the bolt
that is rusty. Also theorem demonstrators transform first order predicates into
propositions when performing a demonstration9, In this case the syntax itself

8The truth value 0.5, equidistant from the true (1)and the false(0) is anyway a known value that
represent a particular intermediate condition between the two extremes.

9The theorem of Herbrand states that any formula implicated by a set of first order logic pred-
icates S, is implicated by a finite subset of proposition inferred by S

6.4. THE INFERENCE ENGINE 67

forces the user to produce a database of propositions (datalog). The second point
is just formal: a conjunction of facts can be represented declaring all of them.
The third point creates a bit more difficult problem: in case it represents the cause
in a rule, a disjunction can be represented with several rules featuring the same
conseguence and the different terms of the disjunction, for example the rule ”if
A OR B then C” can be represented as ”if A then C” and ”if B then C”. In case
the disjunction is a fact that should be part of the description its representation
becomes more tricky: suppose to have the following declarations:
function rusty(1)
function lubricated(1)

object bolt

A sentence like10 ”a bolt is lubricated OR rusty” could be defined not by
facts but by rules, like:
rule ˜lubricated(bolt) => rusty(bolt)
rule ˜rusty(bolt) => lubricated(bolt)

These limitations are connected with the major difference between a theo-
rem demonstrator and this system: the former exploits fixed inferential rules
to find true sentences from true sentences (inference rules) the latter relies on
the rules written by the user to compute the truth values of statements from
other statements truth values. The facts are hence limited to a form that makes
immediate to retrieve their truth value. Notice that in the previous example the
two rules specified explicitly the possibility to infer a fact from a disjunction and
the negation of the other term in the disjunction, it is similar to what happens
automatically when declaring implications (see 6.4.2)

Another characteristic of the first order logic is that there is no way to
demonstrate that a formula is not implied, this can lead to a an infinite loop when
trying to do it. In the described system there are two simplifications that prevent
the system from being trapped in an infinite loop when computing a truth value:

• relation are represented as N-ary functions

• the same rule cannot be used more than one time in a branch of the demon-
stration tree (see 6.4.1)

This is because this system is designed to evaluate quickly the truth values of
facts, in order to compute the probability of gestures. For the same reason a fact

10Again, for the sake of simplicity facts are referred with the meaning that their name suggests,
actually they have not any meaning but their truth value.

68 CHAPTER 6. LOGICAL ENVIRONMENT

is considered false when a demonstration is not found.
The facts truth values can change at runtime, new facts can be added and

some of them can lead to contrasting results (the fuzzy logic manage it as told in
6.2.5). In this context it represent a change in the state of the system described,
because it is supposed to be fully known. In general a logic in which previously
taken conclusions can be contradicted by new informations is called non monotone
logic. These kind of logic can also represent a refinement of knowledge when
getting new informations.

Gestures prior probabilities represent the output of this description system (to-
gether with truth values) and the actions represent a sort of input (together with
notified facts). Hence, even if prior probabilities are not involved directly in truth
values computing, they can influence them through the gesture recognition sys-
tem, that takes prior probabilities as input and produces action as output. The
logical description, together with the gesture recognition system, represent more
a complex dynamic system than a proper theorem demonstrator or a database.

6.5 Efficiency and Debugging
This approach to high level modellization brings the advantage of a simple and
easy description. An adaptive model like HMM, although more flexible, would
be difficult to understand and debug. This solution is efficient when the designer
of the system knows well how to describe the environment. An unappropriate
logic environment would make the behaivour of the virtual system unrealistic.
This is the thing that should be checked during the debug phase. It is interesting
to point that a wrong prior probability vector or fact would produce a bug just
when a particular situation occours. This locality of effects occours because prior
probabilities are computed by active facts. This would make easy to find the error
that produces the wrong system behaivour.

6.6 An Example
In this section will be presented, as example, the description of the virtual envi-
ronment used in the demostrative application described in 8.1.

6.6.1 The Environment
The application consists in the assembling of a simple object: a small box with a
removable corck that can be fixed to it by four screws. The environment features
the components to build the object (a box, a flat base that is a corck for the box and

6.6. AN EXAMPLE 69

Figure 6.4: The virtual environment represented with XVR

four screws) and an hand controlled by the user. There are also invisible objects
called ”holes” representing the female screw treads on the box. To perform the
assembling task the operations should be performed in the right order, for example
to place the cork no screw should be screwed, and at least a screw should be placed
to fix it.

6.6.2 The Code
Here is the code describing the logical environment:
function screwed on(2)
function set on(2)
function near(2)
function set on(base1,box1)
function dummy(1)
function inhand(1)
function blocked on(2)

object hand

hand lefthand11

object screw

11Having the just left hand sensorized allows the developer to use the right hand to program
while testing and debugging.

70 CHAPTER 6. LOGICAL ENVIRONMENT

screw screw1
screw screw2
screw screw3
screw screw4

object box

box box1

object base

base base1

object hole

hole hole1
hole hole2
hole hole3
hole hole4

fact dummy(lefthand) 1.0

rule screwed on(screw #1,hole #2) AND set on(base1,box1) =>
blocked on(base1,box1)

action null: dummy(lefthand) => dummy(box1)

action picking: near(lefthand,screw #1) AND set on(screw
#1,hole #2) => ˜set on(screw #1,hole #2)
: near(lefthand,ANY #2) => inhand(ANY #2)
: near(lefthand,ANY #2) AND inhand(ANY #2) => ˜inhand(ANY #2)

action setting: near(lefthand,screw #1) AND near(screw #1,hole
#2) => set on(screw #1,hole #2)

action screwing: near(lefthand,screw #1) AND set on(screw
#1,hole #2) => screwed on(screw #1,hole #2)

action unscrewing: near(lefthand,screw #1) AND screwed on(screw
#1,hole #2) => ˜screwed on(screw #1,hole #2)

6.6. AN EXAMPLE 71

priors dummy(lefthand)
null 0.2
picking 0.2
setting 0.2
screwing 0.2
unscrewing 0.2

priors inhand(screw)
null 0.3
setting 0.4
picking 0.3

priors inhand(base1)
null 0.3
setting 0.4
picking 0.3

priors near(lefthand,screw #1) AND ˜inhand(screw #1) AND
˜screwed on(screw #1,hole #2)
null 0.4
screwing 0.3
picking 0.3

priors near(lefthand,screw #1) AND ˜inhand(screw #1) AND
screwed on(screw #1,hole #2)
null 0.5
unscrewing 0.5

priors near(lefthand,base1) AND ˜inhand(base1) AND
˜blocked on(base1,box1)
null 0.5
picking 0.5

6.6.3 The set of actions
The possible action for the user are:

• null: this action consist in doing nothing. It is represented as an actual

72 CHAPTER 6. LOGICAL ENVIRONMENT

gesture in order to be actively discriminated from the other gestures;

• pick: this action consist in picking up an object when the hand is empty and
in relasing it when hold. As explained in 4.3 the data stream produced by
the gestures is transformed through a fast fourier transform. This makes
the gestures of closing and opening the hand to pick and relase the objects
to be recognized as the same gesture (they are also presented together in
the training set). After picking an object, while the hand is kept closed, the
system recognizes a null gesture, when the hand is opened the pick gesture
is recognized again and the object is relased;

• set: this action sets the hold object in a position suitable for assembling it
on the nearest object (if it is possible). It places the screws on the screw
treads and the corck on the box;

• screw: this action consist in screwing a screw in a tread of the box;

• unscrew: this action consist in unscrewing a screw from the box;

6.6.4 Running The Application
The 3D environment is implemented with XVR. Since the logical description
works just with fuzzy values the states of the objects are fuzzyfied by the XVR
script itself.

When the application starts all the condition specified through the command
Priors have truth value 0. Just the always true condition dummy(lefthand)
produces the vector [0.2 0.2 0.2 0.2 0.2] that represent an equal prior proba-
bility for every gesture. Once the hand approaches the corck, the function
near(lefthand,base1) grows linearly with the negated distance. The prior
probabilities are adjusted according to
priors near(lefthand,base1) AND ˜inhand(base1) AND
˜blocked on(base1,box1)
null 0.5
picking 0.5
The corck base1 is than picked up, the XVR script notifies to the logical
description the fact
inhand(base1) 1.0

that makes the exposed condition false (= 0). The prior probabilities vec-
tor
priors inhand(base1)
null 0.3

6.6. AN EXAMPLE 73

setting 0.4
picking 0.3

enters suddently in the computing of the actual probability vector with
weight 1. Setting the corck on the top of the box is the more likely acttion to be
performed. Also relasing it with a pick is a possible way to use it. Once the corck
is set on the box the screws should be used to block it. Approaching a screw with
the hand triggers a condition similar to the one seen for the cork:
priors near(lefthand,screw #1) AND ˜inhand(screw #1) AND
˜screwed on(screw #1,hole #2) AND ˜inhand(base1)
null 0.4
screwing 0.3
picking 0.3

That holds until the screw is picked up or screwed. the screw is than to be
brought on a hole. set and screwed. It should be done for all the four screws. The
changes of the probability vector during the operation are represented in figure
6.5.

74 CHAPTER 6. LOGICAL ENVIRONMENT

Figure 6.5: Prior probabilities changing during the task

Chapter 7

The Hardware

The capturing system used consist in:

• a sensorized glove, built at PERCRO laboratories;

• an electromagnetic tracker of position and orientation Polhemus LibertyT M;

• a visual tracking system ViconT M;

The glove and the Pohlemus tracker are used together for the application in virtual
environment: they allow to track the position of the hand and the fingers. The
Vicon tracking system is used to produce a large set of movements to test the
scalability of the proposed system.

7.1 The PERCRO Dataglove
The dataglove1 is sensorized with 11 hall effect potentiometers. Sensors geometry
and position is designed to retrieve angular displacement. This guarantees a mea-
surement that is in practice independent from the length of users fingers. Of the 11
sensors 8 are put, two per finger on index, middle, ring and little. The other 3 are
on the thumb. The movement perceived by the glove are just rotations, abductions
and adductions have not dedicated sensors. A 16 bit unsigned integer sample is
produced for every sensor at every sample time. Actually the transmitted value
is the sum of 16 consecutive samples, so the glove onboard electronics embeds
a low-pass filtering. The glove sends data to a receiver via bluetooth link. The
available bandwidth is of 115,200 bps, that allows a flow of 492 frame packets per
second. Usually the used band is no larger of 100 packets per second: 100 Hz is
the speed guaranteed by specification.

1This device is described in [OPR]

75

76 CHAPTER 7. THE HARDWARE

Figure 7.1: PERCRO Dataglove

Figure 7.2: Goniometric sensor

7.2. THE POHLEMUS TRACKER 77

7.2 The Pohlemus tracker

The Pohlemus Liberty tracker2 is an electromagnetic system capable of tracking
up to four sensors. It detects position and orientation, allowing to track the sensor
on six degrees of freedom. It can work to 240 Hz and it is connected to the
computer through USB or RS232. The resolution is of 0.0004 cm in position and
of 0.0012 degrees in orientation.

Figure 7.3: Pohlemus Liberty hardware.

2Pictures and informations in this sections have been retrieved on www.pohlemus.com

78 CHAPTER 7. THE HARDWARE

7.3 The Vicon Tracker
The Vicon is an optical tracking device. It is composed by a set of cameras,
a dedicated computing hardware and an elaboration software. This system can
locate the position of visual markers and, using a model of the tracked object
dynamic, reconstruct its cinematic. The main advantages are the precision (13
millions pixel per camera), the speed (up to 2000 fps) and the total freedom of
movements that allow the tracked user to perform natural movements. The main
limitation is that it is an expensive system and it requires a non trivial set up.
This mean that solutions based on it are not suitable to be exported from this
experimental context.

Figure 7.4: Vicon camera

Chapter 8

Demonstrative Applications

8.1 Assembling Application
This application consists in assembling a small computer case in the virtual en-
vironment. The user interacts with the components through an avatar of his/her
hand. The recognized gestures trigger effects in the virtual environment. The
tridimensional representation of the environment is updated coherently with the
logical description. In order to build the case components should be put in place,
set with the right orientation and than blocked. To complete the task the opera-
tions should be performed in the right order. The case is made with a box, a base
and four screws to fix them together. The recognized gestures are:

• null;

• pick;

• set;

• screw;

• unscrew;

The gesture null does not produce any action, it is recognized when the hand is
almost still. It is needed to avoid recognition of random gestures when the use
is not doing something. The gesture pick is used to take and release objects.
There is not a dedicated gesture ”release” for the sake of simplicity: the training
set is produced from a series of alternated hand opening and closing, producing
a training set just with the movement of opening and another one just with the
movement of closing would have required a more complex procedure than just
recording it. Set is used to put an object in the right position for assembling. This
overcomes the fact that in this application there is not a force feedback and the

79

80 CHAPTER 8. DEMONSTRATIVE APPLICATIONS

2008-02-13 16-37-39-68.JPG

Figure 8.1: The virtual environment at the beginning of the task.

right position is hence difficult to find. Notice that ”being set” is a state of an
object represented in the logical environment and it is anyway needed to mount
an piece. The gestures screw and unscrew are used to fix screws on the box and to
remove them. There are 5 degrees of screwing represented by a natural number,
when the gesture screw is recognized the number is increased, on the opposite
unscrewing decreases the number.

8.1.1 Video Messages

There are some informations displayed on the tridimensional scene: a list of the
action performed and a graph representing prior probabilities for the five possible
gestures. The list works both as a check of the recognized gestures and of a record
of the steps needed to perform the task. As told in the introduction (chapter 1)
one of the capabilities of a gesture recognition system is to build automatically a
manual for the simulated procedure. The graph of prior probabilities is put mainly
for demonstrative purpose. It makes possible to appreciate how they changes with
the evolution of environment states. Besides this graphic can be useful also in a
real application to verify the coherence of the description with the tasks and, in
case improve it.

8.1.2 Complete Logic Description

The logic description used in this application is a bit more complex than the one
presented in 6.6.2 where the accuracy was less important than presenting a lean

8.1. ASSEMBLING APPLICATION 81

Figure 8.2: List of performed actions

and clear example.
Here is the code:
function screwed on(2)
function set on(2)
function near(2)
function set on(base1,box1)
function dummy(1)
function inhand(1)
function blocked on(2)

object hand

hand lefthand

object screw

screw screw1
screw screw2
screw screw3
screw screw4

object box

82 CHAPTER 8. DEMONSTRATIVE APPLICATIONS

Figure 8.3: Prior probabilities influenced by the context

box box1

object base

base base1

object hole

hole hole1
hole hole2
hole hole3
hole hole4

fact dummy(lefthand) 0.7

rule screwed on(screw #1,hole #2) AND set on(base1,box1) =>
blocked on(base1,box1)

action null: dummy(lefthand) => dummy(box1)

action picking: near(lefthand,screw #1) AND set on(screw
#1,hole #2) => ˜set on(screw #1,hole #2)
: near(lefthand,ANY #2) => inhand(ANY #2)
: near(lefthand,ANY #2) AND inhand(ANY #2) => ˜inhand(ANY #2)

8.1. ASSEMBLING APPLICATION 83

action setting: near(lefthand,screw #1) AND near(screw #1,hole
#2) => set on(screw #1,hole #2)

action screwing: near(lefthand,screw #1) AND set on(screw
#1,hole #2) => screwed on(screw #1,hole #2)

action unscrewing: near(lefthand,screw #1) AND screwed on(screw
#1,hole #2) => ˜screwed on(screw #1,hole #2)

priors dummy(lefthand)
null 0.2
picking 0.2
setting 0.2
screwing 0.2
unscrewing 0.2

priors inhand(screw) AND ˜near(lefthand,hole)
null 0.5
picking 0.5

priors inhand(screw) AND near(lefthand,hole)
null 0.3
picking 0.2
setting 0.5

priors inhand(base1) AND near(lefthand,box1)
null 0.5
setting 0.5

priors inhand(base1) AND ˜near(lefthand,box1)
null 0.5
picking 0.5

priors near(lefthand,screw #1) AND ˜inhand(screw #1)
AND ˜screwed on(screw #1,hole #2) AND ˜inhand(base1) AND
˜set on(screw #1,hole #2)
null 0.4
picking 0.6

priors near(lefthand,screw #1) AND ˜inhand(screw #1)
AND ˜screwed on(screw #1,hole #2) AND ˜inhand(base1) AND

84 CHAPTER 8. DEMONSTRATIVE APPLICATIONS

set on(screw #1,hole #2)
null 0.3
picking 0.2
screwing 0.5

priors near(lefthand,screw #1) AND ˜inhand(screw #1) AND
screwed on(screw #1,hole #2) AND ˜inhand(base1)
null 0.5
unscrewing 0.5

priors near(lefthand,base1) AND ˜inhand(base1) AND
˜blocked on(base1,box1)
null 0.4
picking 0.6

Appendix A

Further Implementation Details

This Appendix is a brief summary on the technical solution used to implement the
application described in the previous chapters. The code and the Matlab/Simulink
schemes are partially reproduced when needed for the explanation. It is anyway
not intended as an exaustive exposition of the source code.

A.1 Application Overview
In order to work the recognition system needs the following elements:

• data sampling;

• data encoding;

• sequence recognition system;

• logical description library;

• interactive application;

During the execution a Matlab/Simulink scheme (recalling several scripts) and
the XVR interactive application are executed simultaneously, they exchange data
through UDP protocol. Data sampling is performed integrating an acquisition li-
brary in Matlab for the finger position, and another library in the XVR application
for the position tracking: the first has been developed at PERCRO labs for the
glove, the second comes together with Polhemus tracking system. The encod-
ing (frequency analysis, PCA and neural quantization) are perfromed directly in
Matlab, that allows a quick access to the tools needed. The sequence recognition
system and the logical description library are compiled as dll1 and recalled the
former by Matlab scripts, the latter by the XVR application.

1The application has been developed under windows

85

86 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

Figure A.1: Simulink Scheme

The dll implementing the sequence recognition uses the functions shown in
A.2 based on the principles explained in chapter 5. These functions are thought
to work on sequences, hence the dll incorporates also global variables and special
functions to buffer samples received from Matlab2, build up a sequence of them
and than classify the sequence obtained. The classification function is called at ev-
ery sampling time: if the buffer is not full the sample is added, if the buffer is ready
the sequence is classified and the buffer is flushed and the process starts again. An
integer number representing the gesture recognized is the returned value; it is kept
unchanged whil filling the buffer, during the first recognition3 it is set to zero,
value that represent the null gesture.

The figure A.1 represents a Similink scheme incorporating the data acquisi-
tion, the sequence recognition and the comunication to XVR through UDP proto-
col. The block labeled ”S-Function” is needed to syncronize the scheme with the
sampling4;the three upper blocks are used to communicate via UDP to XVR; the
”GloveL” block emits the data sampled from the glove; the other blocks are added
just to manage matters of signal routing and syncronization between blocks.

The block labeled ”Matlab Fcn” incorporates encoding and sequence recog-
nition, at every sample step the following script is executed5: function

2Exchanging complex data structure is complicated and so it is better to let the library built the
sequence that actually is a vector of vectors

3This phase lasts for less than a second. If the buffer is too big the recognition could become
too slow to be applied

4It exploits code developed at PERCRO labs
5The sintax is the one typical of matlab scripts

A.1. APPLICATION OVERVIEW 87

[y]=classification(u)
global COEFF; global net1 net2 net3;
global PrC
global IDGESTURE
PrC=[PrC;u(1:11)’*COEFF];
if size(PrC,1)>=50;
PRIORS=single(u(12:16));
Sample1=fft(PrC(1:50,1));
Sample2=fft(PrC(1:50,2));
Sample3=fft(PrC(1:50,3));
serie1=vec2ind(sim(net1,Sample1(2:25,:)));
serie2=vec2ind(sim(net2,Sample2(2:25,:)));
serie3=vec2ind(sim(net3,Sample3(2:25,:)));
symbol=int32([serie1;serie2;serie3]);
psymbol=libpointer(’int32Ptr’,symbol);
pPRIORS=libpointer(’singlePtr’,PRIORS);
PrC=PrC(7:50,:);
[IDGESTURE]=calllib(’Classifier’,’Classify’,pPRIORS,psymbol,8);
end
end
y=IDGESTURE;
end
This is a function, and it is called by Simulink during the execution. The keyword
Global global variables are imported, they represent:

• COEFF: a matrix of coefficients to transform the sample series in their prin-
cipal components;

• ne1,net2,net3: neural network implementing the codebook;

• PrC: an array that accumulates samples for a given time window.

• IDGESTURE: the last gesture identified;

Global variables have a static time of life, this means that they hold their value
between two calls to the function. This makes possible to build up the PrCto
compute the PCA and the fourier transform on it, as well as keeping structures
prepared during the set up in the other global variables. Every seven samples
received from the glove producing a symbol from the sample in PcR, that is 50
samples long (the time windows are overlapping) callib evokes the dll function
to classify it.

88 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

A.2 Sequence Recognition library
Sequences classification is performed by a library written in C++. Methods and
structure implemented allows to create, train, save, load and use the Classifier.

A.2.1 Methods and Structures
The library feature these structures6 with related methods:

• sequence - Implements a list of sequences

• MxMiHMM - Describes an HMM and features methods to adapt it during
training and to compute probabilities needed for classification

• Classifier - Describes a usable classification system

• Trainer - Derived from Classifier 7 this structure includes the training set.
It features methods to train the classifier and save it once trained.

A.2.2 Detailed Code
Structure ”sequence”

Definition:
struct sequence
{
double* prob;
double Tprob;
sequence* next;
int** sample;
int lenght;
int model;
}

The structure is a simple implementation of a list through a the pointer
next that points to the next object. The field sample is a pointer to the
sequence (an array of arrays of integer), the field length repre-
sents the number of samples featured and the field model represents the model

6”Classes” is a more precise term for C++ structures defined by internal field and a set of
functions (and other features typical of C++ class implementation). Sometimes the term can be
confusing in this context where ”classes of objects are given”

7it means that a ”Trainer” object is also a ”Classifier” object, but not vice versa. ”Trainer” has
all the methods and the fields of ”Classifier”

A.2. SEQUENCE RECOGNITION LIBRARY 89

supposed to be recognized as the most probable emitter for the sequences (that is
the label of the target class). The field prob points to the vector of probabilities
P(S|Mi) for every class i, Tprob is the total probability P(S). Both Tprob and
prob are updated at every step during the training algorithm, and they are not
proper data of the sample sequence. The list implemented by sequence is used
by the trainer to hold the training set. When classifying, the system can take raw
arrays of symbols as input.

structure ”MxMiHMM”

Definition:
class MxMiHMM
{
int Nstat;
int Nemis;
int Nobs;
struct parameters

double* A;
double* B;
double* pi;
;
double* A;
double* B;
double* pi;
void sumP(parameters* dest,parameters* ad);
void AddGrad(parameters* ad);
void divP(parameters* dest,double p);
void Projection(parameters* p);
void ProjectionBorderline(parameters* p, parameters*
OnConstraint);
int MIndex(int row,int col);
void Normalize();
void Gradient(int* seq,int seqlen,parameters* ret);
void initparam(parameters* p);
void deleteparam(parameters* p);

public:
MxMiHMM(const MxMiHMM&);
MxMiHMM& operator=(const MxMiHMM&);
MxMiHMM(int Ns,int Nem);

90 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

void Run(int* out,int len);
MxMiHMM();
MxMiHMM();
void trainstep(const sequence* sampleseq, const sequence*
negseq, double* Pmodels, double epsilon);
void Forward(double** alpha, int* sample,int seqlen, int
time);
void Backward(double** beta, int* sample,int seqlen,int
time)
double ForwBack(int* sample, int seqlen);

friend ostream& operator<<(ostream& to, const MxMiHMM model);
friend istream& operator>>(istream& from, const MxMiHMM
model);

};
The fields of a MxMiHMMrepresent the number of hidden states (Nstat), the
number of possible values for every observable (Nemis), the number of observ-
ables (Nobs) and the matrices A, B and π (A,Band pirespectively). The structure
parameters is used to represent model parameters involved in algorithm
operations. Both for the MxMiHMMitself and parameters A and B are represented
row by row as simple arrays: the function MIndex() is used to indicize the
values in the array given the index in the matrices. Forward() and Backward
compute reapectively the functions α(t) and β(t), ForwBack() computes the
emission probability for a sequence, Run() produces a random sequence emitted
by the model. Streaming operators are used when loading or saving a classifier.
Data are not formatted in a particular way: the arrays are just saved as stored in
memory. The method Normalize normalizes the parameters, it is used when
creating the model to produce a coherent initialization, and during the training to
prevent numerical approximations to destroy data coherency.

Structure ”Classifier”

Definition:
class Classifier
{
protected:
MxMiHMM* Models;
int NModels;
public:
Classifier()

A.2. SEQUENCE RECOGNITION LIBRARY 91

int Classify(int **seq, int len);
int LoadClassifier(char* nomefile);
int SaveClassifier (char* nomefile);
};
The class, representing the sequence classifier, includes a set of HMMs, con-
tained in the vector pointed by Models . The function Classify() exploits
the principles exposed in 5.2 to classify sequences. LoadClassifier()and
SaveClassifier() load and save the classifier. This class does not provide
methods to modify the methods, SaveClassifier() is hence used by the de-
rived class Trainer in order to save the classifier once it is trained.

Structure ”Trainer”

class Trainer : public Classifier

sequence* Samples;
int NSamples;
public:
Trainer();
Trainer();
double Train(int steps,double epsilon,double*
ModelProb=NULL);
int AddSequence(int** sample, int len ,int model);
int AddModel(MxMiHMM& ToAdd);
int AddModel(int stats,int obs);
int LoadTrainer(char* nomefile);
int SaveTrainer(char* nomefile);
;
The class Trainer , derived from Classifier , allows to create and train a clas-
sifier. The training set is hold by the pointer Samples that works as base for the
list of sequence objects. Besides the inherited functions LoadClassifier()and
SaveClassifier(), Trainer has its own load/save methods, LoadTrainer(),
and SaveTrainer(), that save and load also the training set. Models could be
added to the classifier using the method Addmodel() (that, by overloading, can
accept an existing HMM or the paremeters to create a new one). The method
Train() implemets the training algorithm itself. The parameter epsilon is the
inverse of µ and is used to tune convergence speed, ModelProb is the vector of
prior probabilities P(M). The value returned by Train() is the goal function 5.8

92 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

A.3 Logical Environment management library
The virtual environment description is implemented by a library written in C++.
The library features fuctions to load a description from a file, to get information
from it and interact with it changing its logical states.

A.3.1 Methods and Structures
The main structure implementing the logical description is StateManager that
represent all the informations avaiable about the environment. To represent the
various part of the description (see 6) several structures are defined. These struc-
tures are thought to be referred by StateManager and not to be referred directly.
The user can specify facts, rules actions etc. just using strings at runtime.

A.3.2 Detailed code
Structure ”StateManager”

Definition:
class StateManager
{
//tables
vector<function> Functions;
vector<object> Objects;
vector<objecttype> Objecttypes;
vector<rule> Rules;
vector<action> Actions;
vector<priors> Matrix;
list<fact> Facts;
//Utilities
int unique;
vector<int> AnyIndex;
int str2num(string str);
bool readfact(istream& from,list<fact> &factls,bool untold);
void readrule(istream& from,vector<rule> & rulelist);
void instantiate(list<list<fact> > &real inst);
void rule instantiate(list<fact>&left,fact& right tpl,fact&
right inst);
void notify(fact& newfact,bool temporary);
double evaluate(list<fact>& terms,vector<int> exploited);
double evaluate(fact &term, vector<int> exploited);

A.3. LOGICAL ENVIRONMENT MANAGEMENT LIBRARY 93

public:
StateManager(char* file);
vector<double> GetPriors();
void notify(string f,bool provvisory); // notify a fact
void flushtemporary();
double evaluate(string f);
double revaluate(string f);

friend ostream& operator<<(ostream& to,StateManager& S);

bool act(string actn);
};

This structure holds all the data describing the environment: functions, objects
and their types, rules and implications, actions and prior probabilities for gestures.
All of them but implications are represented by the omonimous structures, impli-
cation are stored in memory as a set of rules. The public methods are

• StateManager: The class constructor, parses a text file with the environ-
ment logical description description updating the fields.

• notify: to notify facts, making them part of the logical description or up-
dating their truth value. This function has an overloaded private method that
handles the fact in the form in which it is represented in memory (using the
structure fact) that is called once the string has been parsed;

• evaluateand revaluate: to get the truth value of a fact. Using
revaluatethe fact is not searched in the description but computed, through
the rules, from the other facts, and memorized.In case the fact already exist
in memory its truth value is replaced with the computed one. Also in this
case there are private overloaded methods. one of them evaluates the single
term truth value, the other the value of the left side of a rule (logical product
of terms). They are used recursively to implement the inference algorithm
seen in 6.4;

• flushtemporary: to delete every fact flagged as provvisonal;

• operator<<: to print the descripiton, useful during the debug and the appi-
cation set up;

The private method rule instantiate specializes a rule to instanced object to
compute it’s conseguences.

94 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

Data Structures

The representation exploit several structures to hold data in memory:

• Objecttypes: types declared with the keyword ”object”, used in parsing
rules. they have a name and an identifier number

• Objects: declared objects, with name, type and identifier number;

• fact: a fact (function applied to an object) with truth value;

• Rules: rules to infer facts from facts. they hold a list of facts representing
causes and a fact representing the effect. A set of rule can represent an
implication.

• Actions: actions the user can perform. they hold some facts as effects;

• Priors: rules to compute prior probabilities for every action;

• Functions: hold the function name and a relative number, used to parse facts
in form of strings;

The identifier numbers for functions and objects are used to represent facts in
a lean and quickly processable form. Follows the C++ declaration of these
structures:
class function
{
public :
string name;
int arity;
function();
function(string n,int a) {arity=a; name=n;}
bool check(string n,int a) {return ((a==arity) &&
(n==name));}
function& operator=(function& f);
};

class object
{ public :
string name;
object()
object(string n) name=n;
bool check(char* n) return (n==name);

A.3. LOGICAL ENVIRONMENT MANAGEMENT LIBRARY 95

};

class fact
{ public :
int funcnum;
vector<int > objects;
vector<int > instances;
double truth;
bool temporary;

bool check tpl(fact& test,double& t,vector<objecttype>
&Objecttypes);
void specify(int inst,int ty,int ob);
bool check(fact& test,double& t);
};

class priors {
public :
list<fact> trigger;
vector<int > actindexes;
vector<double> prob;
priors(list<fact>& tr,vector<int > &ai,vector<double>
&pr){trigger=tr;actindexes=ai;prob=pr;}
};

class rule

public :
vector<int > variables;
fact rightterm;
list<fact> leftterms;
rule(list<fact> left,fact right);{rightterm=right;leftterms=left;}
rule(){};
};

class action
{
public :
string name;
vector<rule> tasks;
unsigned int mode;

96 APPENDIX A. FURTHER IMPLEMENTATION DETAILS

action(const vector<rule> &t,string nam) {name=nam;tasks=t;}
};

Appendix B

Hidden Markov Models

This appendix explains what is an hidden markov model with the notation used
in the previous chapters1. It is to point that several kinds of model are referred
as HMM in different context, here the model used in the implemented application
will be described. Other variants, mentioned in the state of art chapter 2, will not
be explained in details. A basic article on HMM is [LR86].

B.1 Markov Chains

A Marcov chain is the basis of an HMM. It is a discrete-time random process
where the next state depends only on the present state and does not directly depend
on the previous states. This is known as Markov property2 and could be formally
expressed as:

P(Xn|Xn−1 = xn−1,Xn−2 = xn−2 . . .X1 = x1) = P(Xn|Xn−1) (B.1)

The possible values for Xi are discrete and finite.
The changes of state are called transitions and are characterized by the transi-

tion probability

ai j = P(Xn = j|Xn−1 = i) (B.2)

where i and j are natural numbers assumed as labels for the states. Transition

1Different articles/books use different notation to describe hidden markov models, here a no-
tation inherited from speech recognition literature is used.

2The concept is generalized as markovian process of nth order where n is the number of previ-
ous states to be taken in account. the Markov chain here described is hence a markovian process
of first order

97

98 APPENDIX B. HIDDEN MARKOV MODELS

Figure B.1: Graphic representation of a 2-state HMM

probabilities can be collected in a matrix called the transition matrix

A =

a11 a12 · · · a1n
a21 a22

. . .
Ann

 (B.3)

To fully characterize a Markov chain it is also needed to specify the probability
for the process to start in a given state

π =

π1
π2
...

πn

 (B.4)

the probability for the process C to produce a certain sequence Z of states zt , T
samples long, is

P(Z|C) = P(X0 = z0)
T

∏
t=1

P(Xt = zt |Xt−1 = zt−1) (B.5)

for every sample time t a vector πt can be defined

πt = At
π (B.6)

whose componets are the probabilities of being in a certain state at the time step t.

B.2 Hidden States and Emission Matrix
An HMM consists in a Marcov process not directly observable, being the states
hidden. The process is observable only through emitted symbols. For every state

B.2. HIDDEN STATES AND EMISSION MATRIX 99

Figure B.2: A ladder diagram for HMM

an emission probability of every possible symbol should be specified. The proba-
bilities can be collected in an emission matrix usually called B;

B =
[

b1 b2 · · · bn
]

(B.7)

where

bi =

P(o1|X = xi)
P(o2|X = xi)

...
P(on|X = xi)

 (B.8)

where o1, o2 ... on are the n observable symbols and P(ok|X = xi) is the probability
for the symbol ok to be emitted when the internal state is xi.

The figure B.1 is a typical graphic reprensntation of an HMM. The circles rep-
resent states and the arcs possible transition with the associated probability. In
picture B.2 the HMM is represented unfolded through time: lighter nodes rep-
resent the state at a certain time and darker nodes represent the emission. The
structure is the same of a bayesian network [Bis06].

B.2.1 Vectorial Output Symbols
A model of HMM with more than one output variable is described in [Bis06]. for
every component i of the output vector an emission matrix Bi is specified. The
emission of every symbol is independent from the other so that

100 APPENDIX B. HIDDEN MARKOV MODELS

P(o|X = xn) =
N

∏
k=1

P(ok|X = xn) (B.9)

where ok is the kth component of the symbol o.

B.3 Notation
Here the principal concepts related to HMM, and the way they are referred also in
the other chapters, are summarized. The internal states and the emitted symbols
are labeled with natural numbers. As told in the previous sections an HMM is
characterized by the matrices

• A of transition probabilities, whose components ai j represent the probability
of transition from the componet state labeled i to the state labeled j. By
definition ∑

N
j=0 ai j = 1, where N is the number of possible internal states.

• B of emission probabilities, this can be also an ”array of matrices”, one for
every observable series, whose components b ji represent the probability of
emission for the symbol j when the system , is in the state labeled i.By
definition ∑

M
j=0 b ji = 1, where M is the number of possible internal states.

• π of initial probabilities, where πi is the probability for the system to start
in the state i.

Being θ3 the vector of all parameters characterizing the HMM 4 the emission
probability of a sequence S could be written as P(S|θ). In this context a different
notation is used

P(S|Mθ) (B.10)

Where M is the model with parameters θ. Using this notation the role of a cause
(whose effects are modelled with Mθ) in producing S as evidence is enphatized.
In the context of gesture recognition P(S|Mθ) can be read as the probability of
observing θ when the gesture modelized by Mθ is observed, in other word M is a
gesture as sthocastic process, S is its realization. The samples of the sequence S
are labeled with a subscript t indexing the time step, so St is the observed symbol
of the sequence S at time t. So, P(St |Mθ) is the probability of observing the
symbol St exactly as tth emitted by the model Mθ.

3Also λ is commonly used in HMM literature.
4In general the parameters are the entries of A,B and π matrices. Sometimes, when there are

some additional constraints on the model, the parameters could be a different set

B.4. KEY PROBLEMS OF INTEREST 101

It is also useful to define functions that are referred in algorithms:

αt(i) = P(S1,S2, . . . ,St ,Xt = xi|Mθ) (B.11)

that is the probability of the sequence S to be observed until the time t and of the
internal state to be xi, it is called forward probability. It is computed efficently
with an iterative algorithm:

α1(i) = π1bi(S1) f or 1≤ i≥ N
αt+1(j) =

[
∑

N
i=1 αt(j)ai j

]
b j(St+1) f or t = 1,2..T, 1≤ j ≥ N

(B.12)

where N is the number of states and T is the number of samples in S. This al-
gorithm has complexity N ·T 5. In a simalar way a backward variable β can be
defined as:

βt(i) = P(St+1,St+2, . . . ,ST ,Xt = xi|Mθ) (B.13)

that is the probability of the sequence S to be observed starting from the time t
until the end, and of the internal state to be xi. It is called Backward probability.
As for α it is computed with an iterative algorithm:

βT (i) = 1 f or 1≤ i≥ N
βt(j) = ∑

N
j=1 ai jb j(St+1)βt+1(j) f or t = T −1,T −2..1, 1≤ j ≥ N (B.14)

Notice that the initialization βT (i) = 1 f or 1≤ i≥ N
is arbitrary defined, and βT itself has not a proper meaning outside the context of
the algorithm. Also in this case the complexity is N ·T

B.4 Key problems of interest
Given the HMM there are three fundamental problems to discuss:

• Compute the emission probability P(S|Mθ) of a given osservation S by a
given model Mθ.

• Given the observation sequence S find an optimal sequence of underlying
states

• How to adapt the HMM parameters to maximise the match with a given [set
of] sequence.

The concepts of optimality and maximum match can vary between different ap-
plications. A solution for the first problem will be explained, being P(S|Mθ) used
in the algorithms described in 5, where a solution to the third problem is showed.
The second problem, although historically relevant is not considered here because
it never occours during the development of the algorithms described in this work.

5computing α as sum of the probabilities over all possible path has complexity T NT

102 APPENDIX B. HIDDEN MARKOV MODELS

B.4.1 The Forward-Backward procedure
The emission probability P(S|Mθ) could be explicitly expressed as

P(S|Mθ)= ∑
all X

P(S|X ,Mθ)P(X |Mθ)= ∑
x1,x2...,xt

πx1bx1(S1)ax1x2bx2(S2) . . .axT−1xT bxT (ST)

(B.15)
This formula is unefficient if applied compute P(S|Mθ) because of the great com-
putational complexity. A more efficent way to do this computation is to use the
functions α and β defined in B.3. The formula to be applied is:

P(S|Mθ) =
N

∑
i=0

αT (i) (B.16)

or, referring to β

P(S|Mθ) =
N

∑
i=0

β1(i) (B.17)

Appendix C

Principal Component Analysis

C.1 Definition
Principal component analysis is a method to simplify data. The basic aim of this
procedure is the reduction of the number of variables (representing features of the
analyzed phenomenon) representing them with a minor number of latent variables.
It is possible through a variables linear transformation that projects them in a new
reference system in which the new variable with the greatest variance is projected
on the first axes, the one second for variance size on the second and so on. The
complexity reduction consists in dropping a number new variables with minor
variance, keeping just the principal ones.

Assuming that the original variables x have zero mean (it can be forced sub-
tracting the actual mean) finding the principal component is a matter of finding
the vector w1 from:

w1 = arg max
‖w‖=1

E
{(

wT x
)2
}

(C.1)

Figure C.1: Example of PCA

103

104 APPENDIX C. PRINCIPAL COMPONENT ANALYSIS

With the first k− 1 components the kth component can be computed subtracting
the first k−1 principal component from X

x̂k−1 = x−
k−1

∑
i=1

wiwT
i x (C.2)

and substituting it:
wk = arg max

‖w‖=1
E
{(

wT x̂k−1
)2
}

. (C.3)

Original data are than projected in the obtained reduced vectorial space.

C.2 Using The Covariance Matrix
An easier way to compute the linear transformation is to use the covariance matrix
of the data:

Cx = E
{
(x−µx)(x−µx)T} (C.4)

that is estimated as

Cx =
1
n

i=1

∑
n

(x−µx)(x−µx)T (C.5)

where n is the number of observations considered. The eigenvectors of this matrix,
arranged in rows, and ordered by the size of the associated eigenvalue are the
transformation matrix needed.

Appendix D

Competitive Neural Networks

Competitive neural networks are adaptative classifiers. Their neurons distribute
themselves to recognize frequently presented input vectors. The name ”compet-
itive” address the fact that when an input vector is presented only the most acti-
vated neuron is considered ”the winner” and identifies the class to which the input
is recognized to belong.

D.1 Architecture
Here is shown the network architecture as represented in Matlab. The ”Ndist”

Figure D.1: Competitive Networks in Matlab

box in figure D.1 accepts the input vector p and the input weight matrix IW1,1,
and produces a vector having S1 elements. The elements are the negative of the

105

106 APPENDIX D. COMPETITIVE NEURAL NETWORKS

distances between the input vector and vectors IW1,1 formed from the rows of
the input weight matrix. The net input n1 of a competitive layer is computed by
finding the negative distance between input vector p and the weight vectors and
adding the biases b. If all biases are zero, the maximum net input a neuron can
have is 0. This occurs when the input vector p equals that neuron’s weight vector.
The competitive transfer function accepts a net input vector for a layer and returns
neuron outputs of 0 for all neurons except for the winner, the neuron associated
with the most positive element of net input n1. The winner’s output is 1. If all
biases are 0, then the neuron whose weight vector is closest to the input vector has
the least negative net input and, therefore, wins the competition to output a 11.

D.2 Training
During the training sample inputs are presented to the net. For every sample pre-
sented the winner neuron is identified (on the basis of the weights at that phase
of the training) and its weights are adapted using the Kohonen learning rule, al-
ready discussed in 2.4.1 that, with the notation used in the scheme in figure D.1,
supposing that the ith neuron wins, the elements of the ith row of the input weight
matrix is adapted with the following formula:

iIW 1,1(t) =i IW 1,1(t−1)+α(p(t)−i IW 1,1(t−1)) (D.1)

where t stands for ”time” and is the step of the training process.
Thus, the neuron whose weight vector was closest to the input vector is up-

dated to be even closer. The result is that the winning neuron is more likely to win
the competition the next time a similar vector is presented, and less likely to win
when a very different input vector is presented.

D.3 Adjusting Biases
One of the limitations of competitive networks is that some neurons may not al-
ways get allocated. In other words, some neuron weight vectors may start out
far from any input vectors and never win the competition, no matter how long
the training is continued. The result is that their weights do not get to learn and
they never win. These unfortunate neurons, referred to as dead neurons, never
perform a useful function. To stop this from happening, biases are used to give
neurons that only win the competition rarely (if ever) an advantage over neurons
that win often. A positive bias, added to the negative distance, makes a distant

1extract from [Mat04]

D.3. ADJUSTING BIASES 107

neuron more likely to win. To do this job a running average of neuron outputs is
kept. It is equivalent to the percentages of times each output is 1. This average
is used to update the biases so that the biases of frequently active neurons will
get smaller, and biases of infrequently active neurons will get larger. The result is
that biases of neurons that haven’t responded very frequently will increase versus
biases of neurons that have responded frequently. As the biases of infrequently
active neurons increase, the input space to which that neuron responds increases.
As that input space increases, the infrequently active neuron responds and moves
toward more input vectors. Eventually the neuron will respond to an equal num-
ber of vectors as other neurons. This has two good effects. First, if a neuron never
wins a competition because its weights are far from any of the input vectors, its
bias will eventually get large enough so that it will be able to win. When this hap-
pens, it will move toward some group of input vectors. Once the neuron’s weights
have moved into a group of input vectors and the neuron is winning consistently,
its bias will decrease to 0. Thus, the problem of dead neurons is resolved. The
second advantage of biases is that they force each neuron to classify roughly the
same percentage of input vectors. Thus, if a region of the input space is associated
with a larger number of input vectors than another region, the more densely filled
region will attract more neurons and be classified into smaller subsections.

108 APPENDIX D. COMPETITIVE NEURAL NETWORKS

Bibliography

[AC00] Horst-Micheal Gross Andrea Corradini. Imlementation and compari-
son of three architectures for gesture recognition. IEEE, pages 2361–
2364, 2000.

[AJ05] Sébastien Marcel Agnès Just. Two-handed gesture recognition. Tech-
nical report, IDIAP, may 2005.

[AS] Antonina Starita Alessandro Sperduti. Supervised neural networks for
the classification of structures.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[Bri90] John S. Bridle. Training stochastic model recognition algorithms as
networks can lead to maximum mutual information estimation of pa-
rameters. pages 211–217, 1990.

[Cho90] Yen-Lu Chow. Maximum mutual information estimation of hmm pa-
rameters for continuos speech recognition using the n-best algorithm.
IEEE, pages 701–704, 1990.

[G.E] B. J. McCarrangher G.E.Howland, P. Sikka. Skill acquisition from
human demostration using a hidden markov model.

[JP] Mikko Kurimo Janne Pylkkonen. Duration modeling techniques for
continuous speech recognition.

[JS02] Massino Bergamasco. Jorge Solis, Carlo A. Avizzano. Teaching to
write japanese caracters using a haptic interface. Proceedings of the
10th Symp. On Haptic Interfaces For Virtual Envir. & Teleoperator
Systs., pages –, 2002.

[Koh90] T. Kohonen. The self-organizing map. Proce. IEEE, 78:1464–1480,
1990.

109

110 BIBLIOGRAPHY

[LDD] Angelo M. Sabatini Laura DiPietro and Paolo Dario. A survey of
glove-based systems and their applications.

[LR86] B.H. Juang L.R. Rabiner. An introduction to hidden markov models.
IEEE ASSP Magazine, pages –, 1986.

[Mat04] Mathworks. Matlab manual, 2004.

[MB97] Alex Portland Mattew Brand, Nuria Oliver. Coupled hidden markov
models for complex action recognition. IEEE, pages 994–999, 1997.

[Mic05] Alessio Micheli. Hmm, just an introduction of the model, 2005.

[MMC05] Judy M. Vance Melinda M. Cerney. Gesture recognition in virtual en-
vironments: A review and framework for future development. Tech-
nical report, Iowa State University, March 2005.

[OPR] E. Sotgiu S. Pabon A. Frisoli J. Ortiz M. Bergamasco O. Portillo-
Rodriguez, C.A. Avizzano. A wireless bluetooth dataglove based on a
novel goniometric sensors.

[PF97] Alessandro Sperduti. Paolo Frasconi, Marco Gori. A general frame-
work for adaptive processing of data structures. pages –, 1997.

[Ros96] I. Rossitto. Identificazione del gesto tramite hidden markov model.
Master’s thesis, University of Pisa, Faculty of Computer Science,
1996. (Italian Thesis: Gesture Recognition through Hidden Markov
Models).

[Vap99] Vladimir N. Vapnik. An overview of statistical learning theory. IEEE
Transaction on Neural Network, 10(5):988–999, September 1999.

[WB] Yves Guiard Abigail Sellen Shumin Zhai William Buxton,
Mark Billinghurst. Human input to computer systems: Theories, tech-
niques and technology. Available on http://www.billbuxton.com.

[WZ02] Xiang-Long Tang Wei Zhao, Jia-Feng Liu. On-line handwritten en-
glish word recognition based on cascade connection of character hmm.
Procedings of the first International Conference on machine Learning
and Cybernetics, Beijing, 1:1758–1761, November 2002.

[YA97] H. Yin and N.M. Allison. Bayesian learning self-organising maps.
Electronics Letters, 33:304–305, 1997.

